Thread: multi-layered view join performance oddities
Hi there. I have tried to implement the layered views as suggested earlier on one of the simplest queries (just to get a feel for it). And there seems to be something odd going on. Attached are all the statemens needed to see, how the database is made and the contents of postgresql.conf and two explain analyzes: The machine is a single cpu Xeon, with 2G of memory and 2 scsi-drives in a mirror (is going to be extended to 6 within a few weeks) running 8.1beta3. The whole database has been vacuum analyzed just before the explain analyzes. I have spend a few hours fiddling around with the performance of it, but seems to go nowhere - I might have become snowblind and missed something obvious though. There are a few things, that strikes me: - the base view (ord_result_pct) is reasonable fast (41 ms) - it does a lot of seq scans, but right now there are not enough data there to do otherwise - the pretty version (for output) is 17,5 times slower (722ms) even though it just joins against three tiny tables ( < 100 rows each) and the plan seems very different - the slow query (the _pretty) has lower expected costs as the other ( 338 vs 487 "performance units") , this looks like some cost parameters need tweaking. I cannot figure out which though. - the top nested loop seems to eat most of the time, I have a little trouble seeing what this nested loop is doing there anyways Thanks in advance Svenne create table nb_property_type( id integer not null, description_dk varchar not null, description_us varchar not null, primary key(id) ); --- 8 rows in nb_property_type, not growing create table groups ( id int4 not null default nextval('role_id_seq'), groupname varchar not null, is_home_group bool not null default 'f'::bool, valid bool not null default 't'::bool, created_at timestamp not null default current_timestamp, changed_at timestamp, stopped_at timestamp, primary key(id)); -- at the moment approx. 20 rows, expected a few hundres when going online create table ord_dataset( id serial, first_observation date not null, last_observation date, is_mainline bool not null default 't', is_visible bool not null default 'f', description_dk varchar, description_us varchar, created_by int4 not null references users, created_at timestamp not null default current_timestamp, primary key(id) ); create unique index ord_dataset_fo_idx on ord_dataset(first_observation) where is_mainline = 't'; -- approx. 35 rows, growing 4 rows each year create table ord_entrydata_current( dataset_id integer not null references ord_dataset, institut integer not null references groups, nb_property_type_id int4 not null references nb_property_type, amount int8 not null ); create index ord_ed_cur_dataset_id on ord_entrydata_current(dataset_id); create index ord_ed_cur_institut on ord_entrydata_current(institut); create index ord_ed_cur_propertytype on ord_entrydata_current(nb_property_type_id); -- filled by a trigger, approx. 3,000 rows, grows approx. 250 rows each year create view ord_property_type_sums as SELECT ord_entrydata_current.dataset_id, 0 AS nb_property_type_id, ord_entrydata_current.institut, sum(ord_entrydata_current.amount)AS amount FROM ord_entrydata_current GROUP BY ord_entrydata_current.dataset_id, ord_entrydata_current.institut; create view ord_property_type_all as SELECT ord_property_type_sums.dataset_id, ord_property_type_sums.nb_property_type_id, ord_property_type_sums.institut, ord_property_type_sums.amount FROM ord_property_type_sums UNION ALL SELECT ord_entrydata_current.dataset_id, ord_entrydata_current.nb_property_type_id, ord_entrydata_current.institut, ord_entrydata_current.amount FROM ord_entrydata_current; create view ord_institutes_sum as SELECT ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id, 0 AS institut, sum(ord_property_type_all.amount)AS amount FROM ord_property_type_all GROUP BY ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id; create view ord_result_pct as SELECT t1.dataset_id, t1.nb_property_type_id, t1.institut, t1.amount / t2.amount * 100::numeric AS pct FROM ord_property_type_all t1, ord_institutes_sum t2 WHERE t1.dataset_id = t2.dataset_id AND t1.nb_property_type_id = t2.nb_property_type_id; create view ord_result_pct_pretty as select od.id, od.first_observation, od.description_dk as dsd_dk, od.description_us as dsd_us ,g.groupname,orp.institut,orp.nb_property_type_id, npt.description_dk as pd_dk, npt.description_us as pd_us, pct from ord_result_pctorp, ord_dataset od, nb_property_type npt, groups g where orp.dataset_id = od.id and orp.institut = g.id and orp.nb_property_type_id = npt.id and od.is_visible= 't'::bool; -- contents of postgresql.conf listen_addresses = 'localhost' port = 5432 max_connections = 100 superuser_reserved_connections = 1 shared_buffers = 20000 work_mem = 10240 maintenance_work_mem = 163840 max_stack_depth = 2048 max_fsm_pages = 50000 max_fsm_relations = 3000 max_files_per_process = 1000 bgwriter_delay = 200 bgwriter_all_percent = 1.0 bgwriter_all_maxpages = 10 fsync = on wal_buffers = 128 checkpoint_segments = 32 effective_cache_size = 50000 -- now for the queries rkr=# explain analyze select * from ord_result_pct ; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------- Merge Join (cost=466.54..487.20 rows=15 width=76) (actual time=30.185..39.857 rows=2532 loops=1) Merge Cond: (("outer".nb_property_type_id = "inner".nb_property_type_id) AND ("outer".dataset_id = "inner".dataset_id)) -> Sort (cost=286.05..292.24 rows=2476 width=44) (actual time=14.591..15.519 rows=2532 loops=1) Sort Key: t1.nb_property_type_id, t1.dataset_id -> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.895..10.879 rows=2532 loops=1) -> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.894..5.111 rows=282 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.004..1.271rows=2250 loops=1) -> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.005..4.162 rows=2250loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..1.669rows=2250 loops=1) -> Sort (cost=180.49..181.11 rows=248 width=40) (actual time=15.578..16.533 rows=2526 loops=1) Sort Key: t2.nb_property_type_id, t2.dataset_id -> Subquery Scan t2 (cost=165.05..170.63 rows=248 width=40) (actual time=14.597..15.014 rows=288 loops=1) -> HashAggregate (cost=165.05..168.15 rows=248 width=40) (actual time=14.595..14.822 rows=288 loops=1) -> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.901..11.027 rows=2532 loops=1) -> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.901..5.105 rows=282 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.002..1.308rows=2250 loops=1) -> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.006..4.312rows=2250 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..1.697rows=2250 loops=1) Total runtime: 41.076 ms (19 rows) rkr=# explain analyze select * from ord_result_pct_pretty ; QUERY PLAN ----------------------------------------------------------------------------------------------------------------------------------------------------------- Nested Loop (cost=223.09..338.61 rows=1 width=174) (actual time=20.213..721.361 rows=2250 loops=1) Join Filter: (("outer".dataset_id = "inner".dataset_id) AND ("outer".nb_property_type_id = "inner".nb_property_type_id)) -> Hash Join (cost=58.04..164.26 rows=1 width=150) (actual time=5.510..22.088 rows=2250 loops=1) Hash Cond: ("outer".institut = "inner".id) -> Hash Join (cost=56.88..163.00 rows=16 width=137) (actual time=5.473..19.165 rows=2250 loops=1) Hash Cond: ("outer".dataset_id = "inner".id) -> Hash Join (cost=55.48..160.95 rows=99 width=101) (actual time=5.412..16.264 rows=2250 loops=1) Hash Cond: ("outer".nb_property_type_id = "inner".id) -> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.900..12.869 rows=2532 loops=1) -> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.900..5.094 rows=282 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.002..1.266rows=2250 loops=1) -> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.009..6.063rows=2250 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..2.755rows=2250 loops=1) -> Hash (cost=1.08..1.08 rows=8 width=57) (actual time=0.016..0.016 rows=8 loops=1) -> Seq Scan on nb_property_type npt (cost=0.00..1.08 rows=8 width=57) (actual time=0.002..0.010rows=8 loops=1) -> Hash (cost=1.32..1.32 rows=32 width=36) (actual time=0.054..0.054 rows=32 loops=1) -> Seq Scan on ord_dataset od (cost=0.00..1.32 rows=32 width=36) (actual time=0.003..0.027 rows=32loops=1) Filter: is_visible -> Hash (cost=1.13..1.13 rows=13 width=17) (actual time=0.029..0.029 rows=13 loops=1) -> Seq Scan on groups g (cost=0.00..1.13 rows=13 width=17) (actual time=0.007..0.019 rows=13 loops=1) -> HashAggregate (cost=165.05..168.15 rows=248 width=40) (actual time=0.007..0.204 rows=288 loops=2250) -> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.983..11.132 rows=2532 loops=1) -> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.982..5.192 rows=282 loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.001..1.333rows=2250 loops=1) -> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.008..4.329 rows=2250loops=1) -> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..1.747rows=2250 loops=1) Total runtime: 722.350 ms (27 rows)
On Sun, Oct 30, 2005 at 06:16:04PM +0100, Svenne Krap wrote: > Nested Loop (cost=223.09..338.61 rows=1 width=174) (actual time=20.213..721.361 rows=2250 loops=1) > Join Filter: (("outer".dataset_id = "inner".dataset_id) AND ("outer".nb_property_type_id = "inner".nb_property_type_id)) > -> Hash Join (cost=58.04..164.26 rows=1 width=150) (actual time=5.510..22.088 rows=2250 loops=1) There's horrible misestimation here. It expects one row and thus starts a nested loop, but gets 2250. No wonder it's slow :-) The misestimation can be traced all the way down here: > Hash Cond: ("outer".institut = "inner".id) > -> Hash Join (cost=56.88..163.00 rows=16 width=137) (actual time=5.473..19.165 rows=2250 loops=1) > Hash Cond: ("outer".dataset_id = "inner".id) > -> Hash Join (cost=55.48..160.95 rows=99 width=101) (actual time=5.412..16.264 rows=2250 loops=1) where the planner misestimates the selectivity of your join (it estimates 99 rows, and there are 2250). I've had problems joining with Append nodes in the past, and solved the problem by moving the UNION ALL a bit out, but I'm not sure if it's a very good general solution, or a solution to your problems here. If all else fails, you could "set enable_nestloop=false", but that is not a good idea in the long run, I'd guess -- it's much better to make sure the planner has good estimates and let it do the correct decisions from there. /* Steinar */ -- Homepage: http://www.sesse.net/
Svenne Krap <svenne@krap.dk> writes: > create view ord_institutes_sum as > SELECT ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id, 0 AS institut, sum(ord_property_type_all.amount)AS amount > FROM ord_property_type_all > GROUP BY ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id; > create view ord_result_pct as > SELECT t1.dataset_id, t1.nb_property_type_id, t1.institut, t1.amount / t2.amount * 100::numeric AS pct > FROM ord_property_type_all t1, ord_institutes_sum t2 > WHERE t1.dataset_id = t2.dataset_id AND t1.nb_property_type_id = t2.nb_property_type_id; This is really pretty horrid code: you're requesting double evaluation of the ord_property_type_all view, and then joining the two calculations to each other. No, the planner will not detect how silly this is :-(, nor will it realize that there's guaranteed to be a match for every row --- I believe the latter is the reason for the serious misestimation that Steinar noted. The misestimation doesn't hurt particularly when evaluating ord_result_pct by itself, because there are no higher-level decisions to make ... but it hurts a lot when you join ord_result_pct to some other stuff. It seems like there must be a way to get the percentage amounts with only one evaluation of ord_property_type_all, but I'm not seeing it right offhand. regards, tom lane
Hi.
Your suggestion with disableing the nested loop really worked well:
rkr=# set enable_nestloop=false;
SET
rkr=# explain analyze select * from ord_result_pct_pretty ;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Hash Join (cost=230.06..337.49 rows=1 width=174) (actual time=21.893..42.356 rows=2250 loops=1)
Hash Cond: (("outer".dataset_id = "inner".dataset_id) AND ("outer".nb_property_type_id = "inner".nb_property_type_id))
-> Hash Join (cost=56.94..164.10 rows=26 width=93) (actual time=5.073..17.906 rows=2532 loops=1)
Hash Cond: ("outer".dataset_id = "inner".id)
-> Hash Join (cost=55.54..161.63 rows=161 width=57) (actual time=4.996..14.775 rows=2532 loops=1)
Hash Cond: ("outer".institut = "inner".id)
-> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.964..11.827 rows=2532 loops=1)
-> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.964..5.174 rows=282 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.002..1.305 rows=2250 loops=1)
-> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.009..4.948 rows=2250 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.003..2.098 rows=2250 loops=1)
-> Hash (cost=1.13..1.13 rows=13 width=17) (actual time=0.022..0.022 rows=13 loops=1)
-> Seq Scan on groups g (cost=0.00..1.13 rows=13 width=17) (actual time=0.003..0.013 rows=13 loops=1)
-> Hash (cost=1.32..1.32 rows=32 width=36) (actual time=0.070..0.070 rows=32 loops=1)
-> Seq Scan on ord_dataset od (cost=0.00..1.32 rows=32 width=36) (actual time=0.009..0.043 rows=32 loops=1)
Filter: is_visible
-> Hash (cost=173.07..173.07 rows=10 width=97) (actual time=15.472..15.472 rows=256 loops=1)
-> Hash Join (cost=166.15..173.07 rows=10 width=97) (actual time=14.666..15.203 rows=256 loops=1)
Hash Cond: ("outer".nb_property_type_id = "inner".id)
-> HashAggregate (cost=165.05..168.15 rows=248 width=40) (actual time=14.619..14.849 rows=288 loops=1)
-> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=5.012..11.130 rows=2532 loops=1)
-> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=5.011..5.222 rows=282 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.001..1.261 rows=2250 loops=1)
-> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.010..4.308 rows=2250 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..1.694 rows=2250 loops=1)
-> Hash (cost=1.08..1.08 rows=8 width=57) (actual time=0.026..0.026 rows=8 loops=1)
-> Seq Scan on nb_property_type npt (cost=0.00..1.08 rows=8 width=57) (actual time=0.004..0.019 rows=8 loops=1)
Total runtime: 43.297 ms
(28 rows)
Now, the whole question becomes, how do I get the planner to make a better estimation of the returned rows.
I am not sure, I can follow your moving-the-union-all-further-out advice, as I see no different place for the unioning of the two datasets.
Maybe one of the core devs know, where to fiddle :)
Svenne
Steinar H. Gunderson wrote:
Your suggestion with disableing the nested loop really worked well:
rkr=# set enable_nestloop=false;
SET
rkr=# explain analyze select * from ord_result_pct_pretty ;
QUERY PLAN
-----------------------------------------------------------------------------------------------------------------------------------------------------------
Hash Join (cost=230.06..337.49 rows=1 width=174) (actual time=21.893..42.356 rows=2250 loops=1)
Hash Cond: (("outer".dataset_id = "inner".dataset_id) AND ("outer".nb_property_type_id = "inner".nb_property_type_id))
-> Hash Join (cost=56.94..164.10 rows=26 width=93) (actual time=5.073..17.906 rows=2532 loops=1)
Hash Cond: ("outer".dataset_id = "inner".id)
-> Hash Join (cost=55.54..161.63 rows=161 width=57) (actual time=4.996..14.775 rows=2532 loops=1)
Hash Cond: ("outer".institut = "inner".id)
-> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=4.964..11.827 rows=2532 loops=1)
-> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=4.964..5.174 rows=282 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.002..1.305 rows=2250 loops=1)
-> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.009..4.948 rows=2250 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.003..2.098 rows=2250 loops=1)
-> Hash (cost=1.13..1.13 rows=13 width=17) (actual time=0.022..0.022 rows=13 loops=1)
-> Seq Scan on groups g (cost=0.00..1.13 rows=13 width=17) (actual time=0.003..0.013 rows=13 loops=1)
-> Hash (cost=1.32..1.32 rows=32 width=36) (actual time=0.070..0.070 rows=32 loops=1)
-> Seq Scan on ord_dataset od (cost=0.00..1.32 rows=32 width=36) (actual time=0.009..0.043 rows=32 loops=1)
Filter: is_visible
-> Hash (cost=173.07..173.07 rows=10 width=97) (actual time=15.472..15.472 rows=256 loops=1)
-> Hash Join (cost=166.15..173.07 rows=10 width=97) (actual time=14.666..15.203 rows=256 loops=1)
Hash Cond: ("outer".nb_property_type_id = "inner".id)
-> HashAggregate (cost=165.05..168.15 rows=248 width=40) (actual time=14.619..14.849 rows=288 loops=1)
-> Append (cost=54.38..121.72 rows=2476 width=44) (actual time=5.012..11.130 rows=2532 loops=1)
-> HashAggregate (cost=54.38..57.20 rows=226 width=16) (actual time=5.011..5.222 rows=282 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=16) (actual time=0.001..1.261 rows=2250 loops=1)
-> Subquery Scan "*SELECT* 2" (cost=0.00..60.00 rows=2250 width=20) (actual time=0.010..4.308 rows=2250 loops=1)
-> Seq Scan on ord_entrydata_current (cost=0.00..37.50 rows=2250 width=20) (actual time=0.002..1.694 rows=2250 loops=1)
-> Hash (cost=1.08..1.08 rows=8 width=57) (actual time=0.026..0.026 rows=8 loops=1)
-> Seq Scan on nb_property_type npt (cost=0.00..1.08 rows=8 width=57) (actual time=0.004..0.019 rows=8 loops=1)
Total runtime: 43.297 ms
(28 rows)
Now, the whole question becomes, how do I get the planner to make a better estimation of the returned rows.
I am not sure, I can follow your moving-the-union-all-further-out advice, as I see no different place for the unioning of the two datasets.
Maybe one of the core devs know, where to fiddle :)
Svenne
Steinar H. Gunderson wrote:
On Sun, Oct 30, 2005 at 06:16:04PM +0100, Svenne Krap wrote:Nested Loop (cost=223.09..338.61 rows=1 width=174) (actual time=20.213..721.361 rows=2250 loops=1) Join Filter: (("outer".dataset_id = "inner".dataset_id) AND ("outer".nb_property_type_id = "inner".nb_property_type_id)) -> Hash Join (cost=58.04..164.26 rows=1 width=150) (actual time=5.510..22.088 rows=2250 loops=1)There's horrible misestimation here. It expects one row and thus starts a nested loop, but gets 2250. No wonder it's slow :-) The misestimation can be traced all the way down here:Hash Cond: ("outer".institut = "inner".id) -> Hash Join (cost=56.88..163.00 rows=16 width=137) (actual time=5.473..19.165 rows=2250 loops=1) Hash Cond: ("outer".dataset_id = "inner".id) -> Hash Join (cost=55.48..160.95 rows=99 width=101) (actual time=5.412..16.264 rows=2250 loops=1)where the planner misestimates the selectivity of your join (it estimates 99 rows, and there are 2250). I've had problems joining with Append nodes in the past, and solved the problem by moving the UNION ALL a bit out, but I'm not sure if it's a very good general solution, or a solution to your problems here. If all else fails, you could "set enable_nestloop=false", but that is not a good idea in the long run, I'd guess -- it's much better to make sure the planner has good estimates and let it do the correct decisions from there. /* Steinar */
Tom Lane wrote:
This is very bad news for me, as most of the other (much larger) queries have the same issue, that the views will be used multiple times got get slightly different data, that has to be joined (also more than 2 times as in this case)
I think, it has to run multiple times as it returns two different types of data.
I will think about how to remove the second evaluation of the view in question, if anyone knows how, a hint is very appriciated :)
I could of course go the "materialized view" way, but would really prefer not to.
Svenne
I don't really see, how this query is horrid from a user perspective, this is exactly the way, the percentage has to be calculated from a "philosophical" standpoint (performance considerations left out).Svenne Krap <svenne@krap.dk> writes:create view ord_institutes_sum asSELECT ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id, 0 AS institut, sum(ord_property_type_all.amount) AS amount FROM ord_property_type_allGROUP BY ord_property_type_all.dataset_id, ord_property_type_all.nb_property_type_id;create view ord_result_pct asSELECT t1.dataset_id, t1.nb_property_type_id, t1.institut, t1.amount / t2.amount * 100::numeric AS pct FROM ord_property_type_all t1, ord_institutes_sum t2 WHERE t1.dataset_id = t2.dataset_id AND t1.nb_property_type_id = t2.nb_property_type_id;This is really pretty horrid code: you're requesting double evaluation of the ord_property_type_all view, and then joining the two calculations to each other. No, the planner will not detect how silly this is :-(, nor will it realize that there's guaranteed to be a match for every row --- I believe the latter is the reason for the serious misestimation that Steinar noted. The misestimation doesn't hurt particularly when evaluating ord_result_pct by itself, because there are no higher-level decisions to make ... but it hurts a lot when you join ord_result_pct to some other stuff.
This is very bad news for me, as most of the other (much larger) queries have the same issue, that the views will be used multiple times got get slightly different data, that has to be joined (also more than 2 times as in this case)
I think, it has to run multiple times as it returns two different types of data.
It seems like there must be a way to get the percentage amounts with only one evaluation of ord_property_type_all, but I'm not seeing it right offhand.
I will think about how to remove the second evaluation of the view in question, if anyone knows how, a hint is very appriciated :)
I could of course go the "materialized view" way, but would really prefer not to.
Svenne