Re: Bad plan on a huge table query - Mailing list pgsql-general
From | Daniel Cristian Cruz |
---|---|
Subject | Re: Bad plan on a huge table query |
Date | |
Msg-id | CACffM9FbTy_J1SuH_cc3LTDetFKh7NV7OpSG9k_NDEdnPKbZjw@mail.gmail.com Whole thread Raw |
In response to | Re: Bad plan on a huge table query (Jeff Janes <jeff.janes@gmail.com>) |
Responses |
Re: Bad plan on a huge table query
|
List | pgsql-general |
Well, I did it:
explain (analyze, buffers)
select count(*) from turma.aula_confirmacao where
inicio_aula::DATE BETWEEN DATE_TRUNC('YEAR', CURRENT_TIMESTAMP) AND CURRENT_TIMESTAMP; -- changed name because of a conflict in some queries
And just to update, this is the actual query and plan:
EXPLAIN ANALYZE
SELECT
aluno_mensal.id_matricula,
aluno_mensal.id_turma,
aluno_mensal.turma,
aluno_mensal.id_produto_educacao,
aluno_mensal.produto_educacao,
aluno_mensal.unidade,
aluno_mensal.unidade_execucao,
aluno_mensal.modalidade,
aluno_mensal.id_pessoa,
aluno_mensal.nome_pessoa,
presenca.id_diario,
aula_confirmacao.inicio_aula::date AS data_aula,
presenca.justificativa_falta,
SUM(aula_confirmacao.termino_aula - aula_confirmacao.inicio_aula) AS carga_faltas,
mensal.ano AS ano_apuracao,
mensal.mes AS mes_apuracao
FROM indicadores.aluno_mensal
JOIN indicadores.mensal
ON mensal.id_mensal = aluno_mensal.id_mensal
JOIN turma.presenca
ON presenca.id_matricula = aluno_mensal.id_matricula
JOIN turma.aula_confirmacao
ON aula_confirmacao.id_evento = presenca.id_evento
JOIN turma.estudante_periodo
ON
estudante_periodo.id_matricula = presenca.id_matricula AND
estudante_periodo.id_diario = presenca.id_diario AND
aula_confirmacao.inicio_aula::date BETWEEN estudante_periodo.inicio AND estudante_periodo.termino
WHERE
presenca.inicio_aula::DATE BETWEEN DATE_TRUNC('YEAR', CURRENT_TIMESTAMP) AND CURRENT_TIMESTAMP AND
NOT presenca.presente AND
mensal.ano = EXTRACT(YEAR FROM CURRENT_TIMESTAMP) AND
aula_confirmacao.inicio_aula::DATE BETWEEN DATE_TRUNC('YEAR', CURRENT_TIMESTAMP) AND CURRENT_TIMESTAMP AND
aula_confirmacao.confirmada AND
aluno_mensal.id_medicao = 7
GROUP BY
aluno_mensal.id_matricula,
aluno_mensal.id_turma,
aluno_mensal.turma,
aluno_mensal.id_produto_educacao,
aluno_mensal.produto_educacao,
aluno_mensal.unidade,
aluno_mensal.unidade_execucao,
aluno_mensal.modalidade,
aluno_mensal.id_pessoa,
aluno_mensal.nome_pessoa,
presenca.id_diario,
aula_confirmacao.inicio_aula::date,
presenca.justificativa_falta,
mensal.ano,
mensal.mes;
I guess that, there is something with estudante_periodo, because there is 24% with only one row and 50% with 5 or less rows on it:
with distr as (select id_matricula, count(*) from turma.estudante_periodo group by id_matricula)
select count as rows_on_estudante_periodo, count(*), (100 * count(*) / sum(count(*)) over ())::numeric(5,2) as percent from distr group by count order by 1;
rows_on_estudante_periodo | count | percent
---------------------------+-------+---------
1 | 24941 | 23.92
2 | 5720 | 5.49
3 | 5220 | 5.01
4 | 8787 | 8.43
5 | 7908 | 7.58
6 | 7357 | 7.06
7 | 4896 | 4.70
8 | 3076 | 2.95
9 | 2963 | 2.84
10 | 2679 | 2.57
11 | 6613 | 6.34
12 | 8708 | 8.35
13 | 4448 | 4.27
14 | 1411 | 1.35
15 | 2137 | 2.05
16 | 1219 | 1.17
17 | 2269 | 2.18
18 | 627 | 0.60
19 | 332 | 0.32
20 | 325 | 0.31
21 | 213 | 0.20
22 | 127 | 0.12
23 | 113 | 0.11
24 | 144 | 0.14
25 | 862 | 0.83
26 | 784 | 0.75
27 | 131 | 0.13
28 | 79 | 0.08
29 | 35 | 0.03
30 | 136 | 0.13
31 | 1 | 0.00
33 | 1 | 0.00
36 | 1 | 0.00
38 | 1 | 0.00
39 | 1 | 0.00
40 | 1 | 0.00
(36 rows)
After the refactoring, idx_aula_confirmacao_2 became idx_aula_confirmacao_1:
select * from pg_stats where tablename = 'idx_aula_confirmacao_1';
-[ RECORD 1 ]----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
schemaname | turma
tablename | idx_aula_confirmacao_1
attname | inicio_aula
inherited | f
null_frac | 0.996792
avg_width | 4
n_distinct | 24
most_common_vals |
most_common_freqs |
histogram_bounds | {2013-02-04,2013-02-25,2013-03-12,2013-03-15,2013-03-19,2013-03-21,2013-03-22,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25}
correlation | 0.433041
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
I've run:
analyze turma.aula_confirmacao ;
select * from pg_stats where tablename = 'idx_aula_confirmacao_1';
-[ RECORD 1 ]----------+--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
schemaname | turma
tablename | idx_aula_confirmacao_1
attname | inicio_aula
inherited | f
null_frac | 0.996927
avg_width | 4
n_distinct | 24
most_common_vals |
most_common_freqs |
histogram_bounds | {2013-02-04,2013-03-04,2013-03-08,2013-03-11,2013-03-13,2013-03-18,2013-03-20,2013-03-22,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25}
correlation | 0.208954
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
and a third time:
analyze turma.aula_confirmacao ;
select * from pg_stats where tablename = 'idx_aula_confirmacao_1';
-[ RECORD 1 ]----------+---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
schemaname | turma
tablename | idx_aula_confirmacao_1
attname | inicio_aula
inherited | f
null_frac | 0.997112
avg_width | 4
n_distinct | 17
most_common_vals |
most_common_freqs |
histogram_bounds | {2013-02-13,2013-03-11,2013-03-15,2013-03-21,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25,2013-03-25}
correlation | 0.459312
most_common_elems |
most_common_elem_freqs |
elem_count_histogram |
Thanks,
2013/3/21 Jeff Janes <jeff.janes@gmail.com>
On Thu, Mar 21, 2013 at 12:30 PM, Daniel Cristian Cruz <danielcristian@gmail.com> wrote:Are you using autovacuum? If so, you probably need to tune it more aggressively. For the short term, running an ANALYSE on those tables should at least get you more accurate query plans.I've done it; with default_statistics_target on 1000, 100 and 200 (left it on 200, which was production config too).You are doing an manual analyze each time you change default_statistics_target, right?Can you do an "analyze verbose aula_confirmacao" and see if the output is as expected?what happens if you do:explain (analyze, buffers)select count(*) from aula_confirmacao whereinicio::DATE BETWEEN DATE_TRUNC('YEAR', CURRENT_TIMESTAMP) AND CURRENT_TIMESTAMP;From your explain plan http://explain.depesz.com/s/GDJn, step 9, the row estimates for that simple query should be off by a factor of 23 (101508/4442), yet there is no apparent reason for that to give a bad estimate, other than bad statistics. There are no filters so cross-column correlations can't be throwing it off, so why is it so bad?Also, it would be nice to see:select * from pg_stats where tablename = 'idx_aula_confirmacao_2' \x\g\x(which I assume is a function-based index)Cheers,Jeff
Daniel Cristian Cruz
クルズ クリスチアン ダニエル
pgsql-general by date: