Removing "long int"-related limit on hash table sizes - Mailing list pgsql-hackers
From | Tom Lane |
---|---|
Subject | Removing "long int"-related limit on hash table sizes |
Date | |
Msg-id | 997817.1627074924@sss.pgh.pa.us Whole thread Raw |
Responses |
Re: Removing "long int"-related limit on hash table sizes
|
List | pgsql-hackers |
Per the discussion at [1], users on Windows are seeing nasty performance losses in v13/v14 (compared to prior releases) for hash aggregations that required somewhat more than 2GB in the prior releases. That's because they spill to disk where they did not before. The easy answer of "raise hash_mem_multiplier" doesn't help, because on Windows the product of work_mem and hash_mem_multiplier is clamped to 2GB, thanks to the ancient decision to do a lot of memory-space-related calculations in "long int", which is only 32 bits on Win64. While I don't personally have the interest to fix that altogether, it does seem like we've got a performance regression that we ought to do something about immediately. So I took a look at getting rid of this restriction for calculations associated with hash_mem_multiplier, and it doesn't seem to be too bad. I propose the attached patch. (This is against HEAD; there are minor conflicts in v13 and v14.) A couple of notes: * I did not change most of the comments referring to "hash_mem", even though that's not really a thing anymore. They seem readable enough anyway, and I failed to think of a reasonably-short substitute. * We should drop get_hash_mem() altogether in HEAD and maybe v14. I figure we'd better leave it available in v13, though, in case any outside code is using it. Comments? regards, tom lane [1] https://www.postgresql.org/message-id/flat/MN2PR15MB25601E80A9B6D1BA6F592B1985E39%40MN2PR15MB2560.namprd15.prod.outlook.com diff --git a/src/backend/executor/execGrouping.c b/src/backend/executor/execGrouping.c index 5fd0b26cbc..c11427a1f6 100644 --- a/src/backend/executor/execGrouping.c +++ b/src/backend/executor/execGrouping.c @@ -165,14 +165,16 @@ BuildTupleHashTableExt(PlanState *parent, { TupleHashTable hashtable; Size entrysize = sizeof(TupleHashEntryData) + additionalsize; - int hash_mem = get_hash_mem(); + Size hash_mem_limit; MemoryContext oldcontext; bool allow_jit; Assert(nbuckets > 0); /* Limit initial table size request to not more than hash_mem */ - nbuckets = Min(nbuckets, (long) ((hash_mem * 1024L) / entrysize)); + hash_mem_limit = get_hash_memory_limit() / entrysize; + if (nbuckets > hash_mem_limit) + nbuckets = hash_mem_limit; oldcontext = MemoryContextSwitchTo(metacxt); diff --git a/src/backend/executor/nodeAgg.c b/src/backend/executor/nodeAgg.c index 914b02ceee..39bea204d1 100644 --- a/src/backend/executor/nodeAgg.c +++ b/src/backend/executor/nodeAgg.c @@ -1802,15 +1802,15 @@ hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits, { int npartitions; Size partition_mem; - int hash_mem = get_hash_mem(); + Size hash_mem_limit = get_hash_memory_limit(); /* if not expected to spill, use all of hash_mem */ - if (input_groups * hashentrysize < hash_mem * 1024L) + if (input_groups * hashentrysize <= hash_mem_limit) { if (num_partitions != NULL) *num_partitions = 0; - *mem_limit = hash_mem * 1024L; - *ngroups_limit = *mem_limit / hashentrysize; + *mem_limit = hash_mem_limit; + *ngroups_limit = hash_mem_limit / hashentrysize; return; } @@ -1835,10 +1835,10 @@ hash_agg_set_limits(double hashentrysize, double input_groups, int used_bits, * minimum number of partitions, so we aren't going to dramatically exceed * work mem anyway. */ - if (hash_mem * 1024L > 4 * partition_mem) - *mem_limit = hash_mem * 1024L - partition_mem; + if (hash_mem_limit > 4 * partition_mem) + *mem_limit = hash_mem_limit - partition_mem; else - *mem_limit = hash_mem * 1024L * 0.75; + *mem_limit = hash_mem_limit * 0.75; if (*mem_limit > hashentrysize) *ngroups_limit = *mem_limit / hashentrysize; @@ -1992,32 +1992,36 @@ static int hash_choose_num_partitions(double input_groups, double hashentrysize, int used_bits, int *log2_npartitions) { - Size mem_wanted; - int partition_limit; + Size hash_mem_limit = get_hash_memory_limit(); + double partition_limit; + double mem_wanted; + double dpartitions; int npartitions; int partition_bits; - int hash_mem = get_hash_mem(); /* * Avoid creating so many partitions that the memory requirements of the * open partition files are greater than 1/4 of hash_mem. */ partition_limit = - (hash_mem * 1024L * 0.25 - HASHAGG_READ_BUFFER_SIZE) / + (hash_mem_limit * 0.25 - HASHAGG_READ_BUFFER_SIZE) / HASHAGG_WRITE_BUFFER_SIZE; mem_wanted = HASHAGG_PARTITION_FACTOR * input_groups * hashentrysize; /* make enough partitions so that each one is likely to fit in memory */ - npartitions = 1 + (mem_wanted / (hash_mem * 1024L)); + dpartitions = 1 + (mem_wanted / hash_mem_limit); + + if (dpartitions > partition_limit) + dpartitions = partition_limit; - if (npartitions > partition_limit) - npartitions = partition_limit; + if (dpartitions < HASHAGG_MIN_PARTITIONS) + dpartitions = HASHAGG_MIN_PARTITIONS; + if (dpartitions > HASHAGG_MAX_PARTITIONS) + dpartitions = HASHAGG_MAX_PARTITIONS; - if (npartitions < HASHAGG_MIN_PARTITIONS) - npartitions = HASHAGG_MIN_PARTITIONS; - if (npartitions > HASHAGG_MAX_PARTITIONS) - npartitions = HASHAGG_MAX_PARTITIONS; + /* HASHAGG_MAX_PARTITIONS limit makes this safe */ + npartitions = (int) dpartitions; /* ceil(log2(npartitions)) */ partition_bits = my_log2(npartitions); @@ -2030,7 +2034,7 @@ hash_choose_num_partitions(double input_groups, double hashentrysize, *log2_npartitions = partition_bits; /* number of partitions will be a power of two */ - npartitions = 1L << partition_bits; + npartitions = 1 << partition_bits; return npartitions; } diff --git a/src/backend/executor/nodeHash.c b/src/backend/executor/nodeHash.c index c5f2d1d22b..bc4e36c555 100644 --- a/src/backend/executor/nodeHash.c +++ b/src/backend/executor/nodeHash.c @@ -675,15 +675,12 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, { int tupsize; double inner_rel_bytes; - long bucket_bytes; - long hash_table_bytes; - long skew_table_bytes; - long max_pointers; - long mppow2; + size_t hash_table_bytes; + size_t bucket_bytes; + size_t max_pointers; int nbatch = 1; int nbuckets; double dbuckets; - int hash_mem = get_hash_mem(); /* Force a plausible relation size if no info */ if (ntuples <= 0.0) @@ -700,9 +697,9 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, inner_rel_bytes = ntuples * tupsize; /* - * Target in-memory hashtable size is hash_mem kilobytes. + * Compute in-memory hashtable size limit from GUCs. */ - hash_table_bytes = hash_mem * 1024L; + hash_table_bytes = get_hash_memory_limit(); /* * Parallel Hash tries to use the combined hash_mem of all workers to @@ -710,7 +707,14 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, * per worker and tries to process batches in parallel. */ if (try_combined_hash_mem) - hash_table_bytes += hash_table_bytes * parallel_workers; + { + /* Careful, this could overflow size_t */ + double newlimit; + + newlimit = (double) hash_table_bytes * (double) (parallel_workers + 1); + newlimit = Min(newlimit, (double) SIZE_MAX); + hash_table_bytes = (size_t) newlimit; + } *space_allowed = hash_table_bytes; @@ -730,9 +734,12 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, */ if (useskew) { - skew_table_bytes = hash_table_bytes * SKEW_HASH_MEM_PERCENT / 100; + size_t bytes_per_mcv; + size_t skew_mcvs; /*---------- + * Compute number of MCVs we could hold in hash_table_bytes + * * Divisor is: * size of a hash tuple + * worst-case size of skewBucket[] per MCV + @@ -740,12 +747,26 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, * size of skew bucket struct itself *---------- */ - *num_skew_mcvs = skew_table_bytes / (tupsize + - (8 * sizeof(HashSkewBucket *)) + - sizeof(int) + - SKEW_BUCKET_OVERHEAD); - if (*num_skew_mcvs > 0) - hash_table_bytes -= skew_table_bytes; + bytes_per_mcv = tupsize + + (8 * sizeof(HashSkewBucket *)) + + sizeof(int) + + SKEW_BUCKET_OVERHEAD; + skew_mcvs = hash_table_bytes / bytes_per_mcv; + + /* + * Now scale by SKEW_HASH_MEM_PERCENT (we do it in this order so as + * not to worry about size_t overflow in the multiplication) + */ + skew_mcvs = skew_mcvs * SKEW_HASH_MEM_PERCENT / 100; + + /* Now clamp to integer range */ + skew_mcvs = Min(skew_mcvs, INT_MAX); + + *num_skew_mcvs = (int) skew_mcvs; + + /* Reduce hash_table_bytes by the amount needed for the skew table */ + if (skew_mcvs > 0) + hash_table_bytes -= skew_mcvs * bytes_per_mcv; } else *num_skew_mcvs = 0; @@ -753,22 +774,20 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, /* * Set nbuckets to achieve an average bucket load of NTUP_PER_BUCKET when * memory is filled, assuming a single batch; but limit the value so that - * the pointer arrays we'll try to allocate do not exceed hash_mem nor - * MaxAllocSize. + * the pointer arrays we'll try to allocate do not exceed hash_table_bytes + * nor MaxAllocSize. * * Note that both nbuckets and nbatch must be powers of 2 to make * ExecHashGetBucketAndBatch fast. */ - max_pointers = *space_allowed / sizeof(HashJoinTuple); + max_pointers = hash_table_bytes / sizeof(HashJoinTuple); max_pointers = Min(max_pointers, MaxAllocSize / sizeof(HashJoinTuple)); /* If max_pointers isn't a power of 2, must round it down to one */ - mppow2 = 1L << my_log2(max_pointers); - if (max_pointers != mppow2) - max_pointers = mppow2 / 2; + max_pointers = pg_prevpower2_size_t(max_pointers); /* Also ensure we avoid integer overflow in nbatch and nbuckets */ /* (this step is redundant given the current value of MaxAllocSize) */ - max_pointers = Min(max_pointers, INT_MAX / 2); + max_pointers = Min(max_pointers, INT_MAX / 2 + 1); dbuckets = ceil(ntuples / NTUP_PER_BUCKET); dbuckets = Min(dbuckets, max_pointers); @@ -776,7 +795,7 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, /* don't let nbuckets be really small, though ... */ nbuckets = Max(nbuckets, 1024); /* ... and force it to be a power of 2. */ - nbuckets = 1 << my_log2(nbuckets); + nbuckets = pg_nextpower2_32(nbuckets); /* * If there's not enough space to store the projected number of tuples and @@ -786,10 +805,10 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, if (inner_rel_bytes + bucket_bytes > hash_table_bytes) { /* We'll need multiple batches */ - long lbuckets; + size_t sbuckets; double dbatch; int minbatch; - long bucket_size; + size_t bucket_size; /* * If Parallel Hash with combined hash_mem would still need multiple @@ -813,10 +832,10 @@ ExecChooseHashTableSize(double ntuples, int tupwidth, bool useskew, * overhead for the hash code, pointer to the next tuple, etc. */ bucket_size = (tupsize * NTUP_PER_BUCKET + sizeof(HashJoinTuple)); - lbuckets = 1L << my_log2(hash_table_bytes / bucket_size); - lbuckets = Min(lbuckets, max_pointers); - nbuckets = (int) lbuckets; - nbuckets = 1 << my_log2(nbuckets); + sbuckets = pg_nextpower2_size_t(hash_table_bytes / bucket_size); + sbuckets = Min(sbuckets, max_pointers); + nbuckets = (int) sbuckets; + nbuckets = pg_nextpower2_32(nbuckets); bucket_bytes = nbuckets * sizeof(HashJoinTuple); /* @@ -1097,14 +1116,12 @@ ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable) /* Figure out how many batches to use. */ if (hashtable->nbatch == 1) { - int hash_mem = get_hash_mem(); - /* * We are going from single-batch to multi-batch. We need * to switch from one large combined memory budget to the * regular hash_mem budget. */ - pstate->space_allowed = hash_mem * 1024L; + pstate->space_allowed = get_hash_memory_limit(); /* * The combined hash_mem of all participants wasn't @@ -1113,7 +1130,7 @@ ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable) * insufficient. So try two batches per participant, * rounded up to a power of two. */ - new_nbatch = 1 << my_log2(pstate->nparticipants * 2); + new_nbatch = pg_nextpower2_32(pstate->nparticipants * 2); } else { @@ -1152,7 +1169,7 @@ ExecParallelHashIncreaseNumBatches(HashJoinTable hashtable) MaxAllocSize / sizeof(dsa_pointer_atomic)); new_nbuckets = (int) dbuckets; new_nbuckets = Max(new_nbuckets, 1024); - new_nbuckets = 1 << my_log2(new_nbuckets); + new_nbuckets = pg_nextpower2_32(new_nbuckets); dsa_free(hashtable->area, old_batch0->buckets); hashtable->batches[0].shared->buckets = dsa_allocate(hashtable->area, @@ -3372,39 +3389,46 @@ ExecParallelHashTuplePrealloc(HashJoinTable hashtable, int batchno, size_t size) } /* - * Get a hash_mem value by multiplying the work_mem GUC's value by the - * hash_mem_multiplier GUC's value. - * - * Returns a work_mem style KB value that hash-based nodes (including but not - * limited to hash join) use in place of work_mem. This is subject to the - * same restrictions as work_mem itself. (There is no such thing as the - * hash_mem GUC, but it's convenient for our callers to pretend that there - * is.) + * Calculate the limit on how much memory can be used by Hash and similar + * plan types. This is work_mem times hash_mem_multiplier, and is + * expressed in bytes. * - * Exported for use by the planner, as well as other hash-based executor + * Exported for use by the planner, as well as other hash-like executor * nodes. This is a rather random place for this, but there is no better * place. */ +size_t +get_hash_memory_limit(void) +{ + double mem_limit; + + /* Do initial calculation in double arithmetic */ + mem_limit = (double) work_mem * hash_mem_multiplier * 1024.0; + + /* Clamp in case it doesn't fit in size_t */ + mem_limit = Min(mem_limit, (double) SIZE_MAX); + + return (size_t) mem_limit; +} + +/* + * Convert the hash memory limit to an integer number of kilobytes, + * that is something comparable to work_mem. Like work_mem, we clamp + * the result to ensure that multiplying it by 1024 fits in a long int. + * + * This is deprecated since it may understate the actual memory limit. + * It is unused in core and will eventually be removed. + */ int get_hash_mem(void) { - double hash_mem; - - Assert(hash_mem_multiplier >= 1.0); + size_t mem_limit = get_hash_memory_limit(); - hash_mem = (double) work_mem * hash_mem_multiplier; + /* Remove the kilobyte factor */ + mem_limit /= 1024; - /* - * guc.c enforces a MAX_KILOBYTES limitation on work_mem in order to - * support the assumption that raw derived byte values can be stored in - * 'long' variables. The returned hash_mem value must also meet this - * assumption. - * - * We clamp the final value rather than throw an error because it should - * be possible to set work_mem and hash_mem_multiplier independently. - */ - if (hash_mem < MAX_KILOBYTES) - return (int) hash_mem; + /* Clamp to MAX_KILOBYTES, like work_mem */ + mem_limit = Min(mem_limit, (size_t) MAX_KILOBYTES); - return MAX_KILOBYTES; + return (int) mem_limit; } diff --git a/src/backend/executor/nodeMemoize.c b/src/backend/executor/nodeMemoize.c index 2fde4ebce6..bec588b3a0 100644 --- a/src/backend/executor/nodeMemoize.c +++ b/src/backend/executor/nodeMemoize.c @@ -905,7 +905,7 @@ ExecInitMemoize(Memoize *node, EState *estate, int eflags) mstate->mem_used = 0; /* Limit the total memory consumed by the cache to this */ - mstate->mem_limit = get_hash_mem() * 1024L; + mstate->mem_limit = get_hash_memory_limit(); /* A memory context dedicated for the cache */ mstate->tableContext = AllocSetContextCreate(CurrentMemoryContext, diff --git a/src/backend/optimizer/path/costsize.c b/src/backend/optimizer/path/costsize.c index b54cf34a8e..30c8595f76 100644 --- a/src/backend/optimizer/path/costsize.c +++ b/src/backend/optimizer/path/costsize.c @@ -2438,7 +2438,7 @@ cost_memoize_rescan(PlannerInfo *root, MemoizePath *mpath, Cost total_cost; /* available cache space */ - hash_mem_bytes = get_hash_mem() * 1024L; + hash_mem_bytes = get_hash_memory_limit(); /* * Set the number of bytes each cache entry should consume in the cache. @@ -3860,7 +3860,6 @@ final_cost_hashjoin(PlannerInfo *root, HashPath *path, Cost run_cost = workspace->run_cost; int numbuckets = workspace->numbuckets; int numbatches = workspace->numbatches; - int hash_mem; Cost cpu_per_tuple; QualCost hash_qual_cost; QualCost qp_qual_cost; @@ -3986,10 +3985,8 @@ final_cost_hashjoin(PlannerInfo *root, HashPath *path, * that way, so it will be unable to drive the batch size below hash_mem * when this is true.) */ - hash_mem = get_hash_mem(); if (relation_byte_size(clamp_row_est(inner_path_rows * innermcvfreq), - inner_path->pathtarget->width) > - (hash_mem * 1024L)) + inner_path->pathtarget->width) > get_hash_memory_limit()) startup_cost += disable_cost; /* diff --git a/src/backend/optimizer/plan/planner.c b/src/backend/optimizer/plan/planner.c index 1868c4eff4..86816ffe19 100644 --- a/src/backend/optimizer/plan/planner.c +++ b/src/backend/optimizer/plan/planner.c @@ -3668,7 +3668,7 @@ consider_groupingsets_paths(PlannerInfo *root, double dNumGroups) { Query *parse = root->parse; - int hash_mem = get_hash_mem(); + Size hash_mem_limit = get_hash_memory_limit(); /* * If we're not being offered sorted input, then only consider plans that @@ -3734,7 +3734,7 @@ consider_groupingsets_paths(PlannerInfo *root, * with. Override hash_mem in that case; otherwise, we'll rely on the * sorted-input case to generate usable mixed paths. */ - if (hashsize > hash_mem * 1024L && gd->rollups) + if (hashsize > hash_mem_limit && gd->rollups) return; /* nope, won't fit */ /* @@ -3853,7 +3853,7 @@ consider_groupingsets_paths(PlannerInfo *root, { List *rollups = NIL; List *hash_sets = list_copy(gd->unsortable_sets); - double availspace = (hash_mem * 1024.0); + double availspace = hash_mem_limit; ListCell *lc; /* diff --git a/src/backend/optimizer/plan/subselect.c b/src/backend/optimizer/plan/subselect.c index b5a61f3933..c9f7a09d10 100644 --- a/src/backend/optimizer/plan/subselect.c +++ b/src/backend/optimizer/plan/subselect.c @@ -724,7 +724,6 @@ static bool subplan_is_hashable(Plan *plan) { double subquery_size; - int hash_mem = get_hash_mem(); /* * The estimated size of the subquery result must fit in hash_mem. (Note: @@ -734,7 +733,7 @@ subplan_is_hashable(Plan *plan) */ subquery_size = plan->plan_rows * (MAXALIGN(plan->plan_width) + MAXALIGN(SizeofHeapTupleHeader)); - if (subquery_size > hash_mem * 1024L) + if (subquery_size > get_hash_memory_limit()) return false; return true; @@ -749,7 +748,6 @@ static bool subpath_is_hashable(Path *path) { double subquery_size; - int hash_mem = get_hash_mem(); /* * The estimated size of the subquery result must fit in hash_mem. (Note: @@ -759,7 +757,7 @@ subpath_is_hashable(Path *path) */ subquery_size = path->rows * (MAXALIGN(path->pathtarget->width) + MAXALIGN(SizeofHeapTupleHeader)); - if (subquery_size > hash_mem * 1024L) + if (subquery_size > get_hash_memory_limit()) return false; return true; diff --git a/src/backend/optimizer/prep/prepunion.c b/src/backend/optimizer/prep/prepunion.c index 037dfaacfd..e9256a2d4d 100644 --- a/src/backend/optimizer/prep/prepunion.c +++ b/src/backend/optimizer/prep/prepunion.c @@ -1019,7 +1019,7 @@ choose_hashed_setop(PlannerInfo *root, List *groupClauses, const char *construct) { int numGroupCols = list_length(groupClauses); - int hash_mem = get_hash_mem(); + Size hash_mem_limit = get_hash_memory_limit(); bool can_sort; bool can_hash; Size hashentrysize; @@ -1055,13 +1055,11 @@ choose_hashed_setop(PlannerInfo *root, List *groupClauses, */ hashentrysize = MAXALIGN(input_path->pathtarget->width) + MAXALIGN(SizeofMinimalTupleHeader); - if (hashentrysize * dNumGroups > hash_mem * 1024L) + if (hashentrysize * dNumGroups > hash_mem_limit) return false; /* - * See if the estimated cost is no more than doing it the other way. We - * deliberately give the hash case more memory when hash_mem exceeds - * standard work mem (i.e. when hash_mem_multiplier exceeds 1.0). + * See if the estimated cost is no more than doing it the other way. * * We need to consider input_plan + hashagg versus input_plan + sort + * group. Note that the actual result plan might involve a SetOp or diff --git a/src/backend/optimizer/util/pathnode.c b/src/backend/optimizer/util/pathnode.c index 0c94cbe767..41cbf328c4 100644 --- a/src/backend/optimizer/util/pathnode.c +++ b/src/backend/optimizer/util/pathnode.c @@ -1794,9 +1794,8 @@ create_unique_path(PlannerInfo *root, RelOptInfo *rel, Path *subpath, * planner.c). */ int hashentrysize = subpath->pathtarget->width + 64; - int hash_mem = get_hash_mem(); - if (hashentrysize * pathnode->path.rows > hash_mem * 1024L) + if (hashentrysize * pathnode->path.rows > get_hash_memory_limit()) { /* * We should not try to hash. Hack the SpecialJoinInfo to diff --git a/src/backend/storage/ipc/shm_mq.c b/src/backend/storage/ipc/shm_mq.c index 446f20df46..91a7093e03 100644 --- a/src/backend/storage/ipc/shm_mq.c +++ b/src/backend/storage/ipc/shm_mq.c @@ -727,11 +727,7 @@ shm_mq_receive(shm_mq_handle *mqh, Size *nbytesp, void **datap, bool nowait) * Increase size to the next power of 2 that's >= nbytes, but * limit to MaxAllocSize. */ -#if SIZEOF_SIZE_T == 4 - newbuflen = pg_nextpower2_32(nbytes); -#else - newbuflen = pg_nextpower2_64(nbytes); -#endif + newbuflen = pg_nextpower2_size_t(nbytes); newbuflen = Min(newbuflen, MaxAllocSize); if (mqh->mqh_buffer != NULL) diff --git a/src/include/miscadmin.h b/src/include/miscadmin.h index 4dc343cbc5..3f155ce4f8 100644 --- a/src/include/miscadmin.h +++ b/src/include/miscadmin.h @@ -486,6 +486,7 @@ extern bool BackupInProgress(void); extern void CancelBackup(void); /* in executor/nodeHash.c */ +extern size_t get_hash_memory_limit(void); extern int get_hash_mem(void); #endif /* MISCADMIN_H */ diff --git a/src/include/port/pg_bitutils.h b/src/include/port/pg_bitutils.h index f9b77ec278..086bd08132 100644 --- a/src/include/port/pg_bitutils.h +++ b/src/include/port/pg_bitutils.h @@ -137,7 +137,7 @@ pg_rightmost_one_pos64(uint64 word) /* * pg_nextpower2_32 - * Returns the next highest power of 2 of 'num', or 'num', if it's + * Returns the next higher power of 2 above 'num', or 'num' if it's * already a power of 2. * * 'num' mustn't be 0 or be above PG_UINT32_MAX / 2 + 1. @@ -160,7 +160,7 @@ pg_nextpower2_32(uint32 num) /* * pg_nextpower2_64 - * Returns the next highest power of 2 of 'num', or 'num', if it's + * Returns the next higher power of 2 above 'num', or 'num' if it's * already a power of 2. * * 'num' mustn't be 0 or be above PG_UINT64_MAX / 2 + 1. @@ -181,6 +181,52 @@ pg_nextpower2_64(uint64 num) return ((uint64) 1) << (pg_leftmost_one_pos64(num) + 1); } +/* + * pg_nextpower2_size_t + * Returns the next higher power of 2 above 'num', for a size_t input. + */ +#if SIZEOF_SIZE_T == 4 +#define pg_nextpower2_size_t(num) pg_nextpower2_32(num) +#else +#define pg_nextpower2_size_t(num) pg_nextpower2_64(num) +#endif + +/* + * pg_prevpower2_32 + * Returns the next lower power of 2 below 'num', or 'num' if it's + * already a power of 2. + * + * 'num' mustn't be 0. + */ +static inline uint32 +pg_prevpower2_32(uint32 num) +{ + return ((uint32) 1) << pg_leftmost_one_pos32(num); +} + +/* + * pg_prevpower2_64 + * Returns the next lower power of 2 below 'num', or 'num' if it's + * already a power of 2. + * + * 'num' mustn't be 0. + */ +static inline uint64 +pg_prevpower2_64(uint64 num) +{ + return ((uint64) 1) << pg_leftmost_one_pos64(num); +} + +/* + * pg_prevpower2_size_t + * Returns the next lower power of 2 below 'num', for a size_t input. + */ +#if SIZEOF_SIZE_T == 4 +#define pg_prevpower2_size_t(num) pg_prevpower2_32(num) +#else +#define pg_prevpower2_size_t(num) pg_prevpower2_64(num) +#endif + /* * pg_ceil_log2_32 * Returns equivalent of ceil(log2(num))
pgsql-hackers by date: