faster way to calculate top "tags" for a "resource" based on a column - Mailing list pgsql-general
From | Jonathan Vanasco |
---|---|
Subject | faster way to calculate top "tags" for a "resource" based on a column |
Date | |
Msg-id | E6CD86FB-6006-460C-B84A-E1D731A3C996@2xlp.com Whole thread Raw |
In response to | Re: How to find greatest record before known values fast (Merlin Moncure <mmoncure@gmail.com>) |
Responses |
Re: faster way to calculate top "tags" for a "resource"
based on a column
Re: faster way to calculate top "tags" for a "resource" based on a column |
List | pgsql-general |
I've been able to fix most of my slow queries into something more acceptable, but I haven't been able to shave any time offthis one. I'm hoping someone has another strategy. I have 2 tables: resource resource_2_tag I want to calculate the top 25 "tag_ids" in "resource_2_tag " for resources that match a given attribute on the "resource"table. both tables have around 1.6million records. If the database needs to warm up and read into cache, this can take 60seconds to read the data off disk. If the database doesn't need to warm up, it averages 1.76seconds. The 1.76s time is troubling me. Searching for the discrete elements of this is pretty lightweight. here's an explain -- http://explain.depesz.com/s/PndC I tried a subquery instead of a join, and the query optimized the plan to the same. i'm hoping someone will see something that I just don't see. Table "public.resource_2_tag" Column | Type | Modifiers -----------------------+---------+----------- resource_id | integer | tag_id | integer | Indexes: "_idx_speed_resource_2_tag__resource_id" btree (resource_id) "_idx_speed_resource_2_tag__tag_id" btree (tag_id) Table "public.resource" Column | Type | Modifiers -------------------------------------+-----------------------------+---------------------------------------------------------- id | integer | not null default nextval('resource_id_seq'::regclass) resource_attribute1_id | integer | lots of other columns | | Indexes: "resource_attribute1_idx" btree (resource_attribute1_id) -------------------------------------------------------------------------------- select count(*) from resource; -- 1669729 select count(*) from resource_2_tag; -- 1676594 select count(*) from resource where resource_attribute1_id = 614; -- 5184 -- 4.386ms select id from resource where resource_attribute1_id = 614; -- 5184 -- 87.303ms popping the 5k elements into an "in" clause, will run the query in around 100ms. EXPLAIN ANALYZE SELECT resource_2_tag.tag_id AS resource_2_tag_tag_id, count(resource_2_tag.tag_id) AS counted FROM resource_2_tag JOIN resource ON resource.id = resource_2_tag.resource_id WHERE resource.resource_attribute1_id = 614 GROUP BY resource_2_tag.tag_id ORDER BY counted DESC LIMIT 25 OFFSET 0; -------------------------------------------------------------------------------- Limit (cost=76659.61..76659.68 rows=25 width=4) (actual time=1502.902..1502.913 rows=25 loops=1) -> Sort (cost=76659.61..76672.47 rows=5141 width=4) (actual time=1502.900..1502.906 rows=25 loops=1) Sort Key: (count(resource_2_tag.tag_id)) Sort Method: top-N heapsort Memory: 26kB -> HashAggregate (cost=76463.13..76514.54 rows=5141 width=4) (actual time=1487.016..1495.206 rows=13887 loops=1) -> Hash Join (cost=35867.88..76437.42 rows=5141 width=4) (actual time=97.654..1453.337 rows=27068 loops=1) Hash Cond: (resource_2_tag.resource_id = resource.id) -> Seq Scan on resource_2_tag (cost=0.00..25847.94 rows=1676594 width=8) (actual time=0.032..513.046rows=1676594 loops=1) -> Hash (cost=35803.88..35803.88 rows=5120 width=4) (actual time=97.576..97.576 rows=5184 loops=1) Buckets: 1024 Batches: 1 Memory Usage: 183kB -> Bitmap Heap Scan on resource (cost=272.68..35803.88 rows=5120 width=4) (actual time=5.911..90.264rows=5184 loops=1) Recheck Cond: (resource_attribute1_id = 614) -> Bitmap Index Scan on resource_attribute1_idx (cost=0.00..271.40 rows=5120 width=0)(actual time=3.575..3.575 rows=5184 loops=1) Index Cond: (resource_attribute1_id = 614) Total runtime: 1503.146 ms
pgsql-general by date: