gistchoose vs. bloat - Mailing list pgsql-hackers
From | Alexander Korotkov |
---|---|
Subject | gistchoose vs. bloat |
Date | |
Msg-id | CAPpHfduhRjJ3WQ3F2yac+UZ98XFoGW4iXfontLZYkBC+dqpFFQ@mail.gmail.com Whole thread Raw |
Responses |
Re: gistchoose vs. bloat
|
List | pgsql-hackers |
Hackers,
While experimenting with gistchoose I achieve interesting results about relation of gistchoose behaviour and gist index bloat.
I've created following testcase for reproducing gist index bloating:
1) Create test table with 1000000 points from geonames
# create table geotest (id serial, point point);
# insert into geotest (point) (select * from geonames order by random() limit 1000000);
2) Create gist index and statistics table. Insert initial statistics (rows count, index size) into table.
# create index geotest_idx on geotest using gist (point) with (buffering = off);
# create table geotest_stats (id serial, count bigint, size bigint);
# insert into geotest_stats (count, size) values ((select count(*) from geotest), pg_relation_size('geotest_idx'));
3) Delete 10% of geotest and vacuum it.
delete from geotest where id in (select id from geotest order by random() limit 100000);
vacuum geotest;
4) Insert new 100000 points fromg eonames.
insert into geotest (point) (select * from geonames order by random() limit 100000);
5) Insert current statistics (rows count, index size) into table.
insert into geotest_stats (count, size) values ((select count(*) from geotest), pg_relation_size('geotest_idx'));
6) Repeat 3-5 steps 50 times.
I get following results with current gistchoose implementation:
test=# select * from geotest1_stats;
id | count | size
----+---------+-----------
1 | 1000000 | 75767808
2 | 1000000 | 76046336
3 | 1000000 | 76840960
4 | 1000000 | 77799424
5 | 1000000 | 78766080
6 | 1000000 | 79757312
7 | 1000000 | 80494592
8 | 1000000 | 81125376
9 | 1000000 | 81985536
10 | 1000000 | 82804736
11 | 1000000 | 83378176
12 | 1000000 | 84115456
13 | 1000000 | 84819968
14 | 1000000 | 85598208
15 | 1000000 | 86302720
16 | 1000000 | 87023616
17 | 1000000 | 87703552
18 | 1000000 | 88342528
19 | 1000000 | 88915968
20 | 1000000 | 89513984
21 | 1000000 | 90152960
22 | 1000000 | 90742784
23 | 1000000 | 91324416
24 | 1000000 | 91742208
25 | 1000000 | 92258304
26 | 1000000 | 92758016
27 | 1000000 | 93241344
28 | 1000000 | 93683712
29 | 1000000 | 93970432
30 | 1000000 | 94396416
31 | 1000000 | 94740480
32 | 1000000 | 95068160
33 | 1000000 | 95444992
34 | 1000000 | 95780864
35 | 1000000 | 96313344
36 | 1000000 | 96731136
37 | 1000000 | 96968704
38 | 1000000 | 97222656
39 | 1000000 | 97509376
40 | 1000000 | 97779712
41 | 1000000 | 98074624
42 | 1000000 | 98344960
43 | 1000000 | 98639872
44 | 1000000 | 99000320
45 | 1000000 | 99229696
46 | 1000000 | 99459072
47 | 1000000 | 99672064
48 | 1000000 | 99901440
49 | 1000000 | 100114432
50 | 1000000 | 100261888
51 | 1000000 | 100458496
(51 rows)
Index grow about from 75 MB to 100 MB.
Current implementation of gistchoose select first index tuple which have minimal penalty. It is possible for several tuples to have same minimal penalty. I've created simple patch which selects random from them. I then I've following results for same testcase.
test=# select * from geotest_stats;
id | count | size
----+---------+----------
1 | 1000000 | 74694656
2 | 1000000 | 74743808
3 | 1000000 | 74891264
4 | 1000000 | 75120640
5 | 1000000 | 75374592
6 | 1000000 | 75612160
7 | 1000000 | 75833344
8 | 1000000 | 76144640
9 | 1000000 | 76333056
10 | 1000000 | 76595200
11 | 1000000 | 76718080
12 | 1000000 | 76939264
13 | 1000000 | 77070336
14 | 1000000 | 77332480
15 | 1000000 | 77520896
16 | 1000000 | 77750272
17 | 1000000 | 77996032
18 | 1000000 | 78127104
19 | 1000000 | 78307328
20 | 1000000 | 78512128
21 | 1000000 | 78610432
22 | 1000000 | 78774272
23 | 1000000 | 78929920
24 | 1000000 | 79060992
25 | 1000000 | 79216640
26 | 1000000 | 79331328
27 | 1000000 | 79454208
28 | 1000000 | 79593472
29 | 1000000 | 79708160
30 | 1000000 | 79822848
31 | 1000000 | 79921152
32 | 1000000 | 80035840
33 | 1000000 | 80076800
34 | 1000000 | 80175104
35 | 1000000 | 80207872
36 | 1000000 | 80322560
37 | 1000000 | 80363520
38 | 1000000 | 80445440
39 | 1000000 | 80494592
40 | 1000000 | 80576512
41 | 1000000 | 80666624
42 | 1000000 | 80764928
43 | 1000000 | 80805888
44 | 1000000 | 80912384
45 | 1000000 | 80994304
46 | 1000000 | 81027072
47 | 1000000 | 81100800
48 | 1000000 | 81174528
49 | 1000000 | 81297408
50 | 1000000 | 81371136
51 | 1000000 | 81420288
(51 rows)
Now index grow about from 75 MB to 81 MB. It is almost 4 times less index bloat!
I've following explanation of that. If index tuples are overlapping then possibility of insertion into last tuple is much lower than possibility of insertion to the first tuple. Thereby, freed space underlying to last tuples of inner page is not likely to be reused. Selecting random tuple increase that chances.
Obviously, it makes insertion more expensive. I need some more benchmarks to measure it. Probably, we would need a user-visible option for cheaper insert or less bloat.
------
With best regards,
Alexander Korotkov.
With best regards,
Alexander Korotkov.
Attachment
pgsql-hackers by date: