Re: Sort is generating rows - Mailing list pgsql-general
From | Adrian Klaver |
---|---|
Subject | Re: Sort is generating rows |
Date | |
Msg-id | 3851fe8c-8ff5-adfc-8fc0-f33b9a2be324@aklaver.com Whole thread Raw |
In response to | Re: Sort is generating rows (Nicolas Seinlet <nicolas@seinlet.com>) |
Responses |
Re: Sort is generating rows
Re: Sort is generating rows |
List | pgsql-general |
On 06/01/2018 02:36 AM, Nicolas Seinlet wrote: > Hi, > > thanks for the answer. The query is based on a view, so here are the > view, the query as well as the query plan. > I've already taken into account remarks like date ranges. You changed the query from the original, besides just adding the daterange, I see an addition of a LATERAL, where there other changes? The changes did eliminate the 300 million line sort from what I can see. The new query takes ~9 secs is that an improvement over the old? I took the liberty of running the EXPLAIN ANALYZE through explain.depesz.com: https://explain.depesz.com/s/9thl The largest amount of time was in the Index Scan(8,706.712ms) and that was because the scan was looped 32,732 times. I have not used LATERAL in my own code so I looked it up: https://www.postgresql.org/docs/10/static/sql-select.html LATERAL " ... When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing the columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set of rows from the column source table(s). ... " If I am following correctly that might explain some of looping seen above. > > SELECT min(l.id <http://l.id>) AS id, > l.product_id, > t.uom_id AS product_uom, > sum(l.product_uom_qty / u.factor * u2.factor) AS product_uom_qty, > sum(l.qty_delivered / u.factor * u2.factor) AS qty_delivered, > sum(l.qty_invoiced / u.factor * u2.factor) AS qty_invoiced, > sum(l.qty_to_invoice / u.factor * u2.factor) AS qty_to_invoice, > sum(l.price_total / COALESCE(cr.rate, 1.0)) AS price_total, > sum(l.price_subtotal / COALESCE(cr.rate, 1.0)) AS price_subtotal, > sum(l.price_reduce * l.qty_to_invoice / COALESCE(cr.rate, 1.0)) AS > amount_to_invoice, > sum(l.price_reduce * l.qty_invoiced / COALESCE(cr.rate, 1.0)) AS > amount_invoiced, > count(*) AS nbr, > s.name <http://s.name>, > s.date_order AS date, > s.confirmation_date, > s.state, > s.partner_id, > s.user_id, > s.company_id, > date_part('epoch'::text, avg(date_trunc('day'::text, s.date_order) > - date_trunc('day'::text, s.create_date))) / (24 * 60 * > 60)::numeric(16,2)::double precision AS delay, > t.categ_id, > s.pricelist_id, > s.analytic_account_id, > s.team_id, > p.product_tmpl_id, > partner.country_id, > partner.commercial_partner_id, > sum(p.weight * l.product_uom_qty / u.factor * u2.factor) AS weight, > sum(p.volume * l.product_uom_qty::double precision / > u.factor::double precision * u2.factor::double precision) AS volume > FROM sale_order_line l > JOIN sale_order s ON l.order_id = s.id <http://s.id> > JOIN res_partner partner ON s.partner_id = partner.id > <http://partner.id> > LEFT JOIN product_product p ON l.product_id = p.id <http://p.id> > LEFT JOIN product_template t ON p.product_tmpl_id = t.id <http://t.id> > LEFT JOIN uom_uom u ON u.id <http://u.id> = l.product_uom > LEFT JOIN uom_uom u2 ON u2.id <http://u2.id> = t.uom_id > JOIN product_pricelist pp ON s.pricelist_id = pp.id <http://pp.id> > LEFT JOIN LATERAL ( SELECT res_currency_rate.rate > FROM res_currency_rate > WHERE res_currency_rate.currency_id = pp.currency_id AND > (res_currency_rate.company_id = s.company_id OR > res_currency_rate.company_id IS NULL) AND > daterange(res_currency_rate.name <http://res_currency_rate.name>, > COALESCE(res_currency_rate.date_end, now()::date)) @> > COALESCE(s.date_order::timestamp with time zone, now())::date > LIMIT 1) cr ON true > GROUP BY l.product_id, l.order_id, t.uom_id, t.categ_id, s.name > <http://s.name>, s.date_order, s.confirmation_date, s.partner_id, > s.user_id, s.state, s.company_id, s.pricelist_id, s.analytic_account_id, > s.team_id, p.product_tmpl_id, partner.country_id, > partner.commercial_partner_id; > > explain analyse select team_id,partner_id,sum(price_total) from > sale_report group by team_id,partner_id; > > > > QUERY PLAN > ------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- > GroupAggregate (cost=1344575.91..1344986.97 rows=3654 width=40) > (actual time=8934.915..8944.487 rows=43 loops=1) > Group Key: sale_report.team_id, sale_report.partner_id > -> Sort (cost=1344575.91..1344667.26 rows=36539 width=40) (actual > time=8934.686..8937.833 rows=32732 loops=1) > Sort Key: sale_report.team_id, sale_report.partner_id > Sort Method: quicksort Memory: 3323kB > -> Subquery Scan on sale_report (cost=1339157.70..1341806.77 > rows=36539 width=40) (actual time=8870.269..8923.114 rows=32732 loops=1) > -> GroupAggregate (cost=1339157.70..1341441.38 > rows=36539 width=395) (actual time=8870.268..8920.155 rows=32732 loops=1) > Group Key: l.product_id, l.order_id, t.uom_id, > t.categ_id, s.name <http://s.name>, s.date_order, s.confirmation_date, > s.partner_id, s.user_id, s.state, s.company_id, s.pricelist_id, > s.analytic_account_id, s.team_id, p.product_tmpl_id, partner.country_id, > partner.commercial_partner_id > -> Sort (cost=1339157.70..1339249.04 rows=36539 > width=92) (actual time=8870.247..8875.191 rows=32732 loops=1) > Sort Key: l.product_id, l.order_id, > t.uom_id, t.categ_id, s.name <http://s.name>, s.date_order, > s.confirmation_date, s.partner_id, s.user_id, s.state, s.company_id, > s.pricelist_id, s.analytic_account_id, s.team_id, p.product_tmpl_id, > partner.country_id, partner.commercial_partner_id > Sort Method: quicksort Memory: 5371kB > -> Nested Loop Left Join > (cost=695.71..1336388.56 rows=36539 width=92) (actual > time=13.468..8797.655 rows=32732 loops=1) > -> Hash Left Join > (cost=695.43..3338.19 rows=36539 width=88) (actual time=13.323..65.600 > rows=32732 loops=1) > Hash Cond: (l.product_id = p.id > <http://p.id>) > -> Hash Join > (cost=656.36..2796.71 rows=36539 width=76) (actual time=13.236..49.047 > rows=32732 loops=1) > Hash Cond: (l.order_id = > s.id <http://s.id>) > -> Seq Scan on > sale_order_line l (cost=0.00..1673.39 rows=36539 width=17) (actual > time=0.019..7.338 rows=32732 loops=1) > -> Hash > (cost=550.72..550.72 rows=8451 width=67) (actual time=13.184..13.184 > rows=8382 loops=1) > Buckets: 16384 > Batches: 1 Memory Usage: 947kB > -> Hash Join > (cost=37.69..550.72 rows=8451 width=67) (actual time=0.164..10.135 > rows=8382 loops=1) > Hash Cond: > (s.pricelist_id = pp.id <http://pp.id>) > -> Hash Join > (cost=13.97..420.42 rows=8451 width=63) (actual time=0.151..7.064 > rows=8382 loops=1) > Hash > Cond: (s.partner_id = partner.id <http://partner.id>) > -> Seq > Scan on sale_order s (cost=0.00..301.51 rows=8451 width=55) (actual > time=0.005..1.807 rows=8382 loops=1) > -> > Hash (cost=13.43..13.43 rows=43 width=12) (actual time=0.136..0.136 > rows=43 loops=1) > > Buckets: 1024 Batches: 1 Memory Usage: 10kB > > -> Seq Scan on res_partner partner (cost=0.00..13.43 rows=43 > width=12) (actual time=0.013..0.112 rows=43 loops=1) > -> Hash > (cost=16.10..16.10 rows=610 width=8) (actual time=0.007..0.007 rows=1 > loops=1) > Buckets: > 1024 Batches: 1 Memory Usage: 9kB > -> Seq > Scan on product_pricelist pp (cost=0.00..16.10 rows=610 width=8) > (actual time=0.005..0.005 rows=1 loops=1) > -> Hash (cost=32.95..32.95 > rows=490 width=16) (actual time=0.076..0.076 rows=43 loops=1) > Buckets: 1024 Batches: 1 > Memory Usage: 11kB > -> Hash Left Join > (cost=11.88..32.95 rows=490 width=16) (actual time=0.051..0.068 rows=43 > loops=1) > Hash Cond: > (p.product_tmpl_id = t.id <http://t.id>) > -> Seq Scan on > product_product p (cost=0.00..14.90 rows=490 width=8) (actual > time=0.007..0.010 rows=43 loops=1) > -> Hash > (cost=11.39..11.39 rows=39 width=12) (actual time=0.039..0.039 rows=39 > loops=1) > Buckets: 1024 > Batches: 1 Memory Usage: 10kB > -> Seq Scan > on product_template t (cost=0.00..11.39 rows=39 width=12) (actual > time=0.006..0.030 rows=39 loops=1) > -> Limit (cost=0.28..36.46 rows=1 > width=8) (actual time=0.266..0.266 rows=1 loops=32732) > -> Index Scan using > res_currency_rate_currency_id_index on res_currency_rate > (cost=0.28..36.46 rows=1 width=8) (actual time=0.266..0.266 rows=1 > loops=32732) > Index Cond: (currency_id = > pp.currency_id) > Filter: (((company_id = > s.company_id) OR (company_id IS NULL)) AND (daterange(name, > COALESCE(date_end, (now())::date)) @> > (COALESCE((s.date_order)::timestamp with time zone, now()))::date)) > Rows Removed by Filter: 502 > Planning time: 5.731 ms > Execution time: 8944.950 ms > (45 rows) > > > Have a nice day, > > Nicolas. > -- Adrian Klaver adrian.klaver@aklaver.com
pgsql-general by date: