Nested loops overpriced - Mailing list pgsql-performance

From Peter Eisentraut
Subject Nested loops overpriced
Date
Msg-id 200705081722.16731.peter_e@gmx.net
Whole thread Raw
Responses Re: Nested loops overpriced
List pgsql-performance
This query does some sort of analysis on an email archive:

        SELECT
                eh_subj.header_body AS subject,
                count(distinct eh_from.header_body)
        FROM
                email JOIN mime_part USING (email_id)
                JOIN email_header eh_subj USING (email_id, mime_part_id)
                JOIN email_header eh_from USING (email_id, mime_part_id)
        WHERE
                eh_subj.header_name = 'subject'
                AND eh_from.header_name = 'from'
                AND mime_part_id = 0
                AND (time >= timestamp '2007-05-05 17:01:59' AND time < timestamp '2007-05-05 17:01:59' + interval '60
min')
        GROUP BY
                eh_subj.header_body;

The planner chooses this plan:

                                                                                              QUERY PLAN
                                                                               

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=87142.18..87366.58 rows=11220 width=184) (actual time=7883.541..8120.647 rows=35000 loops=1)
   ->  Sort  (cost=87142.18..87170.23 rows=11220 width=184) (actual time=7883.471..7926.031 rows=35000 loops=1)
         Sort Key: eh_subj.header_body
         ->  Hash Join  (cost=46283.30..86387.42 rows=11220 width=184) (actual time=5140.182..7635.615 rows=35000
loops=1)
               Hash Cond: (eh_subj.email_id = email.email_id)
               ->  Bitmap Heap Scan on email_header eh_subj  (cost=11853.68..50142.87 rows=272434 width=104) (actual
time=367.956..1719.736rows=280989 loops=1) 
                     Recheck Cond: ((mime_part_id = 0) AND (header_name = 'subject'::text))
                     ->  BitmapAnd  (cost=11853.68..11853.68 rows=27607 width=0) (actual time=326.507..326.507 rows=0
loops=1)
                           ->  Bitmap Index Scan on idx__email_header__header_body_subject  (cost=0.00..5836.24
rows=272434width=0) (actual time=178.041..178.041 rows=280989 loops=1) 
                           ->  Bitmap Index Scan on idx__email_header__header_name  (cost=0.00..5880.97 rows=281247
width=0)(actual time=114.574..114.574 rows=280989 loops=1) 
                                 Index Cond: (header_name = 'subject'::text)
               ->  Hash  (cost=34291.87..34291.87 rows=11020 width=120) (actual time=4772.148..4772.148 rows=35000
loops=1)
                     ->  Hash Join  (cost=24164.59..34291.87 rows=11020 width=120) (actual time=3131.067..4706.997
rows=35000loops=1) 
                           Hash Cond: (mime_part.email_id = email.email_id)
                           ->  Seq Scan on mime_part  (cost=0.00..8355.81 rows=265804 width=12) (actual
time=0.038..514.291rows=267890 loops=1) 
                                 Filter: (mime_part_id = 0)
                           ->  Hash  (cost=24025.94..24025.94 rows=11092 width=112) (actual time=3130.982..3130.982
rows=35000loops=1) 
                                 ->  Hash Join  (cost=22244.54..24025.94 rows=11092 width=112) (actual
time=996.556..3069.280rows=35000 loops=1) 
                                       Hash Cond: (eh_from.email_id = email.email_id)
                                       ->  Bitmap Heap Scan on email_header eh_from  (cost=15576.58..16041.55
rows=107156width=104) (actual time=569.762..1932.017 rows=280990 loops=1) 
                                             Recheck Cond: ((mime_part_id = 0) AND (header_name = 'from'::text))
                                             ->  BitmapAnd  (cost=15576.58..15576.58 rows=160 width=0) (actual
time=532.217..532.217rows=0 loops=1) 
                                                   ->  Bitmap Index Scan on dummy_index  (cost=0.00..3724.22
rows=107156width=0) (actual time=116.386..116.386 rows=280990 loops=1) 
                                                   ->  Bitmap Index Scan on idx__email_header__from_local
(cost=0.00..5779.24rows=107156 width=0) (actual time=174.883..174.883 rows=280990 loops=1) 
                                                   ->  Bitmap Index Scan on dummy2_index  (cost=0.00..5992.25
rows=107156width=0) (actual time=173.575..173.575 rows=280990 loops=1) 
                                       ->  Hash  (cost=6321.79..6321.79 rows=27694 width=8) (actual
time=426.739..426.739rows=35000 loops=1) 
                                             ->  Index Scan using idx__email__time on email  (cost=0.00..6321.79
rows=27694width=8) (actual time=50.000..375.021 rows=35000 loops=1) 
                                                   Index Cond: (("time" >= '2007-05-05 17:01:59'::timestamp without
timezone) AND ("time" < '2007-05-05 18:01:59'::timestamp without time zone)) 
 Total runtime: 8160.442 ms

The estimates all look pretty good and reasonable.

A faster plan, however, is this:

                                                                                        QUERY PLAN
                                                                   

-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 GroupAggregate  (cost=1920309.81..1920534.21 rows=11220 width=184) (actual time=5349.493..5587.536 rows=35000 loops=1)
   ->  Sort  (cost=1920309.81..1920337.86 rows=11220 width=184) (actual time=5349.427..5392.110 rows=35000 loops=1)
         Sort Key: eh_subj.header_body
         ->  Nested Loop  (cost=15576.58..1919555.05 rows=11220 width=184) (actual time=537.938..5094.377 rows=35000
loops=1)
               ->  Nested Loop  (cost=15576.58..475387.23 rows=11020 width=120) (actual time=537.858..4404.330
rows=35000loops=1) 
                     ->  Nested Loop  (cost=15576.58..430265.44 rows=11092 width=112) (actual time=537.768..4024.184
rows=35000loops=1) 
                           ->  Bitmap Heap Scan on email_header eh_from  (cost=15576.58..16041.55 rows=107156
width=104)(actual time=537.621..1801.032 rows=280990 loops=1) 
                                 Recheck Cond: ((mime_part_id = 0) AND (header_name = 'from'::text))
                                 ->  BitmapAnd  (cost=15576.58..15576.58 rows=160 width=0) (actual
time=500.006..500.006rows=0 loops=1) 
                                       ->  Bitmap Index Scan on dummy_index  (cost=0.00..3724.22 rows=107156 width=0)
(actualtime=85.025..85.025 rows=280990 loops=1) 
                                       ->  Bitmap Index Scan on idx__email_header__from_local  (cost=0.00..5779.24
rows=107156width=0) (actual time=173.006..173.006 rows=280990 loops=1) 
                                       ->  Bitmap Index Scan on dummy2_index  (cost=0.00..5992.25 rows=107156 width=0)
(actualtime=174.463..174.463 rows=280990 loops=1) 
                           ->  Index Scan using email_pkey on email  (cost=0.00..3.85 rows=1 width=8) (actual
time=0.005..0.005rows=0 loops=280990) 
                                 Index Cond: (email.email_id = eh_from.email_id)
                                 Filter: (("time" >= '2007-05-05 17:01:59'::timestamp without time zone) AND ("time" <
'2007-05-0518:01:59'::timestamp without time zone)) 
                     ->  Index Scan using mime_part_pkey on mime_part  (cost=0.00..4.06 rows=1 width=12) (actual
time=0.005..0.006rows=1 loops=35000) 
                           Index Cond: ((email.email_id = mime_part.email_id) AND (mime_part.mime_part_id = 0))
               ->  Index Scan using idx__email_header__email_id__mime_part_id on email_header eh_subj
(cost=0.00..130.89rows=13 width=104) (actual time=0.009..0.015 rows=1 loops=35000) 
                     Index Cond: ((email.email_id = eh_subj.email_id) AND (0 = eh_subj.mime_part_id))
                     Filter: (header_name = 'subject'::text)
 Total runtime: 5625.024 ms

Note how spectacularly overpriced this plan is.  The costs for the nested
loops are calculated approximately as number of outer tuples times cost of
the inner scan.  So slight overestimations of the inner scans such as

Index Scan using email_pkey on email  (cost=0.00..3.85 rows=1 width=8) (actual time=0.005..0.005 rows=0 loops=280990)

kill this calculation.

Most likely, all of these database is cached, so I tried reducing
seq_page_cost and random_page_cost, but I needed to turn them all the way
down to 0.02 or 0.03, which is almost like cpu_tuple_cost.  Is that
reasonable?  Or what is wrong here?


PostgreSQL 8.2.1 on x86_64-unknown-linux-gnu
work_mem = 256MB
effective_cache_size = 384MB

The machine has 1GB of RAM.

--
Peter Eisentraut
http://developer.postgresql.org/~petere/

pgsql-performance by date:

Previous
From: Tom Lane
Date:
Subject: Re: specific query (not all) on Pg8 MUCH slower than Pg7
Next
From: Susan Russo
Date:
Subject: Re: specific query (not all) on Pg8 MUCH slower than Pg7