adding a GROUP BY to an outer join - Mailing list pgsql-sql
From | Dan Langille |
---|---|
Subject | adding a GROUP BY to an outer join |
Date | |
Msg-id | 3DF3C9F3.8075.184CB710@localhost Whole thread Raw |
List | pgsql-sql |
This select gives me the number of times a given element appears on each of the watch lists owned by user 2; SELECT COUNT(watch_list_id), element_id FROM watch_list WL, watch_list_element WLE WHERE WL.user_id = 2 AND WL.id = WLE.watch_list_id GROUP BY WLE.element_id; This query assumes there is only one watch list per person, and it tells me whether or not a given item in commits_latest_ports appears on that single watch list. SELECT category, port, CASE when WLE.element_id is null then 0 else 1 END as watch FROMwatch_list_element WLE RIGHT OUTER JOIN ( select * from commits_latest_ports ) AS TEMP ON WLE.watch_list_id = 32 AND WLE.element_id = TEMP.element_id ORDER BY commit_date_rawdesc, category, port limit 10 My goal is to combine the two queries (i.e. allow multiple watch lists). What I came up with works well. Can you see another solution? select category, port, commits_latest_ports.element_id, commit_date_raw, TEMP.watch from commits_latest_ports LEFT OUTERJOIN (SELECT element_id, COUNT(watch_list_id) as watch FROM watch_list JOIN watch_list_element ON watch_list.id = watch_list_element.watch_list_id AND watch_list.user_id = 2 GROUP BY watch_list_element.element_id) AS TEMP ON TEMP.element_id = commits_latest_ports.element_id ORDER BY commit_date_raw, category, port; She runs pretty well: Sort (cost=1046.27..1046.27 rows=115 width=44) (actual time=6.18..6.75 rows=115 loops=1) -> Hash Join (cost=1034.57..1042.34rows=115 width=44) (actual time=1.94..4.88 rows=115 loops=1) -> Seq Scan on commits_latest_ports (cost=0.00..7.15 rows=115 width=32) (actual time=0.09..1.51 rows=115 loops=1) -> Hash (cost=1034.55..1034.55rows=6 width=12) (actual time=1.74..1.74 rows=0 loops=1) -> Subquery Scan temp (cost=1034.24..1034.55rows=6 width=12) (actual time=1.18..1.64 rows=10 loops=1) -> Aggregate (cost=1034.24..1034.55rows=6 width=12) (actual time=1.17..1.52 rows=10 loops=1) -> Group (cost=1034.24..1034.39rows=63 width=12) (actual time=1.11..1.32 rows=10 loops=1) -> Sort (cost=1034.24..1034.24 rows=63 width=12) (actual time=1.10..1.15 rows=10 loops=1) -> Nested Loop (cost=0.00..1032.35 rows=63 width=12) (actual time=0.64..0.97 rows=10 loops=1) -> Index Scan using watch_list_user_id on watch_list (cost=0.00..15.25 rows=4 width=4) (actual time=0.29..0.31rows=3 loops=1) -> Index Scan using watch_list_element_pkey onwatch_list_element (cost=0.00..272.63 rows=75 width=8) (actual time=0.12..0.16 rows=3 loops=3) Total runtime: 19.78 msec Phew! That's fast! -- Dan Langille : http://www.langille.org/