Index use with left join - Mailing list pgsql-general

From Julian Scarfe
Subject Index use with left join
Date
Msg-id 17ad01c53c1a$1512ff70$0600a8c0@Wilbur
Whole thread Raw
Responses Re: Index use with left join
List pgsql-general
In a 7.4 database I have a table n of which the relevant columns see to be:

                    Table "public.n"
    Column     |            Type             | Modifiers
---------------+-----------------------------+-----------
 code          | text                        | not null
 ref           | text                        | not null
 part          | integer                     | not null
...
 q_node        | point                       |
 bbox          | box                         |

with indexes

Indexes:
    "n_pkey" primary key, btree (code, ref, part)
    "n_bbox" rtree (bbox)

Performance on simple spatial queries seem sensible.

1) Using the index

explain analyze
select  n.ref, n.code
        from n
        where bbox && box (point (-0.032, 0.873), point (0.017, 0.908))
                                                  QUERY PLAN
---------------------------------------------------------------------------------------------------------------
 Index Scan using n_bbox on n  (cost=0.00..88.33 rows=22 width=20) (actual
time=0.090..7.309 rows=396 loops=1)
   Index Cond: (bbox && '(0.017,0.908),(-0.032,0.873)'::box)
 Total runtime: 7.713 ms

2) Filtering on a different criterion to force a sequential scan. (These 150
rows are a subset of those from query 1)

explain analyze
select  n.ref, n.code
        from n
        where box (q_node, q_node)
                @ box (point (-0.032, 0.873), point (0.017, 0.908))
                                              QUERY PLAN
------------------------------------------------------------------------------------------------------
 Seq Scan on n  (cost=0.00..9087.60 rows=5 width=20) (actual
time=646.273..1135.774 rows=150 loops=1)
   Filter: (box(q_node, q_node) @ '(0.017,0.908),(-0.032,0.873)'::box)
 Total runtime: 1136.919 ms

3) Combining the two, the strategy seems sensible

explain analyze
select  n.ref, n.code
        from n
        where bbox && box (point (-0.032, 0.873), point (0.017, 0.908))
        and box (q_node, q_node)
                @ box (point (-0.032, 0.873), point (0.017, 0.908))
                                                  QUERY PLAN
---------------------------------------------------------------------------------------------------------------
 Index Scan using n_bbox on n  (cost=0.00..88.44 rows=1 width=20) (actual
time=0.360..11.482 rows=150 loops=1)
   Index Cond: (bbox && '(0.017,0.908),(-0.032,0.873)'::box)
   Filter: (box(q_node, q_node) @ '(0.017,0.908),(-0.032,0.873)'::box)
 Total runtime: 11.772 ms

So far so good.  Now I want to left join it with another table a (again,
just the columns that appear relevant)

                    Table "public.a"
       Column        |         Type          | Modifiers
---------------------+-----------------------+-----------
 ident               | character(4)          |
 name                | character varying(30) |
...
Indexes:
    "a_ident" unique, btree (ident)

4) First with a filter for which there's an index, like query 1

explain analyze
select  n.ref, n.code, a.ident, a.name
        from n left outer join a on (a.ident = n.code)
        where bbox && box (point (-0.032, 0.873), point (0.017, 0.908))
                                                         QUERY PLAN

----------------------------------------------------------------------------------------------------------------------------
 Merge Left Join  (cost=1371.99..1449.68 rows=174 width=45) (actual
time=182.082..211.555 rows=396 loops=1)
   Merge Cond: ("outer".code = "inner"."?column3?")
   ->  Sort  (cost=88.82..88.87 rows=22 width=20) (actual
time=16.120..16.375 rows=396 loops=1)
         Sort Key: n.code
         ->  Index Scan using n_bbox on n  (cost=0.00..88.33 rows=22
width=20) (actual time=0.213..11.893 rows=396 loops=1)
               Index Cond: (bbox && '(0.017,0.908),(-0.032,0.873)'::box)
   ->  Sort  (cost=1283.17..1308.44 rows=10105 width=25) (actual
time=164.296..170.774 rows=10054 loops=1)
         Sort Key: (a.ident)::text
         ->  Seq Scan on a  (cost=0.00..611.05 rows=10105 width=25) (actual
time=0.066..68.968 rows=10105 loops=1)
 Total runtime: 214.777 ms

5) Now with a filter that forces a sequential scan

explain analyze
select  n.ref, n.code, a.ident, a.name
        from n left outer join a on (a.ident = n.code)
        where box (q_node, q_node)
                @ box (point (-0.032, 0.873), point (0.017, 0.908))
                                                    QUERY PLAN
-------------------------------------------------------------------------------------------------------------------
 Merge Left Join  (cost=10370.84..10447.06 rows=40 width=45) (actual
time=912.068..914.158 rows=150 loops=1)
   Merge Cond: ("outer".code = "inner"."?column3?")
   ->  Sort  (cost=9087.66..9087.68 rows=5 width=20) (actual
time=728.757..728.847 rows=150 loops=1)
         Sort Key: n.code
         ->  Seq Scan on n  (cost=0.00..9087.60 rows=5 width=20) (actual
time=314.466..726.479 rows=150 loops=1)
               Filter: (box(q_node, q_node) @
'(0.017,0.908),(-0.032,0.873)'::box)
   ->  Sort  (cost=1283.17..1308.44 rows=10105 width=25) (actual
time=180.078..180.927 rows=1391 loops=1)
         Sort Key: (a.ident)::text
         ->  Seq Scan on a  (cost=0.00..611.05 rows=10105 width=25) (actual
time=0.170..83.442 rows=10105 loops=1)
 Total runtime: 917.066 ms

Again, so far, nothing obviously unusual.  Now I combine the filters in 4 &
5 (as I did from 1 & 2 to get 3)

6) Now I combine the filters in 4 & 5 (as I did from 1 & 2 to get 3, which
performed in a similar time to 1)

explain analyze
select  n.ref, n.code, a.ident, a.name
        from n left outer join a on (a.ident = n.code)
        where bbox && box (point (-0.032, 0.873), point (0.017, 0.908))
        and box (q_node, q_node)
                @ box (point (-0.032, 0.873), point (0.017, 0.908))
                                                     QUERY PLAN
---------------------------------------------------------------------------------------------------------------------
 Nested Loop Left Join  (cost=0.00..851.06 rows=8 width=45) (actual
time=11.662..7919.946 rows=150 loops=1)
   Join Filter: (("inner".ident)::text = "outer".code)
   ->  Index Scan using n_bbox on n  (cost=0.00..88.44 rows=1 width=20)
(actual time=0.107..10.256 rows=150 loops=1)
         Index Cond: (bbox && '(0.017,0.908),(-0.032,0.873)'::box)
         Filter: (box(q_node, q_node) @ '(0.017,0.908),(-0.032,0.873)'::box)
   ->  Seq Scan on a  (cost=0.00..611.05 rows=10105 width=25) (actual
time=0.006..18.044 rows=10105 loops=150)
 Total runtime: 7920.684 ms

Whoa!  Instead of a performance similar to query 4, it chooses a different
strategy, and takes 40 times as long. (Both tables just analyzed.)

By brute force:

set enable_nestloop to off;

explain analyze
select  n.ref, n.code, a.ident, a.name
        from n left outer join a on (a.ident = n.code)
        where bbox && box (point (-0.032, 0.873), point (0.017, 0.908))
        and box (q_node, q_node)
                @ box (point (-0.032, 0.873), point (0.017, 0.908))
                                                        QUERY PLAN

--------------------------------------------------------------------------------------------------------------------------
 Merge Left Join  (cost=1371.62..1447.50 rows=8 width=45) (actual
time=177.273..179.341 rows=150 loops=1)
   Merge Cond: ("outer".code = "inner"."?column3?")
   ->  Sort  (cost=88.45..88.45 rows=1 width=20) (actual time=8.452..8.538
rows=150 loops=1)
         Sort Key: n.code
         ->  Index Scan using n_bbox on n  (cost=0.00..88.44 rows=1
width=20) (actual time=0.109..7.031 rows=150 loops=1)
               Index Cond: (bbox && '(0.017,0.908),(-0.032,0.873)'::box)
               Filter: (box(q_node, q_node) @
'(0.017,0.908),(-0.032,0.873)'::box)
   ->  Sort  (cost=1283.17..1308.44 rows=10105 width=25) (actual
time=165.520..166.348 rows=1391 loops=1)
         Sort Key: (a.ident)::text
         ->  Seq Scan on a  (cost=0.00..611.05 rows=10105 width=25) (actual
time=0.042..69.560 rows=10105 loops=1)
 Total runtime: 182.275 ms

What's happening here, please? How am I misleading the planner? Is it
because the index is rtree?

Yes, I should consider PostGIS for spatial stuff, but I've got what I've got
:-).

TIA

Julian Scarfe



pgsql-general by date:

Previous
From: Richard Huxton
Date:
Subject: Re: Iterate OLD/NEW columns in a trigger?
Next
From: Roman Neuhauser
Date:
Subject: Re: How to query pgsql from a BASH script ?