9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.
Table 9.2 shows the available mathematical operators.
Table 9.2. Mathematical Operators
Operator | Description | Example | Result |
---|
+ | addition | 2 + 3 | 5 |
- | subtraction | 2 - 3 | -1 |
* | multiplication | 2 * 3 | 6 |
/ | division (integer division truncates the result) | 4 / 2 | 2 |
% | modulo (remainder) | 5 % 4 | 1 |
^ | exponentiation (associates left to right) | 2.0 ^ 3.0 | 8 |
|/ | square root | |/ 25.0 | 5 |
||/ | cube root | ||/ 27.0 | 3 |
! | factorial (deprecated, use factorial() instead) | 5 ! | 120 |
!! | factorial as a prefix operator (deprecated, use factorial() instead) | !! 5 | 120 |
@ | absolute value | @ -5.0 | 5 |
& | bitwise AND | 91 & 15 | 11 |
| | bitwise OR | 32 | 3 | 35 |
# | bitwise XOR | 17 # 5 | 20 |
~ | bitwise NOT | ~1 | -2 |
<< | bitwise shift left | 1 << 4 | 16 |
>> | bitwise shift right | 8 >> 2 | 2 |
The bitwise operators work only on integral data types and are also available for the bit string types bit
and bit varying
, as shown in Table 9.11.
Table 9.3 shows the available mathematical functions. In the table, dp
indicates double precision
. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument. The functions working with double precision
data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system.
Table 9.3. Mathematical Functions
Function | Return Type | Description | Example | Result |
---|
abs(x )
| (same as input) | absolute value | abs(-17.4) | 17.4 |
cbrt(dp )
| dp | cube root | cbrt(27.0) | 3 |
ceil(dp or numeric )
| (same as input) | nearest integer greater than or equal to argument | ceil(-42.8) | -42 |
ceiling(dp or numeric )
| (same as input) | nearest integer greater than or equal to argument (same as ceil ) | ceiling(-95.3) | -95 |
degrees(dp )
| dp | radians to degrees | degrees(0.5) | 28.6478897565412 |
div(y numeric , x numeric )
| numeric | integer quotient of y /x | div(9,4) | 2 |
exp(dp or numeric )
| (same as input) | exponential | exp(1.0) | 2.71828182845905 |
factorial(bigint )
| numeric | factorial | factorial(5) | 120 |
floor(dp or numeric )
| (same as input) | nearest integer less than or equal to argument | floor(-42.8) | -43 |
ln(dp or numeric )
| (same as input) | natural logarithm | ln(2.0) | 0.693147180559945 |
log(dp or numeric )
| (same as input) | base 10 logarithm | log(100.0) | 2 |
log(b numeric , x numeric )
| numeric | logarithm to base b | log(2.0, 64.0) | 6.0000000000 |
mod(y , x )
| (same as argument types) | remainder of y /x | mod(9,4) | 1 |
pi()
| dp | “π” constant | pi() | 3.14159265358979 |
power(a dp , b dp )
| dp | a raised to the power of b | power(9.0, 3.0) | 729 |
power(a numeric , b numeric )
| numeric | a raised to the power of b | power(9.0, 3.0) | 729 |
radians(dp )
| dp | degrees to radians | radians(45.0) | 0.785398163397448 |
round(dp or numeric )
| (same as input) | round to nearest integer | round(42.4) | 42 |
round(v numeric , s int )
| numeric | round to s decimal places | round(42.4382, 2) | 42.44 |
sign(dp or numeric )
| (same as input) | sign of the argument (-1, 0, +1) | sign(-8.4) | -1 |
sqrt(dp or numeric )
| (same as input) | square root | sqrt(2.0) | 1.4142135623731 |
trunc(dp or numeric )
| (same as input) | truncate toward zero | trunc(42.8) | 42 |
trunc(v numeric , s int )
| numeric | truncate to s decimal places | trunc(42.4382, 2) | 42.43 |
width_bucket(operand dp , b1 dp , b2 dp , count int )
| int | return the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2 ; returns 0 or count +1 for an input outside the range | width_bucket(5.35, 0.024, 10.06, 5) | 3 |
width_bucket(operand numeric , b1 numeric , b2 numeric , count int )
| int | return the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2 ; returns 0 or count +1 for an input outside the range | width_bucket(5.35, 0.024, 10.06, 5) | 3 |
width_bucket(operand anyelement , thresholds anyarray )
| int | return the bucket number to which operand would be assigned given an array listing the lower bounds of the buckets; returns 0 for an input less than the first lower bound; the thresholds array must be sorted, smallest first, or unexpected results will be obtained | width_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[]) | 2 |
Table 9.4 shows functions for generating random numbers.
Table 9.4. Random Functions
Function | Return Type | Description |
---|
random()
| dp | random value in the range 0.0 <= x < 1.0 |
setseed(dp )
| void | set seed for subsequent random() calls (value between -1.0 and 1.0, inclusive) |
The characteristics of the values returned by random()
depend on the system implementation. It is not suitable for cryptographic applications; see pgcrypto module for an alternative.
Finally, Table 9.5 shows the available trigonometric functions. All trigonometric functions take arguments and return values of type double precision
. Trigonometric functions arguments are expressed in radians. Inverse functions return values are expressed in radians. See unit transformation functions radians()
and degrees()
above.
Table 9.5. Trigonometric Functions
Function | Description |
---|
acos(x )
| inverse cosine |
asin(x )
| inverse sine |
atan(x )
| inverse tangent |
atan2(y , x )
| inverse tangent of y /x
|
cos(x )
| cosine |
cot(x )
| cotangent |
sin(x )
| sine |
tan(x )
| tangent |