9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the available mathematical operators.

Table 9.4. Mathematical Operators

OperatorDescriptionExampleResult
+addition2 + 35
-subtraction2 - 3-1
*multiplication2 * 36
/division (integer division truncates the result)4 / 22
%modulo (remainder)5 % 41
^exponentiation (associates left to right)2.0 ^ 3.08
|/square root|/ 25.05
||/cube root||/ 27.03
!factorial (deprecated, use factorial() instead)5 !120
!!factorial as a prefix operator (deprecated, use factorial() instead)!! 5120
@absolute value@ -5.05
&bitwise AND91 & 1511
|bitwise OR32 | 335
#bitwise XOR17 # 520
~bitwise NOT~1-2
<<bitwise shift left1 << 416
>>bitwise shift right8 >> 22

The bitwise operators work only on integral data types and are also available for the bit string types bit and bit varying, as shown in Table 9.14.

Table 9.5 shows the available mathematical functions. In the table, dp indicates double precision. Many of these functions are provided in multiple forms with different argument types. Except where noted, any given form of a function returns the same data type as its argument. The functions working with double precision data are mostly implemented on top of the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

FunctionReturn TypeDescriptionExampleResult
abs(x)(same as input)absolute valueabs(-17.4)17.4
cbrt(dp)dpcube rootcbrt(27.0)3
ceil(dp or numeric)(same as input)nearest integer greater than or equal to argumentceil(-42.8)-42
ceiling(dp or numeric)(same as input)nearest integer greater than or equal to argument (same as ceil)ceiling(-95.3)-95
degrees(dp)dpradians to degreesdegrees(0.5)28.6478897565412
div(y numeric, x numeric)numericinteger quotient of y/xdiv(9,4)2
exp(dp or numeric)(same as input)exponentialexp(1.0)2.71828182845905
factorial(bigint)numericfactorialfactorial(5)120
floor(dp or numeric)(same as input)nearest integer less than or equal to argumentfloor(-42.8)-43
ln(dp or numeric)(same as input)natural logarithmln(2.0)0.693147180559945
log(dp or numeric)(same as input)base 10 logarithmlog(100.0)2
log10(dp or numeric)(same as input)base 10 logarithmlog10(100.0)2
log(b numeric, x numeric)numericlogarithm to base blog(2.0, 64.0)6.0000000000
mod(y, x)(same as argument types)remainder of y/xmod(9,4)1
pi()dpπ constantpi()3.14159265358979
power(a dp, b dp)dpa raised to the power of bpower(9.0, 3.0)729
power(a numeric, b numeric)numerica raised to the power of bpower(9.0, 3.0)729
radians(dp)dpdegrees to radiansradians(45.0)0.785398163397448
round(dp or numeric)(same as input)round to nearest integerround(42.4)42
round(v numeric, s int)numericround to s decimal placesround(42.4382, 2)42.44
scale(numeric)integerscale of the argument (the number of decimal digits in the fractional part)scale(8.41)2
sign(dp or numeric)(same as input)sign of the argument (-1, 0, +1)sign(-8.4)-1
sqrt(dp or numeric)(same as input)square rootsqrt(2.0)1.4142135623731
trunc(dp or numeric)(same as input)truncate toward zerotrunc(42.8)42
trunc(v numeric, s int)numerictruncate to s decimal placestrunc(42.4382, 2)42.43
width_bucket(operand dp, b1 dp, b2 dp, count int)intreturn the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2; returns 0 or count+1 for an input outside the rangewidth_bucket(5.35, 0.024, 10.06, 5)3
width_bucket(operand numeric, b1 numeric, b2 numeric, count int)intreturn the bucket number to which operand would be assigned in a histogram having count equal-width buckets spanning the range b1 to b2; returns 0 or count+1 for an input outside the rangewidth_bucket(5.35, 0.024, 10.06, 5)3
width_bucket(operand anyelement, thresholds anyarray)intreturn the bucket number to which operand would be assigned given an array listing the lower bounds of the buckets; returns 0 for an input less than the first lower bound; the thresholds array must be sorted, smallest first, or unexpected results will be obtainedwidth_bucket(now(), array['yesterday', 'today', 'tomorrow']::timestamptz[])2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

FunctionReturn TypeDescription
random()dprandom value in the range 0.0 <= x < 1.0
setseed(dp)voidset seed for subsequent random() calls (value between -1.0 and 1.0, inclusive)

The random() function uses a simple linear congruential algorithm. It is fast but not suitable for cryptographic applications; see the pgcrypto module for a more secure alternative. If setseed() is called, the results of subsequent random() calls in the current session are repeatable by re-issuing setseed() with the same argument. Without any prior setseed() call in the same session, the first random() call obtains a seed from a platform-dependent source of random bits.

Table 9.7 shows the available trigonometric functions. All these functions take arguments and return values of type double precision. Each of the trigonometric functions comes in two variants, one that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function (radians)Function (degrees)Description
acos(x)acosd(x)inverse cosine
asin(x) asind(x)inverse sine
atan(x) atand(x)inverse tangent
atan2(y, x) atan2d(y, x)inverse tangent of y/x
cos(x) cosd(x)cosine
cot(x) cotd(x)cotangent
sin(x) sind(x)sine
tan(x) tand(x)tangent

Note

Another way to work with angles measured in degrees is to use the unit transformation functions radians() and degrees() shown earlier. However, using the degree-based trigonometric functions is preferred, as that way avoids round-off error for special cases such as sind(30).

Table 9.8 shows the available hyperbolic functions. All these functions take arguments and return values of type double precision.

Table 9.8. Hyperbolic Functions

FunctionDescriptionExampleResult
sinh(x)hyperbolic sinesinh(0)0
cosh(x)hyperbolic cosinecosh(0)1
tanh(x)hyperbolic tangenttanh(0)0
asinh(x)inverse hyperbolic sineasinh(0)0
acosh(x)inverse hyperbolic cosineacosh(1)0
atanh(x)inverse hyperbolic tangentatanh(0)0