F.11. cube — a multi-dimensional cube data type #

This module implements a data type cube for representing multidimensional cubes.

This module is considered trusted, that is, it can be installed by non-superusers who have CREATE privilege on the current database.

F.11.1. Syntax #

Table F.5 shows the valid external representations for the cube type. x, y, etc. denote floating-point numbers.

Table F.5. Cube External Representations

External SyntaxMeaning
xA one-dimensional point (or, zero-length one-dimensional interval)
(x)Same as above
x1,x2,...,xnA point in n-dimensional space, represented internally as a zero-volume cube
(x1,x2,...,xn)Same as above
(x),(y)A one-dimensional interval starting at x and ending at y or vice versa; the order does not matter
[(x),(y)]Same as above
(x1,...,xn),(y1,...,yn)An n-dimensional cube represented by a pair of its diagonally opposite corners
[(x1,...,xn),(y1,...,yn)]Same as above

It does not matter which order the opposite corners of a cube are entered in. The cube functions automatically swap values if needed to create a uniform lower left — upper right internal representation. When the corners coincide, cube stores only one corner along with an is point flag to avoid wasting space.

White space is ignored on input, so [(x),(y)] is the same as [ ( x ), ( y ) ].

F.11.2. Precision #

Values are stored internally as 64-bit floating point numbers. This means that numbers with more than about 16 significant digits will be truncated.

F.11.3. Usage #

Table F.6 shows the specialized operators provided for type cube.

Table F.6. Cube Operators

Operator

Description

cube && cubeboolean

Do the cubes overlap?

cube @> cubeboolean

Does the first cube contain the second?

cube <@ cubeboolean

Is the first cube contained in the second?

cube -> integerfloat8

Extracts the n-th coordinate of the cube (counting from 1).

cube ~> integerfloat8

Extracts the n-th coordinate of the cube, counting in the following way: n = 2 * k - 1 means lower bound of k-th dimension, n = 2 * k means upper bound of k-th dimension. Negative n denotes the inverse value of the corresponding positive coordinate. This operator is designed for KNN-GiST support.

cube <-> cubefloat8

Computes the Euclidean distance between the two cubes.

cube <#> cubefloat8

Computes the taxicab (L-1 metric) distance between the two cubes.

cube <=> cubefloat8

Computes the Chebyshev (L-inf metric) distance between the two cubes.


In addition to the above operators, the usual comparison operators shown in Table 9.1 are available for type cube. These operators first compare the first coordinates, and if those are equal, compare the second coordinates, etc. They exist mainly to support the b-tree index operator class for cube, which can be useful for example if you would like a UNIQUE constraint on a cube column. Otherwise, this ordering is not of much practical use.

The cube module also provides a GiST index operator class for cube values. A cube GiST index can be used to search for values using the =, &&, @>, and <@ operators in WHERE clauses.

In addition, a cube GiST index can be used to find nearest neighbors using the metric operators <->, <#>, and <=> in ORDER BY clauses. For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5) could be found efficiently with:

SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;

The ~> operator can also be used in this way to efficiently retrieve the first few values sorted by a selected coordinate. For example, to get the first few cubes ordered by the first coordinate (lower left corner) ascending one could use the following query:

SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;

And to get 2-D cubes ordered by the first coordinate of the upper right corner descending:

SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;

Table F.7 shows the available functions.

Table F.7. Cube Functions

Function

Description

Example(s)

cube ( float8 ) → cube

Makes a one dimensional cube with both coordinates the same.

cube(1)(1)

cube ( float8, float8 ) → cube

Makes a one dimensional cube.

cube(1, 2)(1),(2)

cube ( float8[] ) → cube

Makes a zero-volume cube using the coordinates defined by the array.

cube(ARRAY[1,2,3])(1, 2, 3)

cube ( float8[], float8[] ) → cube

Makes a cube with upper right and lower left coordinates as defined by the two arrays, which must be of the same length.

cube(ARRAY[1,2], ARRAY[3,4])(1, 2),(3, 4)

cube ( cube, float8 ) → cube

Makes a new cube by adding a dimension on to an existing cube, with the same values for both endpoints of the new coordinate. This is useful for building cubes piece by piece from calculated values.

cube('(1,2),(3,4)'::cube, 5)(1, 2, 5),(3, 4, 5)

cube ( cube, float8, float8 ) → cube

Makes a new cube by adding a dimension on to an existing cube. This is useful for building cubes piece by piece from calculated values.

cube('(1,2),(3,4)'::cube, 5, 6)(1, 2, 5),(3, 4, 6)

cube_dim ( cube ) → integer

Returns the number of dimensions of the cube.

cube_dim('(1,2),(3,4)')2

cube_ll_coord ( cube, integer ) → float8

Returns the n-th coordinate value for the lower left corner of the cube.

cube_ll_coord('(1,2),(3,4)', 2)2

cube_ur_coord ( cube, integer ) → float8

Returns the n-th coordinate value for the upper right corner of the cube.

cube_ur_coord('(1,2),(3,4)', 2)4

cube_is_point ( cube ) → boolean

Returns true if the cube is a point, that is, the two defining corners are the same.

cube_is_point(cube(1,1))t

cube_distance ( cube, cube ) → float8

Returns the distance between two cubes. If both cubes are points, this is the normal distance function.

cube_distance('(1,2)', '(3,4)')2.8284271247461903

cube_subset ( cube, integer[] ) → cube

Makes a new cube from an existing cube, using a list of dimension indexes from an array. Can be used to extract the endpoints of a single dimension, or to drop dimensions, or to reorder them as desired.

cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2])(3),(7)

cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1])(5, 3, 1, 1),(8, 7, 6, 6)

cube_union ( cube, cube ) → cube

Produces the union of two cubes.

cube_union('(1,2)', '(3,4)')(1, 2),(3, 4)

cube_inter ( cube, cube ) → cube

Produces the intersection of two cubes.

cube_inter('(1,2)', '(3,4)')(3, 4),(1, 2)

cube_enlarge ( c cube, r double, n integer ) → cube

Increases the size of the cube by the specified radius r in at least n dimensions. If the radius is negative the cube is shrunk instead. All defined dimensions are changed by the radius r. Lower-left coordinates are decreased by r and upper-right coordinates are increased by r. If a lower-left coordinate is increased to more than the corresponding upper-right coordinate (this can only happen when r < 0) than both coordinates are set to their average. If n is greater than the number of defined dimensions and the cube is being enlarged (r > 0), then extra dimensions are added to make n altogether; 0 is used as the initial value for the extra coordinates. This function is useful for creating bounding boxes around a point for searching for nearby points.

cube_enlarge('(1,2),(3,4)', 0.5, 3)(0.5, 1.5, -0.5),(3.5, 4.5, 0.5)


F.11.4. Defaults #

This union:

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union
-------------------
(0, 0, 0),(2, 5, 2)
(1 row)

does not contradict common sense, neither does the intersection:

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter
-------------
(0, 0),(1, 0)
(1 row)

In all binary operations on differently-dimensioned cubes, the lower-dimensional one is assumed to be a Cartesian projection, i. e., having zeroes in place of coordinates omitted in the string representation. The above examples are equivalent to:

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');

The following containment predicate uses the point syntax, while in fact the second argument is internally represented by a box. This syntax makes it unnecessary to define a separate point type and functions for (box,point) predicates.

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains
--------------
t
(1 row)

F.11.5. Notes #

For examples of usage, see the regression test sql/cube.sql.

To make it harder for people to break things, there is a limit of 100 on the number of dimensions of cubes. This is set in cubedata.h if you need something bigger.

F.11.6. Credits #

Original author: Gene Selkov, Jr. , Mathematics and Computer Science Division, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (https://dsf.berkeley.edu/jmh/) for elucidating the gist of the GiST (http://gist.cs.berkeley.edu/), and to his former student Andy Dong for his example written for Illustra. I am also grateful to all Postgres developers, present and past, for enabling myself to create my own world and live undisturbed in it. And I would like to acknowledge my gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful support of my database research.

Minor updates to this package were made by Bruno Wolff III in August/September of 2002. These include changing the precision from single precision to double precision and adding some new functions.

Additional updates were made by Joshua Reich in July 2006. These include cube(float8[], float8[]) and cleaning up the code to use the V1 call protocol instead of the deprecated V0 protocol.