Re: Use merge-based matching for MCVs in eqjoinsel - Mailing list pgsql-hackers

From Ilia Evdokimov
Subject Re: Use merge-based matching for MCVs in eqjoinsel
Date
Msg-id c3dbf2ab-d72d-4033-822a-60ad8023f499@tantorlabs.com
Whole thread Raw
In response to Re: Use merge-based matching for MCVs in eqjoinsel  (Ilia Evdokimov <ilya.evdokimov@tantorlabs.com>)
List pgsql-hackers
Hi hackers,

On 10.09.2025 16:56, Ilia Evdokimov wrote:
> Unfortunately, the JOB benchmark does not contain semi join nodes. 
> However, TPC-DS does. I'll look for the queries with slowest planner 
> times there and check them.
>
> I'll need some time to check both join and semi join cases with small 
> and large default_statistics_target. I'll share the results later.

JOIN
==============================

I’ve benchmarked the new implementation of eqjoinsel() with different 
values of default_statistics_target. On small targets (1, 5, 10, 25, 50, 
75, 100) the results are all within statistical noise, and I did not 
observe any regressions. In my view, it’s reasonable to keep the current 
condition that the hash table is not used for default_statistics_target 
= 1. Raising that threshold does not seem useful.

Here are the results for JOB queries (where the effect of semi join is 
not visible due to different data distributions):

default_statistics_target | Planner Speedup (×) | Planner Before (ms) | 
Planner After (ms)
------------------------------------------------------------------------------------------
1                         | 1.00                | 1846.643            | 
1847.409
5                         | 1.00                | 1836.391            | 
1828.318
10                        | 0.95                | 1841.750            | 
1929.722
25                        | 0.99                | 1873.172            | 
1890.741
50                        | 0.98                | 1869.897            | 
1898.470
75                        | 1.02                | 1969.368            | 
1929.521
100                       | 0.97                | 1857.890            | 
1921.207
1000                      | 1.14                | 2279.700            | 
1997.102
2500                      | 1.78                | 4682.658            | 
2636.202
5000                      | 6.45                | 15943.696           | 
2471.242
7500                      | 12.45               | 34350.855           | 
2758.565
10000                     | 20.52               | 62519.342           | 
3046.819

SEMI JOIN
==============================

Unfortunately, in TPC-DS it is not possible to clearly see improvements 
for semi joins. To address this, I designed a synthetic example where 
the data distribution forces the loop to run fully, without exiting 
early, which makes the effect on semi joins more visible. In this setup, 
I also ensured that the length of the MCV array is equal to the chosen 
default_statistics_target.

CREATE TABLE t1 AS
SELECT CASE
          WHEN g <= 3000000 * 0.9 THEN (g % 10000) + 1
          ELSE (g % 1000000) + 10000
        END AS id
FROM generate_series(1, 3000000) g;

CREATE TABLE t2 AS
SELECT CASE
          WHEN g <= 3000000 * 0.9 THEN (g % 10000) + 10001
          ELSE (g % 1000000) + 20000
        END AS id
FROM generate_series(1, 3000000) g;

ANALYZE t1, t2;

The results of the query are:

SELECT * FROM t1
WHERE id IN (SELECT id FROM t2);

default_statistics_target | Planner Speedup (×) | Planner Before (ms) | 
Planner After (ms)
------------------------------------------------------------------------------------------
1                         | 1.12                | 1.191               | 
1.062
5                         | 1.02                | 0.493               | 
0.481
10                        | 0.92                | 0.431               | 
0.471
25                        | 1.27                | 0.393               | 
0.309
50                        | 1.04                | 0.432               | 
0.416
75                        | 0.96                | 0.398               | 
0.415
100                       | 0.95                | 0.450               | 
0.473
1000                      | 9.42                | 6.742               | 
0.716
2500                      | 19.15               | 21.621              | 
1.129
5000                      | 46.74               | 85.667              | 
1.833
7500                      | 73.26               | 194.806             | 
2.659
10000                     | 107.95              | 349.981             | 
3.242

-- 
Best regards,
Ilia Evdokimov,
Tantor Labs LLC,
https://tantorlabs.com




pgsql-hackers by date:

Previous
From: Bruce Momjian
Date:
Subject: Re: PG 18 release notes draft committed
Next
From: Shirisha Shirisha
Date:
Subject: Re: Proposal to allow DELETE/UPDATE on partitioned tables with unsupported foreign partitions