pgsql: Improve nbtree array primitive scan scheduling. - Mailing list pgsql-committers
From | Peter Geoghegan |
---|---|
Subject | pgsql: Improve nbtree array primitive scan scheduling. |
Date | |
Msg-id | E1tw2F1-000UGZ-2N@gemulon.postgresql.org Whole thread Raw |
List | pgsql-committers |
Improve nbtree array primitive scan scheduling. Add a new scheduling heuristic: don't end the ongoing primitive index scan immediately (at the point where _bt_advance_array_keys notices that the next set of matching tuples must be on a later page) if the primscan already managed to step right/left from its first leaf page. Schedule a recheck against the next sibling leaf page's finaltup instead. The new heuristic tends to avoid scenarios where the top-level scan repeatedly starts and ends primitive index scans that each read only one leaf page from a group of neighboring leaf pages. Affected top-level scans will now tend to step forward (or backward) through the index instead, without wasting cycles on descending the index anew. The recheck mechanism isn't exactly new. But up until now it has only been used to deal with edge cases involving high key finaltups with one or more truncated -inf attributes that _bt_advance_array_keys deemed "provisionally satisfied" (satisfied for the purposes of allowing the scan to step onto the next page, subject to recheck once on that page). The mechanism was added by commit 5bf748b8, which invented the general concept of primitive scan scheduling. It was later enhanced by commit 79fa7b3b, which taught it about cases involving -inf attributes that satisfy inequality scan keys required in the opposite-to-scan direction only (arguably, they should have been covered by the earliest version). Now the recheck mechanism can be applied based on scan-level heuristics, which have nothing to do with truncated high keys. Now rechecks might be performed by _bt_readpage when scanning in _either_ scan direction. The theory behind the new heuristic is that any primitive scan that makes it past its first leaf page is one that is already likely to have arrays whose key values match index tuples that are closely clustered together in the index. The rules that determine whether we ever get past the first page are still conservative (that'll still only happen when pstate.finaltup strongly suggests that it's the right thing to do). Surviving past the first leaf page is a strong signal in itself. Preparation for an upcoming patch that will add skip scan optimizations to nbtree. That'll work by adding skip arrays, which behave similarly to SAOP arrays, but generate their elements procedurally and on-demand. Note that this commit isn't specifically concerned with skip arrays; the scheduling logic doesn't (and won't) condition anything on whether the scan uses skip arrays, SAOP arrays, or some combination of the two (which seems like a good general principle for _bt_advance_array_keys). While the problems that this commit ameliorates are more likely with skip arrays (at least in practice), SAOP arrays (or those with very dense, contiguous array elements) are also affected. Author: Peter Geoghegan <pg@bowt.ie> Reviewed-By: Matthias van de Meent <boekewurm+postgres@gmail.com> Discussion: https://postgr.es/m/CAH2-Wzkz0wPe6+02kr+hC+JJNKfGtjGTzpG3CFVTQmKwWNrXNw@mail.gmail.com Branch ------ master Details ------- https://git.postgresql.org/pg/commitdiff/9a2e2a285a149490a69a7bd92dd618bb7ca975b3 Modified Files -------------- src/backend/access/nbtree/nbtsearch.c | 68 ++++++----- src/backend/access/nbtree/nbtutils.c | 221 ++++++++++++++++++---------------- src/include/access/nbtree.h | 11 +- 3 files changed, 162 insertions(+), 138 deletions(-)
pgsql-committers by date: