Re: Performance of Query 4 on TPC-DS Benchmark - Mailing list pgsql-performance

From Alena Rybakina
Subject Re: Performance of Query 4 on TPC-DS Benchmark
Date
Msg-id 8288344e-5cb7-4a02-bb30-f771e9cfde58@postgrespro.ru
Whole thread Raw
In response to Re: Performance of Query 4 on TPC-DS Benchmark  (Alena Rybakina <a.rybakina@postgrespro.ru>)
List pgsql-performance
On 10.11.2024 23:16, Alena Rybakina wrote:

Hi!

On 10.11.2024 22:35, Ba Jinsheng wrote:
P {margin-top:0;margin-bottom:0;}
Hi all,

Please see this case:


Query 4 on TPC-DS benchmark:

with year_total as (
 select c_customer_id customer_id
       ,c_first_name customer_first_name
       ,c_last_name customer_last_name
       ,c_preferred_cust_flag customer_preferred_cust_flag
       ,c_birth_country customer_birth_country
       ,c_login customer_login
       ,c_email_address customer_email_address
       ,d_year dyear
       ,sum(((ss_ext_list_price-ss_ext_wholesale_cost-ss_ext_discount_amt)+ss_ext_sales_price)/2) year_total
       ,'s' sale_type
 from customer
     ,store_sales
     ,date_dim
 where c_customer_sk = ss_customer_sk
   and ss_sold_date_sk = d_date_sk
 group by c_customer_id
         ,c_first_name
         ,c_last_name
         ,c_preferred_cust_flag
         ,c_birth_country
         ,c_login
         ,c_email_address
         ,d_year
 union all
 select c_customer_id customer_id
       ,c_first_name customer_first_name
       ,c_last_name customer_last_name
       ,c_preferred_cust_flag customer_preferred_cust_flag
       ,c_birth_country customer_birth_country
       ,c_login customer_login
       ,c_email_address customer_email_address
       ,d_year dyear
       ,sum((((cs_ext_list_price-cs_ext_wholesale_cost-cs_ext_discount_amt)+cs_ext_sales_price)/2) ) year_total
       ,'c' sale_type
 from customer
     ,catalog_sales
     ,date_dim
 where c_customer_sk = cs_bill_customer_sk
   and cs_sold_date_sk = d_date_sk
 group by c_customer_id
         ,c_first_name
         ,c_last_name
         ,c_preferred_cust_flag
         ,c_birth_country
         ,c_login
         ,c_email_address
         ,d_year
union all
 select c_customer_id customer_id
       ,c_first_name customer_first_name
       ,c_last_name customer_last_name
       ,c_preferred_cust_flag customer_preferred_cust_flag
       ,c_birth_country customer_birth_country
       ,c_login customer_login
       ,c_email_address customer_email_address
       ,d_year dyear
       ,sum((((ws_ext_list_price-ws_ext_wholesale_cost-ws_ext_discount_amt)+ws_ext_sales_price)/2) ) year_total
       ,'w' sale_type
 from customer
     ,web_sales
     ,date_dim
 where c_customer_sk = ws_bill_customer_sk
   and ws_sold_date_sk = d_date_sk
 group by c_customer_id
         ,c_first_name
         ,c_last_name
         ,c_preferred_cust_flag
         ,c_birth_country
         ,c_login
         ,c_email_address
         ,d_year
         )
  select  
                  t_s_secyear.customer_id
                 ,t_s_secyear.customer_first_name
                 ,t_s_secyear.customer_last_name
                 ,t_s_secyear.customer_email_address
 from year_total t_s_firstyear
     ,year_total t_s_secyear
     ,year_total t_c_firstyear
     ,year_total t_c_secyear
     ,year_total t_w_firstyear
     ,year_total t_w_secyear
 where t_s_secyear.customer_id = t_s_firstyear.customer_id
   and t_s_firstyear.customer_id = t_c_secyear.customer_id
   and t_s_firstyear.customer_id = t_c_firstyear.customer_id
   and t_s_firstyear.customer_id = t_w_firstyear.customer_id
   and t_s_firstyear.customer_id = t_w_secyear.customer_id
   and t_s_firstyear.sale_type = 's'
   and t_c_firstyear.sale_type = 'c'
   and t_w_firstyear.sale_type = 'w'
   and t_s_secyear.sale_type = 's'
   and t_c_secyear.sale_type = 'c'
   and t_w_secyear.sale_type = 'w'
   and t_s_firstyear.dyear =  2001
   and t_s_secyear.dyear = 2001+1
   and t_c_firstyear.dyear =  2001
   and t_c_secyear.dyear =  2001+1
   and t_w_firstyear.dyear = 2001
   and t_w_secyear.dyear = 2001+1
   and t_s_firstyear.year_total > 0
   and t_c_firstyear.year_total > 0
   and t_w_firstyear.year_total > 0
   and case when t_c_firstyear.year_total > 0 then t_c_secyear.year_total / t_c_firstyear.year_total else null end
           > case when t_s_firstyear.year_total > 0 then t_s_secyear.year_total / t_s_firstyear.year_total else null end
   and case when t_c_firstyear.year_total > 0 then t_c_secyear.year_total / t_c_firstyear.year_total else null end
           > case when t_w_firstyear.year_total > 0 then t_w_secyear.year_total / t_w_firstyear.year_total else null end
 order by t_s_secyear.customer_id
         ,t_s_secyear.customer_first_name
         ,t_s_secyear.customer_last_name
         ,t_s_secyear.customer_email_address
limit 100;





The execution time is more than 50 minutes:
                                                                                                                                                                               QUERY PLAN                                                                                                                                                                              
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
 Limit  (cost=1255378.56..1255378.57 rows=1 width=132) (actual time=3024403.311..3024403.342 rows=8 loops=1)
   CTE year_total
     ->  Append  (cost=197433.23..461340.62 rows=5041142 width=216) (actual time=4126.043..7897.747 rows=384208 loops=1)
           ->  HashAggregate  (cost=197433.23..233436.60 rows=2880270 width=216) (actual time=4126.042..4231.703 rows=190581 loops=1)
                 Group Key: customer.c_customer_id, customer.c_first_name, customer.c_last_name, customer.c_preferred_cust_flag, customer.c_birth_country, customer.c_login, customer.c_email_address, date_dim.d_year
                 Batches: 1  Memory Usage: 213017kB
                 ->  Hash Join  (cost=8151.60..103824.45 rows=2880270 width=174) (actual time=69.110..1686.608 rows=2685453 loops=1)
                       Hash Cond: (store_sales.ss_sold_date_sk = date_dim.d_date_sk)
                       ->  Hash Join  (cost=5103.00..93214.72 rows=2880270 width=174) (actual time=49.517..1162.567 rows=2750652 loops=1)
                             Hash Cond: (store_sales.ss_customer_sk = customer.c_customer_sk)
                             ->  Seq Scan on store_sales  (cost=0.00..80550.70 rows=2880270 width=30) (actual time=0.018..208.022 rows=2880404 loops=1)
                             ->  Hash  (cost=3853.00..3853.00 rows=100000 width=152) (actual time=49.271..49.271 rows=100000 loops=1)
                                   Buckets: 131072  Batches: 1  Memory Usage: 17161kB
                                   ->  Seq Scan on customer  (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.011..26.448 rows=100000 loops=1)
                       ->  Hash  (cost=2135.49..2135.49 rows=73049 width=8) (actual time=19.369..19.370 rows=73049 loops=1)
                             Buckets: 131072  Batches: 1  Memory Usage: 3878kB
                             ->  Seq Scan on date_dim  (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.037..11.763 rows=73049 loops=1)
           ->  HashAggregate  (cost=114410.03..132428.63 rows=1441488 width=216) (actual time=2369.202..2447.868 rows=136978 loops=1)
                 Group Key: customer_1.c_customer_id, customer_1.c_first_name, customer_1.c_last_name, customer_1.c_preferred_cust_flag, customer_1.c_birth_country, customer_1.c_login, customer_1.c_email_address, date_dim_1.d_year
                 Batches: 1  Memory Usage: 131097kB
                 ->  Hash Join  (cost=8151.60..67561.67 rows=1441488 width=177) (actual time=62.483..974.143 rows=1430939 loops=1)
                       Hash Cond: (catalog_sales.cs_sold_date_sk = date_dim_1.d_date_sk)
                       ->  Hash Join  (cost=5103.00..60728.94 rows=1441488 width=177) (actual time=46.571..687.972 rows=1434519 loops=1)
                             Hash Cond: (catalog_sales.cs_bill_customer_sk = customer_1.c_customer_sk)
                             ->  Seq Scan on catalog_sales  (cost=0.00..51841.88 rows=1441488 width=33) (actual time=0.029..128.238 rows=1441548 loops=1)
                             ->  Hash  (cost=3853.00..3853.00 rows=100000 width=152) (actual time=46.311..46.325 rows=100000 loops=1)
                                   Buckets: 131072  Batches: 1  Memory Usage: 17161kB
                                   ->  Seq Scan on customer customer_1  (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.005..23.350 rows=100000 loops=1)
                       ->  Hash  (cost=2135.49..2135.49 rows=73049 width=8) (actual time=15.677..15.677 rows=73049 loops=1)
                             Buckets: 131072  Batches: 1  Memory Usage: 3878kB
                             ->  Seq Scan on date_dim date_dim_1  (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.015..7.957 rows=73049 loops=1)
           ->  HashAggregate  (cost=61277.38..70269.68 rows=719384 width=216) (actual time=1166.953..1198.730 rows=56649 loops=1)
                 Group Key: customer_2.c_customer_id, customer_2.c_first_name, customer_2.c_last_name, customer_2.c_preferred_cust_flag, customer_2.c_birth_country, customer_2.c_login, customer_2.c_email_address, date_dim_2.d_year
                 Batches: 1  Memory Usage: 57369kB
                 ->  Hash Join  (cost=8151.60..37897.40 rows=719384 width=177) (actual time=68.327..508.594 rows=719119 loops=1)
                       Hash Cond: (web_sales.ws_sold_date_sk = date_dim_2.d_date_sk)
                       ->  Hash Join  (cost=5103.00..32960.30 rows=719384 width=177) (actual time=52.240..357.963 rows=719217 loops=1)
                             Hash Cond: (web_sales.ws_bill_customer_sk = customer_2.c_customer_sk)
                             ->  Seq Scan on web_sales  (cost=0.00..25968.84 rows=719384 width=33) (actual time=0.032..62.464 rows=719384 loops=1)
                             ->  Hash  (cost=3853.00..3853.00 rows=100000 width=152) (actual time=51.959..51.960 rows=100000 loops=1)
                                   Buckets: 131072  Batches: 1  Memory Usage: 17161kB
                                   ->  Seq Scan on customer customer_2  (cost=0.00..3853.00 rows=100000 width=152) (actual time=0.004..25.350 rows=100000 loops=1)
                       ->  Hash  (cost=2135.49..2135.49 rows=73049 width=8) (actual time=15.831..15.834 rows=73049 loops=1)
                             Buckets: 131072  Batches: 1  Memory Usage: 3878kB
                             ->  Seq Scan on date_dim date_dim_2  (cost=0.00..2135.49 rows=73049 width=8) (actual time=0.014..8.100 rows=73049 loops=1)
   ->  Sort  (cost=794037.94..794037.95 rows=1 width=132) (actual time=3024403.310..3024403.313 rows=8 loops=1)
         Sort Key: t_s_secyear.customer_id, t_s_secyear.customer_first_name, t_s_secyear.customer_last_name, t_s_secyear.customer_email_address
         Sort Method: quicksort  Memory: 26kB
         ->  Nested Loop  (cost=0.00..794037.93 rows=1 width=132) (actual time=354851.431..3024403.218 rows=8 loops=1)
               Join Filter: ((t_s_secyear.customer_id = t_w_secyear.customer_id) AND (CASE WHEN (t_c_firstyear.year_total > '0'::numeric) THEN (t_c_secyear.year_total / t_c_firstyear.year_total) ELSE NULL::numeric END > CASE WHEN (t_w_firstyear.year_total > '0'::numeric) THEN (t_w_secyear.year_total / t_w_firstyear.year_total) ELSE NULL::numeric END))
               Rows Removed by Join Filter: 810136
               ->  Nested Loop  (cost=0.00..668006.23 rows=1 width=308) (actual time=33554.075..3021248.646 rows=72 loops=1)
                     Join Filter: ((t_s_secyear.customer_id = t_c_secyear.customer_id) AND (CASE WHEN (t_c_firstyear.year_total > '0'::numeric) THEN (t_c_secyear.year_total / t_c_firstyear.year_total) ELSE NULL::numeric END > CASE WHEN (t_s_firstyear.year_total > '0'::numeric) THEN (t_s_secyear.year_total / t_s_firstyear.year_total) ELSE NULL::numeric END))
                     Rows Removed by Join Filter: 11876277
                     ->  Nested Loop  (cost=0.00..541974.53 rows=1 width=320) (actual time=14866.104..3001271.961 rows=437 loops=1)
                           Join Filter: (t_s_firstyear.customer_id = t_s_secyear.customer_id)
                           Rows Removed by Join Filter: 44702488
                           ->  Nested Loop  (cost=0.00..415941.57 rows=2 width=156) (actual time=11739.944..2946020.749 rows=1171 loops=1)
                                 Join Filter: (t_s_firstyear.customer_id = t_w_firstyear.customer_id)
                                 Rows Removed by Join Filter: 112695277
                                 ->  Nested Loop  (cost=0.00..277302.08 rows=9 width=104) (actual time=8139.729..2351733.795 rows=9952 loops=1)
                                       Join Filter: (t_s_firstyear.customer_id = t_c_firstyear.customer_id)
                                       Rows Removed by Join Filter: 997895870
                                       ->  CTE Scan on year_total t_s_firstyear  (cost=0.00..138631.41 rows=42 width=52) (actual time=4126.046..4234.598 rows=37923 loops=1)
                                             Filter: ((year_total > '0'::numeric) AND (sale_type = 's'::text) AND (dyear = 2001))
                                             Rows Removed by Filter: 346285
                                       ->  CTE Scan on year_total t_c_firstyear  (cost=0.00..138631.41 rows=42 width=52) (actual time=28.926..60.356 rows=26314 loops=37923)
                                             Filter: ((year_total > '0'::numeric) AND (sale_type = 'c'::text) AND (dyear = 2001))
                                             Rows Removed by Filter: 357894
                                 ->  CTE Scan on year_total t_w_firstyear  (cost=0.00..138631.41 rows=42 width=52) (actual time=49.572..59.057 rows=11324 loops=9952)
                                       Filter: ((year_total > '0'::numeric) AND (sale_type = 'w'::text) AND (dyear = 2001))
                                       Rows Removed by Filter: 372884
                           ->  CTE Scan on year_total t_s_secyear  (cost=0.00..126028.55 rows=126 width=164) (actual time=0.002..44.949 rows=38175 loops=1171)
                                 Filter: ((sale_type = 's'::text) AND (dyear = 2002))
                                 Rows Removed by Filter: 346033
                     ->  CTE Scan on year_total t_c_secyear  (cost=0.00..126028.55 rows=126 width=52) (actual time=21.023..44.097 rows=27177 loops=437)
                           Filter: ((sale_type = 'c'::text) AND (dyear = 2002))
                           Rows Removed by Filter: 357031
               ->  CTE Scan on year_total t_w_secyear  (cost=0.00..126028.55 rows=126 width=52) (actual time=36.137..43.090 rows=11252 loops=72)
                     Filter: ((sale_type = 'w'::text) AND (dyear = 2002))
                     Rows Removed by Filter: 372956
 Planning Time: 4.529 ms
 Execution Time: 3024486.695 ms
(83 rows)



I have noticed significant underestimation here. In addition, these nodes are executed noticeably slower in the plan, you can see it by the current time in the explain.
Sorry, I meant actual time, not current time.

-- 
Regards,
Alena Rybakina
Postgres Professional

pgsql-performance by date:

Previous
From: Alena Rybakina
Date:
Subject: Re: Performance of Query 4 on TPC-DS Benchmark
Next
From: Andrei Lepikhov
Date:
Subject: Re: Performance of Query 4 on TPC-DS Benchmark