Re: inaccurate stats on large tables - Mailing list pgsql-performance

From Kiran Mukhyala
Subject Re: inaccurate stats on large tables
Date
Msg-id 1223660889.17947.28.camel@sausalito.gene.com
Whole thread Raw
In response to Re: inaccurate stats on large tables  ("Matt Smiley" <mss@rentrak.com>)
List pgsql-performance
On Mon, 2008-09-08 at 09:16 -0700, Matt Smiley wrote:
> Hi Kiran,
>
> You gave great info on your problem.
>
> First, is this the query you're actually trying to speed up, or is it a simplified version?  It looks like the
optimizerhas already chosen the best execution plan for the given query.  Since the query has no joins, we only have to
consideraccess paths.  You're fetching 58221/37909009 = 0.15% of the rows, so a sequential scan is clearly
inappropriate. A basic index scan is likely to incur extra scattered I/O, so a bitmap index scan is favored. 

Thanks for your analysis and sorry for the long silence.

Its a simplified version. I was tackling this part of the original query
plan since I saw that I got inaccurate stats on one of the tables.

>
> To improve on this query's runtime, you could try any of the following:
>
>  - Reorganize the data to reduce this query's scattered I/O (i.e. cluster on "paliasorigin_search3_idx" rather than
"paliasorigin_alias_casefold_idx"). Bear in mind, this may adversely affect other queries. 

I applied this on a different table which solved my original problem!
The query was hitting statement_timeouts but now runs in reasonable
time. I re clustered one of the tables in my actual query on a more
appropriate index.

>
>  - Increase the cache hit frequency by ensuring the underlying filesystem cache has plenty of RAM (usually so under
Linux)and checking that other concurrent queries aren't polluting the cache.  Consider adding RAM if you think the
workingset of blocks required by most queries is larger than the combined Postgres and filesystem caches.  If other
processesthan the db do I/O on this machine, consider them as resource consumers, too. 
>
>  - Restructure the table, partitioning along a column that would be useful for pruning whole partitions for your
painfulqueries.  In this case, origin_id or tax_id seems like a good bet, but again, consider other queries against
thistable.  38 million rows probably makes your table around 2 GB (guessing about 55 bytes/row).  Depending on the size
andgrowth rate of the table, it may be time to consider partitioning.  Out of curiosity, what runtime are you typically
seeingfrom this query?  The explain-analyze ran in 113 ms, which I'm guessing is the effect of caching, not the runtime
you'retrying to improve. 

This seems inevitable eventually, if my tables keep growing in size.

>  - Rebuild the indexes on this table.  Under certain use conditions, btree indexes can get horribly bloated.
Rebuildingthe indexes returns them to their most compact and balanced form.  For example: reindex index
"paliasorigin_search3_idx"; Apart from the locking and CPU usage during the rebuild, this has no negative consequences,
soI'd try this before something drastic like partitioning.  First review the current size of the index for comparison:
selectpg_size_pretty(pg_relation_size('paliasorigin_search3_idx')); 

This didn't improve the stats.
>
> Since you asked specifically about improving the row-count estimate, like the previous responder said, you should
considerincreasing the statistics target.  This will help if individual columns are being underestimated, but not if
theoverestimate is due to joint variation.  In other words, the optimizer has no way to tell if there is there a
logicalrelationship between columns A and B such that certain values in B only occur with certain values of A.  Just
judgingfrom the names, it sounds like origin_id and tax_id might have a parent-child relationship, so I thought it was
worthmentioning. 
>
> Do the columns individually have good estimates?
Yes.
> explain analyze select * from paliasorigin where origin_id=20;
> explain analyze select * from paliasorigin where tax_id=9606;
>
> If not, increase the statistics on that column, reanalyze the table, and recheck the selectivity estimate:
> alter table paliasorigin alter column origin_id set statistics 20;
> analyze paliasorigin;
> explain analyze select * from paliasorigin where origin_id=20;

my default_statistics_target is set to 1000 but I did set some column
specific statistics. But didn't help in this case.

Thanks a lot.

-Kiran


pgsql-performance by date:

Previous
From: "Віталій Тимчишин"
Date:
Subject: Re: Delete performance again
Next
From: Mikkel Høgh
Date:
Subject: Drupal and PostgreSQL - performance issues?