47.6. Examples
This section contains a very simple example of SPI usage. The C function execq
takes an SQL command as its first argument and a row count as its second, executes the command using SPI_exec
and returns the number of rows that were processed by the command. You can find more complex examples for SPI in the source tree in src/test/regress/regress.c
and in the spi module.
#include "postgres.h" #include "executor/spi.h" #include "utils/builtins.h" PG_MODULE_MAGIC; PG_FUNCTION_INFO_V1(execq); Datum execq(PG_FUNCTION_ARGS) { char *command; int cnt; int ret; uint64 proc; /* Convert given text object to a C string */ command = text_to_cstring(PG_GETARG_TEXT_PP(0)); cnt = PG_GETARG_INT32(1); SPI_connect(); ret = SPI_exec(command, cnt); proc = SPI_processed; /* * If some rows were fetched, print them via elog(INFO). */ if (ret > 0 && SPI_tuptable != NULL) { TupleDesc tupdesc = SPI_tuptable->tupdesc; SPITupleTable *tuptable = SPI_tuptable; char buf[8192]; uint64 j; for (j = 0; j < proc; j++) { HeapTuple tuple = tuptable->vals[j]; int i; for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++) snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " %s%s", SPI_getvalue(tuple, tupdesc, i), (i == tupdesc->natts) ? " " : " |"); elog(INFO, "EXECQ: %s", buf); } } SPI_finish(); pfree(command); PG_RETURN_INT64(proc); }
This is how you declare the function after having compiled it into a shared library (details are in Section 38.10.5.):
CREATE FUNCTION execq(text, integer) RETURNS int8
AS 'filename
'
LANGUAGE C STRICT;
Here is a sample session:
=> SELECT execq('CREATE TABLE a (x integer)', 0); execq ------- 0 (1 row) => INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0)); INSERT 0 1 => SELECT execq('SELECT * FROM a', 0); INFO: EXECQ: 0 -- inserted by execq INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT execq ------- 2 (1 row) => SELECT execq('INSERT INTO a SELECT x + 2 FROM a RETURNING *', 1); INFO: EXECQ: 2 -- 0 + 2, then execution was stopped by count execq ------- 1 (1 row) => SELECT execq('SELECT * FROM a', 10); INFO: EXECQ: 0 INFO: EXECQ: 1 INFO: EXECQ: 2 execq ------- 3 -- 10 is the max value only, 3 is the real number of rows (1 row) => SELECT execq('INSERT INTO a SELECT x + 10 FROM a', 1); execq ------- 3 -- all rows processed; count does not stop it, because nothing is returned (1 row) => SELECT * FROM a; x ---- 0 1 2 10 11 12 (6 rows) => DELETE FROM a; DELETE 6 => INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1); INSERT 0 1 => SELECT * FROM a; x --- 1 -- 0 (no rows in a) + 1 (1 row) => INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1); INFO: EXECQ: 1 INSERT 0 1 => SELECT * FROM a; x --- 1 2 -- 1 (there was one row in a) + 1 (2 rows) -- This demonstrates the data changes visibility rule. -- execq is called twice and sees different numbers of rows each time: => INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a; INFO: EXECQ: 1 -- results from first execq INFO: EXECQ: 2 INFO: EXECQ: 1 -- results from second execq INFO: EXECQ: 2 INFO: EXECQ: 2 INSERT 0 2 => SELECT * FROM a; x --- 1 2 2 -- 2 rows * 1 (x in first row) 6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row) (4 rows)