Chapter 48. Background Worker Processes
Postgres Pro can be extended to run user-supplied code in separate processes. Such processes are started, stopped and monitored by postgres
, which permits them to have a lifetime closely linked to the server's status. These processes are attached to Postgres Pro's shared memory area and have the option to connect to databases internally; they can also run multiple transactions serially, just like a regular client-connected server process. Also, by linking to libpq they can connect to the server and behave like a regular client application.
Warning
There are considerable robustness and security risks in using background worker processes because, being written in the C
language, they have unrestricted access to data. Administrators wishing to enable modules that include background worker processes should exercise extreme caution. Only carefully audited modules should be permitted to run background worker processes.
Background workers can be initialized at the time that Postgres Pro is started by including the module name in shared_preload_libraries
. A module wishing to run a background worker can register it by calling RegisterBackgroundWorker(
from its BackgroundWorker
*worker
)_PG_init()
function. Background workers can also be started after the system is up and running by calling RegisterDynamicBackgroundWorker(
. Unlike BackgroundWorker
*worker
, BackgroundWorkerHandle
**handle
)RegisterBackgroundWorker
, which can only be called from within the postmaster process, RegisterDynamicBackgroundWorker
must be called from a regular backend or another background worker.
The structure BackgroundWorker
is defined thus:
typedef void (*bgworker_main_type)(Datum main_arg); typedef struct BackgroundWorker { char bgw_name[BGW_MAXLEN]; char bgw_type[BGW_MAXLEN]; int bgw_flags; BgWorkerStartTime bgw_start_time; int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART */ char bgw_library_name[MAXPGPATH]; char bgw_function_name[BGW_MAXLEN]; Datum bgw_main_arg; char bgw_extra[BGW_EXTRALEN]; pid_t bgw_notify_pid; } BackgroundWorker;
bgw_name
and bgw_type
are strings to be used in log messages, process listings and similar contexts. bgw_type
should be the same for all background workers of the same type, so that it is possible to group such workers in a process listing, for example. bgw_name
on the other hand can contain additional information about the specific process. (Typically, the string for bgw_name
will contain the type somehow, but that is not strictly required.)
bgw_flags
is a bitwise-or'd bit mask indicating the capabilities that the module wants. Possible values are:
BGWORKER_SHMEM_ACCESS
BGWORKER_BACKEND_DATABASE_CONNECTION
Requests the ability to establish a database connection through which it can later run transactions and queries. A background worker using
BGWORKER_BACKEND_DATABASE_CONNECTION
to connect to a database must also attach shared memory usingBGWORKER_SHMEM_ACCESS
, or worker start-up will fail.
bgw_start_time
is the server state during which postgres
should start the process; it can be one of BgWorkerStart_PostmasterStart
(start as soon as postgres
itself has finished its own initialization; processes requesting this are not eligible for database connections), BgWorkerStart_ConsistentState
(start as soon as a consistent state has been reached in a hot standby, allowing processes to connect to databases and run read-only queries), and BgWorkerStart_RecoveryFinished
(start as soon as the system has entered normal read-write state). Note the last two values are equivalent in a server that's not a hot standby. Note that this setting only indicates when the processes are to be started; they do not stop when a different state is reached.
bgw_restart_time
is the interval, in seconds, that postgres
should wait before restarting the process in the event that it crashes. It can be any positive value, or BGW_NEVER_RESTART
, indicating not to restart the process in case of a crash.
bgw_library_name
is the name of a library in which the initial entry point for the background worker should be sought. The named library will be dynamically loaded by the worker process and bgw_function_name
will be used to identify the function to be called. If calling a function in the core code, this must be set to "postgres"
.
bgw_function_name
is the name of the function to use as the initial entry point for the new background worker. If this function is in a dynamically loaded library, it must be marked PGDLLEXPORT
(and not static
).
bgw_main_arg
is the Datum
argument to the background worker main function. This main function should take a single argument of type Datum
and return void
. bgw_main_arg
will be passed as the argument. In addition, the global variable MyBgworkerEntry
points to a copy of the BackgroundWorker
structure passed at registration time; the worker may find it helpful to examine this structure.
On Windows (and anywhere else where EXEC_BACKEND
is defined) or in dynamic background workers it is not safe to pass a Datum
by reference, only by value. If an argument is required, it is safest to pass an int32 or other small value and use that as an index into an array allocated in shared memory. If a value like a cstring
or text
is passed then the pointer won't be valid from the new background worker process.
bgw_extra
can contain extra data to be passed to the background worker. Unlike bgw_main_arg
, this data is not passed as an argument to the worker's main function, but it can be accessed via MyBgworkerEntry
, as discussed above.
bgw_notify_pid
is the PID of a Postgres Pro backend process to which the postmaster should send SIGUSR1
when the process is started or exits. It should be 0 for workers registered at postmaster startup time, or when the backend registering the worker does not wish to wait for the worker to start up. Otherwise, it should be initialized to MyProcPid
.
Once running, the process can connect to a database by calling BackgroundWorkerInitializeConnection(
or char *dbname
, char *username
, uint32 flags
)BackgroundWorkerInitializeConnectionByOid(
. This allows the process to run transactions and queries using the Oid dboid
, Oid useroid
, uint32 flags
)SPI
interface. If dbname
is NULL or dboid
is InvalidOid
, the session is not connected to any particular database, but shared catalogs can be accessed. If username
is NULL or useroid
is InvalidOid
, the process will run as the superuser created during initdb
. If BGWORKER_BYPASS_ALLOWCONN
is specified as flags
it is possible to bypass the restriction to connect to databases not allowing user connections. If BGWORKER_BYPASS_ROLELOGINCHECK
is specified as flags
it is possible to bypass the login check for the role used to connect to databases. A background worker can only call one of these two functions, and only once. It is not possible to switch databases.
Signals are initially blocked when control reaches the background worker's main function, and must be unblocked by it; this is to allow the process to customize its signal handlers, if necessary. Signals can be unblocked in the new process by calling BackgroundWorkerUnblockSignals
and blocked by calling BackgroundWorkerBlockSignals
.
If bgw_restart_time
for a background worker is configured as BGW_NEVER_RESTART
, or if it exits with an exit code of 0 or is terminated by TerminateBackgroundWorker
, it will be automatically unregistered by the postmaster on exit. Otherwise, it will be restarted after the time period configured via bgw_restart_time
, or immediately if the postmaster reinitializes the cluster due to a backend failure. Backends which need to suspend execution only temporarily should use an interruptible sleep rather than exiting; this can be achieved by calling WaitLatch()
. Make sure the WL_POSTMASTER_DEATH
flag is set when calling that function, and verify the return code for a prompt exit in the emergency case that postgres
itself has terminated.
When a background worker is registered using the RegisterDynamicBackgroundWorker
function, it is possible for the backend performing the registration to obtain information regarding the status of the worker. Backends wishing to do this should pass the address of a BackgroundWorkerHandle *
as the second argument to RegisterDynamicBackgroundWorker
. If the worker is successfully registered, this pointer will be initialized with an opaque handle that can subsequently be passed to GetBackgroundWorkerPid(
or BackgroundWorkerHandle *
, pid_t *
)TerminateBackgroundWorker(
. BackgroundWorkerHandle *
)GetBackgroundWorkerPid
can be used to poll the status of the worker: a return value of BGWH_NOT_YET_STARTED
indicates that the worker has not yet been started by the postmaster; BGWH_STOPPED
indicates that it has been started but is no longer running; and BGWH_STARTED
indicates that it is currently running. In this last case, the PID will also be returned via the second argument. TerminateBackgroundWorker
causes the postmaster to send SIGTERM
to the worker if it is running, and to unregister it as soon as it is not.
In some cases, a process which registers a background worker may wish to wait for the worker to start up. This can be accomplished by initializing bgw_notify_pid
to MyProcPid
and then passing the BackgroundWorkerHandle *
obtained at registration time to WaitForBackgroundWorkerStartup(
function. This function will block until the postmaster has attempted to start the background worker, or until the postmaster dies. If the background worker is running, the return value will be BackgroundWorkerHandle *handle
, pid_t *
)BGWH_STARTED
, and the PID will be written to the provided address. Otherwise, the return value will be BGWH_STOPPED
or BGWH_POSTMASTER_DIED
.
A process can also wait for a background worker to shut down, by using the WaitForBackgroundWorkerShutdown(
function and passing the BackgroundWorkerHandle *handle
)BackgroundWorkerHandle *
obtained at registration. This function will block until the background worker exits, or postmaster dies. When the background worker exits, the return value is BGWH_STOPPED
, if postmaster dies it will return BGWH_POSTMASTER_DIED
.
Background workers can send asynchronous notification messages, either by using the NOTIFY
command via SPI, or directly via Async_Notify()
. Such notifications will be sent at transaction commit. Background workers should not register to receive asynchronous notifications with the LISTEN
command, as there is no infrastructure for a worker to consume such notifications.
The maximum number of registered background workers is limited by max_worker_processes.