Tag «Planet PostgreSQL»

PostgreSQL

Locks in PostgreSQL: 3. Other locks

We've already discussed some object-level locks (specifically, relation-level locks), as well as row-level locks with their connection to object-level locks and also explored wait queues, which are not always fair.

We have a hodgepodge this time. We'll start with deadlocks (actually, I planned to discuss them last time, but that article was excessively long in itself), then briefly review object-level locks left and finally discuss predicate locks.

Deadlocks

When using locks, we can confront a deadlock. It occurs when one transaction tries to acquire a resource that is already in use by another transaction, while the second transaction tries to acquire a resource that is in use by the first. The figure on the left below illustrates this: solid-line arrows indicate acquired resources, while dashed-line arrows show attempts to acquire a resource that is already in use.

To visualize a deadlock, it is convenient to build the wait-for graph. To do this, we remove specific resources, leave only transactions and indicate which transaction waits for which other. If a graph contains a cycle (from a vertex, we can get to itself in a walk along arrows), this is a deadlock.

...

Locks in PostgreSQL: 2. Row-level locks

Last time, we discussed object-level locks and in particular relation-level locks. In this article, we will see how row-level locks are organized in PostgreSQL and how they are used together with object-level locks. We will also talk of wait queues and of those who jumps the queue.

Row-level locks

Organization

Let's recall a few weighty conclusions of the previous article.

  • A lock must be available somewhere in the shared memory of the server.
  • The higher granularity of locks, the lower the contention among concurrent processes.
  • On the other hand, the higher the granularity, the more of the memory is occupied by locks.

There is no doubt that we want a change of one row not block other rows of the same table. But we cannot afford to have its own lock for each row either.

There are different approaches to solving this problem. Some database management systems apply escalation of locks: if the number of row-level locks gets too high, they are replaced with one, more general lock (for example: a page-level or an entire table-level).

As we will see later, PostgreSQL also applies this technique, but only for predicate locks. The situation with row-level locks is different.

...

Locks in PostgreSQL: 1. Relation-level locks

The previous two series of articles covered isolation and multiversion concurrency control and logging.

In this series, we will discuss locks.

This series will consist of four articles:

  1. Relation-level locks (this article).
  2. Row-level locks.
  3. Locks on other objects and predicate locks.
  4. Locks in RAM.

The material of all the articles is based on training courses on administration that Pavel Luzanov and I are creating (mostly in Russian, although one course is available in English), but does not repeat them verbatim and is intended for careful reading and self-experimenting.

Many thanks to Elena Indrupskaya for the translation of these articles into English.

General information on locks

PostgreSQL has a wide variety of techniques that serve to lock something (or are at least called so). Therefore, I will first explain in the most general terms why locks are needed at all, what kinds of them are available and how they differ from one another. Then we will figure out what of this variety is used in PostgreSQL and only after that we will start discussing different kinds of locks in detail.

...

WAL in PostgreSQL: 4. Setup and Tuning

So, we got acquainted with the structure of the buffer cache and in this context concluded that if all the RAM contents got lost due to failure, the write-ahead log (WAL) was required to recover. The size of the necessary WAL files and the recovery time are limited thanks to the checkpoint performed from time to time.

In the previous articles we already reviewed quite a few important settings that anyway relate to WAL. In this article (being the last in this series) we will discuss problems of WAL setup that are unaddressed yet: WAL levels and their purpose, as well as the reliability and performance of write-ahead logging.

WAL levels

The main WAL task is to ensure recovery after a failure. But once we have to maintain the log anyway, we can also adapt it to other tasks by adding some more information to it. There are several logging levels. The wal_level parameter specifies the level, and each next level includes everything that gets into WAL of the preceding level plus something new.

...