Tag «Indexes»

PostgreSQL

Indexes in PostgreSQL — 10 (Bloom)

In the previous articles we discussed PostgreSQL indexing engine and the interface of access methods, as well as B-trees, GiST, SP-GiST, GIN, RUM, and BRIN. But we still need to look at Bloom indexes.

Bloom

General concept

A classical Bloom filter is a data structure that enables us to quickly check membership of an element in a set. The filter is highly compact, but allows false positives: it can mistakenly consider an element to be a member of a set (false positive), but it is not permitted to consider an element of a set not to be a member (false negative).

The filter is an array of m bits (also called a signature) that is initially filled with zeros. k different hash functions are chosen that map any element of the set to k bits of the signature. To add an element to the set, we need to set each of these bits in the signature to one. Consequently, if all the bits corresponding to an element are set to one, the element can be a member of the set, but if at least one bit equals zero, the element is not in the set for sure.

In the case of a DBMS, we actually have N separate filters built for each index row. As a rule, several fields are included in the index, and it's values of these fields that compose the set of elements for each row.

By choosing the length of the signature m, we can find a trade-off between the index size and the probability of false positives. The application area for Bloom index is large, considerably "wide" tables to be queried using filters on each of the fields. This access method, like BRIN, can be regarded as an accelerator of sequential scan: all the matches found by the index must be rechecked with the table, but there is a chance to avoid considering most of the rows at all.

Indexes in PostgreSQL — 9 (BRIN)

In the previous articles we discussed PostgreSQL indexing engine, the interface of access methods, and the following methods: B-trees, GiST, SP-GiST, GIN, and RUM. The topic of this article is BRIN indexes.

BRIN

General concept

Unlike indexes with which we've already got acquainted, the idea of BRIN is to avoid looking through definitely unsuited rows rather than quickly find the matching ones. This is always an inaccurate index: it does not contain TIDs of table rows at all.

Simplistically, BRIN works fine for columns where values correlate with their physical location in the table. In other words, if a query without ORDER BY clause returns the column values virtually in the increasing or decreasing order (and there are no indexes on that column).

This access method was created in scope of Axle, the European project for extremely large analytical databases, with an eye on tables that are several terabyte or dozens of terabytes large. An important feature of BRIN that enables us to create indexes on such tables is a small size and minimal overhead costs of maintenance.

This works as follows. The table is split into ranges that are several pages large (or several blocks large, which is the same) - hence the name: Block Range Index, BRIN. The index stores summary information on the data in each range. As a rule, this is the minimal and maximal values, but it happens to be different, as shown further. Assume that a query is performed that contains the condition for a column; if the sought values do not get into the interval, the whole range can be skipped; but if they do get, all rows in all blocks will have to be looked through to choose the matching ones among them.

It will not be a mistake to treat BRIN not as an index, but as an accelerator of sequential scan. We can regard BRIN as an alternative to partitioning if we consider each range as a "virtual" partition.

Now let's discuss the structure of the index in more detail.

Indexes in PostgreSQL — 8 (RUM)

We have already discussed PostgreSQL indexing engine, the interface of access methods, and main access methods, such as: hash indexes, B-trees, GiST, SP-GiST, and GIN. In this article, we will watch how gin turns into rum.

RUM

Although the authors claim that gin is a powerful genie, the theme of drinks has eventually won: next-generation GIN has been called RUM.

This access method expands the concept that underlies GIN and enables us to perform full-text search even faster. In this series of articles, this is the only method that is not included in a standard PostgreSQL delivery and is an external extension. Several installation options are available for it:

  • Take "yum" or "apt" package from the PGDG repository. For example, if you installed PostgreSQL from "postgresql-10" package, also install "postgresql-10-rum".
  • Build from source code on github and install on your own (the instruction is there as well).
  • Use as a part of Postgres Pro Enterprise (or at least read the documentation from there).

Limitations of GIN

What limitations of GIN does RUM enable us to transcend?

First, "tsvector" data type contains not only lexemes, but also information on their positions inside the document. As we observed last time, GIN index does not store this information. For this reason, operations to search for phrases, which appeared in version 9.6, are supported by GIN index inefficiently and have to access the original data for recheck.

Second, search systems usually return the results sorted by relevance (whatever that means). We can use ranking functions "ts_rank" and "ts_rank_cd" to this end, but they have to be computed for each row of the result, which is certainly slow.

To a first approximation, RUM access method can be considered as GIN that additionally stores position information and can return the results in a needed order (like GiST can return nearest neighbors). Let's move step by step.

Indexes in PostgreSQL — 7 (GIN)

We have already got acquainted with PostgreSQL indexing engine and the interface of access methods and discussed hash indexes, B-trees, as well as GiST and SP-GiST indexes. And this article will feature GIN index.

GIN

"Gin?.. Gin is, it seems, such an American liquor?.."
"I'm not a drink, oh, inquisitive boy!" again the old man flared up, again he realized himself and again took himself in hand. "I am not a drink, but a powerful and undaunted spirit, and there is no such magic in the world that I would not be able to do."

— Lazar Lagin, "Old Khottabych".

Gin stands for Generalized Inverted Index and should be considered as a genie, not a drink.
README

General concept

GIN is the abbreviated Generalized Inverted Index. This is a so-called inverted index. It manipulates data types whose values are not atomic, but consist of elements. We will call these types compound. And these are not the values that get indexed, but individual elements; each element references the values in which it occurs.

A good analogy to this method is the index at the end of a book, which for each term, provides a list of pages where this term occurs. The access method must ensure fast search of indexed elements, just like the index in a book. Therefore, these elements are stored as a familiar B-tree (a different, simpler, implementation is used for it, but it does not matter in this case). An ordered set of references to table rows that contain compound values with the element is linked to each element. Orderliness is inessential for data retrieval (the sort order of TIDs does not mean much), but important for the internal structure of the index.