Chapter 9. Functions and Operators

PostgreSQL provides alarge number of functions and operators for the built-in datatypes. This chapter describes most
of them, although additional special-purpose functions appear in relevant sections of the manual. Users can also define
their own functions and operators, as described in Part V. The psgl commands\ df and \ do can be used to list all
available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function or operator is
like this:

repeat (text, integer) - text

which says that the function r epeat takes one text and one integer argument and returns a result of type text. The
right arrow is also used to indicate the result of an example, thus:

repeat (' Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described in this chapter,
with the exception of the most trivial arithmetic and comparison operators and some explicitly marked functions, are
not specified by the SQL standard. Some of this extended functionality is present in other SQL database management
systems, and in many cases this functionality is compatible and consistent between the various implementations.

9.1. Logical Operators

The usual logical operators are available:

bool ean AND bool ean - bool ean
bool ean OR bool ean - bool ean
NOT bool ean - bool ean

SQL uses athree-valued logic system with true, false, and nul | , which represents“ unknown” . Observe the following
truth tables:

a b aANDDb aORb
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

Functions and Operators

The operators AND and OR are commutative, that is, you can switch the left and right operands without affecting the
result. (However, it is not guaranteed that the left operand is evaluated before the right operand. See Section 4.2.14
for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators

The usua comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description
dat at ype < dat at ype — bool ean Lessthan
dat at ype > dat at ype - bool ean Greater than
dat at ype <= dat at ype — bool ean Lessthan or equal to
dat at ype >=dat at ype - bool ean Greater than or equal to
dat at ype = dat at ype - bool ean Equal
dat at ype <> dat at ype — bool ean Not equal
dat at ype ! = dat at ype — bool ean Not equal
Note
<> isthe standard SQL notation for “not equal”. ! = isan alias, which isconverted to <> at avery early

stage of parsing. Hence, it is not possible to implement ! = and <> operators that do different things.

These comparison operators are available for all built-in data types that have a natural ordering, including numeric,
string, and date/time types. In addition, arrays, composite types, and ranges can be compared if their component data
types are comparable.

It is usually possible to compare values of related data types as well; for example i nt eger > bi gi nt will work.
Some cases of this sort areimplemented directly by “cross-type” comparison operators, but if no such operator isavail-
able, the parser will coerce the less-general type to the more-general type and apply the latter's comparison operator.

Asshown above, all comparison operators are binary operatorsthat return values of typebool ean. Thus, expressions
likel < 2 < 3 arenctvalid (becausethereisno < operator to compare a Boolean value with 3). Use the BETWEEN
predicates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but have special
syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

dat at ype BETVWEEN dat at ype ANDdat at ype — bool ean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 't

Functions and Operators

Predicate
Description
Example(s)

2 BETWEEN 3 AND 1 - f

dat at ype NOT BETWEENdat at ype ANDdat at ype — bool ean
Not between (the negation of BETVEEEN).

2 NOT BETWEEN 1 AND 3 - f

dat at ype BETVWVEEN SYMVETRI Cdat at ype ANDdat at ype - bool ean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 -t

dat at ype NOT BETWEEN SYMVETRI Cdat at ype ANDdat at ype — bool ean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMVETRIC 3 AND 1 - f

dat at ype I S DI STI NCT FROMdat at ype - bool ean
Not equal, treating null as a comparable value.

1 1S DI STINCT FROM NULL — t (rather than NULL)
NULL I'S DI STI NCT FROM NULL - f (rather than NULL)

dat atype I S NOT DI STI NCT FROMdat at ype — bool ean
Equal, treating null as a comparable value.

1 1S NOT DI STINCT FROM NULL — f (rather than NULL)
NULL I'S NOT DI STI NCT FROM NULL - t (rather than NULL)

datatype | S NULL - bool ean
Test whether valueis null.

1.5 1S NULL - f

datatype | S NOT NULL - bool ean
Test whether value is not null.

"null’ 1S NOT NULL -t

dat at ype | SNULL - bool ean
Test whether value is null (nonstandard syntax).

dat at ype NOTNULL - bool ean
Test whether value is not null (nonstandard syntax).

bool ean| S TRUE - bool ean
Test whether boolean expression yieldstrue.

true IS TRUE - t
NULL: : bool ean | S TRUE - f (rather than NULL)

bool ean1 S NOT TRUE - bool ean
Test whether boolean expression yields false or unknown.

true 1S NOT TRUE - f
NULL: : bool ean |'S NOT TRUE - t (rather than NULL)

bool ean| S FALSE - bool ean

Functions and Operators

Predicate
Description
Example(s)
Test whether boolean expression yields false.
true IS FALSE - f

NULL: : bool ean | S FALSE - f (rather than NULL)

bool ean| S NOT FALSE - bool ean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE -t
NULL: : bool ean IS NOT FALSE - t (rather than NULL)

bool ean| S UNKNOMN - bool ean
Test whether boolean expression yields unknown.

true I'S UNKNOWN - f
NULL: : bool ean | S UNKNOMN - t (rather than NULL)

bool ean| S NOT UNKNOMWN - bool ean
Test whether boolean expression yields true or false.

true I'S NOT UNKNOWN - t
NULL: : bool ean |'S NOT UNKNOMN - f (rather than NULL)

The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values asincluded in the range. BETVWVEEN SYMVETRI Cislike BETWEEN
except there is no requirement that the argument to the left of AND be less than or equal to the argument on the right.
If it is not, those two arguments are automatically swapped, so that a nonempty range is awaysimplied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and therefore will
work for any data type(s) that can be compared.

Note

The use of ANDin the BETVEEEN syntax creates an ambiguity with the use of AND asalogical operator.
Toresolvethis, only alimited set of expression typesare allowed asthe second argument of aBETWEEN
clause. If you need to write a more complex sub-expression in BETVEEEN, write parentheses around
the sub-expression.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input is null. For
example, 7 = NULL yieldsnull, asdoes7 <> NULL. When this behavior is not suitable, usethel S [NOT]
DI STI NCT FROMpredicates:

a |'S DI STINCT FROM b

Functions and Operators

a |'S NOT DI STINCT FROM b

For non-null inputs, | S DI STI NCT FROMisthe same asthe <> operator. However, if both inputs are null it returns
fase, and if only oneinput is null it returns true. Similarly, | S NOT DI STI NCT FROMisidentical to = for non-
null inputs, but it returns true when both inputs are null, and false when only one input is null. Thus, these predicates
effectively act as though null were anormal data value, rather than “unknown”.

To check whether avalueis or is not null, use the predicates:

expression IS NULL
expression |'S NOT NULL

or the equivalent, but nonstandard, predicates:

expression | SNULL
expressi on NOTNULL

Do not writeexpr essi on = NULL because NULL isnot “equal to” NULL. (The null value represents an unknown
value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expr essi on = NULL returnstrueif expr essi on evaluates
to the null value. It is highly recommended that these applications be modified to comply with the

SQL standard. However, if that cannot be done the transform_null_equals configuration variable is
available. If it is enabled, PostgreSQL will convert x = NULL clausestox |'S NULL.

If theexpr essi on isrow-valued, then| S NULL istrue when the row expressionitself isnull or when all therow's
fieldsare null, while | S NOT NULL is true when the row expression itself is non-null and all the row's fields are
non-null. Because of this behavior, | S NULL and I S NOT NULL do not always return inverse results for row-
valued expressions; in particular, a row-valued expression that contains both null and non-null fields will return false
for both tests. For example:

SELECT RON1,2.5,'this is a test') = RON1, 3, 'not the sane');

SELECT RONtable.*) IS NULL FROMtable; -- detect all-null rows

SELECT RONtable.*) IS NOT NULL FROM table; -- detect all-non-null rows
SELECT NOT(ROWtable.*) IS NOT NULL) FROM TABLE; -- detect at |east one null
in rows

In some cases, it may be preferabletowriter owl S DI STI NCT FROM NULL orrowl S NOT DI STI NCT FROM
NULL, which will smply check whether the overall row value is null without any additional tests on the row fields.

Boolean values can also be tested using the predicates

bool ean_expression 1S TRUE
bool ean_expression 1S NOT TRUE
bool ean_expression | S FALSE

Functions and Operators

bool ean_expression 1S NOT FALSE
bool ean_expression 1S UNKNOAN
bool ean_expressi on 1S NOT UNKNOAN

These will always return true or false, never anull value, even when the operand is null. A null input is treated as the
logical value “unknown”. Noticethat | S UNKNOWNand I S NOT UNKNOWN are effectively thesameas| S NULL
and1 S NOT NULL, respectively, except that the input expression must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num nonnul I s (VARI ADI C"any") - i nt eger
Returns the number of non-null arguments.

num nonnul I s(1, NULL, 2) - 2

num nul | s (VARI ADI C"any") - i nt eger
Returns the number of null arguments.

num nul I s(1, NULL, 2) -1

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical conven-
tions (e.g., date/time types) we describe the actua behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless otherwise not-
ed, operators shown as accepting nuner i ¢c_t ype are available for al thetypessnal | i nt ,i nt eger, bi gi nt,
nuneric, real ,and doubl e preci si on. Operators shown as accepting i nt egr al _t ype are available for
thetypessnal | i nt,i nt eger, and bi gi nt . Except where noted, each form of an operator returns the same data
type as its argument(s). Calls involving multiple argument data types, such asi nt eger + nuneri c, are resolved
by using the type appearing later in these lists.

Table9.4. Mathematical Operators

Operator
Description
Example(s)

nuneric_type+nuneric_type - nuneric_type
Addition

2+3-5

+numeric_type - nuneric_type
Unary plus (no operation)
+3.5-3.5

nuneric_type- nunmeric_type - nunmeric_type
Subtraction
2 - 3-5-1

- nuneric_type - nuneric_type

Functions and Operators

Operator
Description
Example(s)

Negation
- (-4) -4

nuneric_type* nunmeric_type - nunmeric_type
Multiplication
2* 3-6

nuneric_type/ numeric_type - numeric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 - 2.5000000000000000
5/ 2.2
(-5) | 2 -2

nuneric_type %numneri c_type - numeric_type
Modulo (remainder); availablefor sral | i nt , i nt eger, bi gi nt,andnumneri c
5 %41

nunmeric” numeric - numeric

doubl e precision” doubl e precision - doubl e precision
Exponentiation
2"~3-8
Unlike typical mathematical practice, multiple uses of * will associate |eft to right by default:
2 N3 M 35512
2 N (3" 3) 5134217728

| / doubl e precision - double precision
Square root

|/ 25.0 -5

| |/ doubl e precision - doubl e precision
Cube root

||/ 64.0 - 4

@nuneric_type - nuneric_type
Absolute value

@-5.0-5.0

integral _type &integral _type - integral _type
Bitwise AND
91 & 15 - 11

integral type| integral type - integral type
Bitwise OR
32 | 3535

integral type#integral type - integral _type
Bitwise exclusive OR

Functions and Operators

Operator
Description
Example(s)

17 # 5 - 20

~integral _type - integral type
Bitwise NOT

~15-2

integral _type<<integer - integral _type
Bitwise shift left
1 << 4,16

integral type>>integer - integral type
Bitwise shift right
8 > 2,2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple forms with
different argument types. Except where noted, any given form of a function returns the same data type as its argu-
ment(s); cross-type cases are resolved in the same way as explained above for operators. The functions working with
doubl e preci si on dataare mostly implemented on top of the host system's C library; accuracy and behavior in

boundary cases can therefore vary depending on the host system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (nuneric_type) - nuneric_type
Absolute value
abs(-17.4) - 17.4

cbrt (doubl e precision) - doubl e precision
Cube root

cbrt(64.0) - 4

ceil (numeric) - nuneric

ceil (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument

ceil (42.2) - 43
ceil(-42.8) - -42

ceiling(nuneric) - numeric

cei ling (doubl e precision) - doubl e precision
Nearest integer greater than or equal to argument (sameascei |)

ceiling(95.3) - 96

degrees (doubl e precision) - doubl e precision
Converts radians to degrees

degrees(0.5) - 28.64788975654116

Functions and Operators

Function
Description
Example(s)

div (ynumeric,xnunmeric) - nuneric
Integer quotient of y/x (truncates towards zero)
div(9, 4) -2

erf (doubl e precision) - doubl e precision
Error function

erf(1.0) — 0.8427007929497149

erfc (doubl e precision) - doubl e precision
Complementary error function (1 - erf (x), without loss of precision for large inputs)
erfc(1l.0) - 0.15729920705028513

exp (nuneric) - nuneric

exp (doubl e precision) - doubl e precision
Exponential (e raised to the given power)

exp(1.0) - 2.7182818284590452

factorial (bigint) - numeric
Factorial

factorial (5) - 120

floor (numeric) - nuneric

floor (doubl e precision) - double precision
Nearest integer less than or equal to argument
floor(42.8) - 42

floor(-42.8) - -43

gamma (doubl e precision) - doubl e precision
Gamma function

ganma(0.5) - 1.772453850905516
ganmea(6) - 120

gcd (nuneri c_type,nunmeric_type) - nuneric_type
Greatest common divisor (the largest positive number that divides both inputs with no remainder); re-
turns O if both inputs are zero; availablefor i nt eger , bi gi nt, and nuneri c
gcd(1071, 462) - 21

I cm(nuneric_type,nuneric_type) - nuneric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of both inputs);
returns O if either input is zero; availablefor i nt eger , bi gi nt, and nuneri c

| cm(1071, 462) - 23562

| ganmma (doubl e precision) - doubl e precision
Natural logarithm of the absolute value of the gamma function

| gamma(1000) - 5905. 220423209181

I n(numeric) - numeric

Functions and Operators

Function
Description
Example(s)

I n (doubl e precision) - doubl e precision
Natural logarithm

In(2.0) - 0.6931471805599453

| og (nuneric) - nuneric

| og (doubl e precision) - double precision
Base 10 logarithm

[0g(100) - 2

| 0g10 (nuneric) - nuneric

| 0910 (doubl e precision) - doubl e precision
Base 10 logarithm (same as| 0Q)

| 0910(1000) — 3

| og (bnuneric,xnuneric) - nuneric
Logarithm of x to base b

log(2.0, 64.0) - 6.0000000000000000

m n_scal e (nuneric) - i nteger
Minimum scale (number of fractional decimal digits) needed to represent the supplied value precisely
m n_scal e(8.4100) - 2

nmod (y nuneric_type,x nuneric_type) - nunmeric_type
Remainder of y/x; availablefor smal | i nt ,i nt eger, bi gi nt,andnuneri c

nod(9, 4) -1

pi () - doubl e precision
Approximate value of Tt
pi () - 3.141592653589793

power (anuneric,bnuneric) - nuneric

power (adoubl e precision,bdouble precision) - double precision
a raised to the power of b

power (9, 3) - 729

radi ans (doubl e precision) - doubl e precision
Converts degreesto radians

radi ans(45.0) - 0.7853981633974483

round (numeric) - nuneric

round (doubl e precision) - doubl e precision
Rounds to nearest integer. For nuner i ¢, ties are broken by rounding away from zero. For doubl e
pr eci si on, thetie-breaking behavior is platform dependent, but “round to nearest even” is the most
common rule.

round(42.4) - 42

round (v nuneric,sinteger) - nunmeric
Roundsv to s decimal places. Ties are broken by rounding away from zero.

10

Functions and Operators

Function
Description
Example(s)

round(42. 4382, 2) - 42.44
round(1234.56, -1) - 1230

scal e (nuneric) - i nteger
Scale of the argument (the number of decimal digitsin the fractional part)

scal e(8.4100) - 4

sign(nuneric) - nuneric

si gn (doubl e precision) - doubl e precision
Sign of the argument (-1, 0, or +1)
sign(-8.4) - -1

sqrt (numeric) - numeric

sqrt (doubl e precision) - doubl e precision
Square root
sqrt(2) - 1.4142135623730951

trimscal e(nuneric) - nuneric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes

trimscal e(8.4100) - 8.41

trunc (numeric) - numeric

trunc (doubl e precision) - doubl e precision
Truncates to integer (towards zero)

trunc(42.8) - 42
trunc(-42.8) - -42

trunc (v numeric,sinteger) - nuneric
Truncatesv to s decimal places

trunc(42.4382, 2) - 42.43

wi dt h_bucket (operand nuneric,| ownuneri c, hi gh nuneri c,count i nteger) - i nteger
wi dt h_bucket (oper and doubl e preci si on,| owdoubl e preci si on, hi gh doubl e preci -
sion,count i nteger) - i nteger
Returns the number of the bucket in which oper and fallsin ahistogram having count equal-width
buckets spanning the range | owto hi gh. Returns 0 or count +1 for an input outside that range.

wi dt h_bucket (5. 35, 0.024, 10.06, 5) - 3

wi dt h_bucket (operand anyconpati bl e,t hreshol ds anyconpati bl earray) - i nt eger
Returns the number of the bucket in which oper and falls given an array listing the lower bounds of the
buckets. Returns O for an input less than the first lower bound. oper and and the array elements can be
of any type having standard comparison operators. Thet hr eshol ds array must be sorted, smallest
first, or unexpected results will be obtained.
wi dt h_bucket (now(), array['yesterday', 'today', 'tonmorrow]::tine-

stanmptz[]) - 2

Table 9.6 shows functions for generating random numbers.

11

Functions and Operators

Table 9.6. Random Functions

Function
Description
Example(s)

random() - doubl e precision
Returns arandom valuein therange 0.0 <=x < 1.0

random() - 0.897124072839091

random(ni ninteger,max i nteger) - i nteger
random(m n bi gi nt, max bi gi nt) - bi gi nt
random(m n nuneric,max numeric) - numeric

Returns arandom value in therange m n <= x <= nax. For type nuner i c, the result will have the same
number of fractional decimal digitsas i n or max, whichever has more.

randon(1, 10) -7
random(-0. 499, 0.499) - 0.347

random nor mal ([mean doubl e precision][,stddev doubl e precision]]) - double pre-
ci sion
Returns arandom value from the normal distribution with the given parameters; mean defaultsto 0.0 and
st ddev defaultsto 1.0

random normal (0.0, 1.0) - 0.051285419

set seed (doubl e precision) - void
Sets the seed for subsequent r andon{) andr andom nor nal () calls; argument must be between
-1.0and 1.0, inclusive
set seed(0. 12345)

Therandon() and r andom nor mal () functionslisted in Table 9.6 use a deterministic pseudo-random number
generator. It isfast but not suitable for cryptographic applications; see the pgerypto module for amore secure alterna
tive. If set seed() iscaled, the series of results of subsequent callsto these functions in the current session can be
repeated by re-issuing set seed() with the same argument. Without any prior set seed() call inthe same session,
the first call to any of these functions obtains a seed from a platform-dependent source of random bits.

Table 9.7 showstheavailable trigonometric functions. Each of these functions comesin two variants, onethat measures
angles in radians and one that measures angles in degrees.

Table9.7. Trigonometric Functions

Function
Description
Example(s)

acos (doubl e precision) - doubl e precision
Inverse cosine, result in radians

acos(1l) -0

acosd (doubl e precision) - doubl e precision
Inverse cosing, result in degrees

acosd(0.5) - 60

asi n (doubl e precision) - doubl e precision
Inverse sing, result in radians

12

Functions and Operators

Function
Description
Example(s)

asin(l) - 1.5707963267948966

asi nd (doubl e precision) - doubl e precision
Inverse sine, result in degrees

asi nd(0.5) - 30

at an (doubl e preci sion) - doubl e precision
Inverse tangent, result in radians

atan(1) - 0.7853981633974483

at and (doubl e precision) - doubl e precision
Inverse tangent, result in degrees

atand(1) - 45

atan2 (y doubl e precision,x doubl e precision) - doubl e precision
Inverse tangent of y/x, result in radians

atan2(1, 0) - 1.5707963267948966

at an2d (y doubl e preci sion,x doubl e precision) - doubl e precision
Inverse tangent of y/x, result in degrees

atan2d(1, 0) - 90

cos (doubl e precision) - doubl e precision
Cosing, argument in radians

cos(0) -1

cosd (doubl e precision) - doubl e precision
Cosine, argument in degrees

cosd(60) - 0.5

cot (doubl e precision) - doubl e precision
Cotangent, argument in radians

cot(0.5) - 1.830487721712452

cotd (doubl e precision) - doubl e precision
Cotangent, argument in degrees

cotd(45) -1

sin (doubl e precision) - doubl e precision
Sine, argument in radians

sin(1) - 0.8414709848078965

si nd (doubl e precision) - doubl e precision
Sine, argument in degrees
sind(30) - 0.5

tan (doubl e precision) - doubl e precision
Tangent, argument in radians

tan(1) - 1.5574077246549023

13

Functions and Operators

Function
Description
Example(s)

tand (doubl e precision) - doubl e precision
Tangent, argument in degrees
tand(45) -1

Note

Another way to work with angles measured in degrees is to use the unit transformation functionsr a-
di ans() anddegr ees() shown earlier. However, using the degree-based trigonometric functions
is preferred, as that way avoids round-off error for special cases such assi nd(30) .

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

si nh (doubl e precision) - doubl e precision
Hyperbolic sine

sinh(1l) - 1.1752011936438014

cosh (doubl e precision) - doubl e precision
Hyperbolic cosine

cosh(0) -1

tanh (doubl e precision) - doubl e precision
Hyperbolic tangent

tanh(1) - 0.7615941559557649

asi nh (doubl e precision) - doubl e precision
Inverse hyperbolic sine

asinh(1l) - 0.881373587019543

acosh (doubl e precision) - doubl e precision
Inverse hyperbolic cosine

acosh(1) -0

at anh (doubl e precision) - doubl e precision
Inverse hyperbolic tangent

atanh(0.5) — 0.5493061443340548

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in this context
include values of thetypeschar act er, char act er varyi ng, andt ext . Except where noted, these functions
and operators are declared to accept and return typet ext . They will interchangeably accept char act er varyi ng

14

Functions and Operators

arguments. Valuesof typechar act er will beconvertedtot ext beforethefunction or operator isapplied, resulting
in stripping any trailing spacesin thechar act er value.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in
Table 9.9. PostgreSQL also provides versions of these functions that use the regular function invocation syntax (see
Table 9.10).

Note

The string concatenation operator (| |) will accept non-string input, so long as at least one input is of
string type, as shown in Table 9.9. For other cases, inserting an explicit coerciontot ext can be used
to have non-string input accepted.

Table9.9. SQL String Functionsand Operators

Function/Operator
Description
Example(s)

text || text - text
Concatenates the two strings.

"Post' || 'greSQ' - PostgreSQ

text | | anynonarray - text

anynonarray | | text — text
Converts the non-string input to text, then concatenates the two strings. (The non-string input cannot be
of an array type, because that would create ambiguity with thearray | | operators. If you want to con-
catenate an array's text equivalent, cast it tot ext explicitly.)

"Value: ' || 42 - Value: 42

btrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default) from the
start and end of st ri ng.

btrin('xyxtrinmyx', 'xyz') -trim

t ext | S[NOT] [f or n] NORVALI ZED - bool ean
Checks whether the string is in the specified Unicode normalization form. The optional f or mkey word
specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression can only be used when the
server encoding is UTF8. Note that checking for normalization using this expression is often faster than
normalizing possibly already normalized strings.

U&' \ 0061\ 0308bc' |I'S NFD NORMALI ZED - t

bit_length(text) - integer
Returns number of bitsin the string (8 timesthe oct et _I engt h).
bit _length('jose) - 32

char _length (text) - integer

character _length (text) - integer
Returns number of charactersin the string.

char _length('josé') - 4

| ower (text) - text

15

Functions and Operators

Function/Operator
Description
Example(s)

Convertsthe string to al lower case, according to the rules of the database's locale.
[ower (' TOM) - tom

| pad (stringtext,lengthinteger [,fill text]) - text
Extendsthest ri ng tolength | engt h by prepending the charactersfi | | (aspace by default). If the
st ri ng isalready longer than | engt h then it istruncated (on the right).

[pad(' hi', 5, "xy') - xyxhi

Itrim(stringtext [,characterstext]) - text
Removes the longest string containing only charactersin char act er s (a space by default) from the
start of stri ng.

Itrim'zzzytest', 'xyz') - test

normalize (text [,form]) - text
Converts the string to the specified Unicode normalization form. The optional f or mkey word specifies
the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be used when the server en-
coding is UTF8.

nor mal i ze(U& \ 0061\ 0308bc', NFC) - U& \ OOE4bc'

octet_length(text) - integer
Returns number of bytesin the string.

octet length('josé') - 5 (if server encoding is UTF8)

octet |l ength(character) - i nteger
Returns number of bytesin the string. Since this version of the function acceptstype char act er direct-
ly, it will not strip trailing spaces.

octet _length('abc '::character(4)) - 4

overlay (stringtext PLACI NGnewsubstringtext FROMstart i nt eger [FORcount i nt e-

ger]) - text
Replaces the substring of st ri ng that starts at the st ar t 'th character and extends for count charac-
terswith newsubst ri ng. If count isomitted, it defaultsto the length of newsubst ri ng.

overl ay(' Txxxxas' placing 'hom from2 for 4) - Thonas

position(substringtext INstringtext) - integer
Returnsfirst starting index of the specified subst ri ng withinst ri ng, or zero if it's not present.

position('om in 'Thonmas') - 3

rpad (stringtext,lengthinteger [,fill text]) - text
Extendsthest ri ng tolength| engt h by appending the charactersfi | | (aspace by default). If the
stringisaready longer than| engt h thenit istruncated.

rpad(' hi', 5, "xy') - hixyx

rtrim(stringtext [,characterstext]) - text

Removes the longest string containing only charactersin char act er s (a space by default) from the
endof string.

rtrin('testxxzx', 'xyz') - test

substring(stringtext [FROMstart i nteger][FORcount i nteger]J) - text

16

Functions and Operators

Function/Operator
Description
Example(s)
Extracts the substring of st ri ng starting at the st ar t 'th character if that is specified, and stopping af -
ter count charactersif that is specified. Provide at least one of st art and count .

substring(' Thomas' from2 for 3) - hom
substring(' Thomas' from 3) - onas
substring(' Thonas' for 2) - Th

substring(stringtext FROMpatterntext) - t ext
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring(' Thomas' from'...$') - mas

substring (stringtext SIM LARpatterntext ESCAPEescapetext) - text

substring (stringtext FROMpatterntext FORescapetext) - text
Extracts the first substring matching SQL regular expression; see Section 9.7.2. The first form has been
specified since SQL:2003; the second form was only in SQL :1999 and should be considered obsol ete.

substring(' Thonas' similar '%"o_a#"_' escape '#') - oma

tri m([LEADI NG| TRAI LI NG|BOTH] [characters text] FROMstringtext) - text
Removes the longest string containing only charactersin char act er s (a space by default) from the
start, end, or both ends (BOTH s the default) of st ri ng.

trimboth 'xyz' from'yxTonxx') - Tom

tri m([LEADI NG| TRAI LI NG|BOTH] [FROM] stringtext [,characterstext]) - text
Thisisanon-standard syntax fort ri n() .

trimboth from'yxTomkx', 'xyz') — Tom

uni code_assi gned (t ext) - bool ean
Returnst r ue if all charactersin the string are assigned Unicode codepoints; f al se otherwise. This
function can only be used when the server encoding is UTF8.

upper (text) - text
Convertsthe string to all upper case, according to the rules of the database's locale.

upper('tom) - TOM

Additional string manipulation functions and operators are available and are listed in Table 9.10. (Some of these are
used internally to implement the SQL -standard string functions listed in Table 9.9.) There are aso pattern-matching
operators, which are described in Section 9.7, and operators for full-text search, which are described in Chapter 12.

Table 9.10. Other String Functions and Operators

Function/Oper ator
Description
Example(s)

text ~@t ext — bool ean
Returnstrueif the first string starts with the second string (equivalent tothest arts_wi t h() func-
tion).
"al phabet' @' al ph' -t

ascii (text) - integer

17

Functions and Operators

Function/Operator
Description
Example(s)

Returns the numeric code of the first character of the argument. In UTF8 encoding, returns the Unicode
code point of the character. In other multibyte encodings, the argument must be an ASCII character.

ascii('x') - 120

chr (i nteger) - text
Returns the character with the given code. In UTF8 encoding the argument is treated as a Unicode code
point. In other multibyte encodings the argument must designate an ASCII character. chr (0) isdisal-
lowed because text data types cannot store that character.

chr(65) - A

concat (val 1"any" [,val 2"any" [,..]]) - text
Concatenates the text representations of al the arguments. NULL arguments are ignored.

concat (' abcde', 2, NULL, 22) - abcde222

concat_ws (septext,val1"any" [,val 2"any" [,..]]) - text
Concatenates all but the first argument, with separators. The first argument is used as the separator string,
and should not be NULL. Other NULL arguments are ignored.

concat_ws(',', '"abcde', 2, NULL, 22) - abcde, 2,22

format (formatstr text [,formatarg"any" [,..]]) - text
Formats arguments according to aformat string; see Section 9.4.1. This function is similar to the C func-
tionsprintf.

format('Hello %, %%$s', 'Wrld') - Hello Wrld, Wrld

initcap(text) — text
Convertsthe first |etter of each word to upper case and the rest to lower case. Words are sequences of a-
phanumeric characters separated by non-alphanumeric characters.

initcap('hi THOVAS) - H Thonas

casefol d (text) - text
Performs case folding of the input string according to the collation. Case folding is similar to case con-
version, but the purpose of case folding is to facilitate case-insensitive matching of strings, whereas the
purpose of case conversion isto convert to a particular cased form. This function can only be used when
the server encoding is UTF8.
Ordinarily, case folding simply convertsto lowercase, but there may be exceptions depending on the col-
lation. For instance, some characters have more than two lowercase variants, or fold to uppercase.
Case folding may change the length of the string. For instance, in the PG_UNI CODE_FAST collation, 3
(U+00DF) foldsto ss.
casef ol d can be used for Unicode Default Caseless Matching. It does not always preserve the normal-
ized form of the input string (see normalize).
Thel i bc provider doesn't support case folding, so casef ol d isidentical to lower.

left (stringtext,ninteger) - text
Returnsfirst n charactersin the string, or when n is negative, returns all but last |n| characters.

left('abcde', 2) - ab

I ength (text) —» integer
Returns the number of charactersin the string.

length('jose') - 4

18

Functions and Operators

Function/Operator
Description
Example(s)

md5 (text) - text
Computes the M D5 hash of the argument, with the result written in hexadecimal.

nd5(" abc') - 900150983cd24f b0d6963f 7d28el7f 72

parse_ident (qualified_identifier text [,strict_npodebool ean DEFAULTtrue]) -
text[]
Splitsqual i fi ed_i denti fi er intoan array of identifiers, removing any quoting of individual iden-
tifiers. By default, extra characters after the last identifier are considered an error; but if the second pa-
rameter isf al se, then such extra characters are ignored. (This behavior is useful for parsing names for
objects like functions.) Note that this function does not truncate over-length identifiers. If you want trun-
cation you can cast the result to nane[| .

parse_i dent (' " SonmeSchema". soneTabl e') - { SoneSchemm, sonet abl e}

pg_client_encoding () - nane
Returns current client encoding hame.

pg_client_encodi ng() — UTF8

quot e_ident (text) - text
Returns the given string suitably quoted to be used as an identifier in an SQL statement string. Quotes
are added only if necessary (i.e., if the string contains non-identifier characters or would be case-fol ded).
Embedded quotes are properly doubled. See also Example 41.1.

quot e_i dent (' Foo bar') - "Foo bar"

quote_literal (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL statement string. Embed-
ded single-quotes and backslashes are properly doubled. Notethat quot e_| i t er al returnsnull on
null input; if the argument might be null, quot e_nul | abl e is often more suitable. See also Exam-
ple4l.1.

quote literal (EOQ'Reilly') 'O 'Reilly'

quote_literal (anyel enent) - text
Converts the given value to text and then quotesit as aliteral. Embedded single-quotes and backslashes
are properly doubled.

quote_literal (42.5) - '42. 5

quote_nul | abl e (text) - text
Returns the given string suitably quoted to be used as a string literal in an SQL statement string; or, if the
argument is null, returns NULL. Embedded single-quotes and backslashes are properly doubled. See also
Example 41.1.

quot e_nul | abl e(NULL) - NULL

quot e_nul | abl e (anyel enent) - t ext
Converts the given value to text and then quotesit asaliteral; or, if the argument is null, returns NULL.
Embedded single-quotes and backslashes are properly doubled.

guote_nul |l abl e(42.5) - '42.5'

regexp_count (stringtext,patterntext [,start integer [,flagstext]]) - i nteger
Returns the number of times the POSIX regular expression pat t er n matchesinthest ri ng; see Sec-
tion 9.7.3.

19

Functions and Operators

Function/Operator
Description
Example(s)

regexp_count (' 123456789012', '\d\d\d', 2) -3

regexp_instr (stringtext,patterntext [,start i nteger [, Ninteger [,endoptionin-
teger [,flagstext [,subexpr integer]]]]]) - integer

Returns the position within st r i ng where the Nth match of the POSIX regular expression patt er n
occurs, or zero if there is no such match; see Section 9.7.3.

regexp_instr('ABCOEF', 'c(.)(..)', 1, 1, 0, "i') -3
regexp_instr(' ABCOEF', 'c(.)(..)"', 1, 1, 0, '"i', 2) -5

regexp_like(stringtext,patterntext [,fl agstext]) - bool ean

Checks whether a match of the POSIX regular expression pat t er n occurswithin st r i ng; see Sec-
tion 9.7.3.

regexp like('Hello World', "world$', "i') >t

regexp_match(stringtext,patterntext [,flagstext]) - text[]

Returns substrings within the first match of the POSIX regular expression pat t er n tothest ri ng; see
Section 9.7.3.

regexp_mat ch(' f oobar bequebaz', ' (bar)(beque)') - {bar, beque}

regexp_nmatches (stringtext,patterntext [,flagstext]) - setof text[]
Returns substrings within the first match of the POSIX regular expression pat t er n tothestri ng, or
substrings within all such matchesif the g flag is used; see Section 9.7.3.

regexp_mat ches(' f oobar bequebaz', 'ba.', 'g'") -

{bar}
{baz}

regexp_replace (stringtext,patterntext,replacenent text [,flagstext]) - text
Replaces the substring that is the first match to the POSIX regular expression pat t er n, or all such
matches if the g flag is used; see Section 9.7.3.

regexp_replace(' Thomas', '.[mM\]Ja.', 'M) - ThM

regexp_replace(stringtext,patterntext,replacenent text,start i nteger [,Ninte-
ger [, flagstext]]) - text
Replaces the substring that is the Nth match to the POSIX regular expression pat t er n, or al such
matches if Nis zero, with the search beginning at the st ar t 'th character of st ri ng. If Nisomitted, it
defaultsto 1. See Section 9.7.3.
regexp_replace(' Thomas', '.', 'X, 3, 2) - ThoXas
regexp_replace(string=>hello world', pattern=>'1"', replacenment=> XX,
start=>1, "N'=>2) - hel XXo world

regexp_split_to_array (stringtext,patterntext [,flagstext]) - text[]

Splitsst ri ng using a POSIX regular expression as the delimiter, producing an array of results; see Sec-
tion 9.7.3.

regexp_split _to array('hello world', '"\s+') - {hello,world}

regexp_split_to table(stringtext,patterntext [,flagstext]) - setof text

20

Functions and Operators

Function/Operator
Description
Example(s)

Splitsst ri ng using a POSIX regular expression as the delimiter, producing a set of results; see Sec-
tion 9.7.3.

regexp_split_to_table('hello world, "\s+) -

hel |l o
wor | d

regexp_substr (stringtext,patterntext [,start i nteger [,Ninteger [,fl agstext [,

subexpr integer 1]1]]) - text
Returns the substring within st r i ng that matches the N'th occurrence of the POSIX regular expression
patt er n, or NULL if thereis no such match; see Section 9.7.3.

regexp_substr (' ABCOEF', 'c(.)(..)', 1, 1, "i') - CDEF
regexp_substr(' ABCOEF', 'c(.)(..)', 1, 1, "i', 2) - EF

repeat (stringtext,nunber integer) - text
Repeats st r i ng the specified nunber of times.

repeat (' Pg', 4) - PgPgPgPg

replace(stringtext,fromtext,totext) - text
Replaces all occurrencesin st ri ng of substring f r omwith substring t o.

repl ace(' abcdef abcdef', 'cd', 'XX') - abXXef abXXef

reverse(text) - text
Reverses the order of the charactersin the string.

reverse('abcde') - edcha

right (stringtext,ninteger) - text
Returns last n charactersin the string, or when n is negative, returns al but first |n| characters.

ri ght (' abcde', 2) - de

split_part (stringtext,delimter text,ninteger) - text
Splitsst ri ng at occurrencesof del i i t er and returnsthe n'th field (counting from one), or when n
is negative, returns the |n|'th-from-last field.

split_part('abc~@def~@ghi', '~@', 2) - def
split_part('abc,def,ghi,jkl', ",", -2) - ghi

starts_with(stringtext,prefixtext) - bool ean
Returnstrueif st ri ng startswith pr ef i x.

starts_with('al phabet', "alph') -t

string_to_array (stringtext,delimter text [,null_stringtext]) - text[]
Splitsthe st ri ng at occurrences of del i mi t er and formsthe resulting fieldsinto at ext array. If
del i m ter isNULL, each character inthe st ri ng will become a separate element in the array. If
del i m t er isan empty string, thenthest ri ng istreated asasinglefield. If nul | _stri ng issup-
plied and is not NULL, fields matching that string are replaced by NULL. Seealsoarray _to_string.

string_to_array(' xx~~yy~~zz', '~~'", 'yy') - {xx, NULL, zz}

string_to table(stringtext,delimter text [,null_stringtext]) - setof text

21

Functions and Operators

Function/Operator
Description
Example(s)

Splitsthe st ri ng at occurrences of del i mi t er and returnstheresulting fieldsasaset of t ext rows.
If del i mi t er isNULL, each character inthe st ri ng will become a separate row of the result. If de-
I imter isanempty string, thenthest ri ng istreated asasinglefield. If nul | _stri ng issupplied
and isnot NULL, fields matching that string are replaced by NULL.

string_to_table(' xx~"~yy~r~zz', '~"~", 'yy') -

XX
NULL
zz

strpos (stringtext,substringtext) - integer
Returnsfirst starting index of the specified subst ri ng withinst ri ng, or zero if it's not present.
(Sameasposition(substring in string), butnotethereversed argument order.)

strpos('high', '"ig') -2

substr (stringtext,start i nteger [,count i nteger]) - text
Extracts the substring of st r i ng starting at the st ar t 'th character, and extending for count charac-
tersif that is specified. (Sameassubstring(string fromstart for count).)

substr (' al phabet', 3) - phabet
substr (' al phabet', 3, 2) - ph

to_ascii (stringtext) - text
to_ascii (stringtext,encodi ngnane) - text

to_ascii (stringtext,encodinginteger) - text
Convertsst ri ng to ASCII from another encoding, which may be identified by name or number. If
encodi ng isomitted the database encoding is assumed (which in practice is the only useful case).
The conversion consists primarily of dropping accents. Conversion is only supported from LATI N1,
LATI N2, LATI N9, and W N1250 encodings. (See the unaccent module for another, more flexible solu-
tion.)

to_ascii('Karél') - Karel

to _bin(integer) - text

to_bin(bigint) - text
Converts the number to its equivalent two's complement binary representation.
to_bin(2147483647) - 111111111211111211121111211111111

to_bin(-1234) - 11111111111111111111101100101110

to_hex (integer) - text

to_hex (bigint) - text
Converts the number to its equivalent two's complement hexadecimal representation.

to_hex(2147483647) - 7fffffff
to_hex(-1234) - fffffb2e

to_oct (integer) - text

to_oct (bigint) - text
Converts the number to its equivalent two's complement octal representation.

22

Functions and Operators

Function/Operator
Description
Example(s)
to_oct (2147483647) - 17777777777
to_oct (-1234) - 37777775456

translate(stringtext,fromtext,totext) - text
Replaces each character in st r i ng that matches a character in the f r omset with the corresponding
character inthet o set. If f r omislonger thant 0, occurrences of the extra charactersin f r omare delet-
ed.

translate(' 12345, '143', 'ax') - a2x5

uni str (text) - text
Evaluate escaped Unicode charactersin the argument. Unicode characters can be specified as\ XXXX
(4 hexadecimal digits), \ +XXXXXX (6 hexadecimal digits), \ uXXXX (4 hexadecima digits), or
\ UXXXXXXXX (8 hexadecimal digits). To specify abackslash, write two backslashes. All other charac-
ters are taken literally.
If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error isreported if that's not possible.
This function provides a (non-standard) alternative to string constants with Unicode escapes (see Sec-
tion 4.1.2.3).

uni str (' d\0061t\ +000061') - data
uni str (' d\u0061t\U00000061"') - data

Theconcat,concat _ws andf or mat functionsare variadic, so it ispossible to pass the valuesto be concatenated
or formatted as an array marked with the VARI ADI C keyword (see Section 36.5.6). The array's elements are treated
as if they were separate ordinary arguments to the function. If the variadic array argument is NULL, concat and
concat _ws return NULL, but f or mat treatsaNULL as a zero-element array.

See aso the aggregate function st ri ng_agg in Section 9.21, and the functions for converting between strings and
the byt ea typein Table 9.13.

9.4.1. f or nat

The function f or mat produces output formatted according to a format string, in a style similar to the C function
sprintf.

format (formatstr text [, formatarg "any" [, ...] 1)

format str isaformat string that specifies how the result should be formatted. Text in the format string is copied
directly to the result, except where format specifiers are used. Format specifiers act as placeholders in the string,
defining how subsequent function arguments should be formatted and inserted into the result. Each f or mat ar g
argument is converted to text according to the usual output rulesfor its data type, and then formatted and inserted into
the result string according to the format specifier(s).

Format specifiers are introduced by a %character and have the form

% position][flags][w dth]type

where the component fields are:

23

Functions and Operators

posi ti on (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument after
format str.If theposi ti on isomitted, the default isto use the next argument in sequence.

fl ags (optiona)

Additional options controlling how the format specifier's output is formatted. Currently the only supported flag
isaminus sign (-) which will cause the format specifier's output to be left-justified. This has no effect unless
thewi dt h field is also specified.

wi dt h (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The output is padded
on the left or right (depending on the - flag) with spaces as needed to fill the width. A too-small width does not
cause truncation of the output, but is ssmply ignored. The width may be specified using any of the following: a
positive integer; an asterisk (*) to use the next function argument as the width; or a string of the form * n$ to use
the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that is used for
the format specifier's value. If the width argument is negative, the result isleft aligned (as if the - flag had been
specified) within afield of length abs(wi dt h).

t ype (required)
The type of format conversion to use to produce the format specifier's output. The following types are supported:
* s formats the argument value as asimple string. A null value istreated as an empty string.

| treatsthe argument value as an SQL identifier, double-quoting it if necessary. It is an error for the value to
be null (equivalent to quot e_i dent).

* L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, without quotes
(equivalent to quot e_nul | abl e).

In addition to the format specifiers described above, the special sequence ¥86may be used to output aliteral %character.

Here are some examples of the basic format conversions:

SELECT format('Hello %', 'Wrld');
Result: Hello Wrld

SELECT format (' Testing %, %, %, %6, 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format (' I NSERT I NTO %4 VALUES(%.)', 'Foo bar', EO'Reilly');
Result: I NSERT INTO "Foo bar" VALUES(' O 'Reilly")

SELECT format (' I NSERT | NTO %4 VALUES(%.)', 'locations', 'C\ProgramFiles');
Result: I NSERT I NTO | ocations VALUES(' C:\Program Files')

Here are examplesusing wi dt h fields and the - flag:

SELECT format (' | %0s|', 'foo');
Result: | f oo|
SELECT format ('|% 10s|', 'foo');

24

Functions and Operators

Result: |foo |

SELECT format (' |%s|', 10, 'foo');
Result: | f oo|

SELECT format (' | %s|', -10, 'foo');
Result: |foo |

SELECT format (' | % *s|', 10, 'foo');
Result: |foo |

SELECT format (' | % *s|', -10, 'foo');
Result: |foo |

These examples show use of posi ti on fields:

SELECT format (' Testing ¥8%s, %®$s, %$s', 'one', '"two', 'three');
Result: Testing three, two, one

SELECT format('|%2%s|', 'foo', 10, 'bar');
Result: | bar |

SELECT format('|%$*2%s|', 'foo', 10, 'bar');
Result: | f oo|

Unlike the standard C function spr i nt f , PostgreSQL'sf or mat function allows format specifiers with and without
posi ti on fields to be mixed in the same format string. A format specifier without aposi ti on field always uses
the next argument after the last argument consumed. In addition, the f or mat function does not require all function
arguments to be used in the format string. For example:

SELECT format (' Testing ¥8%s, %®@$s, %', 'one', 'two', 'three');
Result: Testing three, two, three

The% and %. format specifiers are particularly useful for safely constructing dynamic SQL statements. See Exam-
ple4l.1.

9.5. Binary String Functions and Operators

This section describes functions and operators for examining and manipulating binary strings, that is values of type
byt ea. Many of these are equivalent, in purpose and syntax, to the text-string functions described in the previous
section.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in
Table 9.11. PostgreSQL also provides versions of these functions that use the regular function invocation syntax (see
Table 9.12).

Table9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea|| bytea - bytea
Concatenates the two binary strings.

25

Functions and Operators

Function/Operator
Description
Example(s)

"\ x123456' : : bytea || '\x789a00bcde'::bytea - \x123456789a00bcde

bit_Ilength(bytea) - i nteger
Returns number of bitsin the binary string (8 timestheoct et _| engt h).
bit length('\x123456':: bytea) - 24

bt ri m(byt es byt ea, byt esrenoved byt ea) - byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from the start and end
of byt es.

btrim'\x1234567890":: bytea, '\x9012'::bytea) - \x345678

I tri m(bytes bytea,bytesrenovedbytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from the start of
byt es.

[trinm('\x1234567890' :: bytea, '\x9012'::bytea) - \x34567890

octet _length(bytea) - integer
Returns number of bytesin the binary string.
octet length('\x123456':: bytea) - 3

overl ay (byt es byt ea PLACI NGnewsubst ri ng byt ea FROMst art i nt eger [FORcount i n-
teger]) - bytea
Replaces the substring of byt es that starts at the st ar t 'th byte and extends for count bytes with

newsubst ri ng. If count isomitted, it defaultsto the length of newsubst ri ng.
overl ay('\x1234567890' : : bytea placing '\002\003"'::bytea from2 for 3)

- \x12020390

position(substringbyteal Nbytes bytea) - i nteger
Returns first starting index of the specified subst ri ng within byt es, or zero if it's not present.

position('\x5678"::bytea in '\x1234567890' :: bytea) - 3

rtri m(bytes bytea, bytesrenoved bytea) - bytea
Removes the longest string containing only bytes appearing in byt esr enoved from the end of byt es.

rtrim'\x1234567890' :: bytea, '\x9012'::bytea) - \x12345678

substring (bytes bytea[FROMstart i nteger][FORcount i nteger]) —» bytea
Extracts the substring of byt es starting at the st ar t 'th byte if that is specified, and stopping after
count bytesif that is specified. Provide at least one of st art and count .

substring('\x1234567890' : : bytea from3 for 2) - \x5678

tri m([LEADI NG| TRAI LI NG| BOTH] byt esr enpoved byt ea FROMbyt es byt ea) - byt ea
Removes the longest string containing only bytes appearing in byt esr enoved from the start, end, or
both ends (BOTH is the default) of byt es.

trim'\x9012'::bytea from'\x1234567890' : : bytea) - \x345678

tri m([LEADI NG| TRAI LI NG| BOTH] [FROM] byt es byt ea, byt esrenpved byt ea) - byt ea
Thisisanon-standard syntax fort ri m() .

trimboth from'\x1234567890' :: bytea, '\x9012'::bytea) - \x345678

26

Functions and Operators

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.11.

Table9.12. Other Binary String Functions

Function
Description
Example(s)

bit _count (bytes bytea) - bi gint
Returns the number of bits set in the binary string (also known as “ popcount”).
bit count ('\x1234567890' :: bytea) - 15

crc32 (bytea) - bigint
Computes the CRC-32 vaue of the binary string.
crc32(' abc'::bytea) - 891568578

crc32c (bytea) - bigint
Computes the CRC-32C value of the binary string.
crc32c(' abc' ::bytea) - 910901175

get _bit (bytes bytea,nbigint) - integer
Extracts n'th bit from binary string.
get _bit('\x1234567890' : : bytea, 30) - 1

get _byte (bytes bytea,ninteger) - integer
Extracts n'th byte from binary string.
get _byte('\x1234567890' : : bytea, 4) - 144

| ength (bytea) - i nt eger
Returns the number of bytesin the binary string.
[engt h('\x1234567890" : : bytea) - 5

| engt h (byt es byt ea, encodi ng nane) - i nt eger
Returns the number of charactersin the binary string, assuming that it is text in the given encodi ng.

length('jose'::bytea, 'UTF8') - 4

md5 (bytea) - t ext
Computes the M D5 hash of the binary string, with the result written in hexadecimal.

md5("' Th\ 000onas' : : byt ea) - 8ab2d3c9689aaf 18b4958c334c82d8bl

reverse (bytea) - bytea
Reverses the order of the bytesin the binary string.

reverse('\xabcd' ::bytea) - \xcdab

set _bit (bytes bytea,nbigint,newal ueinteger) - bytea
Setsn'th bit in binary string to newval ue.

set _bit('\x1234567890' ::bytea, 30, 0) - \x1234563890

set _byte (bytes bytea,ninteger,newal ueinteger) - bytea
Setsn'th bytein binary string to newal ue.
set _byte('\x1234567890':: bytea, 4, 64) - \x1234567840

sha224 (bytea) - bytea

27

Functions and Operators

Function
Description
Example(s)
Computes the SHA-224 hash of the binary string.
sha224(' abc' : : bytea) - \x23097d223405d8228642a477bda255b32aadbce4b-
daOb3f 7e36c9da7

sha256 (bytea) - bytea
Computes the SHA-256 hash of the binary string.

sha256("' abc' :: bytea) - \xba7816bf 8f 01lcfea414140de5dae2223
b00361a396177a9ch410f f 61f 20015ad

sha384 (bytea) - bytea
Computes the SHA-384 hash of the binary string.

sha384(' abc' :: bytea) - \ xcb00753f 45a35e8bb5a03d699ac65007272c32ab0ed-
ed1631a8b605a43f f 5bed8086072bale7cc2358baecal34c825a7

sha512 (bytea) - bytea
Computes the SHA-512 hash of the binary string.
sha512("' abc' :: bytea) - \xddaf 35a193617abacc417349ae204131

12e6f a4e89a97ea20a9eeee64b55d39a2192992a274f c1a836ba3c23a3f eebbd
454d4423643ce80e2a9ac94f ab4ca49f

substr (bytes bytea,start i nteger [,count integer]) - bytea
Extracts the substring of byt es starting at the st ar t 'th byte, and extending for count bytesif that is
specified. (Sameassubstri ng(bytes fromstart for count).)

substr('\x1234567890' : : bytea, 3, 2) - \x5678

Functions get _byt e and set byt e number the first byte of a binary string as byte 0. Functions get _bi t and
set _bit number bits from the right within each byte; for example bit 0 is the least significant bit of the first byte,
and bit 15 isthe most significant bit of the second byte.

For historical reasons, the function nmd5 returns a hex-encoded value of type t ext whereas the SHA-2 func-
tions return type byt ea. Use the functions encode and decode to convert between the two. For example write
encode(sha256(' abc'), 'hex') to get a hex-encoded text representation, or decode(nd5(" abc'),

' hex') togetabyt ea vaue.

Functions for converting strings between different character sets (encodings), and for representing arbitrary binary
data in textual form, are shown in Table 9.13. For these functions, an argument or result of typet ext is expressed
in the database's default encoding, while arguments or results of type byt ea are in an encoding named by another
argument.

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea,src_encodi ng nane,dest _encodi ng nane) - byt ea
Converts a binary string representing text in encoding sr ¢_encodi ng to abinary string in encoding
dest _encodi ng (see Section 23.3.4 for available conversions).

convert('text_in_utf8 , "UTF8', '"LATINL') - \x746578745f 696e5f 75746638

convert _from(bytes bytea,src_encodi ngnane) - text

28

Functions and Operators

Function
Description
Example(s)
Converts a binary string representing text in encoding sr ¢_encodi ng tot ext in the database encod-
ing (see Section 23.3.4 for available conversions).

convert from('text _in utf8 , "UTF8') - text_in_utf8

convert _to(stringtext,dest _encodi ngnane) - bytea
Convertsat ext string (in the database encoding) to a binary string encoded in encoding dest _en-
codi ng (see Section 23.3.4 for available conversions).

convert to('sonme_text', 'UTF8') - \x736f6d655f 74657874

encode (bytes bytea,format text) - text
Encodes binary datainto atextual representation; supported f or mat values are: base64, escape,
hex.

encode(' 123\ 000\ 001', 'base64') — MIl zAAE=

decode (stringtext,format text) » bytea
Decodes hinary data from atextual representation; supported f or mat values are the same as for en-
code.

decode(' MIl zAAE=', 'base64') - \x3132330001

Theencode and decode functions support the following textual formats:
base64

Thebase64 format isthat of RFC 2045 Section 6.81. As per the RFC, encoded lines are broken at 76 characters.
However instead of the MIME CRLF end-of-line marker, only a newline is used for end-of-line. The decode
function ignores carriage-return, newline, space, and tab characters. Otherwise, an error israised when decode
is supplied invalid base64 data— including when trailing padding is incorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences (\ nnn), and
it doubles backslashes. Other byte values are represented literally. The decode function will raise an error if a
backslash isnot followed by either asecond backslash or three octal digits; it accepts other byte values unchanged.

hex

Thehex format represents each 4 bits of dataas one hexadecimal digit, O through f , writing the higher-order digit
of each byte first. The encode function outputs the a-f hex digitsin lower case. Because the smallest unit of
datais 8 hits, there are always an even number of charactersreturned by encode. Thedecode function accepts
the a-f charactersin either upper or lower case. An error is raised when decode is given invalid hex data —
including when given an odd number of characters.

In addition, it is possible to cast integral valuesto and from type byt ea. Casting an integer to byt ea produces 2, 4,
or 8 bytes, depending on the width of theinteger type. Theresult isthe two's complement representation of the integer,
with the most significant byte first. Some examples:

1234: :smal lint:: bytea \ x04d2
cast (1234 as bytea) \ x000004d2

1 https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

29

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Functions and Operators

cast(-1234 as bytea) \xfffffb2e
"\ x8000" : : bytea::smal lint - 32768
"\ x8000' : : byt ea: : i nt eger 32768

Casting abyt ea to an integer will raise an error if the length of the byt ea exceeds the width of the integer type.

See also the aggregate function st r i ng_agg in Section 9.21 and the large object functionsin Section 33.4.

9.6. Bit String Functions and Operators

This section describes functions and operators for examining and manipulating bit strings, that is values of the types
bit andbit varyi ng. (Whileonly typebi t ismentioned in these tables, values of typebi t varyi ng can be
used interchangeably.) Bit strings support the usual comparison operators shown in Table 9.1, aswell asthe operators
shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit || bit - bit
Concatenation
B'10001' || B' 011' - 10001011

bit &bit - bit
Bitwise AND (inputs must be of equal length)

B'10001' & B' 01101' - 00001

bit| bit - bit
Bitwise OR (inputs must be of equal length)
B'10001' | B 01101' - 11101

bit #bit - bit
Bitwise exclusive OR (inputs must be of equal length)

B' 10001' # B 01101' - 11100

~bit - bit
Bitwise NOT
~ B 10001' - 01110

bit <<integer - bit
Bitwise shift left (string length is preserved)
B' 10001' << 3 - 01000

bit >>integer - bit
Bitwise shift right (string length is preserved)
B' 10001' >> 2 -, 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

30

Functions and Operators

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit count (bit) - bigint
Returns the number of bits set in the bit string (also known as “popcount™).
bit _count(B 10111') - 4

bit _length(bit) - integer
Returns number of bitsin the bit string.
bit_length(B 10111') - 5

length(bit) - integer
Returns number of bitsin the bit string.
l engt h(B' 10111') - 5

octet _length(bit) - integer
Returns number of bytesin the bit string.
octet_l|length(B 1011111011') - 2

overlay (bitsbit PLACI NGnewsubstringbit FROMstart i nteger [FORcount i nteger])
- bit
Replaces the substring of bi t s that starts at the st ar t 'th bit and extends for count bitswith new-
substri ng. If count isomitted, it defaultsto the length of newsubst ri ng.
overl ay(B 01010101010101010' placing B 11111' from2 for 3) -
0111110101010101010

position(substringbit INbitsbhit) - integer
Returns first starting index of the specified subst ri ng withinbi t s, or zero if it's not present.
position(B 010" in B 000001101011') - 8

substring(bitsbit [FROMstart i nteger][FORcount i nteger]) - bit
Extracts the substring of bi t s starting at the st ar t 'th bit if that is specified, and stopping after count
bitsif that is specified. Provide at least one of st art and count .

substring(B 110010111111" from3 for 2) - 00

get _bit (bitsbit,ninteger) - integer
Extracts n'th bit from bit string; the first (Ieftmost) bit is bit O.
get_bit (B 101010101010101010', 6) - 1

set _bit (bitsbit,ninteger,newal ueinteger) - bit
Setsn'th bit in bit string to newval ue; thefirst (Ieftmost) bit is bit O.
set_bit(B 101010101010101010', 6, 0) - 101010001010101010

In addition, it is possible to cast integral values to and from type bi t . Casting an integer to bi t (n) copies the
rightmost n bits. Casting an integer to a bit string width wider than the integer itself will sign-extend on the left. Some
examples:

44: : bit (10) 0000101100
44: : bit(3) 100
cast (-44 as bit(12)) 111111010100

31

Functions and Operators

"1110'::bit(4)::integer 14

Notethat casting to just “bit” meanscastingtobi t (1) , and sowill deliver only the least significant bit of the integer.

9.7. Pattern Matching

There are three separate approaches to pattern matching provided by PostgreSQL : the traditional SQL LI KE operator,
the morerecent SI M LAR TO operator (added in SQL:1999), and POSI X-style regular expressions. Aside from the
basic “does this string match this pattern?’ operators, functions are available to extract or replace matching substrings
and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined function in
Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions can be con-
trived that take arbitrary amounts of time and memory to process. Be wary of accepting regular-ex-
pression search patterns from hostile sources. If you must do so, it is advisable to impose a statement
timeout.

Searchesusing SI M LAR TO patterns have the same security hazards, since SI M LAR TOprovides
many of the same capabilities as POSI X-style regular expressions.

LI KE searches, being much simpler than the other two options, are safer to use with possibly-hostile
pattern sources.

SI M LAR TOand POSIX-styleregular expressions do not support nondeterministic collations. If required, use L1 KE
or apply adifferent collation to the expression to work around this limitation.

9.7.1. LI KE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LI KE expression returns true if the st ri ng matches the supplied pat t er n. (As expected, the NOT LI KE
expression returns false if LI KE returns true, and vice versa. An equivalent expression isNOT (string LIKE
pattern).)

If pat t er n does not contain percent signs or underscores, then the pattern only represents the string itself; in that
case LI KE acts like the equals operator. An underscore () in pat t er n stands for (matches) any single character; a
percent sign (%) matches any sequence of zero or more characters.

Some examples:

"abc' LIKE 'abc' true
"abc' LIKE 'a% true

32

Functions and Operators

"abc' LIKE ' _b ' true
"abc' LIKE 'c' fal se

LI KE pattern matching supports nondeterministic collations (see Section 23.2.2.4), such as case-insensitive collations
or collations that, say, ignore punctuation. So with a case-insensitive collation, one could have:

"AbC LIKE 'abc' COLLATE case_insensitive true
"AbC LIKE 'a% COLLATE case_insensitive true

With collationsthat ignore certain characters or in general that consider strings of different lengths equal, the semantics
can become a bit more complicated. Consider these examples:

'.foo.' LIKE 'foo' COLLATE ign_punct true
'".foo.' LIKE 'f_o' COLLATE ign_punct true
'".foo.' LIKE '_oo' COLLATE ign_punct fal se

The way the matching works is that the pattern is partitioned into sequences of wildcards and non-wildcard strings
(wildcards being _ and %). For example, the patternf _o is partitioned intof, _, o0, thepattern _oo is partitioned
into_, 00. The input string matches the pattern if it can be partitioned in such a way that the wildcards match
one character or any number of characters respectively and the non-wildcard partitions are equal under the applicable
collation. So for example, ' . foo.' LIKE 'f_o' COLLATE ign_punct istrue because one can partition
.foo. into.f, o, o.,andthen'.f' = 'f' COLLATE ign_punct,' o' matchesthe wildcard, and
'"0.' = '0" COLLATE ign_punct.But'.foo.' LIKE ' _o0o" COLLATE ign_punct isfasebecause
. f 00. cannot be partitioned in away that the first character is any character and the rest of the string compares equal
to 0o. (Notethat the single-character wildcard always matches exactly one character, independent of the collation. So
in this example, the _ would match . , but then the rest of the input string won't match the rest of the pattern.)

LI KE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence anywhere within
a string, the pattern must start and end with a percent sign.

To match aliteral underscore or percent sign without matching other characters, the respective character inpat t er n
must be preceded by the escape character. The default escape character is the backslash but a different one can be
selected by using the ESCAPE clause. To match the escape character itself, write two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string con-
stants will need to be doubled. See Section 4.1.2.1 for more information.

It'salso possibleto select no escape character by writing ESCAPE ' ' . Thiseffectively disablesthe escape mechanism,
which makes it impossible to turn off the special meaning of underscore and percent signsin the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to a
backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore dightly
nonstandard.

Thekey word | LI KE can be used instead of L1 KE to make the match case-insensitive according to the active locale.
(But this does not support nondeterministic collations.) Thisisnot in the SQL standard but is a PostgreSQL extension.

The operator ~~ is equivalent to LI KE, and ~~* correspondsto | LI KE. Therearedso ! ~~ and ! ~~* operators
that represent NOT LI KE and NOT | LI KE, respectively. All of these operators are PostgreSQL -specific. Y ou may
see these operator names in EXPLAI N output and similar places, since the parser actually trandates L1 KE et al. to
these operators.

33

Functions and Operators

ThephrasesLI KE, | LI KE,NOT LI KE,andNOT | LI KE aregenerally treated as operatorsin PostgreSQL syntax; for
example they can beused in expr essi on oper at or ANY (subquer y) constructs, although an ESCAPE clause
cannot be included there. In some obscure cases it may be necessary to use the underlying operator names instead.

Also see the starts-with operator » @and the corresponding st arts_w t h() function, which are useful in cases
where simply matching the beginning of a string is needed.

9.7.2. SI M LAR TORegular Expressions

string SIMLAR TO pattern [ESCAPE escape-character]
string NOT SIMLAR TO pattern [ESCAPE escape-character]

TheSI M LAR TOoperator returnstrue or fal se depending on whether its pattern matchesthe given string. Itissimilar
to LI KE, except that it interprets the pattern using the SQL standard's definition of aregular expression. SQL regular
expressions are a curious cross between LI KE notation and common (POSI X) regular expression notation.

LikeLl KE, the SI M LAR TO operator succeeds only if its pattern matches the entire string; this is unlike common
regular expression behavior where the pattern can match any part of the string. Also like LI KE, SI M LAR TOuses
_ and %as wildcard characters denoting any single character and any string, respectively (these are comparable to .
and . * in POSIX regular expressions).

In addition to these facilities borrowed from LI KE, SI M LAR TO supports these pattern-matching metacharacters
borrowed from POSIX regular expressions:

* | denotesalternation (either of two alternatives).
» * denotes repetition of the previous item zero or more times.
» + denotes repetition of the previous item one or more times.

 ? denotes repetition of the previous item zero or onetime.

{n} denotes repetition of the previousitem exactly mtimes.
» {m } denotes repetition of the previous item mor more times.

* {m n} denotes repetition of the previousitem at least mand not more than n times.

Parentheses () can be used to group itemsinto asingle logical item.
» A bracket expression|[. ..] specifiesacharacter class, just asin POSIX regular expressions.
Notice that the period (.) is not a metacharacter for SI M LAR TO.

Aswith LI KE, abackslash disables the special meaning of any of these metacharacters. A different escape character
can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ' ' .

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to a
backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore dlightly
nonstandard.

Another nonstandard extension isthat following the escape character with aletter or digit provides accessto the escape
seguences defined for POSIX regular expressions; see Table 9.20, Table 9.21, and Table 9.22 below.

Some examples:

abc' SIMLAR TO ' abc' true

Functions and Operators

"abc' SIMLAR TO 'a' fal se
"abc' SIMLAR TO '%b|d)% true
"abc’ SIMLAR TO ' (b]c)% fal se

'-abc-' SIMLAR TO ' % mabc\ M4 true
' xabcy' SIMLAR TO ' % mabc\ M4 fal se

The subst ri ng function with three parameters provides extraction of a substring that matches an SQL regular
expression pattern. The function can be written according to standard SQL syntax:

substring(string simlar pattern escape escape-character)

or using the now obsolete SQL :1999 syntax:

substring(string frompattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

Aswith SI M LAR TQ, the specified pattern must match the entire data string, or else the function fails and returns
null. To indicate the part of the pattern for which the matching data sub-string is of interest, the pattern should contain
two occurrences of the escape character followed by a double quote ("). The text matching the portion of the pattern
between these separators is returned when the match is successful.

The escape-double-quote separators actually dividesubst r i ng's pattern into three independent regular expressions;
for example, a vertical bar (|) in any of the three sections affects only that section. Also, the first and third of these
regular expressions are defined to match the smallest possible amount of text, not the largest, when there is any am-
biguity about how much of the data string matches which pattern. (In POSIX parlance, the first and third regular ex-
pressions are forced to be non-greedy.)

Asan extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote separator, in which
casethethird regular expression istaken asempty; or no separators, in which casethefirst and third regular expressions
are taken as empty.

Some examples, with #" delimiting the return string:

substring(' foobar' simlar '%t"o_b#"% escape '#') oob
substring(' foobar' sinmilar '#"o_b#"% escape '#') NULL

9.7.3. POSIX Regular Expressions

Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~text - bool ean
String matches regular expression, case sensitively
"thomas' ~ '"t.*ma' -t

35

Functions and Operators

Operator
Description
Example(s)

text ~* text - bool ean
String matches regular expression, case-insensitively
"thomas' ~* 'T.*ma' -t

text I ~text - bool ean
String does not match regular expression, case sensitively

"thomas' '~ "t.*max' -t

text ! ~* text - bool ean
String does not match regular expression, case-insensitively

"thomas' !'~* "T.*ma' - f

POSIX regular expressions provide a more powerful means for pattern matching than the LI KE and SI M LAR TO
operators. Many Unix tools such as egr ep, sed, or awk use a pattern matching language that is similar to the one
described here.

A regular expression is acharacter sequence that isan abbreviated definition of aset of strings (aregular set). A string
issaid to match aregular expression if it is a member of the regular set described by the regular expression. As with
LI KE, pattern characters match string characters exactly unless they are specia characters in the regular expression
language — but regular expressions use different special charactersthan LI KE does. Unlike L1 KE patterns, aregular
expression is allowed to match anywhere within a string, unless the regular expression is explicitly anchored to the
beginning or end of the string.

Some examples:

"abcd' ~ 'bc’ true

"abcd' ~ 'a.c’ true —dot matches any character

"abcd' ~ 'a.*d true —* repeats the preceding pattern item
"abcd' ~ '(b|x)" true —| neans OR, parentheses group

"abcd' ~ '"a’ true —” anchors to start of string

"abcd' ~ '~(b|c)' false —would match except for anchoring

The POSIX pattern language is described in much greater detail below.

Thesubst ri ng function with two parameters, subst ri ng(stri ng from patt ern), provides extraction of
a substring that matches a POSIX regular expression pattern. It returns null if there is no match, otherwise the first
portion of the text that matched the pattern. But if the pattern contains any parentheses, the portion of the text that
matched the first parenthesized subexpression (the one whose left parenthesis comes first) is returned. You can put
parentheses around the whole expression if you want to use parentheses within it without triggering this exception. If
you need parentheses in the pattern before the subexpression you want to extract, see the non-capturing parentheses
described below.

Some examples:

substring(' foobar' from'o.b") oob
substring(' foobar' from'o(.)b") o]

Ther egexp_count function counts the number of places where a POSIX regular expression pattern matches a
string. It hasthe syntax r egexp_count (string,pattern[,start [,fl ags]]). patternissearched forin

36

Functions and Operators

st ri ng, normally from the beginning of the string, but if the st art parameter is provided then beginning from
that character index. Thef | ags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. For example, includingi inf | ags specifies case-insensitive matching. Supported
flags are described in Table 9.24.

Some examples:

regexp_count (' ABCABCAXYaxy', "A'") 3
regexp_count (' ABCABCAXYaxy', "A.', 1, 'i') 4

Ther egexp_i nst r function returnsthe starting or ending position of the Nth match of a POSIX regular expression
pattern to astring, or zero if thereisno such match. It hasthe syntax r egexp_i nstr(stri ng,pattern[,start

[, N[,endoption[,fl ags [,subexpr]]]]])- patt er nissearched forinst ri ng, normally from the beginning
of the string, but if the st art parameter is provided then beginning from that character index. If Nis specified then
the N'th match of the pattern is located, otherwise the first match is located. If the endopt i on parameter is omitted
or specified as zero, the function returns the position of the first character of the match. Otherwise, endopt i on
must be one, and the function returns the position of the character following the match. Thef | ags parameter is an
optional text string containing zero or more single-letter flags that change the function's behavior. Supported flags
are described in Table 9.24. For a pattern containing parenthesized subexpressions, subexpr isaninteger indicating
which subexpression is of interest: the result identifies the position of the substring matching that subexpression.
Subexpressions are numbered in the order of their leading parentheses. When subexpr isomitted or zero, the result
identifies the position of the whole match regardless of parenthesized subexpressions.

Some examples:

regexp_instr (' nunber of your street, town zip, FR, '[*]+, 1, 2)

23
regexp_instr(string=>" ABCDEFGH ', pattern=>'(c..)(...)', start=>1, "N'=>1,
endoption=>0, flags=>'i', subexpr=>2)

6

Ther egexp_l i ke function checks whether a match of a POSIX regular expression pattern occurs within a string,
returning boolean true or false. It has the syntax r egexp_I i ke(stri ng,pattern[,fl ags]). Thefl ags pa
rameter is an optional text string containing zero or more single-letter flags that change the function's behavior. Sup-
ported flags are described in Table 9.24. This function has the same results as the ~ operator if no flags are specified.
If only thei flag is specified, it has the same results asthe ~* operator.

Some examples:

regexp_like('Hello Wrld , "world) fal se
regexp_like('Hello Wrld , "world , "i') true

Ther egexp_mat ch function returns atext array of matching substring(s) within the first match of aPOSIX regular
expression pattern to a string. It has the syntax r egexp_mat ch(stri ng, pattern [, fl ags]). If thereis no
match, the result is NULL. If amatch isfound, and the pat t er n contains no parenthesized subexpressions, then the
result is a single-element text array containing the substring matching the whole pattern. If a match is found, and the
pat t er n contains parenthesized subexpressions, then the result is a text array whose n'th element is the substring
matching the n'th parenthesized subexpression of the pat t er n (not counting “ non-capturing” parentheses; see below
for details). Thef | ags parameter is an optional text string containing zero or more single-letter flags that change the
function's behavior. Supported flags are described in Table 9.24.

Some examples:

37

Functions and Operators

SELECT regexp_mat ch(' f oobar bequebaz', 'bar.*que');
regexp_mat ch

{barbeque}
(1 row

SELECT regexp_mat ch(' f oobar bequebaz', ' (bar) (beque)');
regexp_mat ch

{bar, beque}
(1 row

Tip

In the common case where you just want the whole matching substring or NULL for no match, the best
solution isto user egexp_subst r () . However, r egexp_subst r () only existsin PostgreSQL
version 15 and up. When working in older versions, you can extract the first element of r egex-
p_mat ch() 'sresult, for example:

SELECT (regexp_match(' f oobarbequebaz', 'bar.*que'))[1];
regexp_nat ch

bar beque

(1 row

The r egexp_mat ches function returns a set of text arrays of matching substring(s) within matches of a POSIX
regular expression pattern to a string. It has the same syntax as r egexp_mat ch. This function returns no rows if
there is no match, one row if there is a match and the g flag is not given, or N rows if there are N matches and the
g flag is given. Each returned row is atext array containing the whole matched substring or the substrings matching
parenthesized subexpressions of the pat t er n, just as described above for r egexp_nat ch. r egexp_mat ches
acceptsall theflags shown in Table 9.24, plusthe g flag which commandsit to return al matches, not just thefirst one.

Some examples:

SELECT regexp_matches('foo', 'not there');
regexp_mat ches

SELECT regexp_mat ches(' f oobar bequebazi | barf bonk', ' (b[”~b]+)(b["b]+)", "g");
regexp_mat ches

{bar, beque}
{bazil, barf}
(2 rows)

Tip

In most casesr egexp_nat ches() should be used with the g flag, since if you only want the first
match, it's easier and more efficient to user egexp_mat ch() . However, r egexp_mat ch() only

38

Functions and Operators

exists in PostgreSQL version 10 and up. When working in older versions, a common trick isto place
ar egexp_nmat ches() call inasub-select, for example:

SELECT col 1, (SELECT regexp_matches(col 2, ' (bar)(beque)')) FROM
t ab;

This produces atext array if there'samatch, or NULL if not, the same asr egexp_nat ch() would
do. Without the sub-select, this query would produce no output at all for table rows without a match,
which istypically not the desired behavior.

Ther egexp_r epl ace function provides substitution of new text for substrings that match POSI X regular expres-
sion patterns. It has the syntax r egexp_r epl ace(stri ng, pattern,repl acenent [,fl ags]) orregex-
p_replace(string,pattern,repl acenent,start [, N[,fl ags]]). Thesourcest ri ng isreturned un-
changed if thereis no match to the pat t er n. If thereisamatch, the st ri ng isreturned with ther epl acenent
string substituted for the matching substring. Ther epl acenent string can contain \ n, where n is 1 through 9, to
indicate that the source substring matching the n'th parenthesized subexpression of the pattern should be inserted, and
it can contain\ & to indicate that the substring matching the entire pattern should be inserted. Write\ \ if you need to
put aliteral backslash in the replacement text. pat t er n issearched forinst ri ng, normally from the beginning of
the string, but if the st art parameter is provided then beginning from that character index. By default, only the first
match of the pattern isreplaced. If Nis specified and is greater than zero, then the N'th match of the pattern isreplaced.
If the g flag is given, or if Nis specified and is zero, then all matches at or after the st art position are replaced.
(The g flag isignored when Nis specified.) Thef | ags parameter is an optional text string containing zero or more
single-letter flags that change the function's behavior. Supported flags (though not g) are described in Table 9.24.

Some examples:

regexp_repl ace(' foobarbaz', '"b.."', 'X)
f ooxXbaz
regexp_repl ace(' foobarbaz', 'b..', 'X, 'g")
f ooXX

regexp_replace(' foobarbaz', "b(..)', "X\1Y', 'g")
f ooXar YXazY
regexp_replace(' A PostgreSQ. function', '"alje|li|oju", "X, 1, 0, "i")
X PXst gr XSQ. f Xnct XXn
regexp_replace(string=>" A PostgreSQ. function', pattern=>"ale|i|o|u',
repl acenent=>' X', start=>1, "N'=>3, flags=>'i")
A Post gr XSQL function

Theregexp_split _to_tabl e functionsplitsastring using aPOSIX regular expression pattern as a delimiter. It
hasthesyntaxr egexp_split_to_tabl e(string,pattern][,fl ags]).Ifthereisnomaichtothepatt ern,
the function returnsthe st r i ng. If thereis at least one match, for each match it returns the text from the end of the
last match (or the beginning of the string) to the beginning of the match. When there are no more matches, it returnsthe
text from the end of the last match to the end of the string. Thef | ags parameter isan optional text string containing
zero or more single-letter flags that change the function's behavior. r egexp_spl it _t o_t abl e supportstheflags
described in Table 9.24.

Theregexp_split_to_array function behavesthe sameasr egexp_split_to_tabl e, except that r eg-
exp_split_to_array returns its result as an array of t ext. It has the syntax r egexp_split _to_ar-
ray(string,pattern|[,fl ags]). Theparametersarethesameasforregexp_split _to_tabl e.

Some examples:

39

Functions and Operators

SELECT foo FROM regexp_split_to_table('the quick brown fox junps over the |azy
dog', '\s+') AS foo;
foo

SELECT regexp_split_to_array('the quick brown fox junps over the |lazy dog',
"\s+');
regexp_split_to_array
{t he, qui ck, br own, f ox, j unps, over, t he, | azy, dog}

(1 row
SELECT foo FROM regexp_split_to_table('the quick brown fox', "\s*') AS foo;

Asthe last example demonstrates, the regexp split functions ignore zero-length matches that occur at the start or end
of the string or immediately after a previous match. Thisis contrary to the strict definition of regexp matching that is
implemented by the other regexp functions, but is usually the most convenient behavior in practice. Other software
systems such as Perl use similar definitions.

Ther egexp_subst r function returns the substring that matches a POSIX regular expression pattern, or NULL if
there is no match. It has the syntax r egexp_substr(string, pattern[,start [, N[, fl ags [, subexpr

111D- pat t er n issearched for in st r i ng, normally from the beginning of the string, but if thest art parameter is
provided then beginning from that character index. If Nis specified then the N'th match of the pattern is returned, oth-
erwise the first match isreturned. Thef | ags parameter is an optional text string containing zero or more single-let-
ter flags that change the function's behavior. Supported flags are described in Table 9.24. For a pattern containing

40

Functions and Operators

parenthesized subexpressions, subexpr is an integer indicating which subexpression is of interest: the result is the
substring matching that subexpression. Subexpressions are numbered in the order of their leading parentheses. When
subexpr isomitted or zero, the result is the whole match regardless of parenthesized subexpressions.

Some examples:

regexp_substr (' number of your street, town zip, FR, "[*]+, 1, 2)
town zip

regexp_substr(' ABCOEFGH ', '(c..)(...)', 1, 1, "i', 2)
FGH

9.7.3.1. Regular Expression Detalils

PostgreSQL 's regular expressions are implemented using a software package written by Henry Spencer. Much of the
description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs (roughly those of
egr ep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both forms, and also implements some
extensions that are not in the POSIX standard, but have become widely used due to their availability in programming
languages such as Perl and Tcl. REs using these non-POSIX extensions are called advanced REs or ARES in this
documentation. AREs are aimost an exact superset of EREs, but BREs have several notational incompatibilities (as
well as being much more limited). Wefirst describe the ARE and ERE forms, noting featuresthat apply only to AREs,
and then describe how BREs differ.

Note

PostgreSQL always initially presumes that a regular expression follows the ARE rules. However, the
more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE pattern, as
described in Section 9.7.3.4. This can be useful for compatibility with applications that expect exactly
the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by | . It matches anything that matches one of
the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first, followed by
amatch for the second, etc.; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by asingle quantifier. Without a quantifier, it matches a match for the
atom. With a quantifier, it can match some number of matches of the atom. An atom can be any of the possibilities
shown in Table 9.17. The possible quantifiers and their meanings are shown in Table 9.18.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can be used
where an atom could be used, except it cannot be followed by a quantifier. The simple constraints are shown in
Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description

(re) (wherer e isany regular expression) matches a match
for r e, with the match noted for possible reporting

(?:re) as above, but the match is not noted for reporting (a
“non-capturing” set of parentheses) (AREs only)

41

Functions and Operators

Atom Description
matches any single character

[char s] abracket expression, matching any one of thechar s
(see Section 9.7.3.2 for more detail)

\k (where k is a non-aphanumeric character) matches that
character taken as an ordinary character, e.g.,\ \ match-
es a backslash character

\c where ¢ is alphanumeric (possibly followed by other

characters) is an escape, see Section 9.7.3.3 (AREs only;
in EREs and BREs, this matches c)

{ when followed by a character other than a digit, matches
the left-brace character { ; when followed by a digit, it is
the beginning of abound (see below)

X where x isasingle character with no other significance,
matches that character

An RE cannot end with abackslash (\).

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string con-
stants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{n} a sequence of exactly mmatches of the atom

{m} a sequence of mor more matches of the atom

{m n} a sequence of mthrough n (inclusive) matches of the
atom; mcannot exceed n

*? non-greedy version of *

+7? non-greedy version of +

?? non-greedy version of ?

{m?2 non-greedy version of { n}

{m}? non-greedy version of { m }

{mn}? non-greedy version of { m n}

Theformsusing{. ..} are known as bounds. The numbers mand n within a bound are unsigned decimal integers
with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in ARESs only) match the same possihilities as their corresponding normal (greedy)
counterparts, but prefer the smallest number rather than the largest number of matches. See Section 9.7.3.5 for more
detail.

42

Functions and Operators

Note

A gquantifier cannot immediately follow another quantifier, e.g., * * isinvalid. A quantifier cannot begin
an expression or subexpression or follow ~ or | .

Table 9.19. Regular Expression Constraints

Constraint Description

A matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a sub-

string matching r e begins (AREs only)

(?'re) negative |lookahead matches at any point where no sub-
string matching r e begins (AREs only)

(?<=re) positive lookbehind matches at any point where a sub-
string matching r e ends (AREs only)

(?<lre) negative |ookbehind matches at any point where no sub-
string matching r e ends (AREs only)

L ookahead and |ookbehind constraints cannot contain back references (see Section 9.7.3.3), and all parentheseswithin
them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expressionisalist of charactersenclosed in|[] . It normally matches any single character from the list (but
see below). If thelist beginswith #, it matches any single character not from therest of thelist. If two charactersin the
list are separated by - , thisis shorthand for the full range of characters between those two (inclusive) in the collating
sequence, e.g., [0- 9] in ASCII matches any decimal digit. It isillegal for two ranges to share an endpoint, e.g., a-
c- e. Ranges are very collating-sequence-dependent, so portable programs should avoid relying on them.

Toinclude aliteral] inthelist, makeit the first character (after », if that is used). To include aliteral - , make it the
first or last character, or the second endpoint of arange. To use aliteral - asthe first endpoint of arange, enclose it
in[. and.] tomakeit acollating element (see below). With the exception of these characters, some combinations
using [(see next paragraphs), and escapes (AREs only), al other special characters lose their special significance
within a bracket expression. In particular, \ isnot special when following ERE or BRE rules, though it is special (as
introducing an escape) in AREs.

Within abracket expression, acollating element (acharacter, amultiple-character sequencethat collates asif it werea
singlecharacter, or acollating-sequence namefor either) enclosedin[. and.] standsfor the sequence of characters of
that collating element. The sequenceistreated asasingle element of the bracket expression'slist. Thisallowsabracket
expression containing a multiple-character collating element to match more than one character, e.g., if the collating
sequence includes ach collating element, thenthe RE[[. ch.]] * ¢ matchesthefirst five characters of chchcc.

Note

PostgreSQL currently does not support multi-character collating elements. This information describes
possible future behavior.

43

Functions and Operators

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing for the
sequences of characters of all collating elements equivalent to that one, including itself. (If there are no other equivalent
collating elements, the treatment is as if the enclosing delimiterswere[. and .] .) For example, if o and » are the
members of an equivalence class, then[[=0=]] ,[[="=]], and [0”] are al synonymous. An equivalence class
cannot be an endpoint of arange.

Within a bracket expression, the name of a character classenclosed in[: and:] standsfor thelist of al characters
belonging to that class. A character class cannot be used as an endpoint of arange. The POSIX standard defines these
character class names: al num(letters and numeric digits), al pha (letters), bl ank (space and tab), cnt r | (control
characters), di gi t (humeric digits), gr aph (printable characters except space), | ower (lower-caseletters), pri nt
(printable characters including space), punct (punctuation), space (any white space), upper (upper-case letters),
and xdi gi t (hexadecimal digits). The behavior of these standard character classes is generally consistent across
platformsfor charactersin the 7-bit ASCII set. Whether agiven non-ASCII character is considered to bel ong to one of
these classes depends on the collation that is used for the regul ar-expression function or operator (see Section 23.2), or
by default on the database's LC_CTYPE locale setting (see Section 23.1). The classification of non-ASCII characters
can vary across platforms even in similarly-named locales. (But the C locale never considers any non-ASCII charac-
ters to belong to any of these classes.) In addition to these standard character classes, PostgreSQL defines the wor d
character class, which isthe same asal numplusthe underscore (_) character, andtheasci i character class, which
contains exactly the 7-bit ASCI| set.

There are two special cases of bracket expressions: the bracket expressions[[: <:]] and[[:>:]] areconstraints,
matching empty strings at the beginning and end of a word respectively. A word is defined as a sequence of word
charactersthat is neither preceded nor followed by word characters. A word character isany character belonging to the
wor d character class, that is, any letter, digit, or underscore. Thisisan extension, compatible with but not specified by
POSIX 1003.2, and should be used with caution in software intended to be portable to other systems. The constraint
escapes described below are usually preferable; they are no more standard, but are easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are specia sequences beginning with \ followed by an alphanumeric character. Escapes come in severa
varieties: character entry, class shorthands, constraint escapes, and back references. A\ followed by an alphanumeric
character but not constituting a valid escape is illegal in AREs. In ERES, there are no escapes. outside a bracket
expression, a\ followed by an aphanumeric character merely stands for that character as an ordinary character, and
inside a bracket expression, \ is an ordinary character. (The latter is the one actual incompatibility between EREs
and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient charactersin REs. They
are shown in Table 9.20.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are shown in Ta
ble 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an escape.
They are shown in Table 9.22.

A back reference (\ n) matches the same string matched by the previous parenthesized subexpression specified by the
number n (see Table 9.23). For example, ([bc])\ 1 matches bb or cc but not bc or cb. The subexpression must
entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading parenthe-
ses. Non-capturing parentheses do not define subexpressions. The back reference considers only the string characters
matched by the referenced subexpression, not any constraints contained in it. For example, (*\ d) \ 1 will match 22.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description
\a aert (bell) character, asin C

Functions and Operators

Escape Description

\b backspace, asin C

\B synonym for backslash (\) to help reduce the need for
backslash doubling

\cX (where X is any character) the character whose low-order
5 bits are the same as those of X, and whose other bits
aredl zero

\e the character whose collating-sequence nameis ESC, or
failing that, the character with octal value 033

\ f formfeed, asin C

\n newline, asin C

\r carriage return, asin C

\ 't horizontal tab, asin C

\ uwxyz (wherewxyz isexactly four hexadecimal digits) the
character whose hexadecimal value is Oxwxyz

\ Ust uvwxyz (where st uvwxyz isexactly eight hexadecimal digits)
the character whose hexadecimal valueis Oxst uvwxyz

\v vertical tab, asinC

\ xhhh (where hhh isany sequence of hexadecimal digits) the
character whose hexadecimal valueis Oxhhh (asingle
character no matter how many hexadecimal digits are
used)

\0 the character whose value is O (the null byte)

\ xy (where xy is exactly two octal digits, and is not a back
reference) the character whose octal valueis Oxy

\ xyz (where xyz is exactly three octal digits, and isnot a
back reference) the character whose octal valueisOxyz

Hexadecimal digitsare 0-9, a-f , and A-F. Octal digitsare 0-7.

Numeric character-entry escapes specifying values outside the ASCI| range (0—127) have meanings dependent on the
database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode code points, for example
\ u1234 means the character U+1234. For other multibyte encodings, character-entry escapes usually just specify
the concatenation of the byte values for the character. If the escape value does not correspond to any legal character
in the database encoding, no error will be raised, but it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \ 135 is] in ASCII, but \ 135
does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description

\d matches any digit, like[[: digit:]]

\'s matches any whitespace character, like[[: space:]]
\'w matches any word character, like[[: wor d:]]

\D matches any non-digit, like[[: digit:]]

45

Functions and Operators

Escape Description
\'S matches any non-whitespace character, like
[~ :space:]]
\W matches any non-word character, like[*[: wor d:]]

The class-shorthand escapes a so work within bracket expressions, although the definitions shown above are not quite
syntactically valid in that context. For example, [a- c\ d] isequivalentto[a-c[:digit:]].

Table 9.22. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see Sec-
tion 9.7.3.5 for how this differs from)

\'m matches only at the beginning of aword

\M matches only at the end of aword

\y matches only at the beginning or end of aword

\'Y matches only at a point that is not the beginning or end
of aword

\Z matches only at the end of the string (see Section 9.7.3.5
for how this differsfrom $)

A word is defined as in the specification of [[: <:]] and [[: >:]] above. Constraint escapes are illegal within
bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description

\'m (where mis anonzero digit) a back reference to the nith
subexpression

\ mn (where mis anonzero digit, and nn is some more digits,

and the decimal value mn is not greater than the num-
ber of closing capturing parentheses seen so far) a back
reference to the nmn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references, which is
resolved by thefollowing heuristics, ashinted at above. A leading zero alwaysindicates an octal escape.
A singlenon-zero digit, not followed by another digit, isalwaystaken asaback reference. A multi-digit
sequence not starting with azero is taken as a back referenceif it comes after a suitable subexpression
(i.e., the number isin the legal range for aback reference), and otherwise is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic facilities
available.

An RE can begin with one of two special director prefixes. If an RE beginswith ** * : | the rest of the RE istaken as
an ARE. (Thisnormally has no effect in PostgreSQL, since REs are assumed to be AREs; but it does have an effect if

46

Functions and Operators

ERE or BRE mode had been specified by the f | ags parameter to aregex function.) If an RE beginswith * * * =, the
rest of the RE istaken to be aliteral string, with all characters considered ordinary characters.

An ARE can begin with embedded options. a sequence (?xyz) (where xyz is one or more aphabetic characters)
specifies options affecting the rest of the RE. These options override any previously determined options — in partic-
ular, they can override the case-sensitivity behavior implied by a regex operator, or thef | ags parameter to a regex
function. The available option letters are shown in Table 9.24. Note that these same option letters are used in the
f | ags parameters of regex functions.

Table9.24. ARE Embedded-Option Letters

Option Description

b rest of REisaBRE

c case-sensitive matching (overrides operator type)
e rest of RE isan ERE

case-insensitive matching (see Section 9.7.3.5) (over-
rides operator type)

historical synonym for n

newline-sensitive matching (see Section 9.7.3.5)

partial newline-sensitive matching (see Section 9.7.3.5)

rest of RE isaliteral (“quoted”) string, all ordinary char-
acters

Q|T | 5|3

non-newline-sensitive matching (default)

2}

tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”) matching (see
Section 9.7.3.5)

X expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an ARE (after
the***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded syntax, available
by specifying the embedded x option. In the expanded syntax, white-space charactersin the RE areignored, asare all
characters between a# and the following newline (or the end of the RE). This permits paragraphing and commenting
acomplex RE. There are three exceptionsto that basic rule:

» awhite-space character or # preceded by \ isretained
 white space or # within a bracket expression is retained
* white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongsto the s pace character
class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (wherettt isany text not containinga))
is acomment, completely ignored. Again, thisis not allowed between the characters of multi-character symboals, like
(?: . Such comments are more ahistorical artifact than auseful facility, and their use is deprecated; use the expanded
syntax instead.

None of these metasyntax extensionsisavailableif aninitial * * * = director has specified that the user'sinput be treated
asaliteral string rather than as an RE.

47

Functions and Operators

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one starting earliest
in the string. If the RE could match more than one substring starting at that point, either the longest possible match or
the shortest possible match will be taken, depending on whether the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:

» Most atoms, and al constraints, have no greediness attribute (because they cannot match variable amounts of text
anyway).

» Adding parentheses around an RE does not change its greediness.

» A gquantified atom with a fixed-repetition quantifier ({ m} or { n} ?) has the same greediness (possibly none) as the
atom itself.

» A quantified atom with other normal quantifiers (including { m n} with mequal to n) is greedy (prefers longest
match).

* A quantified atom with anon-greedy quantifier (including{ m n} ? with mequal to n) isnon-greedy (prefers shortest
match).

» A branch — that is, an RE that has no top-level | operator — has the same greediness as the first quantified atom
in it that has a greediness attribute.

» An RE consisting of two or more branches connected by the | operator is aways greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with branches and entire
REsthat contain quantified atoms. What that meansisthat the matching is donein such away that the branch, or whole
RE, matches the longest or shortest possible substring as a whole. Once the length of the entire match is determined,
the part of it that matches any particular subexpression is determined on the basis of the greediness attribute of that
subexpression, with subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:

SELECT SUBSTRI NG(' XY1234Z', ' Y*([0-9]{1,3})'):

Result: 123
SELECT SUBSTRI NG(' XY1234Z', 'Y*?([0-9]{1,3})");
Result: 1

Inthefirst case, the RE asawholeis greedy because Y* isgreedy. It can match beginning at the Y, and it matches the
longest possible string starting there, i.e., Y123. The output is the parenthesized part of that, or 123. In the second
case, the RE as awhole is non-greedy because Y* ? isnhon-greedy. It can match beginning at the Y, and it matches the
shortest possible string starting there, i.e., Y1. The subexpression [0- 9] { 1, 3} isgreedy but it cannot change the
decision asto the overall match length; so it isforced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either as long
as possible or as short as possible, according to the attribute assigned to the whole RE. The attributes assigned to the
subexpressions only affect how much of that match they are allowed to “eat” relative to each other.

The quantifiers{ 1, 1} and{ 1, 1} ? can be used to force greediness or non-greediness, respectively, on a subexpres-
sion or awhole RE. This is useful when you need the whole RE to have a greediness attribute different from what's
deduced from its elements. As an example, suppose that we are trying to separate a string containing some digitsinto
the digits and the parts before and after them. We might try to do that like this:

SELECT regexp_mat ch(' abc01234xyz', ' (.*)(\d+)(.*)");

48

Functions and Operators

Resul t: {abc0123, 4, xyz}

That didn't work: the first . * is greedy so it “eats’ as much as it can, leaving the \ d+ to match at the last possible
place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_mat ch(' abc01234xyz', '(.*?)(\d+)(.*)");
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match as soon as
possible. We can get what we want by forcing the RE as awhole to be greedy:

SELECT regexp_match(' abc01234xyz', '(?2:(.*?)(\d+)(.*)){1,1}");
Resul t: {abc, 01234, xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility in handling
variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not collating elements.
An empty string is considered longer than no match at all. For example: bb* matches the three middle characters of
abbbc; (week| wee) (ni ght | kni ght s) matchesall ten charactersof weekni ght s;when(. *) . * ismatched
against abc the parenthesized subexpression matches all three characters; and when (a*) * is matched against bc
both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect ismuch asif al case distinctions had vanished from the al phabet.
When an alphabetic that exists in multiple cases appears as an ordinary character outside a bracket expression, it is
effectively transformed into a bracket expression containing both cases, e.g., x becomes[xX] . When it appearsinside
a bracket expression, all case counterparts of it are added to the bracket expression, e.g., [x] becomes[xX] and
[*x] becomes[”"xX] .

If newline-sensitive matching is specified, . and bracket expressions using * will never match the newline character
(so that matches will not cross lines unless the RE explicitly includes a newline) and * and $ will match the empty
string after and before a newline respectively, in addition to matching at beginning and end of string respectively. But
the ARE escapes\ A and \ Z continue to match beginning or end of string only. Also, the character class shorthands
\ Dand \ Wwill match a newline regardless of this mode. (Before PostgreSQL 14, they did not match newlines when
in newline-sensitive mode. Write[[: digit:]] or[~[:word:]] togettheold behavior.)

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-sensitive
matching, but not ~ and $.

If inverse partial newline-sensitive matching is specified, this affects” and $ as with newline-sensitive matching, but
not . and bracket expressions. Thisisn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit isimposed on the length of REs in thisimplementation. However, programs intended to be highly
portable should not employ RES longer than 256 bytes, as a POSI X-compliant implementation can refuse to accept
such REs.

Theonly feature of AREsthat isactually incompatible with POSIX EREsisthat\ doesnot loseits special significance
inside bracket expressions. All other ARE features use syntax which isillegal or has undefined or unspecified effects
in POSIX EREs; the * * * syntax of directors likewiseis outside the POSIX syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a few Perl
extensions are not present. Incompatibilities of noteinclude\ b, \ B, thelack of special treatment for atrailing newline,
the addition of complemented bracket expressionsto the things affected by newline-sensitive matching, therestrictions

49

Functions and Operators

on parentheses and back references in lookahead/lookbehind constraints, and the longest/shortest-match (rather than
first-match) matching semantics.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, | , +, and ? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds are\ { and \ }, with{ and} by themselves ordinary characters.
The parentheses for nested subexpressions are\ (and\), with (and) by themselves ordinary characters. ~ is an
ordinary character except at the beginning of the RE or the beginning of a parenthesized subexpression, $ isan ordinary
character except at the end of the RE or the end of a parenthesized subexpression, and * is an ordinary character
if it appears at the beginning of the RE or the beginning of a parenthesized subexpression (after a possible leading
N). Findly, single-digit back references are available, and \ < and \ > are synonymsfor [[:<:]] and[[:>:]]
respectively; no other escapes are available in BREs.

9.7.3.8. Differences from SQL Standard and XQuery

Since SQL :2008, the SQL standard includes regular expression operators and functionsthat performs pattern matching
according to the XQuery regular expression standard:

. LI KE_REGEX

« OCCURRENCES REGEX
« POSI TI ON_REGEX

- SUBSTRI NG_REGEX

- TRANSLATE_REGEX

PostgreSQL does not currently implement these operators and functions. Y ou can get approximately equivalent func-
tionality in each case as shown in Table 9.25. (Various optional clauses on both sides have been omitted in thistable.)

Table 9.25. Regular Expression Functions Equivalencies

SQL standard PostgreSQL

string LI KE_REGEX pattern regexp_like(string, pattern) orstring ~
pattern

OCCURRENCES _REGEX(pattern IN string) regexp_count (string, pattern)

PCSI TI ON_REGEX(pattern I N string) regexp_instr(string, pattern)

SUBSTRI NG_REGEX(pattern I N string) regexp_substr(string, pattern)

TRANSLATE_RECEX(pattern IN string WTH|regexp_replace(string, pattern, re-

repl acenent) pl acenent)

Regular expression functions similar to those provided by PostgreSQL are also available in a number of other SQL
implementations, whereas the SQL-standard functions are not as widely implemented. Some of the details of the
regular expression syntax will likely differ in each implementation.

The SQL -standard operators and functions use X Query regular expressions, which are quite close to the ARE syntax
described above. Notable differences between the existing POSI X -based regular-expression feature and XQuery reg-
ular expressionsinclude:

» XQuery character class subtraction is not supported. An example of thisfeature is using the following to match only
English consonants: [a- z- [aei ou]] .

e XQuery character class shorthands\ ¢,\ C,\'i ,and\ | are not supported.

50

Functions and Operators

e XQuery character classelementsusing\ p{ Uni codePr operty} ortheinverse\ P{ Uni codePr operty} are
not supported.

» POSIX interprets character classes such as\ w (see Table 9.21) according to the prevailing locale (which you can
control by attaching a COLLATE clause to the operator or function). X Query specifies these classes by reference to
Unicode character properties, so equivalent behavior is obtained only with alocale that follows the Unicode rules.

» The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX does. The
newline-sensitive matching options described above consider only ASCII NL (A n) to be anewline, but SQL would
have us treat CR (\ r), CRLF (\ r\ n) (a Windows-style newline), and some Unicode-only characters like LINE
SEPARATOR (U+2028) as newlines as well. Notably, . and \ s should count \ r\ n as one character not two
according to SQL.

» Of the character-entry escapes described in Table 9.20, XQuery supportsonly\ n,\ r,and\ t .

» XQuery does not support the[: nane:] syntax for character classes within bracket expressions.

» XQuery doesnot havelookahead or |ookbehind constraints, nor any of the constraint escapesdescribedin Table9.22.
» The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.

» Theregular expression flag |etters defined by XQuery are related to but not the same as the option letters for POSIX
(Table 9.24). Whilethei and g options behave the same, others do not:

* XQuery'ss (alow dot to match newline) and m(allow ~ and $ to match at newlines) flags provide access to the
same behaviors as POSIX's n, p and wflags, but they do not match the behavior of POSIX's s and mflags. Note
in particular that dot-matches-newline is the default behavior in POSIX but not XQuery.

« XQuery's x (ignore whitespace in pattern) flag is noticeably different from POSIX's expanded-mode flag.
POSIX'sx flag also allows# to begin acomment in the pattern, and POSI X will not ignore awhitespace character
after abackslash.

9.8. Data Type Formatting Functions

The PostgreSQL formatting functions provide a powerful set of tools for converting various data types (date/time,
integer, floating point, numeric) to formatted strings and for converting from formatted strings to specific data types.
Table 9.26 lists them. These functions all follow a common calling convention: the first argument is the value to be
formatted and the second argument is a templ ate that defines the output or input format.

Table 9.26. Formatting Functions

Function
Description
Example(s)

to_char (ti mestanp,text) - text

to _char (tinestanp with tinme zone,text) - text
Converts time stamp to string according to the given format.

to_char(tinmestanp '2002-04-20 17:31:12.66', 'HH12:M:SS') - 05:31:12

to_char (interval ,text) - text
Convertsinterval to string according to the given format.

to_char(interval '15h 2m 12s', 'HH24: M :SS') - 15:02: 12

to_char (nuneric_type,text) - text

51

Functions and Operators

Function
Description
Example(s)

Converts number to string according to the given format; available for i nt eger , bi gi nt, nuneri c,
real ,doubl e preci sion.

to_char (125, '999') - 125
to_char(125.8::real, '999D9') - 125.8
to_char(-125.8, '999D99S') - 125. 80-

to _date(text,text) - date
Converts string to date according to the given format.

to_date(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05

to_nunber (text,text) - nuneric
Converts string to numeric according to the given format.

to_nunber (' 12,454.8-"', '99@X@99D9S') - -12454.8

to_tinestanp (text,text) - tinmestanp with tinme zone
Converts string to time stamp according to the given format. (Seeasot o_t i mest anp(doubl e
preci si on) inTable9.33)

to_tinmestanp(' 05 Dec 2000', 'DD Mon YYYY') - 2000-12-05 00: 00: 00- 05

Tip
to_timestanp andt o_dat e exist to handle input formats that cannot be converted by simple
casting. For most standard date/time formats, simply casting the source string to the required datatype

works, and is much easier. Similarly, t o_numnber is unnecessary for standard numeric representa-
tions.

Inat o_char output template string, there are certain patterns that are recognized and replaced with appropriate-

ly-formatted data based on the given value. Any text that is not atemplate pattern issimply copied verbatim. Similarly,

in an input template string (for the other functions), template patterns identify the values to be supplied by the input
data string. If there are charactersin the template string that are not template patterns, the corresponding charactersin

the input data string are simply skipped over (whether or not they are equal to the template string characters).

Table 9.27 shows the template patterns available for formatting date and time values.

Table 9.27. Template Patternsfor Date/Time Formatting

Pattern Description

HH hour of day (01-12)

HH12 hour of day (01-12)

HH24 hour of day (00-23)

M minute (00-59)

SS second (00-59)

VB millisecond (000-999)

us microsecond (000000-999999)
FF1 tenth of second (0-9)

52

Functions and Operators

Pattern Description

FF2 hundredth of second (00—99)

FF3 millisecond (000-999)

FF4 tenth of amillisecond (0000-9999)

FF5 hundredth of a millisecond (00000—99999)

FF6 microsecond (000000—-999999)

SSSS, SSSSS seconds past midnight (0-86399)

AM am PMor pm meridiem indicator (without periods)

AM,a.m,P.Morp.m meridiem indicator (with periods)

Y, YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

I YYY I SO 8601 week-numbering year (4 or more digits)

I YY last 3 digits of 1SO 8601 week-numbering year

Y last 2 digits of 1SO 8601 week-numbering year

I last digit of 1SO 8601 week-numbering year

BC, bc, ADor ad eraindicator (without periods)

B.C. ,b.c.,A D ora.d. eraindicator (with periods)

MONTH full upper case month name (blank-padded to 9 chars)

Mont h full capitalized month name (blank-padded to 9 chars)

nmont h full lower case month name (blank-padded to 9 chars)

MON abbreviated upper case month name (3 charsin English,
localized lengths vary)

Mon abbreviated capitalized month name (3 charsin English,
localized lengths vary)

non abbreviated lower case month name (3 charsin English,
localized lengths vary)

WM month number (01-12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 charsin English, lo-
calized lengths vary)

Dy abbreviated capitalized day name (3 charsin English, lo-
calized lengths vary)

dy abbreviated lower case day name (3 charsin English, lo-
calized lengths vary)

DDD day of year (001-366)

53

Functions and Operators

Pattern Description

| DDD day of 1SO 8601 week-numbering year (001-371; day 1
of the year is Monday of thefirst 1SO week)

DD day of month (01-31)

D day of the week, Sunday (1) to Saturday (7)

I D SO 8601 day of the week, Monday (1) to Sunday (7)

w week of month (1-5) (the first week starts on the first
day of the month)

VWV week number of year (1-53) (the first week starts on the
first day of the year)

W week number of 1SO 8601 week-numbering year (01—
53; thefirst Thursday of the year isin week 1)

cC century (2 digits) (the twenty-first century startson
2001-01-01)

J Julian Date (integer days since November 24, 4714 BC
at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (I-XI1; I=January)

rm month in lower case Roman numerals (i—xii; i=January)

TZ upper case time-zone abbreviation

tz lower case time-zone abbreviation

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (HH or HH: M)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMvbnt h isthe Mont h pattern
with the FMmaodifier. Table 9.28 shows the modifier patterns for date/time formatting.

Table 9.28. Template Pattern Modifiersfor Date/Time Formatting

M odifier Description Example

FMprefix fill mode (suppress leading zeroes FMvbnt h
and padding blanks)

TH suffix upper case ordinal number suffix DDTH, eg., 12TH

t h suffix lower case ordinal number suffix DDt h, eg., 12t h

FX prefix fixed format global option (seeusage [FX Mont h DD Day
notes)

TMprefix translation mode (uselocalizedday |TiWMont h
and month names based on Ic_time)

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

» FMsuppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a pattern
be fixed-width. In PostgreSQL, FMmodifies only the next specification, while in Oracle FMaffects all subsequent
specifications, and repeated FMmaodifiers toggle fill mode on and off.

54

Functions and Operators

TMsuppresses trailing blanks whether or not FMis specified.

to_tinmestanp andt o_dat e ignore letter case in the input; so for example MON, Mon, and non all accept
the same strings. When using the TMmodifier, case-folding is done according to the rules of the function's input
collation (see Section 23.2).

to_tinmestanpandt o_dat e skip multiple blank spaces at the beginning of the input string and around date and
time values unless the FX option is used. For example, t o_ti mest anp(' 2000 JUN , "YYYY MON)
andto_tinmestanp(' 2000 - JUN, 'YYYY-MON) work, butto timestanp(' 2000 JUN
"FXYYYY MON) returnsan error becauset o_ti mest anp expects only a single space. FX must be specified
asthefirst item in the template.

A separator (a space or non-letter/non-digit character) in the template string of t o_ti nestanp andto_dat e
matches any single separator in theinput string or is skipped, unlessthe FX optionisused. For example,t o_t i ne-
stanp(' 2000JUN , "YYYY///MON) andto_tinestanp(' 2000/ JUN , ' YYYY MON) work, but
to_tinmestanp('2000//JUN , 'YYYY/ MON) returns an error because the number of separators in the
input string exceeds the number of separators in the template.

If FX is specified, a separator in the template string matches exactly one character in the input string. But note
that the input string character is not required to be the same as the separator from the template string. For ex-
ample, to_tinmestanp(' 2000/ JUN , ' FXYYYY MON) works, butto ti mestanp(' 2000/ JUN ,
"FXYYYY MON) returns an error because the second space in the template string consumes the letter J from
the input string.

A TZH template pattern can match a signed number. Without the FX option, minus signs may be ambiguous, and
could beinterpreted as a separator. Thisambiguity isresolved asfollows: If the number of separators before TZHin
the template string is less than the number of separators before the minus sign in the input string, the minus signis
interpreted as part of TZH. Otherwise, the minus sign is considered to be a separator between values. For example,
to_tinmestanp(' 2000 -10', ' YYYY TZH) matches- 10toTZH, butt o_ti mest anp(' 2000 - 10",
"YYYY TZH) matches10 to TZH.

Ordinary text is allowed int o_char templates and will be output literally. You can put a substring in double
quotes to force it to be interpreted as litera text even if it contains template patterns. For example, in' " Hel | o
Year "YYYY',theYYYY will be replaced by the year data, but the single Y in Year will not be. Int o_dat e,
to_nunber,andto_ti mest anp, literal text and double-quoted strings result in skipping the number of char-
acters contained in the string; for example " XX" skips two input characters (whether or not they are XX).

Tip

Prior to PostgreSQL 12, it was possible to skip arbitrary text in the input string using non-
letter or non-digit characters. For example, to_ti nestanp(' 2000y6mid’ , "Yyyy-
MV DD) used to work. Now you can only use letter characters for this purpose. For
example, to_ti mestanp(' 2000y6mid’ , "yyyytMDDt') and to_timestam
p('2000y6nid', 'yyyy"'y"MM niDD'd"') skipy, mandd.

If you want to have a double quote in the output you must precede it with a backslash, for example ' \ " YYYY
Mont h\ "' . Backslashes are not otherwise special outside of double-quoted strings. Within a double-quoted string,
a backslash causes the next character to be taken literally, whatever it is (but this has no special effect unless the
next character is a double quote or another backslash).

Into_timestanp andt o_dat e, if the year format specification is less than four digits, e.g., YYY, and the
supplied year islessthan four digits, the year will be adjusted to be nearest to the year 2020, e.g., 95 becomes 1995.

55

Functions and Operators

e Into_tinmestanpandt o_dat e, negative years are treated as signifying BC. If you write both a negative year
and an explicit BCfield, you get AD again. An input of year zero istreated as 1 BC.

e Into_tinestanpandto_dat e, the YYYY conversion has arestriction when processing years with more than 4
digits. Y ou must use some non-digit character or template after YYYY, otherwise the year is alwaysinterpreted as 4
digits. For example (with the year 20000): t o_dat e(' 200001130', ' YYYYMVDD) will beinterpreted asa
4-digit year; instead use anon-digit separator after theyear, liket o_dat e(' 20000- 1130", ' YYYY- MVDD)
orto_dat e(' 20000Nov30', 'YYYYMoONDD).

e Into_tinmestanpandto_dat e, the CC(century) fieldisaccepted butignoredif thereisaYYY, YYYYor Y, YYY
field. If CCisused with YY or Y then the result is computed as that year in the specified century. If the century is
specified but the year is not, the first year of the century is assumed.

e Into_tinmestanpandt o_dat e, weekday names or numbers (DAY, D, and related field types) are accepted but
are ignored for purposes of computing the result. The same is true for quarter (Q) fields.

e Into_tinestanpandto_dat e, an SO 8601 week-numbering date (as distinct from a Gregorian date) can be
specified in one of two ways:

* Year, week number, and weekday: for examplet o_dat e(' 2006-42-4', '1YYY-IWID) returnsthe
date 2006- 10- 19. If you omit the weekday it is assumed to be 1 (Monday).

* Year and day of year: for examplet o_dat e(' 2006-291', '1YYY-1DDD) asoreturns2006- 10- 19.
Attempting to enter a date using a mixture of 1SO 8601 week-numbering fields and Gregorian date fields is non-

sensical, and will cause an error. In the context of an 1SO 8601 week-numbering year, the concept of a“month” or
“day of month” has no meaning. In the context of a Gregorian year, the | SO week has no meaning.

Caution

Whilet o_dat e will rgject amixture of Gregorian and | SO week-numbering datefields,t o_char
will not, since output format specificationslike YYYY- MM DD (1 YYY- 1 DDD) can be useful. But
avoid writing something like | YYY- M\t DD; that would yield surprising results near the start of the
year. (See Section 9.9.1 for more information.)

* Into_ti mest anp, millisecond (MS) or microsecond (US) fields are used as the seconds digits after the decimal
point. For examplet o_t i mest anp(' 12.3', ' SS. M5') isnot 3 milliseconds, but 300, because the conver-
sion treatsit as 12 + 0.3 seconds. So, for the format SS. MS, theinput values12. 3, 12. 30, and 12. 300 specify
the same number of milliseconds. To get three milliseconds, one must write 12. 003, which the conversion treats
as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestanp(' 15:12:02. 020.001230",
"HH24: M : SS. M5. US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds =
2.021230 seconds.

e to_char(..., 'I1D)'sday of theweek numbering matchestheext r act (i sodow from .. .) function,
butto_char(..., 'D)'sdoesnot matchextract (dow from .. .) 'sday numbering.

* to_char(interval) formatsHHand HH12 as shown on a12-hour clock, for example zero hours and 36 hours
both output as 12, while HH24 outputs the full hour value, which can exceed 23inani nt er val value.

Table 9.29 shows the template patterns available for formatting numeric values.

56

Functions and Operators

Table 9.29. Template Patternsfor Numeric For matting

Pattern Description

9 digit position (can be dropped if insignificant)
0 digit position (will not be dropped, even if insignificant)
. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (useslocale)

D decimal point (useslocale)

G group separator (uses locale)

M minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position

RNorrn Roman numeral (values between 1 and 3999)
THorth ordinal number suffix

Y shift specified number of digits (see notes)
EEEE exponent for scientific notation

Usage notes for numeric formatting:

» 0 specifiesadigit position that will always be printed, even if it contains aleading/trailing zero. 9 also specifiesa
digit position, but if it isaleading zero then it will be replaced by a space, whileif it isatrailing zero and fill mode
is specified then it will be deleted. (Fort o_nunber () , these two pattern characters are equivalent.)

« If theformat providesfewer fractional digits than the number being formatted, t o_char () will round the number
to the specified number of fractional digits.

» The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and thousands separator
characters defined by the current locale (seelc_monetary and Ic_numeric). The pattern characters period and comma
represent those exact characters, with the meanings of decimal point and thousands separator, regardless of locale.

* If no explicit provision ismade for asignint o_char () 's pattern, one column will be reserved for the sign, and
it will be anchored to (appear just left of) the number. If S appearsjust left of some9's, it will likewise be anchored
to the number.

» A signformatted using SG PL, or M isnot anchored to the number; for example,t o_char (- 12, ' M 9999')
produces' - 12' butto_char(-12, 'S9999') produces' -12'.(TheOracleimplementation does not
alow the use of M before 9, but rather requiresthat 9 precede M .)

» THdoes not convert values less than zero and does not convert fractional numbers.

» PL, SG and TH are PostgreSQL extensions.

e Int o_nunber, if non-datatemplate patternssuch asL or THare used, the corresponding number of input characters
are skipped, whether or not they match the template pattern, unless they are data characters (that is, digits, sign,
decimal point, or comma). For example, THwould skip two non-data characters.

57

Functions and Operators

e Vwitht o_char multipliestheinput valuesby 10~ n, wheren isthenumber of digitsfollowingV.Vwitht o_num
ber dividesin asimilar manner. The V can be thought of as marking the position of an implicit decimal point in
the input or output string. t 0_char andt o_nunber do not support the use of V combined with a decimal point
(e.g., 99. 9V99 isnot allowed).

» EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or modifiersother
than digit and decimal point patterns, and must be at the end of theformat string (e.g., 9. 99EEEE isavalid pattern).

* Int o_nunber (), the RN pattern converts Roman numerals (in standard form) to numbers. Input is case-insensi-
tive, so RNand r n are equivaent. RN cannot be used in combination with any other formatting patterns or modifiers
except FM whichisapplicableonly int o_char () andisignoredint o_nunber ().

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FMB9. 99 isthe 99. 99
pattern with the FMmodifier. Table 9.30 shows the modifier patterns for numeric formatting.

Table 9.30. Template Pattern Modifiersfor Numeric Formatting

M odifier Description Example

FMprefix fill mode (suppress trailing zeroes FMB9. 99
and padding blanks)

TH suffix upper case ordinal number suffix 999TH

t h suffix lower case ordinal number suffix 999t h

Table 9.31 shows some examples of the use of thet o_char function.

Table9.31.t o_char Examples

Expression Result

to_char(current _tinmestanp, 'Day, D ' Tuesday , 06 05:39:18'
D HH12:M:SS')

to_char(current _tinmestanp, 'FM ' Tuesday, 6 05:39:18'
Day, FMDD HH12: M :SS')

to _char(current tinmestanp AT TIME ZONE|' 2022- 12- 06T05: 39: 18Z' , 1SO 8601 extended
"UTC , "YYYY-MM DD'T"HH24: M : SS"Z"") format

to char(-0.1, '99.99") o= 10

to_char(-0.1, 'FMB.99") BT

to_char(-0.1, 'FMB0.99") '-0. 1

to char(0.1, '0.9") 0.1

to_char (12, '9990999.9") ' 0012. 0

to_char (12, 'FMP990999.9") '0012."

to_char (485, '999') ' 485

to_char(-485, '999') ' -485'

to _char(485, '9 9 9') ' 485

to_char (1485, '9,999') ' 1,485

to_char (1485, '9@99') ' 1 485

to _char(148.5, '999.999') ' 148. 500

to_char(148.5, 'FMP99.999') '148. 5'

58

Functions and Operators

Expression Result
to_char(148.5, 'FWM99.990") '148. 500'

to _char (148.5, '999D999') 148, 500'
to_char(3148.5, '9(099D999') 3 148, 500'
to_char (-485, '999S) ' 485-"
to_char(-485, '999M ") ' 485-"

to_char (485, '999M ") '485 '

to_char (485, ' FMB99M ') ' 485"

to_char (485, 'PL999') ' +485'

to_char (485, 'S@99') ' +485'
to_char(-485, 'S®99') ' -485'
to_char(-485, '9S@@9') ' 4-85'

to_char (-485, '999PR) ' <485>'

to_char (485, 'L999') ' DM 485"

to _char (485, 'RN) CDLXXXV'
to_char (485, ' FMRN) " CDLXXXV'
to_char (5.2, 'FMRN) "V

to_char (482, '999th") 482nd’

to_char (485, '"Good nunber:"999') ' Good nunber: 485
to_char (485. 8, "Pre: 485 Post: . 800
""Pre:"999" Post:" .999")

to_char (12, '99Vv999') 12000
to_char(12.4, '99Vv999') 12400’
to_char(12.45, '99V9') 125'

t o_char (0. 0004859, '9.99EEEE') 4. 86e- 04'

9.9. Date/Time Functions and Operators

Table 9.33 shows the available functions for date/time value processing, with details appearing in the following sub-
sections. Table 9.32 illustrates the behaviors of the basic arithmetic operators (+, *, etc.). For formatting functions,
refer to Section 9.8. Y ou should be familiar with the background information on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types. Dates and time-
stamps (with or without time zone) are all comparable, while times (with or without time zone) and intervals can only
be compared to other values of the same data type. When comparing a timestamp without time zone to a timestamp
with time zone, the former value is assumed to be given in the time zone specified by the TimeZone configuration
parameter, and is rotated to UTC for comparison to the latter value (which isaready in UTC internally). Similarly, a
date value is assumed to represent midnight in the Ti meZone zone when comparing it to a timestamp.

All the functions and operators described below that taket i me or t i mest anp inputs actually comein two variants;
onethattakestime with time zoneortinmestanp with ti me zone,andonethattakesti ne w t hout
time zoneortinmestanp w thout time zone. For brevity, these variants are not shown separately. Also,
the + and * operators come in commutative pairs (for example both dat e + i nt eger andi nt eger + dat e); we
show only one of each such pair.

59

Functions and Operators

Table 9.32. Date/Time Operators

Operator
Description
Example(s)

date +integer - date
Add anumber of daysto adate

date '2001-09-28'" + 7 - 2001-10-05

date+interval - tinmestanp
Add aninterval to adate

date '2001-09-28" + interval '1 hour' - 2001-09-28 01:00: 00

date+time - timestanp
Add atime-of-day to adate

date '2001-09-28" + tine '03:00" - 2001-09-28 03:00: 00

interval +interval - interval
Add intervals

interval '1 day' + interval "1 hour' - 1 day 01:00: 00

timestanp +interval - tinestanp
Add an interval to atimestamp

ti mestanp ' 2001-09-28 01:00' + interval '23 hours' - 2001-09-29
00: 00: 00

time+interval - tine
Add an interval to atime

time '01:00" + interval '3 hours' - 04:00:00

-interval = interval
Negate an interval

- interval '23 hours' - -23:00:00

date - date - i nteger
Subtract dates, producing the number of days elapsed

date '2001-10-01" - date '2001-09-28 -3

date- integer - date
Subtract a number of days from a date

date '2001-10-01" - 7 - 2001-09-24

date- interval - tinmestanp
Subtract an interval from a date

date '2001-09-28'" - interval '1l hour' - 2001-09-27 23:00: 00

tine-tinme - interval
Subtract times

time '05:00" - time '03:00" - 02:00:00

time-interval - tine
Subtract an interval from atime

60

Functions and Operators

Operator
Description
Example(s)

time '05:00" - interval '2 hours' - 03:00:00

timestanp- interval - tinmestanp
Subtract an interval from atimestamp

ti mestanp ' 2001-09-28 23:00' - interval '23 hours' - 2001-09-28
00: 00: 00
interval - interval - interval
Subtract intervals
interval '1 day' - interval '1 hour' - 1 day -01:00: 00

timestanp- timestanp - interval
Subtract timestamps (converting 24-hour intervalsinto days, similarly toj usti fy_hours())
ti mestanmp ' 2001-09-29 03: 00" - timestanp '2001-07-27 12: 00" - 63 days
15: 00: 00

i nterval * doubl e precision - interval
Multiply an interval by a scalar

interval '1 second" * 900 - 00: 15: 00
interval '1 day' * 21 - 21 days
interval '1 hour' * 3.5 - 03:30: 00

i nterval / doubl e precision - interval
Divide an interval by ascalar

interval "1 hour' / 1.5 - 00:40: 00

Table 9.33. Date/Time Functions

Function
Description
Example(s)

age (ti mestanp,tinestanp) - i nterval
Subtract arguments, producing a“symbolic” result that uses years and months, rather than just days
age(timestanmp '2001-04-10', tinestanp '1957-06-13") - 43 years 9 nobns
27 days

age (timestanp) - i nterval
Subtract argument from cur r ent _dat e (at midnight)

age(timestanmp '1957-06-13") - 62 years 6 nons 10 days

clock tinmestanp () - timestanp with tine zone
Current date and time (changes during statement execution); see Section 9.9.5

cl ock_timestanp() - 2019-12-23 14: 39: 53. 662522- 05

current _date - date
Current date; see Section 9.9.5

current _date - 2019-12-23

61

Functions and Operators

Function
Description
Example(s)

current _time -time with tinme zone
Current time of day; see Section 9.9.5

current _tine - 14: 39: 53. 662522- 05

current _tine(integer)tine with tinme zone
Current time of day, with limited precision; see Section 9.9.5

current _tinme(2) - 14:39:53. 66-05

current _tinestanmp - tinestanp with tinme zone
Current date and time (start of current transaction); see Section 9.9.5

current _tinestanp - 2019-12-23 14: 39: 53. 662522- 05

current _tinmestanp (integer) tinestanp with tinme zone
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

current _tinmestanp(0) - 2019-12-23 14:39:53-05

date_add (tinmestanp with tine zone,interval [,text]) -tinestanp with tine
zone

Addaninterval toati mestanp with ti ne zone, computing times of day and daylight-sav-
ings adjustments according to the time zone named by the third argument, or the current TimeZone set-
ting if that is omitted. The form with two argumentsis equivalent tothet i nestanp with tinme
zone +i nt er val operator.

dat e_add(' 2021- 10- 31 00: 00: 00+02' : : ti mest anpt z,

"1 day'::interval,
' Eur ope/ Warsaw) - 2021-10-31 23: 00: 00+00

date_bin(interval,timestanp,tinmestanp) - tinestanp
Bininput into specified interval aligned with specified origin; see Section 9.9.3
date_bin('15 minutes', tinestanp '2001-02-16 20:38:40', tinmestanp
' 2001-02-16 20:05:00') - 2001-02-16 20: 35:00

date _part (text,tinmestanp) - doubl e precision
Get timestamp subfield (equivalent to ext r act); see Section 9.9.1

date_part (' hour', tinestanp '2001-02-16 20:38:40') - 20

date_part (text,interval) - doubl e precision
Get interval subfield (equivalent to ext r act); see Section 9.9.1

date _part('month', interval '2 years 3 nonths') - 3

date_subtract (tinestanp with time zone,interval [,text]) - tinmestamp with
time zone

Subtract ani nt erval fromatimestanp with time zone, computing timesof day and day-
light-savings adjustments according to the time zone named by the third argument, or the current Time-
Zone setting if that is omitted. The form with two argumentsisequivalenttotheti mestanp with
time zone- interval operator.

dat e_subtract (' 2021-11-01 00: 00: 00+01' : : ti mest anpt z,

"1 day'::inter-
val, ' Europe/Warsaw) - 2021-10-30 22: 00: 00+00

date_trunc (text,tinestanp) - ti nestanp
Truncate to specified precision; see Section 9.9.2

62

Functions and Operators

Function
Description
Example(s)

date_trunc(' hour', timestanp '2001-02-16 20:38:40") - 2001-02-16
20: 00: 00

date_trunc (text,timestanp with tine zone,text) -tinestanp with tinme zone
Truncate to specified precision in the specified time zone; see Section 9.9.2
date_trunc('day', tinestanptz '2001-02-16 20: 38:40+00', ' Aus-

tralial/ Sydney') - 2001-02-16 13: 00: 00+00

date_trunc (text,interval) - interval
Truncate to specified precision; see Section 9.9.2

date_trunc('hour', interval '2 days 3 hours 40 mnutes') - 2 days
03: 00: 00

extract (fieldfromtinestanp) — nuneric
Get timestamp subfield; see Section 9.9.1

extract (hour fromtimestanp '2001-02-16 20:38:40') - 20

extract (fieldfrominterval) - nunmeric
Get interval subfield; see Section 9.9.1

extract(nmonth frominterval '2 years 3 nonths') - 3

isfinite(date) - bool ean
Test for finite date (not +/-infinity)

isfinite(date ' 2001-02-16") - true

isfinite(tinestanp) - bool ean
Test for finite timestamp (not +/-infinity)

isfinite(tinestanp "infinity') - fal se

isfinite(interval) - bool ean
Test for finite interval (not +/-infinity)

isfinite(interval '4 hours') - true

justify days (interval) - interval
Adjust interval, converting 30-day time periods to months

justify days(interval '1 year 65 days') - 1 year 2 nons 5 days

justify hours (interval) - interval
Adjust interval, converting 24-hour time periods to days

justify_hours(interval '50 hours 10 minutes') - 2 days 02:10: 00

justify interval (interval) - interval
Adjust interval usingj usti fy_days andj usti fy_hour s, with additional sign adjustments
justify interval (interval "1 nmon -1 hour') - 29 days 23:00: 00

localtinme - tine
Current time of day; see Section 9.9.5

localtinme - 14:39: 53. 662522

localtine(integer) »tine

63

Functions and Operators

Function
Description
Example(s)

Current time of day, with limited precision; see Section 9.9.5
localtinme(0) - 14:39:53

| ocal tinestanp - ti nestanp
Current date and time (start of current transaction); see Section 9.9.5

| ocal tinestanp - 2019-12-23 14: 39: 53. 662522

| ocal tinestanp (i nteger) - timestanp
Current date and time (start of current transaction), with limited precision; see Section 9.9.5
| ocal tinmestanp(2) - 2019-12-23 14: 39: 53. 66

make_date (year int,nonthint,dayint) - date
Create date from year, month and day fields (negative years signify BC)
make date(2013, 7, 15) - 2013-07-15

make_interval ([yearsint [,nonthsint [,weeksint [,daysint [,hoursint [,mnsint /[,
secs doubl e precision]]]]l]]) - i nterval

Createinterval from years, months, weeks, days, hours, minutes and seconds fields, each of which can
default to zero

make i nterval (days => 10) - 10 days

make_tinme (hour int,mnint,secdouble precision) - time
Create time from hour, minute and seconds fields

meke tinme(8, 15, 23.5) — 08:15:23.5

make tinmestanp (year int,nonthint,dayint,hour int,nmnint,secdouble precision
) > tinestanp
Create timestamp from year, month, day, hour, minute and seconds fields (negative years signify BC)
make_ti nestanp(2013, 7, 15, 8, 15, 23.5) - 2013-07-15 08:15:23.5

make_tinmestanptz (year int,nonthint,dayint,hour int,nmnint,secdouble preci-
sion[,tinmezonetext]) -~ tinestanp with tinme zone

Create timestamp with time zone from year, month, day, hour, minute and seconds fields (negative years

signify BC). If t i mezone isnot specified, the current time zone is used; the examples assume the ses-
siontime zoneis Eur ope/ London

make tinestanptz(2013, 7, 15, 8, 15, 23.5) - 2013-07-15 08:15:23.5+01

make tinestanptz(2013, 7, 15, 8, 15, 23.5, 'Anmerical/ New York') -
2013-07-15 13:15:23.5+01

now() - tinmestanp with time zone
Current date and time (start of current transaction); see Section 9.9.5

now() - 2019-12-23 14: 39: 53. 662522- 05

statement _tinmestanp () -tinestanp with time zone
Current date and time (start of current statement); see Section 9.9.5

statenment _ti mestanp() - 2019-12-23 14: 39: 53. 662522- 05

ti meof day () - text
Current dateand time (likecl ock_t i mest anp, but asat ext string); see Section 9.9.5

Functions and Operators

Function
Description
Example(s)

ti meof day() — Mon Dec 23 14:39:53. 662522 2019 EST

transaction_timestanp() - tinestanp with tinme zone
Current date and time (start of current transaction); see Section 9.9.5

transaction_tinestanp() - 2019-12-23 14: 39: 53. 662522- 05

to_timestanp (double precision) - tinestanp with tine zone
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone

to_timestanp(1284352323) - 2010-09-13 04: 32: 03+00

In addition to these functions, the SQL OVERLAPS operator is supported:

(startl, endl) OVERLAPS (start2, end2)
(startl, lengthl) OVERLAPS (start2, |ength2)

Thisexpression yieldstrue when two time periods (defined by their endpoints) overlap, false when they do not overlap.
The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time, or time stamp followed by
aninterval. When apair of valuesis provided, either the start or the end can be written first; OVERL APS automatically
takesthe earlier value of the pair asthe start. Each time period is considered to represent the half-openinterval st ar t
<=time <end,unlessst art and end are equa inwhich caseit represents that single time instant. This meansfor
instance that two time periods with only an endpoint in common do not overlap.

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: true

SELECT (DATE ' 2001- 02- 16'
(DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 29’
(DATE ' 2001- 10- 30'

Result: false

SELECT (DATE ' 2001- 10- 30'
(DATE ' 2001- 10- 30'

Result: true

DATE ' 2001-12-21') OVERLAPS
DATE ' 2002- 10- 30");

| NTERVAL ' 100 days') OVERLAPS
DATE ' 2002- 10- 30");

DATE ' 2001-10- 30') OVERLAPS
DATE ' 2001-10-31');

DATE ' 2001-10- 30') OVERLAPS
DATE ' 2001-10-31');

When adding an i nt er val value to (or subtracting an i nt er val value from) ati mestanp or ti nest anp
with time zone vaue the months, days, and microseconds fields of thei nt er val value are handled in turn.
First, a nonzero months field advances or decrements the date of the timestamp by the indicated number of months,
keeping the day of month the same unlessit would be past the end of the new month, in which case the last day of that
month isused. (For example, March 31 plus 1 month becomes April 30, but March 31 plus 2 months becomesMay 31.)
Then the days field advances or decrements the date of the timestamp by the indicated number of days. In both these
stepsthe local time of day is kept the same. Finally, if thereis a nonzero microseconds field, it is added or subtracted
literally. When doing arithmeticonati mestanp with tine zone vauein atime zone that recognizes DST,
thismeansthat adding or subtracting (say) i nt erval ' 1 day' doesnot necessarily have the sameresult asadding
or subtractingi nt erval ' 24 hours' . For example, with the session time zone set to Aner i ca/ Denver :

SELECT tinestanp with time zone '2005-04-02 12:00:00-07" + interval '1 day';
Resul t: 2005- 04-03 12: 00: 00- 06

65

Functions and Operators

SELECT tinestanp with time zone '2005-04-02 12:00:00-07" + interval '24
hours';
Resul t: 2005- 04-03 13: 00: 00- 06

This happens because an hour was skipped due to a change in daylight saving time at 2005- 04- 03 02: 00: 00
intime zone Aer i cal/ Denver .

Note there can be ambiguity in the nont hs field returned by age because different months have different numbers
of days. PostgreSQL's approach uses the month from the earlier of the two dates when calculating partial months. For
example, age(' 2004- 06-01', ' 2004- 04-30') usesApriltoyield1l nmon 1 day, whileusing May would
yield1l non 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform subtraction isto
convert each value to a number of seconds using EXTRACT(EPOCH FROM . ..), then subtract the results; this
produces the number of seconds between the two values. This will adjust for the number of days in each month,
timezone changes, and daylight saving time adjustments. Subtraction of date or timestamp valueswiththe®- ” operator
returns the number of days (24-hours) and hours/minutes/seconds between the values, making the same adjustments.
The age function returns years, months, days, and hours/minutes/seconds, performing field-by-field subtraction and
then adjusting for negativefield values. Thefollowing queriesillustrate the differencesin these approaches. The sample
results were produced with ti mezone = ' US/ East ern' ; thereis a daylight saving time change between the
two dates used:

SELECT EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT(EPOCH FROM ti nestanptz ' 2013-03-01 12: 00: 00');

Resul t: 10537200. 000000

SELECT (EXTRACT(EPOCH FROM ti mestanptz '2013-07-01 12:00:00') -
EXTRACT(EPOCH FROM ti nmestanptz ' 2013-03-01 12: 00:00'))
/ 60/ 60 / 24;

Resul t: 121.9583333333333333

SELECT timestanptz '2013-07-01 12:00: 00" - timestanmptz '2013-03-01 12:00: 00

Result: 121 days 23:00: 00

SELECT age(tinmestanptz '2013-07-01 12:00:00', tinestanptz '2013-03-01

12:00: 00");
Result: 4 nons

9.9.1. EXTRACT, dat e_part

EXTRACT(fi el d FROM source)

The ext ract function retrieves subfields such as year or hour from date/time values. sour ce must be a value
expression of typet i nest anp, dat e, ti me, ori nt er val . (Timestamps and times can be with or without time
zone) fi el d isanidentifier or string that selects what field to extract from the source value. Not all fields are valid
for every input data type; for example, fields smaller than a day cannot be extracted from a dat e, while fields of a
day or more cannot be extracted from at i me. Theext r act function returns values of type numeri c.

The following are valid field names:

century

The century; for i nt er val values, the year field divided by 100

66

Functions and Operators

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2000-12-16 12:21:13");
Result: 20

SELECT EXTRACT(CENTURY FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 21

SELECT EXTRACT(CENTURY FROM DATE ' 0001-01-01 AD);

Result: 1
SELECT EXTRACT(CENTURY FROM DATE ' 0001- 12-31 BC);
Result: -1
SELECT EXTRACT(CENTURY FROM | NTERVAL ' 2001 years');
Result: 20

day

The day of the month (1-31); for i nt er val values, the number of days

SELECT EXTRACT(DAY FROM TI MESTAMP ' 2001-02-16 20:38:40');

Resul t: 16
SELECT EXTRACT(DAY FROM | NTERVAL ' 40 days 1 minute');
Resul t: 40

decade

The year field divided by 10
SELECT EXTRACT(DECADE FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 200
dow
The day of the week as Sunday (0) to Saturday (6)
SELECT EXTRACT(DOW FROM Tl MESTAMP ' 2001-02-16 20: 38:40');
Result: 5
Note that ext r act 'sday of the week numbering differs from that of thet o_char (..., 'D) function.
doy
The day of the year (1-365/366)
SELECT EXTRACT(DOY FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Result: 47
epoch
Fortimestanp with tine zone values, the number of seconds since 1970-01-01 00:00:00 UTC (negative
for timestamps before that); for dat e andt i nest anp values, the nominal number of seconds since 1970-01-01

00:00:00, without regard to timezone or daylight-savingsrules; fori nt er val values, thetotal number of seconds
intheinterval

67

Functions and Operators

SELECT EXTRACT(EPCCH FROM Tl MESTAMP W TH TI ME ZONE ' 2001- 02- 16
20: 38:40.12-08");

Resul t: 982384720. 120000

SELECT EXTRACT(EPCCH FROM TI MESTAMP ' 2001- 02-16 20: 38:40.12");

Resul t: 982355920. 120000

SELECT EXTRACT(EPOCCH FROM I NTERVAL '5 days 3 hours');

Resul t: 442800. 000000

Y ou can convert an epoch valueback toat i nestanp with time zonewithto_ti mestanp:
SELECT to_ti mestanp(982384720. 12);
Resul t: 2001-02-17 04:38:40.12+00
Bewarethat applyingt o_t i mest anp to an epoch extracted from adat e ort i mest anp vaue could produce
amisleading result: the result will effectively assume that the original value had been givenin UTC, which might
not be the case.
hour
The hour field (0-23 in timestamps, unrestricted in intervals)
SELECT EXTRACT(HOUR FROM TI MESTAMP ' 2001-02-16 20:38:40');
Result: 20
i sodow
The day of the week as Monday (1) to Sunday (7)
SELECT EXTRACT(| SODOW FROM TI MESTAMP ' 2001- 02- 18 20: 38:40');
Result: 7
Thisisidentical to dow except for Sunday. This matches the |SO 8601 day of the week numbering.
i soyear
The 1SO 8601 week-numbering year that the date fallsin
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006-01-01');
Resul t: 2005
SELECT EXTRACT(| SOYEAR FROM DATE ' 2006- 01-02');
Result: 2006
Each 1SO 8601 week-numbering year begins with the Monday of the week containing the 4th of January, so in
early January or late December the SO year may be different from the Gregorian year. See the week field for
more information.
julian

The Julian Date corresponding to the date or timestamp. Timestamps that are not local midnight result in afrac-
tional value. See Section B.7 for more information.

68

Functions and Operators

SELECT EXTRACT(JULI AN FROM DATE ' 2006- 01-01');

Resul t: 2453737

SELECT EXTRACT(JULI AN FROM Tl MESTAMP ' 2006-01-01 12:00");
Resul t: 2453737. 50000000000000000000

m cr oseconds
The seconds field, including fractional parts, multiplied by 1 000 000; note that thisincludes full seconds
SELECT EXTRACT(M CROSECONDS FROM TI ME ' 17:12:28.5");
Resul t: 28500000
m 1 ennium
The millennium; for i nt er val values, the year field divided by 1000

SELECT EXTRACT(M LLENNI UM FROM Tl MESTAMP ' 2001- 02- 16 20:38:40');
Result: 3

SELECT EXTRACT(M LLENNI UM FROM | NTERVAL ' 2001 years');

Result: 2

Y earsin the 1900s are in the second millennium. The third millennium started January 1, 2001.
mlliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(M LLI SECONDS FROM TI ME ' 17:12:28.5");

Resul t: 28500. 000
m nute

The minutes field (0-59)

SELECT EXTRACT(M NUTE FROM Tl MESTAMP ' 2001- 02- 16 20:38:40');

Resul t: 38

nont h

The number of the month within the year (1-12); fori nt er val values, the number of months modulo 12 (0-11)

SELECT EXTRACT(MONTH FROM Tl MESTAMP ' 2001- 02-16 20: 38:40');
Result: 2

SELECT EXTRACT(MONTH FROM I NTERVAL ' 2 years 3 nonths');

Result: 3
SELECT EXTRACT(MONTH FROM | NTERVAL ' 2 years 13 nonths');
Result: 1

quarter

The quarter of the year (1-4) that the dateisin; fori nt er val values, the month field divided by 3 plus 1

69

Functions and Operators

SELECT EXTRACT(QUARTER FROM TI MESTAMP ' 2001- 02- 16 20: 38:40');
Result: 1

SELECT EXTRACT(QUARTER FROM | NTERVAL '1 year 6 nonths');
Result: 3

second
The seconds field, including any fractional seconds
SELECT EXTRACT(SECOND FROM Tl MESTAMP ' 2001-02-16 20:38:40');
Resul t: 40. 000000
SELECT EXTRACT(SECOND FROM TI ME '17:12:28.5");
Resul t: 28.500000

ti mezone
The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east of UTC,
negative values to zones west of UTC. (Technically, PostgreSQL does not use UTC because leap seconds are
not handled.)

ti mezone_hour
The hour component of the time zone offset

ti mezone_mi nute
The minute component of the time zone offset

week
The number of the 1SO 8601 week-numbering week of the year. By definition, SO weeks start on Mondays and
the first week of ayear contains January 4 of that year. In other words, the first Thursday of a year isin week
1 of that year.
In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or 53rd week
of the previous year, and for late-December dates to be part of the first week of the next year. For example,
2005- 01- 01 is part of the 53rd week of year 2004, and 2006- 01- 01 is part of the 52nd week of year 2005,
while2012- 12- 31 ispart of the first week of 2013. It's recommended to usethei soyear field together with
week to get consistent results.
For i nt er val vaues, the week field is simply the number of integral days divided by 7.
SELECT EXTRACT(WEEK FROM TI MESTAMP ' 2001-02-16 20: 38:40');
Result: 7
SELECT EXTRACT(WEEK FROM | NTERVAL ' 13 days 24 hours');
Result: 1

year

Theyear field. Kegpin mind thereisno 0 AD, so subtracting BC years from AD years should be done with care.

70

Functions and Operators

SELECT EXTRACT(YEAR FROM TI MESTAMP ' 2001- 02-16 20: 38:40');
Resul t: 2001

When processing an i nt er val value, the ext ract function produces field values that match the interpretation
used by the interval output function. This can produce surprising results if one starts with a non-normalized interval
representation, for example:

SELECT | NTERVAL ' 80 minutes';

Resul t: 01:20: 00

SELECT EXTRACT(M NUTES FROM | NTERVAL ' 80 mi nutes');
Result: 20

Note

When the input value is +/-Infinity, ext r act returns +/-Infinity for monotonically-increasing fields
(epoch,julian,year,i soyear,decade, century,andni | | enni umforti mestanp in-
puts, epoch, hour, day, year, decade, century, and ni | | enni umfori nt er val inputs).
For other fields, NULL is returned. PostgreSQL versions before 9.6 returned zero for all cases of in-
finite input.

Theextract functionis primarily intended for computational processing. For formatting date/time values for dis-
play, see Section 9.8.

Thedat e_part functionis modeled on the traditional Ingres equivalent to the SQL-standard function ext r act :

date part('field , source)
Notethat herethef i el d parameter needsto beastring value, not aname. Thevalidfield namesfor dat e_part are

the same as for ext r act . For historical reasons, the dat e_part function returns values of type doubl e pr e-
ci si on. Thiscanresult in aloss of precision in certain uses. Using ext r act isrecommended instead.

SELECT date_part (' day', TIMESTAMP ' 2001-02-16 20: 38:40');

Result: 16
SELECT date_part (' hour', INTERVAL '4 hours 3 mnutes');
Result: 4

9.9.2.date _trunc

Thefunctiondat e_t r unc isconceptually similar to thet r unc function for numbers.

date_trunc(field, source [, tine_zone])

sour ce isavaueexpression of typet i mest anp,ti nestanp with tine zone,orinterval . (Vauesof
typedat e and t i me are cast automatically tot i nest anp ori nt erval , respectively.) f i el d selectsto which
precision to truncate the input value. Thereturn valueislikewise of typet i mest anp, ti nestanp with tine
zone, ori nterval, and it has al fields that are less significant than the selected one set to zero (or one, for day
and month).

71

Functions and Operators

Valid valuesfor fi el d are:

m cr oseconds
m |l liseconds
second

m nut e

hour

day

week

nmont h
quarter

year

decade
century

m || enni um

When the input value is of typeti mestanp with time zone, the truncation is performed with respect to a
particular time zone; for example, truncation to day produces a value that is midnight in that zone. By default, trun-
cation is done with respect to the current TimeZone setting, but the optional t i me_zone argument can be provided
to specify adifferent time zone. The time zone name can be specified in any of the ways described in Section 8.5.3.

A time zone cannot be specified when processing ti nestanp without time zone orinterval inputs.
These are always taken at face value.

Examples (assuming the local time zoneis Arrer i ca/ New_Yor k):

SELECT date_trunc(' hour', TIMESTAWP '2001-02-16 20:38:40');

Resul t: 2001-02-16 20: 00: 00

SELECT date_trunc('year', TINMESTAWVP '2001-02-16 20:38:40');

Result: 2001-01-01 00: 00: 00

SELECT date_trunc('day', TIMESTAMP WTH TI ME ZONE ' 2001- 02- 16 20: 38: 40+00') ;
Result: 2001-02-16 00: 00: 00- 05

SELECT date_trunc('day', TIMESTAMP WTH TI ME ZONE ' 2001- 02- 16 20: 38: 40+00'
"Australial/ Sydney');

Result: 2001-02-16 08:00: 00- 05

SELECT date_trunc(' hour', |INTERVAL '3 days 02:47:33");

Result: 3 days 02:00: 00

9.9.3.date _bin

The function dat e_bi n “bins’ the input timestamp into the specified interval (the stride) aligned with a specified
origin.

date_bin(stride, source, origin)

sour ce isavalueexpression of typet i nestanporti nestanp with ti me zone. (Vauesof typedat e are
cast automatically tot i mest anp.) stri de isavaue expression of typei nt er val . Thereturn vaueis likewise
of typetinestanportinestanp with tine zone, and it marks the beginning of the bin into which the
sour ce isplaced.

Examples:

72

Functions and Operators

SELECT date_bin('15 m nutes', TIMESTAMP '2020-02-11 15:44:17', Tl MESTAWP
'2001-01-01");

Resul t: 2020-02-11 15:30:00

SELECT date_bin('15 m nutes', TIMESTAMP '2020-02-11 15:44:17', Tl MESTAWP
'2001-01-01 00:02:30");

Result: 2020-02-11 15:32:30

In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous dat e_t r unc call, but the
differenceisthat dat e_bi n can truncate to an arbitrary interval.

The st ri de interval must be greater than zero and cannot contain units of month or larger.

9.9.4. AT TI ME ZONE and AT LOCAL

The AT Tl ME ZONE operator converts time stamp without time zone to/from time stamp with time zone, andt i e
with time zone valuesto different time zones. Table 9.34 shows its variants.

Table9.34. AT TI ME ZONE and AT LOCAL Variants

Operator
Description
Example(s)

ti mestanp without tinme zone AT TI ME ZONEzone -~ tinmestanp with tinme zone
Converts given time stamp without time zone to time stamp with time zone, assuming the given value is
in the named time zone.
ti mestanp ' 2001-02-16 20:38:40" at tine zone 'Americal Denver' -
2001- 02- 17 03: 38: 40+00

ti mestanp without tinme zone AT LOCAL - tinestanp with tinme zone
Converts given time stamp without time zone to time stamp with the session's Ti meZone vaue astime
zone.

ti mestanp ' 2001-02-16 20: 38: 40" at |ocal - 2001-02-17 03: 38: 40+00

tinmestanp with tinme zone AT TIME ZONEzone - tinestanp w thout tine zone
Converts given time stamp with time zone to time stamp without time zone, as the time would appear in
that zone.
timestanp with tinme zone '2001-02-16 20:38:40-05" at tine zone 'Ameri -

cal/ Denver' - 2001-02-16 18:38: 40

timestanmp with time zone AT LOCAL - timestanp without tine zone
Converts given time stamp with time zone to time stamp without time zone, as the time would appear
with the session's Ti meZone value as time zone.
tinmestanp with tinme zone '2001-02-16 20: 38:40-05' at |ocal - 2001-02-16
18: 38: 40

time with time zone AT TIME ZONEzone -~ tine with tine zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses the currently
active UTC offset for the named destination zone.

time with tinme zone '05:34:17-05' at tine zone 'UTC - 10: 34: 17+00

time with time zone AT LOCAL - tinme with tine zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses the currently
active UTC offset for the session's Ti neZone value.

73

Functions and Operators

Operator
Description
Example(s)
Assuming the session's Ti meZone isset to UTC:
time with tinme zone '05:34:17-05" at l|local - 10:34:17+00

In these expressions, the desired time zone zone can be specified either asatext value (e.g.,' Aneri ca/ Los_An-
gel es') orasaninterval (e.g.,| NTERVAL ' - 08: 00'). Inthetext case, atime zone name can be specified in any
of the ways described in Section 8.5.3. The interval case is only useful for zones that have fixed offsets from UTC,
so it isnot very common in practice.

The syntax AT LOCAL may be used as shorthand for AT TI ME ZONE | ocal , wherel ocal isthe session's
Ti meZone value.

Examples (assuming the current TimeZone setting is Arer i ca/ Los_Angel es):

SELECT Tl MESTAMP ' 2001-02-16 20:38:40' AT TIME ZONE ' Aneri cal/ Denver';

Result: 2001-02-16 19: 38:40-08

SELECT TI MESTAMP WTH TI ME ZONE ' 2001-02- 16 20:38:40-05' AT TI ME ZONE
" Arer i ca/ Denver' ;

Result: 2001-02-16 18:38:40

SELECT TI MESTAMP ' 2001- 02-16 20:38:40' AT TIME ZONE ' Asi a/ Tokyo' AT TI ME ZONE
" Aneri ca/ Chi cago' ;

Result: 2001-02-16 05:38: 40

SELECT TI MESTAMP WTH TI ME ZONE ' 2001- 02- 16 20: 38: 40-05' AT LOCAL;

Result: 2001-02-16 17:38:40

SELECT TI MESTAMP WTH TI ME ZONE ' 2001- 02- 16 20: 38:40-05' AT TIME ZONE ' +05';

Result: 2001-02-16 20:38:40

SELECT TIME WTH TI ME ZONE ' 20: 38: 40-05' AT LOCAL;

Result: 17:38:40

Thefirst example adds atime zone to avalue that lacksit, and displays the value using the current Ti neZone setting.
The second example shifts the time stamp with time zone value to the specified time zone, and returns the value
without a time zone. This allows storage and display of values different from the current Ti neZone setting. The
third example converts Tokyo time to Chicago time. The fourth example shifts the time stamp with time zone value
to the time zone currently specified by the Ti meZone setting and returns the value without a time zone. The fifth
example demonstrates that the sign in a POSI X -style time zone specification has the opposite meaning of the signin
an 1SO-8601 datetime literal, as described in Section 8.5.3 and Appendix B.

Thesixth exampleisacautionary tale. Dueto thefact that thereisno date associated with theinput val ue, the conversion
is made using the current date of the session. Therefore, this static example may show a wrong result depending on
the time of the year it isviewed because' Aneri ca/ Los_Angel es' observes Daylight Savings Time.

Thefunctiont i nezone(zone, ti nestanp) isequivaent tothe SQL-conforming constructti nest anp AT
TI ME ZONE zone.

Thefunctiont i nezone(zone, tine) isequivaent tothe SQL-conforming constructti me AT Tl ME ZONE
zone.

Thefunctiont i mrezone(ti nest anp) isequivaent to the SQL-conforming construct t i mest anp AT LOCAL.

Thefunctionti mezone(ti me) isequivalent to the SQL-conforming constructti me AT LOCAL.

9.9.5. Current Date/Time

74

Functions and Operators

PostgreSQL providesanumber of functionsthat return values related to the current date and time. These SQL -standard
functions all return values based on the start time of the current transaction:

CURRENT_DATE

CURRENT_TI ME

CURRENT_TI MESTAMP

CURRENT _TI ME(pr eci si on)
CURRENT _TI MESTAMP(pr eci si on)
LOCALTI ME

LOCALTI MESTAWP

LOCALTI ME(pr eci si on)

LOCALTI MESTAMP(pr eci si on)

CURRENT _TI ME and CURRENT _TI MESTAMP deliver values with time zone; LOCALTI ME and LOCALTI MES-
TAMP deliver values without time zone.

CURRENT _TI Mg, CURRENT _TI MESTAMP, LOCALTI ME, and LOCALTI MESTAMP can optionally take aprecision
parameter, which causesthe result to be rounded to that many fractional digitsin the secondsfield. Without aprecision
parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TI ME;
Resul t: 14:39:53. 662522- 05

SELECT CURRENT_DATE;

Resul t: 2019-12- 23

SELECT CURRENT_TI MESTAMP;

Resul t: 2019-12-23 14: 39: 53. 662522- 05
SELECT CURRENT_TI MESTAMP(2) ;

Resul t: 2019-12-23 14: 39: 53. 66- 05
SELECT LOCALTI MESTAVP;

Resul t: 2019-12-23 14: 39: 53. 662522

Since these functions return the start time of the current transaction, their values do not change during the transaction.
Thisisconsidered afeature: the intent isto allow asingle transaction to have a consistent notion of the “ current” time,
so that multiple modifications within the same transaction bear the same time stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functionsthat return the start time of the current statement, aswell asthe actual current time
at the instant the function is called. The complete list of non-SQL-standard time functionsis:

transaction_ti nestanp()
statenent _timestanp()
cl ock_ti mestanmp()

ti meof day()

now()

75

Functions and Operators

transaction_tinestanp() isequivaent to CURRENT TI MESTAMP, but is named to clearly reflect what it
returns. st at ement _t i mest anp() returns the start time of the current statement (more specifically, the time of
receipt of the latest command message from theclient). st at ement _ti nest anp() andtransacti on_ti me-
st anp() return the same value during the first command of atransaction, but might differ during subsequent com-
mands. cl ock_ti mest anp() returnsthe actual current time, and therefore its value changes even within asingle
SQL command. t i neof day() is a historical PostgreSQL function. Like cl ock_ti mest anp(), it returns the
actual current time, but as aformatted t ext string rather thanati nestanp with ti me zone vaue now()
isatraditional PostgreSQL equivalenttot ransacti on_ti mestanp().

All the date/time data types also accept the specia literal value now to specify the current date and time (again,
interpreted as the transaction start time). Thus, the following three all return the same resullt:

SELECT CURRENT_TI MESTAMP;
SELECT now();
SELECT TI MESTAMP 'now ; -- but see tip bel ow

Tip

Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for atable column. The system will convert nowto at i nest anp as soon as the constant is
parsed, so that when the default value is needed, the time of the table creation would be used! Thefirst
two forms will not be evaluated until the default value is used, because they are function calls. Thus
they will givethe desired behavior of defaulting to the time of row insertion. (See also Section 8.5.1.4.)

9.9.6. Delaying Execution

The following functions are available to delay execution of the server process.

pg_sl eep (doubl e precision)
pg_sleep_for (interval)
pg_sleep_until (timestanp with time zone)

pg_sl eep makesthe current session's process sleep until the given number of seconds have elapsed. Fractional-sec-
ond delays can be specified. pg_sl| eep_f or isaconvenience function to allow the sleep time to be specified asan
i nterval .pg_sl eep_until isaconveniencefunction for when aspecific wake-up timeisdesired. For example:

SELECT pg_sl eep(1.5);
SELECT pg_sleep for('5 minutes');
SELECT pg_sleep_until ('tonmorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such as
server load. In particular, pg_sl eep_unti | isnot guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

76

Functions and Operators

Warning

Make sure that your session does not hold more locks than necessary when calling pg_sl eep or its
variants. Otherwise other sessions might have to wait for your sleeping process, slowing down the
entire system.

9.10. Enum Support Functions

For enum types (described in Section 8.7), there are several functions that allow cleaner programming without hard-
coding particular values of an enumtype. Thesearelisted in Table 9.35. The exampl es assume an enum type created as.

CREATE TYPE rai nbow AS ENUM ('red', 'orange', 'yellow , 'green', 'blue',
"purple');

Table 9.35. Enum Support Functions

Function
Description
Example(s)

enum first (anyenum) - anyenum
Returns the first value of the input enum type.

enum first(null::rainbow) - red

enum | ast (anyenum) - anyenum
Returns the last value of the input enum type.

enum | ast (null::rainbow - purple

enum_r ange (anyenum) - anyarray
Returns all values of the input enum type in an ordered array.

enum range(nul |l ::rai nbow) - {red, orange, yel |l ow, green, bl ue, pur pl e}

enum r ange (anyenum anyenum) — anyarray
Returns the range between the two given enum values, as an ordered array. The values must be from the
same enum type. If the first parameter is null, the result will start with the first value of the enum type. If
the second parameter is null, the result will end with the last value of the enum type.

enum range(' orange' ::rainbow, 'green'::rainbow) - {orange,yell ow, green}
enum range(NULL, 'green'::rainbow - {red, orange, yell ow, green}
enum range(' orange'::rai nbow, NULL) - {orange, yel | ow, green, bl ue, purpl e}

Notice that except for the two-argument form of enum r ange, these functions disregard the specific value passed
to them; they care only about its declared data type. Either null or a specific value of the type can be passed, with the
same result. It is more common to apply these functions to a table column or function argument than to a hardwired
type name as used in the examples.

9.11. Geometric Functions and Operators

The geometric types poi nt, box, | seg, | i ne, pat h, pol ygon, andci r cl e have alarge set of native support
functions and operators, shown in Table 9.36, Table 9.37, and Table 9.38.

77

Functions and Operators

Table 9.36. Geometric Operators

Operator
Description
Example(s)

geonetric_type+point - geonetric_type
Adds the coordinates of the second poi nt to those of each point of the first argument, thus performing
trandation. Available for poi nt, box, path,circl e.

box '(1,1),(0,0)" + point '(2,0)" - (3,1),(2,0)

path +path - path
Concatenates two open paths (returns NULL if either path is closed).
path "[(0,0),(1,1)]" + path "[(2,2),(3,3),(4,4]" -[(0,0),(1,1),(2,2),
(3,3),(4,4)]

geonetric_type- point - geonetric_type
Subtracts the coordinates of the second poi nt from those of each point of the first argument, thus per-
forming trandation. Available for poi nt , box, pat h,circl e.

box '(1,1),(0,0)" - point '(2,0)" - (-1,1),(-2,0)

geonetric_type* point - geonetric_type
Multiplies each point of the first argument by the second poi nt (treating a point as being a complex
number represented by real and imaginary parts, and performing standard complex multiplication). If one
interprets the second poi nt asavector, thisis equivalent to scaling the object's size and distance from
the origin by the length of the vector, and rotating it counterclockwise around the origin by the vector's
angle from the x axis. Available for poi nt , box,2pat h,circl e.

path ' ((0,0),(1,0),(1,1))" * point '(3.0,0)" - ((0,0),(3,0),(3,3))

path ' ((0,0),(1,0),(1,1))" * point(cosd(45), sind(45)) - ((0,0),
(0.7071067811865475, 0. 7071067811865475), (0, 1. 414213562373095))

geonetric_type/ point - geonetric_type
Divides each point of the first argument by the second poi nt (treating a point as being a complex num-
ber represented by real and imaginary parts, and performing standard complex division). If one interprets
the second poi nt asavector, thisis equivalent to scaling the object's size and distance from the origin
down by the length of the vector, and rotating it clockwise around the origin by the vector's angle from
the x axis. Available for poi nt , box,2pat h,circl e.

path '((0,0),(1,0),(1,1))" / point '(2.0,0)" - ((0,0),(0.5,0),
(0.5,0.5))

path ' ((0,0),(1,0),(1,1))" / point(cosd(45), sind(45)) - ((0,0),
(0.7071067811865476, -0. 7071067811865476), (1. 4142135623730951, 0))

@ @geonetric_type - doubl e precision
Computesthe total length. Availablefor | seg, pat h.

@@path '[(0,0),(1,0),(1, 1] -2

@ageonetric_type - point
Computes the center point. Available for box, | seg, pol ygon,circl e.
@ box '(2,2),(0,0)" - (1,1)

#geonetric_type - integer
Returns the number of points. Available for pat h, pol ygon.

78

Functions and Operators

Operator
Description
Example(s)

path '((1,0),(0,1),(-1,0))" -3

geonetric_type#geonetric_type - point
Computes the point of intersection, or NULL if thereisnone. Availablefor | seg, | i ne.
lseg '[(0,0),(1,1)]" # Iseg '[(1,0),(0,1)]" - (0.5,0.5)

box # box - box
Computes the intersection of two boxes, or NULL if thereis none.

box '(2,2),(-1,-1)" # box '(1,1),(-2,-2)' -(1,1),(-1,-1)

geonetric_type ## geonetric_type - point
Computes the closest point to the first object on the second object. Available for these pairs of types:
(poi nt , box), (poi nt, | seq), (poi nt,line), (I seg, box), (I seq, | seq), (Iine, | seq).

point '(0,0)" ## Iseg '[(2,0),(0,2)]' - (1,1)

geonetric_type<->geonetric_type - doubl e precision
Computes the distance between the objects. Available for all seven geometric types, for all combinations
of poi nt with another geometric type, and for these additional pairs of types: (box, | seqg), (I seg,
I i ne), (pol ygon, ci rcl e) (and the commutator cases).

circle '<(0,0),1> <->circle '<(5,0),1> -3

geonetric_type @ geonetric_type - bool ean
Doesfirst object contain second? Available for these pairs of types: (box, poi nt), (box, box), (pat h,
poi nt), (pol ygon, poi nt), (pol ygon, pol ygon), (ci rcl e, poi nt),(circl e,circle).

circle '<(0,0),2> @ point '"(1,1)" -t

geonetric_type <@geonetric_type - bool ean
Isfirst object contained in or on second? Available for these pairs of types. (poi nt , box), (poi nt,
I seq), (poi nt,line), (point, pat h), (poi nt, pol ygon), (poi nt,ci rcl e), (box, box),
(I seqg, box), (I seqg, | i ne), (pol ygon, pol ygon), (circl e, circle).

point '(1,1)" <@circle '<(0,0),2> -t

geonetric_type & geonetric_type - bool ean
Do these objects overlap? (One point in common makes this true.) Available for box, pol ygon, ci r -
cle.

box '(1,1),(0,0)" && box '(2,2),(0,0)" -t

geonetric_type <<geonetric_type - bool ean
Isfirst object strictly left of second? Available for poi nt , box, pol ygon, circl e.

circle '<(0,0),1> << circle "<(5,0),1> -t

geonetric_type >>geonetric_type - bool ean
Isfirst object strictly right of second? Available for poi nt , box, pol ygon, circl e.

circle '<(5,0),1> >>circle '"<(0,0),1> -t

geonetric_type & geonetric_type - bool ean
Doesfirst object not extend to the right of second? Available for box, pol ygon, ci rcl e.

box '(1,1),(0,0)" &< box '(2,2),(0,0)" -t

geonetric_type & geonetric_type - bool ean

79

Functions and Operators

Operator
Description
Example(s)

Doesfirst object not extend to the left of second? Available for box, pol ygon, ci rcl e.
box '(3,3),(0,0)" & box '(2,2),(0,0)" -t

geonetric_type<<| geonetric_type - bool ean
Isfirst object strictly below second? Available for poi nt , box, pol ygon, circl e.

box ' (3,3),(0,0)' <<| box '(5,5),(3,4)" -t

geonetric_type|>>geonetric_type - bool ean
Isfirst object strictly above second? Available for poi nt , box, pol ygon, ci rcl e.

box ' (5,5),(3,4)" |>> box '(3,3),(0,0)" -t

geornetric_type &<| geonetric_type - bool ean
Doesfirst object not extend above second? Available for box, pol ygon,circl e.

box '(1,1),(0,0)" &<| box '(2,2),(0,0)" -t

geonetric_type| & geonetric_type - bool ean
Doesfirst object not extend below second? Available for box, pol ygon, circl e.

box '(3,3),(0,0)" |& box '(2,2),(0,0)" -t

box <* box - bool ean
Isfirst object below second (allows edges to touch)?

box ' ((1,1),(0,0))" <A box '((2,2),(1,1))" -t

box >* box - bool ean
Isfirst object above second (allows edges to touch)?

box ' ((2,2),(1,1))" > box '((1,1),(0,0))" -t

geonetric_type ?#geonetric_type - bool ean
Do these objects intersect? Available for these pairs of types: (box, box), (I seg, box), (I seg, | seg),
(I seg,line),(line, box),(line,line), (path,path).

Iseg '[(-1,0),(1,0)]" ?# box '(2,2),(-2,-2)" >t

?- line = bool ean

?- | seg - bool ean
Isline horizontal ?

?- Iseg '"[(-1,0),(1,0)]" >t

poi nt ?- poi nt - bool ean
Are points horizontally aligned (that is, have samey coordinate)?

point '(1,0)' ?- point '(0,0)" -t

?| I'i ne - bool ean

?| I seg - bool ean
Isline vertical ?

2] 1seg '[(-1,0),(1,0)]" - f

poi nt ?| point - bool ean
Are points vertically aligned (that is, have same x coordinate)?

80

Functions and Operators

Operator
Description
Example(s)

point '(0,1)" ?| point '(0,0)" -t

line?-] line - bool ean

| seg ?-| | seg — bool ean
Are lines perpendicular?

Iseg '[(0,0),(0,1)]" ?-| Iseg '[(0,0),(2,0)]" -t

line?|| Iine - bool ean

I seg?|| | seg - bool ean
Arelines paralld?

I'seg "[(-1,0),(1,0]" ?|| Iseg "[(-1,2),(1,2)]" -t

geonetric_type ~=geonetric_type - bool ean
Are these objects the same? Available for poi nt , box, pol ygon, circl e.
polygon " ((0,0),(1,1))" ~= polygon ' ((1,1),(0,0))" —t

&Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallél to the axes. Hence the box's
sizeisnot preserved, as a true rotation would do.

Caution

Note that the “same as’ operator, ~=, represents the usual notion of equality for the poi nt, box,
pol ygon,andci r cl e types. Some of the geometric types also have an = operator, but = compares
for equal areas only. The other scalar comparison operators (<= and so on), where available for these
types, likewise compare areas.

Note

Before PostgreSQL 14, the point is strictly below/above comparison operators poi nt <<| poi nt
and poi nt | >> poi nt wererespectively called < and >". These names are till available, but are
deprecated and will eventually be removed.

Table 9.37. Geometric Functions

Function
Description
Example(s)

area (geonetric_type) - doubl e precision
Computes area. Available for box, pat h, ci r cl e. A pat h input must be closed, else NULL isre-
turned. Also, if the pat h is self-intersecting, the result may be meaningless.

area(box '(2,2),(0,0)') - 4

center (geonetric_type) - point
Computes center point. Available for box, ci rcl e.

center(box '(1,2),(0,0)") - (0.5,1)

81

Functions and Operators

Function
Description
Example(s)

di agonal (box) - | seg
Extracts box's diagonal as aline segment (sameas| seg(box)).

di agonal (box '(1,2),(0,0)') -[(1,2),(0,0)]

di ameter (circle) - doubl e precision
Computes diameter of circle.

di aneter(circle '<(0,0),2>) - 4

hei ght (box) - doubl e preci sion
Computes vertical size of box.

hei ght (box ' (1,2),(0,0)") - 2

i scl osed (path) - bool ean
I's path closed?

i sclosed(path '"((0,0),(1,1),(2,0))") >t

i sopen (path) - bool ean
I's path open?
i sopen(path '[(0,0),(1,1),(2,0)]") -t

| ength (geonetric_type) - doubl e precision
Computes the total length. Availablefor | seg, pat h.

[ength(path '((-1,0),(1,0))') - 4

npoi nts (geonetric_type) - i nteger
Returns the number of points. Available for pat h, pol ygon.
npoi nts(path '[(0,0),(1,1),(2,0)]') -3

pcl ose (path) - path
Converts path to closed form.

pclose(path '[(0,0),(1,1),(2,0)]"') -((0,0),(1,1),(2,0))

popen (path) - path
Converts path to open form.
popen(path ' ((0,0),(1,1),(2,0))") -[(0,0),(1,1),(2,0)]

radi us (circle) - doubl e precision
Computes radius of circle.

radius(circle '<(0,0),2>) -2

sl ope (poi nt, poi nt) » doubl e precision
Computes slope of aline drawn through the two points.

sl ope(point '(0,0)', point '(2,1)") - 0.5

wi dt h (box) - doubl e preci sion
Computes horizontal size of box.

wi dt h(box ' (1,2),(0,0)") -1

82

Functions and Operators

Table 9.38. Geometric Type Conversion Functions

Function
Description
Example(s)

box (circle) - box
Computes box inscribed within the circle.
box(circle '<(0,0),2>) - (1.414213562373095, 1. 414213562373095),
(-1.414213562373095, -1.414213562373095)

box (poi nt) - box
Converts point to empty box.

box(point '(1,0)") - (1,0),(1,0)

box (poi nt, poi nt) - box
Converts any two corner points to box.

box(point '(0,1)", point '(1,0)') -(1,1),(0,0)

box (pol ygon) - box
Computes bounding box of polygon.

box(polygon '((0,0),(1,1),(2,0))") -(2,1),(0,0)

bound_box (box, box) - box
Computes bounding box of two boxes.

bound_box(box ' (1,1),(0,0)", box '(4,4),(3,3)") - (4, 4),(0,0)

circle(box) -circle
Computes smallest circle enclosing box.

circle(box '(1,1),(0,0)') - <(0.5,0.5),0.7071067811865476>

circle(point,double precision) >circle
Constructs circle from center and radius.

circle(point '(0,0)', 2.0) - <(0,0), 2>

circle(polygon) - circle
Converts polygon to circle. The circle's center is the mean of the positions of the polygon's points, and
the radiusis the average distance of the polygon's points from that center.

circle(polygon '((0,0),(1,3),(2,0))') -<(1,1), 1.6094757082487299>

l'ine(point,point)-1line
Converts two points to the line through them.
line(point '(-1,0)', point '(1,0)') -{0,-1,0}

| seg (box) - | seg
Extracts box's diagonal as a line segment.

I seg(box ' (1,0),(-1,0)') - [(1,0),(-1,0)]

| seg (point,point) - |seg
Constructs line segment from two endpoints.

I seg(point '(-1,0)', point '(1,0)') -[(-1,0),(1,0)]

pat h (pol ygon) - path

83

Functions and Operators

Function
Description
Example(s)

Converts polygon to a closed path with the same list of points.
pat h(pol ygon ' ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

poi nt (doubl e preci sion,doubl e precision) - point
Constructs point from its coordinates.

poi nt (23. 4, -44.5) - (23.4,-44.5)

poi nt (box) - poi nt
Computes center of box.
poi nt (box '(1,0),(-1,0)") - (0,0)

poi nt (circle) - point
Computes center of circle.
point(circle '<(0,0),2>) - (0,0)

poi nt (I seg) - poi nt
Computes center of line segment.
point(lseg '[(-1,0),(1,0)]") - (0,0)

poi nt (pol ygon) - poi nt
Computes center of polygon (the mean of the positions of the polygon's points).
poi nt (pol ygon ' ((0,0),(1,1),(2,0))") - (1,0.3333333333333333)

pol ygon (box) - pol ygon
Converts box to a4-point polygon.
pol ygon(box ' (1,1),(0,0)") - ((0,0),(0,1),(1,1),(1,0))

pol ygon (circle) - pol ygon
Converts circle to a 12-point polygon.
pol ygon(circle '<(0,0),2>) - ((-2,0),
(-1.7320508075688774, 0. 9999999999999999) ,
(-1.0000000000000002, 1. 7320508075688772) ,
(-1.2246063538223773e- 16, 2), (0. 9999999999999996, 1. 7320508075688774) ,
(1.732050807568877, 1. 0000000000000007), (2, 2. 4492127076447545e- 16),
(1.7320508075688776, - 0. 9999999999999994) ,
(1. 0000000000000009, - 1. 7320508075688767) ,
(3.673819061467132e- 16, - 2), (-0.9999999999999987, - 1. 732050807568878) ,
(-1.7320508075688767, - 1. 0000000000000009))

pol ygon (i nteger,circle) - pol ygon
Converts circle to an n-point polygon.
pol ygon(4, circle '<(3,0),1>) - ((2,0),(3,1),
(4, 1.2246063538223773e-16), (3,-1))

pol ygon (path) - pol ygon
Converts closed path to a polygon with the same list of points.

pol ygon(path * ((0,0),(1,1),(2,0))") - ((0,0),(1,1),(2,0))

Functions and Operators

It is possible to access the two component numbers of apoi nt asthough the point were an array with indexes 0 and
1. For example, if t . pisapoi nt columnthen SELECT p[0] FROM t retrievesthe X coordinate and UPDATE
t SET p[1l] = ... changestheY coordinate. In the same way, a value of type box or | seg can be treated
as an array of two poi nt values.

9.12. Network Address Functions and Opera-
tors

The IP network address types, ci dr and i net , support the usual comparison operators shown in Table 9.1 as well
as the specialized operators and functions shown in Table 9.39 and Table 9.40.

Any ci dr valuecan becasttoi net implicitly; therefore, the operators and functions shown below as operating on
i net alsowork onci dr values. (Where there are separate functionsfor i net and ci dr , it is because the behavior
should be different for the two cases.) Also, it ispermittedto cast ani net valuetoci dr . When thisis done, any bits
to theright of the netmask are silently zeroed to create avalid ci dr value.

Table 9.39. |P Address Operators

Operator
Description
Example(s)

i net <<inet - bool ean
I's subnet strictly contained by subnet? This operator, and the next four, test for subnet inclusion. They
consider only the network parts of the two addresses (ignoring any bits to the right of the netmasks) and
determine whether one network isidentical to or a subnet of the other.

inet '192.168.1.5 << inet '192.168.1/24" -t
inet '192.168.0.5 << inet '192.168.1/24" - f
inet '192.168.1/24' << inet '192.168.1/24" - f

i net <<=inet - bool ean
I's subnet contained by or equal to subnet?

inet '192.168.1/24' <<= inet '192.168.1/24" -t

i net >>inet - bool ean
Does subnet strictly contain subnet?

inet '192.168.1/24' >> inet '192.168.1.5" -t

i net >>=inet - bool ean
Does subnet contain or equal subnet?

inet '192.168.1/24' >>= inet '192.168.1/24' -t

i net &i net - bool ean
Does either subnet contain or equal the other?

inet '192.168.1/24' && inet '192.168.1.80/28 -t
inet '192.168.1/24'" && inet '192.168.2.0/28 f

~inet - inet
Computes bitwise NOT.

~ inet '192.168.1.6" - 63.87.254. 249

85

Functions and Operators

Operator
Description
Example(s)

i net &i net - inet
Computes bitwise AND.

inet '192.168.1.6" & inet "0.0.0.255 - 0.0.0.6

i net | i net - inet
Computes bitwise OR.

inet '192.168.1.6' | inet '0.0.0.255 - 192.168.1.255

i net +bigint - inet
Adds an offset to an address.
inet '192.168.1.6' + 25 - 192.168.1.31

bi gi nt +inet - inet
Adds an offset to an address.

200 + inet ':: ffff:fff0O:1" - ::ffff:255.240.0.201

i net - bigint - inet
Subtracts an offset from an address.
inet '192.168.1.43" - 36 - 192.168.1.7

i net - i net - bi gint
Computes the difference of two addresses.
inet '192.168.1.43" - inet '192.168.1.19" - 24

inet '::1'" - inet "::ffff:1'" - -4294901760

Table 9.40. | P Address Functions

Function
Description
Example(s)

abbrev (i net) - text
Creates an abbreviated display format astext. (Theresult isthe same asthei net output function pro-
duces; it is“abbreviated” only in comparison to the result of an explicit cast tot ext , which for histori-
cal reasons will never suppress the netmask part.)

abbrev(inet '10.1.0.0/32") - 10.1.0.0

abbrev (cidr) - text
Creates an abbreviated display format as text. (The abbreviation consists of dropping all-zero octets to
the right of the netmask; more examples arein Table 8.22.)

abbrev(cidr '10.1.0.0/16") - 10.1/16

br oadcast (inet) - inet
Computes the broadcast address for the address's network.

broadcast (i net '192.168.1.5/24") - 192.168. 1. 255/ 24

fam ly (inet) - integer
Returns the address's family: 4 for |Pv4, 6 for IPv6.
famly(inet '::1') -6

86

Functions and Operators

Function
Description
Example(s)

host (i net) - text
Returns the | P address as text, ignoring the netmask.

host (i net '192.168.1.0/24") - 192.168.1.0

host mask (i net) - i net
Computes the host mask for the address's network.

host mask(i net '192.168.23.20/30') - 0.0.0.3

i net_nerge (inet,inet) - cidr
Computes the smallest network that includes both of the given networks.

inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24') -
192.168. 0.0/ 22

inet_sane famly (inet,inet) - bool ean
Tests whether the addresses bel ong to the same |P family.

inet_sane_family(inet '192.168.1.5/24", inet '"::1') > f

maskl en (i net) - i nteger
Returns the netmask length in bits.

maskl en(inet '192.168.1.5/24"') - 24

net mask (i net) — i net
Computes the network mask for the address's network.

net mask(inet '192.168.1.5/24") - 255.255.255.0

network (i net) - cidr
Returns the network part of the address, zeroing out whatever isto the right of the netmask. (Thisis
equivalent to casting thevalueto ci dr .)

networ k(inet '192.168.1.5/24") - 192.168.1.0/24

set _maskl en (i net,integer) - i net
Sets the netmask length for ani net value. The address part does not change.

set _maskl en(inet '192.168.1.5/24', 16) - 192.168.1.5/16

set _maskl en(cidr,integer) - cidr
Setsthe netmask length for aci dr value. Address bits to the right of the new netmask are set to zero.

set _maskl en(cidr '192.168.1.0/24', 16) - 192.168.0.0/16

text (inet) - text
Returns the unabbreviated | P address and netmask |ength as text. (This has the same result as an explicit
casttot ext.)

text(inet '192.168.1.5") - 192.168.1.5/32

Tip

The abbr ev, host , and t ext functions are primarily intended to offer alternative display formats
for IP addresses.

87

Functions and Operators

The MAC address types, macaddr and macaddr 8, support the usual comparison operators shown in Table 9.1 as
well as the specialized functions shown in Table 9.41. In addition, they support the bitwise logical operators ~, & and
| (NOT, AND and OR), just as shown above for | P addresses.

Table9.41. MAC Address Functions

Function
Description
Example(s)

trunc (rmacaddr) — nmacaddr
Setsthe last 3 bytes of the address to zero. The remaining prefix can be associated with a particular man-
ufacturer (using data not included in PostgreSQL).

trunc(nmacaddr ' 12:34:56:78:90:ab') - 12:34:56: 00: 00: 00

trunc (macaddr 8) - macaddr 8
Setsthe last 5 bytes of the address to zero. The remaining prefix can be associated with a particular man-
ufacturer (using data not included in PostgreSQL).

trunc(nacaddr8 ' 12: 34:56: 78: 90: ab: cd: ef ') - 12:34:56: 00: 00: 00: 00: 00

macaddr 8_set 7bit (nmacaddr8) — macaddr 8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for inclusion in an
IPv6 address.
macaddr 8_set 7bi t (macaddr 8 ' 00: 34: 56: ab: cd: ef ") -
02: 34:56: ff: fe:ab: cd: ef

9.13. Text Search Functions and Operators

Table 9.42, Table 9.43 and Table 9.44 summarize the functions and operators that are provided for full text searching.
See Chapter 12 for a detailed explanation of PostgreSQL 's text search facility.

Table9.42. Text Search Operators

Operator
Description
Example(s)

tsvect or @at squery - bool ean

t squery @@t svect or - bool ean
Doest svect or matcht squer y? (The arguments can be given in either order.)

to_tsvector('fat cats ate rats') @to_tsquery('cat &rat') -t

text @@t squery - bool ean
Doestext string, after implicit invocation of t o_t svect or (), matcht squery?

"fat cats ate rats' @@to_tsquery('cat &rat') -t

tsvector || tsvector - tsvector
Concatenatestwo t svect or s. If both inputs contain lexeme positions, the second input's positions are

adjusted accordingly.
"a:l b:2'::tsvector || 'c:1 d:2 b:3" ::tsvector -'a':1 "'b':2,5"'¢c':3
'd 4

tsquery &t squery - tsquery

88

Functions and Operators

Operator
Description
Example(s)
ANDstwot squer ystogether, producing a query that matches documents that match both input
queries.
"fat | rat'::tsquery && 'cat'::tsquery - ('fat' | 'rat') & 'cat’

tsquery || tsquery - tsquery
ORstwot squer ystogether, producing a query that matches documents that match either input query.

"fat | rat'::tsquery || 'cat'::tsquery - 'fat' | 'rat' | 'cat

I'l tsquery - tsquery
Negatesat squery, producing a query that matches documents that do not match the input query.

Il ‘cat'::tsquery - !'cat'

tsquery <->tsquery - tsquery
Constructs a phrase query, which matchesiif the two input queries match at successive lexemes.

to_tsquery('fat') <->to_tsquery('rat') - 'fat' <->'rat'

tsquery @t squery - bool ean
Doesfirstt squery contain the second? (This considers only whether all the lexemes appearing in one
guery appear in the other, ignoring the combining operators.)

"cat'::tsquery @ 'cat & rat'::tsquery - f

t squery <@t squery - bool ean
Isfirstt squery contained in the second? (This considers only whether all the lexemes appearing in one
query appear in the other, ignoring the combining operators.)

‘cat'::tsquery <@'cat & rat'::tsquery -t

"cat'::tsquery <@'!cat & rat'::tsquery -t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are available for types
t svect or andt squery. These are not very useful for text searching but alow, for example, unique indexes to
be built on columns of these types.

Table 9.43. Text Search Functions

Function
Description
Example(s)

array_to_tsvector (text[]) - tsvector
Converts an array of text stringsto at svect or . The given strings are used as lexemes as-is, without
further processing. Array elements must not be empty strings or NULL.

array_to_tsvector('{fat,cat,rat}'::text[]) -"'cat' 'fat' 'rat

get _current _ts_config() - regconfig
Returns the OID of the current default text search configuration (as set by default_text_search_config).

get _current _ts_config() - english

| ength (tsvector) — i nteger
Returns the number of lexemesinthet svect or.

length('fat:2,4 cat:3 rat:5A ::tsvector) - 3

89

Functions and Operators

Function
Description
Example(s)

nunmode (t squery) — i nt eger
Returns the number of lexemes plus operatorsinthet squery.

numode(' (fat & rat) | cat'::tsquery) -5

pl ai nto_tsquery ([configregconfig,]querytext) - tsquery
Convertstext to at squer y, normalizing words according to the specified or default configuration. Any
punctuation in the string isignored (it does not determine query operators). The resulting query matches
documents containing all non-stopwordsin the text.

plainto_tsquery('english', 'The Fat Rats') - 'fat' & 'rat’

phraseto_tsquery ([configregconfig,]querytext) - tsquery
Convertstext to at squer y, normalizing words according to the specified or default configuration. Any
punctuation in the string isignored (it does not determine query operators). The resulting query matches
phrases containing all non-stopwords in the text.
phraseto_tsquery('english', 'The Fat Rats') - 'fat' <-> 'rat’

phraseto_tsquery('english', 'The Cat and Rats') - 'cat' <2> 'rat'

websearch_to_tsquery ([configregconfig,]querytext) - tsquery
Convertstextto at squer y, normalizing words according to the specified or default configuration.
Quoted word sequences are converted to phrase tests. The word “or” is understood as producing an OR
operator, and a dash produces aNOT operator; other punctuation isignored. This approximates the be-
havior of some common web search tools.

websearch_to_tsquery('english', '"fat rat
‘rat' | 'cat' & 'dog'

or cat dog') - 'fat' <->

querytree (tsquery) — text
Produces a representation of the indexable portion of at squer y. A result that is empty or just T indi-
cates a non-indexable query.

querytree('foo & ! bar'::tsquery) - 'foo'

set wei ght (vector tsvector,wei ght "char") - tsvector
Assigns the specified wei ght to each element of thevect or .
setweight('fat:2,4 cat:3 rat:5B" ::tsvector, '"A') - 'cat':3A 'fat':2A 4A
"rat':5A

set wei ght (vector tsvector,wei ght "char",l exenmestext[]) - tsvector
Assigns the specified wei ght to elements of thevect or that arelistedin| exenes. The stringsin
| exenes aretaken aslexemes as-is, without further processing. Strings that do not match any lexemein
vect or areignored.

setweight('fat:2,4 cat:3 rat:5,6B ::tsvector, "A, '{cat,rat}') -
"cat':3A 'fat':2,4 'rat':5A 6A

strip(tsvector) - tsvector
Removes positions and weights from thet svect or .

strip('fat:2,4 cat:3 rat:5A ::tsvector) - "'cat' 'fat' 'rat’

to_tsquery ([configregconfig,]querytext) - tsquery
Convertstext toat squer y, normalizing words according to the specified or default configuration. The
words must be combined by validt squer y operators.

90

Functions and Operators

Function
Description
Example(s)

to_tsquery('english', 'The & Fat & Rats') - 'fat' & 'rat’

to_tsvector ([configregconfig,]docunent text) - tsvector
Convertstextto at svect or , normalizing words according to the specified or default configuration. Po-
sition information isincluded in the result.

to tsvector('english', 'The Fat Rats') - 'fat':2 'rat':3

to_tsvector ([configregconfig,]docunment json) - tsvector

to_tsvector ([configregconfig,]docunent jsonb) - tsvector
Converts each string value in the JSON document to at svect or , normalizing words according to the
specified or default configuration. The results are then concatenated in document order to produce the
output. Position information is generated as though one stopword exists between each pair of string val-
ues. (Beware that “ document order” of the fields of a JSON object isimplementation-dependent when the
input isj sonb; observe the difference in the examples.)
to tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json) -
'dog':5 'fat':2 'rat':3
to_tsvector('english',
'dog':1 'fat':4 'rat':5

{"aa": "The Fat Rats", "b": "dog"}'::jsonb) -

json_to_tsvector ([configregconfig,]docunent json,filter jsonb) - tsvector

jsonb_to tsvector ([configregconfig,]docunent jsonb,filter jsonb) - tsvector
Selects each item in the JSON document that is requested by thef i | t er and converts each oneto a
t svect or, normalizing words according to the specified or default configuration. The results are then
concatenated in document order to produce the output. Position information is generated as though one
stopword exists between each pair of selected items. (Beware that “document order” of the fields of a
JSON object isimplementation-dependent when theinput isj sonb.) Thefi | t er must beaj sonb
array containing zero or more of these keywords: " st ri ng" (toinclude all string values), " nuner -
i ¢c" (toinclude all numeric values), " bool ean" (toinclude all boolean values), " key" (toinclude all
keys),or "al I " (to include al the above). Asaspecia case, thefi | t er canaso beasimple JSON
value that is one of these keywords.

json_to_tsvector('english', '{"a": "The Fat Rats", "b": 123}'::json,
"["string", "nuneric"]') - '123':5 'fat':2 'rat':3
json_to tsvector('english', '{"cat": "The Fat Rats", "dog":

123}'::json, ""all"') - "123':9 'cat':1 'dog':7 'fat':4 'rat':5

ts_del ete(vector tsvector,|l exenetext) - tsvector
Removes any occurrence of the given | exemnre fromthevect or . Thel exemne string istreated as alex-
eme as-is, without further processing.

ts delete('fat:2,4 cat:3 rat:5A ::tsvector, 'fat') - 'cat':3 'rat':5A

ts_delete(vector tsvector,l exenestext[]) - tsvector
Removes any occurrences of the lexemesin| exemnes fromthevect or . Thestringsin| exenes are
taken as lexemes as-is, without further processing. Strings that do not match any lexemeinvect or are
ignored.
ts delete('fat:2,4 cat:3 rat:5A ::tsvector, ARRAY['fat',6 'rat']) -
‘cat':3

ts filter (vector tsvector,weights"char"[]) - tsvector

91

Functions and Operators

Function
Description
Example(s)

Selects only elements with the given wei ght s from thevect or .
ts filter('fat:2,4 cat:3b,7c rat:5A ::tsvector, '{a,b}') - 'cat':3B
"rat':5A

ts_headline([configregconfig,]docunent text,querytsquery[,optionstext]) -
t ext
Displays, in an abbreviated form, the match(es) for the quer y inthe document , which must be raw
text not at svect or . Words in the document are normalized according to the specified or default con-
figuration before matching to the query. Use of this function is discussed in Section 12.3.4, which also
describesthe available opt i ons.

ts headline(' The fat cat ate the rat.', 'cat') - The fat cat ate
the rat.

ts_headl i ne ([configregconfig,]document json,querytsquery[,optionstext]) -
t ext

ts_headl i ne ([configregconfig,]docunment jsonb,querytsquery[,optionstext]) -
t ext
Displays, in an abbreviated form, match(es) for the quer y that occur in string values within the JSON
docunent . See Section 12.3.4 for more details.
ts headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat') - {"cat":
"raining cats and dogs"}

ts rank ([wei ghtsreal[],]vector tsvector,querytsquery[,nornalizationinteger

1) - real
Computes a score showing how well thevect or matchesthe quer y. See Section 12.3.3 for details.

ts_rank(to_tsvector('raining cats and dogs'), 'cat') - 0.06079271

ts_rank_cd ([weightsreal[],]vector tsvector,querytsquery[,normalizationinte-

ger]) - real
Computes a score showing how well thevect or matchesthe quer y, using acover density algorithm.
See Section 12.3.3 for details.

ts rank_cd(to_tsvector('raining cats and dogs'), 'cat') - 0.1

ts_rewite(querytsquery,target tsquery,substitutetsquery) - tsquery
Replaces occurrences of t ar get with subst i t ut e withinthe quer y. See Section 12.4.2.1 for de-

tails.
ts rewite('a & b'::tsquery, '"a'::tsquery, 'foo|bar'::tsquery) -»'b" &
('foo' | '"bar')

ts_ rewite(querytsquery,select text) - tsquery
Replaces portions of the quer y according to target(s) and substitute(s) obtained by executing a SELECT
command. See Section 12.4.2.1 for details.
SELECT ts_rewite('a & b'::tsquery, 'SELECT t,s FROM aliases') - 'b"' &
('foo'" | '"bar')

tsquery_phrase (queryltsquery,query2tsquery) - tsquery
Constructs a phrase query that searches for matches of quer y1 and quer y2 at successive lexemes
(same as <- > operator).

tsquery_phrase(to_tsquery('fat'), to tsquery('cat')) - 'fat' <-> 'cat

92

Functions and Operators

Function
Description
Example(s)

tsquery_phrase (queryltsquery,query2tsquery,distanceinteger) - tsquery
Constructs a phrase query that searches for matches of quer y1 and quer y 2 that occur exactly di s-
t ance lexemes apart.
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) - 'fat' <10>
'cat'’

tsvector_to_array (tsvector) - text[]
Convertsat svect or to an array of lexemes.

tsvector to array('fat:2,4 cat:3 rat:5A ::tsvector) - {cat,fat,rat}

unnest (tsvector) » setof record(lexenetext,positionssmallint[],weightstext

)

Expandsat svect or into aset of rows, one per lexeme.
select * fromunnest('cat:3 fat:2,4 rat:5A ::tsvector) -

________ e
cat | {3} | {D}

f at | {2, 4} | {D D}
rat | {5} | {A

Note

All the text search functions that accept an optional r egconf i g argument will use the configuration
specified by default_text_search_config when that argument is omitted.

The functions in Table 9.44 are listed separately because they are not usually used in everyday text searching opera
tions. They are primarily helpful for development and debugging of new text search configurations.

Table 9.44. Text Search Debugging Functions

Function
Description
Example(s)

ts_debug ([configregconfig,]docunment text) —» setof record(aliastext,descrip-
tiontext,tokentext,dictionariesregdictionary[],dictionaryregdic-
tionary,l exemestext[])
Extracts and normalizes tokens from the docunent according to the specified or default text search
configuration, and returns information about how each token was processed. See Section 12.8.1 for de-
tails.
ts_debug('english', 'The Brightest supernovaes') - (asciiword, "Wrd,
all ASCI1", The, {english_stent, english_stem({})

ts_lexize(dict regdictionary,tokentext) - text[]
Returns an array of replacement lexemesiif the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is not a known word. See Sec-
tion 12.8.3 for details.

93

Functions and Operators

Function
Description
Example(s)

ts_lexize('english_stem, "stars') - {star}

ts_parse (parser_nanetext,docunent text) - setof record(tokidinteger,token

text)
Extracts tokens from the documnent using the named parser. See Section 12.8.2 for details.
ts parse('default', 'foo - bar') - (1,foo0)

ts_parse (parser_oidoid,docunent text) - setof record(tokidinteger,tokentext

)
Extracts tokens from the docunent using a parser specified by OID. See Section 12.8.2 for details.

ts_parse(3722, 'foo - bar') - (1,foo0)

ts_token_type (parser_nanetext) - setof record(tokidinteger,aliastext,de-

scriptiontext)
Returns atable that describes each type of token the named parser can recognize. See Section 12.8.2 for

details.
ts_token_type('default') - (1,asciiword,"Wrd, all ASCI1")

ts token_ type (parser_oidoid) - setof record(tokidinteger,aliastext,descrip-

tiontext)
Returns atable that describes each type of token a parser specified by OID can recognize. See Sec-

tion 12.8.2 for details.
ts_token_ type(3722) - (1,asciiword,"Word, all ASCI")

ts_stat (sqlquerytext [,weightstext]) — setof record (wordtext,ndocinteger,

nentryinteger)
Executesthe sql quer y, which must return asinglet svect or column, and returns statistics about

each distinct lexeme contained in the data. See Section 12.4.4 for details.
ts_stat (' SELECT vector FROM apod') - (foo, 10, 15)

9.14. UUID Functions

Table 9.45 shows the PostgreSQL functions that can be used to generate UUIDs.

Table 9.45. UUID Generation Functions

Function
Description
Example(s)

gen_randomuuid - uuid

uui dv4 - uui d
Generate aversion 4 (random) UUID.

gen_random uui d() - 5b30857f - Obf a- 48b5- acOb- 5c64e28078d1
uui dv4() - b42410ee-132f - 42ee- 9e4f - 09a6485c95b8

uui dv7 ([shift interval]) - uuid

94

Functions and Operators

Function
Description
Example(s)
Generate aversion 7 (time-ordered) UUID. The timestamp is computed using UNIX timestamp with mil-
lisecond precision + sub-millisecond timestamp + random. The optional parameter shi ft will shift the
computed timestamp by the giveni nt er val .

uui dv7() - 019535d9- 3df 7- 79f b- b466- f a907f al7f 9e

Note

The uuid-ossp modul e provides additional functions that implement other standard algorithmsfor gen-
erating UUIDs.

Table 9.46 shows the PostgreSQL functions that can be used to extract information from UUIDs.

Table 9.46. UUID Extraction Functions

Function
Description
Example(s)

uuid _extract _tinestanp(uuid) - tinestanp with time zone
Extractsat i mestanp with time zone from UUID version 1 and 7. For other versions, this func-
tion returns null. Note that the extracted timestamp is not necessarily exactly equal to the time the UUID
was generated; this depends on the implementation that generated the UUID.
uui d_extract _tinestanp(' 019535d9- 3df 7- 79f b- b466-f a907f al7f 9e' : : uui d) -
2025- 02- 23 21: 46: 24. 503- 05

uui d_extract _version(uuid) - smal |int
Extracts the version from a UUID of the variant described by RFC 95622. For other variants, this func-
tion returns null. For example, for aUUID generated by gen_r andom uui d, thisfunction will return
4,

uui d_extract_version('41db1265-8bcl-4ab3-992f-885799a4af 1d' : :uuid) - 4
uui d_extract_version('019535d9- 3df 7- 79f b- b466-f a907f al7f9e' : :uuid) - 7

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

See Section 8.12 for details on the datatype uui d in PostgreSQL .

9.15. XML Functions

The functions and function-like expressions described in this section operate on values of type xmm . See Section 8.13
for information about the xm type. The function-like expressionsxm par se and xm seri al i ze for converting
to and from type xm are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built withconfi gure --with-1i bxmni .

2 https://datatracker.ietf.org/doc/html/rfc9562

95

https://datatracker.ietf.org/doc/html/rfc9562
https://datatracker.ietf.org/doc/html/rfc9562

Functions and Operators

9.15.1. Producing XML Content

A set of functions and function-like expressionsis available for producing XML content from SQL data. As such, they
are particularly suitable for formatting query results into XML documents for processing in client applications.

9.15.1.1. xnl t ext

xmtext (text) - xm

The function xm t ext returns an XML value with a single text node containing the input argument as its content.
Predefined entities like ampersand (&), left and right angle brackets (< >), and quotation marks (" ") are escaped.

Example:

SELECT xmtext('< foo & bar >');
xm t ext

9.15.1.2. xnl comment

xm comment (text) - xm

The function xml comment creates an XML value containing an XML comment with the specified text as content.

Thetext cannot contain“- - ” or end witha“- ", otherwise the resulting construct would not beavalid XML comment.
If the argument is null, the result is null.

Example:

SELECT xm conment (' hell0');

xm conment

<!--hello-->

9.15.1.3. xnl concat

xm concat (xm [, ...]) - xm

The function xm concat concatenates alist of individual XML values to create a single value containing an XML
content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xm concat (' <abc/>', '<bar>foo</bar>");

xm concat

<abc/ ><bar >f oo</ bar >

96

Functions and Operators

XML declarations, if present, are combined asfollows. If all argument values have the same XML version declaration,
that version isused in the result, else no version is used. If all argument values have the standal one declaration value
“yes’, then that valueis used in the result. If all argument values have a standal one declaration value and at least one
is“no”, then that is used in the result. Else the result will have no standal one declaration. If the result is determined to
require a standal one declaration but no version declaration, aversion declaration with version 1.0 will be used because
XML requires an XML declaration to contain a version declaration. Encoding declarations are ignored and removed
inall cases.

Example:

SELECT xm concat (' <?xm version="1.1"?><foo/>", '<?xm version="1.1"
st andal one="no" ?><bar/>");

xm concat

<?xm version="1.1"?><f oo/ ><bar/ >

9.15.1.4. xnl el enent

xm el enent (NAME nanme [, XM.ATTRIBUTES (attvalue [AS attnane] [, ...])]
[, content [, ...]]) - xm

The xm el emrent expression produces an XML element with the given name, attributes, and content. The nare
and at t nane items shown in the syntax are simple identifiers, not values. The at t val ue and cont ent items
are expressions, which can yield any PostgreSQL data type. The argument(s) within XMLATTRI BUTES generate
attributes of the XML element; the cont ent value(s) are concatenated to form its content.

Examples:

SELECT xmni el enent (nane fo00);

xm el ement

SELECT xml el enent (nane foo, xmattributes('xyz' as bar));

xm el ement

<foo bar="xyz"/>
SELECT xml el enent (nane foo, xmattributes(current_date as bar), 'cont',

"ent');

xm el ement

<f oo bar="2007-01- 26" >cont ent </ f oo>

Element and attribute names that are not valid XML names are escaped by replacing the offending characters by the
sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal notation. For example:

97

Functions and Operators

SELECT xml el enent (name "foo$bar", xm attributes('xyz' as "a&b"));

xm el enent

<f o0o_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case the column's
name will be used as the attribute name by default. In other cases, the attribute must be given an explicit name. So
this exampleisvalid:

CREATE TABLE test (a xm, b xm);
SELECT xml el ement (nane test, xmattributes(a, b)) FROMtest;

But these are not:

SELECT xm el ement (nane test, xm attributes('constant'), a, b) FROMtest;
SELECT xm el ement (nane test, xmattributes(func(a, b))) FROMtest;

Element content, if specified, will be formatted according to its data type. If the content isitself of typexm , complex
XML documents can be constructed. For example:

SELECT xmi el enent (name foo, xmattributes('xyz' as bar),
xm el enent (nanme abc),
xm comment (' test'),
xm el enent (nane xyz));

xm el enent

<f oo bar="xyz"><abc/><!--test--><xyz/></foo0>

Content of other typeswill be formatted into valid XML character data. This meansin particular that the characters <,
>, and & will be converted to entities. Binary data (datatype byt ea) will be represented in base64 or hex encoding,
depending on the setting of the configuration parameter xmlbinary. The particular behavior for individual datatypesis
expected to evolvein order to align the PostgreSQL mappings with those specified in SQL :2006 and later, as discussed
in Section D.3.1.3.

9.15.1.5. xnl f or est

xm forest (content [ASnamre] [, ...]) - xm

Thexnl f or est expression produces an XML forest (sequence) of elements using the given names and content. As
for xm el enent , each nane must be asimpleidentifier, while the cont ent expressions can have any data type.

Examples:

SELECT xm forest (' abc' AS foo, 123 AS bar);

xm f or est

<f oo>abc</ f oo><bar >123</ bar >

98

Functions and Operators

SELECT xml f orest (tabl e_nane, col unm_nane)
FROM i nf or mati on_schena. col unms
WHERE t abl e_schema = 'pg_catal og";

xm f or est

<t abl e_nane>pg_aut hi d</t abl e_nanme><col um_nane>r ol nane</ col um_nane>
<t abl e_nane>pg_aut hi d</t abl e_name><col utmm_namne>r ol super </ col um_nane>

As seen in the second example, the element name can be omitted if the content value is a column reference, in which
case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xim el enment above. Similarly, content data
is escaped to make valid XML content, unlessit is already of typexm .

Note that XML forests are not valid XML documents if they consist of more than one element, so it might be useful
towrap xm f or est expressionsinxmni el enent .

9.15.1.6. X pi

xm pi (NAME nane [, content]) - xm

The xm pi expression creates an XML processing instruction. As for xn el enent , the nane must be asimple
identifier, while the cont ent expression can have any data type. The cont ent , if present, must not contain the
character sequence ?>.

Example:

SELECT xm pi (nane php, 'echo "hello world";");

<?php echo "hello world"; ?>

9.15.1.7. xnl r oot

xm root (xm, VERSION {text|NO VALUE} [, STANDALONE {YES| NO NO
VALUE} |) - xnmi

Thexm r oot expression alters the properties of the root node of an XML value. If aversion is specified, it replaces
the value in the root node's version declaration; if a standalone setting is specified, it replaces the value in the root
node's standal one declaration.

SELECT xm r oot (xm par se(docunent '<?xm version="1.1"?><cont ent >abc</
content>"),
version '1.0', standal one yes);

xm r oot

99

Functions and Operators

<?xm version="1. 0" standal one="yes"?>
<cont ent >abc</ cont ent >

9.15.1.8. xnl agg

xmagg (xm) - xm

The function xm agg is, unlike the other functions described here, an aggregate function. It concatenates the input
valuesto the aggregate function call, muchlikexm concat does, except that concatenation occurs across rows rather
than across expressions in asingle row. See Section 9.21 for additional information about aggregate functions.

Example:

CREATE TABLE test (y int, x xm);
I NSERT | NTO test VALUES (1, '<foo>abc</foo>');
I NSERT | NTO test VALUES (2, '<bar/>");
SELECT xml agg(x) FROM test;
xm agg

<f oo>abc</ f oo><bar/ >

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call as described
in Section 4.2.7. For example:

SELECT xm agg(x ORDER BY y DESC) FROM test;
xm agg

<bar/ ><f oo>abc</f 00>
Thefollowing non-standard approach used to be recommended in previous versions, and may still be useful in specific

cases:

SELECT xm agg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
xm agg

<bar/ ><f oo>abc</ f oo>

9.15.2. XML Predicates

The expressions described in this section check properties of xm values.

9.15.2.1. 1 S DOCUMENT

xm |'S DOCUMENT - bool ean

The expression | S DOCUMENT returns true if the argument XML value is a proper XML document, false if it is
not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the difference between
documents and content fragments.

9.15.2.2. 1 S NOT' DOCUMENT

100

Functions and Operators

xm 'S NOT DOCUVENT - bool ean

Theexpression| S NOT DOCUMENT returns false if the argument XML value is a proper XML document, trueif it
isnot (that is, it isacontent fragment), or null if the argument is null.

9.15.2.3. XMLEXI STS

XMLEXI STS (text PASSI NG [BY {REF| VALUE}] xnl [BY {REF| VALUE}]) - bool ean

The function xm exi st s evaluates an XPath 1.0 expression (the first argument), with the passed XML value asits
context item. The function returns false if the result of that evaluation yields an empty node-set, true if it yields any
other value. The function returns null if any argument is null. A nonnull value passed as the context item must be an
XML document, not a content fragment or any non-XML value.

Example:

SELECT xm exists('//town[text() = ''Toronto'']' PASSI NG BY VALUE
' <t owns><t own>Tor ont o</t own><t own>Ot t awa</ t own></t owns>') ;
xm exi sts
t

(1 row

The BY REF and BY VALUE clauses are accepted in PostgreSQL, but are ignored, as discussed in Section D.3.2.

Inthe SQL standard, thexm exi st s function evaluates an expression in the XML Query language, but PostgreSQL
allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.24.xm is well forned

xm _is_well _formed (text) - bool ean
xm _is_well _fornmed docunent (text) - boolean

xm _is_well _formed_content (text) - bool ean

These functions check whether a t ext string represents well-formed XML, returning a Boolean result. xm
| is_well_fornmed_docunent checksfor a well-formed document, whilexm _is_wel | _fornmed_con-
t ent checksfor well-formed content. xm _i s_wel | _f or ned doesthe former if the xmloption configuration pa
rameter is set to DOCUMENT, or the latter if it isset to CONTENT. Thismeansthat xml _is wel | _forned isuse
ful for seeing whether a simple cast to type xm will succeed, whereas the other two functions are useful for seeing
whether the corresponding variants of XMLPARSE will succeed.

Examples:

SET xm opti on TO DOCUMENT;
SELECT xm _is_well _forned('<>");
xm _is well formed

101

Functions and Operators

(1 row

SELECT xm _is_wel |l _forned(' <abc/>");
xm _is well formed

SET xm opti on TO CONTENT;
SELECT xm _is_well _formed(' abc');
xm _is well formed

SELECT xm _is_wel |l _fornmed_docunent (' <pg:foo xm ns: pg="http://postgresql.org/
stuf f">bar </ pg: foo>');
xm _is well formed_docunent

SELECT xm _is_wel | _fornmed_docunent (' <pg:foo xm ns: pg="http://postgresql.org/
stuff">bar</my:foo>");
xm _is well formed_docunent

The last example shows that the checks include whether namespaces are correctly matched.

9.15.3. Processing XML

To process values of datatype xm , PostgreSQL offers the functions xpat h and xpat h_exi st s, which evaluate
XPath 1.0 expressions, and the XML TABLE table function.

9.15.3.1. xpat h

xpath (xpath text, xm xm [, nsarray text[]]) - xm[]

Thefunction xpat h evaluatesthe XPath 1.0 expression xpat h (given astext) against the XML valuexmni . It returns
an array of XML values corresponding to the node-set produced by the XPath expression. If the XPath expression
returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be awell formed XML document. In particular, it must have a single root node element.

Theoptional third argument of the functionisan array of namespace mappings. Thisarray should be atwo-dimensional
t ext array with the length of the second axis being equal to 2 (i.e., it should be an array of arrays, each of which
consists of exactly 2 elements). The first element of each array entry is the namespace name (alias), the second the
namespace URI. It is not required that aliases provided in this array be the same as those being used in the XML
document itself (in other words, both in the XML document and in the x pat h function context, aliases are local).

Example:

102

Functions and Operators

SELECT xpath('/mny:altext()', '<my:a xmns:nmy="http://exanpl e.com >test </
ny: a>',
ARRAY[ARRAY[' ny', 'http://exanple.com]]);

ftest}
(1 row

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', '<a xm ns="http://exanpl e. cont >t est </
b>",
ARRAY[ARRAY[' nydefns', 'http://exanple.com]]);

9.15.3.2. xpat h_exi st s

xpath_exists (xpath text, xm xm [, nsarray text[]]) - bool ean

Thefunction xpat h_exi st s isaspecialized form of the xpat h function. Instead of returning the individual XML
valuesthat satisfy the XPath 1.0 expression, thisfunction returns a Boolean indicating whether the query was satisfied
or not (specifically, whether it produced any value other than an empty node-set). This function is equivalent to the
XMLEXI STS predicate, except that it also offers support for a namespace mapping argument.

Example:
SELECT xpath_exists('/ny:altext()', '"<ny:a xmns:my="http://
exanpl e. cont' >t est </ ny: a>',

ARRAY[ARRAY[' ny', 'http://exanple.com]]);

xpat h_exi sts

9.15.3.3. xnl t abl e

XMLTABLE (
[XMLNAMESPACES (nanespace_uri AS namespace_nane [, ...]),]
row_expressi on PASSI NG [BY { REF| VALUE}] docunent _expressi on [BY
{ REF| VALUE}]

COLUWNS name { type [PATH col um_expressi on] [DEFAULT defaul t_expressi on]
[NOT NULL | NULL]
| FOR ORDI NALI TY }

103

Functions and Operators

[, ...]

) - setof record

The xm t abl e expression produces a table based on an XML value, an XPath filter to extract rows, and a set of
column definitions. Although it syntactically resembles a function, it can only appear as atable in a query's FROM
clause.

The optional XM_NAMESPACES clause gives a comma-separated list of namespace definitions, where each name-
space_uri isat ext expression and each nanespace_nane isasimpleidentifier. It specifies the XML name-
spaces used in the document and their aliases. A default namespace specification is not currently supported.

The required r ow_expr essi on argument is an XPath 1.0 expression (given ast ext) that is evaluated, passing
the XML value docunent _expr essi on asits context item, to obtain a set of XML nodes. These nodes are what
xm t abl e transforms into output rows. No rows will be produced if the docunent _expr essi on isnull, nor if
ther ow_expr essi on produces an empty node-set or any value other than a node-set.

docunent _expr essi on provides the context item for ther ow_expr essi on. It must be awell-formed XML
document; fragments/forests are not accepted. The BY REF and BY VALUE clauses are accepted but ignored, as
discussed in Section D.3.2.

In the SQL standard, the xm t abl e function evaluates expressions in the XML Query language, but PostgreSQL
allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See the syntax sum-
mary above for the format. A name is required for each column, as is a data type (unless FOR ORDI NALI TY is
specified, in which case typei nt eger isimplicit). The path, default and nullability clauses are optional .

A column marked FOR ORDI NALI TY will be populated with row numbers, starting with 1, in the order of nodes
retrieved fromther ow_expr essi on'sresult node-set. At most one column may be marked FOR ORDI NALI TY.

Note

XPath 1.0 does not specify an order for nodes in anode-set, so code that relies on a particular order of
the results will be implementation-dependent. Details can be found in Section D.3.1.2.

Thecol umm_expr essi on for acolumn isan XPath 1.0 expression that is evaluated for each row, with the current
node from the r ow_expr essi on result as its context item, to find the value of the column. If no col urm_ex-
pr essi on isgiven, then the column nameis used as an implicit path.

If acolumn's XPath expression returns anon-XML value (which is limited to string, boolean, or double in XPath 1.0)
and the column has a PostgreSQL type other than xm , the column will be set as if by assigning the value's string
representation to the PostgreSQL type. (If the value is a boolean, its string representation istaken to be 1 or O if the
output column's type category is humeric, otherwiset r ue or f al se.)

If acolumn’'s XPath expression returns anon-empty set of XML nodes and the column's PostgreSQL typeisxm , the
column will be assigned the expression result exactly, if it is of document or content form.

A non-XML result assigned to an xm output column produces content, a single text node with the string value of the
result. An XML result assigned to a column of any other type may not have more than one node, or an error israised.
If there is exactly one node, the column will be set asif by assigning the node's string value (as defined for the XPath
1.0 st ri ng function) to the PostgreSQL type.

3 A result containi ng more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form. An
XPath result can be of neither form, for example if it returns an attribute node selected from the element that contains it. Such aresult will be put
into content form with each such disallowed node replaced by its string value, as defined for the XPath 1.0 st r i ng function.

104

Functions and Operators

Thestring value of an XML element isthe concatenation, in document order, of all text nodes contained in that element
and its descendants. The string value of an element with no descendant text nodes is an empty string (not NULL).
Any xsi : ni | attributesareignored. Note that the whitespace-only t ext () node between two non-text elementsis
preserved, and that leading whitespace on at ext () nodeis not flattened. The XPath 1.0 st r i ng function may be
consulted for the rules defining the string value of other XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in Section D.3.1.3.

If the path expression returns an empty node-set (typically, when it does not match) for a given row, the column will be
setto NULL, unlessadef aul t _expr essi on isspecified; then the value resulting from evaluating that expression
is used.

A def aul t _expr essi on, rather than being evaluated immediately when xnl t abl e iscalled, is evaluated each
time a default is needed for the column. If the expression qualifies as stable or immutable, the repeat evaluation may
be skipped. This means that you can usefully use volatile functionslike next val indef aul t _expr essi on.

Columns may be marked NOT NULL. If the col unm_expr essi on for aNOT NULL column does not match
anything and thereisno DEFAULT or thedef aul t _expr essi on also evaluatesto null, an error is reported.

Examples:

CREATE TABLE xnl data AS SELECT
xm $$
<ROWNG>
<ROWid="1">
<COUNTRY_| D>AU</ COUNTRY_I| D>
<COUNTRY_NAME>Aust r al i a</ COUNTRY_NAME>
</ RON
<ROWid="5">
<COUNTRY_| D>JP</ COUNTRY_| D>
<COUNTRY_NAME>Japan</ COUNTRY_NAVME>
<PREM ER_NAME>Shi nzo Abe</ PREM ER_NAME>
<Sl| ZE uni t="sq_m ">145935</ S| ZE>
</ RONt
<ROW i d="6">
<COUNTRY_| D>SG</ COUNTRY_| D>
<COUNTRY_NAME>Si ngapor e</ COUNTRY_NAME>
<SI ZE uni t ="sq_kn' >697</ Sl ZE>
</ RON
</ RONG>
$$ AS dat a;

SELECT xm table.*
FROM xml dat a,
XMLTABLE("' / / RONS/ ROW
PASSI NG dat a
COLUMNS id int PATH' @d',
ordinality FOR ORDI NALITY,
" COUNTRY_NAME" t ext,
country_id text PATH ' COUNTRY_ID ,
size_sq_kmfloat PATH 'SIZE[@nit = "sq_kn']",
si ze_other text PATH
‘concat (SI ZE[@ni t! ="sq_kni], " ", SIZE[@nit!
="sq_km']/@nit)',

105

Functions and Operators

prem er_nane text PATH ' PREM ER_NAME' DEFAULT ' not
specified);

id]| ordinality | COUNTRY_NAME | country_ id | size_sqg km| size other |
prem er_nane

T T o m e o - - o m e o - - T
I,

1| 1| Australia | AU | | | not
speci fied

5 | 2 | Japan | JP | | 145935 sq_m

Shi nzo Abe

6 | 3 | Singapore | SG | 697 | | not
speci fied

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath filter, and
the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xnl el ements AS SELECT
xm $$
<r oot >
<el enent> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</x>CC </
el ement >
</root >
$$ AS dat a;

SELECT xm tabl e.*
FROM xm el ements, XM.TABLE('/root' PASSI NG data COLUWNS el erent text);
el enent

Hel | 02a2 bbbxxxCC

Thefollowing exampleillustrates how the XML NAMESPACES clause can be used to specify alist of namespaces used
in the XML document as well asin the XPath expressions:

W TH xm dat a(data) AS (VALUES ('
<exanpl e xm ns="http://exanmple.conf nyns” xm ns: B="http://exanpl e.conf b">
<item foo="1" B:bar="2"/>
<item foo="3" B:bar="4"/>
<item foo="4" B:bar="5"/>
</ exampl e>"::xm)
)
SELECT xm table.*
FROM XMLTABLE(XMLNAMESPACES(' htt p: // exanpl e. com nyns' AS x,
"http://exanple.com b AS "B"),
"I x:exanple/ x:item
PASSI NG (SELECT data FROM xml dat a)
COLUWNS foo int PATH ' @oo0',
bar int PATH ' @B: bar');

106

Functions and Operators

(3 rows)

9.15.4. Mapping Tables to XML

The following functions map the contents of relational tablesto XML values. They can be thought of as XML export
functionality:

table to xm (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query to xm (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
cursor_to xm (cursor refcursor, count integer, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni

tabl e_t o_xm maps the content of the named table, passed as parameter t abl e. Ther egcl ass type accepts
strings identifying tables using the usual notation, including optional schema qualification and double quotes (see
Section 8.19 for details). query_t o_xm executes the query whose text is passed as parameter quer y and maps
the result set. cur sor _t o_xml fetches the indicated number of rows from the cursor specified by the parameter
cur sor . Thisvariantisrecommended if large tables have to be mapped, because theresult valueisbuilt up in memory
by each function.

If t abl ef or est isfalse, then theresulting XML document looks like this:

<t abl enane>
<r ow>
<col umnanel>dat a</ col utmnanel>
<col umnane2>dat a</ col utmnane2>
</ row>

<r ow>
</ row>
</t abl enanme>

If t abl ef or est istrue, theresultisan XML content fragment that looks like this:

<t abl enane>
<col umnanel>dat a</ col utmnanel>
<col umnane2>dat a</ col utmnane2>
</t abl enane>

<t abl enanme>

</t abl enanme>

If no table name is available, that is, when mapping a query or a cursor, the string t abl e is used in the first format,
r owin the second format.

107

Functions and Operators

The choice between theseformatsisup to theuser. Thefirst format isaproper XML document, which will beimportant
in many applications. The second format tendsto be more useful inthecur sor _t o_xm functionif theresult values
are to be reassembled into one document later on. The functions for producing XML content discussed above, in
particular xm el enment , can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xm el ermrent above.

The parameter nul | s determines whether null values should beincluded in the output. If true, null valuesin columns
are represented as.

<col umnane xsi:nil="true"/>

where xsi isthe XML namespace prefix for XML Schema Instance. An appropriate namespace declaration will be
added to the result value. If false, columns containing null values are simply omitted from the output.

The parameter t ar get ns specifies the desired XML namespace of the result. If no particular namespace is wanted,
an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the corresponding
functions above:

table to xm schema (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query_to_xm schema (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
cursor_to_xm schema (cursor refcursor, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni

Itisessential that the same parameters are passed in order to obtain matching XML data mappings and XML Schema
documents.

The following functions produce XML data mappings and the corresponding XML Schema in one document (or
forest), linked together. They can be useful where self-contained and self-describing results are wanted:

table to xm _and_xm schema (table regclass, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
query_to_xm _and_xm schema (query text, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

In addition, thefollowing functions are availabl e to produce anal ogous mappings of entire schemas or the entire current
database:

schema_to _xm (schema name, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
schema_to_xm schema (schema nane, nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
schema_to_xm _and_xm schema (schema nanme, nulls bool ean,

t abl ef orest bool ean, targetns text) - xm

108

Functions and Operators

dat abase_to_xm (nulls bool ean,

t abl ef orest bool ean, targetns text) - xni
dat abase _to _xm schema (nulls bool ean,

t abl ef orest bool ean, targetns text) - xm
dat abase_to_xm _and_xm schema (nulls bool ean,

t abl ef orest bool ean, targetns text) - xni

These functionsignore tablesthat are not readable by the current user. The database-wide functions additionally ignore
schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting content
mappings of large schemas or databases, it might be worthwhile to consider mapping the tables separately instead,
possibly even through a cursor.

Theresult of a schema content mapping looks like this:

<schemananme>
t abl el- mappi ng

t abl e2- mappi ng

</ schemanane>
where the format of atable mapping dependson thet abl ef or est parameter as explained above.

Theresult of a database content mapping looks like this:

<dbnane>
<schenmalnane>
</§éhenalnane>
<schenma2nane>

</ schema2nane>

</ dbnane>
where the schema mapping is as above.

Asan example of using the output produced by these functions, Example 9.1 showsan XSLT stylesheet that converts
theoutput of t abl e_t o_xm _and_xm schenma toan HTML document containing atabular rendition of thetable
data. In asimilar manner, the results from these functions can be converted into other XML -based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output toHTML

109

Functions and Operators

<?xm version="1.0"?>

<xsl :styl esheet version="1.0"
xm ns: xsl ="http://ww. w3. org/ 1999/ XSL/ Tr ansf or nf
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schema"
xm ns="http://ww. w3. org/ 1999/ xht m "

<xsl : out put net hod="xm "
doct ype-system="http://ww. w3. or g/ TR/ xht M 1/ DTDY xht Ml 1-strict. dtd"
doct ype-public="-//WBC/DTD XHTM. 1.0 Strict//EN'
i ndent ="yes"/>

<xsl:tenplate match="/*">
<xsl :vari abl e name="schem" sel ect="//xsd: schema"/>
<xsl :vari abl e name="t abl et ypenane”
sel ect =" $schena/ xsd: el ement [@anme=nane(current())]/ @ype"/>
<xsl :vari abl e name="r owt ypenane"
sel ect =" $schema/ xsd: conpl exType[@ane=%$t abl et ypenane] /
xsd: sequence/ xsd: el ement [@ame="row]/ @ype"/ >

<htm >
<head>
<title><xsl:val ue-of select="name(current())"/></title>
</ head>
<body>
<t abl e>
<tr>
<xsl :for-each sel ect =" $schena/ xsd: conpl exType[@anme=%r owt ypenane] /
xsd: sequence/ xsd: el ement / @ane" >

<t h><xsl : val ue-of select="."/></th>
</ xsl : for-each>
</[tr>

<xsl :for-each sel ect="row'>

<tr>

<xsl :for-each select="*">
<t d><xsl : val ue-of select="."/></td>

</ xsl :for-each>

</[tr>

</ xsl :for-each>
</t abl e>
</ body>

</htm >
</ xsl : tenpl at e>

</ xsl : styl esheet >

9.16. JSON Functions and Operators

This section describes:
« functions and operators for processing and creating JSON data

 the SQL/JSON path language

110

Functions and Operators

 the SQL/JSON query functions

To provide native support for JSON data types within the SQL environment, PostgreSQL implements the SQL/JSON
data model. Thismodel comprises sequences of items. Each item can hold SQL scalar values, with an additional SQL/
JSON null value, and composite data structures that use JSON arrays and objects. The model is aformalization of the
implied data model in the JSON specification RFC 7159%,

SQL/JSON allows you to handle JSON data alongside regular SQL data, with transaction support, including:

» Uploading JSON data into the database and storing it in regular SQL columns as character or binary strings.
e Generating JSON objects and arrays from relational data.

* Querying JSON data using SQL/JSON query functions and SQL/JSON path language expressions.

Tolearn more about the SQL/JSON standard, see[sqgltr-19075-6]. For detailson JSON types supported in PostgreSQL ,
see Section 8.14.

9.16.1. Processing and Creating JSON Data

Table 9.47 showsthe operatorsthat are available for use with JISON datatypes (see Section 8.14). In addition, the usual
comparison operators shown in Table 9.1 are available for j sonb, though not for j son. The comparison operators
follow the ordering rules for B-tree operations outlined in Section 8.14.4. See also Section 9.21 for the aggregate func-
tion j son_agg which aggregates record values as JSON, the aggregate function j son_obj ect _agg which ag-
gregates pairs of valuesinto a JSON object, and their j sonb equivalents,j sonb_agg andj sonb_obj ect _agg.

Table9.47.j son and j sonb Operators

Operator
Description
Example(s)

json->integer - json

jsonb->integer - jsonb
Extracts n'th element of JSON array (array elements are indexed from zero, but negative integers count
from the end).

"[{"a":"foo0"},{"b":"bar"},{"c":"baz"}]"'::json -> 2 - {"c":"baz"}
"[{"a":"fo0"},{"b":"bar"},{"c":"baz"}]"'::json -> -3 - {"a":"foo0"}

json->text - json

jsonb->text - jsonb
Extracts JSON object field with the given key.

"{"a": {"b":"foo"}}" ::json ->"'a - {"b":"foo0"}

json->>integer - text

j sonb->>integer - text
Extracts n'th element of JSON array, ast ext .

'[1,2,3]'::json ->> 2 . 3

json->>text - text

jsonb->>text - text
Extracts JSON object field with the given key, ast ext .

4 https://datatracker.ietf.org/doc/html/rfc7159

111

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Functions and Operators

Operator
Description
Example(s)

"{"a":1,"b":2}'::json ->> "'b" -2

json#>text[] - json

jsonb#>text[] - jsonb
Extracts JSON sub-object at the specified path, where path elements can be either field keys or array in-
dexes.

“{"a": {"b": ["foo","bar"]}} ::json #> '{a,b,1}' - "bar"

json#>>text[] - text

jsonb#>>text[] - text
Extracts JSON sub-object at the specified path ast ext .

{"a": {"b": ["foo","bar"]}} ::json #>> '{a,b,1}' - bar

Note

The field/element/path extraction operators return NULL, rather than failing, if the JISON input does
not have the right structure to match the request; for example if no such key or array element exists.

Some further operators exist only for j sonb, as shown in Table 9.48. Section 8.14.4 describes how these operators
can be used to effectively search indexed j sonb data.

Table 9.48. Additional j sonb Operators

Operator
Description
Example(s)

j sonb @ j sonb - bool ean
Does the first JSON value contain the second? (See Section 8.14.3 for details about containment.)

"{"a":1, "b":2}"::jsonb @ '{"b":2}" ::jsonb >t

j sonb <@j sonb - bool ean
Isthefirst JISON value contained in the second?

"{"b":2}'::jsonb <@'{"a":1, "b":2}'::jsonb >t

j sonb ?text - bool ean
Doesthe text string exist as atop-level key or array element within the JSON value?

"{"a":1, "b":2}'::jsonb ? 'b'" -t
"["a", "b", "c"]'::jsonb ? 'b'" St

jsonb?| text[] - bool ean
Do any of the stringsin the text array exist astop-level keys or array elements?

"{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd] -t

j sonb ?&text[] - bool ean
Do all of the strings in the text array exist astop-level keys or array elements?

"["a", "b", "c"]'::jsonb ?& array['a', 'b'] >t

112

Functions and Operators

Operator
Description
Example(s)

jsonb || jsonb - jsonb
Concatenates two j sonb values. Concatenating two arrays generates an array containing all the ele-
ments of each input. Concatenating two objects generates an object containing the union of their keys,
taking the second object's value when there are duplicate keys. All other cases are treated by converting
anon-array input into a single-element array, and then proceeding as for two arrays. Does not operate re-
cursively: only the top-level array or object structure is merged.

‘["a", "b"]'::jsonb || '["a", "d"]'::jsonb - ["a", "b", "a", "d"]
“{"a": "b"}'::jsonb || "{"c": "d"}'::jsonb - {"a": "b", "c": "d"}
"1, 2]'::jsonb || "3 ::jsonb -~ [1, 2, 3]

"{"a": "b"}"::jsonb || "42'::jsonb - [{"a": "b"}, 42]

To append an array to another array asasingle entry, wrap it in an additional layer of array, for example:
"1, 2]'::jsonb || jsonb build array('[3, 4]'::jsonb) - [1, 2, [3, 4]]

jsonb- text - jsonb
Deletesakey (and its value) from a JSON object, or matching string value(s) from a JSON array.

“{"a": "b", "c": "d"}'::jsonb - "a' - {"c": "d"}
"["a", "b", "c", "b"]'::jsonb - 'b'" - ["a", "c"]

jsonb- text[] - jsonb
Deletes all matching keys or array elements from the left operand.

"{"a": "b", "c": "d"}'::jsonb - '{a,c}' ::text[] - {}

jsonb- integer - jsonb
Deletes the array element with specified index (negative integers count from the end). Throws an error if
JSON value is not an array.

"["a", "b"]'::jsonb - 1 - ["a"]

jsonb#- text[] - jsonb
Deletesthe field or array element at the specified path, where path elements can be either field keys or ar-
ray indexes.

‘["a", {"b":1}]"::jsonb #- '{1,b}' -~ ["a", {}]

j sonb @ j sonpat h - bool ean
Does JSON path return any item for the specified JSON value? (Thisis useful only with SQL-standard
JSON path expressions, not predicate check expressions, since those always return avalue.)

"{"a":[1,2,3,4,5]} ::jsonb @ '$.a[*] ? (@> 2)' -t

j sonb @@j sonpat h - bool ean
Returns the result of a JSON path predicate check for the specified JSON value. (Thisis useful only with
predicate check expressions, not SQL-standard JSON path expressions, since it will return NULL if the
path result is not a single boolean value.)

"{"a":[1,2,3,4,5]} ::jsonb @' $.a[*] > 2' -t

Note

The j sonpat h operators @ and @@suppress the following errors: missing object field or array
element, unexpected JSON item type, datetime and numeric errors. Thej sonpat h-related functions

113

Functions and Operators

described below can also be told to suppress these types of errors. This behavior might be helpful when
searching JSON document collections of varying structure.

Table 9.49 shows the functions that are available for constructing j son and j sonb values. Some functions in this
table have a RETURNI NG clause, which specifies the data type returned. It must be one of j son, j sonb, byt ea,
a character string type (t ext , char, or var char), or atype that can be cast to j son. By default, thej son type
is returned.

Table 9.49. JSON Creation Functions

Function
Description
Example(s)

to_json (anyel ement) - json

to_j sonb (anyel enent) - j sonb
Convertsany SQL valuetoj son or j sonb. Arrays and composites are converted recursively to arrays
and objects (multidimensional arrays become arrays of arraysin JSON). Otherwise, if thereisa cast from
the SQL datatypetoj son, the cast function will be used to perform the conversion;? otherwise, a scalar
JSON value is produced. For any scalar other than a number, a Boolean, or anull value, the text repre-
sentation will be used, with escaping as necessary to make it avalid JSON string value.

to_json('Fred said "H ."'::text) - "Fred said \"H .\""
to_jsonb(rowm 42, 'Fred said "H."'::text)) - {"f1": 42, "f2": "Fred
said \"H .\""}

array_to_json(anyarray [,boolean]) - json
Converts an SQL array to a JSON array. The behavior isthe sameast 0_j son except that line feeds
will be added between top-level array elements if the optional boolean parameter istrue.

array_to_json('{{1,5},{99,100}}'::int[]) - [[1,5],[99, 100]]

json_array ([{val ue_expressi on[FORMAT JSON]}[,..]1[{ NULL |ABSENT } ON NULL][
RETURNI NGdat a_t ype [FORMAT JSON[ENCODI NG UTF8111])

json_array ([query_expression][RETURNI NGdat a_t ype [FORMAT JSON[ENCODI NG UTF8
11D
Constructs a JSON array from either aseries of val ue_expr essi on parameters or from the results
of quer y_expr essi on, which must be a SELECT query returning a single column. If ABSENT ON
NULL is specified, NULL values areignored. Thisisalwaysthe caseif aquery_expr essi on isused.

json_array(l,true,json "{"a":null}') - [1, true, {"a":null}]
json_array(SELECT * FROM (VALUES(1),(2)) t) -[1, 2]

row to_json(record[,boolean]) - json
Converts an SQL composite value to a JSON object. The behavior isthe sameast 0_j son except that
line feeds will be added between top-level elementsif the optional boolean parameter is true.

row to_json(row(1l,'foo')) - {"f1":1,"f2":"foo"}

json_build_array (VAR ADI C"any") - j son

j sonb_buil d_array (VAR ADI C"any") - j sonb
Builds a possibly-heterogeneously-typed JSON array out of avariadic argument list. Each argument is
convertedaspert o_j sonorto_j sonb.

json_build_array(1, 2, 'foo', 4, 5) -[1, 2, "foo", 4, 5]

json_build_object (VAR ADI C"any") - j son

114

Functions and Operators

Function
Description
Example(s)

jsonb_buil d_object (VARI ADI C"any") - j sonb
Builds a JSON object out of avariadic argument list. By convention, the argument list consists of alter-
nating keys and values. Key arguments are coerced to text; value arguments are converted aspert o_j -
sonorto_jsonb.
json_build_object('foo', 1, 2, row3,'bar"')) - {"foo" : 1, "2"
{"f1":3,"f2":"bar"}}

j son_obj ect ([{ key_expressi on{ VALUE|""} val ue_expressi on [FORVAT JSON[EN-
CODI NG UTF8 11}, --.J1[{ NULL |ABSENT} ON NULL][{ W TH|W THCUT } UNI QUE [KEYS
11 [RETURNI NGdat a_t ype [FORVAT JSON[ENCODI NG UTF8]]])
Constructs a JSON object of all the key/value pairs given, or an empty object if none are given.
key_expressi on isascalar expression defining the JSON key, which is converted to the t ext type.
It cannot be NULL nor can it belong to atype that hasacast to thej son type. If W TH UNI QUE KEYS
is specified, there must not be any duplicate key_ _expr essi on. Any pair for which theval ue_ex-
pr essi on evaluatesto NULL isomitted from the output if ABSENT ON NULL is specified; if NULL
ON NULL is specified or the clause omitted, the key isincluded with value NULL.

j son_object (' code' VALUE 'P123', 'title': '"Jaws') - {"code" : "P123",
"title" : "Jaws"}

j son_object (text[]) - json

j sonb_object (text[]) - jsonb
Builds a JSON object out of atext array. The array must have either exactly one dimension with an even
number of members, in which case they are taken as alternating key/value pairs, or two dimensions such
that each inner array has exactly two elements, which are taken as akey/value pair. All values are con-
verted to JSON strings.

json _object('{a, 1, b, "def", ¢, 3.5}'") - {"a" : "1", "b" : "def",
n Cll . n 3. 5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') - {"a" : "1", "b"

n def II' n C" : n 3' 5"}

j son_obj ect (keystext[],valuestext[]) - json

j sonb_obj ect (keystext[],valuestext[]) - jsonb
Thisform of j son_obj ect takes keys and values pairwise from separate text arrays. Otherwise it is

identical to the one-argument form.
json_object('{a,b}', "{1,2}') - {"a": "1", "b": "2"}

j son (expression [FORMAT JSON[ENCODI NG UTF8]][{ W TH|W THOUT } UNI QUE[KEYS]])

- json
Converts a given expression specified ast ext or byt ea string (in UTF8 encoding) into a JSON value.
If expressi onisNULL, an SQL null valueisreturned. If W TH UNI QUE is specified, theexpr es-

si on must not contain any duplicate object keys.
json('{"a":123, "b":[true,"fo0"], "a":"bar"}') - {"a":123, "b":
[true,"foo0"], "a":"bar"}

j son_scal ar (expression)
Converts agiven SQL scalar value into a JSON scalar value. If theinput isNULL, an SQL null isre-

turned. If the input is number or a boolean value, a corresponding JSON number or boolean value isre-
turned. For any other value, a JSON string is returned.

json_scal ar(123.45) - 123.45

115

Functions and Operators

Function
Description
Example(s)

j son_scal ar (CURRENT_TI MESTAMP) — "2022- 05-10T10: 51: 04. 62128- 04: 00"

json_serialize (expression[FORVMAT JSON[ENCCODI NG UTF8]][RETURNI NGdat a_t ype [
FORMAT JSON[ENCODI NG UTF8]1]1])
Converts an SQL/JSON expression into a character or binary string. The expr essi on can be of any
JSON type, any character string type, or byt ea in UTF8 encoding. The returned type used in RE-
TURNI NG can be any character string type or byt ea. The defaultist ext .

json_serialize('{ "a" : 1} ' RETURNING bytea) -
\ x7b20226122203a2031207d20

& For example, the hstore extension has a cast from hst or e to j son, so that hst or e values converted viathe JSON creation functions will be
represented as JSON objects, not as primitive string values.

Table 9.50 details SQL/JSON facilities for testing JSON.

Table 9.50. SQL/JSON Testing Functions

Function signature
Description
Example(s)

expression | S[NOT]JSON[{ VALUE | SCALAR | ARRAY |OBJECT } 1 [{ W TH|W THOUT } UNI QUE [
KEYS]]
This predicate tests whether expr essi on can be parsed as JSON, possibly of a specified type. If
SCALAR or ARRAY or OBJECT is specified, the test is whether or not the JSON is of that particular type.
If WTH UNI QUE KEYS is specified, then any object inthe expr essi on isalso tested to seeif it has
duplicate keys.

SELECT j s,
js IS JSON "json?",
js I'S JSON SCALAR "scal ar ?",
js I'S JSON OBJECT "object?",
js I'S JSON ARRAY "array?"

FROM (VALUES
("123'), (*"abc™'), (‘{"a": "b"}'), ('[1,2]'),("abc')) foo(js);
js | json? | scalar? | object? | array?

------------ R T T T T Sy

123 | t | t | f | f

"abc" | t | t | f | f

{"a": "b"} | t | f | t | f

[1,2] | t | f | f | t

abc | f | f | f | f

SELECT | s,

js I'S JSON OBJECT "object?",

js I'S JSON ARRAY "array?",

js I'S JSON ARRAY WTH UNI QUE KEYS "array w. UK?",

js I'S JSON ARRAY W THOUT UNI QUE KEYS "array w o UK?"
FROM (VALUES ('[{"a":"1"},

{"b":"2","b":"3"}]")) foo(js);

116

Functions and Operators

Function signature

array w. UK?
array w o UK?

Description
Example(s)
js | [{"a":"1"}, +
| {"b":"2","b":"3"}]
obj ect ? |
array? |
|

Table 9.51 shows the functions that are available for processingj son andj sonb values.

Table 9.51. JSON Processing Functions

Function
Description
Example(s)

json_array_elements (json) - setof json

jsonb_array_el enents (jsonb) - setof jsonb
Expands the top-level JSON array into a set of JSON values.

select * fromjson_ array elements('[1,true, [2,false]]’') -

val ue
1
true
[2, fal se]

json_array_el enents_text (json) - setof text

jsonb_array_el enents_text (jsonb) - setof text
Expands the top-level JSON array into a set of t ext values.

select * fromjson_array_elements_text('["foo", "bar"]') -
val ue
f oo
bar

json_array_length(json) - integer
jsonb_array_length(jsonb) - integer
Returns the number of elementsin the top-level JSON array.

json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]') -5
jsonb_array length('[]') - O

json_each (json) - setof record (keytext,valuejson)

j sonb_each (jsonb) - setof record(keytext,valuejsonb)
Expands the top-level JISON object into a set of key/value pairs.

select * fromjson_ each('{"a":"foo", "b":"bar"}') -

117

Functions and Operators

Function
Description
Example(s)

json_each_text (json) - setof record(keytext,valuetext)

j sonb_each_text (jsonb) - setof record(keytext,valuetext)
Expands the top-level JSON object into a set of key/value pairs. The returned val ueswill be of type
text.

select * fromjson_ each text('{"a":"foo", "b":"bar"}') -

key | val ue

json_extract _path (fromjsonjson,VARI ADI Cpath_elenstext[]) - json

jsonb_extract_path (fromjsonjsonb,VARI ADlI Cpath_elenstext[]) - jsonb
Extracts JSON sub-object at the specified path. (Thisisfunctionally equivalent to the #> operator, but
writing the path out as avariadic list can be more convenient in some cases.)
json_extract _path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4",
"'f6') - "foo"

json_extract_path_text (fromjsonjson,VARI ADI Cpath_elenstext[]) - text

jsonb_extract _path_text (fromjsonjsonb,VARI ADI Cpath _elenstext[]) - text
Extracts JSON sub-object at the specified path ast ext . (Thisisfunctionally equivalent to the #>> oper-
ator.)
json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"fo0"}}",
"f4', 'f6') - foo

j son_obj ect _keys (j son) - setof text

j sonb_obj ect _keys (j sonb) - setof text
Returns the set of keysin the top-level JSON object.
select * fromjson_object_ keys('{"fl1":"abc","f2":{"f3":"a",

"t4":"b"}})

j son_obj ect _keys

j son_popul ate_record (base anyel enent ,from j sonjson) - anyel enent

j sonb_popul ate_record (base anyel enent,from jsonjsonb) - anyel enent
Expands the top-level JSON object to arow having the composite type of the base argument. The JSON
object is scanned for fields whose names match column names of the output row type, and their values
are inserted into those columns of the output. (Fields that do not correspond to any output column name

118

Functions and Operators

Function
Description
Example(s)

areignored.) In typical use, the value of base isjust NULL, which means that any output columns that
do not match any object field will be filled with nulls. However, if base isn't NULL then the valuesit
contains will be used for unmatched columns.

To convert a JSON value to the SQL type of an output column, the following rules are applied in se-
quence:

* A JSON null valueis converted to an SQL null in all cases.

« If the output columnisof typej son or j sonb, the JSON valueisjust reproduced exactly.

« If the output column is a composite (row) type, and the JSON valueis a JSON object, the fields of the
object are converted to columns of the output row type by recursive application of these rules.

» Likewise, if the output column is an array type and the JSON value is a JSON array, the elements of
the JSON array are converted to elements of the output array by recursive application of these rules.

» Otherwise, if the JSON valueis a string, the contents of the string are fed to the input conversion func-
tion for the column's data type.

» Otherwise, the ordinary text representation of the JSON vaueis fed to the input conversion function
for the column's data type.

While the example below uses a constant JSON value, typical use would be to referenceaj son

or j sonb column laterally from another table in the query's FROMclause. Writing j son_popu-

| at e_recordinthe FROMclauseis good practice, since all of the extracted columns are available for
use without duplicate function calls.

create type subrowtype as (d int, e text); create type nyrowmype as (a
int, b text[], c subrowype);

select * fromjson_popul ate_record(null::mrowtype, '{"a": 1, "b":

["2", "a b"], "c": {"d": 4, "e": "a b C"}, X" "fOO"}') —

a | b | c

1] {2,"ab"} | (4"abc")

j sonb_popul ate_record_val i d(base anyel enent,fromjsonjson) - bool ean
Function for testingj sonb_popul at e_r ecor d. Returnst r ue if theinput j sonb_popu-
| at e_r ecor d would finish without an error for the given input JSON object; that is, it's valid input,
f al se otherwise.
create type jsb_char2 as (a char(2));

sel ect jsonb_popul ate record valid(NULL::jsb char2, '{"a": "aaa"}'); -

j sonb_popul ate record valid

select * from jsonb_popul ate_record(NULL::jsb_char2, '{"a": "aaa"}"')
q -

ERROR: value too long for type character(2)

119

Functions and Operators

Function
Description
Example(s)

sel ect jsonb_popul ate _record_valid(NULL::jsb _char2, '{"a": "aa"}"'); -

j sonb_popul ate_record_valid

select * fromjsonb_popul ate record(NULL::jsb _char2, '{"a": "aa"}') q;

—

a

aa

(1 row

j son_popul ate_recordset (base anyel ement,from jsonjson) - setof anyel enent

j sonb_popul ate_recordset (base anyel enent,from jsonjsonb) - setof anyel enent
Expands the top-level JSON array of objects to a set of rows having the composite type of the base
argument. Each element of the JSON array is processed as described above for j son[b] _popu-
| ate_record.
create type twoints as (a int, b int);
select * fromjson_popul ate recordset(null::twints, '[{"a":1,"b":2},

{"a":3,"b":4}1") -

al| b
[
1] 2
3] 4

json_to record(json) - record

jsonb_to_record(jsonb) - record
Expands the top-level JISON object to arow having the composite type defined by an AS clause. (Aswith
all functionsreturning r ecor d, the calling query must explicitly define the structure of the record with
an AS clause.) The output record isfilled from fields of the JSON object, in the same way as described
aboveforj son[b] _popul at e_recor d. Sincethereisno input record value, unmatched columns
are dways filled with nulls.
create type nyrowmype as (a int, b text);
select * fromjson_ to record('{"a":1,"b":[2,2,3],"c":
[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text,

cint[], dtext, r nyrowype) -

a | b | c | d | r

1] [1,2,3] | {1,2,3} | | (123,"a b c")

json_to_recordset (json) - setof record

120

Functions and Operators

Function
Description
Example(s)

jsonb_to_recordset (jsonb) - setof record
Expands the top-level JSON array of objects to a set of rows having the composite type defined by an
AS clause. (Aswith all functions returning r ecor d, the calling query must explicitly define the struc-
ture of the record with an AS clause.) Each element of the JSON array is processed as described above
forj son[b] _popul at e_r ecord.
select * fromjson_ to recordset('[{"a":1,"b":"fo0"},

{"a":"2","c":"bar"}]') as x(a int, b text) -

al|] b

T
1| foo
2 |

jsonb_set (target jsonb,pathtext[],new valuejsonb[,create_if_ m ssingbool ean

]) - jsonb

Returnst ar get with the item designated by pat h replaced by new _val ue, or with new_val ue
added if creat e_i f _mi ssi ng istrue (which isthe default) and the item designated by pat h does
not exist. All earlier stepsin the path must exist, or thet ar get isreturned unchanged. As with the path
oriented operators, negative integers that appear in the pat h count from the end of JSON arrays. If the
last path step isan array index that isout of range, and cr eat e_i f _mi ssi ng istrue, the new valueis
added at the beginning of the array if the index is negative, or at the end of the array if it is positive.
jsonb_set (" [{"f1":2,"f2":null},2,null,3]", "'{0,f1}', '[2,3,4]"', false)

S[{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
jsonb_set (" [{"f1":1,"f2":null},2]", "{0,f3}', '[2,3,4]') - [{"f1": 1,
“f2": null, "f3": [2, 3, 4]}, 2]

jsonb_set |ax (target jsonb,pathtext[],new valuejsonb[,create if_m ssing

bool ean[,nul |l _val ue_treatnment text]]) - j sonb
If new_val ue isnot NULL, behavesidentically toj sonb_set . Otherwise behaves according to
thevaueof nul | _val ue_treat ment whichmustbeoneof ' rai se_exception','use_j -

son_null',"delete key',or'return_target'.Thedefaultis' use json_null".
jsonb_set lax('[{"f1":2,"f2":null},2,null,3]", "{0,f1}', null) >
[({"f1": null, "f2": null}, 2, null, 3]

jsonb_set lax('[{"f1":99,"f2":null},2]', "{0O,f3}', null, true, 're-
turn_target') - [{"f1": 99, "f2": null}, 2]

jsonb_insert (target jsonb,pathtext[],new valuejsonb[,insert_after boolean])

- jsonb

Returnst ar get withnew_val ue inserted. If the item designated by the pat h isan array element,
new_val ue will beinserted beforethat itemif i nsert _aft er isfalse (whichisthe default), or after
itifi nsert _after istrue. If theitem designated by the pat h isan object field, new_val ue will be
inserted only if the object does not aready contain that key. All earlier stepsin the path must exist, or the
t ar get isreturned unchanged. As with the path oriented operators, negative integers that appear in the
pat h count from the end of JSON arrays. If the last path step is an array index that is out of range, the
new value is added at the beginning of the array if the index is negative, or at the end of the array if itis
positive.

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '""new. value"') - {"a": [0,
"new_val ue", 1, 2]}

121

Functions and Operators

Function
Description
Example(s)

jsonb_insert('{"a": [0,21,2]}', '{a, 1}', '"new.value"', true) - {
[0, 1, "new value", 2]}

a .

json_strip_ nulls(target json[,strip_in_arraysboolean]) - json

jsonb_strip _nulls(target jsonb[,strip_in_arraysboolean]) - jsonb
Deletes al object fields that have null values from the given JSON value, recursively. If
strip_in_arrays istrue (thedefault isfalse), null array elements are also stripped. Otherwise they
are not stripped. Bare null values are never stripped.
json_strip_nulls('[{"f21":1, "f2":null}, 2, null, 3]') -
[{"f1":1},2,null, 3]
jsonb_strip_nulls('[21,2,null,3,4]", true); -[1,2,3,4]

jsonb_pat h_exists (target jsonb,pathjsonpath[,varsjsonb][,silent boolean]]) -
bool ean
Checks whether the JSON path returns any item for the specified JSON value. (Thisis useful only with
SQL-standard JSON path expressions, not predicate check expressions, since those always return aval-
ue) If thevar s argument is specified, it must be a JSON object, and its fields provide named values to
be substituted into thej sonpat h expression. If thesi | ent argument is specified and ist r ue, the
function suppresses the same errors as the @ and @&operators do.
jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>= $min && @<=

$max)', '{"min":2, "max":4}') -t

jsonb_pat h_match (target jsonb,pathjsonpath[,varsjsonb[,silent boolean]]) -
bool ean
Returns the SQL boolean result of a JSON path predicate check for the specified JSON value. (Thisis
useful only with predicate check expressions, not SQL-standard JSON path expressions, sinceit will &i-
ther fail or return NULL if the path result is not a single boolean value.) The optional var s and si | ent
arguments act the same asfor j sonb_pat h_exi st s.
jsonb_path _match('{"a":[1,2,3,4,5]}', '"exists($.a[*] ? (@>= $mn && @
<= $max))"', '{"mn":2, "max":4}"') -t

jsonb_pat h_query (target jsonb,pathjsonpath[,varsjsonb[,silent boolean]]) -
setof jsonb
Returns all JSON items returned by the JSON path for the specified JSON value. For SQL -standard
JSON path expressionsit returns the JSON values selected from t ar get . For predicate check ex-
pressionsit returns the result of the predicate check: t r ue, f al se, or nul | . The optional var s and
si | ent arguments act thesameasforj sonb_pat h_exi st s.
select * fromjsonb_path_query('{"a":[1,2,3,4,5]}', "$.a[*] ? (@>=

$mn && @<= $nmax)', '{"mn":2, "max":4}') -

j sonb_pat h_query

jsonb_path_query _array (target jsonb,pathjsonpath][,varsjsonb[,silent bool ean
11) - j sonb

122

Functions and Operators

Function
Description
Example(s)

Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON array. The
parameters are the same asfor j sonb_pat h_query.
jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>= $nmin && @

<= $max)', ‘{"mn":2, "max":4}') -[2, 3, 4]

j sonb_path_query_first (target jsonb,pathjsonpath[,varsjsonb][,silent bool ean

1) - j sonb

Returns the first JSON item returned by the JSON path for the specified JSON value, or NULL if there
are no results. The parameters are the same asfor j sonb_pat h_query.

jsonb_path_query first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@>= $mn & @
<= $max)', '{"mn":2, "max":4}') -2

jsonb_path_exists tz (target jsonb,pathjsonpath[,varsjsonb],silent boolean]])

- bool ean
jsonb_path_match_tz (target jsonb,pathjsonpath][,varsjsonb[,silent boolean]])

- bool ean
jsonb_path_query_ tz (target jsonb,pathjsonpath][,varsjsonb[,silent boolean]])

- setof jsonb
jsonb_path_query array tz (target jsonb,pathjsonpath[,varsjsonb[,silent

bool ean]]) - j sonb
jsonb_path_query first tz (target jsonb,pathjsonpath[,varsjsonb][,silent

bool ean]]) - j sonb

These functions act like their counterparts described above without the _t z suffix, except that these
functions support comparisons of date/time values that require timezone-aware conversions. The exam-
ple below requires interpretation of the date-only value 2015- 08- 02 as atimestamp with time zone, so
the result depends on the current TimeZone setting. Due to this dependency, these functions are marked
as stable, which means these functions cannot be used in indexes. Their counterparts are immutable, and
so can be used in indexes; but they will throw errorsif asked to make such comparisons.
jsonb_path_exists tz('["2015-08-01 12:00:00-05"]', '"$[*] ? (@date-

time() < "2015-08-02".datetime())') -t

jsonb_pretty (jsonb) - text
Converts the given JSON value to pretty-printed, indented text.

jsonb_pretty('[{"f1":1,"f2":null}, 2]') -

B A A
"f2": null

N —

]

j son_typeof (json) - text
j sonb_typeof (jsonb) - text

123

Functions and Operators

Function
Description
Example(s)
Returns the type of the top-level JSON value as atext string. Possibletypes are obj ect , arr ay,
st ri ng, nunber, bool ean,andnul | . (Thenul | result should not be confused with an SQL
NULL; see the examples.)

json_typeof ('-123.4") - nunber

json_typeof ("null'::json) - null
json_typeof (NULL::json) IS NULL -t

9.16.2. The SQL/JSON Path Language

SQL/JISON path expressions specify item(s) to be retrieved from a JSON value, similarly to XPath expressions used
for access to XML content. In PostgreSQL, path expressions are implemented as the j sonpat h data type and can
use any elements described in Section 8.14.7.

JSON query functions and operators pass the provided path expression to the path engine for evaluation. If the expres-
sion matches the queried JSON data, the corresponding JSON item, or set of items, is returned. If there is no match,
theresult will beNULL, f al se, or an error, depending on the function. Path expressions are written in the SQL/JSON
path language and can include arithmetic expressions and functions.

A path expression consists of a sequence of elements allowed by the j sonpat h data type. The path expression is
normally evaluated from left to right, but you can use parentheses to change the order of operations. If the evaluation
is successful, a sequence of JSON items s produced, and the evaluation result is returned to the JSON query function
that compl etes the specified computation.

Torefer to the JSON value being queried (the context item), usethe $ variablein the path expression. Thefirst element
of apath must always be $. It can be followed by one or more accessor operators, which go down the JSON structure
level by level to retrieve sub-items of the context item. Each accessor operator acts on the result(s) of the previous
evaluation step, producing zero, one, or more output items from each input item.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

SELECT ' {
"track": {
"segnents": [
{
"l ocation": [47.763, 13.4034],
"start time": "2018-10-14 10:05: 14",
"HR': 73
b
{
"l ocation": [47.706, 13.2635],
"start tinme": "2018-10-14 10:39: 21",
"HR': 135
}
]
}

}' AS json \gset

(The above example can be copied-and-pasted into psgl to set things up for the following examples. Then psgl will
expand: ' j son' into asuitably-quoted string constant containing the JSON value.)

124

Functions and Operators

To retrieve the available track segments, you need to usethe . key accessor operator to descend through surrounding
JSON objects, for example:

=> sel ect jsonb_path_query(:'json', '$.track.segnents');

j sonb_pat h_query

[{"HR': 73, "location": [47.763, 13.4034], "start time": "2018-10-14
10: 05: 14"}, {"HR': 135, "location": [47.706, 13.2635], "start time":
"2018-10-14 10: 39: 21"}]

Toretrievethe contents of an array, you typically usethe[*] operator. The following examplewill return thelocation
coordinates for all the available track segments:

=> sel ect jsonb_path_query(:'json', '$.track.segnents[*].location");
j sonb_pat h_query

[47.763, 13.4034]

[47.706, 13.2635]

Here we started with the whole JSON input value ($), thenthe. t r ack accessor selected the JSON object associated
withthe "t r ack" object key, then the . segnent s accessor selected the JSON array associated with the " seg-

nment s" key withinthat object, thenthe[*] accessor selected each element of that array (producing a series of items),
thenthe. | ocat i on accessor selected the JSON array associated with the™ | ocat i on" key within each of those
objects. In this example, each of those objectshad a” | ocat i on" key; but if any of them did not, the.. | ocat i on
accessor would have ssimply produced no output for that input item.

To return the coordinates of the first segment only, you can specify the corresponding subscript in the [] accessor
operator. Recall that JSON array indexes are O-relative:

=> sel ect jsonb_path query(:'json', '$.track.segnments[0].location');
j sonb_pat h_query

[47.763, 13.4034]

The result of each path evaluation step can be processed by one or more of the j sonpat h operators and methods
listed in Section 9.16.2.3. Each method name must be preceded by a dot. For example, you can get the size of an array:

=> sel ect jsonb_path_query(:'json', '$.track.segnments.size()');
j sonb_pat h_query

More examples of usingj sonpat h operators and methods within path expressions appear below in Section 9.16.2.3.

A path can also contain filter expressions that work similarly to the WHERE clausein SQL. A filter expression begins
with a question mark and provides a condition in parentheses:

? (condition)

125

Functions and Operators

Filter expressions must be written just after the path evaluation step to which they should apply. The result of that
step isfiltered to include only those items that satisfy the provided condition. SQL/JSON defines three-valued logic,
so the condition can producet r ue, f al se, or unknown. The unknown value plays the same role as SQL NULL
and can be tested for with thei s unknown predicate. Further path evaluation steps use only those items for which
the filter expression returned t r ue.

The functions and operators that can be used in filter expressions are listed in Table 9.53. Within a filter expression,
the @variable denotes the value being considered (i.e., one result of the preceding path step). Y ou can write accessor
operators after @to retrieve component items.

For example, suppose you would liketo retrieve al heart rate values higher than 130. Y ou can achieve thisasfollows:

=> sel ect jsonb_path_query(:'json', '$.track.segments[*].HR ? (@> 130)');
j sonb_pat h_query

To get the start times of segmentswith such values, you have to filter out irrelevant segments before selecting the start
times, so the filter expression is applied to the previous step, and the path used in the condition is different:

=> sel ect jsonb_path_query(:'json', '$.track.segments[*] ? (@HR > 130)."start
time"');
j sonb_pat h_query

"2018-10-14 10: 39: 21"

Y ou can use several filter expressionsin sequence, if required. Thefollowing example selects start times of all segments
that contain locations with relevant coordinates and high heart rate values:

=> sel ect jsonb _path query(:'json', '$.track.segnments[*] ? (@location[1l] <
13.4) ? (@HR > 130)."start time"'");
j sonb_pat h_query

"2018-10-14 10: 39: 21"

Using filter expressions at different nesting levelsis also allowed. The following examplefirst filters all segments by
location, and then returns high heart rate values for these segments, if available;

=> sel ect jsonb_path _query(:'json', '$.track.segnments[*] ? (@location[1l] <
13.4).HR ? (@> 130)');
j sonb_pat h_query

You can aso nest filter expressions within each other. This example returns the size of the track if it contains any
segments with high heart rate values, or an empty sequence otherwise:

=> sel ect jsonb_path_query(:'json', "$.track ? (exists(@segnments[*] ? (@HR >
130))).segnents.size()');
j sonb_pat h_query

126

Functions and Operators

9.16.2.1. Deviations from the SQL Standard

PostgreSQL 's implementation of the SQL/JSON path language has the following deviations from the SQL/JSON
standard.

9.16.2.1.1. Boolean Predicate Check Expressions

As an extension to the SQL standard, a PostgreSQL path expression can be a Boolean predicate, whereas the SQL
standard allows predicates only within filters. While SQL-standard path expressions return the relevant element(s) of
the queried JSON value, predicate check expressions return the single three-valued j sonb result of the predicate:
true, fal se,ornul | .Forexample, we could write this SQL-standard filter expression:

=> sel ect jsonb_path query(:'json', '$.track.segnments ?2(@*].HR > 130)');
j sonb_pat h_query

{"HR': 135, "location": [47.706, 13.2635], "start tinme": "2018-10-14
10: 39: 21"}

The similar predicate check expression simply returnst r ue, indicating that a match exists:

=> sel ect jsonb_path_query(:'json', '$.track.segnments[*].HR > 130');
j sonb_pat h_query

Note

Predicate check expressionsarerequired in the @@operator (andthej sonb_pat h_mat ch function),
and should not be used with the @ operator (or thej sonb_pat h_exi st s function).

9.16.2.1.2. Regular Expression Interpretation

There are minor differences in the interpretation of regular expression patternsused in | i ke_r egex filters, as de-
scribed in Section 9.16.2.4.

9.16.2.2. Strict and Lax Modes

When you query JSON data, the path expression may not match the actual JSON data structure. An attempt to access
anon-existent member of an object or element of an array is defined as a structural error. SQL/JSON path expressions
have two modes of handling structural errors:

* lax (default) — the path engine implicitly adapts the queried data to the specified path. Any structural errors that
cannot be fixed as described below are suppressed, producing no match.

e strict — if astructural error occurs, an error is raised.

Lax mode facilitates matching of a JSON document and path expression when the JSON data does not conform to
the expected schema. If an operand does not match the requirements of a particular operation, it can be automatical-
ly wrapped as an SQL/JSON array, or unwrapped by converting its elements into an SQL/JSON sequence before
performing the operation. Also, comparison operators automatically unwrap their operands in lax mode, so you can
compare SQL/JSON arrays out-of-the-box. An array of size 1 is considered equal to its sole element. Automatic un-
wrapping is not performed when:

127

Functions and Operators

e The path expression containst ype() or si ze() methods that return the type and the number of elementsin the
array, respectively.

» Thequeried JSON data contain nested arrays. In this case, only the outermost array isunwrapped, while al theinner
arrays remain unchanged. Thus, implicit unwrapping can only go one level down within each path evaluation step.

For example, when querying the GPS datalisted above, you can abstract from the fact that it storesan array of segments
when using lax mode:

=> sel ect jsonb_path query(:'json', 'lax $.track.segnments.|ocation');
j sonb_pat h_query

[47.763, 13.4034]

[47.706, 13.2635]

In strict mode, the specified path must exactly match the structure of the queried JSON document, so using this path
expression will cause an error:

=> sel ect jsonb_path query(:'json', 'strict $.track.segnents.location');
ERROR: jsonpath menber accessor can only be applied to an object

To get the sameresult asin lax mode, you have to explicitly unwrap the segnent s array:

=> sel ect jsonb_path query(:'json', "'strict $.track.segnents[*].location');
j sonb_pat h_query

[47.763, 13.4034]

[47.706, 13.2635]

The unwrapping behavior of lax mode can lead to surprising results. For instance, the following query using the . **
accessor selects every HR value twice:

=> sel ect jsonb_path query(:'json', '"lax $. **.HR);
j sonb_pat h_query
73
135
73
135

This happens because the . ** accessor selects both the segnent s array and each of its elements, while the . HR
accessor automatically unwraps arrays when using lax mode. To avoid surprising results, we recommend using the
. ** accessor only in strict mode. The following query selects each HR value just once:

=> sel ect jsonb_path query(:'json', 'strict $.**. HR);
j sonb_pat h_query
73
135

The unwrapping of arrays can a so lead to unexpected results. Consider thisexample, which selectsall thel ocat i on
arrays.

128

Functions and Operators

=> sel ect jsonb_path_query(:'json', 'lax $.track.segnments[*].location');
j sonb_pat h_query

[47.763, 13.4034]

[47.706, 13.2635]

(2 rows)

As expected it returns the full arrays. But applying afilter expression causes the arrays to be unwrapped to evaluate
each item, returning only the items that match the expression:

=> sel ect jsonb_path_query(:'json', 'lax $.track.segnments[*].location ?(@*] >
15)");

j sonb_pat h_query

47. 763

47. 706

(2 rows)

This despite the fact that the full arrays are selected by the path expression. Use strict mode to restore selecting the
arrays.

=> sel ect jsonb_path_query(:'json', 'strict $.track.segnents[*].location ?
(@*] > 15)");
j sonb_pat h_query

[47.763, 13.4034]
[47.706, 13.2635]
(2 rows)

9.16.2.3. SQL/JSON Path Operators and Methods

Table 9.52 showsthe operators and methods availableinj sonpat h. Notethat while the unary operators and methods
can be applied to multiple values resulting from a preceding path step, the binary operators (addition etc.) can only be
applied to single values. In lax mode, methods applied to an array will be executed for each value in the array. The
exceptionsare . t ype() and. si ze(), which apply to the array itself.

Table9.52.] sonpat h Operatorsand Methods

Operator/Method
Description
Example(s)

nunber + nunmber - nunber
Addition

jsonb_path_query('[2]', "$[0] + 3') -5

+ nunber — nunber
Unary plus (no operation); unlike addition, this can iterate over multiple values

jsonb_path_query_array('{"x": [2,3,4]}', "+ $.x') -[2, 3, 4]

nunber - nunber - nunber
Subtraction

129

Functions and Operators

Operator/Method
Description
Example(s)

jsonb_path query('[2]', '7 - $[0]') -5

- nunber - nunber
Negation; unlike subtraction, this can iterate over multiple values

jsonb_path_query_array(' {"x": [2,3,4]}', '- $.x') -[-2, -3, -4]

nunber * nunber - nunber
Multiplication

jsonb_path_query('[4]', '2 * $[0]') - 8

nunber / nunber - nunber
Division
jsonb_path_query('[8.5]', "$[0] / 2') - 4.2500000000000000

nunber %nunber - nunber
Modulo (remainder)

jsonb_path_query('[32]', "$[0] % 10') - 2

val ue. type() - string
Type of the JSON item (seej son_t ypeof)
jsonb_path_query_array('[1, "2", {}]', "$[*].type()') - ["nunber",
"string", "object"]

val ue. size() - nunber
Size of the JSON item (number of array elements, or 1 if not an array)

jsonb_path_query('{"nf: [11, 15]}', '$.msize()') -2

val ue . bool ean() - bool ean
Boolean value converted from a JSON boolean, number, or string
jsonb_path _query array('[1, "yes", false]', '"$[*].boolean()') - [true,
true, false]

value. string() - string
String value converted from a JSON boolean, number, string, or datetime
jsonb_path_query_array('[1l.23, "xyz", false]', "$[*].string()') -
["1.23", "xyz", "false"]
j sonb_pat h_query('"2023-08-15 12:34:56"', '$.tinestanp().string()') -
"2023-08-15T12: 34: 56"

val ue . doubl e() - nunber
Approximate floating-point number converted from a JSON number or string

jsonb_pat h_query('{"len": "1.9"}", "$.len.double() * 2') - 3.8

nunber . ceiling() - nunber
Nearest integer greater than or equal to the given number

jsonb_path_query('{"h": 1.3}', "$.h.ceiling()') -2

nunber . fl oor() - nunber
Nearest integer less than or equal to the given number

130

Functions and Operators

Operator/Method
Description
Example(s)

jsonb_path_query('{"h": 1.7}', "$.h.floor()") -1

nunber . abs() - nunber
Absolute value of the given number

j sonb_pat h_query('{"z": -0.3}', "$.z.abs()') - 0.3

val ue. bigint() - bigint
Big integer value converted from a JSON number or string
jsonb_pat h_query('{"len": "9876543219"}', '$.len.bigint()') -
9876543219

value. decimal ([precision [, scale]]) - decinal
Rounded decimal value converted from a JSON number or string (pr eci si on and scal e must bein-
teger values)

j sonb_pat h_query(' 1234.5678', '$.decimal (6, 2)') - 1234.57

val ue. i nteger() - integer
Integer value converted from a JSON number or string

jsonb_pat h_query('{"len": "12345"}', "$.len.integer()') - 12345

val ue. nunber () - nuneric
Numeric value converted from a JSON number or string

jsonb_pat h_query('{"len": "123.45"}', '$.len.nunber()') - 123.45

string. datetine() - datetinme_type (seenote)
Date/time value converted from a string
j sonb_pat h_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@datetine() <

"2015-08-2". datetime())') - "2015-8- 1"

string. datetine(tenplate) - datetine_type (seenote)
Date/time value converted from a string using the specifiedt o_t i nest anp template
jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("H

H24: M ™)') - ["12:30: 00", "18:40:00"]

string. date() - date
Date value converted from a string

j sonb_path_query(' "2023-08-15"", '$.date()') — "2023-08- 15"

string. tine() - tine without time zone
Time without time zone value converted from a string

jsonb_path_query('"12:34:56"", '$.time()') - "12:34:56"

string. time(precision) - tine without tinme zone
Time without time zone value converted from a string, with fractional seconds adjusted to the given pre-
cision
jsonb_pat h_query('"12:34:56.789"', "$.tine(2)') - "12:34:56. 79"

string. time_tz() -time with tinme zone
Time with time zone value converted from a string

131

Functions and Operators

Operator/Method
Description
Example(s)

j sonb_pat h_query('"12:34:56 +05:30"', '"$.time_tz()') - "12:34:56+05: 30"

string. time_tz(precision) -tine with tine zone
Time with time zone value converted from a string, with fractional seconds adjusted to the given preci-
sion

jsonb_path_query('"12:34:56.789 +05:30"', '$.tine_tz(2)') -
"12:34:56. 79+05: 30"

string. timestanp() — tinmestanp without tinme zone
Timestamp without time zone value converted from a string

j sonb_pat h_query('"2023-08-15 12:34:56"', '$.tinestamp()') -
"2023-08-15T12: 34: 56"

string. tinestanp(precision) —tinmestanp without tine zone
Timestamp without time zone value converted from a string, with fractional seconds adjusted to the given
precision
j sonb_pat h_query('"2023-08-15 12:34:56.789"', '$.tinestanp(2)') -
"2023-08-15T12: 34: 56. 79"

string. timestanp_tz() -tinestanp with time zone
Timestamp with time zone value converted from a string

jsonb_path_query('"2023-08-15 12:34:56 +05:30"', 'S$.tinestanp_tz()') -
"2023-08-15T12: 34: 56+05: 30"

string. timestanp_tz(precision) -~tinestanp with time zone
Timestamp with time zone value converted from a string, with fractional seconds adjusted to the given
precision
j sonb_pat h_query('"2023-08-15 12: 34:56.789 +05:30"', '$.timestam
p_tz(2)') - "2023-08-15T12: 34: 56. 79+05: 30"

obj ect . keyval ue() - array
The object's key-value pairs, represented as an array of objects containing threefields. " key" , " val -
ue",and"id";"id" isauniqueidentifier of the object the key-value pair belongs to
jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()') -
[{"id": 0, "key": "x", "value": "20"}, {"id": 0O, "key": "y", "value":
32}]

Note

Theresult type of thedat et i me() anddat et i me(t enpl at e) methodscanbedat e, ti et z,
time,timestanptz,orti mestanp. Both methods determine their result type dynamically.

Thedat et i me() method sequentialy tries to match its input string to the ISO formats for dat e,
timetz,time,timestanptz,andtinestanp. It stops on the first matching format and emits
the corresponding data type.

Thedat eti me(t enpl at e) method determines the result type according to the fields used in the
provided template string.

132

Functions and Operators

The dateti me() and datetine(tenplate) methods use the same parsing rules as the
to_timestanp SQL function does (see Section 9.8), with three exceptions. First, these methods
don't allow unmatched template patterns. Second, only the following separators are allowed in the
template string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and space.
Third, separators in the template string must exactly match the input string.

If different date/timetypesneed to be compared, animplicit cast isapplied. A dat e valuecan becast to
timestanporti nmestanptz,ti mestanpcanbecasttoti nest anpt z,andti netoti net z.
However, all but the first of these conversions depend on the current TimeZone setting, and thus can
only be performed within timezone-aware j sonpat h functions. Similarly, other date/time-related
methods that convert strings to date/time types also do this casting, which may involve the current
TimeZone setting. Therefore, these conversions can also only be performed within timezone-aware
j sonpat h functions.

Table 9.53 shows the available filter expression elements.

Table 9.53.) sonpat h Filter Expression Elements

Predicate/Value
Description
Example(s)

val ue ==val ue - bool ean
Equality comparison (this, and the other comparison operators, work on all JSON scalar values)

jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@==1)") - [1, 1]
jsonb_path_query_array('[1, "a", 1, 3]', "$[*] ? (@=="a")') - ["a"]

val ue ! =val ue - bool ean

val ue <>val ue - bool ean
Non-equality comparison
jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@'=1)") -[2, 3]
jsonb_path_query_array('["a", "b", "c"]', "$[*] ? (@<> "b")") -~ ["a",
"t

val ue <val ue - bool ean
L ess-than comparison

jsonb_path _query array('[1, 2, 3]', '$[*] ? (@< 2)') - [1]

val ue <=val ue - bool ean
L ess-than-or-equal-to comparison
j sonb_path_query_array('["a", "b", "c"]', "$[*] ? (@<= "b")") -["a",
n bll]

val ue >val ue - bool ean
Greater-than comparison

jsonb_path_query_ array('[1,

N

31", "¥[*] ? (@>2)") - [3]

val ue >=val ue - bool ean
Greater-than-or-equal-to comparison

N

jsonb_path_query_array('[1, 31", "$[*] ? (@>=2)') -[2, 3]

true - bool ean

133

Functions and Operators

Predicate/Value

Description

Example(s)

JSON constant t r ue

jsonb_path_query('[{"nane": "John", "parent": false}, {"nanme":
"Chris", "parent": true}]', '$[*] ? (@parent == true)') - {"nanme":
“Chris", "parent": true}

fal se — bool ean
JSON constant f al se

jsonb_path_query('[{"nane": "John", "parent": false}, {"name":
“Chris", "parent": true}]', '$[*] ? (@parent == false)') - {"name":
"John", "parent": false}

null - val ue
JSON constant nul | (note that, unlike in SQL, comparison to nul | works normally)
jsonb_path_query('[{"nane": "Mary", "job": null}, {"nane": "M chael",

"job": "driver"}]', "$[*] ? (@job == null) .nanme') - "Mary"

bool ean & & bool ean - bool ean
Boolean AND

jsonb_path_query('[1, 3, 7]', "$[*] ? (@> 1 && @< 5)') - 3

bool ean || bool ean - bool ean
Boolean OR

jsonb_path_query('[1, 3, 7]', '"$[*] ? (@< 1 || @>5)') -7

I bool ean - bool ean
Boolean NOT

jsonb_path _query('[1, 3, 7]', "$[*] 2 (1 (@< 5))') -7

bool eani s unknown - bool ean
Tests whether a Boolean condition isunknown.
jsonb_path_query('[-1, 2, 7, "foo"]', "$[*] ? ((@> 0) is unknown)') -
"foo"

stringlike regexstring[flagstring] - bool ean
Tests whether the first operand matches the regular expression given by the second operand, optionally
with modifications described by a string of f | ag characters (see Section 9.16.2.4).
jsonb_path_query_array('["abc", "abd", "aBdC', "abdacb", "babc"]',
"$[*] ? (@like_regex ""ab.*c")') - ["abc", "abdach"]
jsonb_path_query_array('["abc", "abd", "aBdC', "abdacb", "babc"]',
"$[*] ? (@like_regex ""ab.*c" flag "i")"') - ["abc", "aBdC', "abdacb"]

stringstarts withstring - bool ean
Tests whether the second operand isan initia substring of the first operand.
jsonb_path_query('["John Snmith", "Mary Stone", "Bob Johnson"]',

"$[*] ? (@starts with "John")') - "John Smith"

exi sts (pat h_expression) - bool ean

134

Functions and Operators

Predicate/Value
Description
Example(s)
Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if the path
expression would result in an error; the second example uses this to avoid a no-such-key error in strict
mode.
jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists
(@? (@] >2)))") -[2, 4]
jsonb_path_query_ array('{"value": 41}', 'strict $? (exists
(@nane)) .nane') - []

9.16.2.4. SQL/JSON Regular Expressions

SQL/JSON path expressions alow matching text to aregular expression withthel i ke_r egex filter. For example,
the following SQL/JSON path query would case-insensitively match all stringsin an array that start with an English
vowel:

$[*] ? (@like_regex "~aeiou]l" flag "i")

The optional f | ag string may include one or more of the charactersi for case-insensitive match, mto allow * and
$ to match at newlines, s to allow . to match a newline, and g to quote the whole pattern (reducing the behavior to
a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the L1 KE_REGEX operator, which in
turn uses the XQuery standard. PostgreSQL does not currently support the LI KE_REGEX operator. Therefore, the
I i ke_regex filterisimplemented using the POSI X regular expression engine described in Section 9.7.3. Thisleads
to various minor discrepancies from standard SQL/JSON behavior, which are cataloged in Section 9.7.3.8. Note,
however, that the flag-letter incompatibilities described there do not apply to SQL/JSON, as it translates the XQuery
flag letters to match what the POSI X engine expects.

Keep in mind that the pattern argument of | i ke_r egex isaJSON path string literal, written according to the rules
given in Section 8.14.7. This meansin particular that any backslashes you want to use in the regular expression must
be doubled. For example, to match string values of the root document that contain only digits:

$.* ?2 (@like_regex "M\d+$")

9.16.3. SQL/JSON Query Functions

SQL/JSON functions JSON_EXI STS() , JSON_QUERY(), and JSON_VALUE() described in Table 9.54 can be
used to query JSON documents. Each of thesefunctionsapply apat h_expr essi on (an SQL/JSON path query) toa
cont ext _i t em(the document). See Section 9.16.2 for more details on what thepat h_expr essi on can contain.
Thepat h_expr essi on can aso reference variables, whose values are specified with their respective namesin the
PASSI NG clause that is supported by each function. cont ext _i t emcan be aj sonb value or a character string
that can be successfully casttoj sonb.

Table 9.54. SQL/JSON Query Functions

Function signature
Description
Example(s)

135

Functions and Operators

Function signature
Description
Example(s)

JSON_EXI STS (
context _item path_expression
[PASSING { value AS varnane } [, ...]]

[{ TRUE | FALSE | UNKNOAN | ERROR } ON ERROR]) - bool ean

Returnstrue if the SQL/JSON pat h_expr essi on applied to thecont ext _i t emyields any items, false
otherwise.

The ON ERROR clause specifies the behavior if an error occurs during pat h_expr essi on evaluation. Spec-
ifying ERROR will cause an error to be thrown with the appropriate message. Other options include returning
bool ean vaues FALSE or TRUE or the value UNKNOWN which is actually an SQL NULL. The default when
no ON ERROR clause is specified isto return the bool ean value FALSE.

Examples:

JSON EXI STS(j sonb ' {"keyl": [1,2,3]}', "strict $.keyl[*] ? (@> $x)'
PASSI NG 2 AS x) -t

JSON_EXI STS(jsonb '{"a": [1,2,3]}', 'lax $. a[5]' ERROR ON ERROR) - f
JSON EXI STS(jsonb "{"a": [1,2,3]}', 'strict $.a[5]' ERROR ON ERROR) -

ERROR jsonpath array subscript is out of bounds

JSON_QUERY (
context _item path_expression
[PASSING { value AS varnane } [, ...]]

[RETURNING data_type [FORMAT JSON [ENCODI NG UTF8]] 1

[{ WTHOUT | WTH { CONDI TI ONAL | [UNCONDI TIONAL] } } [ARRAY
] VARAPPER]

[{ KEEP| OMT } QUOTES [ON SCALAR STRING]]

[{ ERROR| NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression
} ON EMPTY]

[{ ERROR| NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression

} ONERROR]) - jsonb
Returns the result of applying the SQL/JSON pat h_expr essi on tothecontext _item

By default, the result is returned as avalue of typej sonb, though the RETURNI NG clause can be used to return
as some other type to which it can be successfully coerced.

If the path expression may return multiple values, it might be necessary to wrap those values using the W TH
VRAPPER clause to make it avalid JSON string, because the default behavior isto not wrap them, asif

W THOUT WRAPPER were specified. The W TH WRAPPER clauseis by default taken to mean W TH UN-
CONDI TI ONAL WRAPPER, which means that even a single result value will be wrapped. To apply the wrapper
only when multiple values are present, specify W TH CONDI TI ONAL WRAPPER. Getting multiple valuesin
result will be treated as an error if W THOUT WRAPPERis specified.

« If theresultisascalar string, by default, the returned value will be surrounded by quotes, making it avalid JSON
value. It can be made explicit by specifying KEEP QUOTES. Conversely, quotes can be omitted by specify-

136

Functions and Operators

Function signature
Description
Example(s)

ingOM T QUOTES. To ensure that the result isavalid JSON value, OM T QUOTES cannot be specified when
W TH WRAPPER s also specified.

« The ON EMPTY clause specifies the behavior if evaluating pat h_expr essi on yields an empty set. The ON
ERROR clause specifies the behavior if an error occurs when evaluating pat h_expr essi on, when coercing
the result value to the RETURNI NGtype, or when evaluating the ON EMPTY expression if the pat h_expr es-
Si on evaluation returns an empty set.

e For both ON EMPTY and ON ERROR, specifying ERROR will cause an error to be thrown with the appropriate
message. Other options include returning an SQL NULL, an empty array (EMPTY [ARRAY]), an empty object
(EMPTY OBJECT), or auser-specified expression (DEFAULT expr essi on) that can be coerced to jsonb or
the type specified in RETURNI NG. The default when ON EMPTY or ON ERRCR is not specified isto return an
SQL NULL value.

Examples:

JSON QUERY(jsonb '[1,[2,3],null]", "lax $[*][$off]' PASSING 1 AS off
W TH CONDI TI ONAL WRAPPER) - 3

JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' OMT QUOTES) - [1, 2]
JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a" RETURNING int[] OMT

QUOTES ERROR ON ERROR) -

ERROR: malforned array literal: "[1, 2]"
DETAIL: Mssing "]" after array dinensions.

JSON_VALUE (
context _item path_expression
[PASSING { value AS varnanme } [, ...]]

[RETURNI NG data_type]
[{ ERROR | NULL | DEFAULT expression } ON EVPTY]

[{ ERROR | NULL | DEFAULT expression } ON ERROR]) - text

* Returnsthe result of applying the SQL/JSON pat h_expr essi on tothecont ext _item

* Only use JSON_VALUE() if the extracted value is expected to be a single SQL/JSON scalar item; getting mul-
tiple values will be treated as an error. If you expect that extracted value might be an object or an array, use the
JSON_QUERY function instead.

By default, the result, which must be asingle scalar value, is returned as avalue of typet ext , though the RE-
TURNI NG clause can be used to return as some other type to which it can be successfully coerced.

* The ON ERRORand ON EMPTY clauses have similar semantics as mentioned in the description of
JSON_QUERY, except the set of values returned in lieu of throwing an error is different.

* Note that scalar strings returned by J SON_VALUE always have their quotes removed, equivalent to specifying
OM T QUOTESinJSON_QUERY.

Examples:
JSON_VALUE(j sonb '"123.45"', '$' RETURNING float) - 123.45

137

Functions and Operators

Function signature
Description
Example(s)
JSON_VALUE(j sonb '"03:04 2015-02-01"', '$.datetime("HH24: M YYYY- MV
DD')" RETURNI NG date) - 2015-02-01
JSON VALUE(jsonb '[1,2]"', "strict $[$off]' PASSING 1 as off) - 2

JSON_VALUE(j sonb '[1,2]"', "strict $[*]' DEFAULT 9 ON ERROR) - 9

Note

The cont ext _i t emexpression is converted to j sonb by an implicit cast if the expression is not
already of typej sonb. Note, however, that any parsing errors that occur during that conversion are
thrown unconditionally, that is, are not handled according to the (specified or implicit) ON ERROR
clause.

Note

JSON_VALUE() returns an SQL NULL if pat h_expr essi on returns a JSON nul | , whereas
JSON_QUERY() returnsthe JSON nul | asis.

9.16.4. JISON_TABLE

JSON_TABLE isan SQL/JSON function which queries JSON dataand presents the results asarelational view, which
can be accessed as aregular SQL table. You can use JSON_TABLE inside the FROMclause of a SELECT, UPDATE,
or DELETE and as data source in a MERGE statement.

Taking JSON dataasinput, JSON_TABLE usesaJSON path expression to extract apart of the provided datato use as
arow pattern for the constructed view. Each SQL/JSON value given by the row pattern serves as source for a separate
row in the constructed view.

To split the row pattern into columns, JSON_TABLE provides the COLUMNS clause that defines the schema of the
created view. For each column, a separate JSON path expression can be specified to be evaluated against the row
pattern to get an SQL/JSON value that will become the value for the specified column in a given output row.

JSON data stored at a nested level of the row pattern can be extracted using the NESTED PATH clause. Each NESTED
PATH clause can be used to generate one or more columns using the data from a nested level of the row pattern.
Those columns can be specified using a COLUMNS clause that looks similar to the top-level COLUMNS clause. Rows
constructed from NESTED COLUMNS are called child rows and are joined against the row constructed from the
columns specified in the parent COLUMNS clause to get the row in the final view. Child columns themselves may
contain a NESTED PATH specification thus allowing to extract data located at arbitrary nesting levels. Columns
produced by multiple NESTED PATHs at the same level are considered to be siblings of each other and their rows
after joining with the parent row are combined using UNION.

The rows produced by JSON_TABLE are lateraly joined to the row that generated them, so you do not have to
explicitly join the constructed view with the original table holding JSON data.

The syntax is:

138

Functions and Operators

JSON_TABLE (

context _item path_expression [AS json_path_name] [PASSING { val ue
AS varnane } [, ...]]

COLUWNS (json_table_colum [, ...])

[{ ERROR | EMPTY [ARRAY]} ON ERROR]

where json_table_colum is:

nane FOR ORDI NALI TY
| name type
[FORMAT JSON [ENCODI NG UTF8]]
[PATH pat h_expression]
[{ WTHOUT | WTH { CONDI TIONAL | [UNCONDI TIONAL] } } [ARRAY]
VRAPPER]
[{ KEEP | OMT } QUOTES [ON SCALAR STRING]]
[{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression }
ON EMPTY]
[{
ON ERROR]
| name type EXI STS [PATH pat h_expression]
[{ ERROR| TRUE | FALSE | UNKNOWN } ON ERROR]
| NESTED [PATH] path_expression [AS json_path_name] COLUWNS
(json_table colum [, ...])

ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression }

Each syntax element is described below in more detail.

context _item path_expression [AS json_path name] [PASSING{ val ue AS var nane

Lo

The cont ext _i t emspecifies the input document to query, the pat h_expr essi on is an SQL/JSON path
expression defining the query, and j son_pat h_nane is an optional name for the pat h_expr essi on. The
optional PASSI NG clause provides data values for the variables mentioned in the pat h_expr essi on. The
result of the input data evaluation using the aforementioned elementsis called the row pattern, which is used as
the source for row values in the constructed view.

COLUWNS (j son_table _columl,..])

The COLUMNS clause defining the schema of the constructed view. In this clause, you can specify each column
to be filled with an SQL/JSON value obtained by applying a JSON path expression against the row pattern.
j son_t abl e_col um hasthe following variants:

name FOR ORDI NALI TY

Adds an ordinality column that provides sequential row numbering starting from 1. Each NESTED PATH
(see below) getsits own counter for any nested ordinality columns.

nane type [FORVAT JSON [ENCODI NG UTF8]] [PATH pat h_expression]

Inserts an SQL/JSON value obtained by applying pat h_expr essi on against the row pattern into the
view's output row after coercing it to specified t ype.

Specifying FORMAT JSON makes it explicit that you expect the value to be avalid j son object. It only
makes senseto specify FORMAT JSONift ype isoneof bpchar , byt ea,char act er varyi ng,nane,
j son,j sonb,t ext, or adomain over these types.

139

Functions and Operators

Optionally, you can specify WRAPPER and QUOTES clauses to format the output. Note that specifyingOM T
QUOTES overrides FORMAT JSON if also specified, because unquoted literals do not constitute validj son
values.

Optionally, you can use ON EMPTY and ON ERROR clauses to specify whether to throw the error or return
the specified value when the result of JSON path evaluation is empty and when an error occurs during JSON
path evaluation or when coercing the SQL/JSON value to the specified type, respectively. The default for
both isto return aNULL value.

Note

This clause is internally turned into and has the same semantics as JSON_VALUE or
JSON_QUERY. The latter if the specified type is not a scalar type or if either of FORMAT
JSON, WRAPPER, or QUOTES clause is present.

nanet ype EXI STS[PATHpat h_expressi on]

Inserts a boolean value obtained by applying pat h_expr essi on against the row pattern into the view's
output row after coercing it to specified t ype.

The value corresponds to whether applying the PATH expression to the row pattern yields any values.
The specified t ype should have a cast from the bool ean type.

Optionally, you can use ON ERROR to specify whether to throw the error or return the specified value when
an error occurs during JSON path evaluation or when coercing SQL/JSON value to the specified type. The
default isto return a boolean value FALSE.

Note

This clause isinternally turned into and has the same semantics as J SON_EXI STS.

NESTED [PATH] pat h_expressi on[ASj son_pat h_nane] COLUWNS (j son_t abl e_col umm
[,.])

Extracts SQL/JSON values from nested |levels of the row pattern, generates one or more columns as defined
by the COLUMNS subclause, and inserts the extracted SQL/JSON valuesinto those columns. Thej son_t a-
bl e_col umm expression in the COLUMNS subclause uses the same syntax asin the parent COLUMNS clause.

The NESTED PATH syntax is recursive, so you can go down multiple nested levels by specifying several
NESTED PATH subclauses within each other. It allows to unnest the hierarchy of JSON objects and arrays
in asingle function invocation rather than chaining several JSON_TABLE expressionsin an SQL statement.

Note

In each variant of j son_t abl e_col unm described above, if the PATH clause is omitted, path
expression $. nane isused, where nane isthe provided column name.

ASj son_pat h_nane

Theoptional j son_pat h_nane serves as an identifier of the provided pat h_expr essi on. The name must
be unique and distinct from the column names.

140

Functions and Operators

{ ERROR|EMPTY } ON ERROR
The optional ON ERROR can be used to specify how to handle errors when evaluating the top-level pat h_ex-
pr essi on. Use ERRORf you want the errors to be thrown and EMPTY to return an empty table, that is, atable
containing O rows. Note that this clause does not affect the errors that occur when evaluating columns, for which
the behavior depends on whether the ON ERROR clause is specified against a given column.

Examples

In the examples that follow, the following table containing JSON data will be used:

CREATE TABLE ny films (js jsonb);

I NSERT I NTO ny_films VALUES (

"{ "favorites" : [
{ "kind" : "conedy", "films" : [
{ "title" : "Bananas",
"director” : "Wody Allen"},
{ "title" : "The D nner Gane",
"director” : "Francis Veber" }] },
{ "kind" : "horror", "films" : [
{ "title" : "Psycho",
"director” : "Alfred Htchcock” }] },
{ "kind" : "thriller™, "film" : [
{ "title" : "Vertigo",
"director” : "Alfred Htchcock” }] },
{ "kind" : "drama", "films" : [
{ "title" : "Yojinmbo",
"director” : "Akira Kurosawa" }] }
1},

The following query shows how to use JSON_TABLE to turn the JSON objectsinthenry _fi | ns table to a view
containing columns for the keyski nd, titl e, anddi r ect or contained in the original JISON along with an ordi-
nality column;

SELECT jt.* FROM
ny_films,
JSON TABLE (js, '$.favorites[*]' COLUWNS (
id FOR ORDI NALI TY,
kind text PATH '$.kind',
title text PATH '$.filnms[*].title" WTH WRAPPER
director text PATH '$.films[*].director’ WTH WRAPPER)) AS jt;

id | ki nd | title | di rector
. Fe e e e e e e e e e e e e e m e e, —m . ———. -
Fe e e e e e e e e e e e e e e e e e e, ———. -

1| comedy | ["Bananas", "The Dinner Gane"] | ["Wody Allen", "Francis
Veber "]

2 | horror | ["Psycho"] | ["Alfred Hitchcock"]

3| thriller | ["Vertigo"] | ["Alfred Hitchcock"]

4 | dramm | ["Yojinbo"] | ["AKira Kurosawa"]

141

Functions and Operators

(4 rows)

Thefollowing isamodified version of the above query to show the usage of PASSI NGargumentsin thefilter specified
in the top-level JSON path expression and the various options for the individual columns:

SELECT jt.* FROM
ny_filns,
JSON TABLE (js, '$.favorites[*] ? (@films[*].director == $filter)’
PASSI NG ' Al fred Hitchcock' AS filter
COLUWNS (
i d FOR ORDI NALI TY,
ki nd text PATH '$.kind',
title text FORVAT JSON PATH '$.filns[*].title' OMT QUOTES,
director text PATH '$.films[*].director’ KEEP QUOTES)) AS jt;

id | ki nd | title | di rector
o Fomemm e o a o e e e
1| horror | Psycho | "Alfred Hitchcock"
2| thriller | Vertigo | "Alfred Hitchcock"

(2 rows)

Thefollowing is amodified version of the above query to show the usage of NESTED PATH for populating title and
director columns, illustrating how they are joined to the parent columnsid and kind:

SELECT jt.* FROM
ny _filns,
JSON TABLE (js, '$.favorites[*] ? (@filns[*].director == $filter)’
PASSING ' Al fred Hitchcock' AS filter
COLUWNS (
i d FOR ORDI NALI TY,
kind text PATH '$. kind',
NESTED PATH ' $.filns[*]' COLUWNS (
title text FORMAT JSON PATH '$.title' OMT QUOTES,
director text PATH '$.director' KEEP QUOTES))) AS jt;

id | ki nd | title | di rector

B T Iy R e e e e ek
1| horror | Psycho | "Alfred Hitchcock"
2| thriller | Vertigo | "Alfred Hitchcock"

(2 rows)

The following is the same query but without the filter in the root path:

SELECT jt.* FROM
ny_films,
JSON TABLE (js, '$.favorites[*]’
COLUWNS (
i d FOR ORDI NALI TY,
kind text PATH '$.kind',
NESTED PATH ' $.films[*]' OOLUWNS (

142

Functions and Operators

title text FORMAT JSON PATH '$.title' OM T QUOTES
director text PATH '$.director' KEEP QUOTES))) AS jt;

id | ki nd | title | di rector

B T Iy o e e oo e e e e ek
1| comedy | Bananas | "Wbody All en"
1| comedy | The Dinner Ganme | "Francis Veber"
2 | horror | Psycho | "Alfred Hitchcock"
3| thriller | Vertigo | "Alfred Hitchcock"
4 | dramm | Yojinbo | "AKkira Kurosawa"

(5 rows)

Thefollowing shows another query using adifferent JSON object asinput. It showsthe UNION "sibling join" between
NESTED paths $. novi es[*] and $. books[*] and also the usage of FOR ORDI NALI TY column at NESTED
levels (columnsnovi e_i d, book_i d, and aut hor _i d):

SELECT * FROM JSON_TABLE (
"{"favorites":

[{"nOvies":
[{"name": "One", "director": "John Doe"},
{"name": "Two", "director": "Don Joe"}],
"books":
[{"nane": "Mystery", "authors": [{"name": "Brown Dan"}]},
{"name": "Wonder", "authors": [{"nane": "Jun Mirakam "}, {"nane":"Craig
Doe"}1}]
}1} ::json, '$.favorites[*]’
COLUWNS (

user _id FOR ORDI NALI TY,
NESTED ' $. movi es[*]"
COLUMWNS (
novi e_id FOR ORDI NALI TY,
mane text PATH '$. nane',
director text),
NESTED ' $. books[*]"'
COLUWNS (
book id FOR ORDI NALI TY,
bname text PATH '$. nane',
NESTED ' $. aut hors[*]"
COLUWNS (
aut hor _id FOR ORDI NALI TY,
aut hor _nane text PATH '$.nane'))));

user_id | novie_id | mmame | director | book_id | bname | author_id
aut hor _nane
--------- T T T g
Fm e e e e e e m - -
1| 1| One | John Doe | | |
1| 2| Two | Don Joe | | | |
1| | | | 1| Mystery | 1| Brown
Dan
1| | | | 2 | Wbnder | 1| Jun
Mur akam

143

Functions and Operators

1| | 2 | Wbnder | 2] Craig
Doe
(5 rows)

9.17. Sequence Manipulation Functions

This section describes functions for operating on sequence objects, also called sequence generators or just sequences.
Sequence objects are special single-row tables created with CREATE SEQUENCE. Sequence objects are commonly
used to generate unique identifiers for rows of atable. The sequence functions, listed in Table 9.55, provide simple,
multiuser-safe methods for obtaining successive sequence values from seguence objects.

Table 9.55. Sequence Functions

Function
Description

nextval (regclass) - bigint
Advances the sequence object to its next value and returns that value. Thisis done atomically: even if
multiple sessions execute next val concurrently, each will safely receive adistinct sequence value. If
the sequence object has been created with default parameters, successive next val callswill return suc-
cessive values beginning with 1. Other behaviors can be obtained by using appropriate parametersin the
CREATE SEQUENCE command.
This function requires USAGE or UPDATE privilege on the sequence.

setval (regcl ass, bi gint [,bool ean]) - bi gi nt
Sets the sequence object's current value, and optionally itsi s_cal | ed flag. The two-parameter form
sets the sequence's| ast _val ue field to the specified value and setsitsi s_cal | ed fieldtot r ue,
meaning that the next next val will advance the sequence before returning a value. The value that will
be reported by cur r val isalso set to the specified value. In the three-parameter form, i s_cal | ed
canbesetto eithert r ue or f al se. t r ue hasthe same effect as the two-parameter form. If it is set
tof al se, thenext next val will return exactly the specified value, and sequence advancement com-
mences with the following next val . Furthermore, the value reported by cur r val isnot changed in
this case. For example,

SELECT setval (' nyseq', 42); Next nextval will return 43
SELECT setval (' nyseq', 42, true); Sane as above
SELECT setval (' nyseq', 42, false); Next nextval will return 42

Theresult returned by set val isjust the value of its second argument.
This function requires UPDATE privilege on the sequence.

currval (regclass) - bigint
Returns the value most recently obtained by next val for this sequence in the current session. (An er-
ror isreported if next val has never been called for this sequence in this session.) Because thisisre-
turning a session-local value, it gives a predictable answer whether or not other sessions have executed
next val sincethe current session did.
This function requires USAGE or SELECT privilege on the sequence.

| astval () - bigint
Returns the value most recently returned by next val in the current session. Thisfunction isidentical
tocurrval , except that instead of taking the sequence name as an argument it refers to whichever se-
guence next val was most recently applied to in the current session. It isan error to call | ast val if
next val hasnot yet been called in the current session.
This function requires USAGE or SELECT privilege on the last used sequence.

144

Functions and Operators

Caution

To avoid blocking concurrent transactions that obtain numbers from the same sequence, the value
obtained by next val isnot reclaimed for re-useif the calling transaction |l ater aborts. This meansthat
transaction aborts or database crashes can result in gaps in the sequence of assigned values. That can
happen without a transaction abort, too. For example an | NSERT with an ON CONFLI CT clause will
compute the to-be-inserted tuple, including doing any required next val calls, before detecting any
conflict that would cause it to follow the ON CONFLI CT rule instead. Thus, PostgreSQL sequence
objects cannot be used to obtain “ gapless’ sequences.

Likewise, sequence state changes made by set val areimmediately visible to other transactions, and
are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a next val or set val
call, the sequence state change might not have made its way to persistent storage, so that it isuncertain
whether the sequence will have its original or updated state after the cluster restarts. Thisis harmless
for usage of the sequence within the database, since other effects of uncommitted transactions will
not be visible either. However, if you wish to use a sequence value for persistent outside-the-database
purposes, make sure that the next val call has been committed before doing so.

The sequence to be operated on by a sequence function is specified by ar egcl ass argument, which is simply the
OID of the sequenceinthepg_cl ass system catalog. Y ou do not have to look up the OID by hand, however, since

ther egcl ass datatype'sinput converter will do the work for you. See Section 8.19 for details.

9.18. Conditional Expressions

This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip

If your needs go beyond the capabilities of these conditional expressions, you might want to consider
writing a server-side function in a more expressive programming language.

Note

Although COALESCE, GREATEST, and LEAST are syntactically similar to functions, they are not
ordinary functions, and thus cannot be used with explicit VARI ADI C array arguments.

9.18.1. CASE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other programming

languages:

CASE WHEN condition THEN result

[WHEN . ..]
[ELSE result]

145

Functions and Operators

CASE clauses can be used wherever an expressionisvalid. Eachcondi t i on isanexpressionthat returnsabool ean
result. If the condition's result is true, the value of the CASE expression isthe r esul t that follows the condition,
and the remainder of the CASE expression is not processed. If the condition's result is not true, any subsequent WHEN
clauses are examined in the same manner. If no WHEN condi t i on yields true, the value of the CASE expression is
ther esul t of the ELSE clause. If the ELSE clause is omitted and no condition is true, the result is null.

An example:

SELECT * FROM test;

a
1
2
3
SELECT a,
CASE WHEN a=1 THEN ' one
WHEN a=2 THEN ' two'
ELSE ' ot her'
END
FROM t est ;
a | case
T
1| one
2] two
3 | other

The datatypes of all ther esul t expressions must be convertible to a single output type. See Section 10.5 for more
details.

Thereisa“simple’ form of CASE expression that is a variant of the general form above:

CASE expression
WHEN val ue THEN result
[WHEN . ..]
[ELSE resul t]

END

Thefirst expr essi on iscomputed, then compared to each of theval ue expressionsin the WHEN clauses until one
isfound that is equal to it. If no match is found, ther esul t of the ELSE clause (or a null value) is returned. This
issimilar tothesw t ch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
CASE a WHEN 1 THEN ' one'
VWHEN 2 THEN 't wo'
ELSE ' ot her'
END
FROM t est ;

146

Functions and Operators

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For example,
thisis apossible way of avoiding a division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE fal se END,

Note

Asdescribed in Section 4.2.14, there are various situationsin which subexpressions of an expression are
evaluated at different times, so that the principle that “ CASE eval uates only necessary subexpressions’
is not ironclad. For example a constant 1/ 0 subexpression will usually result in a division-by-zero
failure at planning time, even if it'swithin a CASE arm that would never be entered at run time.

9.18.2. COALESCE

COALESCE(val ue [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all arguments are
null. It is often used to substitute a default value for null values when datais retrieved for display, for example:

SELECT CQOALESCE(description, short_description, '(none)')
Thisreturnsdescri pti on if itisnot null, otherwiseshort _descri pti onif itisnot null, otherwise (none) .

The arguments must al be convertible to a common data type, which will be the type of the result (see Section 10.5
for details).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result; that is, ar-
gumentsto the right of the first non-null argument are not evaluated. This SQL -standard function provides capabilities
similar to NVL and | FNULL, which are used in some other database systems.

9.18.3. NULLI F

NULLI F(val uel, val ue2)

TheNULLI Ffunctionreturnsanull valueif val uel equalsval ue2; otherwiseit returnsval uel. Thiscan beused
to perform the inverse operation of the COAL ESCE example given above:

SELECT NULLI F(val ue, ' (none)")
In thisexample, if val ue is(none), null isreturned, otherwise the value of val ue isreturned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had written
val uel = val ue2, sothere must be a suitable = operator available.

147

Functions and Operators

The result has the same type as the first argument — but there is a subtlety. What is actually returned is the first
argument of the implied = operator, and in some cases that will have been promoted to match the second argument's
type. For example, NULLI F(1, 2.2) yieldsnuneri ¢, becausethereisnoi nt eger = nuner i c operator, only
numeri ¢ =nuneric.

9.18.4. GREATEST and LEAST

GREATEST(val ue [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from alist of any number of expressions.
The expressions must al be convertible to a common data type, which will be the type of the result (see Section 10.5
for details).

NULL valuesin the argument list areignored. The result will be NULL only if al the expressions evaluate to NULL.
(Thisis adeviation from the SQL standard. According to the standard, the return value is NULL if any argument is
NULL. Some other databases behave this way.)

9.19. Array Functions and Operators

Table 9.56 shows the specialized operators available for array types. In addition to those, the usual comparison oper-
ators shown in Table 9.1 are available for arrays. The comparison operators compare the array contents element-by-
element, using the default B-tree comparison function for the element data type, and sort based on the first difference.
In multidimensional arraysthe elements are visited in row-major order (last subscript varies most rapidly). If the con-
tents of two arrays are equal but the dimensionality is different, the first difference in the dimensionality information
determines the sort order.

Table 9.56. Array Operators

Operator
Description
Example(s)

anyarray @ anyarray — bool ean
Doesthefirst array contain the second, that is, does each element appearing in the second array equal
some element of the first array? (Duplicates are not treated specially, thus ARRAY[1] and AR-
RAY[1, 1] are each considered to contain the other.)

ARRAY[1, 4,3] @ ARRAY[3,1,3] -t

anyarray <@anyarray — bool ean
Isthefirst array contained by the second?

ARRAY[2, 2, 7] <@ARRAY[1,7,4,2,6] -t

anyarray & anyarray — bool ean
Do the arrays overlap, that is, have any elementsin common?

ARRAY[1, 4, 3] && ARRAY[2, 1] -t

anyconpati bl earray || anyconpati bl earray - anyconpati bl earray
Concatenates the two arrays. Concatenating a null or empty array is a no-op; otherwise the arrays must
have the same number of dimensions (asillustrated by the first example) or differ in number of dimen-
sions by one (asillustrated by the second). If the arrays are not of identical element types, they will be
coerced to a common type (see Section 10.5).

148

Functions and Operators

Operator
Description
Example(s)
ARRAY[1, 2,3] || ARRAY[4,5,6,7] - {1,2,3,4,5,6,7}
ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]] -{{1,2,3},{4,5,6},{7,8,9.9}}

anyconpati bl e || anyconpati bl earray - anyconpati bl earray
Concatenates an element onto the front of an array (which must be empty or one-dimensional).

3 || ARRAY[4,5,6] - {3,4,5,6}

anyconpati bl earray || anyconpati bl e - anyconpati bl earray
Concatenates an element onto the end of an array (which must be empty or one-dimensional).

ARRAY[4,5,6] || 7 -{4,5,6,7}

See Section 8.15for more detail sabout array operator behavior. See Section 11.2 for more detail sabout which operators
support indexed operations.

Table 9.57 showsthe functions available for use with array types. See Section 8.15 for more information and examples
of the use of these functions.

Table 9.57. Array Functions

Function
Description
Example(s)

array_append (anyconpat i bl earray,anyconpati bl e) - anyconpati bl earray
Appends an element to the end of an array (same astheanyconpati bl earray | | anyconpati -
bl e operator).

array_append(ARRAY[1, 2], 3) -{1,2,3}

array_cat (anyconpati bl earray,anyconpati bl earray) - anyconpati bl earray
Concatenates two arrays (same astheanyconpat i bl earray | | anyconpati bl earr ay opera-
tor).

array_cat (ARRAY[1, 2, 3], ARRAY[4,5]) -{1,2,3,4,5}

array_di ms (anyarray) — text
Returns a text representation of the array's dimensions.

array_di mns(ARRAY[[1,2,3], [4,5,6]]) -[1:2][1:3]

array_fill (anyel ement,integer[] [,integer[]]) - anyarray
Returns an array filled with copies of the given value, having dimensions of the lengths specified by the
second argument. The optional third argument supplies lower-bound values for each dimension (which
defaultto all 1).
array_fill (11, ARRAY[2,3]) - {{11,11,11},{11, 11, 11}}

array_fill (7, ARRAY[3], ARRAY[2]) - [2:4]={7,7,7}

array_| ength (anyarray,i nteger) —» i nteger
Returns the length of the requested array dimension. (Produces NULL instead of O for empty or missing
array dimensions.)
array_length(array[1,2,3], 1) - 3

array_length(array[]::int[], 1) - NULL

149

Functions and Operators

Function
Description
Example(s)

array_length(array['text'], 2) — NULL

array_| ower (anyarray,integer) - i nteger
Returns the lower bound of the requested array dimension.

array lower('[0:2]={1,2,3}'::integer[], 1) -0

array_ndi ns (anyarray) - i nt eger
Returns the number of dimensions of the array.

array_ndi ns(ARRAY[[1,2,3], [4,5,6]]) - 2

array_position (anyconpati bl earray,anyconpati bl e[,integer]) — i nteger
Returns the subscript of the first occurrence of the second argument in the array, or NULL if it's not
present. If the third argument is given, the search begins at that subscript. The array must be one-dimen-
sional. Comparisonsaredoneusingl S NOT DI STI NCT FROMsemantics, so it is possible to search
for NULL.
array_position(ARRAY['sun', 'nmon', 'tue', 'wed', 'thu', 'fri', 'sat'],
"mon') - 2

array_positions (anyconpati bl earray,anyconpati ble) - i nteger|[]
Returns an array of the subscripts of al occurrences of the second argument in the array given asfirst ar-
gument. The array must be one-dimensional. Comparisonsaredoneusing! S NOT DI STI NCT FROM
semantics, so it is possible to search for NULL. NULL is returned only if the array isNULL; if the valueis
not found in the array, an empty array is returned.

array_positions(ARRAY['A' ,"A ,'B ,"A], "A) -{1,2,4}

array_prepend (anyconpati bl e,anyconpati bl earray) - anyconpati bl earray
Prepends an element to the beginning of an array (same astheanyconpati bl e | | anyconpati -
bl ear r ay operator).

array_prepend(1l, ARRAY[2,3]) - {1,2,3}

array_renove (anyconpati bl earray,anyconpati bl e) - anyconpati bl earray
Removes all elements equal to the given value from the array. The array must be one-dimensional. Com-
parisonsaredoneusingl S NOT DI STI NCT FROMsemantics, soit is possible to remove NULLS.

array_remve(ARRAY[1, 2,3,2], 2) -{1,3}

array_repl ace (anyconpati bl earray, anyconpati bl e,anyconpati bl e) - anyconpati -
bl earray
Replaces each array element equal to the second argument with the third argument.

array_replace(ARRAY[1, 2,5,4], 5, 3) -{1,2,3,4}

array_reverse (anyarray) - anyarray
Reverses the first dimension of the array.

array_reverse(ARRAY[[1,2],[3,4],[5,6]]) - {{5,6},{3,4},{1, 2}}

array_sanpl e (array anyarray,ninteger) - anyarray
Returns an array of n items randomly selected from ar r ay. n may not exceed the length of ar r ay's
first dimension. If ar r ay ismulti-dimensional, an “item” isaslice having a given first subscript.

array_sanpl e(ARRAY[1,2,3,4,5,6], 3) -{2,6,1}
array_sanpl e(ARRAY[[1,2],[3,4],[5,6]], 2) - {{5,6},{1,2}}

150

Functions and Operators

Function
Description
Example(s)

array_shuffl e (anyarray) - anyarray
Randomly shuffles the first dimension of the array.

array_shuffle(ARRAY[[1,2],[3,4],[5,6]]) - {{5,6},{1,2},{3, 4}}

array_sort (array anyarray [,descendi ng bool ean [,nul I s_first bool ean]]) - an-
yarray
Sorts the first dimension of the array. The sort order is determined by the default sort ordering of the ar-
ray's element type; however, if the element typeis collatable, the collation to use can be specified by
adding a COLLATE clauseto thear r ay argument.
If descendi ng istruethen sort in descending order, otherwise ascending order. If omitted, the default
isascending order. If nul | s_fi r st istruethen nulls appear before non-null values, otherwise nulls
appear after non-null values. If omitted, nul | s_fi r st istaken to have the same value asdescend-
i ng.
array_sort (ARRAY[[2,4],[2,1],[6,5]]) - {{2,1},{2,4},{6,5}}

array_to_string(array anyarray,delimter text [,null_stringtext]) - text
Converts each array element to itstext representation, and concatenates those separated by thedel i m
i ter string. If nul | _stringisgivenandisnot NULL, then NULL array entries are represented by
that string; otherwise, they are omitted. Seealsostri ng_t o_arr ay.

array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') -1,2,3,*5

array_upper (anyarray,integer) - i nteger
Returns the upper bound of the requested array dimension.
array_upper (ARRAY[1,8,3,7], 1) - 4

cardinality (anyarray) - i nt eger
Returns the total number of elementsin the array, or O if the array is empty.

cardinality(ARRAY[[1,2],[3,4]]) - 4

trimarray (array anyarray,ninteger) — anyarray
Trims an array by removing the last n elements. If the array is multidimensional, only the first dimension
istrimmed.

trimarray(ARRAY[1, 2,3,4,5,6], 2) -{1,2,3,4}

unnest (anyarray) - setof anyel enent
Expands an array into a set of rows. The array's elements are read out in storage order.
unnest (ARRAY[1, 2]) -

1
2

unnest (ARRAY[[' foo',"bar'],['baz', ' quux']]) -

foo
bar
baz
quux

151

Functions and Operators

Function
Description
Example(s)

unnest (anyarray,anyarray|,..]) - setof anyel enent, anyelenent [, ...]
Expands multiple arrays (possibly of different datatypes) into a set of rows. If the arrays are not all the
same length then the shorter ones are padded with NULLs. Thisformis only allowed in a query's FROM
clause; see Section 7.2.1.4.

sel ect * from unnest (ARRAY[1, 2], ARRAY['foo0','bar','baz']) as x(a,b) -

al] b
T
1| foo
2 | bar
| baz

See also Section 9.21 about the aggregate function ar r ay _agg for use with arrays.

9.20. Range/Multirange Functions and Opera-
tors

See Section 8.17 for an overview of range types.

Table 9.58 shows the specialized operators available for range types. Table 9.59 shows the specialized operators
available for multirange types. In addition to those, the usual comparison operators shown in Table 9.1 are available
for range and multirange types. The comparison operators order first by the range lower bounds, and only if those are
equal do they compare the upper bounds. The multirange operators compare each range until oneisunequal. This does
not usually result in auseful overall ordering, but the operators are provided to allow unique indexesto be constructed
on ranges.

Table 9.58. Range Operators

Operator
Description
Example(s)

anyrange @ anyrange — bool ean
Does the first range contain the second?

i nt4range(2,4) @ int4range(2,3) -t

anyrange @ anyel enent - bool ean
Does the range contain the element?

'[2011-01-01, 2011-03-01)'::tsrange @ '2011-01-10"::tinmestanp -t

anyr ange <@anyr ange - bool ean
Isthe first range contained by the second?

i nt4range(2,4) <@int4drange(1,7) -t

anyel ement <@anyr ange - bool ean
Is the element contained in the range?

42 <@int4range(1,7) - f

152

Functions and Operators

Operator
Description
Example(s)

anyr ange & anyr ange - bool ean
Do the ranges overlap, that is, have any elementsin common?

i nt8range(3,7) && int8range(4,12) -t

anyr ange << anyr ange - bool ean
Isthefirst range strictly left of the second?

i nt8range(1, 10) << int8range(100,110) -t

anyr ange >>anyr ange - bool ean
Isthe first range strictly right of the second?

i nt 8range(50, 60) >> int8range(20,30) -t

anyr ange & anyrange — bool ean
Does the first range not extend to the right of the second?

i nt 8range(1, 20) &< int8range(18,20) -t

anyr ange & anyr ange — bool ean
Does the first range not extend to the left of the second?

i nt8range(7,20) &> int8range(5,10) -t

anyrange - | - anyrange - bool ean
Are the ranges adjacent?
nunrange(1.1,2.2) -|- nunrange(2.2,3.3) -t

anyr ange +anyrange - anyr ange
Computes the union of the ranges. The ranges must overlap or be adjacent, so that the unionisasingle
range (but seer ange_nerge()).
nunr ange(5, 15) + nunrange(10, 20) - [5, 20)

anyrange * anyrange — anyrange
Computes the intersection of the ranges.
i nt 8range(5, 15) * int8range(10,20) - [10,15)

anyr ange - anyr ange - anyr ange
Computes the difference of the ranges. The second range must not be contained in the first in such away
that the difference would not be a single range.

i nt 8range(5, 15) - int8range(10,20) - [5, 10)

Table 9.59. Multirange Operators

Operator
Description
Example(s)

anynul tirange @ anynul tirange - bool ean
Does the first multirange contain the second?

{[2,4)} ::intdmultirange @ '{[2,3)} ::intd4multirange -t

anymul ti range @ anyrange — bool ean

153

Functions and Operators

Operator
Description
Example(s)

Does the multirange contain the range?
"{[2,4)}' ::intd4nul tirange @ int4range(2,3) -t

anymul ti range @ anyel enent - bool ean
Does the multirange contain the element?
'{[2011-01-01, 2011-03-01)}'::tsmultirange @ '2011-01-10'::tinmestanmp -
t

anyrange @ anynul ti range - bool ean
Does the range contain the multirange?

'[2,4) ::intd4range @ '{[2,3)} ::intdmultirange -t

anymul ti range <@anymul ti range - bool ean
Isthe first multirange contained by the second?

{[2,4)} ::intdmultirange <@' {[1,7)} ::intd4multirange -t

anynul ti range <@anyr ange - bool ean
I's the multirange contained by the range?

"{[2,4)} ::intdmul tirange <@int4range(1,7) -t

anyrange <@anynul ti range - bool ean
I's the range contained by the multirange?

intdrange(2,4) <@'{[1,7)} ::intd4multirange -t

anyel enment <@anymul ti range - bool ean
I's the element contained by the multirange?

4 <@'{[1,7)} ::intd4multirange -t

anymul tirange & anymul ti range - bool ean
Do the multiranges overlap, that is, have any elementsin common?

"{[3,7)} ::int8nmultirange &% '{[4,12)}'::int8multirange -t

anymul ti range & anyrange - bool ean
Does the multirange overlap the range?

"{[3,7)} ::int8nultirange && int8range(4, 12) -t

anyrange & anymul ti range - bool ean
Does the range overlap the multirange?

int8range(3,7) & '{[4,12)}'::int8multirange -t

anymul tirange <<anymul ti range - bool ean
Isthe first multirange strictly left of the second?

"{[1,10)}'::int8multirange << '{[100,110)}'::int8nultirange -t

anynul ti range << anyr ange - bool ean
Isthe multirange strictly left of the range?

"{[1,10)}'::int8multirange << int8range(100, 110) -t

anyrange <<anynul ti range - bool ean
Isthe range strictly left of the multirange?

154

Functions and Operators

Operator
Description
Example(s)

i nt 8range(1, 10) << '{[100,110)}'::int8multirange -t

anymul tirange >>anymul ti range - bool ean
Isthe first multirange strictly right of the second?

"{[50,60)}" ::int8multirange >> '{[20,30)}'::int8nmultirange -t

anynul ti range >>anyr ange - bool ean
Isthe multirange strictly right of the range?

"{[50,60)}" ::int8nultirange >> int8range(20,30) -t

anyrange >>anynul ti range — bool ean
Isthe range strictly right of the multirange?

i nt 8range(50,60) >> '{[20,30)}'::int8multirange -t

anymul tirange & anymul ti range - bool ean
Does the first multirange not extend to the right of the second?

"{[1,20)}"::int8multirange &< '{[18,20)}'::int8nmultirange -t

anymul ti range & anyrange - bool ean
Does the multirange not extend to the right of the range?

"{[1,20)}'::int8multirange &< int8range(18, 20) -t

anyrange & anynul ti range — bool ean
Does the range not extend to the right of the multirange?

i nt8range(1,20) &< '{[18,20)}'::int8nultirange -t

anymul tirange & anymul tirange - bool ean
Does the first multirange not extend to the left of the second?

"{[7,20)}" ::int8multirange & '{[5,10)}'::int8nultirange -t

anymul ti range & anyrange - bool ean
Does the multirange not extend to the left of the range?

"{[7,20)}'::int8multirange & int8range(5,10) -t

anyrange & anynul ti range — bool ean
Does the range not extend to the left of the multirange?

i nt8range(7,20) & '{[5,10)}' ::int8multirange -t

anynul tirange-|- anynmul tirange - bool ean
Are the multiranges adjacent?

"{[1.1,2.2)}' ::nunmul tirange -|- '{[2.2,3.3)}' ::numultirange -t

anymul tirange -| - anyrange - bool ean
Is the multirange adjacent to the range?

"{[1.1,2.2)}" ::nummul tirange -|- nunrange(2.2,3.3) -t

anyrange -| - anynul ti range - bool ean
Is the range adjacent to the multirange?

nunrange(1.1,2.2) -|- '{[2.2,3.3)} ::numultirange -t

155

Functions and Operators

Operator
Description
Example(s)

anymul tirange +anymul tirange - anynul tirange
Computes the union of the multiranges. The multiranges need not overlap or be adjacent.
"{[5,10)}' ::numul tirange + '{[15,20)}'::nunmultirange - {[5, 10),
[15, 20)}

anymul tirange * anymul tirange - anynul tirange
Computes the intersection of the multiranges.

"{[5,15)}'::int8multirange * '{[10,20)}'::int8nultirange - {[10, 15)}

anynul tirange - anynul tirange - anymul tirange
Computes the difference of the multiranges.
"{[5,20)}' ::int8multirange - '{[10,15)}'::int8nultirange - {[5, 10),
[15, 20)}

The left-of /right-of/adjacent operators always return false when an empty range or multirange is involved; that is, an
empty rangeis not considered to be either before or after any other range.

Elsewhere empty ranges and multiranges are treated as the additive identity: anything unioned with an empty valueis
itself. Anything minus an empty valueisitself. An empty multirange has exactly the same points as an empty range.
Every range contains the empty range. Every multirange contains as many empty ranges as you like.

The range union and difference operatorswill fail if the resulting range would need to contain two disjoint sub-ranges,
as such a range cannot be represented. There are separate operators for union and difference that take multirange
parameters and return a multirange, and they do not fail even if their arguments are digioint. So if you need a union or
difference operation for ranges that may be digjoint, you can avoid errors by first casting your ranges to multiranges.

Table 9.60 shows the functions available for use with range types. Table 9.61 shows the functions available for use
with multirange types.

Table 9.60. Range Functions

Function
Description
Example(s)

| ower (anyrange) - anyel enent
Extracts the lower bound of the range (NULL if the rangeis empty or has no lower bound).

[ower (nunrange(1.1,2.2)) - 1.1

upper (anyrange) - anyel enent
Extracts the upper bound of the range (NULL if the rangeis empty or has no upper bound).

upper (nunrange(1.1,2.2)) - 2.2

i senpty (anyrange) - bool ean
Is the range empty?
i sempty(nunrange(1.1,2.2)) - f

| ower i nc (anyrange) - bool ean
Isthe range's lower bound inclusive?

| ower _i nc(nunrange(1.1,2.2)) -t

156

Functions and Operators

Function
Description
Example(s)

upper _i nc (anyrange) - bool ean
Is the range's upper bound inclusive?
upper _i nc(nunrange(1.1,2.2)) - f

| ower _i nf (anyrange) - bool ean
Does the range have no lower bound? (A lower bound of - | nf i ni ty returnsfalse)

lower _inf('(,)'::daterange) -t

upper _i nf (anyrange) - bool ean
Does the range have no upper bound? (An upper bound of | nf i ni ty returnsfalse)
upper _inf('(,)'::daterange) -t

range_ner ge (anyrange, anyrange) - anyrange
Computes the smallest range that includes both of the given ranges.
range_mnerge('[1,2)'::int4range, '[3,4)'::int4range) - [1,4)

Table 9.61. Multirange Functions

Function
Description
Example(s)

| ower (anymul tirange) - anyel enent
Extracts the lower bound of the multirange (NULL if the multirange is empty or has no lower bound).

lower (" {[1.1,2.2)}' ::numultirange) - 1.1

upper (anymnul tirange) - anyel enent
Extracts the upper bound of the multirange (NULL if the multirange is empty or has no upper bound).

upper('{[21.1,2.2)}'::nunmul tirange) - 2.2

i senpty (anynul tirange) - bool ean
I's the multirange empty?

isempty('{[1.1,2.2)} ::numultirange) - f

| ower _i nc (anynul tirange) - bool ean
Is the multirange's lower bound inclusive?

lower _inc('{[1.1,2.2)} ::nunmultirange) -t

upper _inc (anynul tirange) - bool ean
Is the multirange's upper bound inclusive?

upper _inc('{[1.1,2.2)}" ::numultirange) - f

| ower _i nf (anynul tirange) - bool ean
Does the multirange have no lower bound? (A lower bound of - | nf i ni ty returnsfalse.)

lower _inf("{(,)} ::datenultirange) -t

upper _i nf (anynul tirange) - bool ean
Does the multirange have no upper bound? (An upper bound of | nf i ni ty returnsfalse.)
upper _inf('{(,)} ::datenultirange) -t

157

Functions and Operators

Function
Description
Example(s)

range_nerge (anymul tirange) - anyrange
Computes the smallest range that includes the entire multirange.
range_nerge('{[1,2), [3,4)}' ::intd4nultirange) - [1,4)

mul tirange (anyrange) - anynul ti range
Returns a multirange containing just the given range.
multirange('[1,2)'::int4range) - {[1,2)}

unnest (anynul tirange) — setof anyrange
Expands a multirange into a set of ranges in ascending order.

unnest (' {[1,2), [3,4)} ::intd4multirange) -

[1,2)
[3,4)

Thel ower _i nc, upper _i nc, | ower _i nf, and upper _i nf functions all return false for an empty range or
multirange.

9.21. Aggregate Functions

Aggregatefunctionscomputeasingleresult from aset of input values. The built-in general -purpose aggregate functions
arelisted in Table 9.62 while statistical aggregates are in Table 9.63. The built-in within-group ordered-set aggregate
functions are listed in Table 9.64 while the built-in within-group hypothetical-set ones are in Table 9.65. Grouping
operations, which are closely related to aggregate functions, are listed in Table 9.66. The special syntax considerations
for aggregate functions are explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Aggregate functions that support Partial Mode are eligible to participate in various optimizations, such as paralléel
aggregation.

While al aggregates below accept an optional ORDER BY clause (as outlined in Section 4.2.7), the clause has only
been added to aggregates whose output is affected by ordering.

Table 9.62. General-Purpose Aggregate Functions

Function Partial
Description Mode
any_val ue (anyel enent) - sanme as i nput type Yes

Returns an arbitrary value from the non-null input values.

array_agg (anynonarray ORDER BYi nput _sort_col umms) - anyarray Yes
Collects al the input values, including nulls, into an array.

array_agg (anyarray ORDER BYi nput _sort _col ums) - anyarray Yes
Concatenates all the input arraysinto an array of one higher dimension. (The inputs must all
have the same dimensionality, and cannot be empty or null.)

avg (smal lint) - nuneric Yes
avg (i nteger) - numeric
avg (bigint) - numeric

158

Functions and Operators

Function
Description

Partial
Mode

avg (numeric) - nuneric
avg (real) - doubl e precision
avg (doubl e precision) - doubl e precision

avg (interval) - interval
Computes the average (arithmetic mean) of all the non-null input values.

bit_and(smallint) - smallint
bit_and (i nteger) - i nteger
bit _and (bi gi nt) - bigint

bit_and(bit) - bit
Computes the bitwise AND of all non-null input values.

Yes

bit_or (smallint) - smallint
bit _or (integer) - integer
bit _or (bigint) - bigint

bit or (bit)-bit
Computes the bitwise OR of al non-null input values.

Yes

bit_xor (smallint) - smallint
bit xor (integer) - integer
bit_ xor (bigint) - bigint
bit_xor (bit) - bit

Computes the bitwise exclusive OR of al non-null input values. Can be useful as a checksum
for an unordered set of values.

Yes

bool _and (bool ean) - bool ean
Returnstrueif all non-null input values are true, otherwise false.

Yes

bool or (bool ean) - bool ean
Returns true if any non-null input value is true, otherwise false.

Yes

count (*) - bigint
Computes the number of input rows.

Yes

count ("any") - bigint
Computes the number of input rows in which the input valueis not null.

Yes

every (bool ean) - bool ean
Thisisthe SQL standard's equivalent to bool _and.

Yes

j son_agg (anyel ement ORDER BYi nput _sort_columms) - json

j sonb_agg (anyel ement ORDER BYi nput _sort_columms) - j sonb
Collects al theinput values, including nulls, into a JSON array. Values are converted to JSON
asperto_jsonorto_jsonb.

No

json_agg_strict (anyel enent) - json

jsonb_agg strict (anyel enment) - j sonb
Collects al the input values, skipping nulls, into a JSON array. Values are converted to JSON
asperto_jsonorto_jsonb.

No

159

Functions and Operators

Function Partial
Description Mode

json_arrayagg ([val ue_expression][ORDER BYsort _expression][{ NULL | No
ABSENT } ON NULL][RETURNI NGdat a_t ype [FORMAT JSON[ENCODI NG UTF8
11D
Behavesinthe sameway asj son_ar r ay but as an aggregate function so it only takes one
val ue_expr essi on parameter. If ABSENT ON NULL isspecified, any NULL values are
omitted. If ORDER BY is specified, the elements will appear in the array in that order rather
than in the input order.

SELECT json_arrayagg(v) FROM (VALUES(2), (1)) t(v) -[2, 1]

j son_obj ectagg ([{ key_expressi on{ VALUE|"'} val ue_expression}][{ NULL [No
[ABSENT } ON NULL] [{ WTH|W THOUT } UNI QUE [KEYS]] [RETURNI NGda-
ta_type [FORVAT JSON[ENCODI NG UTF8111])

Behaveslikej son_obj ect , but as an aggregate function, so it only takesonekey ex-
pressi on andoneval ue_expr essi on parameter.

SELECT j son_obj ect agg(k:v) FROM (VALUES ('a'::text,cur-

rent _date),('b',current_date + 1)) AS t(k,v) -{ "a"
"2022-05-10", "b" : "2022-05-11" }

j son_obj ect _agg (key "any",val ue "any" ORDER BYi nput_sort_col ums) - No
json

j sonb_obj ect agg (key "any",val ue "any" ORDER BYinput_sort _colums) -

j sonb
Collects al the key/vaue pairsinto a JSON object. Key arguments are coerced to text; value
arguments are converted aspert o_j son ort o_j sonb. Values can be null, but keys cannot.

j son_obj ect _agg_strict (key "any",val ue"any") - json No

j sonb_object _agg strict (key "any",val ue"any") - j sonb
Collects al the key/value pairsinto a JSON object. Key arguments are coerced to text; val-
ue arguments are converted aspert o_j son ort o_j sonb. Thekey can not be null. If the
val ue isnull then the entry is skipped,

j son_obj ect _agg_uni que (key "any",val ue "any") - j son No

j sonb_obj ect _agg_uni que (key "any",val ue"any") - j sonb
Collects al the key/vaue pairsinto a JSON object. Key arguments are coerced to text; value
arguments are converted aspert o_j son ort o_j sonb. Values can be null, but keys cannot.

If there is a duplicate key an error isthrown.

j son_obj ect _agg_uni que_strict (key "any",val ue"any") - j son No

j sonb_obj ect _agg uni que_strict (key "any",val ue"any") - jsonb
Coallects al the key/value pairsinto a JSON object. Key arguments are coerced to text; val-
ue arguments are converted aspert o_j son ort o_j sonb. Thekey can not be null. If the
val ue isnull then the entry is skipped. If there is a duplicate key an error isthrown.

max (see text) - same as input type Yes
Computes the maximum of the non-null input values. Available for any numeric, string, date/
time, or enum type, aswell asbyt ea, i net ,i nt erval ,noney, o0i d,pg_Il sn,tid,

xi d8, and also arrays and composite types containing sortable data types.
Yes

mn(see text) - same as input type

160

Functions and Operators

Function Partial
Description Mode
Computes the minimum of the non-null input values. Available for any numeric, string, date/
time, or enum type, aswell asbyt ea, i net ,i nt erval ,noney,o0i d,pg_| sn,tid,

Xi d8, and also arrays and composite types containing sortable data types.

range_agg (val ue anyrange) - anymnul ti r ange No

range_agg (val ue anymul tirange) - anynul tirange
Computes the union of the non-null input values.

range_i ntersect _agg (val ue anyrange) - anyr ange No

range_i ntersect _agg (val ueanynultirange) - anynul tirange
Computes the intersection of the non-null input values.

string_agg (valuetext,delimter text) - text Yes

string_agg (val ue bytea,del i mter byt ea ORDER BYi nput_sort_colums) -
byt ea
Concatenates the non-null input values into a string. Each value after the first is preceded by
the corresponding del i mi t er (if it'snot null).

sum(smal | i nt) - bi gi nt Yes
sum(i nt eger) - bi gi nt

sum(bigint) - numeric

sum(numeric) - nuneric

sum(real) - real

sum(doubl e precision) - doubl e precision
sum(interval) - interval

sum(noney) - noney
Computes the sum of the non-null input values.

xm agg (xm ORDER BYi nput_sort _col unms) - xni No
Concatenates the non-null XML input values (see Section 9.15.1.8).

It should be noted that except for count , these functions return anull value when no rows are selected. In particular,
sumof no rows returns null, not zero as one might expect, and ar r ay _agg returns null rather than an empty array
when there are no input rows. The coal esce function can be used to substitute zero or an empty array for null when
necessary.

The aggregate functions array_agg, json_agg, jsonb_agg, json_agg strict, jsonb_ag-
g_strict, json_object _agg, j sonb_object _agg, j son_object _agg_strict, jsonb_objec-
t _agg_strict,json_object_agg unique,jsonb_object _agg uni que,json_object_agg u-
ni que_strict, jsonb_object _agg_uni que_strict, string_agg, and xm agg, as well as similar
user-defined aggregate functions, produce meaningfully different result values depending on the order of the input
values. This ordering is unspecified by default, but can be controlled by writing an ORDER BY clause within the
aggregate call, asshown in Section 4.2.7. Alternatively, supplying theinput values from a sorted subquery will usually
work. For example:

SELECT xm agg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as ajoin, because that
might cause the subquery's output to be reordered before the aggregate is computed.

161

Functions and Operators

Note

Theboolean aggregatesbool _and andbool _or correspond to the standard SQL aggregatesevery
and any or sone. PostgreSQL supportsever y, but not any or somne, because there is an ambiguity
built into the standard syntax:

SELECT bl = ANY((SELECT b2 FROMt2 ...)) FROMt1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function, if
the subquery returns one row with a Boolean value. Thus the standard name cannot be given to these

aggregates.

Note
Users accustomed to working with other SQL database management systems might be disappointed
by the performance of the count aggregate when it is applied to the entire table. A query like:
SELECT count (*) FROM sonet abl e;

will require effort proportiona to the size of the table: PostgreSQL will need to scan either the entire
table or the entirety of an index that includes all rows in the table.

Table 9.63 shows aggregate functions typically used in statistical analysis. (These are separated out merely to avoid
cluttering the listing of more-commonly-used aggregates.) Functions shown as accepting nuner i ¢_t ype areavail-
ablefor al thetypessnal | i nt, i nt eger, bi gi nt, nuneric,real,anddoubl e precision. Wherethe
description mentions N, it means the number of input rowsfor which all theinput expressionsare non-null. Inall cases,
null isreturned if the computation is meaningless, for example when Nis zero.

Table 9.63. Aggregate Functionsfor Statistics

Function Partial
Description Moaode
corr (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes

Computes the correlation coefficient.

covar _pop (Ydoubl e precision,Xdoubl e precision) - double precision Yes
Computes the population covariance.

covar _sanp (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the sample covariance.

regr_avgx (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the average of the independent variable, sun{ X) / N.

regr_avgy (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the average of the dependent variable, sun(Y) / N.

162

Functions and Operators

Function Partial
Description Mode
regr_count (Ydoubl e precision, Xdoubl e precision) - bigint Yes
Computes the number of rows in which both inputs are non-null.
regr_intercept (Ydoubl e precision,Xdouble precision) - double preci - Yes
sion
Computes the y-intercept of the least-squares-fit linear equation determined by the (X, Y) pairs.
regr_r2(Ydoubl e precision,Xdoubl e precision) - double precision Yes
Computes the square of the correlation coefficient.
regr_sl ope (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the slope of the least-squares-fit linear equation determined by the (X, Y) pairs.
regr_sxx (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the “ sum of squares’ of the independent variable, sun(X*2) - sum(X)*2/ N.
regr_sxy (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the “sum of products’ of independent times dependent variables, sum(X*Y) -
sum(X) * sum(Y)/N
regr_syy (Ydoubl e precision,Xdoubl e precision) - doubl e precision Yes
Computes the “ sum of squares’ of the dependent variable, sum(Y*2) - sun(Y)”2/N.
stddev (nuneric_type) —» doubl e precisionforreal ordoubl e precision,oth- Yes
erwisenumeri c
Thisisahistorical adiasfor st ddev_sanp.
st ddev_pop (nuneric_type) » doubl e precisionforreal ordoubl e preci- Yes
si on, otherwise nuneri c
Computes the population standard deviation of the input values.
stddev_sanp (nuneric_type) —» doubl e precisionforreal ordoubl e preci- Yes
si on, otherwise nuneri c
Computes the sample standard deviation of the input values.
vari ance (nuneric_type) —» doubl e precisionforreal ordoubl e precision, Yes
otherwise numeri c
Thisisahistorical diasfor var _sanp.
var_pop (numeric_type) —» doubl e precisionforreal ordoubl e precision, Yes
otherwise nuneri c
Computes the population variance of the input values (square of the population standard devia-
tion).
Yes

var_sanp (nureri c_type) — doubl e precisionforreal ordoubl e precision,
otherwise numeri c
Computes the sample variance of the input values (square of the sample standard deviation).

Table 9.64 shows some aggregate functions that use the ordered-set aggregate syntax. These functions are sometimes
referred to as “inverse distribution” functions. Their aggregated input isintroduced by ORDER BY, and they may also
take adirect argument that is not aggregated, but is computed only once. All these functionsignore null valuesin their
aggregated input. For those that take af r act i on parameter, the fraction value must be between 0 and 1;

thrown if not. However, anull f r act i on value simply produces a null result.

an error is

163

Functions and Operators

Table 9.64. Ordered-Set Aggregate Functions

Function
Description

Partial
Mode

nmode () W THI N GROUP (ORDER BY anyel enent) - anyel enent
Computes the mode, the most frequent value of the aggregated argument (arbitrarily choosing
the first oneif there are multiple equally-frequent values). The aggregated argument must be
of asortable type.

No

percentil e _cont (fractiondouble precision)WTH N GROUP(ORDER BY dou-

bl e precision) - doubl e precision
percentil e _cont (fracti ondouble precision)WTH N GROUP(ORDER BYi n-

terval) - interval

Computes the continuous percentile, avalue corresponding to the specified f r act i on with-
in the ordered set of aggregated argument values. Thiswill interpolate between adjacent input
itemsif needed.

No

percentil e_cont (fractions double precision[])WTH N GROUP (ORDER BY

doubl e precision) - doubl e precision[]
percentil e_cont (fractions double precision[])WTH N GROUP (ORDER BY

interval) - interval[]

Computes multiple continuous percentiles. The result is an array of the same dimensions as the
fracti ons parameter, with each non-null element replaced by the (possibly interpolated)
value corresponding to that percentile.

No

percentil e _disc (fractiondouble precision)WTH N GROUP(ORDER BY

anyel emrent) - anyel enment

Computes the discrete percentile, the first value within the ordered set of aggregated argument
values whose position in the ordering equals or exceeds the specified f r act i on. The aggre-
gated argument must be of a sortable type.

No

percentil e_disc(fractions double precision[])WTH N GROUP (ORDER BY

anyel enment) - anyarray
Computes multiple discrete percentiles. The result is an array of the same dimensions as the
fracti ons parameter, with each non-null element replaced by the input value correspond-

No

ing to that percentile. The aggregated argument must be of a sortable type.

Each of the “hypothetical-set” aggregateslisted in Table 9.65 is associated with a window function of the same name

defined in Section 9.22. In each case, the aggregate's result is the value that the associated window function would
have returned for the “hypothetical” row constructed from ar gs, if such arow had been added to the sorted group of
rows represented by thesor t ed_ar gs. For each of these functions, thelist of direct arguments givenin ar gs must
match the number and types of the aggregated arguments givenin sor t ed_ar gs. Unlike most built-in aggregates,
these aggregates are not strict, that is they do not drop input rows containing nulls. Null values sort according to the

rule specified in the ORDER BY clause.

Table 9.65. Hypothetical-Set Aggregate Functions

rank (args)W THI N GROUP (ORDER BY sorted_args) — bi gi nt
Computes the rank of the hypothetical row, with gaps; that is, the row number of the first row
inits peer group.

Function Partial
Description Moaode
No

164

Functions and Operators

Function Partial
Description Mode
dense_rank (args)W THI N GROUP (ORDER BY sorted_args) - bi gi nt No

Computes the rank of the hypothetical row, without gaps; this function effectively counts peer

groups.

percent _rank (args)W THI N GROUP (ORDER BY sorted_args) — doubl e preci - No

si on

Computes the relative rank of the hypothetical row, that is (r ank - 1) / (total rows - 1). The

value thus ranges from O to 1 inclusive.

cume_di st (args)W THI N GROUP (ORDER BYsorted_args) — doubl e precision No
Computes the cumulative distribution, that is (number of rows preceding or peers with hypo-
thetical row) / (total rows). The value thus ranges from 1/Nto 1.

Table 9.66. Grouping Oper ations

Function
Description

GROUPI NG(group_by_expression(s)) - integer
Returns a bit mask indicating which GROUP BY expressions are not included in the current grouping set.
Bits are assigned with the rightmost argument corresponding to the least-significant bit; each bitisO if
the corresponding expression isincluded in the grouping criteria of the grouping set generating the cur-

rent result row, and 1 if it is not included.

The grouping operations shown in Table 9.66 are used in conjunction with grouping sets (see Section 7.2.4) to distin-
guish result rows. The arguments to the GROUPI NG function are not actually evaluated, but they must exactly match
expressions given in the GROUP BY clause of the associated query level. For example:

=> SELECT * FROM itens_sol d;

make | nodel | sales
_______ e
Foo | GT | 10
Foo | Tour | 20
Bar | Gty | 15
Bar | Sport | 5
(4 rows)
=> SELECT make, nodel, GROUPI NG rmeke, nodel),

BY ROLLUP(nake, nodel) ;

make | nodel | grouping | sum
------- I gy
Foo | GT | 0] 10
Foo | Tour | 0] 20
Bar | Gty | 0| 15
Bar | Sport | 0] 5
Foo | | 1| 30
Bar | | 1| 20
| | 3] 50

(7 rows)

sum(sal es) FROM itens_sold GROUP

Here, the gr oupi ng value 0 in the first four rows shows that those have been grouped normally, over both the
grouping columns. The value 1 indicates that nodel was not grouped by in the next-to-last two rows, and the value

165

Functions and Operators

3 indicates that neither make nor nodel was grouped by in the last row (which therefore is an aggregate over all
the input rows).

9.22. Window Functions

Window functions provide the ability to perform cal culations across sets of rows that are related to the current query
row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.67. Note that these functions must be invoked using window
function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or hypothetical-set
aggregates) can be used asawindow function; see Section 9.21 for alist of the built-in aggregates. Aggregate functions
act as window functions only when an OVER clause follows the call; otherwise they act as plain aggregates and return
asinglerow for the entire set.

Table 9.67. General-Pur pose Window Functions

Function
Description

row_nunber () - bi gi nt
Returns the number of the current row within its partition, counting from 1.

rank () - bi gi nt
Returns the rank of the current row, with gaps; that is, ther ow_nunber of thefirst row inits peer
group.

dense_rank () - bi gi nt
Returns the rank of the current row, without gaps; this function effectively counts peer groups.

percent _rank () - doubl e precision
Returns the relative rank of the current row, that is (r ank - 1) / (total partition rows - 1). The value thus
ranges from O to 1 inclusive.

cunme_di st () - doubl e precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with current
row) / (total partition rows). The value thus ranges from 1/Nto 1.

ntile(numbucketsinteger) - integer
Returns an integer ranging from 1 to the argument value, dividing the partition as equally as possible.

| ag (val ue anyconpati bl e [,of fset i nt eger [,defaul t anyconpati bl e]]) - anyconpat -
i ble
Returnsval ue evaluated at the row that isof f set rows before the current row within the partition; if
there is no such row, instead returnsdef aul t (which must be of atype compatible with val ue). Both
of f set anddef aul t are evaluated with respect to the current row. If omitted, of f set defaultsto 1
and def aul t to NULL.

| ead (val ue anyconpati bl e[, of f set i nt eger [,defaul t anyconpatible]]) - any-
conpati bl e
Returnsval ue evaluated at therow that is of f set rows after the current row within the partition; if
thereis no such row, instead returnsdef aul t (which must be of atype compatible with val ue). Both
of f set anddef aul t are evaluated with respect to the current row. If omitted, of f set defaultsto 1
and def aul t to NULL.

166

Functions and Operators

Function
Description

first_val ue (val ue anyel enent) —» anyel enent
Returnsval ue evaluated at the row that isthe first row of the window frame.

| ast _val ue (val ue anyel enent) - anyel enment
Returnsval ue evaluated at the row that is the last row of the window frame.

nt h_val ue (val ue anyel enent ,ni nt eger) - anyel enent

Returnsval ue evaluated at the row that is the n'th row of the window frame (counting from 1); returns
NULL if thereis no such row.

All of thefunctionslisted in Table 9.67 depend on the sort ordering specified by the ORDER BY clause of the associated
window definition. Rows that are not distinct when considering only the ORDER BY columns are said to be peers.
The four ranking functions (including cunme_di st) are defined so that they give the same answer for all rows of
a peer group.

Note that fi rst _val ue, | ast _val ue, and nt h_val ue consider only the rows within the “window frame”,
which by default contains the rows from the start of the partition through the last peer of the current row. Thisislikely
to giveunhelpful resultsfor | ast _val ue and sometimesasont h_val ue. You can redefine the frame by adding a
suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause. See Section 4.2.8 for more information
about frame specifications.

When an aggregate function is used as awindow function, it aggregates over the rows within the current row's window
frame. An aggregate used with ORDER BY and the default window frame definition produces a“running sum” type of
behavior, which may or may not be what's wanted. To obtain aggregation over the whole partition, omit ORDER BY
or use ROA5 BETWEEN UNBOUNDED PRECEDI NG AND UNBOUNDED FOLLOW NG Other frame specifications
can be used to obtain other effects.

Note

The SQL standard defines a RESPECT NULLS or | GNORE NULLS option for | ead, | ag,
first_val ue,l ast _val ue, and nt h_val ue. Thisis not implemented in PostgreSQL : the be-
havior is aways the same as the standard's default, namely RESPECT NULLS. Likewise, the stan-
dard's FROM FI RST or FROM LAST option for nt h_val ue is not implemented: only the default
FROM FI RST behavior is supported. (You can achieve the result of FROM LAST by reversing the
ORDER BY ordering.)

9.23. Merge Support Functions

PostgreSQL includes one merge support function that may be used in the RETURNI NG list of a MERGE command
to identify the action taken for each row; see Table 9.68.

Table 9.68. Merge Support Functions

Function
Description

merge_action() - text

Returns the merge action command executed for the current row. Thiswill be' | NSERT' ,' UPDATE' ,
or' DELETE' .

167

Functions and Operators

Example:

MERGE | NTO products p

USI NG stock s ON p.product_id = s.product _id
WHEN MATCHED AND s. quantity > 0 THEN

UPDATE SET in_stock = true, quantity = s.quantity
VWHEN MATCHED THEN

UPDATE SET in_stock = false, quantity =0
VWHEN NOT MATCHED THEN

I NSERT (product _id, in_stock, quantity)

VALUES (s.product _id, true, s.quantity)

RETURNI NG nerge_action(), p.*;

nmerge_action | product _id | in_stock | quantity
-------------- T T T St
UPDATE | 1001 | t | 50
UPDATE | 1002 | f | 0
| NSERT | 1003 | t | 10

Note that this function can only be used in the RETURNI NGist of a MERGE command. It is an error to use it in any
other part of aquery.

9.24. Subquery Expressions

This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the expression forms
documented in this section return Boolean (true/false) results.

9.24.1. EXI STS

EXI STS (subquery)

The argument of EXI STS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to determine
whether it returns any rows. If it returns at least one row, the result of EXI STSis “true”; if the subquery returns no
rows, the result of EXI STSis“false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any one evaluation
of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row isreturned, not all the
way to completion. It isunwise to write a subquery that has side effects (such as calling sequence functions); whether
the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the output
list of the subquery is normally unimportant. A common coding convention isto write all EXI STS tests in the form
EXI STS(SELECT 1 WHERE . ..). There are exceptions to this rule however, such as subqueries that use | N-
TERSECT.

This simple example islike an inner join on col 2, but it produces at most one output row for eacht ab1 row, even
if there are several matchingt ab2 rows:

SELECT col 1

168

Functions and Operators

FROM t abl
WHERE EXI STS (SELECT 1 FROM tab2 WHERE col 2 = tabl. col 2);

9.242. I N

expression I N (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is
evaluated and compared to each row of the subquery result. The result of | Nis “true” if any equal subquery row is
found. Theresult is“false” if no equal row isfound (including the case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at |east one right-hand
row yields null, the result of the I N construct will be null, not false. Thisis in accordance with SQL's normal rules
for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor |IN (subquery)

The left-hand side of this form of | Nis a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result. The result of | N
is“true” if any equal subquery row isfound. The result is“false” if no equal row isfound (including the case where
the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are
considered equal if all their corresponding members are non-null and equal; the rows are unequal if any corresponding
members are non-null and unequal; otherwise the result of that row comparison is unknown (null). If all the per-row
results are either unequal or null, with at least one null, then the result of | Nisnull.

9.24.3. NOT I N

expressi on NOT I N (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is
evaluated and compared to each row of the subquery result. The result of NOT | Nis“true” if only unequal subquery
rows are found (including the case where the subquery returnsno rows). Theresult is“false” if any equal row isfound.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at |east one right-hand
row yields null, the result of the NOT | N construct will be null, not true. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor NOT IN (subquery)

Theleft-hand side of thisform of NOT | Nisarow constructor, as described in Section 4.2.13. Theright-hand sideis
a parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result. The result of NOT
I Nis“true” if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is“false” if any equal row isfound.

169

Functions and Operators

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are
considered equal if all their corresponding members are non-null and equal; the rows are unequal if any corresponding
members are non-null and unequal; otherwise the result of that row comparison is unknown (null). If all the per-row
results are either unequal or null, with at least one null, then the result of NOT | Nisnull.

9.24.4. ANY/SQVE

expressi on operator ANY (subquery)
expressi on operator SOVE (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is
evaluated and compared to each row of the subquery result using the given oper at or , which must yield a Boolean
result. Theresult of ANY is“true” if any trueresult isobtained. Theresult is“false” if no trueresult isfound (including
the case where the subquery returns no rows).

SOMVE isasynonym for ANY. | Nisequivalentto= ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result, the result of
the ANY construct will be null, not false. This is in accordance with SQL's normal rules for Boolean combinations
of null values.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor operator ANY (subquery)
row_constructor operator SOVE (subquery)

The left-hand side of this form of ANY isarow constructor, as described in Section 4.2.13. The right-hand sideis a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result, using the given
oper at or . Theresult of ANY is“true” if the comparison returns true for any subquery row. The result is “false” if
the comparison returns false for every subquery row (including the case where the subquery returns no rows). The
result isNULL if no comparison with a subquery row returnstrue, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of arow constructor comparison.

9.24.5. ALL

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is
evaluated and compared to each row of the subquery result using the given oper at or , which must yield a Boolean
result. The result of ALL is“true” if all rowsyield true (including the case where the subquery returns no rows). The
result is “false” if any false result is found. The result is NULL if no comparison with a subquery row returns false,
and at least one comparison returns NULL.

NOT | Nisequivalentto<> ALL.

Aswith EXI STS, it's unwise to assume that the subquery will be evaluated compl etely.

row_constructor operator ALL (subquery)

170

Functions and Operators

The left-hand side of this form of ALL is arow constructor, as described in Section 4.2.13. The right-hand sideisa
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result, using the given
oper at or . Theresult of ALL is“true” if the comparison returnstruefor all subquery rows (including the case where
the subquery returns no rows). Theresult is“false” if the comparison returns false for any subquery row. Theresult is
NULL if no comparison with a subquery row returns false, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of arow constructor comparison.

9.24.6. Single-Row Comparison

row _constructor operator (subquery)

Theleft-hand sideisarow constructor, asdescribed in Section 4.2.13. Theright-hand sideis a parenthesized subquery,
which must return exactly as many columns as there are expressions in the | eft-hand row. Furthermore, the subquery
cannot return more than onerow. (If it returns zero rows, the result is taken to be null.) The left-hand sideis evaluated
and compared row-wise to the single subquery result row.

See Section 9.25.5 for details about the meaning of arow constructor comparison.

9.25. Row and Array Comparisons

Thissection describes several specialized constructsfor making multiple comparisons between groups of values. These
forms are syntactically related to the subquery forms of the previous section, but do not involve subgueries. The forms
involving array subexpressions are PostgreSQL extensions; the rest are SQL-compliant. All of the expression forms
documented in this section return Boolean (true/false) results.

9.25.1.IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true’ if the left-hand expression's result is
equal to any of the right-hand expressions. Thisis a shorthand notation for

expression = val uel
oR
expr essi on
oR

val ue2

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand
expression yields null, the result of the I N construct will be null, not false. Thisisin accordance with SQL's normal
rules for Boolean combinations of null values.

9.25.2. NOT I N

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true’ if the left-hand expression's result is
unegual to all of the right-hand expressions. This is a shorthand notation for

171

Functions and Operators

expressi on <> val uel
AND
expressi on <> val ue2
AND

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-hand
expression yields null, the result of the NOT | N construct will be null, not true as one might naively expect. Thisis
in accordance with SQL's normal rules for Boolean combinations of null values.

Tip

X NOT IN yisequivalentto NOT (x | N y) inall cases. However, null values are much more
likely to trip up the novice when working with NOT | N than when working with | N. It is best to
express your condition positively if possible.

9.25.3. ANY/SQOME (array)

expressi on operator ANY (array expression)
expressi on operator SOVE (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is eval-
uated and compared to each element of the array using the given oper at or , which must yield a Boolean result. The
result of ANY is*“true” if any true result is obtained. The result is “false” if no true result is found (including the case
where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields null, the
result of ANY isordinarily null (though anon-strict comparison operator could possibly yield a different result). Also,
if the right-hand array contains any null elements and no true comparison result is obtained, the result of ANY will
be null, not false (again, assuming a strict comparison operator). This is in accordance with SQL's normal rules for
Boolean combinations of null values.

SOVE isasynonym for ANY.

9.25.4. ALL (array)

expression operator ALL (array expression)

Theright-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is eval-
uated and compared to each element of the array using the given oper at or , which must yield a Boolean result. The
result of ALL is“true” if all comparisonsyield true (including the case where the array has zero elements). The result
is“false” if any falseresult isfound.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields null, the
result of ALL isordinarily null (though anon-strict comparison operator could possibly yield a different result). Also,
if the right-hand array contains any null elements and no false comparison result is obtained, the result of ALL will
be null, not true (again, assuming a strict comparison operator). This is in accordance with SQL's normal rules for
Boolean combinations of null values.

172

Functions and Operators

9.25.5. Row Constructor Comparison

row_constructor operator row_constructor

Each sideis arow constructor, as described in Section 4.2.13. The two row constructors must have the same number
of fields. The given oper at or isapplied to each pair of corresponding fields. (Since the fields could be of different
types, this means that a different specific operator could be selected for each pair.) All the selected operators must be
members of some B-tree operator class, or be the negator of an = member of a B-tree operator class, meaning that
row constructor comparison is only possible when the oper at or is=, <>, <, <=, >, or >=, or has semantics similar
to one of these.

The = and <> cases work dlightly differently from the others. Two rows are considered equal if al their correspond-
ing members are non-null and equal; the rows are unequal if any corresponding members are non-null and unequal;
otherwise the result of the row comparison is unknown (null).

Forthe<, <=, > and >= cases, therow el ements are compared | eft-to-right, stopping as soon asan unegual or null pair of
elementsisfound. If either of thispair of elementsisnull, theresult of the row comparisonisunknown (null); otherwise
comparison of this pair of elements determines the result. For example, RON(1, 2, NULL) < ROW 1, 3, 0) yields
true, not null, because the third pair of elements are not considered.

row _constructor IS DI STINCT FROM r ow_construct or

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any null valueis
considered unequal to (distinct from) any non-null value, and any two nulls are considered equal (not distinct). Thus
the result will either be true or false, never null.

row constructor IS NOT DI STI NCT FROM r ow_construct or

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null value is
considered unequal to (distinct from) any non-null value, and any two nulls are considered equal (not distinct). Thus
the result will always be either true or false, never null.

9.25.6. Composite Type Comparison

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing two NULL
values or aNULL and anon-NULL. PostgreSQL does this only when comparing the results of two row constructors
(asin Section 9.25.5) or comparing a row constructor to the output of a subquery (asin Section 9.24). In other con-
texts where two composite-type values are compared, two NULL field values are considered equal, and a NULL is
considered larger than anon-NULL. Thisis necessary in order to have consistent sorting and indexing behavior for
composite types.

Each sideisevaluated and they are compared row-wise. Compositetype comparisonsareallowed whentheoper at or
is=, <>, <, <=, > o0r>=, or has semantics similar to one of these. (To be specific, an operator can be arow comparison
operator if itisamember of a B-tree operator class, or isthe negator of the = member of a B-tree operator class.) The
default behavior of the above operatorsisthesameasfor | S [NOT] DI STI NCT FROMfor row constructors
(see Section 9.25.5).

To support matching of rowswhichinclude elementswithout adefault B-tree operator class, thefollowing operatorsare
defined for composite type comparison: * =, * <>, * <, * <=, * > and * >=. These operators compare theinternal binary

173

Functions and Operators

representation of the two rows. Two rows might have a different binary representation even though comparisons of
the two rows with the equality operator istrue. The ordering of rows under these comparison operatorsis deterministic
but not otherwise meaningful. These operators are used internally for materialized views and might be useful for other
specialized purposes such as replication and B-Tree deduplication (see Section 65.1.4.3). They are not intended to be
generally useful for writing queries, though.

9.26. Set Returning Functions

This section describesfunctionsthat possibly return morethan onerow. Themost widely used functionsin thisclassare
series generating functions, as detailed in Table 9.69 and Table 9.70. Other, more specialized set-returning functions
are described elsawhere in this manual. See Section 7.2.1.4 for ways to combine multiple set-returning functions.

Table 9.69. Series Generating Functions

Function
Description

generate_series(start integer,stopinteger [,stepinteger]) - setof integer
generate_series (start bigint,stopbigint [,stepbigint]) - setof bigint

generate_series (start nunmeric,stopnuneric[,stepnunmeric]) — setof numeric
Generates a series of valuesfrom st art to st op, with astep size of st ep. st ep defaultsto 1.

generate_series(start tinestanp,stoptinestanp,stepinterval) - setof tine-

stanp

generate _series(start tinestanp with tinme zone,stoptinmestanp with tine zone,
stepinterval [,timezonetext]) - setof tinestanp with tine zone
Generates aseries of valuesfrom st art to st op, with astep size of st ep. In the timezone-aware
form, times of day and daylight-savings adjustments are computed according to the time zone named by
thet i mezone argument, or the current TimeZone setting if that is omitted.

When st ep is positive, zero rows are returned if st art isgreater than st op. Conversely, when st ep is negative,
zero rows are returned if st art islessthan st op. Zero rows are also returned if any input is NULL. It is an error
for st ep to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
generate_series

(3 rows)

SELECT * FROM generate_series(5,1,-2);
generate_series

(3 rows)

SELECT * FROM generate_series(4, 3);

174

Functions and Operators

generate_series

SELECT generate_series(1.1, 4, 1.3);
generate_series

(3 rows)

-- this exanmple relies on the date-plus-integer operator

SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
dat es

2004- 02- 05

2004- 02- 12

2004- 02- 19

(3 rows)

SELECT * FROM generate_series('2008-03-01 00: 00" ::ti mestanp,
' 2008-03-04 12:00', '10 hours');
generate_series

2008- 03-01 00: 00: 00

2008- 03-01 10: 00: 00

2008- 03-01 20: 00: 00

2008- 03-02 06: 00: 00

2008- 03-02 16: 00: 00

2008- 03-03 02: 00: 00

2008- 03-03 12: 00: 00

2008- 03-03 22: 00: 00

2008- 03- 04 08: 00: 00

(9 rows)

-- this exanple assunes that TinmeZone is set to UTC, note the DST transition

SELECT * FROM generate_series('2001-10-22 00:00 -04:00"::tinestanptz,
' 2001-11-01 00: 00 -05:00"::timestanptz,
"1 day'::interval, 'Americal/ New York');

generate_series

2001- 10- 22 04: 00: 00+00

2001- 10- 23 04: 00: 00+00

2001- 10- 24 04: 00: 00+00

2001- 10- 25 04: 00: 00+00

2001- 10- 26 04: 00: 00+00

2001- 10- 27 04: 00: 00+00

2001- 10- 28 04: 00: 00+00

2001- 10- 29 05: 00: 00+00

2001- 10- 30 05: 00: 00+00

2001- 10- 31 05: 00: 00+00

2001-11-01 05: 00: 00+00

(11 rows)

175

Functions and Operators

Table 9.70. Subscript Generating Functions

Function
Description

gener ate_subscri pts (array anyarray,di mi nteger) » setof integer
Generates a series comprising the valid subscripts of the di nith dimension of the given array.

gener at e_subscri pts (array anyarray,di mi nt eger,reverse bool ean) - setof inte-
ger
Generates a series comprising the valid subscripts of the di nith dimension of the given array. Whenr e-
ver se istrue, returns the seriesin reverse order.

gener at e_subscri pt s isaconvenience function that generates the set of valid subscripts for the specified di-
mension of the given array. Zero rows are returned for arrays that do not have the requested dimension, or if any input
isNULL. Some examplesfollow:

-- basic usage:
SELECT generate_subscripts(' {NULL, 1, NULL, 2}'::int[], 1) AS s;

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;

123
{100, 200, 300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS val ue
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;

array | subscript | value
_______________ Fe e e e e e e e e e - -
{-1,-2} | 1] -1
{-1,-2} | 2 | -2
{100, 200, 300} | 1] 100
{100, 200, 300} | 2| 200
{100, 200, 300} | 3 300

(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTI ON unnest 2(anyarray)
RETURNS SETCOF anyel enent AS $$
select $1[i][]]
from generate_subscripts($1,1) gi(i),
gener ate_subscripts($1,2) g2(j);
$$ LANGUAGE sql | MMUTABLE;

176

Functions and Operators

CREATE FUNCTI ON
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
unnest 2

~ A WN PR

(4 rows

When a function in the FROM clause is suffixed by W TH ORDI NALI TY, a bi gi nt column is appended to the
function's output column(s), which starts from 1 and increments by 1 for each row of the function's output. Thisis
most useful in the case of set returning functions such asunnest () .

-- set returning function WTH ORDI NALI TY:
SELECT * FROM pg_ls_dir('.') WTH ORDI NALITY AS t(ls,n);

I's | n
_________________ +- - - -
pg_seri al | 1
pg_t wophase | 2
postmaster.opts | 3
pg_notify | 4
postgresqgl.conf | 5
pg_t bl spc | 6
logfile | 7
base | 8
postmaster.pid | 9
pg_i dent . conf | 10
gl obal | 11
pg_xact | 12
pg_snapshot s | 13
pg_mul ti xact | 14
PG_VERSI ON | 15
pg_wal | 16
pg_hba. conf | 17
pg_stat _tnp | 18
pg_subtrans | 19
(19 rows)

9.27. System Information Functions and Opera-
tors

The functions described in this section are used to obtain various information about a PostgreSQL installation.

9.27.1. Session Information Functions

Table 9.71 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics system that
also provide system information. See Section 27.2.26 for more information.

177

Functions and Operators

Table9.71. Session | nformation Functions

Function
Description

current _cat al 0g - nane

current _dat abase () - nane

Returns the name of the current database. (Databases are called “catalogs’ in the SQL standard, so cur -
rent _cat al og isthe standard's spelling.)

current _query () - text

Returns the text of the currently executing query, as submitted by the client (which might contain more
than one statement).

current _rol e - nane
Thisisequivalenttocurrent _user.

current _schena - nane

current _schenma () - name

Returns the name of the schemathat isfirst in the search path (or anull valueif the search path is empty).
Thisisthe schemathat will be used for any tables or other named objects that are created without speci-
fying atarget schema.

current _schenas (include_inplicit bool ean) - nang[]
Returns an array of the names of all schemas presently in the effective search path, in their priority order.
(Itemsin the current search_path setting that do not correspond to existing, searchable schemas are omit-

ted.) If the Boolean argument ist r ue, then implicitly-searched system schemas such aspg_cat al og
areincluded in the result.

current _user - nane
Returns the user name of the current execution context.

inet_client_addr () - inet

Returns the |P address of the current client, or NULL if the current connection is via a Unix-domain sock-
et.

inet_client_port () - integer

Returns the | P port number of the current client, or NULL if the current connection is viaa Unix-domain
socket.

i net _server _addr () - i net

Returns the | P address on which the server accepted the current connection, or NULL if the current con-
nection is viaa Unix-domain socket.

i net _server_port () - i nteger

Returns the | P port number on which the server accepted the current connection, or NULL if the current
connection is viaa Unix-domain socket.

pg_backend_pid () — i nteger
Returns the process ID of the server process attached to the current session.

pg_bl ocki ng_pi ds (i nteger) - integer|[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with the spec-

ified process ID from acquiring alock, or an empty array if there is no such server process or it is not
blocked.

One server process blocks another if it either holds alock that conflicts with the blocked process's lock
request (hard block), or iswaiting for alock that would conflict with the blocked process's lock request

178

Functions and Operators

Function
Description

and is ahead of it in the wait queue (soft block). When using parallel queries the result always lists client-
visible process IDs (that is, pg_backend_pi d results) even if the actual lock is held or awaited by a
child worker process. As aresult of that, there may be duplicated PIDsin the result. Also note that when
aprepared transaction holds a conflicting lock, it will be represented by a zero process ID.

Frequent calls to this function could have some impact on database performance, because it needs exclu-
sive access to the lock manager's shared state for a short time.

pg_conf _load_tine() -~ tinmestanp with tine zone
Returns the time when the server configuration files were last loaded. If the current session was alive at
the time, this will be the time when the session itself re-read the configuration files (so the reading will
vary alittlein different sessions). Otherwise it is the time when the postmaster process re-read the con-
figuration files.

pg_current logfile([text]) - text
Returns the path name of the log file currently in use by the logging collector. The path includes the
log_directory directory and the individual log file name. The result is NULL if the logging collector is
disabled. When multiple log files exist, each in adifferent format, pg_current | ogfi | e without an
argument returns the path of the file having the first format found in the ordered list: st derr, csvl og,
j sonl og. NULL isreturned if nolog file has any of these formats. To request information about a spe-
cific log file format, supply either csvl og, j sonl og or st der r asthe value of the optional parame-
ter. Theresult is NULL if the log format requested is not configured in log_destination. The result reflects
the contents of thecurrent _| ogfi | es file.
Thisfunction isrestricted to superusers and roles with privileges of the pg_noni t or role by default,
but other users can be granted EXECUTE to run the function.

pg_get | oaded_nodul es () - setof record (nodul e_nanetext,versiontext,file_nane
text)
Returns alist of the loadable modules that are loaded into the current server session. The nodul e_nane
and ver si on fieldsare NULL unless the module author supplied values for them using the PG_MOD-
ULE_NMAG C_EXT macro. Thef i | e_nane field givesthe file name of the module (shared library).

pg_ny _tenmp_schema () - oid
Returns the OID of the current session's temporary schema, or zero if it has none (because it has not cre-
ated any temporary tables).

pg_is_other_tenp_schema(0id) - bool ean
Returnstrueif the given OID isthe OID of another session’'s temporary schema. (This can be useful, for
example, to exclude other sessions' temporary tables from a catalog display.)

pg_jit_avail abl e () - bool ean
Returnstrueif aJT compiler extension is available (see Chapter 30) and the jit configuration parameter
issettoon.

pg_numa_avai | abl e () - bool ean
Returnstrueif the server has been compiled with NUMA support.

pg_l i stening_channel s () - setof text
Returns the set of names of asynchronous notification channels that the current session is listening to.

pg_notification_queue_usage () —» doubl e precision
Returns the fraction (0-1) of the asynchronous notification queue's maximum size that is currently occu-
pied by notifications that are waiting to be processed. See LISTEN and NOTIFY for more information.

pg_postmaster _start tinme() - tinmestanp with time zone

179

Functions and Operators

Function
Description

Returns the time when the server started.

pg_saf e_snapshot _bl ocki ng_pi ds (i nteger) — i nteger[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with the speci-
fied process ID from acquiring a safe snapshot, or an empty array if there is no such server process or it is
not blocked.
A session running a SERI ALI ZABLE transaction blocks a SERI ALI ZABLE READ ONLY DE-
FERRABLE transaction from acquiring a snapshot until the latter determines that it is safe to avoid tak-
ing any predicate locks. See Section 13.2.3 for more information about serializable and deferrable trans-
actions.
Frequent calls to this function could have some impact on database performance, because it needs access
to the predicate lock manager's shared state for a short time.

pg_trigger _depth() - integer
Returns the current nesting level of PostgreSQL triggers (0 if not called, directly or indirectly, from in-
side atrigger).

sessi on_user - nhame
Returns the session user's name.

system user - text
Returns the authentication method and the identity (if any) that the user presented during the authentica-
tion cycle before they were assigned a database role. It isrepresented asaut h_net hod: i dentity or
NULL if the user has not been authenticated (for example if Trust authentication has been used).

user - nane
Thisisequivalentto cur rent _user.

Note

current _catalog, current_role, current_schema, current_user, ses-
si on_user, and user have special syntactic status in SQL: they must be called without trailing
parentheses. In PostgreSQL, parentheses can optionally be used with cur rent _schenm, but not
with the others.

Thesessi on_user isnormally the user who initiated the current database connection; but superusers can change
this setting with SET SESSION AUTHORIZATION. Thecur r ent _user istheuser identifier that isapplicable for
permission checking. Normally it is equal to the session user, but it can be changed with SET ROLE. It also changes
during the execution of functions with the attribute SECURI TY DEFI NER. In Unix parlance, the session user is
the “real user” and the current user isthe “effective user”. curr ent _rol e and user are synonymsfor cur r en-

t _user. (The SQL standard draws a distinction between current _rol e andcurrent _user, but PostgreSQL
does not, sinceit unifies users and rolesinto asingle kind of entity.)

9.27.2. Access Privilege Inquiry Functions

Table 9.72 lists functions that allow querying object access privileges programmatically. (See Section 5.8 for more
information about privileges.) In these functions, the user whose privileges are being inquired about can be specified
by name or by OID (pg_aut hi d.oi d), or if the name is given as publ i ¢ then the privileges of the PUBLIC
pseudo-role are checked. Also, the user argument can be omitted entirely, in which case the curr ent _user is
assumed. The object that is being inquired about can be specified either by name or by OID, too. When specifying by

180

Functions and Operators

name, a schema name can be included if relevant. The access privilege of interest is specified by atext string, which
must evaluate to one of the appropriate privilege keywords for the object's type (e.g., SELECT). Optionally, W TH
GRANT OPTI ONcan be added to aprivilege typeto test whether the privilegeis held with grant option. Also, multiple
privilege types can be listed separated by commas, in which case the result will betrueif any of thelisted privilegesis
held. (Case of the privilege string is not significant, and extra whitespace is allowed between but not within privilege
names.) Some examples:

SELECT has_table privil ege(' nyschema. mytable', 'select');
SELECT has_table privilege('joe', '"nytable', 'INSERT, SELECT W TH GRANT
OPTION) ;

Table 9.72. Access Privilege Inquiry Functions

Function
Description

has_any_col um_privil ege ([user naneoroi d,]tabl etext oroid,privilegetext) -
bool ean
Does user have privilege for any column of table? This succeeds either if the privilege is held for the
whole table, or if thereis acolumn-level grant of the privilege for at least one column. Allowable privi-
lege types are SELECT, | NSERT, UPDATE, and REFERENCES.

has_col um_privil ege ([user nane oroi d,]tabl et ext oroid,col umtext orsmal lint,

privil egetext) - bool ean

Does user have privilege for the specified table column? This succeeds either if the privilege is held for
the whole table, or if thereis a column-level grant of the privilege for the column. The column can be
specified by name or by attribute number (pg_at t ri but e.at t num). Allowable privilege types are
SELECT, | NSERT, UPDATE, and REFERENCES.

has_dat abase_privil ege ([user nane oroi d,] dat abase t ext oroi d,privilegetext) -
bool ean
Does user have privilege for database? Allowable privilege types are CREATE, CONNECT, TEMPORARY,
and TEMP (which is equivalent to TEMPORARY).

has_forei gn_data w apper_privil ege ([user nanmeoroid,] fdwtext oroid,privil ege

t ext) » bool ean
Does user have privilege for foreign-data wrapper? The only alowable privilege type is USAGE.

has_function_privil ege ([user name oroi d,]functiontext oroid,privilegetext) -
bool ean
Does user have privilege for function? The only allowable privilege type is EXECUTE.
When specifying afunction by name rather than by OID, the allowed input is the same as for ther eg-
pr ocedur e datatype (see Section 8.19). An exampleis:

SELECT has_function_privilege('joeuser', '"myfunc(int, text)',
'execute');

has_| anguage_privil ege ([user nane oroi d,]| anguage t ext oroid,privilegetext) -
bool ean
Does user have privilege for language? The only allowable privilege type is USAGE.

has_| argeobj ect _privil ege ([user naneoroi d,] | argeobj ect oid,privilegetext) -
bool ean
Does user have privilege for large object? Allowable privilege types are SELECT and UPDATE.

181

Functions and Operators

Function
Description

has_paraneter _privilege ([user naneoroi d,] paranmeter text,privilegetext) -
bool ean
Does user have privilege for configuration parameter? The parameter name is case-insensitive. Allowable
privilege types are SET and ALTER SYSTEM

has_schema_privil ege ([user nane oroi d,] schematext oroid,privilegetext) -
bool ean
Does user have privilege for schema? Allowable privilege types are CREATE and USAGE.

has_sequence_privil ege ([user nane oroi d,] sequencetext oroid,privilegetext) -
bool ean
Does user have privilege for sequence? Allowable privilege types are USAGE, SELECT, and UPDATE.

has_server_privil ege ([user naneoroi d,] server text oroid,privilegetext) -
bool ean
Does user have privilege for foreign server? The only alowable privilege type is USACE.

has table privilege ([user naneoroid,]tabl etext oroid,privilegetext) -
bool ean
Does user have privilege for table? Allowable privilege types are SELECT, | NSERT, UPDATE,
DELETE, TRUNCATE, REFERENCES, TRI GGER, and MAI NTAI N.

has_tabl espace_privil ege ([user nane oroi d,]tabl espacetext oroid,privil egetext

) - bool ean
Does user have privilege for tablespace? The only alowable privilege type is CREATE.

has type privilege([user naneoroid,]typetext oroid,privilegetext) - bool ean
Does user have privilege for data type? The only alowable privilege type is USAGE. When specifying a
type by name rather than by OID, the allowed input is the same as for ther egt ype datatype (see Sec-
tion 8.19).

pg_has_rol e ([user naneoroid,]rol etext oroid,privilegetext) - bool ean
Does user have privilege for role? Allowable privilege types are MEMBER, USAGE, and SET. MEMBER
denotes direct or indirect membership in the role without regard to what specific privileges may be con-
ferred. USAGE denotes whether the privileges of the role are immediately available without doing SET
RCOLE, while SET denotes whether it is possible to change to the role using the SET ROLE command.
W TH ADM N OPTI ONor W TH GRANT OPTI ON can be added to any of these privilege types to test
whether the ADM N privilegeis held (all six spellings test the same thing). This function does not allow
the special case of setting user to publ i ¢, because the PUBLIC pseudo-role can never be amember of
real roles.

row security_ active(tabletext oroid) - bool ean
Isrow-level security active for the specified table in the context of the current user and current environ-
ment?

Table 9.73 shows the operators available for the acl i t emtype, which is the catalog representation of access privi-
leges. See Section 5.8 for information about how to read access privilege values.

182

Functions and Operators

Table9.73. acl i t emOperators

Operator
Description
Example(s)

aclitem=aclitem- bool ean
Areacl i t ensequal? (Noticethat typeacl i t emlacksthe usual set of comparison operators; it has on-
ly equality. Inturn, acl i t emarrays can only be compared for equality.)

"cal vi n=r*w hobbes' ::aclitem = 'cal vi n=r*w*/ hobbes' : :aclitem- f

acliten]{] @ aclitem- bool ean
Does array contain the specified privileges? (Thisistrueif thereisan array entry that matches the
acl i t enis grantee and grantor, and has at least the specified set of privileges.)
"{cal vi n=r*w hobbes, hobbes=r*w"/ postgres}'::aclitenf] @ 'calvin=r*/

hobbes' ::aclitem-t

acliten[] ~aclitem- bool ean
Thisisadeprecated alias for @ .
'{cal vi n=r*w hobbes, hobbes=r*w/ postgres}'::aclitenf] ~ 'calvin=r*/

hobbes' ::aclitem-t

Table 9.74 shows some additional functions to managetheacl i t emtype.

Table9.74. acl i t emFunctions

Function
Description

acl default (type"char",ownerldoid) - acliten]

Constructsan acl i t emarray holding the default access privileges for an object of typet ype belong-
ing to the role with OID owner | d. This represents the access privileges that will be assumed when

an object's ACL entry isnull. (The default access privileges are described in Section 5.8.) Thet ype
parameter must be one of 'c' for COLUMWN, 'r' for TABLE and table-like objects, 's for SEQUENCE, 'd'
for DATABASE, 'f' for FUNCTI ON or PROCEDURE, 'I' for LANGUAGE, ‘L' for LARGE OBJECT, 'n'
for SCHEMA, 'p' for PARAMETER, 't' for TABLESPACE, 'F for FOREI GN DATA WRAPPER, 'S for
FOREI GN SERVER, or 'T' for TYPE or DOVAI N.

acl explode (acliten]f]) - setof record(grantor oid,granteeoid,privil ege_type
text,i s_grantabl e bool ean)
Returnstheacl i t emarray as a set of rows. If the grantee is the pseudo-role PUBLIC, it is represented
by zero in the gr ant ee column. Each granted privilege is represented as SELECT, | NSERT, etc (see
Table 5.1 for afull list). Note that each privilegeis broken out as a separate row, so only one keyword
appearsinthepri vi | ege_t ype column.

makeacl it em(granteeoid,grantor oid,privilegestext,is_grantabl ebool ean) -
aclitem
Constructsan acl i t emwith the given properties. pri vi | eges isacomma-separated list of privilege
names such as SELECT, | NSERT, etc, al of which are set in the result. (Case of the privilege string is
not significant, and extra whitespace is allowed between but not within privilege names.)

9.27.3. Schema Visibility Inquiry Functions

Table 9.75 shows functions that determine whether a certain object is visible in the current schema search path. For
example, atableissaid to bevisibleif its containing schemaisin the search path and no table of the same name appears

183

Functions and Operators

earlier in the search path. Thisis equivalent to the statement that the table can be referenced by name without explicit
schema qualification. Thus, to list the names of all visible tables:

SELECT rel nane FROM pg_cl ass WHERE pg_table_is_visible(oid);

For functions and operators, an object in the search path is said to be visible if thereis no object of the same name and
argument data type(s) earlier in the path. For operator classes and families, both the name and the associated index
access method are considered.

Table 9.75. Schema Visibility Inquiry Functions

Function
Description

pg_collation_is_visible(collationoid) - bool ean
Iscollation visible in search path?

pg_conversion_is_visible(conversionoid) - bool ean
Is conversion visible in search path?

pg_function_is_visible(functionoid) - bool ean
Isfunction visible in search path? (This also works for procedures and aggregates.)

pg_opcl ass_is_visible(opclassoid) - bool ean
Is operator class visiblein search path?

pg_operator _is_visible(operator oid) — bool ean
Is operator visible in search path?

pg_opfamly is visible(opclassoid)- bool ean
Is operator family visible in search path?

pg_statistics_obj_is_visible(stat oid) - bool ean
|s statistics object visible in search path?

pg table is visible(tableoid) - bool ean
Istable visible in search path? (Thisworks for all types of relations, including views, materialized views,
indexes, sequences and foreign tables.)

pg_ts config_is_visible(configoid) - bool ean
Istext search configuration visible in search path?

pg_ts dict _is visible(dict oid) - bool ean
Istext search dictionary visible in search path?

pg_ts_parser_is_visible(parser oid) - bool ean
Istext search parser visible in search path?

pg_ts template_is_visible(tenplateoid) - bool ean
Istext search template visible in search path?

pg_type is visible(typeoid) - bool ean
Istype (or domain) visible in search path?

All these functions require object OIDs to identify the object to be checked. If you want to test an object by name, it
is convenient to use the OID aliastypes (r egcl ass, r egt ype, r egpr ocedur e, r egoper at or,r egconfi g,
orregdi ctionary), for example:

184

Functions and Operators

SELECT pg_type_is_visible('nyschema. w dget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the name can be
recognized at all, it must be visible.

9.27.4. System Catalog Information Functions

Table 9.76 lists functions that extract information from the system catalogs.

Table 9.76. System Catalog | nfor mation Functions

Function
Description

format _type (typeoid,typenodinteger) - text
Returns the SQL name for a data type that isidentified by its type OID and possibly atype modifier. Pass
NULL for the type modifier if no specific modifier is known.

pg_basetype (regtype) - regtype
Returns the OID of the base type of a domain identified by itstype OID. If the argument isthe OID of a
non-domain type, returns the argument as-is. Returns NULL if the argument is not avalid type OID. If
there's achain of domain dependencies, it will recurse until finding the base type.
Assuming CREATE DOMAI N nmyt ext AS text:

pg_basetype(' mytext'::regtype) - text

pg_char _to_encodi ng (encodi ng nane) - i nt eger
Converts the supplied encoding name into an integer representing the internal identifier used in some sys-
tem catalog tables. Returns - 1 if an unknown encoding name is provided.

pg_encodi ng_to_char (encodi ngi nt eger) - nane
Converts the integer used as the internal identifier of an encoding in some system catalog tablesinto a
human-readable string. Returns an empty string if an invalid encoding number is provided.

pg_get _catal og_foreign_keys () - setof record (fktableregclass,fkcolstext[],
pkt abl e regcl ass, pkcol stext[],is_array bool ean,i s_opt bool ean)
Returns a set of records describing the foreign key relationships that exist within the PostgreSQL system
catalogs. Thef kt abl e column contains the name of the referencing catalog, and the f kcol s column
contains the name(s) of the referencing column(s). Similarly, the pkt abl e column contains the name
of the referenced catalog, and the pkcol s column contains the name(s) of the referenced column(s). If
i s_array istrue, thelast referencing column is an array, each of whose elements should match some
entry in the referenced catalog. If i s_opt istrue, the referencing column(s) are allowed to contain ze-
roesinstead of avalid reference.

pg_get constrai ntdef (constraint oid[,prettyboolean]) - text
Reconstructs the creating command for a constraint. (Thisis a decompiled reconstruction, not the original
text of the command.)

pg_get _expr (expr pg_node_tree,relationoid[,pretty bool ean]) - text
Decompiles theinternal form of an expression stored in the system catalogs, such as the default value for
acolumn. If the expression might contain Vars, specify the OID of the relation they refer to as the second
parameter; if no Vars are expected, passing zero is sufficient.

pg_get functiondef (funcoid) - text

185

Functions and Operators

Function
Description

Reconstructs the creating command for afunction or procedure. (This is a decompiled reconstruction,
not the original text of the command.) The result is acomplete CREATE OR REPLACE FUNCTI ONor
CREATE OR REPLACE PROCEDURE statement.

pg_get _function_argunents (funcoid) - text
Reconstructs the argument list of afunction or procedure, in the form it would need to appear in within
CREATE FUNCTI ON (including default values).

pg_get function_identity argunments (funcoid) - text
Reconstructs the argument list necessary to identify afunction or procedure, in the form it would need to
appear in within commands such as ALTER FUNCTI ON. This form omits default values.

pg_get function_result (funcoid) - text
Reconstructs the RETURNS clause of afunction, in the form it would need to appear in within CREATE
FUNCTI ON. Returns NULL for a procedure.

pg_get i ndexdef (i ndex oid[,col umi nteger,prettyboolean]) - text
Reconstructs the creating command for an index. (Thisis a decompiled reconstruction, not the original
text of the command.) If col urm is supplied and is not zero, only the definition of that column is recon-
structed.

pg_get _keywords () - setof record(wordtext,catcode"char",barel abel bool ean,
cat desc t ext, baredesctext)
Returns a set of records describing the SQL keywords recognized by the server. The wor d column con-
tains the keyword. The cat code column contains a category code: U for an unreserved keyword, Cfor a
keyword that can be acolumn name, T for akeyword that can be atype or function name, or Rfor aful-
ly reserved keyword. The bar el abel column containst r ue if the keyword can be used as a“ bare”
column label in SELECT lists, or f al se if it can only be used after AS. The cat desc column contains
apossibly-localized string describing the keyword's category. The bar edesc column contains a possi-
bly-localized string describing the keyword's column label status.

pg_get partkeydef (tableoid) - text
Reconstructs the definition of a partitioned table's partition key, in the form it would have in the
PARTI TI ON BY clause of CREATE TABLE. (Thisisadecompiled reconstruction, not the original text
of the command.)

pg_get _rul edef (ruleoid][,prettyboolean]) - text
Reconstructs the creating command for arule. (Thisis adecompiled reconstruction, not the original text
of the command.)

pg_get serial _sequence (tabl etext,columtext) - text
Returns the name of the sequence associated with a column, or NULL if no sequence is associated with
the column. If the column is an identity column, the associated sequence is the sequence internally cre-
ated for that column. For columns created using one of the serial types(seri al ,smal | seri al ,
bi gseri al), it isthe sequence created for that serial column definition. In the latter case, the associa-
tion can be modified or removed with ALTER SEQUENCE OANED BY. (This function probably should
have been called pg_get _owned_sequence; its current name reflects the fact that it has historical-
ly been used with serial-type columns.) The first parameter is a table name with optional schema, and the
second parameter is a column name. Because the first parameter potentially contains both schema and ta-
ble names, it is parsed per usual SQL rules, meaning it is lower-cased by default. The second parameter,
being just a column name, is treated literally and so has its case preserved. The result is suitably format-
ted for passing to the sequence functions (see Section 9.17).
A typical useisin reading the current value of the sequence for an identity or serial column, for example:

186

Functions and Operators

Function
Description

SELECT currval (pg_get serial _sequence('sonetable', 'id));

pg_get _statisticsobjdef (statobj oid) - text
Reconstructs the creating command for an extended statistics object. (Thisis a decompiled reconstruc-
tion, not the original text of the command.)

pg_get triggerdef (trigger oid[,prettyboolean]) - text
Reconstructs the creating command for atrigger. (Thisis a decompiled reconstruction, not the original
text of the command.)

pg_get _userbyid(roleoid) - nane
Returns arole's name given its OID.

pg_get vi ewdef (viewoid][,prettyboolean]) - text
Reconstructs the underlying SELECT command for aview or materialized view. (Thisis a decompiled
reconstruction, not the original text of the command.)

pg_get _vi ewdef (vi ewoi d,w ap_col um i nteger) - text
Reconstructs the underlying SELECT command for aview or materialized view. (Thisis a decompiled
reconstruction, not the original text of the command.) In thisform of the function, pretty-printing is
always enabled, and long lines are wrapped to try to keep them shorter than the specified number of
columns.

pg_get vi ewdef (viewtext [,pretty boolean]) - text
Reconstructs the underlying SELECT command for aview or materialized view, working from atextual
name for the view rather than its OID. (This is deprecated; use the OID variant instead.)

pg_i ndex_col um_has_property (i ndex regcl ass, col um i nt eger,propertytext) -
bool ean
Tests whether an index column has the named property. Common index column properties are listed in
Table 9.77. (Note that extension access methods can define additional property names for their indexes.)
NULL isreturned if the property name is not known or does not apply to the particular object, or if the
OID or column number does not identify avalid object.

pg_i ndex_has_property (i ndex regcl ass,propertytext) - bool ean
Tests whether an index has the named property. Common index properties are listed in Table 9.78. (Note
that extension access methods can define additional property names for their indexes.) NULL is returned
if the property name is not known or does not apply to the particular object, or if the OID does not identi-
fy avalid object.

pg_i ndexam has_property (amoi d, propertytext) -~ bool ean
Tests whether an index access method has the named property. Access method properties arelisted in Ta-
ble 9.79. NULL isreturned if the property nameis not known or does not apply to the particular object, or
if the OID does not identify avalid object.

pg_options _to table(options_arraytext[]) - setof record(option_nanetext,op-
tion_val uetext)
Returns the set of storage options represented by avalue from pg_cl ass.rel opti ons or pg_at -
tribute.attoptions.

pg_settings_get flags (guctext) - text[]

187

Functions and Operators

Function
Description

Returns an array of the flags associated with the given GUC, or NULL if it does not exist. Theresult is
an empty array if the GUC exists but there are no flags to show. Only the most useful flagslisted in Ta-
ble 9.80 are exposed.

pg_t abl espace_dat abases (t abl espaceoid) - setof oid
Returns the set of OIDs of databases that have objects stored in the specified tablespace. If this func-
tion returns any rows, the tablespace is not empty and cannot be dropped. To identify the specific ob-
jects populating the tablespace, you will need to connect to the database(s) identified by pg_t abl e-
space_dat abases and query their pg_cl ass catalogs.

pg_t abl espace_| ocation (tabl espaceoid) - text
Returns the file system path that this tablespace is located in.

pg_typeof ("any") - regtype
Returns the OID of the data type of the value that is passed to it. This can be helpful for troubleshooting
or dynamically constructing SQL queries. The function is declared as returning r egt ype, whichisan
OID dliastype (see Section 8.19); this meansthat it is the same as an OID for comparison purposes but
displays as a type name.

pg_typeof (33) - integer

COLLATI ON FOR("any") - text
Returns the name of the collation of the value that is passed to it. The valueis quoted and schema-qual-
ified if necessary. If no collation was derived for the argument expression, then NULL isreturned. If the
argument is not of a collatable data type, then an error israised.

collation for ('foo' ::text) - "default"
collation for ('foo' COLLATE "de_DE") - "de_DE"

to_regclass (text) - regcl ass
Trandates atextual relation nameto its OID. A similar result is obtained by casting the string to type
regcl ass (see Section 8.19); however, this function will return NULL rather than throwing an error if
the name is not found.

to_regcollation(text) - regcollation
Trandates atextual collation nameto its OID. A similar result is obtained by casting the string to type
regcol | at i on (see Section 8.19); however, this function will return NULL rather than throwing an er-
ror if the name is not found.

to_regnanespace (text) - regnanespace
Trandates atextual schemanameto its OID. A similar result is obtained by casting the string to type
r egnanespace (see Section 8.19); however, this function will return NULL rather than throwing an er-
ror if the name is not found.

to_regoper (text) - regoper
Trandates atextual operator nameto its OID. A similar result is obtained by casting the string to type
regoper (see Section 8.19); however, thisfunction will return NULL rather than throwing an error if
the name is not found or is ambiguous.

to_regoperator (text) - regoperator
Trandates atextual operator name (with parameter types) to its OID. A similar result is obtained by cast-
ing the string to typer egoper at or (see Section 8.19); however, this function will return NULL rather
than throwing an error if the name is not found.

to_regproc (text) - regproc

188

Functions and Operators

Function
Description
Trandates atextual function or procedure nameto its OID. A similar result is obtained by casting the
string to type r egpr oc (see Section 8.19); however, this function will return NULL rather than throwing
an error if the nameis not found or is ambiguous.

to_regprocedure (text) - regprocedure
Trangates atextual function or procedure name (with argument types) to its OID. A similar result is ob-
tained by casting the string to typer egpr ocedur e (see Section 8.19); however, this function will re-
turn NULL rather than throwing an error if the nameis not found.

to regrole(text) - regrole
Trandates atextual role nameto its OID. A similar result is obtained by casting the string to typer e-
gr ol e (see Section 8.19); however, this function will return NULL rather than throwing an error if the
nameis not found.

to_regtype (text) - regtype
Parses a string of text, extracts a potential type name from it, and translates that name into atype OID.
A syntax error in the string will result in an error; but if the string is a syntactically valid type name that
happens not to be found in the catalogs, the result isNULL. A similar result is obtained by casting the
string to typer egt ype (see Section 8.19), except that that will throw error for name not found.

to_regtypenod (text) » i nteger
Parses a string of text, extracts a potential type name from it, and trandates its type modifier, if any.
A syntax error in the string will result in an error; but if the string is a syntactically valid type name
that happens not to be found in the catalogs, the result isNULL. Theresultis- 1 if no type modifier is
present.
t o_regt ypenod can be combined with to_regtype to produce appropriate inputs for format_type, al-
lowing a string representing a type name to be canonicalized.

format _type(to_regtype('varchar(32)'), to_regtypenod('varchar(32)')) -
character varying(32)

Most of the functions that reconstruct (decompile) database objects have an optional pr et ty flag, which if t r ue
causes the result to be “pretty-printed”. Pretty-printing suppresses unnecessary parentheses and adds whitespace for
legibility. The pretty-printed format is more readable, but the default format is more likely to be interpreted the same
way by future versions of PostgreSQL; so avoid using pretty-printed output for dump purposes. Passing f al se for
thepr et t y parameter yields the same result as omitting the parameter.

Table 9.77. Index Column Properties

Name Description

asc Does the column sort in ascending order on aforward
scan?

desc Does the column sort in descending order on aforward
scan?

nulls first Does the column sort with nulls first on aforward scan?

nul | s_| ast Does the column sort with nulls last on aforward scan?

orderabl e Does the column possess any defined sort ordering?

di stance_orderabl e Can the column be scanned in order by a“distance” op-
erator, for example ORDER BY col <-> constant
?

189

Functions and Operators

Name

Description

ret urnabl e

Can the column value be returned by an index-only
scan?

search_array

Does the column natively support col
ray) searches?

= ANY(ar -

search_null's

Doesthe column support | S NULL and | S NOT
NULL searches?

Table 9.78. Index Properties

Name

Description

clusterabl e

Can the index be used in a CLUSTER command?

i ndex_scan

Does the index support plain (non-bitmap) scans?

bi t map_scan

Does the index support bitmap scans?

backward_scan

Can the scan direction be changed in mid-scan (to sup-
port FETCH BACKWARD on a cursor without needing
materialization)?

Table 9.79. Index Access M ethod Properties

Name

Description

can_order

Does the access method support ASC, DESC and related
keywords in CREATE | NDEX?

can_uni que

Does the access method support unique indexes?

can_nul ti _col

Does the access method support indexes with multiple
columns?

can_excl ude

Does the access method support exclusion constraints?

can_i ncl ude

Does the access method support the | NCL UDE clause of
CREATE | NDEX?

Table 9.80. GUC Flags

Flag Description

EXPLAI' N Parameters with this flag are included in EXPLAI N
(SETTI NGS) commands.

NO_SHOW ALL Parameters with this flag are excluded from SHOW ALL
commands.

NO_RESET Parameters with this flag do not support RESET com-

mands.

NO_RESET_ALL

Parameters with this flag are excluded from RESET
ALL commands.

NOT_I N_SAMPLE

Parameters with this flag are not included in post -
gresql . conf by default.

RUNTI ME_COWPUTED

Parameters with this flag are runtime-computed ones.

190

Functions and Operators

9.27.5. Object Information and Addressing Functions
Table 9.81 lists functions related to database object identification and addressing.

Table 9.81. Object Information and Addressing Functions

Function
Description

pg_get _acl (cl assidoid,objidoid,objsubidinteger) - acliten]]
Returns the ACL for a database object, specified by catalog OID, object OID and sub-object ID. This
function returns NULL values for undefined objects.

pg_descri be_obj ect (cl assidoid,objidoid,objsubidinteger) - text
Returns atextual description of a database object identified by catalog OID, object OID, and sub-object
ID (such as a column number within atable; the sub-object ID is zero when referring to a whole object).
This description isintended to be human-readable, and might be translated, depending on server configu-
ration. Thisis especially useful to determine the identity of an object referenced inthe pg_depend cata
log. Thisfunction returns NULL values for undefined objects.

pg_identify_object (classidoid,objidoid,objsubidinteger) - record(typetext,
schematext,nametext,identitytext)
Returns arow containing enough information to uniquely identify the database object specified by cata-
log OID, object OID and sub-object ID. Thisinformation is intended to be machine-readable, and is nev-
er trandated. t ype identifies the type of database object; schema is the schema name that the object be-
longsin, or NULL for object types that do not belong to schemas; nane is the name of the object, quoted
if necessary, if the name (along with schema name, if pertinent) is sufficient to uniquely identify the ob-
ject, otherwise NULL; i dent i ty isthe complete object identity, with the precise format depending on
object type, and each name within the format being schema-qualified and quoted as necessary. Undefined
objects are identified with NULL values.

pg_identify object _as address (cl assidoid,objidoid,objsubidinteger) - record
(typetext,object nanestext[],object _argstext[])
Returns arow containing enough information to uniquely identify the database object specified by cat-
alog OID, object OID and sub-object ID. The returned information is independent of the current server,
that is, it could be used to identify an identically named object in another server. t ype identifies the type
of database object; obj ect _names and obj ect _ar gs aretext arrays that together form areference
to the object. These three values can be passed to pg_get _obj ect _addr ess to obtain the internal
address of the object.

pg_get _obj ect _address (typetext,object_namestext[],object_argstext[]) -
record (cl assi doi d,objidoid,objsubidinteger)
Returns arow containing enough information to uniquely identify the database object specified by a
type code and object name and argument arrays. The returned values are the ones that would be used in
system catalogs such as pg_depend; they can be passed to other system functions such aspg_de-
scri be_object orpg_identify object.classidistheOID of the system catalog containing
the object; obj i d isthe OID of the object itself, and obj subi d isthe sub-object ID, or zero if none.
Thisfunctionistheinverseof pg_i denti fy obj ect as_addr ess. Undefined objects are identi-
fied with NULL values.

pg_get acl isuseful for retrieving and inspecting the privileges associated with database objects without |ooking
at specific catalogs. For example, to retrieve al the granted privileges on objectsin the current database:

post gr es=# SELECT

191

Functions and Operators

(pg_identify_object(s.classid,s.objid,s.objsubid)).*,

pg_cat al og. pg_get _acl (s.cl assid, s.objid,s.objsubid) AS acl
FROM pg_cat al og. pg_shdepend AS s
JA N pg_cat al og. pg_dat abase AS d

ON d. dat nanme = current_dat abase() AND

d.oid = s.dbid

JO N pg_catal og. pg_authid AS a

ON a.oid = s.refobjid AND

s.refclassid = 'pg_authid' ::regcl ass
WHERE s. deptype = 'a';
[RECORD 1 J------mmmmmmmmm e e e e e
type | table
schema | public
nane | testtab
identity | public.testtab
acl | {post gres=arwdDxt nf post gres, f oo=r/ post gres}

9.27.6. Comment Information Functions

The functions shown in Table 9.82 extract comments previously stored with the COMMENT command. A null value
isreturned if no comment could be found for the specified parameters.

Table 9.82. Comment I nfor mation Functions

Function
Description

col _description(tableoid,columinteger) - text
Returns the comment for a table column, which is specified by the OID of itstable and its column num-
ber. (obj _descri pti on cannot be used for table columns, since columns do not have OIDs of their
own.)

obj description (object oid,catal ognanme) - text
Returns the comment for a database object specified by its OID and the name of the containing system
catalog. For example, obj _descri ption(123456, 'pg_cl ass') would retrieve the comment
for the table with OID 123456.

obj _description(object oid) - text
Returns the comment for a database object specified by its OID aone. Thisis deprecated since thereis
no guarantee that OIDs are unique across different system catal ogs; therefore, the wrong comment might
be returned.

shobj description (object oid,catal ognane) - text
Returns the comment for a shared database object specified by its OID and the name of the containing
system catalog. Thisisjust likeobj _descri pti on except that it is used for retrieving comments on
shared objects (that is, databases, roles, and tablespaces). Some system catalogs are global to all databas-
eswithin each cluster, and the descriptions for objects in them are stored globally as well.

9.27.7. Data Validity Checking Functions

The functions shown in Table 9.83 can be helpful for checking validity of proposed input data.

192

Functions and Operators

Table 9.83. Data Validity Checking Functions

Function
Description
Example(s)

pg_input _is valid(stringtext,typetext) - bool ean
Tests whether the given st ri ng isvalid input for the specified data type, returning true or false.
This function will only work as desired if the data type's input function has been updated to report invalid
input as a“soft” error. Otherwise, invalid input will abort the transaction, just asif the string had been
cast to the type directly.
pg_input _is_valid('42', "integer') -t
pg_i nput _is_valid('42000000000', 'integer') - f
pg_i nput _is_valid('1234.567', 'numeric(7,4)') - f

pg_input _error_info(stringtext,typetext) - record(nmessagetext,detail text,
hint text,sql _error_codetext)
Testswhether the given st ri ng isvalid input for the specified datatype; if not, return the details of the
error that would have been thrown. If the input is valid, the results are NULL. The inputs are the same as
for pg_i nput _i s_val i d.
This function will only work as desired if the data type's input function has been updated to report invalid
input as a“soft” error. Otherwise, invalid input will abort the transaction, just asif the string had been
cast to the type directly.

SELECT * FROM pg_i nput _error _i nfo(' 42000000000', 'integer') -

nmessage | detail | hint
| sql _error_code
__ e
e e e e e e e e e m-a
val ue "42000000000" is out of range for type integer |

| 22003

9.27.8. Transaction ID and Snapshot Information Func-
tions

The functions shown in Table 9.84 provide server transaction information in an exportable form. The main use of these
functionsis to determine which transactions were committed between two snapshots.

Table 9.84. Transaction | D and Snapshot I nfor mation Functions

Function
Description

age (xid) - i nteger
Returns the number of transactions between the supplied transaction id and the current transaction
counter.

mki d_age (xid) - i nt eger
Returns the number of multixacts 1Ds between the supplied multixact 1D and the current multixacts
counter.

pg_current _xact _id() - xid8

193

Functions and Operators

Function
Description
Returns the current transaction's ID. It will assign anew oneif the current transaction does not have one

already (because it has not performed any database updates); see Section 67.1 for details. If executed in a
subtransaction, this will return the top-level transaction ID; see Section 67.3 for details.

pg_current _xact _id_if_assigned () - xi d8
Returns the current transaction's ID, or NULL if no ID isassigned yet. (It's best to use this variant if the
transaction might otherwise be read-only, to avoid unnecessary consumption of an X1D.) If executedin a
subtransaction, this will return the top-level transaction 1D.

pg_xact status (xid8) - text

Reports the commit status of arecent transaction. Theresultisoneof i n progress,conmi tted,or
abor t ed, provided that the transaction is recent enough that the system retains the commit status of that
transaction. If it is old enough that no references to the transaction survive in the system and the commit
status information has been discarded, the result is NULL. Applications might use this function, for exam-
ple, to determine whether their transaction committed or aborted after the application and database server
become disconnected while a COVM T isin progress. Note that prepared transactions are reported asi n
pr ogr ess; applications must check pg_pr epar ed_xact s if they need to determine whether atrans-
action ID belongs to a prepared transaction.

pg_current _snapshot () - pg_snapshot
Returns a current snapshot, a data structure showing which transaction 1Ds are now in-progress. Only
top-level transaction IDs are included in the snapshot; subtransaction IDs are not shown; see Section 67.3
for details.

pg_snapshot xi p (pg_snapshot) - set of xi d8
Returns the set of in-progress transaction |Ds contained in a snapshot.

pg_snapshot _xmax (pg_snhapshot) - xi d8
Returns the xmax of a snapshot.

pg_snapshot _xm n (pg_snapshot) - xi d8
Returnsthe xm n of a snapshot.

pg_vi si bl e_i n_snapshot (xi d8, pg_snapshot) - bool ean
Is the given transaction ID visible according to this snapshot (that is, was it completed before the snap-
shot was taken)? Note that this function will not give the correct answer for a subtransaction ID (subxid);
see Section 67.3 for details.

The internal transaction ID type xi d is 32 bits wide and wraps around every 4 billion transactions. However, the
functions shown in Table 9.84, except age and nxi d_age, use a 64-bit type xi d8 that does not wrap around dur-
ing the life of an installation and can be converted to xi d by casting if required; see Section 67.1 for details. The
datatypepg_snapshot storesinformation about transaction ID visibility at a particular moment in time. Its compo-
nents are described in Table 9.85. pg_snapshot 'stextual representationisxm n: xmax: Xi p_| i st . For example
10: 20: 10, 14, 15 meansxmi n=10, xnmax=20, xip_list=10, 14, 15.

Table 9.85. Snapshot Components

Name Description

Xm n Lowest transaction ID that was still active. All transac-
tion IDs lessthan xmi n are either committed and visi-
ble, or rolled back and dead.

Xnmax One past the highest completed transaction ID. All trans-
action IDs greater than or equal to xmax had not yet

194

Functions and Operators

Name Description
completed as of the time of the snapshot, and thus are in-
visible.

Xip_list Transactionsin progress at the time of the snapshot. A

transaction ID that isxmi n <= X < xmax and not in
thislist was aready completed at the time of the snap-
shot, and thusiis either visible or dead according to its
commit status. Thislist does not include the transaction
IDs of subtransactions (subxids).

In releases of PostgreSQL before 13 there was no xi d8 type, so variants of these functions were provided that used
bi gi nt torepresent a64-bit XID, with acorrespondingly distinct snapshot datatypet xi d_snapshot . Theseolder
functions havet xi d in their names. They are still supported for backward compatibility, but may be removed from
afuture release. See Table 9.86.

Table 9.86. Deprecated Transaction ID and Snapshot I nformation Functions

Function
Description

txid_current () - bi gint
Seepg_current _xact _id().

txid current if_assigned() - bigint
Seepg _current _xact _id if_assigned().

txi d_current _snapshot () - t xi d_snapshot
Seepg_current _snapshot ().

txi d_snapshot _xi p (txid_snapshot) - setof bigint
Seepg_snapshot _xi p().

txi d_snapshot _xmax (txi d_snapshot) - bi gi nt
Seepg_snapshot _xmax() .

txi d_snapshot _xm n (txi d_snapshot) - bi gi nt
Seepg_snapshot _xmin().

txi d_vi si bl e_i n_snapshot (bi gi nt,txi d_snapshot) - bool ean
Seepg_vi si bl e_i n_snapshot ().

txid status (bigint) - text
Seepg_xact _status().

9.27.9. Committed Transaction Information Functions

The functions shown in Table 9.87 provide information about when past transactions were committed. They only
provide useful datawhen the track_commit_timestamp configuration option is enabled, and only for transactions that
were committed after it was enabled. Commit timestamp information is routinely removed during vacuum.

Table 9.87. Committed Transaction | nfor mation Functions

Function
Description

pg_xact _conmmit tinestanp(xid) - tinmestanp with tine zone

195

Functions and Operators

Function
Description

Returns the commit timestamp of a transaction.

pg_xact _conmmit_tinestanp_origin(xid) - record(tinmestanptimestanp with tine
zone, r oi dent oi d)
Returns the commit timestamp and replication origin of atransaction.

pg_last_committed xact () -~ record(xidxid,tinmestanptimestanp with tinme zone,
roident oid)
Returns the transaction ID, commit timestamp and replication origin of the latest committed transaction.

9.27.10. Control Data Functions

The functions shown in Table 9.88 print information initialized during i ni t db, such as the catalog version. They
also show information about write-ahead logging and checkpoint processing. This information is cluster-wide, not
specific to any one database. These functions provide most of the same information, from the same source, as the
pg_controldata application.

Table 9.88. Control Data Functions

Function
Description

pg_control _checkpoint () - record
Returnsinformation about current checkpoint state, as shown in Table 9.89.

pg_control _system() - record
Returns information about current control file state, as shown in Table 9.90.

pg_control _init () - record
Returns information about cluster initialization state, as shown in Table 9.91.

pg_control recovery () - record
Returnsinformation about recovery state, as shown in Table 9.92.

Table9.89. pg_control checkpoi nt Output Columns

Column Name Data Type
checkpoi nt _I sn pg_l sn
redo_I sn pg_l sn
redo wal file t ext
timeline_id i nt eger
prev_tineline_id i nt eger
full _page_wites bool ean
next xid t ext
next _oid oid
next _nmul tixact_id xi d
next _nmulti _of fset xid

ol dest _xid xi d

ol dest _xid _dbid oid

196

Functions and Operators

Column Name Data Type

ol dest _active_xid xid

ol dest_multi _xid xi d

ol dest _nul ti _dbid oid

ol dest _commit ts xid xid

newest _conmt _ts xid xid

checkpoint _tine tinmestanp with tinme zone

Table9.90. pg_control _syst emOutput Columns

Column Name Data Type
pg_control _version i nteger
catal og_version_no i nteger
system.identifier bi gi nt

pg_control _|ast_nodified

timestanp with time zone

Table9.91. pg_control _i nit Output Columns

Column Name Data Type
max_dat a_al i gnnment i nt eger
dat abase_bl ock_si ze i nteger
bl ocks_per _segnent i nteger
wal bl ock_si ze i nt eger
byt es_per_wal _segnent i nt eger
max_identifier_|ength i nteger
max_i ndex_col ums i nt eger
max_t oast _chunk_si ze i nt eger
| ar ge_obj ect _chunk_si ze i nt eger
fl oat 8 pass_by val ue bool ean
dat a_page_checksum ver si on i nteger
def aul t _char _si gnedness bool ean

Table9.92. pg_control _recovery Output Columns

Column Name Data Type
m n_recovery_end_| sn pg_l sn
m n_recovery_end_tinmneline i nt eger
backup_start _Isn pg_I sn
backup_end_I| sn pg_l sn
end_of _backup_record_required bool ean

9.27.11. Version Information Functions

The functions shown in Table 9.93 print version information.

197

Functions and Operators

Table9.93. Version Information Functions

Function
Description

version() - text
Returns a string describing the PostgreSQL server's version. Y ou can also get thisinformation from serv-
er_version, or for amachine-readable version use server_version_num. Software developers should use
server _versi on_num(available since 8.2) or PQser ver Ver si on instead of parsing the text ver-
sion.

uni code_version () - text
Returns a string representing the version of Unicode used by PostgreSQL.

i cu_uni code_version() - text
Returns a string representing the version of Unicode used by ICU, if the server was built with ICU sup-
port; otherwise returns NULL

9.27.12. WAL Summarization Information Functions

The functions shown in Table 9.94 print information about the status of WAL summarization. See summarize wal.

Table9.94. WAL Summarization Information Functions

Function
Description

pg_avail abl e_wal _sumaries () - setof record(tli bigint,start Isnpg Isn,end |-
snpg_lsn)
Returns information about the WAL summary files present in the data directory, under pg_wal / sum
mar i es. Onerow will be returned per WAL summary file. Each file summarizes WAL on the indicated
TLI within the indicated LSN range. This function might be useful to determine whether enough WAL
summaries are present on the server to take an incremental backup based on some prior backup whose
start LSN is known.

pg_wal _summary_contents (tli bigint,start_Isnpg_Isn,end_|Isnpg_|sn) - setof
record(rel filenodeoid,reltabl espace oi d,rel dat abase oi d, rel f or knunber
smal I i nt,rel bl ocknunber bigint,is_|limt_blockbool ean)
Returns one information about the contents of a single WAL summary file identified by TLI and starting
and ending LSNs. Each row withi s_I i mi t _bl ock falseindicates that the block identified by the re-
maining output columns was modified by at least one WAL record within the range of records summa-
rized by thisfile. Eachrow withi s_I i mi t _bl ock trueindicates either that (a) the relation fork was
truncated to the length given by r el bl ocknunber within the relevant range of WAL records or (b)
that the relation fork was created or dropped within the relevant range of WAL records; in such cases,
r el bl ocknurber will be zero.

pg_get wal summarizer _state () - record (sunmmarized tli bigint,summarized_|sn
pg_l sn,pending | snpg | sn,sunmarizer_pidint)
Returns information about the progress of the WAL summarizer. If the WAL summarizer has never run
since the instance was started, then sunmari zed_tli andsunmari zed_| sn will be0 and 0/ O re-
spectively; otherwise, they will be the TLI and ending LSN of the last WAL summary file written to disk.
If the WAL summarizer is currently running, pendi ng_I| sn will be the ending LSN of the last record
that it has consumed, which must always be greater than or equal to summari zed | sn; if the WAL
summarizer isnot running, it will be equal to summari zed_| sn. sunmari zer _pi d isthePID of
the WAL summarizer process, if it isrunning, and otherwise NULL.

198

Functions and Operators

Function
Description
As aspecia exception, the WAL summarizer will refuse to generate WAL summary filesif run on WAL
generated under wal _| evel =mi ni mal , since such summaries would be unsafe to use as the basis for
an incremental backup. In this case, the fields above will continue to advance as if summaries were be-
ing generated, but nothing will be written to disk. Once the summarizer reaches WAL generated while
wal | evel wassettorepl i ca or higher, it will resume writing summaries to disk.

9.28. System Administration Functions

The functions described in this section are used to control and monitor a PostgreSQL installation.
9.28.1. Configuration Settings Functions
Table 9.95 shows the functions available to query and alter run-time configuration parameters.

Table 9.95. Configuration Settings Functions

Function
Description
Example(s)

current _setting(setting_nanetext [,m ssing ok boolean]) - text
Returns the current value of the setting set t i ng_nane. If thereis no such setting, cur r ent _set -
ti ng throwsan error unlessm ssi ng_ok issupplied andist r ue (in which case NULL is returned).
This function corresponds to the SQL command SHOW.

current _setting('datestyle') - 1SO, MY

set_config(setting_nanetext,new valuetext,is_|ocal bool ean) - text
Setsthe parameter set t i ng_nane tonew_val ue, and returnsthat value. If i s_| ocal ist rue, the
new value will only apply during the current transaction. If you want the new value to apply for the rest
of the current session, use f al se instead. This function corresponds to the SQL command SET.
set _confi g acceptsthe NULL value for new_val ue, but as settings cannot be null, it is interpreted
as areguest to reset the setting to its default value.

set_config('log statenment_stats', 'off', false) - off

9.28.2. Server Signaling Functions

The functions shown in Table 9.96 send control signalsto other server processes. Use of these functions is restricted
to superusers by default but access may be granted to others using GRANT, with noted exceptions.

Each of these functions returnst r ue if the signal was successfully sent and f al se if sending the signal failed.

Table 9.96. Server Signaling Functions

Function
Description

pg_cancel backend (pi dinteger) - bool ean
Cancels the current query of the session whose backend process has the specified process ID. Thisisal-
so alowed if the calling role is amember of the role whose backend is being canceled or the calling role
has privileges of pg_si gnal _backend, however only superusers can cancel superuser backends. As

199

Functions and Operators

Function
Description

an exception, roles with privileges of pg_si gnal _aut ovacuum wor ker are permitted to cancel au-
tovacuum worker processes, which are otherwise considered superuser backends.

pg_l og_backend_nenory_contexts (pidinteger) —» bool ean
Requests to log the memory contexts of the backend with the specified process ID. This function can
send the request to backends and auxiliary processes except logger. These memory contexts will be
logged at LOG message level. They will appear in the server log based on the log configuration set (see
Section 19.8 for more information), but will not be sent to the client regardless of client_min_messages.

pg_rel oad_conf () - bool ean
Causes all processes of the PostgreSQL server to reload their configuration files. (Thisisinitiated by
sending a SIGHUP signal to the postmaster process, which in turn sends SIGHUP to each of its children.)
Youcanusethepg file_settings,pg hba file rulesandpg_ident file_mappings
views to check the configuration files for possible errors, before reloading.

pg_rotate_| ogfile() - bool ean
Signals the log-file manager to switch to a new output file immediately. This works only when the built-
in log collector is running, since otherwise there is no log-file manager subprocess.

pg_term nate_backend (pi dinteger,tinmeout bi gi nt DEFAULTO0) - bool ean
Terminates the session whose backend process has the specified process ID. Thisis also allowed if the
calling role is a member of the role whose backend is being terminated or the calling role has privileges
of pg_si gnal _backend, however only superusers can terminate superuser backends. As an excep-
tion, roleswith privileges of pg_si gnal _aut ovacuum wor ker are permitted to terminate autovac-
uum worker processes, which are otherwise considered superuser backends.
If ti meout isnot specified or zero, thisfunction returnst r ue whether the process actually terminates
or not, indicating only that the sending of the signal was successful. If thet i neout is specified (in mil-
liseconds) and greater than zero, the function waits until the processis actually terminated or until the
given time has passed. If the process is terminated, the function returnst r ue. On timeout, awarning is
emitted and f al se isreturned.

pg_cancel _backend and pg_t erni nat e_backend send signals (SIGINT or SIGTERM respectively) to
backend processes identified by process ID. The process ID of an active backend can be found from the pi d column
of thepg_stat _activity view, or by listing the post gr es processes on the server (using ps on Unix or the
Task Manager on Windows). The role of an active backend can be found from the usenane column of the pg_s-
tat _activity view.

pg_| og backend nenory_cont ext s can be used to log the memory contexts of a backend process. For ex-
ample:

post gres=# SELECT pg_| og backend nenory_cont exts(pg_backend pid());
pg_| og_backend_nenory_cont exts

One message for each memory context will be logged. For example:

LOG | ogging nenmory contexts of PID 10377

STATEMENT: SELECT pg_| og_backend_nenory_cont ext s(pg_backend_pi d());

LOG level: 1; TopMenoryContext: 80800 total in 6 blocks; 14432 free (5
chunks); 66368 used

200

Functions and Operators

LOG level: 2; pgstat TabStatusArray |ookup hash table: 8192 total in 1

bl ocks; 1408 free (0 chunks); 6784 used

LOG level: 2; TopTransactionContext: 8192 total in 1 blocks; 7720 free (1
chunks); 472 used

LOG level: 2; RowDescriptionContext: 8192 total in 1 blocks; 6880 free (0
chunks); 1312 used

LOG level: 2; MessageContext: 16384 total in 2 blocks; 5152 free (0 chunks);
11232 used

LOG level: 2; Operator class cache: 8192 total in 1 blocks; 512 free (0
chunks); 7680 used

LOG level: 2; sngr relation table: 16384 total in 2 bl ocks; 4544 free (3
chunks); 11840 used

LOG level: 2; TransactionAbortContext: 32768 total in 1 blocks; 32504 free
(0 chunks); 264 used

LOG level: 2; ErrorContext: 8192 total in 1 blocks; 7928 free (3 chunks);
264 used

LOG Grand total: 1651920 bytes in 201 bl ocks; 622360 free (88 chunks)
1029560 used

If there are more than 100 child contexts under the same parent, the first 100 child contexts are logged, along with a
summary of the remaining contexts. Note that frequent calls to this function could incur significant overhead, because
it may generate alarge number of log messages.

9.28.3. Backup Control Functions

The functions shown in Table 9.97 assist in making on-line backups. These functions cannot be executed during
recovery (except pg_backup_start,pg_backup_stop,andpg wal | sn_diff).

For details about proper usage of these functions, see Section 25.3.

Table 9.97. Backup Control Functions

Function
Description

pg_create restore point (nametext) - pg | sn
Creates a named marker record in the write-ahead log that can later be used as arecovery target, and re-
turns the corresponding write-ahead log location. The given name can then be used with recovery _tar-
get_name to specify the point up to which recovery will proceed. Avoid creating multiple restore points
with the same name, since recovery will stop at the first one whose name matches the recovery target.
Thisfunction isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_current _wal _flush_Isn() - pg_Ilsn
Returns the current write-ahead log flush location (see notes below).

pg_current_wal insert _Isn() - pg_lsn
Returns the current write-ahead log insert location (see notes below).

pg_current_wal _Isn() - pg_Il sn
Returns the current write-ahead log write location (see notes below).

pg_backup_start (| abel text [,fast boolean]) - pg_| sn
Prepares the server to begin an on-line backup. The only required parameter is an arbitrary user-de-
fined label for the backup. (Typically this would be the name under which the backup dump file will be

201

Functions and Operators

Function
Description

stored.) If the optional second parameter isgivenast r ue, it specifies executing pg_backup_st art
as quickly as possible. This forces an immediate checkpoint which will cause a spikein I/O operations,
slowing any concurrently executing queries.

Thisfunction isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_backup_stop ([wait_for_archiveboolean]) - record(lsnpg_|sn,l abelfiletext,
spcmapfil etext)
Finishes performing an on-line backup. The desired contents of the backup label file and the tablespace
map file are returned as part of the result of the function and must be written to filesin the backup area.
These files must not be written to the live data directory (doing so will cause PostgreSQL to fail to restart
in the event of acrash).
Thereis an optional parameter of typebool ean. If fase, the function will return immediately after the
backup is completed, without waiting for WAL to be archived. This behavior is only useful with back-
up software that independently monitors WAL archiving. Otherwise, WAL required to make the back-
up consistent might be missing and make the backup useless. By default or when this parameter is true,
pg_backup_st op will wait for WAL to be archived when archiving is enabled. (On a standby, this
means that it will wait only when ar chi ve_node = al ways. If write activity on the primary islow,
it may be useful torun pg_swi t ch_wal onthe primary in order to trigger an immediate segment
switch.)
When executed on a primary, this function also creates a backup history file in the write-ahead log
archive area. The history file includes the label givento pg_backup_st ar t , the starting and ending
write-ahead log locations for the backup, and the starting and ending times of the backup. After record-
ing the ending location, the current write-ahead log insertion point is automatically advanced to the next
write-ahead log file, so that the ending write-ahead log file can be archived immediately to complete the
backup.
Theresult of the function isa single record. Thel sn column holds the backup's ending write-ahead |og
location (which again can be ignored). The second column returns the contents of the backup label file,
and the third column returns the contents of the tablespace map file. These must be stored as part of the
backup and are required as part of the restore process.
This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_switch_wal () - pg_I sn
Forces the server to switch to a new write-ahead log file, which allows the current file to be archived
(assuming you are using continuous archiving). The result is the ending write-ahead log location plus 1
within the just-completed write-ahead log file. If there has been no write-ahead log activity since the last
write-ahead log switch, pg_swi t ch_wal does nothing and returns the start location of the write-ahead
log file currently in use.
Thisfunction isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_wal file_name (lsnpg_|sn) - text
Converts awrite-ahead log location to the name of the WAL file holding that location.

pg wal file name_offset (Isnpg Isn)>record(file nanmetext,file_offsetinte-

ger)
Converts awrite-ahead log location to a WAL file name and byte offset within that file.

pg_split_walfile_name (file_nanetext) - record(segnent_nunber nurmeric,time-
[ine_idbigint)
Extracts the sequence number and timeline ID from a WAL file name.

202

Functions and Operators

Function
Description

pg wal _Isn diff (Isnlpg_Isn,Isn2pg Isn) - nuneric
Calculates the differencein bytes (I snl - | sn2) between two write-ahead log locations. This can be
used withpg_st at _repli cati on or some of the functions shown in Table 9.97 to get the replica-
tion lag.

pg_current _wal _| sn displays the current write-ahead log write location in the same format used by the above
functions. Similarly, pg_current _wal _i nsert _| sn displaysthe current write-ahead log insertion location and
pg_current _wal _fl ush_I sn displays the current write-ahead log flush location. The insertion location is the
“logical” end of thewrite-ahead log at any instant, while the write location isthe end of what has actually been written
out from the server'sinternal buffers, and the flush location isthe last location known to be written to durable storage.
Thewritelocation isthe end of what can be examined from outside the server, and is usually what you want if you are
interested in archiving partially-complete write-ahead log files. The insertion and flush locations are made available
primarily for server debugging purposes. These are all read-only operations and do not require superuser permissions.

Youcanusepg_wal fil e_name_of f set to extract the corresponding write-ahead log file name and byte offset
fromapg_| sn vaue. For example:

post gres=# SELECT * FROM pg_wal fil e_nanme_of f set ((pg_backup_stop()).lsn);
file_nanme | file_ offset

00000001000000000000000D | 4039624
(1 row)

Similarly, pg_wal fi | e_name extractsjust the write-ahead log file name.

pg_split_wal file_nane isuseful tocompute aLSN from afile offset and WAL file name, for example:

postgres=# \set file_nane ' 000000010000000100C000AB'
post gres=# \set offset 256
postgres=# SELECT '0/0'::pg_|sn + pd.segnment_nunber * ps.setting::int
+ :offset AS |Isn
FROM pg_split _walfile name(:'file_nane') pd,
pg_show al |l settings() ps
WHERE ps. nane = 'wal _segnent_si ze';
[sn

€001/ AB000100
(1 row

9.28.4. Recovery Control Functions

The functions shown in Table 9.98 provide information about the current status of a standby server. These functions
may be executed both during recovery and in normal running.

Table 9.98. Recovery Information Functions

Function
Description

pg_is_in_recovery () - bool ean
Returnstrueif recovery is still in progress.

203

Functions and Operators

Function
Description

pg_last_wal _receive Isn() - pg_|sn
Returns the last write-ahead |og location that has been received and synced to disk by streaming replica-
tion. While streaming replication isin progress this will increase monotonically. If recovery has complet-
ed then thiswill remain static at the location of the last WAL record received and synced to disk during
recovery. If streaming replication is disabled, or if it has not yet started, the function returns NULL.

pg_last_wal _replay Isn() - pg_lsn
Returns the last write-ahead |og location that has been replayed during recovery. If recovery is still in
progress thiswill increase monotonically. If recovery has completed then thiswill remain static at the lo-
cation of the last WAL record applied during recovery. When the server has been started normally with-
out recovery, the function returns NULL.

pg_last _xact _replay tinmestanp() -tinmestanmp with tine zone
Returns the time stamp of the last transaction replayed during recovery. Thisisthe time at which the
commit or abort WAL record for that transaction was generated on the primary. If no transactions have
been replayed during recovery, the function returns NULL. Otherwise, if recovery is till in progressthis
will increase monotonically. If recovery has completed then thiswill remain static at the time of the last
transaction applied during recovery. When the server has been started normally without recovery, the
function returns NULL.

pg_get _wal resource_nanagers () - setof record(rm.idinteger,rmnanetext,
rmbuiltinbool ean)
Returns the currently-loaded WAL resource managers in the system. The columnr m_bui | ti n indi-
cates whether it's a built-in resource manager, or a custom resource manager loaded by an extension.

The functions shown in Table 9.99 control the progress of recovery. These functions may be executed only during
recovery.

Table 9.99. Recovery Control Functions

Function
Description

pg_is_wal _repl ay_paused () - bool ean
Returnstrueif recovery pause is requested.

pg_get wal replay_ pause_state() - text
Returns recovery pause state. Thereturn valuesare not paused if pauseisnot requested, pause
request ed if pauseisrequested but recovery is not yet paused, and paused if the recovery is actually
paused.

pg_pronot e (wai t bool ean DEFAULT true,wai t _seconds i nt eger DEFAULT 60) - bool ean
Promotes a standby server to primary status. Withwai t settot r ue (the default), the function waits un-
til promotion is completed or wai t _seconds seconds have passed, and returnst r ue if promotion is
successful and f al se otherwise. If wai t issettof al se, thefunction returnst r ue immediately after
sending a SI GUSR1 signal to the postmaster to trigger promotion.
This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_wal replay_pause () - void
Request to pause recovery. A request doesn't mean that recovery stopsright away. If you want a guar-
antee that recovery is actually paused, you need to check for the recovery pause state returned by
pg_get wal replay_pause_state().Notethatpg is wal replay_ paused() returns

204

Functions and Operators

Function
Description
whether arequest is made. While recovery is paused, no further database changes are applied. If hot
standby is active, all new queries will see the same consistent snapshot of the database, and no further
query conflicts will be generated until recovery is resumed.
Thisfunction isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_wal _replay_resune () - void
Restarts recovery if it was paused.
This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_wal replay_ pause and pg_wal _repl ay_resume cannot be executed while a promotion is ongoing. If
apromotion is triggered while recovery is paused, the paused state ends and promotion continues.

If streaming replication is disabled, the paused state may continue indefinitely without a problem. If streaming repli-
cation isin progress then WAL records will continue to be received, which will eventually fill available disk space,
depending upon the duration of the pause, the rate of WAL generation and available disk space.

9.28.5. Snapshot Synchronization Functions

PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which datais visible to
the transaction that is using the snapshot. Synchronized snapshots are necessary when two or more sessions need to see
identical content in the database. If two sessionsjust start their transactionsindependently, thereisalways a possibility
that some third transaction commits between the executions of the two START TRANSACTI ON commands, so that
one session sees the effects of that transaction and the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. As long as the exporting
transaction remains open, other transactions can import its snapshot, and thereby be guaranteed that they see exactly the
same view of the database that the first transaction sees. But note that any database changes made by any one of these
transactions remain invisible to the other transactions, asis usual for changes made by uncommitted transactions. So
the transactions are synchroni zed with respect to pre-existing data, but act normally for changesthey make themselves.

Snapshots are exported with the pg_export _snapshot function, shown in Table 9.100, and imported with the
SET TRANSACTION command.

Table 9.100. Snapshot Synchronization Functions

Function
Description

pg_export _snapshot () - text
Saves the transaction's current snapshot and returnsat ext string identifying the snapshot. This string
must be passed (outside the database) to clients that want to import the snapshot. The snapshot is avail-
able for import only until the end of the transaction that exported it.
A transaction can export more than one snapshot, if needed. Note that doing so is only useful in READ
COW TTED transactions, since in REPEATABLE READ and higher isolation levels, transactions use
the same snapshot throughout their lifetime. Once a transaction has exported any snapshots, it cannot be
prepared with PREPARE TRANSACTION.

pg_l og_standby_snapshot () - pg_| sn
Take asnapshot of running transactions and write it to WAL, without having to wait for bgwriter or
checkpointer to log one. Thisis useful for logical decoding on standby, aslogica slot creation has to wait
until such arecord is replayed on the standby.

205

Functions and Operators

9.28.6. Replication Management Functions

The functions shown in Table 9.101 are for controlling and interacting with replication features. See Section 26.2.5,
Section 26.2.6, and Chapter 48 for information about the underlying features. Use of functions for replication origin
isonly allowed to the superuser by default, but may be allowed to other users by using the GRANT command. Use of
functions for replication sotsis restricted to superusers and users having REPLI CATI ON privilege.

Many of these functions have equivalent commands in the replication protocol; see Section 54.4.

The functions described in Section 9.28.3, Section 9.28.4, and Section 9.28.5 are also relevant for replication.

Table 9.101. Replication Management Functions

Function
Description

pg _create_physical _replication_slot (slot_nanmenane[,i medi ately_reserve

bool ean,t enporary bool ean]) - record (sl ot_nane nane,l snpg_I sn)

Creates anew physical replication slot named sl ot _nane. The optional second parameter, when

t r ue, specifies that the LSN for this replication slot be reserved immediately; otherwisethe LSN isre-
served on first connection from a streaming replication client. Streaming changes from aphysical dotis
only possible with the streaming-replication protocol — see Section 54.4. The optional third parameter,

t enpor ar y, when set to true, specifies that the slot should not be permanently stored to disk and is only
meant for use by the current session. Temporary slots are also released upon any error. This function cor-
responds to the replication protocol command CREATE_REPLI CATI ON_SLOT ... PHYSI CAL.

pg_drop_replication_slot (slot_nanenane) - void
Drops the physical or logical replication slot named sl ot _nan®e. Same as replication protocol com-
mand DROP_REPL| CATI ON_SLOT.

pg_create |l ogical _replication_slot (slot_nanenane,plugi nnane[,tenporary
bool ean, t wophase bool ean, f ai | over bool ean]) - record (sl ot _nane nane, | sn
pg_Isn)
Creates anew logical (decoding) replication slot named sl ot _nan®e using the output plugin pl ugi n.
The optional third parameter, t enpor ar y, when set to true, specifies that the slot should not be perma-
nently stored to disk and is only meant for use by the current session. Temporary slots are also released
upon any error. The optional fourth parameter, t wophase, when set to true, specifies that the decod-
ing of prepared transactions is enabled for this slot. The optional fifth parameter, f ai | over , when set
to true, specifiesthat this dot is enabled to be synced to the standbys so that logical replication can be
resumed after failover. A call to this function has the same effect as the replication protocol command
CREATE_REPLI CATION_SLOT ... LOd CAL.

pg_copy_physical _replication_slot (src_slot_nane name,dst sl ot _nane nane [,tem

porary bool ean]) - record (sl ot _nane nane,l snpg_I sn)

Copies an existing physical replication slot named sr ¢_sl ot _name to aphysical replication slot
named dst _sl ot _name. The copied physical dlot starts to reserve WAL from the same LSN asthe
sourcedot. t enrpor ar y isoptional. If t enpor ar y is omitted, the same value as the source dlot is
used. Copy of aninvalidated slot is not allowed.

pg_copy_l ogi cal _replication_slot (src_slot_nanme nane,dst _sl ot _name name[,tem

por ary bool ean[,pl uginnane]]) - record (sl ot _nane nane, |l snpg_|sn)
Copies an existing logical replication slot named sr c_sl ot _narne to alogical replication slot named
dst sl ot _nane, optionally changing the output plugin and persistence. The copied logical dot starts
from the same LSN as the source logical ot. Botht enpor ary and pl ugi n are optional; if they are
omitted, the values of the source slot are used. Thef ai | over option of the source logical dlot is not
copied and isset tof al se by default. Thisisto avoid the risk of being unable to continue logical repli-

206

Functions and Operators

Function

Description

cation after failover to standby where the dot is being synchronized. Copy of an invalidated slot isnot al-
lowed.

pg_l ogi cal _sl ot _get changes (sl ot _nane name,upto_I snpg_I sn,upt o_nchanges i n-

t eger, VARI ADI Coptionstext[]) - setof record(lsnpg_lsn,xidxid,datatext
)

Returns changesinthe dlot sl ot _nane, starting from the point from which changes have been con-
sumed last. If upt o_| sn and upt o_nchanges are NULL, logical decoding will continue until end

of WAL. If upt o_I sn isnon-NULL, decoding will include only those transactions which commit prior
to the specified LSN. If upt o_nchanges isnon-NULL, decoding will stop when the number of rows
produced by decoding exceeds the specified value. Note, however, that the actual number of rows re-
turned may be larger, since this limit is only checked after adding the rows produced when decoding each
new transaction commit. If the specified slot isalogical failover slot then the function will not return un-
til all physical slots specifiedinsynchr oni zed_st andby_s| ot s have confirmed WAL receipt.

pg_|l ogi cal _sl ot _peek_changes (sl ot _nane nanme,upto_|l sn pg_I sn,upt o_nchanges i n-

t eger, VARI ADI Coptionstext[]) - setof record(lsnpg_|sn,xidxid,datatext

Behavesjust likethepg_| ogi cal _sl ot _get changes() function, except that changes are not
consumed; that is, they will be returned again on future calls.

pg_l ogi cal _sl ot _get bi nary changes (sl ot _nane nane,upto_|snpg_| sn,upto_n-

changes i nt eger, VARl ADI Coptionstext[]) - setof record(lsnpg_lsn,xid
Xi d,dat a byt ea)

Behavesjust likethepg_| ogi cal _sl ot _get changes() function, except that changes are re-
turned as byt ea.

pg_|l ogi cal _sl ot _peek_bi nary_changes (sl ot _nane name,upto_I snpg_I| sn,upto_n-

changes i nt eger, VARl ADI Coptionstext[]) - setof record(lsnpg |Isn,xid
Xi d,dat a byt ea)

Behavesjust likethepg_| ogi cal _sl ot _peek_changes() function, except that changes are re-
turned as byt ea.

pg_replication_slot_advance (sl ot _nanme name,upto_lsnpg_lsn) - record (

sl ot _name nane,end_| snpg_I sn)

Advances the current confirmed position of areplication slot named sl ot _nane. The slot will not be
moved backwards, and it will not be moved beyond the current insert location. Returns the name of the
dot and the actual position that it was advanced to. The updated slot position information is written out
at the next checkpoint if any advancing is done. So in the event of a crash, the slot may return to an earli-
er position. If the specified slot isalogical failover slot then the function will not return until all physical
slots specified in synchr oni zed_st andby_sl ot s have confirmed WAL receipt.

pg_replication_origin create(node nanetext) - oid

Creates areplication origin with the given external name, and returnsthe internal ID assigned to it. The
name must be no longer than 512 bytes.

pg_replication_origin_drop(node_nanetext) - void

Deletes a previously-created replication origin, including any associated replay progress.

pg_replication_origin oid(node_nanetext) - oid

Looks up areplication origin by name and returns the internal 1D. If no such replication origin is found,
NULL isreturned.

pg_replication_origin_session_setup(node_nametext) - void

207

Functions and Operators

Function
Description

Marks the current session as replaying from the given origin, allowing replay progressto be tracked. Can
only be used if no origin is currently selected. Usepg_repl i cation_ori gi n_sessi on_reset
to undo.

pg_replication_origin_session_reset () »void
Cancelsthe effectsof pg_r epl i cati on_ori gi n_sessi on_setup().

pg_replication_origin session_is_setup() - bool ean
Returnstrueif areplication origin has been selected in the current session.

pg_replication_origin_session_progress (flushboolean) - pg_I sn
Returns the replay location for the replication origin selected in the current session. The parameter
f I ush determines whether the corresponding local transaction will be guaranteed to have been flushed
to disk or not.

pg_replication_origin_xact_setup(origin_Isnpg_|sn,origin_tinestanptine-
stanp with tinme zone) - void
Marks the current transaction as replaying a transaction that has committed at the given LSN and time-

stamp. Can only be called when areplication origin has been selected using pg_r epl i cati on_ori -
gi n_sessi on_set up.

pg_replication_origin_xact_reset () - void
Cancelsthe effectsof pg_repl i cati on_ori gi n_xact _set up().

pg_replication_origin_advance (node_nanetext,lsnpg_|Isn) - void
Sets replication progress for the given node to the given location. Thisis primarily useful for setting up
theinitial location, or setting anew location after configuration changes and similar. Be aware that care-
less use of this function can lead to inconsistently replicated data.

pg_replication_origin_progress (node_nanetext,flushboolean) - pg_I sn
Returns the replay location for the given replication origin. The parameter f | ush determines whether
the corresponding local transaction will be guaranteed to have been flushed to disk or not.

pg_l ogi cal _em t_message (transacti onal bool ean,prefixtext,content text [,flush

bool ean DEFAULT f al se]) - pg_I sn
pg_l ogi cal _em t _message (transacti onal bool ean,prefixtext,content byteal,fl ush

bool ean DEFAULT f al se]) - pg_I sn

Emits alogical decoding message. This can be used to pass generic messages to logical decoding plugins
through WAL. Thet r ansact i onal parameter specifiesif the message should be part of the current
transaction, or if it should be written immediately and decoded as soon as the logical decoder reads the
record. The pr ef i x parameter is atextual prefix that can be used by logical decoding pluginsto easily
recognize messages that are interesting for them. The cont ent parameter is the content of the message,
given either in text or binary form. Thef | ush parameter (default set tof al se) controlsif the message
isimmediately flushed to WAL or not. f | ush hasno effect witht r ansact i onal , asthe message's
WAL record is flushed along with its transaction.

pg_sync_replication_slots () - void
Synchronize the logical failover replication slots from the primary server to the standby server. This
function can only be executed on the standby server. Temporary synced dots, if any, cannot be used for
logical decoding and must be dropped after promotion. See Section 47.2.3 for details. Note that this func-
tion cannot be executed if sync_repl i cati on_sl ot s isenabled and the slotsync worker is al-
ready running to perform the synchronization of slots.

208

Functions and Operators

Function
Description

Caution

If, after executing the function, hot _st andby_f eedback is disabled on the standby or the
physical slot configuredin pri mary_sl ot _nane isremoved, then it is possible that the neces-
sary rows of the synchronized slot will be removed by the VACUUM process on the primary serv-
er, resulting in the synchronized slot becoming invalidated.

9.28.7. Database Object Management Functions

The functions shown in Table 9.102 calculate the disk space usage of database objects, or assist in presentation or
understanding of usage results. bi gi nt results are measured in bytes. If an OID that does not represent an existing
object is passed to one of these functions, NULL is returned.

Table 9.102. Database Object Size Functions

Function
Description

pg_col um_si ze ("any") - i nt eger
Shows the number of bytes used to store any individual datavalue. If applied directly to atable column
value, this reflects any compression that was done.

pg_col um_conpressi on ("any") - t ext
Shows the compression algorithm that was used to compress an individual variable-length value. Returns
NULL if the valueis not compressed.

pg_col um_t oast _chunk_id("any") - oid
Showsthechunk i d of an on-disk TOASTed value. Returns NULL if the value is un-TOASTed or not
on-disk. See Section 66.2 for more information about TOAST.

pg_dat abase_si ze (nane) - bi gi nt

pg_dat abase_si ze (oid) - bigi nt
Computes the total disk space used by the database with the specified name or OID. To use this function,
you must have CONNECT privilege on the specified database (which is granted by default) or have privi-
legesof thepg_read_al | _stats role

pg_i ndexes_si ze (regcl ass) - bi gi nt
Computes the total disk space used by indexes attached to the specified table.

pg_relation_size(relationregclass[,forktext]) - bigint
Computes the disk space used by one “fork” of the specified relation. (Note that for most purposes
it is more convenient to use the higher-level functionspg_total _rel ati on_si ze orpg_t a-
bl e_si ze, which sum the sizes of all forks.) With one argument, this returns the size of the main data
fork of the relation. The second argument can be provided to specify which fork to examine:

* mai n returns the size of the main data fork of the relation.

» f smreturnsthe size of the Free Space Map (see Section 66.3) associated with the relation.
» vmreturns the size of the Visibility Map (see Section 66.4) associated with the relation.

* init returnsthe size of the initidization fork, if any, associated with the relation.

pg_si ze bytes (text) - bigint

209

Functions and Operators

Function
Description
Converts asize in human-readable format (asreturned by pg_si ze_pr et t y) into bytes. Valid units
arebyt es, B, kB, MB, GB, TB, and PB.

pg_size_pretty (bigint) - text

pg_size pretty (numeric) - text
Converts asize in bytesinto a more easily human-readable format with size units (bytes, kB, MB, GB,
TB, or PB as appropriate). Note that the units are powers of 2 rather than powers of 10, so 1kB is 1024
bytes, IMB is 10242 = 1048576 bytes, and so on.

pg_table size(regclass) - bigint
Computes the disk space used by the specified table, excluding indexes (but including its TOAST table if
any, free space map, and visibility map).

pg_t abl espace_si ze (nane) - bi gi nt

pg_t abl espace_si ze (oid) - bigint
Computes the total disk space used in the tablespace with the specified name or OID. To use this
function, you must have CREATE privilege on the specified tablespace or have privileges of the
pg_read_al | st at s role unlessit isthe default tablespace for the current database.

pg_total _relation_size(regclass) - bigint
Computes the total disk space used by the specified table, including al indexes and TOAST data. The re-
sultisequivaenttopg_t abl e_si ze + pg_i ndexes_si ze.

The functions above that operate on tables or indexes accept ar egcl ass argument, which is simply the OID of the
table or index in the pg_cl ass system catalog. You do not have to look up the OID by hand, however, since the
regcl ass datatype'sinput converter will do the work for you. See Section 8.19 for details.

The functions shown in Table 9.103 assist in identifying the specific disk files associated with database objects.

Table 9.103. Database Object L ocation Functions

Function
Description

pg_relation_filenode(relationregclass) - oid
Returns the “filenode” number currently assigned to the specified relation. The filenode is the base com-
ponent of the file name(s) used for the relation (see Section 66.1 for more information). For most rela-
tionstheresultisthesameaspg_cl ass.rel fi | enode, but for certain system catalogsr el fi | en-
ode iszero and this function must be used to get the correct value. The function returns NULL if passed
arelation that does not have storage, such asaview.

pg_relation_filepath(relationregclass) - text
Returns the entire file path name (relative to the database cluster's data directory, PGDATA) of therela-
tion.

pg_fil enode rel ation(tabl espaceoid,filenodeoid) - regcl ass
Returns arelation's OID given the tablespace OID and filenode it is stored under. Thisis essentially the
inverse mapping of pg_rel ati on_fi |l epat h. For arelation in the database's default tablespace, the
tablespace can be specified as zero. Returns NULL if no relation in the current database is associated with
the given values.

Table 9.104 lists functions used to manage collations.

210

Functions and Operators

Table 9.104. Collation Management Functions

Function
Description

pg_collation_actual version(oid) - text
Returns the actual version of the collation object asit is currently installed in the operating system. If this
isdifferent from the valueinpg_col | at i on.col | ver si on, then objects depending on the collation
might need to be rebuilt. See also ALTER COLLATION.

pg_dat abase_col | ati on_actual _version(oid) - text
Returns the actual version of the database's collation asit is currently installed in the operating system. If
thisis different from thevaluein pg_dat abase.dat col | ver si on, then objects depending on the
collation might need to be rebuilt. See also ALTER DATABASE.

pg_i mport_system col | ati ons (schemaregnanespace) - i nt eger
Adds collationsto the system catalog pg_col | at i on based on al the localesit finds in the operating
system. Thisiswhat i ni t db uses; see Section 23.2.2 for more details. If additional locales are installed
into the operating system later on, this function can be run again to add collations for the new locales.
Locales that match existing entriesin pg_col | ati on will be skipped. (But collation objects based on
locales that are no longer present in the operating system are not removed by this function.) Theschena
parameter would typically be pg_cat al og, but that is not a requirement; the collations could be in-
stalled into some other schema as well. The function returns the number of new collation objectsit creat-
ed. Use of thisfunction is restricted to superusers.

Table 9.105 lists functions used to manipulate statistics. These functions cannot be executed during recovery.

Warning

Changes made by these statistics manipulation functions are likely to be overwritten by autovacuum
(or manual VACUUMor ANAL YZE) and should be considered temporary.

Table 9.105. Database Object Statistics Manipulation Functions

Function
Description

pg_restore_rel ation_stats (VAR ADI Ckwar gs "any") — bool ean
Updates table-level statistics. Ordinarily, these statistics are collected automatically or updated as a part
of VACUUM or ANALYZE, so it's not necessary to call this function. However, it isuseful after are-
store to enable the optimizer to choose better plansif ANALYZE has not been run yet.
The tracked statistics may change from version to version, so arguments are passed as pairs of ar gnane
and ar gval ue intheform:;

SELECT pg_restore_relation_stats(

"arglnane', 'arglval ue'::argltype,
"arg2nane', 'arg2val ue'::arg2type,
"arg3nane', 'arg3value'::arg3type);

For example, to set ther el pages andr el t upl es valuesfor thetablenyt abl e:

SELECT pg_restore_rel ation_stats(

211

Functions and Operators

Function
Description
'schemanane', 'nyschema',
"rel nane', "nytable',
'rel pages', 173::integer,

"reltuples', 10000::real);

The arguments schemanane and r el nane are required, and specify the table. Other arguments are the
names and values of statistics corresponding to certain columnsin pg_cl ass. The currently-supported
relation statisticsarer el pages with avalue of typei nt eger,r el t upl es with avaue of typer e-
al ,rel al | vi si bl e withavalue of typei nt eger ,andr el al | fr ozen with avalue of typei n-
t eger.

Additionally, this function accepts argument namever si on of typei nt eger , which specifiesthe
server version from which the statistics originated. Thisis anticipated to be helpful in porting statistics
from older versions of PostgreSQL.

Minor errors are reported as a WARNI NG and ignored, and remaining statistics will still be restored. If all
specified statistics are successfully restored, returnst r ue, otherwisef al se.

The caller must have the MAI NTAI N privilege on the table or be the owner of the database.

pg_clear relation_stats (schemananetext,relnanetext) - void
Clearstable-level statistics for the given relation, as though the table was newly created.
The caller must have the MAI NTAI N privilege on the table or be the owner of the database.

pg_restore_attribute_stats (VAR ADI Ckwargs "any") — bool ean
Creates or updates column-level statistics. Ordinarily, these statistics are collected automatically or up-
dated as a part of VACUUM or ANALY ZE, soit's not necessary to call this function. However, it is use-
ful after arestore to enable the optimizer to choose better plansif ANALYZE has not been run yet.
The tracked statistics may change from version to version, so arguments are passed as pairs of ar gnane
and ar gval ue intheform:

SELECT pg_restore_attribute_stats(

"arglnane', 'arglval ue'::argltype,
"arg2nane', 'arg2val ue'::arg2type,
"arg3nane', 'arg3value'::arg3type);

For example, to set theavg_wi dt hand nul | _f r ac valuesfor the attribute col 1 of the table
nyt abl e:

SELECT pg_restore_attribute_stats(

'schemanane', 'nyschens',
"rel nane', "nytable',
"attnanme', ‘col 1',
"inherited', false,
"avg_width', 125::integer,
"null _frac', 0.5::real);

The required arguments are schemanane and r el nane with avalue of typet ext which specify the
table; either at t nanme with avalue of typet ext or at t numwith avalue of typesmal | i nt, which
specifiesthe column; and i nher i t ed, which specifies whether the statistics include values from child
tables. Other arguments are the names and values of statistics corresponding to columnsin pg_st at s.
Additionally, this function accepts argument namever si on of typei nt eger , which specifiesthe
server version from which the statistics originated. Thisis anticipated to be helpful in porting statistics
from older versions of PostgreSQL.

212

Functions and Operators

Function
Description
Minor errors are reported as a WARNI NG and ignored, and remaining statistics will still be restored. If all
specified statistics are successfully restored, returnst r ue, otherwisef al se.
The caller must have the MAI NTAI N privilege on the table or be the owner of the database.

pg_clear _attribute_stats (schemananetext,rel nanmetext,attnanetext,inherited

bool ean) - voi d
Clears column-level statistics for the given relation and attribute, as though the table was newly created.
The caller must have the MAI NTAI N privilege on the table or be the owner of the database.

Table 9.106 lists functions that provide information about the structure of partitioned tables.

Table 9.106. Partitioning Information Functions

Function
Description

pg_partition_tree(regclass) - setof record(relidregcl ass,parentrelidreg-
cl ass,i sl eaf bool ean, | evel integer)
Liststhe tables or indexes in the partition tree of the given partitioned table or partitioned index, with one
row for each partition. Information provided includes the OID of the partition, the OID of itsimmedi-
ate parent, aboolean value telling if the partition is aleaf, and an integer telling its level in the hierarchy.
Thelevel valueis O for the input table or index, 1 for its immediate child partitions, 2 for their partitions,
and so on. Returns no rows if the relation does not exist or is not a partition or partitioned table.

pg_partition_ancestors (regclass) - setof regclass
Lists the ancestor relations of the given partition, including the relation itself. Returns no rows if the rela-
tion does not exist or is not a partition or partitioned table.

pg_partition_root (regclass) - regcl ass
Returns the top-most parent of the partition tree to which the given relation belongs. Returns NULL if the
relation does not exist or is not a partition or partitioned table.

For example, to check the total size of the data contained in a partitioned table measur ement , one could use the
following query:

SELECT pg_size pretty(sum(pg_relation_size(relid))) AS total _size
FROM pg_partition_tree(' measurenent');

9.28.8. Index Maintenance Functions

Table9.107 showsthefunctionsavailablefor index maintenancetasks. (Note that these maintenancetasksare normally
done automatically by autovacuum; use of these functions is only required in specia cases.) These functions cannot
be executed during recovery. Use of these functionsis restricted to superusers and the owner of the given index.

Table 9.107. Index M aintenance Functions

Function
Description

brin_summari ze_new val ues (i ndex regcl ass) - i nt eger
Scans the specified BRIN index to find page rangesin the base table that are not currently summarized
by the index; for any such range it creates a new summary index tuple by scanning those table pages. Re-
turns the number of new page range summaries that were inserted into the index.

213

Functions and Operators

Function
Description

brin_summari ze_range (i ndex regcl ass, bl ockNunber bi gi nt) - i nt eger
Summarizes the page range covering the given block, if not already summarized. Thisislike
brin_summari ze_new val ues except that it only processes the page range that covers the given
table block number.

bri n_desummari ze_range (i ndex r egcl ass, bl ockNunber bi gint) - voi d
Removes the BRIN index tuple that summarizes the page range covering the given table block, if thereis
one.

gin_clean_pending_list (indexregclass) - bigint
Cleans up the “pending” list of the specified GIN index by moving entriesin it, in bulk, to the main GIN
data structure. Returns the number of pages removed from the pending list. If the argumentisa GIN in-
dex built with the f ast updat e option disabled, no cleanup happens and the result is zero, because the
index doesn't have a pending list. See Section 65.4.4.1 and Section 65.4.5 for details about the pending
list and f ast updat e option.

9.28.9. Generic File Access Functions

The functions shown in Table 9.108 provide native access to files on the machine hosting the server. Only fileswithin
the database cluster directory and thel og_di r ect or y can be accessed, unless the user is a superuser or is granted
therolepg_read_server _fil es. Usearelative path for files in the cluster directory, and a path matching the
| og_di rect ory configuration setting for log files.

Notethat granting usersthe EXECUTE privilegeonpg_r ead_fi | e(), or related functions, allows them the ability
to read any file on the server that the database server process can read; these functions bypass all in-database privilege
checks. This means that, for example, a user with such access is able to read the contents of the pg_aut hi d table
where authentication information is stored, as well as read any table data in the database. Therefore, granting access
to these functions should be carefully considered.

When granting privilege on these functions, note that the table entries showing optional parameters are mostly imple-
mented as several physical functions with different parameter lists. Privilege must be granted separately on each such
function, if it isto be used. psgl's\ df command can be useful to check what the actual function signatures are.

Some of these functions take an optional i ssi ng_ok parameter, which specifies the behavior when the file or
directory doesnot exist. If t r ue, the function returns NULL or an empty result set, as appropriate. If f al se, an error
israised. (Failure conditions other than “file not found” are reported as errorsin any case.) The defaultisf al se.

Table 9.108. Generic File Access Functions

Function
Description

pg_ls_dir (dirnanmetext [,m ssing_ok bool ean,i ncl ude_dot _dirs bool ean]) - set of
t ext
Returns the names of all files (and directories and other special files) in the specified directory. Thei n-
cl ude_dot _di r s parameter indicates whether “.” and “..” areto be included in the result set; the de-
fault is to exclude them. Including them can be useful when mi ssi ng_ok ist r ue, to distinguish an
empty directory from anon-existent directory.
This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the

function.

pg_Is logdir () - setof record(nanmetext,sizebigint,nodificationtinestanp
with time zone)

214

Functions and Operators

Function
Description

Returns the name, size, and last modification time (mtime) of each ordinary filein the server'slog direc-
tory. Filenames beginning with a dot, directories, and other special files are excluded.

Thisfunction isrestricted to superusers and roles with privileges of the pg_noni t or role by default,
but other users can be granted EXECUTE to run the function.

pg_ls waldir () - setof record(nanmetext,sizebigint,modificationtinmestanp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server's write-
ahead log (WAL) directory. Filenames beginning with adot, directories, and other special files are ex-
cluded.
This function isrestricted to superusers and roles with privileges of the pg_noni t or role by default,
but other users can be granted EXECUTE to run the function.

pg_|s | ogical mapdir () - setof record (nanmetext,sizebigint,nodificationtine-
stanp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server'spg_| og-
i cal / mappi ngs directory. Filenames beginning with adot, directories, and other specia files are ex-
cluded.
Thisfunction isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

pg_l s_l ogi cal snapdir () - setof record(nanmetext,sizebigint,nodificationtine-
stamp with tine zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server'spg_I og-
i cal / snapshot s directory. Filenames beginning with adot, directories, and other special files are ex-
cluded.
This function isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

pg_|s replslotdir (slot_nanetext) - setof record(nanetext,sizebigint,nodi-
ficationtimestanp with tine zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server'spg_r e-
pl sl ot/ sl ot _nane directory, where sl ot _nan® isthe name of the replication slot provided asin-
put of the function. Filenames beginning with a dot, directories, and other special files are excluded.
Thisfunction isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

pg_ls_summariesdir () - setof record(nanetext,sizebigint,nodificationtine-
stamp with tine zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server's WAL
summaries directory (pg_wal / summrar i es). Filenames beginning with a dot, directories, and other
special files are excluded.
This function isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

pg_|s_archive_statusdir () - setof record(nanetext,sizebigint,nodification
timestanp with tinme zone)
Returns the name, size, and last modification time (mtime) of each ordinary filein the server's WAL
archive status directory (pg_wal / ar chi ve_st at us). Filenames beginning with adot, directories,
and other special files are excluded.
Thisfunction isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

215

Functions and Operators

Function
Description

pg_ls tnpdir ([tabl espaceoid]) - setof record(nanetext,sizehigint,nodifica-
tiontimestanp with tinme zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the temporary file di-
rectory for the specifiedt abl espace. If t abl espace isnot provided, thepg_def aul t tablespace
is examined. Filenames beginning with adot, directories, and other special files are excluded.
Thisfunction isrestricted to superusers and members of the pg_noni t or role by default, but other
users can be granted EXECUTE to run the function.

pg read file(filenanetext [,of fset bigint,lengthbigint][,m ssing okbool ean])

- text

Returns al or part of atext file, starting at the given byte of f set , returning at most | engt h bytes
(lessif theend of fileisreached first). If of f set isnegative, it isrelative to the end of thefile. If of f -
set and| engt h are omitted, the entire file is returned. The bytes read from the file are interpreted as a
string in the database's encoding; an error isthrown if they are not valid in that encoding.

This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

pg_read_binary file(fil enametext [,of fset bigint,lengthbigint][,mssing_ok

bool ean]) - bytea

Returns al or part of afile. Thisfunctionisidentical topg_r ead_fi | e except that it can read arbitrary
binary data, returning the result asbyt ea not t ext ; accordingly, no encoding checks are performed.
Thisfunction isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

In combination withtheconvert _f r omfunction, thisfunction can be used to read atext file in a spec-
ified encoding and convert to the database's encoding:

SELECT convert _from(pg_read binary file('file_ in utf8.txt"'), 'UTF8');

pg_stat file(filenanetext [, m ssing ok boolean]) - record(sizebigint,access
timestanmp with tinme zone,nodificationtinmestanp with tine zone,change
timestanmp with tinme zone,creationtimestanp with tinme zone,isdir bool ean
)
Returns arecord containing the file's size, last access time stamp, last modification time stamp, last file
status change time stamp (Unix platforms only), file creation time stamp (Windows only), and aflag in-
dicating if it isadirectory.
This function isrestricted to superusers by default, but other users can be granted EXECUTE to run the
function.

9.28.10. Advisory Lock Functions

The functions shown in Table 9.109 manage advisory locks. For details about proper use of these functions, see Sec-
tion 13.3.5.

All these functions are intended to be used to lock application-defined resources, which can be identified either by a
single 64-hit key value or two 32-hit key values (note that these two key spaces do not overlap). If another session
already holdsaconflicting lock on the sameresourceidentifier, the functionswill either wait until the resource becomes
available, or return af al se result, as appropriate for the function. Locks can be either shared or exclusive: a shared
lock does not conflict with other shared locks on the same resource, only with exclusive locks. Locks can be taken
at session level (so that they are held until released or the session ends) or at transaction level (so that they are held
until the current transaction ends; there is no provision for manual release). Multiple session-level lock requests stack,

216

Functions and Operators

so that if the same resource identifier is locked three times there must then be three unlock requests to release the
resource in advance of session end.

Table 9.109. Advisory Lock Functions

Function
Description

pg_advi sory_| ock (key bigint) - void

pg_advi sory_| ock (keyli nteger,key2integer) - void
Obtains an exclusive session-level advisory lock, waiting if necessary.

pg_advi sory | ock_shared (key bigint) - void

pg_advi sory_| ock_shared (keylinteger,key2integer) - void
Obtains a shared session-level advisory lock, waiting if necessary.

pg_advi sory_unl ock (key bi gi nt) — bool ean

pg_advi sory_unl ock (keyli nteger,key2integer) - bool ean
Releases a previously-acquired exclusive session-level advisory lock. Returnst r ue if thelock is suc-
cessfully released. If the lock was not held, f al se isreturned, and in addition, an SQL warning will be
reported by the server.

pg_advi sory_unl ock_all () - void
Releases all session-level advisory locks held by the current session. (This function isimplicitly invoked
at session end, even if the client disconnects ungracefully.)

pg_advi sory_unl ock_shared (key bi gi nt) - bool ean

pg_advi sory_unl ock_shared (keyli nteger,key2integer) - bool ean
Releases a previously-acquired shared session-level advisory lock. Returnst r ue if the lock is success-
fully released. If the lock was not held, f al se isreturned, and in addition, an SQL warning will be re-
ported by the server.

pg_advi sory_xact _| ock (key bigint) - void

pg_advi sory_xact | ock (keylinteger,key2integer) - void
Obtains an exclusive transaction-level advisory lock, waiting if necessary.

pg_advi sory_xact | ock _shared (key bigint) - void

pg_advi sory_xact | ock_shared (keylinteger,key2integer) - void
Obtains a shared transaction-level advisory lock, waiting if necessary.

pg_try advisory | ock (key bi gint) - bool ean

pg_try advisory | ock (keylinteger,key2integer) - bool ean
Obtains an exclusive session-level advisory lock if available. Thiswill either obtain the lock immediately
and returnt r ue, or return f al se without waiting if the lock cannot be acquired immediately.

pg_try_advi sory_| ock_shar ed (key bi gi nt) -~ bool ean

pg_try_advisory_| ock_shared (keylinteger,key2integer) - bool ean
Obtains a shared session-level advisory lock if available. Thiswill either obtain the lock immediately and
returnt r ue, or return f al se without waiting if the lock cannot be acquired immediately.

pg_try advisory xact | ock (key bi gint) - bool ean

pg_try_advisory_xact | ock (keylinteger,key2integer) - bool ean
Obtains an exclusive transaction-level advisory lock if available. Thiswill either obtain the lock immedi-
ately andreturnt r ue, or return f al se without waiting if the lock cannot be acquired immediately.

217

Functions and Operators

Function
Description

pg_try advisory_ xact | ock_shared (key bi gi nt) - bool ean

pg_try_advisory xact | ock _shared(keylinteger,key2integer) - bool ean
Obtains a shared transaction-level advisory lock if available. Thiswill either obtain the lock immediately
andreturnt r ue, or return f al se without waiting if the lock cannot be acquired immediately.

9.29. Trigger Functions

While many uses of triggers involve user-written trigger functions, PostgreSQL provides a few built-in trigger func-
tions that can be used directly in user-defined triggers. These are summarized in Table 9.110. (Additiona built-in
trigger functions exist, which implement foreign key constraints and deferred index constraints. Those are not docu-
mented here since users need not use them directly.)

For more information about creating triggers, see CREATE TRIGGER.

Table 9.110. Built-In Trigger Functions

Function
Description
Example Usage

suppress_redundant _updates_trigger () - trigger
Suppresses do-nothing update operations. See below for details.
CREATE TRI GGER ... suppress_redundant updates_trigger()

tsvector_update_trigger () - trigger
Automatically updatesat svect or column from associated plain-text document column(s). The text
search configuration to use is specified by name as atrigger argument. See Section 12.4.3 for details.
CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_cata-
| og. swedish', title, body)

tsvector _update trigger_colum() - trigger
Automatically updatesat svect or column from associated plain-text document column(s). The text
search configuration to useistaken from ar egconf i g column of the table. See Section 12.4.3 for de-

tails.
CREATE TRIGGER ... tsvector_update_trigger_colum(tsvcol, tsconfigcol,
title, body)

The suppr ess_redundant _updat es_tri gger function, when applied as a row-level BEFORE UPDATE
trigger, will prevent any update that does not actually change the data in the row from taking place. This overrides
the normal behavior which always performs a physical row update regardless of whether or not the data has changed.
(Thisnormal behavior makes updates run faster, since no checking is required, and is also useful in certain cases.)

Ideally, you should avoid running updates that don't actually change the data in the record. Redundant updates can
cost considerable unnecessary time, especialy if there are lots of indexes to alter, and space in dead rows that will
eventually have to be vacuumed. However, detecting such situationsin client codeisnot always easy, or even possible,
and writing expressions to detect them can be error-prone. An aternative isto use suppr ess_r edundant _up-

dat es_tri gger, which will skip updates that don't change the data. Y ou should use this with care, however. The
trigger takes a small but non-trivial time for each record, so if most of the records affected by updates do actually
change, use of thistrigger will make updates run slower on average.

Thesuppr ess_redundant _updat es_t ri gger function can be added to atable like this:

218

Functions and Operators

CREATE TRI GGER z_mi n_updat e
BEFORE UPDATE ON t abl enane
FOR EACH ROW EXECUTE FUNCTI ON suppress_redundant _updates_trigger();

In most cases, you need to fire thistrigger last for each row, so that it does not override other triggers that might wish
to alter therow. Bearing in mind that triggersfirein name order, you would therefore choose atrigger name that comes
after the name of any other trigger you might have on the table. (Hence the “z” prefix in the example.)

9.30. Event Trigger Functions

PostgreSQL provides these hel per functions to retrieve information from event triggers.

For more information about event triggers, see Chapter 38.

9.30.1. Capturing Changes at Command End

pg_event _trigger_ddl _conmands () - setof record

pg_event _trigger_ddl _conmands returnsalist of DDL commands executed by each user action, when in-
voked in afunction attached to addl _cormmand_end event trigger. If called in any other context, an error is raised.
pg_event _trigger_ddl _commands returns one row for each base command executed; some commands that
areasingle SQL sentence may return more than one row. This function returns the following columns:

Name Type Description

classid oid OID of catalog the object belongsin

objid oid OID of the object itself

obj subi d i nt eger Sub-object ID (e.g., attribute number
for a column)

command_t ag t ext Command tag

obj ect _type t ext Type of the object

schenma_nane t ext Name of the schema the object be-

longsin, if any; otherwise NULL. No
quoting is applied.

object _identity t ext Text rendering of the object identi-
ty, schema-qualified. Each identifier
included in the identity is quoted if

necessary.

i n_extension bool ean True if the command is part of an ex-
tension script

conmmand pg_ddl _comand A complete representation of the

command, in internal format. This
cannot be output directly, but it can
be passed to other functions to obtain
different pieces of information about
the command.

9.30.2. Processing Objects Dropped by a DDL Command

219

Functions and Operators

pg_event trigger _dropped objects () - setof record

pg_event _trigger_dropped_objects returns a list of al objects dropped by the command in whose
sql _drop event itiscaled. If caled in any other context, an error is raised. This function returns the following
columns:

Name Type Description

classid oid OID of catalog the object belonged in

objid oi d OID of the object itself

obj subi d i nt eger Sub-object ID (e.g., attribute number
for acolumn)

ori gi nal bool ean True if thiswas one of the root objec-
t(s) of the deletion

nor mal bool ean True if there was anormal depen-

dency relationship in the dependency
graph leading to this object

i s_tenporary bool ean True if thiswas atemporary object
obj ect _type t ext Type of the object
schena_nane t ext Name of the schema the object be-

longed in, if any; otherwise NULL.
No quoting is applied.

obj ect _nane t ext Name of the object, if the combina-
tion of schema and name can be used
asaunique identifier for the object;
otherwise NULL. No quoting is ap-
plied, and nameis never schema-
qualified.

object _identity t ext Text rendering of the object identi-
ty, schema-qualified. Each identifier
included in the identity is quoted if
necessary.

addr ess_nanes text[] An array that, together with obj ec-
t _type andaddress_args, can
be used by thepg_get obj ec-

t _addr ess function to recreate
the object address in aremote server
containing an identically named ob-
ject of the same kind.

address_args text[] Complement for addr ess_nanes

Thepg_event _trigger_dropped_obj ect s function can be used in an event trigger like this:

CREATE FUNCTI ON test _event _trigger_for_drops()
RETURNS event _trigger LANGUAGE pl pgsql AS $$
DECLARE
obj record,;
BEG N

220

Functions and Operators

FOR obj I N SELECT * FROM pg_event _tri gger_dropped_objects()

LOooP
RAI SE NOTI CE ' % dr opped object: % % % %,
tg_tag,
obj . obj ect _type,
obj . schema_nane,
obj . obj ect _nane,
obj . obj ect _identity;
END LOCP;
END;
$$;
CREATE EVENT TRI GGER test_event _trigger for_drops
ON sql _drop

EXECUTE FUNCTI ON test _event _trigger_for_drops();

9.30.3. Handling a Table Rewrite Event

The functions shown in Table 9.111 provide information about atable for whichat abl e_rewr i t e event has just
been called. If called in any other context, an error is raised.

Table9.111. Table Rewrite Infor mation Functions

Function
Description

pg_event trigger _table rewite oid() - oid
Returns the OID of the table about to be rewritten.

pg_event trigger table rewite reason() - integer
Returns a code explaining the reason(s) for rewriting. The value is a bitmap built from the following val-
ues: 1 (thetable has changed its persistence), 2 (default value of a column has changed), 4 (a column has
anew datatype) and 8 (the table access method has changed).

These functions can be used in an event trigger like this:

CREATE FUNCTI ON test _event trigger _table rewite oid()
RETURNS event tri gger
LANGUAGE pl pgsgl AS
$$
BEG N
RAISE NOTICE '"rewiting table % for reason %,
pg_event trigger table rewite oid()::regclass,
pg_event trigger table rewite reason();
END;
$$;

CREATE EVENT TRIGGER test _table rewite _oid

ON table rewite
EXECUTE FUNCTI ON test _event trigger table rewite oid();

9.31. Statistics Information Functions

PostgreSQL provides afunction to inspect complex statistics defined using the CREATE STATI STI CS command.

221

Functions and Operators

9.31.1. Inspecting MCV Lists

pg ncv_list _itens (pg_ncv_list) - setof record

pg_nctv_li st _itens returns a set of records describing all items stored in a multi-column MCV list. It returns
the following columns:

Name Type Description

i ndex i nt eger index of theiteminthe MCV list
val ues text[] values stored inthe MCV item
nulls bool ean[] flagsidentifying NULL values
frequency doubl e precision freguency of thisMCV item
base_frequency doubl e precision base frequency of thisMCV item

Thepg_ntv_li st _itens function can be used likethis:

SELECT m* FROM pg_statistic_ext join pg statistic _ext_data on (oid = stxoid),
pg_ncv_list _itens(stxdncv) m VWHERE st xname = 'stts';

Valuesof thepg_ntv_Ii st typecanbeobtained only fromthepg_stati sti c_ext dat a.st xdncv column.

222

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Functions and Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.4.1. format

	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions
	9.7.3.8. Differences from SQL Standard and XQuery

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, date_part
	9.9.2. date_trunc
	9.9.3. date_bin
	9.9.4. AT TIME ZONE and AT LOCAL
	9.9.5. Current Date/Time
	9.9.6. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. UUID Functions
	9.15. XML Functions
	9.15.1. Producing XML Content
	9.15.1.1. xmltext
	9.15.1.2. xmlcomment
	9.15.1.3. xmlconcat
	9.15.1.4. xmlelement
	9.15.1.5. xmlforest
	9.15.1.6. xmlpi
	9.15.1.7. xmlroot
	9.15.1.8. xmlagg

	9.15.2. XML Predicates
	9.15.2.1. IS DOCUMENT
	9.15.2.2. IS NOT DOCUMENT
	9.15.2.3. XMLEXISTS
	9.15.2.4. xml_is_well_formed

	9.15.3. Processing XML
	9.15.3.1. xpath
	9.15.3.2. xpath_exists
	9.15.3.3. xmltable

	9.15.4. Mapping Tables to XML

	9.16. JSON Functions and Operators
	9.16.1. Processing and Creating JSON Data
	9.16.2. The SQL/JSON Path Language
	9.16.2.1. Deviations from the SQL Standard
	9.16.2.1.1. Boolean Predicate Check Expressions
	9.16.2.1.2. Regular Expression Interpretation

	9.16.2.2. Strict and Lax Modes
	9.16.2.3. SQL/JSON Path Operators and Methods
	9.16.2.4. SQL/JSON Regular Expressions

	9.16.3. SQL/JSON Query Functions
	9.16.4. JSON_TABLE

	9.17. Sequence Manipulation Functions
	9.18. Conditional Expressions
	9.18.1. CASE
	9.18.2. COALESCE
	9.18.3. NULLIF
	9.18.4. GREATEST and LEAST

	9.19. Array Functions and Operators
	9.20. Range/Multirange Functions and Operators
	9.21. Aggregate Functions
	9.22. Window Functions
	9.23. Merge Support Functions
	9.24. Subquery Expressions
	9.24.1. EXISTS
	9.24.2. IN
	9.24.3. NOT IN
	9.24.4. ANY/SOME
	9.24.5. ALL
	9.24.6. Single-Row Comparison

	9.25. Row and Array Comparisons
	9.25.1. IN
	9.25.2. NOT IN
	9.25.3. ANY/SOME (array)
	9.25.4. ALL (array)
	9.25.5. Row Constructor Comparison
	9.25.6. Composite Type Comparison

	9.26. Set Returning Functions
	9.27. System Information Functions and Operators
	9.27.1. Session Information Functions
	9.27.2. Access Privilege Inquiry Functions
	9.27.3. Schema Visibility Inquiry Functions
	9.27.4. System Catalog Information Functions
	9.27.5. Object Information and Addressing Functions
	9.27.6. Comment Information Functions
	9.27.7. Data Validity Checking Functions
	9.27.8. Transaction ID and Snapshot Information Functions
	9.27.9. Committed Transaction Information Functions
	9.27.10. Control Data Functions
	9.27.11. Version Information Functions
	9.27.12. WAL Summarization Information Functions

	9.28. System Administration Functions
	9.28.1. Configuration Settings Functions
	9.28.2. Server Signaling Functions
	9.28.3. Backup Control Functions
	9.28.4. Recovery Control Functions
	9.28.5. Snapshot Synchronization Functions
	9.28.6. Replication Management Functions
	9.28.7. Database Object Management Functions
	9.28.8. Index Maintenance Functions
	9.28.9. Generic File Access Functions
	9.28.10. Advisory Lock Functions

	9.29. Trigger Functions
	9.30. Event Trigger Functions
	9.30.1. Capturing Changes at Command End
	9.30.2. Processing Objects Dropped by a DDL Command
	9.30.3. Handling a Table Rewrite Event

	9.31. Statistics Information Functions
	9.31.1. Inspecting MCV Lists

