
Chapter 9. Functions and Operators
PostgreSQL provides a large number of functions and operators for the built-in data types. This chapter describes
most of them, although additional special-purpose functions appear in relevant sections of the manual. Users can
also define their own functions and operators, as described in Part V. The psql commands \df and \do can be
used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function or operator
is like this:

repeat (text, integer) → text

which says that the function repeat takes one text and one integer argument and returns a result of type text.
The right arrow is also used to indicate the result of an example, thus:

repeat('Pg', 4) → PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described in this chapter,
with the exception of the most trivial arithmetic and comparison operators and some explicitly marked functions,
are not specified by the SQL standard. Some of this extended functionality is present in other SQL database man-
agement systems, and in many cases this functionality is compatible and consistent between the various imple-
mentations.

9.1. Logical Operators
The usual logical operators are available:

boolean AND boolean → boolean

boolean OR boolean → boolean

NOT boolean → boolean

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe the
following truth tables:

a b a AND b a OR b

TRUE TRUE TRUE TRUE

TRUE FALSE FALSE TRUE

TRUE NULL NULL TRUE

FALSE FALSE FALSE FALSE

FALSE NULL FALSE NULL

NULL NULL NULL NULL

a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without affecting the
result. (However, it is not guaranteed that the left operand is evaluated before the right operand. See Section 4.2.14
for more information about the order of evaluation of subexpressions.)

1

Functions and Operators

9.2. Comparison Functions and Operators
The usual comparison operators are available, as shown in Table 9.1.

Table 9.1. Comparison Operators

Operator Description

datatype < datatype → boolean Less than

datatype > datatype → boolean Greater than

datatype <= datatype → boolean Less than or equal to

datatype >= datatype → boolean Greater than or equal to

datatype = datatype → boolean Equal

datatype <> datatype → boolean Not equal

datatype != datatype → boolean Not equal

Note

<> is the standard SQL notation for “not equal”. != is an alias, which is converted to <> at a
very early stage of parsing. Hence, it is not possible to implement != and <> operators that do
different things.

These comparison operators are available for all built-in data types that have a natural ordering, including numeric,
string, and date/time types. In addition, arrays, composite types, and ranges can be compared if their component
data types are comparable.

It is usually possible to compare values of related data types as well; for example integer > bigint will work.
Some cases of this sort are implemented directly by “cross-type” comparison operators, but if no such operator is
available, the parser will coerce the less-general type to the more-general type and apply the latter's comparison
operator.

As shown above, all comparison operators are binary operators that return values of type boolean. Thus, ex-
pressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a Boolean value with 3).
Use the BETWEEN predicates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators, but have
special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

datatype BETWEEN datatype AND datatype → boolean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 → t
2 BETWEEN 3 AND 1 → f

datatype NOT BETWEEN datatype AND datatype → boolean
Not between (the negation of BETWEEN).

2 NOT BETWEEN 1 AND 3 → f

2

Functions and Operators

Predicate
Description
Example(s)

datatype BETWEEN SYMMETRIC datatype AND datatype → boolean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 → t

datatype NOT BETWEEN SYMMETRIC datatype AND datatype → boolean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMMETRIC 3 AND 1 → f

datatype IS DISTINCT FROM datatype → boolean
Not equal, treating null as a comparable value.

1 IS DISTINCT FROM NULL → t (rather than NULL)

NULL IS DISTINCT FROM NULL → f (rather than NULL)

datatype IS NOT DISTINCT FROM datatype → boolean
Equal, treating null as a comparable value.

1 IS NOT DISTINCT FROM NULL → f (rather than NULL)

NULL IS NOT DISTINCT FROM NULL → t (rather than NULL)

datatype IS NULL → boolean
Test whether value is null.

1.5 IS NULL → f

datatype IS NOT NULL → boolean
Test whether value is not null.

'null' IS NOT NULL → t

datatype ISNULL → boolean
Test whether value is null (nonstandard syntax).

datatype NOTNULL → boolean
Test whether value is not null (nonstandard syntax).

boolean IS TRUE → boolean
Test whether boolean expression yields true.

true IS TRUE → t
NULL::boolean IS TRUE → f (rather than NULL)

boolean IS NOT TRUE → boolean
Test whether boolean expression yields false or unknown.

true IS NOT TRUE → f
NULL::boolean IS NOT TRUE → t (rather than NULL)

boolean IS FALSE → boolean
Test whether boolean expression yields false.

true IS FALSE → f
NULL::boolean IS FALSE → f (rather than NULL)

boolean IS NOT FALSE → boolean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE → t
NULL::boolean IS NOT FALSE → t (rather than NULL)

3

Functions and Operators

Predicate
Description
Example(s)

boolean IS UNKNOWN → boolean
Test whether boolean expression yields unknown.

true IS UNKNOWN → f
NULL::boolean IS UNKNOWN → t (rather than NULL)

boolean IS NOT UNKNOWN → boolean
Test whether boolean expression yields true or false.

true IS NOT UNKNOWN → t
NULL::boolean IS NOT UNKNOWN → f (rather than NULL)

 The BETWEEN predicate simplifies range tests:

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. BETWEEN SYMMETRIC is like BE-
TWEEN except there is no requirement that the argument to the left of AND be less than or equal to the argument on
the right. If it is not, those two arguments are automatically swapped, so that a nonempty range is always implied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and therefore
will work for any data type(s) that can be compared.

Note

The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical
operator. To resolve this, only a limited set of expression types are allowed as the second argument
of a BETWEEN clause. If you need to write a more complex sub-expression in BETWEEN, write
parentheses around the sub-expression.

 Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input is null. For
example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use the IS [NOT]
DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is identical to =
for non-null inputs, but it returns true when both inputs are null, and false when only one input is null. Thus, these
predicates effectively act as though null were a normal data value, rather than “unknown”.

 To check whether a value is or is not null, use the predicates:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:

4

Functions and Operators

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip

Some applications might expect that expression = NULL returns true if expression eval-
uates to the null value. It is highly recommended that these applications be modified to comply
with the SQL standard. However, if that cannot be done the transform_null_equals configuration
variable is available. If it is enabled, PostgreSQL will convert x = NULL clauses to x IS NULL.

If the expression is row-valued, then IS NULL is true when the row expression itself is null or when all the
row's fields are null, while IS NOT NULL is true when the row expression itself is non-null and all the row's
fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always return inverse results
for row-valued expressions; in particular, a row-valued expression that contains both null and non-null fields will
return false for both tests. For example:

SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

SELECT ROW(table.*) IS NOT NULL FROM table; -- detect all-non-null rows

SELECT NOT(ROW(table.*) IS NOT NULL) FROM TABLE; -- detect at least one
 null in rows

In some cases, it may be preferable to write row IS DISTINCT FROM NULL or row IS NOT DISTINCT
FROM NULL, which will simply check whether the overall row value is null without any additional tests on the
row fields.

 Boolean values can also be tested using the predicates

boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is treated as
the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effectively the same as IS
NULL and IS NOT NULL, respectively, except that the input expression must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

 num_nonnulls (VARIADIC "any") → integer

5

Functions and Operators

Function
Description
Example(s)

Returns the number of non-null arguments.

num_nonnulls(1, NULL, 2) → 2

 num_nulls (VARIADIC "any") → integer
Returns the number of null arguments.

num_nulls(1, NULL, 2) → 1

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many PostgreSQL types. For types without standard mathematical con-
ventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless otherwise
noted, operators shown as accepting numeric_type are available for all the types smallint, integer,
bigint, numeric, real, and double precision. Operators shown as accepting integral_type are
available for the types smallint, integer, and bigint. Except where noted, each form of an operator re-
turns the same data type as its argument(s). Calls involving multiple argument data types, such as integer +
numeric, are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

numeric_type + numeric_type → numeric_type
Addition

2 + 3 → 5

+ numeric_type → numeric_type
Unary plus (no operation)

+ 3.5 → 3.5

numeric_type - numeric_type → numeric_type
Subtraction

2 - 3 → -1

- numeric_type → numeric_type
Negation

- (-4) → 4

numeric_type * numeric_type → numeric_type
Multiplication

2 * 3 → 6

numeric_type / numeric_type → numeric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 → 2.5000000000000000
5 / 2 → 2
(-5) / 2 → -2

numeric_type % numeric_type → numeric_type
Modulo (remainder); available for smallint, integer, bigint, and numeric

6

Functions and Operators

Operator
Description
Example(s)

5 % 4 → 1

numeric ^ numeric → numeric
double precision ^ double precision → double precision

Exponentiation

2 ^ 3 → 8
Unlike typical mathematical practice, multiple uses of ^ will associate left to right by default:

2 ^ 3 ^ 3 → 512
2 ^ (3 ^ 3) → 134217728

|/ double precision → double precision
Square root

|/ 25.0 → 5

||/ double precision → double precision
Cube root

||/ 64.0 → 4

@ numeric_type → numeric_type
Absolute value

@ -5.0 → 5.0

integral_type & integral_type → integral_type
Bitwise AND

91 & 15 → 11

integral_type | integral_type → integral_type
Bitwise OR

32 | 3 → 35

integral_type # integral_type → integral_type
Bitwise exclusive OR

17 # 5 → 20

~ integral_type → integral_type
Bitwise NOT

~1 → -2

integral_type << integer → integral_type
Bitwise shift left

1 << 4 → 16

integral_type >> integer → integral_type
Bitwise shift right

8 >> 2 → 2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple forms
with different argument types. Except where noted, any given form of a function returns the same data type as
its argument(s); cross-type cases are resolved in the same way as explained above for operators. The functions
working with double precision data are mostly implemented on top of the host system's C library; accuracy
and behavior in boundary cases can therefore vary depending on the host system.

7

Functions and Operators

Table 9.5. Mathematical Functions

Function
Description
Example(s)

 abs (numeric_type) → numeric_type
Absolute value

abs(-17.4) → 17.4

 cbrt (double precision) → double precision
Cube root

cbrt(64.0) → 4

 ceil (numeric) → numeric
ceil (double precision) → double precision

Nearest integer greater than or equal to argument

ceil(42.2) → 43
ceil(-42.8) → -42

 ceiling (numeric) → numeric
ceiling (double precision) → double precision

Nearest integer greater than or equal to argument (same as ceil)

ceiling(95.3) → 96

 degrees (double precision) → double precision
Converts radians to degrees

degrees(0.5) → 28.64788975654116

 div (y numeric, x numeric) → numeric
Integer quotient of y/x (truncates towards zero)

div(9, 4) → 2

 erf (double precision) → double precision
Error function

erf(1.0) → 0.8427007929497149

 erfc (double precision) → double precision
Complementary error function (1 - erf(x), without loss of precision for large inputs)

erfc(1.0) → 0.15729920705028513

 exp (numeric) → numeric
exp (double precision) → double precision

Exponential (e raised to the given power)

exp(1.0) → 2.7182818284590452

 factorial (bigint) → numeric
Factorial

factorial(5) → 120

 floor (numeric) → numeric
floor (double precision) → double precision

Nearest integer less than or equal to argument

floor(42.8) → 42
floor(-42.8) → -43

8

Functions and Operators

Function
Description
Example(s)

 gamma (double precision) → double precision
Gamma function

gamma(0.5) → 1.772453850905516
gamma(6) → 120

 gcd (numeric_type, numeric_type) → numeric_type
Greatest common divisor (the largest positive number that divides both inputs with no remainder);
returns 0 if both inputs are zero; available for integer, bigint, and numeric

gcd(1071, 462) → 21

 lcm (numeric_type, numeric_type) → numeric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of both in-
puts); returns 0 if either input is zero; available for integer, bigint, and numeric

lcm(1071, 462) → 23562

 lgamma (double precision) → double precision
Natural logarithm of the absolute value of the gamma function

lgamma(1000) → 5905.220423209181

 ln (numeric) → numeric
ln (double precision) → double precision

Natural logarithm

ln(2.0) → 0.6931471805599453

 log (numeric) → numeric
log (double precision) → double precision

Base 10 logarithm

log(100) → 2

 log10 (numeric) → numeric
log10 (double precision) → double precision

Base 10 logarithm (same as log)

log10(1000) → 3

log (b numeric, x numeric) → numeric
Logarithm of x to base b

log(2.0, 64.0) → 6.0000000000000000

 min_scale (numeric) → integer
Minimum scale (number of fractional decimal digits) needed to represent the supplied value precise-
ly

min_scale(8.4100) → 2

 mod (y numeric_type, x numeric_type) → numeric_type
Remainder of y/x; available for smallint, integer, bigint, and numeric

mod(9, 4) → 1

 pi () → double precision
Approximate value of π
pi() → 3.141592653589793

 power (a numeric, b numeric) → numeric

9

Functions and Operators

Function
Description
Example(s)

power (a double precision, b double precision) → double precision
a raised to the power of b

power(9, 3) → 729

 radians (double precision) → double precision
Converts degrees to radians

radians(45.0) → 0.7853981633974483

 round (numeric) → numeric
round (double precision) → double precision

Rounds to nearest integer. For numeric, ties are broken by rounding away from zero. For dou-
ble precision, the tie-breaking behavior is platform dependent, but “round to nearest even” is
the most common rule.

round(42.4) → 42

round (v numeric, s integer) → numeric
Rounds v to s decimal places. Ties are broken by rounding away from zero.

round(42.4382, 2) → 42.44
round(1234.56, -1) → 1230

 scale (numeric) → integer
Scale of the argument (the number of decimal digits in the fractional part)

scale(8.4100) → 4

 sign (numeric) → numeric
sign (double precision) → double precision

Sign of the argument (-1, 0, or +1)

sign(-8.4) → -1

 sqrt (numeric) → numeric
sqrt (double precision) → double precision

Square root

sqrt(2) → 1.4142135623730951

 trim_scale (numeric) → numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes

trim_scale(8.4100) → 8.41

 trunc (numeric) → numeric
trunc (double precision) → double precision

Truncates to integer (towards zero)

trunc(42.8) → 42
trunc(-42.8) → -42

trunc (v numeric, s integer) → numeric
Truncates v to s decimal places

trunc(42.4382, 2) → 42.43

 width_bucket (operand numeric, low numeric, high numeric, count integer) → inte-
ger

10

Functions and Operators

Function
Description
Example(s)

width_bucket (operand double precision, low double precision, high double pre-

cision, count integer) → integer
Returns the number of the bucket in which operand falls in a histogram having count equal-
width buckets spanning the range low to high. Returns 0 or count+1 for an input outside that
range.

width_bucket(5.35, 0.024, 10.06, 5) → 3

width_bucket (operand anycompatible, thresholds anycompatiblearray) → integer
Returns the number of the bucket in which operand falls given an array listing the lower bounds of
the buckets. Returns 0 for an input less than the first lower bound. operand and the array elements
can be of any type having standard comparison operators. The thresholds array must be sorted,
smallest first, or unexpected results will be obtained.
width_bucket(now(), array['yesterday', 'today', 'tomorrow']::time-

stamptz[]) → 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

 random () → double precision
Returns a random value in the range 0.0 <= x < 1.0

random() → 0.897124072839091

 random (min integer, max integer) → integer
random (min bigint, max bigint) → bigint
random (min numeric, max numeric) → numeric

Returns a random value in the range min <= x <= max. For type numeric, the result will have the
same number of fractional decimal digits as min or max, whichever has more.

random(1, 10) → 7
random(-0.499, 0.499) → 0.347

 random_normal ([mean double precision [, stddev double precision]]) → double
precision
Returns a random value from the normal distribution with the given parameters; mean defaults to 0.0
and stddev defaults to 1.0

random_normal(0.0, 1.0) → 0.051285419

 setseed (double precision) → void
Sets the seed for subsequent random() and random_normal() calls; argument must be between
-1.0 and 1.0, inclusive
setseed(0.12345)

The random() and random_normal() functions listed in Table 9.6 use a deterministic pseudo-random num-
ber generator. It is fast but not suitable for cryptographic applications; see the pgcrypto module for a more secure
alternative. If setseed() is called, the series of results of subsequent calls to these functions in the current
session can be repeated by re-issuing setseed() with the same argument. Without any prior setseed() call
in the same session, the first call to any of these functions obtains a seed from a platform-dependent source of
random bits.

11

Functions and Operators

Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants, one that
measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function
Description
Example(s)

 acos (double precision) → double precision
Inverse cosine, result in radians

acos(1) → 0

 acosd (double precision) → double precision
Inverse cosine, result in degrees

acosd(0.5) → 60

 asin (double precision) → double precision
Inverse sine, result in radians

asin(1) → 1.5707963267948966

 asind (double precision) → double precision
Inverse sine, result in degrees

asind(0.5) → 30

 atan (double precision) → double precision
Inverse tangent, result in radians

atan(1) → 0.7853981633974483

 atand (double precision) → double precision
Inverse tangent, result in degrees

atand(1) → 45

 atan2 (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in radians

atan2(1, 0) → 1.5707963267948966

 atan2d (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in degrees

atan2d(1, 0) → 90

 cos (double precision) → double precision
Cosine, argument in radians

cos(0) → 1

 cosd (double precision) → double precision
Cosine, argument in degrees

cosd(60) → 0.5

 cot (double precision) → double precision
Cotangent, argument in radians

cot(0.5) → 1.830487721712452

 cotd (double precision) → double precision
Cotangent, argument in degrees

cotd(45) → 1

 sin (double precision) → double precision

12

Functions and Operators

Function
Description
Example(s)

Sine, argument in radians

sin(1) → 0.8414709848078965

 sind (double precision) → double precision
Sine, argument in degrees

sind(30) → 0.5

 tan (double precision) → double precision
Tangent, argument in radians

tan(1) → 1.5574077246549023

 tand (double precision) → double precision
Tangent, argument in degrees

tand(45) → 1

Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radians() and degrees() shown earlier. However, using the degree-based trigonometric
functions is preferred, as that way avoids round-off error for special cases such as sind(30).

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

 sinh (double precision) → double precision
Hyperbolic sine

sinh(1) → 1.1752011936438014

 cosh (double precision) → double precision
Hyperbolic cosine

cosh(0) → 1

 tanh (double precision) → double precision
Hyperbolic tangent

tanh(1) → 0.7615941559557649

 asinh (double precision) → double precision
Inverse hyperbolic sine

asinh(1) → 0.881373587019543

 acosh (double precision) → double precision
Inverse hyperbolic cosine

acosh(1) → 0

 atanh (double precision) → double precision
Inverse hyperbolic tangent

atanh(0.5) → 0.5493061443340548

13

Functions and Operators

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings in this context
include values of the types character, character varying, and text. Except where noted, these func-
tions and operators are declared to accept and return type text. They will interchangeably accept character
varying arguments. Values of type character will be converted to text before the function or operator is
applied, resulting in stripping any trailing spaces in the character value.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in
Table 9.9. PostgreSQL also provides versions of these functions that use the regular function invocation syntax
(see Table 9.10).

Note

The string concatenation operator (||) will accept non-string input, so long as at least one input is
of string type, as shown in Table 9.9. For other cases, inserting an explicit coercion to text can
be used to have non-string input accepted.

Table 9.9. SQL String Functions and Operators

Function/Operator
Description
Example(s)

 text || text → text
Concatenates the two strings.

'Post' || 'greSQL' → PostgreSQL

text || anynonarray → text
anynonarray || text → text

Converts the non-string input to text, then concatenates the two strings. (The non-string input cannot
be of an array type, because that would create ambiguity with the array || operators. If you want to
concatenate an array's text equivalent, cast it to text explicitly.)

'Value: ' || 42 → Value: 42

 btrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default) from
the start and end of string.

btrim('xyxtrimyyx', 'xyz') → trim

 text IS [NOT] [form] NORMALIZED → boolean
Checks whether the string is in the specified Unicode normalization form. The optional form key
word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression can only be used
when the server encoding is UTF8. Note that checking for normalization using this expression is of-
ten faster than normalizing possibly already normalized strings.

U&'\0061\0308bc' IS NFD NORMALIZED → t

 bit_length (text) → integer
Returns number of bits in the string (8 times the octet_length).

bit_length('jose') → 32

 char_length (text) → integer
 character_length (text) → integer

Returns number of characters in the string.

char_length('josé') → 4

14

Functions and Operators

Function/Operator
Description
Example(s)

 lower (text) → text
Converts the string to all lower case, according to the rules of the database's locale.

lower('TOM') → tom

 lpad (string text, length integer [, fill text]) → text
Extends the string to length length by prepending the characters fill (a space by default). If
the string is already longer than length then it is truncated (on the right).

lpad('hi', 5, 'xy') → xyxhi

 ltrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default) from
the start of string.

ltrim('zzzytest', 'xyz') → test

 normalize (text [, form]) → text
Converts the string to the specified Unicode normalization form. The optional form key word spec-
ifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be used when the
server encoding is UTF8.

normalize(U&'\0061\0308bc', NFC) → U&'\00E4bc'

 octet_length (text) → integer
Returns number of bytes in the string.

octet_length('josé') → 5 (if server encoding is UTF8)

 octet_length (character) → integer
Returns number of bytes in the string. Since this version of the function accepts type character
directly, it will not strip trailing spaces.

octet_length('abc '::character(4)) → 4

 overlay (string text PLACING newsubstring text FROM start integer [FOR count

integer]) → text
Replaces the substring of string that starts at the start'th character and extends for count char-
acters with newsubstring. If count is omitted, it defaults to the length of newsubstring.

overlay('Txxxxas' placing 'hom' from 2 for 4) → Thomas

 position (substring text IN string text) → integer
Returns first starting index of the specified substring within string, or zero if it's not present.

position('om' in 'Thomas') → 3

 rpad (string text, length integer [, fill text]) → text
Extends the string to length length by appending the characters fill (a space by default). If
the string is already longer than length then it is truncated.

rpad('hi', 5, 'xy') → hixyx

 rtrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default) from
the end of string.

rtrim('testxxzx', 'xyz') → test

 substring (string text [FROM start integer] [FOR count integer]) → text
Extracts the substring of string starting at the start'th character if that is specified, and stopping
after count characters if that is specified. Provide at least one of start and count.

substring('Thomas' from 2 for 3) → hom

15

Functions and Operators

Function/Operator
Description
Example(s)

substring('Thomas' from 3) → omas
substring('Thomas' for 2) → Th

substring (string text FROM pattern text) → text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring('Thomas' from '...$') → mas

substring (string text SIMILAR pattern text ESCAPE escape text) → text
substring (string text FROM pattern text FOR escape text) → text

Extracts the first substring matching SQL regular expression; see Section 9.7.2. The first form has
been specified since SQL:2003; the second form was only in SQL:1999 and should be considered
obsolete.

substring('Thomas' similar '%#"o_a#"_' escape '#') → oma

 trim ([LEADING | TRAILING | BOTH] [characters text] FROM string text) → text
Removes the longest string containing only characters in characters (a space by default) from
the start, end, or both ends (BOTH is the default) of string.

trim(both 'xyz' from 'yxTomxx') → Tom

trim ([LEADING | TRAILING | BOTH] [FROM] string text [, characters text]) → text
This is a non-standard syntax for trim().

trim(both from 'yxTomxx', 'xyz') → Tom

 unicode_assigned (text) → boolean
Returns true if all characters in the string are assigned Unicode codepoints; false otherwise. This
function can only be used when the server encoding is UTF8.

 upper (text) → text
Converts the string to all upper case, according to the rules of the database's locale.

upper('tom') → TOM

Additional string manipulation functions and operators are available and are listed in Table 9.10. (Some of these are
used internally to implement the SQL-standard string functions listed in Table 9.9.) There are also pattern-matching
operators, which are described in Section 9.7, and operators for full-text search, which are described in Chapter 12.

Table 9.10. Other String Functions and Operators

Function/Operator
Description
Example(s)

 text ^@ text → boolean
Returns true if the first string starts with the second string (equivalent to the starts_with()
function).

'alphabet' ^@ 'alph' → t

 ascii (text) → integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns the Uni-
code code point of the character. In other multibyte encodings, the argument must be an ASCII char-
acter.

ascii('x') → 120

 chr (integer) → text

16

Functions and Operators

Function/Operator
Description
Example(s)

Returns the character with the given code. In UTF8 encoding the argument is treated as a Unicode
code point. In other multibyte encodings the argument must designate an ASCII character. chr(0)
is disallowed because text data types cannot store that character.

chr(65) → A

 concat (val1 "any" [, val2 "any" [, ...]]) → text
Concatenates the text representations of all the arguments. NULL arguments are ignored.

concat('abcde', 2, NULL, 22) → abcde222

 concat_ws (sep text, val1 "any" [, val2 "any" [, ...]]) → text
Concatenates all but the first argument, with separators. The first argument is used as the separator
string, and should not be NULL. Other NULL arguments are ignored.

concat_ws(',', 'abcde', 2, NULL, 22) → abcde,2,22

 format (formatstr text [, formatarg "any" [, ...]]) → text
Formats arguments according to a format string; see Section 9.4.1. This function is similar to the C
function sprintf.

format('Hello %s, %1$s', 'World') → Hello World, World

 initcap (text) → text
Converts the first letter of each word to upper case and the rest to lower case. Words are sequences of
alphanumeric characters separated by non-alphanumeric characters.

initcap('hi THOMAS') → Hi Thomas

 casefold (text) → text
Performs case folding of the input string according to the collation. Case folding is similar to case
conversion, but the purpose of case folding is to facilitate case-insensitive matching of strings,
whereas the purpose of case conversion is to convert to a particular cased form. This function can on-
ly be used when the server encoding is UTF8.
Ordinarily, case folding simply converts to lowercase, but there may be exceptions depending on the
collation. For instance, some characters have more than two lowercase variants, or fold to uppercase.
Case folding may change the length of the string. For instance, in the PG_UNICODE_FAST colla-
tion, ß (U+00DF) folds to ss.
casefold can be used for Unicode Default Caseless Matching. It does not always preserve the nor-
malized form of the input string (see normalize).
The libc provider doesn't support case folding, so casefold is identical to lower.

 left (string text, n integer) → text
Returns first n characters in the string, or when n is negative, returns all but last |n| characters.

left('abcde', 2) → ab

 length (text) → integer
Returns the number of characters in the string.

length('jose') → 4

 md5 (text) → text
Computes the MD5 hash of the argument, with the result written in hexadecimal.

md5('abc') → 900150983cd24fb0d6963f7d28e17f72

 parse_ident (qualified_identifier text [, strict_mode boolean DEFAULT true]) →
text[]
Splits qualified_identifier into an array of identifiers, removing any quoting of individual
identifiers. By default, extra characters after the last identifier are considered an error; but if the sec-
ond parameter is false, then such extra characters are ignored. (This behavior is useful for parsing

17

Functions and Operators

Function/Operator
Description
Example(s)

names for objects like functions.) Note that this function does not truncate over-length identifiers. If
you want truncation you can cast the result to name[].

parse_ident('"SomeSchema".someTable') → {SomeSchema,sometable}

 pg_client_encoding () → name
Returns current client encoding name.

pg_client_encoding() → UTF8

 quote_ident (text) → text
Returns the given string suitably quoted to be used as an identifier in an SQL statement string.
Quotes are added only if necessary (i.e., if the string contains non-identifier characters or would be
case-folded). Embedded quotes are properly doubled. See also Example 41.1.

quote_ident('Foo bar') → "Foo bar"

 quote_literal (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement string. Em-
bedded single-quotes and backslashes are properly doubled. Note that quote_literal returns
null on null input; if the argument might be null, quote_nullable is often more suitable. See al-
so Example 41.1.

quote_literal(E'O\'Reilly') → 'O''Reilly'

quote_literal (anyelement) → text
Converts the given value to text and then quotes it as a literal. Embedded single-quotes and back-
slashes are properly doubled.

quote_literal(42.5) → '42.5'

 quote_nullable (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement string; or, if
the argument is null, returns NULL. Embedded single-quotes and backslashes are properly doubled.
See also Example 41.1.

quote_nullable(NULL) → NULL

quote_nullable (anyelement) → text
Converts the given value to text and then quotes it as a literal; or, if the argument is null, returns
NULL. Embedded single-quotes and backslashes are properly doubled.

quote_nullable(42.5) → '42.5'

 regexp_count (string text, pattern text [, start integer [, flags text]]) → inte-
ger
Returns the number of times the POSIX regular expression pattern matches in the string; see
Section 9.7.3.

regexp_count('123456789012', '\d\d\d', 2) → 3

 regexp_instr (string text, pattern text [, start integer [, N integer [, endoption

integer [, flags text [, subexpr integer]]]]]) → integer
Returns the position within string where the N'th match of the POSIX regular expression pat-
tern occurs, or zero if there is no such match; see Section 9.7.3.

regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i') → 3
regexp_instr('ABCDEF', 'c(.)(..)', 1, 1, 0, 'i', 2) → 5

 regexp_like (string text, pattern text [, flags text]) → boolean
Checks whether a match of the POSIX regular expression pattern occurs within string; see
Section 9.7.3.

18

Functions and Operators

Function/Operator
Description
Example(s)

regexp_like('Hello World', 'world$', 'i') → t

 regexp_match (string text, pattern text [, flags text]) → text[]
Returns substrings within the first match of the POSIX regular expression pattern to the string;
see Section 9.7.3.

regexp_match('foobarbequebaz', '(bar)(beque)') → {bar,beque}

 regexp_matches (string text, pattern text [, flags text]) → setof text[]
Returns substrings within the first match of the POSIX regular expression pattern to the string,
or substrings within all such matches if the g flag is used; see Section 9.7.3.

regexp_matches('foobarbequebaz', 'ba.', 'g') →

 {bar}
 {baz}

 regexp_replace (string text, pattern text, replacement text [, flags text]) →
text
Replaces the substring that is the first match to the POSIX regular expression pattern, or all such
matches if the g flag is used; see Section 9.7.3.

regexp_replace('Thomas', '.[mN]a.', 'M') → ThM

regexp_replace (string text, pattern text, replacement text, start integer [, N

integer [, flags text]]) → text
Replaces the substring that is the N'th match to the POSIX regular expression pattern, or all such
matches if N is zero, with the search beginning at the start'th character of string. If N is omitted,
it defaults to 1. See Section 9.7.3.

regexp_replace('Thomas', '.', 'X', 3, 2) → ThoXas
regexp_replace(string=>'hello world', pattern=>'l', replacemen-

t=>'XX', start=>1, "N"=>2) → helXXo world

 regexp_split_to_array (string text, pattern text [, flags text]) → text[]
Splits string using a POSIX regular expression as the delimiter, producing an array of results; see
Section 9.7.3.

regexp_split_to_array('hello world', '\s+') → {hello,world}

 regexp_split_to_table (string text, pattern text [, flags text]) → setof text
Splits string using a POSIX regular expression as the delimiter, producing a set of results; see
Section 9.7.3.

regexp_split_to_table('hello world', '\s+') →

 hello
 world

 regexp_substr (string text, pattern text [, start integer [, N integer [, flags text

[, subexpr integer]]]]) → text
Returns the substring within string that matches the N'th occurrence of the POSIX regular expres-
sion pattern, or NULL if there is no such match; see Section 9.7.3.

regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i') → CDEF
regexp_substr('ABCDEF', 'c(.)(..)', 1, 1, 'i', 2) → EF

 repeat (string text, number integer) → text
Repeats string the specified number of times.

19

Functions and Operators

Function/Operator
Description
Example(s)

repeat('Pg', 4) → PgPgPgPg

 replace (string text, from text, to text) → text
Replaces all occurrences in string of substring from with substring to.

replace('abcdefabcdef', 'cd', 'XX') → abXXefabXXef

 reverse (text) → text
Reverses the order of the characters in the string.

reverse('abcde') → edcba

 right (string text, n integer) → text
Returns last n characters in the string, or when n is negative, returns all but first |n| characters.

right('abcde', 2) → de

 split_part (string text, delimiter text, n integer) → text
Splits string at occurrences of delimiter and returns the n'th field (counting from one), or
when n is negative, returns the |n|'th-from-last field.

split_part('abc~@~def~@~ghi', '~@~', 2) → def
split_part('abc,def,ghi,jkl', ',', -2) → ghi

 starts_with (string text, prefix text) → boolean
Returns true if string starts with prefix.

starts_with('alphabet', 'alph') → t

 string_to_array (string text, delimiter text [, null_string text]) → text[]
Splits the string at occurrences of delimiter and forms the resulting fields into a text ar-
ray. If delimiter is NULL, each character in the string will become a separate element in
the array. If delimiter is an empty string, then the string is treated as a single field. If nul-
l_string is supplied and is not NULL, fields matching that string are replaced by NULL. See also
array_to_string.

string_to_array('xx~~yy~~zz', '~~', 'yy') → {xx,NULL,zz}

 string_to_table (string text, delimiter text [, null_string text]) → setof text
Splits the string at occurrences of delimiter and returns the resulting fields as a set of text
rows. If delimiter is NULL, each character in the string will become a separate row of the
result. If delimiter is an empty string, then the string is treated as a single field. If nul-
l_string is supplied and is not NULL, fields matching that string are replaced by NULL.

string_to_table('xx~^~yy~^~zz', '~^~', 'yy') →

 xx
 NULL
 zz

 strpos (string text, substring text) → integer
Returns first starting index of the specified substring within string, or zero if it's not present.
(Same as position(substring in string), but note the reversed argument order.)

strpos('high', 'ig') → 2

 substr (string text, start integer [, count integer]) → text
Extracts the substring of string starting at the start'th character, and extending for count char-
acters if that is specified. (Same as substring(string from start for count).)

substr('alphabet', 3) → phabet

20

Functions and Operators

Function/Operator
Description
Example(s)

substr('alphabet', 3, 2) → ph

 to_ascii (string text) → text
to_ascii (string text, encoding name) → text
to_ascii (string text, encoding integer) → text

Converts string to ASCII from another encoding, which may be identified by name or number. If
encoding is omitted the database encoding is assumed (which in practice is the only useful case).
The conversion consists primarily of dropping accents. Conversion is only supported from LATIN1,
LATIN2, LATIN9, and WIN1250 encodings. (See the unaccent module for another, more flexible
solution.)

to_ascii('Karél') → Karel

 to_bin (integer) → text
to_bin (bigint) → text

Converts the number to its equivalent two's complement binary representation.

to_bin(2147483647) → 1111111111111111111111111111111
to_bin(-1234) → 11111111111111111111101100101110

 to_hex (integer) → text
to_hex (bigint) → text

Converts the number to its equivalent two's complement hexadecimal representation.

to_hex(2147483647) → 7fffffff
to_hex(-1234) → fffffb2e

 to_oct (integer) → text
to_oct (bigint) → text

Converts the number to its equivalent two's complement octal representation.

to_oct(2147483647) → 17777777777
to_oct(-1234) → 37777775456

 translate (string text, from text, to text) → text
Replaces each character in string that matches a character in the from set with the corresponding
character in the to set. If from is longer than to, occurrences of the extra characters in from are
deleted.

translate('12345', '143', 'ax') → a2x5

 unistr (text) → text
Evaluate escaped Unicode characters in the argument. Unicode characters can be specified as \XXXX
(4 hexadecimal digits), \+XXXXXX (6 hexadecimal digits), \uXXXX (4 hexadecimal digits), or
\UXXXXXXXX (8 hexadecimal digits). To specify a backslash, write two backslashes. All other char-
acters are taken literally.
If the server encoding is not UTF-8, the Unicode code point identified by one of these escape se-
quences is converted to the actual server encoding; an error is reported if that's not possible.
This function provides a (non-standard) alternative to string constants with Unicode escapes (see
Section 4.1.2.3).

unistr('d\0061t\+000061') → data
unistr('d\u0061t\U00000061') → data

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to be concate-
nated or formatted as an array marked with the VARIADIC keyword (see Section 36.5.6). The array's elements

21

Functions and Operators

are treated as if they were separate ordinary arguments to the function. If the variadic array argument is NULL,
concat and concat_ws return NULL, but format treats a NULL as a zero-element array.

See also the aggregate function string_agg in Section 9.21, and the functions for converting between strings
and the bytea type in Table 9.13.

9.4.1. format
The function format produces output formatted according to a format string, in a style similar to the C function
sprintf.

format(formatstr text [, formatarg "any" [, ...]])

formatstr is a format string that specifies how the result should be formatted. Text in the format string is copied
directly to the result, except where format specifiers are used. Format specifiers act as placeholders in the string,
defining how subsequent function arguments should be formatted and inserted into the result. Each formatarg
argument is converted to text according to the usual output rules for its data type, and then formatted and inserted
into the result string according to the format specifier(s).

Format specifiers are introduced by a % character and have the form

%[position][flags][width]type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument after
formatstr. If the position is omitted, the default is to use the next argument in sequence.

flags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only supported
flag is a minus sign (-) which will cause the format specifier's output to be left-justified. This has no effect
unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The output is
padded on the left or right (depending on the - flag) with spaces as needed to fill the width. A too-small width
does not cause truncation of the output, but is simply ignored. The width may be specified using any of the
following: a positive integer; an asterisk (*) to use the next function argument as the width; or a string of the
form *n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that is used for
the format specifier's value. If the width argument is negative, the result is left aligned (as if the - flag had
been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier's output. The following types are sup-
ported:

• s formats the argument value as a simple string. A null value is treated as an empty string.

• I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for the value
to be null (equivalent to quote_ident).

• L quotes the argument value as an SQL literal. A null value is displayed as the string NULL, without quotes
(equivalent to quote_nullable).

22

Functions and Operators

In addition to the format specifiers described above, the special sequence %% may be used to output a literal %
character.

Here are some examples of the basic format conversions:

SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program
 Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

Here are examples using width fields and the - flag:

SELECT format('|%10s|', 'foo');
Result: | foo|

SELECT format('|%-10s|', 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: | foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

SELECT format('|%-*s|', 10, 'foo');
Result: |foo |

SELECT format('|%-*s|', -10, 'foo');
Result: |foo |

These examples show use of position fields:

SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

Unlike the standard C function sprintf, PostgreSQL's format function allows format specifiers with and
without position fields to be mixed in the same format string. A format specifier without a position field
always uses the next argument after the last argument consumed. In addition, the format function does not
require all function arguments to be used in the format string. For example:

SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');

23

Functions and Operators

Result: Testing three, two, three

The %I and %L format specifiers are particularly useful for safely constructing dynamic SQL statements. See
Example 41.1.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating binary strings, that is values of
type bytea. Many of these are equivalent, in purpose and syntax, to the text-string functions described in the
previous section.

SQL defines some string functions that use key words, rather than commas, to separate arguments. Details are in
Table 9.11. PostgreSQL also provides versions of these functions that use the regular function invocation syntax
(see Table 9.12).

Table 9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

 bytea || bytea → bytea
Concatenates the two binary strings.

'\x123456'::bytea || '\x789a00bcde'::bytea → \x123456789a00bcde

 bit_length (bytea) → integer
Returns number of bits in the binary string (8 times the octet_length).

bit_length('\x123456'::bytea) → 24

 btrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start and
end of bytes.

btrim('\x1234567890'::bytea, '\x9012'::bytea) → \x345678

 ltrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start of
bytes.

ltrim('\x1234567890'::bytea, '\x9012'::bytea) → \x34567890

 octet_length (bytea) → integer
Returns number of bytes in the binary string.

octet_length('\x123456'::bytea) → 3

 overlay (bytes bytea PLACING newsubstring bytea FROM start integer [FOR count

integer]) → bytea
Replaces the substring of bytes that starts at the start'th byte and extends for count bytes with
newsubstring. If count is omitted, it defaults to the length of newsubstring.
overlay('\x1234567890'::bytea placing '\002\003'::bytea from 2 for

3) → \x12020390

 position (substring bytea IN bytes bytea) → integer
Returns first starting index of the specified substring within bytes, or zero if it's not present.

position('\x5678'::bytea in '\x1234567890'::bytea) → 3

 rtrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the end of
bytes.

rtrim('\x1234567890'::bytea, '\x9012'::bytea) → \x12345678

24

Functions and Operators

Function/Operator
Description
Example(s)

 substring (bytes bytea [FROM start integer] [FOR count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte if that is specified, and stopping after
count bytes if that is specified. Provide at least one of start and count.

substring('\x1234567890'::bytea from 3 for 2) → \x5678

 trim ([LEADING | TRAILING | BOTH] bytesremoved bytea FROM bytes bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start, end,
or both ends (BOTH is the default) of bytes.

trim('\x9012'::bytea from '\x1234567890'::bytea) → \x345678

trim ([LEADING | TRAILING | BOTH] [FROM] bytes bytea, bytesremoved bytea) → bytea
This is a non-standard syntax for trim().

trim(both from '\x1234567890'::bytea, '\x9012'::bytea) → \x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them are used
internally to implement the SQL-standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

 bit_count (bytes bytea) → bigint
Returns the number of bits set in the binary string (also known as “popcount”).

bit_count('\x1234567890'::bytea) → 15

 crc32 (bytea) → bigint
Computes the CRC-32 value of the binary string.

crc32('abc'::bytea) → 891568578

 crc32c (bytea) → bigint
Computes the CRC-32C value of the binary string.

crc32c('abc'::bytea) → 910901175

 get_bit (bytes bytea, n bigint) → integer
Extracts n'th bit from binary string.

get_bit('\x1234567890'::bytea, 30) → 1

 get_byte (bytes bytea, n integer) → integer
Extracts n'th byte from binary string.

get_byte('\x1234567890'::bytea, 4) → 144

 length (bytea) → integer
Returns the number of bytes in the binary string.

length('\x1234567890'::bytea) → 5

length (bytes bytea, encoding name) → integer
Returns the number of characters in the binary string, assuming that it is text in the given encod-
ing.

length('jose'::bytea, 'UTF8') → 4

 md5 (bytea) → text
Computes the MD5 hash of the binary string, with the result written in hexadecimal.

25

Functions and Operators

Function
Description
Example(s)

md5('Th\000omas'::bytea) → 8ab2d3c9689aaf18b4958c334c82d8b1

 reverse (bytea) → bytea
Reverses the order of the bytes in the binary string.

reverse('\xabcd'::bytea) → \xcdab

 set_bit (bytes bytea, n bigint, newvalue integer) → bytea
Sets n'th bit in binary string to newvalue.

set_bit('\x1234567890'::bytea, 30, 0) → \x1234563890

 set_byte (bytes bytea, n integer, newvalue integer) → bytea
Sets n'th byte in binary string to newvalue.

set_byte('\x1234567890'::bytea, 4, 64) → \x1234567840

 sha224 (bytea) → bytea
Computes the SHA-224 hash of the binary string.

sha224('abc'::bytea) → \x23097d223405d8228642a477bda255b32aadbce4b-
da0b3f7e36c9da7

 sha256 (bytea) → bytea
Computes the SHA-256 hash of the binary string.

sha256('abc'::bytea) → \xba7816bf8f01cfea414140de5dae2223
b00361a396177a9cb410ff61f20015ad

 sha384 (bytea) → bytea
Computes the SHA-384 hash of the binary string.

sha384('abc'::bytea) → \xcb00753f45a35e8bb5a03d699ac65007
272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7

 sha512 (bytea) → bytea
Computes the SHA-512 hash of the binary string.

sha512('abc'::bytea) → \xddaf35a193617abacc417349ae204131
12e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f

 substr (bytes bytea, start integer [, count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte, and extending for count bytes if that
is specified. (Same as substring(bytes from start for count).)

substr('\x1234567890'::bytea, 3, 2) → \x5678

Functions get_byte and set_byte number the first byte of a binary string as byte 0. Functions get_bit
and set_bit number bits from the right within each byte; for example bit 0 is the least significant bit of the first
byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function md5 returns a hex-encoded value of type text whereas the SHA-2 functions
return type bytea. Use the functions encode and decode to convert between the two. For example write
encode(sha256('abc'), 'hex') to get a hex-encoded text representation, or decode(md5('abc'),
'hex') to get a bytea value.

 Functions for converting strings between different character sets (encodings), and for representing arbitrary
binary data in textual form, are shown in Table 9.13. For these functions, an argument or result of type text is
expressed in the database's default encoding, while arguments or results of type bytea are in an encoding named
by another argument.

26

Functions and Operators

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

 convert (bytes bytea, src_encoding name, dest_encoding name) → bytea
Converts a binary string representing text in encoding src_encoding to a binary string in encod-
ing dest_encoding (see Section 23.3.4 for available conversions).

convert('text_in_utf8', 'UTF8', 'LATIN1') →
\x746578745f696e5f75746638

 convert_from (bytes bytea, src_encoding name) → text
Converts a binary string representing text in encoding src_encoding to text in the database en-
coding (see Section 23.3.4 for available conversions).

convert_from('text_in_utf8', 'UTF8') → text_in_utf8

 convert_to (string text, dest_encoding name) → bytea
Converts a text string (in the database encoding) to a binary string encoded in encoding
dest_encoding (see Section 23.3.4 for available conversions).

convert_to('some_text', 'UTF8') → \x736f6d655f74657874

 encode (bytes bytea, format text) → text
Encodes binary data into a textual representation; supported format values are: base64, escape,
hex.

encode('123\000\001', 'base64') → MTIzAAE=

 decode (string text, format text) → bytea
Decodes binary data from a textual representation; supported format values are the same as for
encode.

decode('MTIzAAE=', 'base64') → \x3132330001

The encode and decode functions support the following textual formats:

base64

The base64 format is that of RFC 2045 Section 6.81. As per the RFC, encoded lines are broken at 76
characters. However instead of the MIME CRLF end-of-line marker, only a newline is used for end-of-line.
The decode function ignores carriage-return, newline, space, and tab characters. Otherwise, an error is raised
when decode is supplied invalid base64 data — including when trailing padding is incorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences (\nnn),
and it doubles backslashes. Other byte values are represented literally. The decode function will raise an
error if a backslash is not followed by either a second backslash or three octal digits; it accepts other byte
values unchanged.

hex

The hex format represents each 4 bits of data as one hexadecimal digit, 0 through f, writing the higher-order
digit of each byte first. The encode function outputs the a-f hex digits in lower case. Because the smallest
unit of data is 8 bits, there are always an even number of characters returned by encode. The decode
function accepts the a-f characters in either upper or lower case. An error is raised when decode is given
invalid hex data — including when given an odd number of characters.

1 https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

27

https://datatracker.ietf.org/doc/html/rfc2045#section-6.8
https://datatracker.ietf.org/doc/html/rfc2045#section-6.8

Functions and Operators

In addition, it is possible to cast integral values to and from type bytea. Casting an integer to bytea produces
2, 4, or 8 bytes, depending on the width of the integer type. The result is the two's complement representation of
the integer, with the most significant byte first. Some examples:

1234::smallint::bytea \x04d2
cast(1234 as bytea) \x000004d2
cast(-1234 as bytea) \xfffffb2e
'\x8000'::bytea::smallint -32768
'\x8000'::bytea::integer 32768

Casting a bytea to an integer will raise an error if the length of the bytea exceeds the width of the integer type.

See also the aggregate function string_agg in Section 9.21 and the large object functions in Section 33.4.

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is values of the
types bit and bit varying. (While only type bit is mentioned in these tables, values of type bit varying
can be used interchangeably.) Bit strings support the usual comparison operators shown in Table 9.1, as well as
the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit || bit → bit
Concatenation

B'10001' || B'011' → 10001011

bit & bit → bit
Bitwise AND (inputs must be of equal length)

B'10001' & B'01101' → 00001

bit | bit → bit
Bitwise OR (inputs must be of equal length)

B'10001' | B'01101' → 11101

bit # bit → bit
Bitwise exclusive OR (inputs must be of equal length)

B'10001' # B'01101' → 11100

~ bit → bit
Bitwise NOT

~ B'10001' → 01110

bit << integer → bit
Bitwise shift left (string length is preserved)

B'10001' << 3 → 01000

bit >> integer → bit
Bitwise shift right (string length is preserved)

B'10001' >> 2 → 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

28

Functions and Operators

Table 9.15. Bit String Functions

Function
Description
Example(s)

 bit_count (bit) → bigint
Returns the number of bits set in the bit string (also known as “popcount”).

bit_count(B'10111') → 4

 bit_length (bit) → integer
Returns number of bits in the bit string.

bit_length(B'10111') → 5

 length (bit) → integer
Returns number of bits in the bit string.

length(B'10111') → 5

 octet_length (bit) → integer
Returns number of bytes in the bit string.

octet_length(B'1011111011') → 2

 overlay (bits bit PLACING newsubstring bit FROM start integer [FOR count inte-

ger]) → bit
Replaces the substring of bits that starts at the start'th bit and extends for count bits with
newsubstring. If count is omitted, it defaults to the length of newsubstring.

overlay(B'01010101010101010' placing B'11111' from 2 for 3) →
0111110101010101010

 position (substring bit IN bits bit) → integer
Returns first starting index of the specified substring within bits, or zero if it's not present.

position(B'010' in B'000001101011') → 8

 substring (bits bit [FROM start integer] [FOR count integer]) → bit
Extracts the substring of bits starting at the start'th bit if that is specified, and stopping after
count bits if that is specified. Provide at least one of start and count.

substring(B'110010111111' from 3 for 2) → 00

 get_bit (bits bit, n integer) → integer
Extracts n'th bit from bit string; the first (leftmost) bit is bit 0.

get_bit(B'101010101010101010', 6) → 1

 set_bit (bits bit, n integer, newvalue integer) → bit
Sets n'th bit in bit string to newvalue; the first (leftmost) bit is bit 0.

set_bit(B'101010101010101010', 6, 0) → 101010001010101010

In addition, it is possible to cast integral values to and from type bit. Casting an integer to bit(n) copies the
rightmost n bits. Casting an integer to a bit string width wider than the integer itself will sign-extend on the left.
Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit of the
integer.

29

Functions and Operators

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by PostgreSQL: the traditional SQL LIKE
operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular expressions.
Aside from the basic “does this string match this pattern?” operators, functions are available to extract or replace
matching substrings and to split a string at matching locations.

Tip

If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution

While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using SIMILAR TO patterns have the same security hazards, since SIMILAR TO pro-
vides many of the same capabilities as POSIX-style regular expressions.

LIKE searches, being much simpler than the other two options, are safer to use with possibly-hos-
tile pattern sources.

SIMILAR TO and POSIX-style regular expressions do not support nondeterministic collations. If required, use
LIKE or apply a different collation to the expression to work around this limitation.

9.7.1. LIKE

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT LIKE
expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT (string LIKE
pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string itself; in that
case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches) any single character;
a percent sign (%) matches any sequence of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matching supports nondeterministic collations (see Section 23.2.2.4), such as case-insensitive col-
lations or collations that, say, ignore punctuation. So with a case-insensitive collation, one could have:

'AbC' LIKE 'abc' COLLATE case_insensitive true
'AbC' LIKE 'a%' COLLATE case_insensitive true

30

Functions and Operators

With collations that ignore certain characters or in general that consider strings of different lengths equal, the
semantics can become a bit more complicated. Consider these examples:

'.foo.' LIKE 'foo' COLLATE ign_punct true
'.foo.' LIKE 'f_o' COLLATE ign_punct true
'.foo.' LIKE '_oo' COLLATE ign_punct false

The way the matching works is that the pattern is partitioned into sequences of wildcards and non-wildcard strings
(wildcards being _ and %). For example, the pattern f_o is partitioned into f, _, o, the pattern _oo is partitioned
into _, oo. The input string matches the pattern if it can be partitioned in such a way that the wildcards match one
character or any number of characters respectively and the non-wildcard partitions are equal under the applicable
collation. So for example, '.foo.' LIKE 'f_o' COLLATE ign_punct is true because one can partition
.foo. into .f, o, o., and then '.f' = 'f' COLLATE ign_punct, 'o' matches the _ wildcard, and
'o.' = 'o' COLLATE ign_punct. But '.foo.' LIKE '_oo' COLLATE ign_punct is false
because .foo. cannot be partitioned in a way that the first character is any character and the rest of the string
compares equal to oo. (Note that the single-character wildcard always matches exactly one character, independent
of the collation. So in this example, the _ would match ., but then the rest of the input string won't match the
rest of the pattern.)

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence anywhere
within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character in pat-
tern must be preceded by the escape character. The default escape character is the backslash but a different one
can be selected by using the ESCAPE clause. To match the escape character itself, write two escape characters.

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ''. This effectively disables the escape mech-
anism, which makes it impossible to turn off the special meaning of underscore and percent signs in the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to
a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore
slightly nonstandard.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the active
locale. (But this does not support nondeterministic collations.) This is not in the SQL standard but is a PostgreSQL
extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~* operators
that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are PostgreSQL-specific. You
may see these operator names in EXPLAIN output and similar places, since the parser actually translates LIKE
et al. to these operators.

The phrases LIKE, ILIKE, NOT LIKE, and NOT ILIKE are generally treated as operators in PostgreSQL
syntax; for example they can be used in expression operator ANY (subquery) constructs, although an
ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use the underlying operator
names instead.

Also see the starts-with operator ^@ and the corresponding starts_with() function, which are useful in cases
where simply matching the beginning of a string is needed.

9.7.2. SIMILAR TO Regular Expressions

31

Functions and Operators

string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given string. It is
similar to LIKE, except that it interprets the pattern using the SQL standard's definition of a regular expression.
SQL regular expressions are a curious cross between LIKE notation and common (POSIX) regular expression
notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike common
regular expression behavior where the pattern can match any part of the string. Also like LIKE, SIMILAR TO uses
_ and % as wildcard characters denoting any single character and any string, respectively (these are comparable
to . and .* in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching metacharacters
borrowed from POSIX regular expressions:

• | denotes alternation (either of two alternatives).

• * denotes repetition of the previous item zero or more times.

• + denotes repetition of the previous item one or more times.

• ? denotes repetition of the previous item zero or one time.

• {m} denotes repetition of the previous item exactly m times.

• {m,} denotes repetition of the previous item m or more times.

• {m,n} denotes repetition of the previous item at least m and not more than n times.

• Parentheses () can be used to group items into a single logical item.

• A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters. A different escape char-
acter can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ''.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than defaulting to
a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this regard is therefore
slightly nonstandard.

Another nonstandard extension is that following the escape character with a letter or digit provides access to the
escape sequences defined for POSIX regular expressions; see Table 9.20, Table 9.21, and Table 9.22 below.

Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '%(b|d)%' true
'abc' SIMILAR TO '(b|c)%' false
'-abc-' SIMILAR TO '%\mabc\M%' true
'xabcy' SIMILAR TO '%\mabc\M%' false

The substring function with three parameters provides extraction of a substring that matches an SQL regular
expression pattern. The function can be written according to standard SQL syntax:

substring(string similar pattern escape escape-character)

or using the now obsolete SQL:1999 syntax:

32

Functions and Operators

substring(string from pattern for escape-character)

or as a plain three-argument function:

substring(string, pattern, escape-character)

As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and returns
null. To indicate the part of the pattern for which the matching data sub-string is of interest, the pattern should
contain two occurrences of the escape character followed by a double quote ("). The text matching the portion of
the pattern between these separators is returned when the match is successful.

The escape-double-quote separators actually divide substring's pattern into three independent regular expres-
sions; for example, a vertical bar (|) in any of the three sections affects only that section. Also, the first and third
of these regular expressions are defined to match the smallest possible amount of text, not the largest, when there
is any ambiguity about how much of the data string matches which pattern. (In POSIX parlance, the first and third
regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, PostgreSQL allows there to be just one escape-double-quote separator, in
which case the third regular expression is taken as empty; or no separators, in which case the first and third regular
expressions are taken as empty.

Some examples, with #" delimiting the return string:

substring('foobar' similar '%#"o_b#"%' escape '#') oob
substring('foobar' similar '#"o_b#"%' escape '#') NULL

9.7.3. POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~ text → boolean
String matches regular expression, case sensitively

'thomas' ~ 't.*ma' → t

text ~* text → boolean
String matches regular expression, case-insensitively

'thomas' ~* 'T.*ma' → t

text !~ text → boolean
String does not match regular expression, case sensitively

'thomas' !~ 't.*max' → t

text !~* text → boolean
String does not match regular expression, case-insensitively

'thomas' !~* 'T.*ma' → f

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and SIMILAR
TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language that is similar to
the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular set).
A string is said to match a regular expression if it is a member of the regular set described by the regular expres-

33

Functions and Operators

sion. As with LIKE, pattern characters match string characters exactly unless they are special characters in the
regular expression language — but regular expressions use different special characters than LIKE does. Unlike
LIKE patterns, a regular expression is allowed to match anywhere within a string, unless the regular expression
is explicitly anchored to the beginning or end of the string.

Some examples:

'abcd' ~ 'bc' true
'abcd' ~ 'a.c' true — dot matches any character
'abcd' ~ 'a.*d' true — * repeats the preceding pattern item
'abcd' ~ '(b|x)' true — | means OR, parentheses group
'abcd' ~ '^a' true — ^ anchors to start of string
'abcd' ~ '^(b|c)' false — would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction
of a substring that matches a POSIX regular expression pattern. It returns null if there is no match, otherwise the
first portion of the text that matched the pattern. But if the pattern contains any parentheses, the portion of the
text that matched the first parenthesized subexpression (the one whose left parenthesis comes first) is returned.
You can put parentheses around the whole expression if you want to use parentheses within it without triggering
this exception. If you need parentheses in the pattern before the subexpression you want to extract, see the non-
capturing parentheses described below.

Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b') o

The regexp_count function counts the number of places where a POSIX regular expression pattern matches
a string. It has the syntax regexp_count(string, pattern [, start [, flags]]). pattern is searched
for in string, normally from the beginning of the string, but if the start parameter is provided then beginning
from that character index. The flags parameter is an optional text string containing zero or more single-letter
flags that change the function's behavior. For example, including i in flags specifies case-insensitive matching.
Supported flags are described in Table 9.24.

Some examples:

regexp_count('ABCABCAXYaxy', 'A.') 3
regexp_count('ABCABCAXYaxy', 'A.', 1, 'i') 4

The regexp_instr function returns the starting or ending position of the N'th match of a POSIX regular expres-
sion pattern to a string, or zero if there is no such match. It has the syntax regexp_instr(string, pattern
[, start [, N [, endoption [, flags [, subexpr]]]]]). pattern is searched for in string, normally from
the beginning of the string, but if the start parameter is provided then beginning from that character index. If N is
specified then the N'th match of the pattern is located, otherwise the first match is located. If the endoption para-
meter is omitted or specified as zero, the function returns the position of the first character of the match. Otherwise,
endoption must be one, and the function returns the position of the character following the match. The flags
parameter is an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags are described in Table 9.24. For a pattern containing parenthesized subexpressions, subexpr is
an integer indicating which subexpression is of interest: the result identifies the position of the substring matching
that subexpression. Subexpressions are numbered in the order of their leading parentheses. When subexpr is
omitted or zero, the result identifies the position of the whole match regardless of parenthesized subexpressions.

Some examples:

regexp_instr('number of your street, town zip, FR', '[^,]+', 1, 2)

34

Functions and Operators

 23
regexp_instr(string=>'ABCDEFGHI', pattern=>'(c..)(...)', start=>1, "N"=>1,
 endoption=>0, flags=>'i', subexpr=>2)
 6

The regexp_like function checks whether a match of a POSIX regular expression pattern occurs within a
string, returning boolean true or false. It has the syntax regexp_like(string, pattern [, flags]). The
flags parameter is an optional text string containing zero or more single-letter flags that change the function's
behavior. Supported flags are described in Table 9.24. This function has the same results as the ~ operator if no
flags are specified. If only the i flag is specified, it has the same results as the ~* operator.

Some examples:

regexp_like('Hello World', 'world') false
regexp_like('Hello World', 'world', 'i') true

The regexp_match function returns a text array of matching substring(s) within the first match of a POSIX
regular expression pattern to a string. It has the syntax regexp_match(string, pattern [, flags]). If there
is no match, the result is NULL. If a match is found, and the pattern contains no parenthesized subexpressions,
then the result is a single-element text array containing the substring matching the whole pattern. If a match
is found, and the pattern contains parenthesized subexpressions, then the result is a text array whose n'th
element is the substring matching the n'th parenthesized subexpression of the pattern (not counting “non-
capturing” parentheses; see below for details). The flags parameter is an optional text string containing zero or
more single-letter flags that change the function's behavior. Supported flags are described in Table 9.24.

Some examples:

SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match

 {barbeque}
(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match

 {bar,beque}
(1 row)

Tip

In the common case where you just want the whole matching substring or NULL for no match,
the best solution is to use regexp_substr(). However, regexp_substr() only exists in
PostgreSQL version 15 and up. When working in older versions, you can extract the first element
of regexp_match()'s result, for example:

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match

 barbeque
(1 row)

The regexp_matches function returns a set of text arrays of matching substring(s) within matches of a POSIX
regular expression pattern to a string. It has the same syntax as regexp_match. This function returns no rows
if there is no match, one row if there is a match and the g flag is not given, or N rows if there are N matches and
the g flag is given. Each returned row is a text array containing the whole matched substring or the substrings

35

Functions and Operators

matching parenthesized subexpressions of the pattern, just as described above for regexp_match. regex-
p_matches accepts all the flags shown in Table 9.24, plus the g flag which commands it to return all matches,
not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
 regexp_matches

(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches

 {bar,beque}
 {bazil,barf}
(2 rows)

Tip

In most cases regexp_matches() should be used with the g flag, since if you only want the first
match, it's easier and more efficient to use regexp_match(). However, regexp_match()
only exists in PostgreSQL version 10 and up. When working in older versions, a common trick is
to place a regexp_matches() call in a sub-select, for example:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM
 tab;

This produces a text array if there's a match, or NULL if not, the same as regexp_match()
would do. Without the sub-select, this query would produce no output at all for table rows without
a match, which is typically not the desired behavior.

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(string, pattern, replacement [, flags])
or regexp_replace(string, pattern, replacement, start [, N [, flags]]). The source string
is returned unchanged if there is no match to the pattern. If there is a match, the string is returned with
the replacement string substituted for the matching substring. The replacement string can contain \n,
where n is 1 through 9, to indicate that the source substring matching the n'th parenthesized subexpression of the
pattern should be inserted, and it can contain \& to indicate that the substring matching the entire pattern should
be inserted. Write \\ if you need to put a literal backslash in the replacement text. pattern is searched for in
string, normally from the beginning of the string, but if the start parameter is provided then beginning from
that character index. By default, only the first match of the pattern is replaced. If N is specified and is greater than
zero, then the N'th match of the pattern is replaced. If the g flag is given, or if N is specified and is zero, then
all matches at or after the start position are replaced. (The g flag is ignored when N is specified.) The flags
parameter is an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags (though not g) are described in Table 9.24.

Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
 fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
 fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
 fooXarYXazY

36

Functions and Operators

regexp_replace('A PostgreSQL function', 'a|e|i|o|u', 'X', 1, 0, 'i')
 X PXstgrXSQL fXnctXXn
regexp_replace(string=>'A PostgreSQL function', pattern=>'a|e|i|o|u',
 replacement=>'X', start=>1, "N"=>3, flags=>'i')
 A PostgrXSQL function

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a delim-
iter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no match to
the pattern, the function returns the string. If there is at least one match, for each match it returns the text
from the end of the last match (or the beginning of the string) to the beginning of the match. When there are no
more matches, it returns the text from the end of the last match to the end of the string. The flags parameter
is an optional text string containing zero or more single-letter flags that change the function's behavior. regex-
p_split_to_table supports the flags described in Table 9.24.

The regexp_split_to_array function behaves the same as regexp_split_to_table, except
that regexp_split_to_array returns its result as an array of text. It has the syntax regexp_s-
plit_to_array(string, pattern [, flags]). The parameters are the same as for regexp_s-
plit_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the
 lazy dog', '\s+') AS foo;
 foo

 the
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog',
 '\s+');
 regexp_split_to_array

 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
 foo

 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w

37

Functions and Operators

 n
 f
 o
 x
(16 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the start or
end of the string or immediately after a previous match. This is contrary to the strict definition of regexp matching
that is implemented by the other regexp functions, but is usually the most convenient behavior in practice. Other
software systems such as Perl use similar definitions.

The regexp_substr function returns the substring that matches a POSIX regular expression pattern, or NULL
if there is no match. It has the syntax regexp_substr(string, pattern [, start [, N [, flags [, subex-
pr]]]]). pattern is searched for in string, normally from the beginning of the string, but if the start pa-
rameter is provided then beginning from that character index. If N is specified then the N'th match of the pattern
is returned, otherwise the first match is returned. The flags parameter is an optional text string containing zero
or more single-letter flags that change the function's behavior. Supported flags are described in Table 9.24. For
a pattern containing parenthesized subexpressions, subexpr is an integer indicating which subexpression is of
interest: the result is the substring matching that subexpression. Subexpressions are numbered in the order of their
leading parentheses. When subexpr is omitted or zero, the result is the whole match regardless of parenthesized
subexpressions.

Some examples:

regexp_substr('number of your street, town zip, FR', '[^,]+', 1, 2)
 town zip
regexp_substr('ABCDEFGHI', '(c..)(...)', 1, 1, 'i', 2)
 FGH

9.7.3.1. Regular Expression Details

PostgreSQL's regular expressions are implemented using a software package written by Henry Spencer. Much of
the description of regular expressions below is copied verbatim from his manual.

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs (roughly those
of egrep), and basic REs or BREs (roughly those of ed). PostgreSQL supports both forms, and also implements
some extensions that are not in the POSIX standard, but have become widely used due to their availability in
programming languages such as Perl and Tcl. REs using these non-POSIX extensions are called advanced REs
or AREs in this documentation. AREs are almost an exact superset of EREs, but BREs have several notational
incompatibilities (as well as being much more limited). We first describe the ARE and ERE forms, noting features
that apply only to AREs, and then describe how BREs differ.

Note

PostgreSQL always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that matches one
of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first, followed
by a match for the second, etc.; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a match
for the atom. With a quantifier, it can match some number of matches of the atom. An atom can be any of the
possibilities shown in Table 9.17. The possible quantifiers and their meanings are shown in Table 9.18.

38

Functions and Operators

A constraint matches an empty string, but matches only when specific conditions are met. A constraint can be
used where an atom could be used, except it cannot be followed by a quantifier. The simple constraints are shown
in Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description

(re) (where re is any regular expression) matches a match
for re, with the match noted for possible reporting

(?:re) as above, but the match is not noted for reporting (a
“non-capturing” set of parentheses) (AREs only)

. matches any single character

[chars] a bracket expression, matching any one of the chars
(see Section 9.7.3.2 for more detail)

\k (where k is a non-alphanumeric character) matches
that character taken as an ordinary character, e.g., \\
matches a backslash character

\c where c is alphanumeric (possibly followed by other
characters) is an escape, see Section 9.7.3.3 (AREs on-
ly; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed by a
digit, it is the beginning of a bound (see below)

x where x is a single character with no other signifi-
cance, matches that character

An RE cannot end with a backslash (\).

Note

If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier Matches

* a sequence of 0 or more matches of the atom

+ a sequence of 1 or more matches of the atom

? a sequence of 0 or 1 matches of the atom

{m} a sequence of exactly m matches of the atom

{m,} a sequence of m or more matches of the atom

{m,n} a sequence of m through n (inclusive) matches of the
atom; m cannot exceed n

*? non-greedy version of *

+? non-greedy version of +

?? non-greedy version of ?

{m}? non-greedy version of {m}

{m,}? non-greedy version of {m,}

39

Functions and Operators

Quantifier Matches

{m,n}? non-greedy version of {m,n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned decimal integers
with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding normal
(greedy) counterparts, but prefer the smallest number rather than the largest number of matches. See Section 9.7.3.5
for more detail.

Note

A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ^ or |.

Table 9.19. Regular Expression Constraints

Constraint Description

^ matches at the beginning of the string

$ matches at the end of the string

(?=re) positive lookahead matches at any point where a sub-
string matching re begins (AREs only)

(?!re) negative lookahead matches at any point where no
substring matching re begins (AREs only)

(?<=re) positive lookbehind matches at any point where a sub-
string matching re ends (AREs only)

(?<!re) negative lookbehind matches at any point where no
substring matching re ends (AREs only)

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all parentheses
within them are considered non-capturing.

9.7.3.2. Bracket Expressions

A bracket expression is a list of characters enclosed in []. It normally matches any single character from the
list (but see below). If the list begins with ^, it matches any single character not from the rest of the list. If
two characters in the list are separated by -, this is shorthand for the full range of characters between those two
(inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any decimal digit. It is illegal for two ranges
to share an endpoint, e.g., a-c-e. Ranges are very collating-sequence-dependent, so portable programs should
avoid relying on them.

To include a literal] in the list, make it the first character (after ^, if that is used). To include a literal -, make
it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint of a range,
enclose it in [. and .] to make it a collating element (see below). With the exception of these characters, some
combinations using [(see next paragraphs), and escapes (AREs only), all other special characters lose their special
significance within a bracket expression. In particular, \ is not special when following ERE or BRE rules, though
it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates as if it
were a single character, or a collating-sequence name for either) enclosed in [. and .] stands for the sequence
of characters of that collating element. The sequence is treated as a single element of the bracket expression's
list. This allows a bracket expression containing a multiple-character collating element to match more than one
character, e.g., if the collating sequence includes a ch collating element, then the RE [[.ch.]]*c matches the
first five characters of chchcc.

40

Functions and Operators

Note

PostgreSQL currently does not support multi-character collating elements. This information de-
scribes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing for the
sequences of characters of all collating elements equivalent to that one, including itself. (If there are no other
equivalent collating elements, the treatment is as if the enclosing delimiters were [. and .].) For example, if o
and ^ are the members of an equivalence class, then [[=o=]], [[=^=]], and [o^] are all synonymous. An
equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all char-
acters belonging to that class. A character class cannot be used as an endpoint of a range. The POSIX standard
defines these character class names: alnum (letters and numeric digits), alpha (letters), blank (space and tab),
cntrl (control characters), digit (numeric digits), graph (printable characters except space), lower (low-
er-case letters), print (printable characters including space), punct (punctuation), space (any white space),
upper (upper-case letters), and xdigit (hexadecimal digits). The behavior of these standard character classes is
generally consistent across platforms for characters in the 7-bit ASCII set. Whether a given non-ASCII character is
considered to belong to one of these classes depends on the collation that is used for the regular-expression func-
tion or operator (see Section 23.2), or by default on the database's LC_CTYPE locale setting (see Section 23.1).
The classification of non-ASCII characters can vary across platforms even in similarly-named locales. (But the C
locale never considers any non-ASCII characters to belong to any of these classes.) In addition to these standard
character classes, PostgreSQL defines the word character class, which is the same as alnum plus the underscore
(_) character, and the ascii character class, which contains exactly the 7-bit ASCII set.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]] are con-
straints, matching empty strings at the beginning and end of a word respectively. A word is defined as a sequence
of word characters that is neither preceded nor followed by word characters. A word character is any character
belonging to the word character class, that is, any letter, digit, or underscore. This is an extension, compatible
with but not specified by POSIX 1003.2, and should be used with caution in software intended to be portable to
other systems. The constraint escapes described below are usually preferable; they are no more standard, but are
easier to type.

9.7.3.3. Regular Expression Escapes

Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come in several
varieties: character entry, class shorthands, constraint escapes, and back references. A \ followed by an alphanu-
meric character but not constituting a valid escape is illegal in AREs. In EREs, there are no escapes: outside a
bracket expression, a \ followed by an alphanumeric character merely stands for that character as an ordinary
character, and inside a bracket expression, \ is an ordinary character. (The latter is the one actual incompatibility
between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters in REs.
They are shown in Table 9.20.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are shown in
Table 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as an escape.
They are shown in Table 9.22.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression specified by
the number n (see Table 9.23). For example, ([bc])\1 matches bb or cc but not bc or cb. The subexpression
must entirely precede the back reference in the RE. Subexpressions are numbered in the order of their leading
parentheses. Non-capturing parentheses do not define subexpressions. The back reference considers only the string
characters matched by the referenced subexpression, not any constraints contained in it. For example, (^\d)\1
will match 22.

41

Functions and Operators

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description

\a alert (bell) character, as in C

\b backspace, as in C

\B synonym for backslash (\) to help reduce the need for
backslash doubling

\cX (where X is any character) the character whose low-or-
der 5 bits are the same as those of X, and whose other
bits are all zero

\e the character whose collating-sequence name is ESC,
or failing that, the character with octal value 033

\f form feed, as in C

\n newline, as in C

\r carriage return, as in C

\t horizontal tab, as in C

\uwxyz (where wxyz is exactly four hexadecimal digits) the
character whose hexadecimal value is 0xwxyz

\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal dig-
its) the character whose hexadecimal value is 0xstu-
vwxyz

\v vertical tab, as in C

\xhhh (where hhh is any sequence of hexadecimal digits) the
character whose hexadecimal value is 0xhhh (a single
character no matter how many hexadecimal digits are
used)

\0 the character whose value is 0 (the null byte)

\xy (where xy is exactly two octal digits, and is not a back
reference) the character whose octal value is 0xy

\xyz (where xyz is exactly three octal digits, and is not
a back reference) the character whose octal value is
0xyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0–127) have meanings dependent on
the database encoding. When the encoding is UTF-8, escape values are equivalent to Unicode code points, for
example \u1234 means the character U+1234. For other multibyte encodings, character-entry escapes usually
just specify the concatenation of the byte values for the character. If the escape value does not correspond to any
legal character in the database encoding, no error will be raised, but it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII, but \135
does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description

\d matches any digit, like [[:digit:]]

\s matches any whitespace character, like
[[:space:]]

\w matches any word character, like [[:word:]]

42

Functions and Operators

Escape Description

\D matches any non-digit, like [^[:digit:]]

\S matches any non-whitespace character, like
[^[:space:]]

\W matches any non-word character, like [^[:word:]]

The class-shorthand escapes also work within bracket expressions, although the definitions shown above are not
quite syntactically valid in that context. For example, [a-c\d] is equivalent to [a-c[:digit:]].

Table 9.22. Regular Expression Constraint Escapes

Escape Description

\A matches only at the beginning of the string (see Sec-
tion 9.7.3.5 for how this differs from ^)

\m matches only at the beginning of a word

\M matches only at the end of a word

\y matches only at the beginning or end of a word

\Y matches only at a point that is not the beginning or end
of a word

\Z matches only at the end of the string (see Sec-
tion 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal within
bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description

\m (where m is a nonzero digit) a back reference to the
m'th subexpression

\mnn (where m is a nonzero digit, and nn is some more dig-
its, and the decimal value mnn is not greater than the
number of closing capturing parentheses seen so far) a
back reference to the mnn'th subexpression

Note

There is an inherent ambiguity between octal character-entry escapes and back references, which
is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise
is taken as octal.

9.7.3.4. Regular Expression Metasyntax

In addition to the main syntax described above, there are some special forms and miscellaneous syntactic facilities
available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the RE is taken
as an ARE. (This normally has no effect in PostgreSQL, since REs are assumed to be AREs; but it does have an
effect if ERE or BRE mode had been specified by the flags parameter to a regex function.) If an RE begins with
***=, the rest of the RE is taken to be a literal string, with all characters considered ordinary characters.

43

Functions and Operators

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic characters)
specifies options affecting the rest of the RE. These options override any previously determined options — in
particular, they can override the case-sensitivity behavior implied by a regex operator, or the flags parameter
to a regex function. The available option letters are shown in Table 9.24. Note that these same option letters are
used in the flags parameters of regex functions.

Table 9.24. ARE Embedded-Option Letters

Option Description

b rest of RE is a BRE

c case-sensitive matching (overrides operator type)

e rest of RE is an ERE

i case-insensitive matching (see Section 9.7.3.5) (over-
rides operator type)

m historical synonym for n

n newline-sensitive matching (see Section 9.7.3.5)

p partial newline-sensitive matching (see Sec-
tion 9.7.3.5)

q rest of RE is a literal (“quoted”) string, all ordinary
characters

s non-newline-sensitive matching (default)

t tight syntax (default; see below)

w inverse partial newline-sensitive (“weird”) matching
(see Section 9.7.3.5)

x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of an ARE (after
the ***: director if any).

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded syntax, avail-
able by specifying the embedded x option. In the expanded syntax, white-space characters in the RE are ignored,
as are all characters between a # and the following newline (or the end of the RE). This permits paragraphing and
commenting a complex RE. There are three exceptions to that basic rule:

• a white-space character or # preceded by \ is retained

• white space or # within a bracket expression is retained

• white space and comments cannot appear within multi-character symbols, such as (?:

For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the space
character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not containing a
)) is a comment, completely ignored. Again, this is not allowed between the characters of multi-character symbols,
like (?:. Such comments are more a historical artifact than a useful facility, and their use is deprecated; use the
expanded syntax instead.

None of these metasyntax extensions is available if an initial ***= director has specified that the user's input be
treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules

In the event that an RE could match more than one substring of a given string, the RE matches the one starting
earliest in the string. If the RE could match more than one substring starting at that point, either the longest possible
match or the shortest possible match will be taken, depending on whether the RE is greedy or non-greedy.

44

Functions and Operators

Whether an RE is greedy or not is determined by the following rules:

• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable amounts of
text anyway).

• Adding parentheses around an RE does not change its greediness.

• A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly none)
as the atom itself.

• A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy (prefers longest
match).

• A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy (prefers
shortest match).

• A branch — that is, an RE that has no top-level | operator — has the same greediness as the first quantified
atom in it that has a greediness attribute.

• An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with branches and
entire REs that contain quantified atoms. What that means is that the matching is done in such a way that the
branch, or whole RE, matches the longest or shortest possible substring as a whole. Once the length of the entire
match is determined, the part of it that matches any particular subexpression is determined on the basis of the
greediness attribute of that subexpression, with subexpressions starting earlier in the RE taking priority over ones
starting later.

An example of what this means:

SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and it matches
the longest possible string starting there, i.e., Y123. The output is the parenthesized part of that, or 123. In the
second case, the RE as a whole is non-greedy because Y*? is non-greedy. It can match beginning at the Y, and
it matches the shortest possible string starting there, i.e., Y1. The subexpression [0-9]{1,3} is greedy but it
cannot change the decision as to the overall match length; so it is forced to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is either as long
as possible or as short as possible, according to the attribute assigned to the whole RE. The attributes assigned to
the subexpressions only affect how much of that match they are allowed to “eat” relative to each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on a subex-
pression or a whole RE. This is useful when you need the whole RE to have a greediness attribute different from
what's deduced from its elements. As an example, suppose that we are trying to separate a string containing some
digits into the digits and the parts before and after them. We might try to do that like this:

SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}

That didn't work: the first .* is greedy so it “eats” as much as it can, leaving the \d+ to match at the last possible
place, the last digit. We might try to fix that by making it non-greedy:

SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}

45

Functions and Operators

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match as soon as
possible. We can get what we want by forcing the RE as a whole to be greedy:

SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great flexibility in han-
dling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not collating elements.
An empty string is considered longer than no match at all. For example: bb* matches the three middle characters
of abbbc; (week|wee)(night|knights) matches all ten characters of weeknights; when (.*).* is
matched against abc the parenthesized subexpression matches all three characters; and when (a*)* is matched
against bc both the whole RE and the parenthesized subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from the
alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside a bracket
expression, it is effectively transformed into a bracket expression containing both cases, e.g., x becomes [xX].
When it appears inside a bracket expression, all case counterparts of it are added to the bracket expression, e.g.,
[x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ^ will never match the newline char-
acter (so that matches will not cross lines unless the RE explicitly includes a newline) and ^ and $ will match the
empty string after and before a newline respectively, in addition to matching at beginning and end of string respec-
tively. But the ARE escapes \A and \Z continue to match beginning or end of string only. Also, the character class
shorthands \D and \W will match a newline regardless of this mode. (Before PostgreSQL 14, they did not match
newlines when in newline-sensitive mode. Write [^[:digit:]] or [^[:word:]] to get the old behavior.)

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-sensitive
matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive matching,
but not . and bracket expressions. This isn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility

No particular limit is imposed on the length of REs in this implementation. However, programs intended to be
highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation can refuse
to accept such REs.

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its special
significance inside bracket expressions. All other ARE features use syntax which is illegal or has undefined or
unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX syntax for both
BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them up, and a few
Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of special treatment for a trailing
newline, the addition of complemented bracket expressions to the things affected by newline-sensitive matching,
the restrictions on parentheses and back references in lookahead/lookbehind constraints, and the longest/short-
est-match (rather than first-match) matching semantics.

9.7.3.7. Basic Regular Expressions

BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there is no equivalent
for their functionality. The delimiters for bounds are \{ and \}, with { and } by themselves ordinary characters.
The parentheses for nested subexpressions are \(and \), with (and) by themselves ordinary characters. ^ is
an ordinary character except at the beginning of the RE or the beginning of a parenthesized subexpression, $ is an
ordinary character except at the end of the RE or the end of a parenthesized subexpression, and * is an ordinary
character if it appears at the beginning of the RE or the beginning of a parenthesized subexpression (after a possible

46

Functions and Operators

leading ^). Finally, single-digit back references are available, and \< and \> are synonyms for [[:<:]] and
[[:>:]] respectively; no other escapes are available in BREs.

9.7.3.8. Differences from SQL Standard and XQuery

Since SQL:2008, the SQL standard includes regular expression operators and functions that performs pattern
matching according to the XQuery regular expression standard:

• LIKE_REGEX

• OCCURRENCES_REGEX

• POSITION_REGEX

• SUBSTRING_REGEX

• TRANSLATE_REGEX

PostgreSQL does not currently implement these operators and functions. You can get approximately equivalent
functionality in each case as shown in Table 9.25. (Various optional clauses on both sides have been omitted in
this table.)

Table 9.25. Regular Expression Functions Equivalencies

SQL standard PostgreSQL

string LIKE_REGEX pattern regexp_like(string, pattern) or string
~ pattern

OCCURRENCES_REGEX(pattern IN string) regexp_count(string, pattern)

POSITION_REGEX(pattern IN string) regexp_instr(string, pattern)

SUBSTRING_REGEX(pattern IN string) regexp_substr(string, pattern)

TRANSLATE_REGEX(pattern IN string
WITH replacement)

regexp_replace(string, pattern, re-
placement)

Regular expression functions similar to those provided by PostgreSQL are also available in a number of other
SQL implementations, whereas the SQL-standard functions are not as widely implemented. Some of the details
of the regular expression syntax will likely differ in each implementation.

The SQL-standard operators and functions use XQuery regular expressions, which are quite close to the ARE
syntax described above. Notable differences between the existing POSIX-based regular-expression feature and
XQuery regular expressions include:

• XQuery character class subtraction is not supported. An example of this feature is using the following to match
only English consonants: [a-z-[aeiou]].

• XQuery character class shorthands \c, \C, \i, and \I are not supported.

• XQuery character class elements using \p{UnicodeProperty} or the inverse \P{UnicodeProperty}
are not supported.

• POSIX interprets character classes such as \w (see Table 9.21) according to the prevailing locale (which you
can control by attaching a COLLATE clause to the operator or function). XQuery specifies these classes by
reference to Unicode character properties, so equivalent behavior is obtained only with a locale that follows
the Unicode rules.

• The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX does. The
newline-sensitive matching options described above consider only ASCII NL (\n) to be a newline, but SQL
would have us treat CR (\r), CRLF (\r\n) (a Windows-style newline), and some Unicode-only characters
like LINE SEPARATOR (U+2028) as newlines as well. Notably, . and \s should count \r\n as one character
not two according to SQL.

• Of the character-entry escapes described in Table 9.20, XQuery supports only \n, \r, and \t.

47

Functions and Operators

• XQuery does not support the [:name:] syntax for character classes within bracket expressions.

• XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes described in
Table 9.22.

• The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.

• The regular expression flag letters defined by XQuery are related to but not the same as the option letters for
POSIX (Table 9.24). While the i and q options behave the same, others do not:

• XQuery's s (allow dot to match newline) and m (allow ^ and $ to match at newlines) flags provide access
to the same behaviors as POSIX's n, p and w flags, but they do not match the behavior of POSIX's s and m
flags. Note in particular that dot-matches-newline is the default behavior in POSIX but not XQuery.

• XQuery's x (ignore whitespace in pattern) flag is noticeably different from POSIX's expanded-mode flag.
POSIX's x flag also allows # to begin a comment in the pattern, and POSIX will not ignore a whitespace
character after a backslash.

9.8. Data Type Formatting Functions
The PostgreSQL formatting functions provide a powerful set of tools for converting various data types (date/time,
integer, floating point, numeric) to formatted strings and for converting from formatted strings to specific data
types. Table 9.26 lists them. These functions all follow a common calling convention: the first argument is the
value to be formatted and the second argument is a template that defines the output or input format.

Table 9.26. Formatting Functions

Function
Description
Example(s)

 to_char (timestamp, text) → text
to_char (timestamp with time zone, text) → text

Converts time stamp to string according to the given format.

to_char(timestamp '2002-04-20 17:31:12.66', 'HH12:MI:SS') → 05:31:12

to_char (interval, text) → text
Converts interval to string according to the given format.

to_char(interval '15h 2m 12s', 'HH24:MI:SS') → 15:02:12

to_char (numeric_type, text) → text
Converts number to string according to the given format; available for integer, bigint, nu-
meric, real, double precision.

to_char(125, '999') → 125
to_char(125.8::real, '999D9') → 125.8
to_char(-125.8, '999D99S') → 125.80-

 to_date (text, text) → date
Converts string to date according to the given format.

to_date('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05

 to_number (text, text) → numeric
Converts string to numeric according to the given format.

to_number('12,454.8-', '99G999D9S') → -12454.8

 to_timestamp (text, text) → timestamp with time zone
Converts string to time stamp according to the given format. (See also to_timestamp(double
precision) in Table 9.33.)

48

Functions and Operators

Function
Description
Example(s)

to_timestamp('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05 00:00:00-05

Tip

to_timestamp and to_date exist to handle input formats that cannot be converted by simple
casting. For most standard date/time formats, simply casting the source string to the required da-
ta type works, and is much easier. Similarly, to_number is unnecessary for standard numeric
representations.

In a to_char output template string, there are certain patterns that are recognized and replaced with appropri-
ately-formatted data based on the given value. Any text that is not a template pattern is simply copied verbatim.
Similarly, in an input template string (for the other functions), template patterns identify the values to be supplied
by the input data string. If there are characters in the template string that are not template patterns, the correspond-
ing characters in the input data string are simply skipped over (whether or not they are equal to the template string
characters).

Table 9.27 shows the template patterns available for formatting date and time values.

Table 9.27. Template Patterns for Date/Time Formatting

Pattern Description

HH hour of day (01–12)

HH12 hour of day (01–12)

HH24 hour of day (00–23)

MI minute (00–59)

SS second (00–59)

MS millisecond (000–999)

US microsecond (000000–999999)

FF1 tenth of second (0–9)

FF2 hundredth of second (00–99)

FF3 millisecond (000–999)

FF4 tenth of a millisecond (0000–9999)

FF5 hundredth of a millisecond (00000–99999)

FF6 microsecond (000000–999999)

SSSS, SSSSS seconds past midnight (0–86399)

AM, am, PM or pm meridiem indicator (without periods)

A.M., a.m., P.M. or p.m. meridiem indicator (with periods)

Y,YYY year (4 or more digits) with comma

YYYY year (4 or more digits)

YYY last 3 digits of year

YY last 2 digits of year

Y last digit of year

IYYY ISO 8601 week-numbering year (4 or more digits)

IYY last 3 digits of ISO 8601 week-numbering year

49

Functions and Operators

Pattern Description

IY last 2 digits of ISO 8601 week-numbering year

I last digit of ISO 8601 week-numbering year

BC, bc, AD or ad era indicator (without periods)

B.C., b.c., A.D. or a.d. era indicator (with periods)

MONTH full upper case month name (blank-padded to 9 chars)

Month full capitalized month name (blank-padded to 9 chars)

month full lower case month name (blank-padded to 9 chars)

MON abbreviated upper case month name (3 chars in Eng-
lish, localized lengths vary)

Mon abbreviated capitalized month name (3 chars in Eng-
lish, localized lengths vary)

mon abbreviated lower case month name (3 chars in Eng-
lish, localized lengths vary)

MM month number (01–12)

DAY full upper case day name (blank-padded to 9 chars)

Day full capitalized day name (blank-padded to 9 chars)

day full lower case day name (blank-padded to 9 chars)

DY abbreviated upper case day name (3 chars in English,
localized lengths vary)

Dy abbreviated capitalized day name (3 chars in English,
localized lengths vary)

dy abbreviated lower case day name (3 chars in English,
localized lengths vary)

DDD day of year (001–366)

IDDD day of ISO 8601 week-numbering year (001–371; day
1 of the year is Monday of the first ISO week)

DD day of month (01–31)

D day of the week, Sunday (1) to Saturday (7)

ID ISO 8601 day of the week, Monday (1) to Sunday (7)

W week of month (1–5) (the first week starts on the first
day of the month)

WW week number of year (1–53) (the first week starts on
the first day of the year)

IW week number of ISO 8601 week-numbering year (01–
53; the first Thursday of the year is in week 1)

CC century (2 digits) (the twenty-first century starts on
2001-01-01)

J Julian Date (integer days since November 24, 4714 BC
at local midnight; see Section B.7)

Q quarter

RM month in upper case Roman numerals (I–XII; I=Janu-
ary)

rm month in lower case Roman numerals (i–xii; i=Janu-
ary)

TZ upper case time-zone abbreviation

50

Functions and Operators

Pattern Description

tz lower case time-zone abbreviation

TZH time-zone hours

TZM time-zone minutes

OF time-zone offset from UTC (HH or HH:MM)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month pattern
with the FM modifier. Table 9.28 shows the modifier patterns for date/time formatting.

Table 9.28. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example

FM prefix fill mode (suppress leading zeroes
and padding blanks)

FMMonth

TH suffix upper case ordinal number suffix DDTH, e.g., 12TH

th suffix lower case ordinal number suffix DDth, e.g., 12th

FX prefix fixed format global option (see us-
age notes)

FX Month DD Day

TM prefix translation mode (use localized day
and month names based on lc_time)

TMMonth

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

• FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a pattern be
fixed-width. In PostgreSQL, FM modifies only the next specification, while in Oracle FM affects all subsequent
specifications, and repeated FM modifiers toggle fill mode on and off.

• TM suppresses trailing blanks whether or not FM is specified.

• to_timestamp and to_date ignore letter case in the input; so for example MON, Mon, and mon all accept
the same strings. When using the TM modifier, case-folding is done according to the rules of the function's input
collation (see Section 23.2).

• to_timestamp and to_date skip multiple blank spaces at the beginning of the input string and around
date and time values unless the FX option is used. For example, to_timestamp(' 2000 JUN',
'YYYY MON') and to_timestamp('2000 - JUN', 'YYYY-MON') work, but to_timestam-
p('2000 JUN', 'FXYYYY MON') returns an error because to_timestamp expects only a single
space. FX must be specified as the first item in the template.

• A separator (a space or non-letter/non-digit character) in the template string of to_timestamp and to_date
matches any single separator in the input string or is skipped, unless the FX option is used. For exam-
ple, to_timestamp('2000JUN', 'YYYY///MON') and to_timestamp('2000/JUN', 'YYYY
MON') work, but to_timestamp('2000//JUN', 'YYYY/MON') returns an error because the number
of separators in the input string exceeds the number of separators in the template.

If FX is specified, a separator in the template string matches exactly one character in the input string. But note
that the input string character is not required to be the same as the separator from the template string. For exam-
ple, to_timestamp('2000/JUN', 'FXYYYY MON') works, but to_timestamp('2000/JUN',
'FXYYYY MON') returns an error because the second space in the template string consumes the letter J
from the input string.

• A TZH template pattern can match a signed number. Without the FX option, minus signs may be ambiguous,
and could be interpreted as a separator. This ambiguity is resolved as follows: If the number of separators

51

Functions and Operators

before TZH in the template string is less than the number of separators before the minus sign in the input
string, the minus sign is interpreted as part of TZH. Otherwise, the minus sign is considered to be a separator
between values. For example, to_timestamp('2000 -10', 'YYYY TZH') matches -10 to TZH, but
to_timestamp('2000 -10', 'YYYY TZH') matches 10 to TZH.

• Ordinary text is allowed in to_char templates and will be output literally. You can put a substring in double
quotes to force it to be interpreted as literal text even if it contains template patterns. For example, in '"Hello
Year "YYYY', the YYYY will be replaced by the year data, but the single Y in Year will not be. In to_date,
to_number, and to_timestamp, literal text and double-quoted strings result in skipping the number of
characters contained in the string; for example "XX" skips two input characters (whether or not they are XX).

Tip

Prior to PostgreSQL 12, it was possible to skip arbitrary text in the input string using non-letter
or non-digit characters. For example, to_timestamp('2000y6m1d', 'yyyy-MM-DD')
used to work. Now you can only use letter characters for this purpose. For example, to_time-
stamp('2000y6m1d', 'yyyytMMtDDt') and to_timestamp('2000y6m1d',
'yyyy"y"MM"m"DD"d"') skip y, m, and d.

• If you want to have a double quote in the output you must precede it with a backslash, for example '\"YYYY
Month\"'. Backslashes are not otherwise special outside of double-quoted strings. Within a double-quoted
string, a backslash causes the next character to be taken literally, whatever it is (but this has no special effect
unless the next character is a double quote or another backslash).

• In to_timestamp and to_date, if the year format specification is less than four digits, e.g., YYY, and the
supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020, e.g., 95 becomes
1995.

• In to_timestamp and to_date, negative years are treated as signifying BC. If you write both a negative
year and an explicit BC field, you get AD again. An input of year zero is treated as 1 BC.

• In to_timestamp and to_date, the YYYY conversion has a restriction when processing years with more
than 4 digits. You must use some non-digit character or template after YYYY, otherwise the year is always inter-
preted as 4 digits. For example (with the year 20000): to_date('200001130', 'YYYYMMDD') will be
interpreted as a 4-digit year; instead use a non-digit separator after the year, like to_date('20000-1130',
'YYYY-MMDD') or to_date('20000Nov30', 'YYYYMonDD').

• In to_timestamp and to_date, the CC (century) field is accepted but ignored if there is a YYY, YYYY or
Y,YYY field. If CC is used with YY or Y then the result is computed as that year in the specified century. If the
century is specified but the year is not, the first year of the century is assumed.

• In to_timestamp and to_date, weekday names or numbers (DAY, D, and related field types) are accepted
but are ignored for purposes of computing the result. The same is true for quarter (Q) fields.

• In to_timestamp and to_date, an ISO 8601 week-numbering date (as distinct from a Gregorian date) can
be specified in one of two ways:

• Year, week number, and weekday: for example to_date('2006-42-4', 'IYYY-IW-ID') returns
the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).

• Year and day of year: for example to_date('2006-291', 'IYYY-IDDD') also returns
2006-10-19.

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date fields is
nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year, the concept of a
“month” or “day of month” has no meaning. In the context of a Gregorian year, the ISO week has no meaning.

52

Functions and Operators

Caution

While to_date will reject a mixture of Gregorian and ISO week-numbering date fields,
to_char will not, since output format specifications like YYYY-MM-DD (IYYY-IDDD) can
be useful. But avoid writing something like IYYY-MM-DD; that would yield surprising results
near the start of the year. (See Section 9.9.1 for more information.)

• In to_timestamp, millisecond (MS) or microsecond (US) fields are used as the seconds digits after the dec-
imal point. For example to_timestamp('12.3', 'SS.MS') is not 3 milliseconds, but 300, because
the conversion treats it as 12 + 0.3 seconds. So, for the format SS.MS, the input values 12.3, 12.30, and
12.300 specify the same number of milliseconds. To get three milliseconds, one must write 12.003, which
the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp('15:12:02.020.001230',
'HH24:MI:SS.MS.US') is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds
= 2.021230 seconds.

• to_char(..., 'ID')'s day of the week numbering matches the extract(isodow from ...) func-
tion, but to_char(..., 'D')'s does not match extract(dow from ...)'s day numbering.

• to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero hours and 36
hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an interval value.

Table 9.29 shows the template patterns available for formatting numeric values.

Table 9.29. Template Patterns for Numeric Formatting

Pattern Description

9 digit position (can be dropped if insignificant)

0 digit position (will not be dropped, even if insignifi-
cant)

. (period) decimal point

, (comma) group (thousands) separator

PR negative value in angle brackets

S sign anchored to number (uses locale)

L currency symbol (uses locale)

D decimal point (uses locale)

G group separator (uses locale)

MI minus sign in specified position (if number < 0)

PL plus sign in specified position (if number > 0)

SG plus/minus sign in specified position

RN or rn Roman numeral (values between 1 and 3999)

TH or th ordinal number suffix

V shift specified number of digits (see notes)

EEEE exponent for scientific notation

Usage notes for numeric formatting:

• 0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9 also specifies
a digit position, but if it is a leading zero then it will be replaced by a space, while if it is a trailing zero and fill
mode is specified then it will be deleted. (For to_number(), these two pattern characters are equivalent.)

53

Functions and Operators

• If the format provides fewer fractional digits than the number being formatted, to_char() will round the
number to the specified number of fractional digits.

• The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and thousands separator
characters defined by the current locale (see lc_monetary and lc_numeric). The pattern characters period and
comma represent those exact characters, with the meanings of decimal point and thousands separator, regardless
of locale.

• If no explicit provision is made for a sign in to_char()'s pattern, one column will be reserved for the sign,
and it will be anchored to (appear just left of) the number. If S appears just left of some 9's, it will likewise
be anchored to the number.

• A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char(-12,
'MI9999') produces '- 12' but to_char(-12, 'S9999') produces ' -12'. (The Oracle imple-
mentation does not allow the use of MI before 9, but rather requires that 9 precede MI.)

• TH does not convert values less than zero and does not convert fractional numbers.

• PL, SG, and TH are PostgreSQL extensions.

• In to_number, if non-data template patterns such as L or TH are used, the corresponding number of input
characters are skipped, whether or not they match the template pattern, unless they are data characters (that is,
digits, sign, decimal point, or comma). For example, TH would skip two non-data characters.

• V with to_char multiplies the input values by 10^n, where n is the number of digits following V. V with
to_number divides in a similar manner. The V can be thought of as marking the position of an implicit decimal
point in the input or output string. to_char and to_number do not support the use of V combined with a
decimal point (e.g., 99.9V99 is not allowed).

• EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns or modifiers
other than digit and decimal point patterns, and must be at the end of the format string (e.g., 9.99EEEE is a
valid pattern).

• In to_number(), the RN pattern converts Roman numerals (in standard form) to numbers. Input is case-
insensitive, so RN and rn are equivalent. RN cannot be used in combination with any other formatting patterns
or modifiers except FM, which is applicable only in to_char() and is ignored in to_number().

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM99.99 is the 99.99
pattern with the FM modifier. Table 9.30 shows the modifier patterns for numeric formatting.

Table 9.30. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example

FM prefix fill mode (suppress trailing zeroes
and padding blanks)

FM99.99

TH suffix upper case ordinal number suffix 999TH

th suffix lower case ordinal number suffix 999th

Table 9.31 shows some examples of the use of the to_char function.

Table 9.31. to_char Examples

Expression Result

to_char(current_timestamp, 'Day, D-
D HH12:MI:SS')

'Tuesday , 06 05:39:18'

to_char(current_timestamp, 'FM-
Day, FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

to_char(current_timestamp AT
TIME ZONE 'UTC', 'YYYY-MM-DD"T"H-
H24:MI:SS"Z"')

'2022-12-06T05:39:18Z', ISO 8601 extended
format

54

Functions and Operators

Expression Result

to_char(-0.1, '99.99') ' -.10'

to_char(-0.1, 'FM9.99') '-.1'

to_char(-0.1, 'FM90.99') '-0.1'

to_char(0.1, '0.9') ' 0.1'

to_char(12, '9990999.9') ' 0012.0'

to_char(12, 'FM9990999.9') '0012.'

to_char(485, '999') ' 485'

to_char(-485, '999') '-485'

to_char(485, '9 9 9') ' 4 8 5'

to_char(1485, '9,999') ' 1,485'

to_char(1485, '9G999') ' 1 485'

to_char(148.5, '999.999') ' 148.500'

to_char(148.5, 'FM999.999') '148.5'

to_char(148.5, 'FM999.990') '148.500'

to_char(148.5, '999D999') ' 148,500'

to_char(3148.5, '9G999D999') ' 3 148,500'

to_char(-485, '999S') '485-'

to_char(-485, '999MI') '485-'

to_char(485, '999MI') '485 '

to_char(485, 'FM999MI') '485'

to_char(485, 'PL999') '+485'

to_char(485, 'SG999') '+485'

to_char(-485, 'SG999') '-485'

to_char(-485, '9SG99') '4-85'

to_char(-485, '999PR') '<485>'

to_char(485, 'L999') 'DM 485'

to_char(485, 'RN') ' CDLXXXV'

to_char(485, 'FMRN') 'CDLXXXV'

to_char(5.2, 'FMRN') 'V'

to_char(482, '999th') ' 482nd'

to_char(485, '"Good number:"999') 'Good number: 485'

to_char(485.8,
'"Pre:"999" Post:" .999')

'Pre: 485 Post: .800'

to_char(12, '99V999') ' 12000'

to_char(12.4, '99V999') ' 12400'

to_char(12.45, '99V9') ' 125'

to_char(0.0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators
Table 9.33 shows the available functions for date/time value processing, with details appearing in the following
subsections. Table 9.32 illustrates the behaviors of the basic arithmetic operators (+, *, etc.). For formatting func-

55

Functions and Operators

tions, refer to Section 9.8. You should be familiar with the background information on date/time data types from
Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types. Dates and
timestamps (with or without time zone) are all comparable, while times (with or without time zone) and intervals
can only be compared to other values of the same data type. When comparing a timestamp without time zone
to a timestamp with time zone, the former value is assumed to be given in the time zone specified by the Time-
Zone configuration parameter, and is rotated to UTC for comparison to the latter value (which is already in UTC
internally). Similarly, a date value is assumed to represent midnight in the TimeZone zone when comparing it
to a timestamp.

All the functions and operators described below that take time or timestamp inputs actually come in two
variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not
shown separately. Also, the + and * operators come in commutative pairs (for example both date + integer
and integer + date); we show only one of each such pair.

Table 9.32. Date/Time Operators

Operator
Description
Example(s)

date + integer → date
Add a number of days to a date

date '2001-09-28' + 7 → 2001-10-05

date + interval → timestamp
Add an interval to a date

date '2001-09-28' + interval '1 hour' → 2001-09-28 01:00:00

date + time → timestamp
Add a time-of-day to a date

date '2001-09-28' + time '03:00' → 2001-09-28 03:00:00

interval + interval → interval
Add intervals

interval '1 day' + interval '1 hour' → 1 day 01:00:00

timestamp + interval → timestamp
Add an interval to a timestamp

timestamp '2001-09-28 01:00' + interval '23 hours' → 2001-09-29
00:00:00

time + interval → time
Add an interval to a time

time '01:00' + interval '3 hours' → 04:00:00

- interval → interval
Negate an interval

- interval '23 hours' → -23:00:00

date - date → integer
Subtract dates, producing the number of days elapsed

date '2001-10-01' - date '2001-09-28' → 3

date - integer → date
Subtract a number of days from a date

56

Functions and Operators

Operator
Description
Example(s)

date '2001-10-01' - 7 → 2001-09-24

date - interval → timestamp
Subtract an interval from a date

date '2001-09-28' - interval '1 hour' → 2001-09-27 23:00:00

time - time → interval
Subtract times

time '05:00' - time '03:00' → 02:00:00

time - interval → time
Subtract an interval from a time

time '05:00' - interval '2 hours' → 03:00:00

timestamp - interval → timestamp
Subtract an interval from a timestamp

timestamp '2001-09-28 23:00' - interval '23 hours' → 2001-09-28
00:00:00

interval - interval → interval
Subtract intervals

interval '1 day' - interval '1 hour' → 1 day -01:00:00

timestamp - timestamp → interval
Subtract timestamps (converting 24-hour intervals into days, similarly to justify_hours())

timestamp '2001-09-29 03:00' - timestamp '2001-07-27 12:00' → 63
days 15:00:00

interval * double precision → interval
Multiply an interval by a scalar

interval '1 second' * 900 → 00:15:00
interval '1 day' * 21 → 21 days
interval '1 hour' * 3.5 → 03:30:00

interval / double precision → interval
Divide an interval by a scalar

interval '1 hour' / 1.5 → 00:40:00

Table 9.33. Date/Time Functions

Function
Description
Example(s)

 age (timestamp, timestamp) → interval
Subtract arguments, producing a “symbolic” result that uses years and months, rather than just days

age(timestamp '2001-04-10', timestamp '1957-06-13') → 43 years 9
mons 27 days

age (timestamp) → interval
Subtract argument from current_date (at midnight)

age(timestamp '1957-06-13') → 62 years 6 mons 10 days

57

Functions and Operators

Function
Description
Example(s)

 clock_timestamp () → timestamp with time zone
Current date and time (changes during statement execution); see Section 9.9.5

clock_timestamp() → 2019-12-23 14:39:53.662522-05

 current_date → date
Current date; see Section 9.9.5

current_date → 2019-12-23

 current_time → time with time zone
Current time of day; see Section 9.9.5

current_time → 14:39:53.662522-05

current_time (integer) → time with time zone
Current time of day, with limited precision; see Section 9.9.5

current_time(2) → 14:39:53.66-05

 current_timestamp → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5

current_timestamp → 2019-12-23 14:39:53.662522-05

current_timestamp (integer) → timestamp with time zone
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

current_timestamp(0) → 2019-12-23 14:39:53-05

 date_add (timestamp with time zone, interval [, text]) → timestamp with time
zone
Add an interval to a timestamp with time zone, computing times of day and day-
light-savings adjustments according to the time zone named by the third argument, or the current
TimeZone setting if that is omitted. The form with two arguments is equivalent to the timestamp
with time zone + interval operator.
date_add('2021-10-31 00:00:00+02'::timestamptz, '1 day'::interval,

'Europe/Warsaw') → 2021-10-31 23:00:00+00

date_bin (interval, timestamp, timestamp) → timestamp
Bin input into specified interval aligned with specified origin; see Section 9.9.3
date_bin('15 minutes', timestamp '2001-02-16 20:38:40', timestamp

'2001-02-16 20:05:00') → 2001-02-16 20:35:00

 date_part (text, timestamp) → double precision
Get timestamp subfield (equivalent to extract); see Section 9.9.1

date_part('hour', timestamp '2001-02-16 20:38:40') → 20

date_part (text, interval) → double precision
Get interval subfield (equivalent to extract); see Section 9.9.1

date_part('month', interval '2 years 3 months') → 3

 date_subtract (timestamp with time zone, interval [, text]) → timestamp with
time zone
Subtract an interval from a timestamp with time zone, computing times of day and
daylight-savings adjustments according to the time zone named by the third argument, or the current
TimeZone setting if that is omitted. The form with two arguments is equivalent to the timestamp
with time zone - interval operator.

58

Functions and Operators

Function
Description
Example(s)

date_subtract('2021-11-01 00:00:00+01'::timestamptz, '1 day'::in-

terval, 'Europe/Warsaw') → 2021-10-30 22:00:00+00

 date_trunc (text, timestamp) → timestamp
Truncate to specified precision; see Section 9.9.2

date_trunc('hour', timestamp '2001-02-16 20:38:40') → 2001-02-16
20:00:00

date_trunc (text, timestamp with time zone, text) → timestamp with time zone
Truncate to specified precision in the specified time zone; see Section 9.9.2
date_trunc('day', timestamptz '2001-02-16 20:38:40+00', 'Aus-

tralia/Sydney') → 2001-02-16 13:00:00+00

date_trunc (text, interval) → interval
Truncate to specified precision; see Section 9.9.2

date_trunc('hour', interval '2 days 3 hours 40 minutes') → 2 days
03:00:00

 extract (field from timestamp) → numeric
Get timestamp subfield; see Section 9.9.1

extract(hour from timestamp '2001-02-16 20:38:40') → 20

extract (field from interval) → numeric
Get interval subfield; see Section 9.9.1

extract(month from interval '2 years 3 months') → 3

 isfinite (date) → boolean
Test for finite date (not +/-infinity)

isfinite(date '2001-02-16') → true

isfinite (timestamp) → boolean
Test for finite timestamp (not +/-infinity)

isfinite(timestamp 'infinity') → false

isfinite (interval) → boolean
Test for finite interval (not +/-infinity)

isfinite(interval '4 hours') → true

 justify_days (interval) → interval
Adjust interval, converting 30-day time periods to months

justify_days(interval '1 year 65 days') → 1 year 2 mons 5 days

 justify_hours (interval) → interval
Adjust interval, converting 24-hour time periods to days

justify_hours(interval '50 hours 10 minutes') → 2 days 02:10:00

 justify_interval (interval) → interval
Adjust interval using justify_days and justify_hours, with additional sign adjustments

justify_interval(interval '1 mon -1 hour') → 29 days 23:00:00

 localtime → time
Current time of day; see Section 9.9.5

localtime → 14:39:53.662522

59

Functions and Operators

Function
Description
Example(s)

localtime (integer) → time
Current time of day, with limited precision; see Section 9.9.5

localtime(0) → 14:39:53

 localtimestamp → timestamp
Current date and time (start of current transaction); see Section 9.9.5

localtimestamp → 2019-12-23 14:39:53.662522

localtimestamp (integer) → timestamp
Current date and time (start of current transaction), with limited precision; see Section 9.9.5

localtimestamp(2) → 2019-12-23 14:39:53.66

 make_date (year int, month int, day int) → date
Create date from year, month and day fields (negative years signify BC)

make_date(2013, 7, 15) → 2013-07-15

 make_interval ([years int [, months int [, weeks int [, days int [, hours int [, mins

int [, secs double precision]]]]]]]) → interval
Create interval from years, months, weeks, days, hours, minutes and seconds fields, each of which
can default to zero

make_interval(days => 10) → 10 days

 make_time (hour int, min int, sec double precision) → time
Create time from hour, minute and seconds fields

make_time(8, 15, 23.5) → 08:15:23.5

 make_timestamp (year int, month int, day int, hour int, min int, sec double preci-

sion) → timestamp
Create timestamp from year, month, day, hour, minute and seconds fields (negative years signify BC)

make_timestamp(2013, 7, 15, 8, 15, 23.5) → 2013-07-15 08:15:23.5

 make_timestamptz (year int, month int, day int, hour int, min int, sec double pre-

cision [, timezone text]) → timestamp with time zone
Create timestamp with time zone from year, month, day, hour, minute and seconds fields (negative
years signify BC). If timezone is not specified, the current time zone is used; the examples assume
the session time zone is Europe/London

make_timestamptz(2013, 7, 15, 8, 15, 23.5) → 2013-07-15
08:15:23.5+01

make_timestamptz(2013, 7, 15, 8, 15, 23.5, 'America/New_York') →
2013-07-15 13:15:23.5+01

 now () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5

now() → 2019-12-23 14:39:53.662522-05

 statement_timestamp () → timestamp with time zone
Current date and time (start of current statement); see Section 9.9.5

statement_timestamp() → 2019-12-23 14:39:53.662522-05

 timeofday () → text
Current date and time (like clock_timestamp, but as a text string); see Section 9.9.5

timeofday() → Mon Dec 23 14:39:53.662522 2019 EST

60

Functions and Operators

Function
Description
Example(s)

 transaction_timestamp () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.5

transaction_timestamp() → 2019-12-23 14:39:53.662522-05

 to_timestamp (double precision) → timestamp with time zone
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone

to_timestamp(1284352323) → 2010-09-13 04:32:03+00

 In addition to these functions, the SQL OVERLAPS operator is supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they do not
overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date, time, or time stamp
followed by an interval. When a pair of values is provided, either the start or the end can be written first; OVERLAPS
automatically takes the earlier value of the pair as the start. Each time period is considered to represent the half-
open interval start <= time < end, unless start and end are equal in which case it represents that single
time instant. This means for instance that two time periods with only an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp or timestamp
with time zone value, the months, days, and microseconds fields of the interval value are handled in
turn. First, a nonzero months field advances or decrements the date of the timestamp by the indicated number of
months, keeping the day of month the same unless it would be past the end of the new month, in which case the last
day of that month is used. (For example, March 31 plus 1 month becomes April 30, but March 31 plus 2 months
becomes May 31.) Then the days field advances or decrements the date of the timestamp by the indicated number
of days. In both these steps the local time of day is kept the same. Finally, if there is a nonzero microseconds field,
it is added or subtracted literally. When doing arithmetic on a timestamp with time zone value in a time
zone that recognizes DST, this means that adding or subtracting (say) interval '1 day' does not necessarily
have the same result as adding or subtracting interval '24 hours'. For example, with the session time
zone set to America/Denver:

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1
 day';
Result: 2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24
 hours';
Result: 2005-04-03 13:00:00-06

61

Functions and Operators

This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03 02:00:00
in time zone America/Denver.

Note there can be ambiguity in the months field returned by age because different months have different numbers
of days. PostgreSQL's approach uses the month from the earlier of the two dates when calculating partial months.
For example, age('2004-06-01', '2004-04-30') uses April to yield 1 mon 1 day, while using May
would yield 1 mon 2 days because May has 31 days, while April has only 30.

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform subtraction is
to convert each value to a number of seconds using EXTRACT(EPOCH FROM ...), then subtract the results;
this produces the number of seconds between the two values. This will adjust for the number of days in each
month, timezone changes, and daylight saving time adjustments. Subtraction of date or timestamp values with the
“-” operator returns the number of days (24-hours) and hours/minutes/seconds between the values, making the
same adjustments. The age function returns years, months, days, and hours/minutes/seconds, performing field-
by-field subtraction and then adjusting for negative field values. The following queries illustrate the differences
in these approaches. The sample results were produced with timezone = 'US/Eastern'; there is a daylight
saving time change between the two dates used:

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200.000000
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
 / 60 / 60 / 24;
Result: 121.9583333333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01
 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01
 12:00:00');
Result: 4 mons

9.9.1. EXTRACT, date_part

EXTRACT(field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be a value
expression of type timestamp, date, time, or interval. (Timestamps and times can be with or without
time zone.) field is an identifier or string that selects what field to extract from the source value. Not all fields
are valid for every input data type; for example, fields smaller than a day cannot be extracted from a date, while
fields of a day or more cannot be extracted from a time. The extract function returns values of type numeric.

The following are valid field names:

century

The century; for interval values, the year field divided by 100

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21
SELECT EXTRACT(CENTURY FROM DATE '0001-01-01 AD');
Result: 1
SELECT EXTRACT(CENTURY FROM DATE '0001-12-31 BC');
Result: -1
SELECT EXTRACT(CENTURY FROM INTERVAL '2001 years');

62

Functions and Operators

Result: 20

day

The day of the month (1–31); for interval values, the number of days

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

Note that extract's day of the week numbering differs from that of the to_char(..., 'D') function.

doy

The day of the year (1–365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

epoch

For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00 UTC
(negative for timestamps before that); for date and timestamp values, the nominal number of seconds
since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval values, the
total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16
 20:38:40.12-08');
Result: 982384720.120000
SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12');
Result: 982355920.120000
SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800.000000

You can convert an epoch value back to a timestamp with time zone with to_timestamp:

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00

Beware that applying to_timestamp to an epoch extracted from a date or timestamp value could
produce a misleading result: the result will effectively assume that the original value had been given in UTC,
which might not be the case.

63

Functions and Operators

hour

The hour field (0–23 in timestamps, unrestricted in intervals)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

isodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 week-numbering year that the date falls in

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of January,
so in early January or late December the ISO year may be different from the Gregorian year. See the week
field for more information.

julian

The Julian Date corresponding to the date or timestamp. Timestamps that are not local midnight result in a
fractional value. See Section B.7 for more information.

SELECT EXTRACT(JULIAN FROM DATE '2006-01-01');
Result: 2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00');
Result: 2453737.50000000000000000000

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full seconds

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

millennium

The millennium; for interval values, the year field divided by 1000

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3
SELECT EXTRACT(MILLENNIUM FROM INTERVAL '2001 years');
Result: 2

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

64

Functions and Operators

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500.000

minute

The minutes field (0–59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

month

The number of the month within the year (1–12); for interval values, the number of months modulo 12
(0–11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3
SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

quarter

The quarter of the year (1–4) that the date is in; for interval values, the month field divided by 3 plus 1

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1
SELECT EXTRACT(QUARTER FROM INTERVAL '1 year 6 months');
Result: 3

second

The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 40.000000
SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.500000

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east of UTC,
negative values to zones west of UTC. (Technically, PostgreSQL does not use UTC because leap seconds
are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

65

Functions and Operators

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on Mondays
and the first week of a year contains January 4 of that year. In other words, the first Thursday of a year is
in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or 53rd week
of the previous year, and for late-December dates to be part of the first week of the next year. For example,
2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the 52nd week of year
2005, while 2012-12-31 is part of the first week of 2013. It's recommended to use the isoyear field
together with week to get consistent results.

For interval values, the week field is simply the number of integral days divided by 7.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7
SELECT EXTRACT(WEEK FROM INTERVAL '13 days 24 hours');
Result: 1

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

When processing an interval value, the extract function produces field values that match the interpretation
used by the interval output function. This can produce surprising results if one starts with a non-normalized interval
representation, for example:

SELECT INTERVAL '80 minutes';
Result: 01:20:00
SELECT EXTRACT(MINUTES FROM INTERVAL '80 minutes');
Result: 20

Note

When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing
fields (epoch, julian, year, isoyear, decade, century, and millennium for time-
stamp inputs; epoch, hour, day, year, decade, century, and millennium for inter-
val inputs). For other fields, NULL is returned. PostgreSQL versions before 9.6 returned zero
for all cases of infinite input.

The extract function is primarily intended for computational processing. For formatting date/time values for
display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function ex-
tract:

date_part('field', source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for date_part
are the same as for extract. For historical reasons, the date_part function returns values of type double
precision. This can result in a loss of precision in certain uses. Using extract is recommended instead.

66

Functions and Operators

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16
SELECT date_part('hour', INTERVAL '4 hours 3 minutes');
Result: 4

9.9.2. date_trunc
The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc(field, source [, time_zone])

source is a value expression of type timestamp, timestamp with time zone, or interval. (Values
of type date and time are cast automatically to timestamp or interval, respectively.) field selects to
which precision to truncate the input value. The return value is likewise of type timestamp, timestamp with
time zone, or interval, and it has all fields that are less significant than the selected one set to zero (or
one, for day and month).

Valid values for field are:

microseconds
milliseconds
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

When the input value is of type timestamp with time zone, the truncation is performed with respect to
a particular time zone; for example, truncation to day produces a value that is midnight in that zone. By default,
truncation is done with respect to the current TimeZone setting, but the optional time_zone argument can be
provided to specify a different time zone. The time zone name can be specified in any of the ways described in
Section 8.5.3.

A time zone cannot be specified when processing timestamp without time zone or interval inputs.
These are always taken at face value.

Examples (assuming the local time zone is America/New_York):

SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00
SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16
 20:38:40+00');
Result: 2001-02-16 00:00:00-05
SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00',
 'Australia/Sydney');
Result: 2001-02-16 08:00:00-05
SELECT date_trunc('hour', INTERVAL '3 days 02:47:33');
Result: 3 days 02:00:00

67

Functions and Operators

9.9.3. date_bin
The function date_bin “bins” the input timestamp into the specified interval (the stride) aligned with a specified
origin.

date_bin(stride, source, origin)

source is a value expression of type timestamp or timestamp with time zone. (Values of type date
are cast automatically to timestamp.) stride is a value expression of type interval. The return value is
likewise of type timestamp or timestamp with time zone, and it marks the beginning of the bin into
which the source is placed.

Examples:

SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP
 '2001-01-01');
Result: 2020-02-11 15:30:00
SELECT date_bin('15 minutes', TIMESTAMP '2020-02-11 15:44:17', TIMESTAMP
 '2001-01-01 00:02:30');
Result: 2020-02-11 15:32:30

In the case of full units (1 minute, 1 hour, etc.), it gives the same result as the analogous date_trunc call, but
the difference is that date_bin can truncate to an arbitrary interval.

The stride interval must be greater than zero and cannot contain units of month or larger.

9.9.4. AT TIME ZONE and AT LOCAL
The AT TIME ZONE operator converts time stamp without time zone to/from time stamp with time zone, and
time with time zone values to different time zones. Table 9.34 shows its variants.

Table 9.34. AT TIME ZONE and AT LOCAL Variants

Operator
Description
Example(s)

timestamp without time zone AT TIME ZONE zone → timestamp with time zone
Converts given time stamp without time zone to time stamp with time zone, assuming the given value
is in the named time zone.

timestamp '2001-02-16 20:38:40' at time zone 'America/Denver' →
2001-02-17 03:38:40+00

timestamp without time zone AT LOCAL → timestamp with time zone
Converts given time stamp without time zone to time stamp with the session's TimeZone value as
time zone.

timestamp '2001-02-16 20:38:40' at local → 2001-02-17 03:38:40+00

timestamp with time zone AT TIME ZONE zone → timestamp without time zone
Converts given time stamp with time zone to time stamp without time zone, as the time would appear
in that zone.
timestamp with time zone '2001-02-16 20:38:40-05' at time zone

'America/Denver' → 2001-02-16 18:38:40

timestamp with time zone AT LOCAL → timestamp without time zone
Converts given time stamp with time zone to time stamp without time zone, as the time would appear
with the session's TimeZone value as time zone.

68

Functions and Operators

Operator
Description
Example(s)

timestamp with time zone '2001-02-16 20:38:40-05' at local →
2001-02-16 18:38:40

time with time zone AT TIME ZONE zone → time with time zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses the cur-
rently active UTC offset for the named destination zone.

time with time zone '05:34:17-05' at time zone 'UTC' → 10:34:17+00

time with time zone AT LOCAL → time with time zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses the cur-
rently active UTC offset for the session's TimeZone value.
Assuming the session's TimeZone is set to UTC:

time with time zone '05:34:17-05' at local → 10:34:17+00

In these expressions, the desired time zone zone can be specified either as a text value (e.g., 'Ameri-
ca/Los_Angeles') or as an interval (e.g., INTERVAL '-08:00'). In the text case, a time zone name can
be specified in any of the ways described in Section 8.5.3. The interval case is only useful for zones that have
fixed offsets from UTC, so it is not very common in practice.

The syntax AT LOCAL may be used as shorthand for AT TIME ZONE local, where local is the session's
TimeZone value.

Examples (assuming the current TimeZone setting is America/Los_Angeles):

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE
 'America/Denver';
Result: 2001-02-16 18:38:40
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME
 ZONE 'America/Chicago';
Result: 2001-02-16 05:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT LOCAL;
Result: 2001-02-16 17:38:40
SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE
 '+05';
Result: 2001-02-16 20:38:40
SELECT TIME WITH TIME ZONE '20:38:40-05' AT LOCAL;
Result: 17:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current TimeZone
setting. The second example shifts the time stamp with time zone value to the specified time zone, and returns
the value without a time zone. This allows storage and display of values different from the current TimeZone
setting. The third example converts Tokyo time to Chicago time. The fourth example shifts the time stamp with
time zone value to the time zone currently specified by the TimeZone setting and returns the value without a
time zone. The fifth example demonstrates that the sign in a POSIX-style time zone specification has the opposite
meaning of the sign in an ISO-8601 datetime literal, as described in Section 8.5.3 and Appendix B.

The sixth example is a cautionary tale. Due to the fact that there is no date associated with the input value, the
conversion is made using the current date of the session. Therefore, this static example may show a wrong result
depending on the time of the year it is viewed because 'America/Los_Angeles' observes Daylight Savings
Time.

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct timestamp
AT TIME ZONE zone.

69

Functions and Operators

The function timezone(zone, time) is equivalent to the SQL-conforming construct time AT TIME
ZONE zone.

The function timezone(timestamp) is equivalent to the SQL-conforming construct timestamp AT LO-
CAL.

The function timezone(time) is equivalent to the SQL-conforming construct time AT LOCAL.

9.9.5. Current Date/Time
PostgreSQL provides a number of functions that return values related to the current date and time. These SQL-
standard functions all return values based on the start time of the current transaction:

CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and LOCALTIMES-
TAMP deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a pre-
cision parameter, which causes the result to be rounded to that many fractional digits in the seconds field. Without
a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05
SELECT CURRENT_DATE;
Result: 2019-12-23
SELECT CURRENT_TIMESTAMP;
Result: 2019-12-23 14:39:53.662522-05
SELECT CURRENT_TIMESTAMP(2);
Result: 2019-12-23 14:39:53.66-05
SELECT LOCALTIMESTAMP;
Result: 2019-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during the trans-
action. This is considered a feature: the intent is to allow a single transaction to have a consistent notion of the
“current” time, so that multiple modifications within the same transaction bear the same time stamp.

Note

Other database systems might advance these values more frequently.

PostgreSQL also provides functions that return the start time of the current statement, as well as the actual current
time at the instant the function is called. The complete list of non-SQL-standard time functions is:

transaction_timestamp()

70

Functions and Operators

statement_timestamp()
clock_timestamp()
timeofday()
now()

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what
it returns. statement_timestamp() returns the start time of the current statement (more specifically, the
time of receipt of the latest command message from the client). statement_timestamp() and transac-
tion_timestamp() return the same value during the first command of a transaction, but might differ during
subsequent commands. clock_timestamp() returns the actual current time, and therefore its value changes
even within a single SQL command. timeofday() is a historical PostgreSQL function. Like clock_time-
stamp(), it returns the actual current time, but as a formatted text string rather than a timestamp with
time zone value. now() is a traditional PostgreSQL equivalent to transaction_timestamp().

All the date/time data types also accept the special literal value now to specify the current date and time (again,
interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now'; -- but see tip below

Tip

Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for a table column. The system will convert now to a timestamp as soon as the constant
is parsed, so that when the default value is needed, the time of the table creation would be used!
The first two forms will not be evaluated until the default value is used, because they are function
calls. Thus they will give the desired behavior of defaulting to the time of row insertion. (See also
Section 8.5.1.4.)

9.9.6. Delaying Execution
The following functions are available to delay execution of the server process:

pg_sleep (double precision)
pg_sleep_for (interval)
pg_sleep_until (timestamp with time zone)

pg_sleep makes the current session's process sleep until the given number of seconds have elapsed. Fraction-
al-second delays can be specified. pg_sleep_for is a convenience function to allow the sleep time to be spec-
ified as an interval. pg_sleep_until is a convenience function for when a specific wake-up time is de-
sired. For example:

SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Note

The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such as
server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

71

Functions and Operators

Warning

Make sure that your session does not hold more locks than necessary when calling pg_sleep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions
For enum types (described in Section 8.7), there are several functions that allow cleaner programming without
hard-coding particular values of an enum type. These are listed in Table 9.35. The examples assume an enum
type created as:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue',
 'purple');

Table 9.35. Enum Support Functions

Function
Description
Example(s)

 enum_first (anyenum) → anyenum
Returns the first value of the input enum type.

enum_first(null::rainbow) → red

 enum_last (anyenum) → anyenum
Returns the last value of the input enum type.

enum_last(null::rainbow) → purple

 enum_range (anyenum) → anyarray
Returns all values of the input enum type in an ordered array.

enum_range(null::rainbow) → {red,orange,yellow,green,blue,purple}

enum_range (anyenum, anyenum) → anyarray
Returns the range between the two given enum values, as an ordered array. The values must be from
the same enum type. If the first parameter is null, the result will start with the first value of the enum
type. If the second parameter is null, the result will end with the last value of the enum type.

enum_range('orange'::rainbow, 'green'::rainbow) → {orange,yel-
low,green}

enum_range(NULL, 'green'::rainbow) → {red,orange,yellow,green}
enum_range('orange'::rainbow, NULL) → {orange,yellow,green,blue,pur-
ple}

Notice that except for the two-argument form of enum_range, these functions disregard the specific value passed
to them; they care only about its declared data type. Either null or a specific value of the type can be passed, with
the same result. It is more common to apply these functions to a table column or function argument than to a
hardwired type name as used in the examples.

9.11. Geometric Functions and Operators
The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native support
functions and operators, shown in Table 9.36, Table 9.37, and Table 9.38.

72

Functions and Operators

Table 9.36. Geometric Operators

Operator
Description
Example(s)

geometric_type + point → geometric_type
Adds the coordinates of the second point to those of each point of the first argument, thus perform-
ing translation. Available for point, box, path, circle.

box '(1,1),(0,0)' + point '(2,0)' → (3,1),(2,0)

path + path → path
Concatenates two open paths (returns NULL if either path is closed).

path '[(0,0),(1,1)]' + path '[(2,2),(3,3),(4,4)]' → [(0,0),(1,1),
(2,2),(3,3),(4,4)]

geometric_type - point → geometric_type
Subtracts the coordinates of the second point from those of each point of the first argument, thus
performing translation. Available for point, box, path, circle.

box '(1,1),(0,0)' - point '(2,0)' → (-1,1),(-2,0)

geometric_type * point → geometric_type
Multiplies each point of the first argument by the second point (treating a point as being a complex
number represented by real and imaginary parts, and performing standard complex multiplication).
If one interprets the second point as a vector, this is equivalent to scaling the object's size and dis-
tance from the origin by the length of the vector, and rotating it counterclockwise around the origin
by the vector's angle from the x axis. Available for point, box,a path, circle.

path '((0,0),(1,0),(1,1))' * point '(3.0,0)' → ((0,0),(3,0),(3,3))
path '((0,0),(1,0),(1,1))' * point(cosd(45), sind(45)) → ((0,0),
(0.7071067811865475,0.7071067811865475),(0,1.414213562373095))

geometric_type / point → geometric_type
Divides each point of the first argument by the second point (treating a point as being a complex
number represented by real and imaginary parts, and performing standard complex division). If one
interprets the second point as a vector, this is equivalent to scaling the object's size and distance
from the origin down by the length of the vector, and rotating it clockwise around the origin by the
vector's angle from the x axis. Available for point, box,a path, circle.

path '((0,0),(1,0),(1,1))' / point '(2.0,0)' → ((0,0),(0.5,0),
(0.5,0.5))

path '((0,0),(1,0),(1,1))' / point(cosd(45), sind(45)) → ((0,0),
(0.7071067811865476,-0.7071067811865476),(1.4142135623730951,0))

@-@ geometric_type → double precision
Computes the total length. Available for lseg, path.

@-@ path '[(0,0),(1,0),(1,1)]' → 2

@@ geometric_type → point
Computes the center point. Available for box, lseg, polygon, circle.

@@ box '(2,2),(0,0)' → (1,1)

geometric_type → integer
Returns the number of points. Available for path, polygon.

path '((1,0),(0,1),(-1,0))' → 3

geometric_type # geometric_type → point
Computes the point of intersection, or NULL if there is none. Available for lseg, line.

lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]' → (0.5,0.5)

73

Functions and Operators

Operator
Description
Example(s)

box # box → box
Computes the intersection of two boxes, or NULL if there is none.

box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)' → (1,1),(-1,-1)

geometric_type ## geometric_type → point
Computes the closest point to the first object on the second object. Available for these pairs of types:
(point, box), (point, lseg), (point, line), (lseg, box), (lseg, lseg), (line, lseg).

point '(0,0)' ## lseg '[(2,0),(0,2)]' → (1,1)

geometric_type <-> geometric_type → double precision
Computes the distance between the objects. Available for all seven geometric types, for all combina-
tions of point with another geometric type, and for these additional pairs of types: (box, lseg),
(lseg, line), (polygon, circle) (and the commutator cases).

circle '<(0,0),1>' <-> circle '<(5,0),1>' → 3

geometric_type @> geometric_type → boolean
Does first object contain second? Available for these pairs of types: (box, point), (box, box),
(path, point), (polygon, point), (polygon, polygon), (circle, point), (circle,
circle).

circle '<(0,0),2>' @> point '(1,1)' → t

geometric_type <@ geometric_type → boolean
Is first object contained in or on second? Available for these pairs of types: (point, box), (point,
lseg), (point, line), (point, path), (point, polygon), (point, circle), (box, box),
(lseg, box), (lseg, line), (polygon, polygon), (circle, circle).

point '(1,1)' <@ circle '<(0,0),2>' → t

geometric_type && geometric_type → boolean
Do these objects overlap? (One point in common makes this true.) Available for box, polygon,
circle.

box '(1,1),(0,0)' && box '(2,2),(0,0)' → t

geometric_type << geometric_type → boolean
Is first object strictly left of second? Available for point, box, polygon, circle.

circle '<(0,0),1>' << circle '<(5,0),1>' → t

geometric_type >> geometric_type → boolean
Is first object strictly right of second? Available for point, box, polygon, circle.

circle '<(5,0),1>' >> circle '<(0,0),1>' → t

geometric_type &< geometric_type → boolean
Does first object not extend to the right of second? Available for box, polygon, circle.

box '(1,1),(0,0)' &< box '(2,2),(0,0)' → t

geometric_type &> geometric_type → boolean
Does first object not extend to the left of second? Available for box, polygon, circle.

box '(3,3),(0,0)' &> box '(2,2),(0,0)' → t

geometric_type <<| geometric_type → boolean
Is first object strictly below second? Available for point, box, polygon, circle.

box '(3,3),(0,0)' <<| box '(5,5),(3,4)' → t

geometric_type |>> geometric_type → boolean

74

Functions and Operators

Operator
Description
Example(s)

Is first object strictly above second? Available for point, box, polygon, circle.

box '(5,5),(3,4)' |>> box '(3,3),(0,0)' → t

geometric_type &<| geometric_type → boolean
Does first object not extend above second? Available for box, polygon, circle.

box '(1,1),(0,0)' &<| box '(2,2),(0,0)' → t

geometric_type |&> geometric_type → boolean
Does first object not extend below second? Available for box, polygon, circle.

box '(3,3),(0,0)' |&> box '(2,2),(0,0)' → t

box <^ box → boolean
Is first object below second (allows edges to touch)?

box '((1,1),(0,0))' <^ box '((2,2),(1,1))' → t

box >^ box → boolean
Is first object above second (allows edges to touch)?

box '((2,2),(1,1))' >^ box '((1,1),(0,0))' → t

geometric_type ?# geometric_type → boolean
Do these objects intersect? Available for these pairs of types: (box, box), (lseg, box), (lseg,
lseg), (lseg, line), (line, box), (line, line), (path, path).

lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)' → t

?- line → boolean
?- lseg → boolean

Is line horizontal?

?- lseg '[(-1,0),(1,0)]' → t

point ?- point → boolean
Are points horizontally aligned (that is, have same y coordinate)?

point '(1,0)' ?- point '(0,0)' → t

?| line → boolean
?| lseg → boolean

Is line vertical?

?| lseg '[(-1,0),(1,0)]' → f

point ?| point → boolean
Are points vertically aligned (that is, have same x coordinate)?

point '(0,1)' ?| point '(0,0)' → t

line ?-| line → boolean
lseg ?-| lseg → boolean

Are lines perpendicular?

lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]' → t

line ?|| line → boolean
lseg ?|| lseg → boolean

Are lines parallel?

lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]' → t

75

Functions and Operators

Operator
Description
Example(s)

geometric_type ~= geometric_type → boolean
Are these objects the same? Available for point, box, polygon, circle.

polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' → t
a“Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallel to the axes. Hence the
box's size is not preserved, as a true rotation would do.

Caution

Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box,
polygon, and circle types. Some of the geometric types also have an = operator, but = com-
pares for equal areas only. The other scalar comparison operators (<= and so on), where available
for these types, likewise compare areas.

Note

Before PostgreSQL 14, the point is strictly below/above comparison operators point <<| point
and point |>> point were respectively called <^ and >^. These names are still available, but
are deprecated and will eventually be removed.

Table 9.37. Geometric Functions

Function
Description
Example(s)

 area (geometric_type) → double precision
Computes area. Available for box, path, circle. A path input must be closed, else NULL is re-
turned. Also, if the path is self-intersecting, the result may be meaningless.

area(box '(2,2),(0,0)') → 4

 center (geometric_type) → point
Computes center point. Available for box, circle.

center(box '(1,2),(0,0)') → (0.5,1)

 diagonal (box) → lseg
Extracts box's diagonal as a line segment (same as lseg(box)).

diagonal(box '(1,2),(0,0)') → [(1,2),(0,0)]

 diameter (circle) → double precision
Computes diameter of circle.

diameter(circle '<(0,0),2>') → 4

 height (box) → double precision
Computes vertical size of box.

height(box '(1,2),(0,0)') → 2

 isclosed (path) → boolean
Is path closed?

isclosed(path '((0,0),(1,1),(2,0))') → t

 isopen (path) → boolean

76

Functions and Operators

Function
Description
Example(s)

Is path open?

isopen(path '[(0,0),(1,1),(2,0)]') → t

 length (geometric_type) → double precision
Computes the total length. Available for lseg, path.

length(path '((-1,0),(1,0))') → 4

 npoints (geometric_type) → integer
Returns the number of points. Available for path, polygon.

npoints(path '[(0,0),(1,1),(2,0)]') → 3

 pclose (path) → path
Converts path to closed form.

pclose(path '[(0,0),(1,1),(2,0)]') → ((0,0),(1,1),(2,0))

 popen (path) → path
Converts path to open form.

popen(path '((0,0),(1,1),(2,0))') → [(0,0),(1,1),(2,0)]

 radius (circle) → double precision
Computes radius of circle.

radius(circle '<(0,0),2>') → 2

 slope (point, point) → double precision
Computes slope of a line drawn through the two points.

slope(point '(0,0)', point '(2,1)') → 0.5

 width (box) → double precision
Computes horizontal size of box.

width(box '(1,2),(0,0)') → 1

Table 9.38. Geometric Type Conversion Functions

Function
Description
Example(s)

 box (circle) → box
Computes box inscribed within the circle.

box(circle '<(0,0),2>') → (1.414213562373095,1.414213562373095),
(-1.414213562373095,-1.414213562373095)

box (point) → box
Converts point to empty box.

box(point '(1,0)') → (1,0),(1,0)

box (point, point) → box
Converts any two corner points to box.

box(point '(0,1)', point '(1,0)') → (1,1),(0,0)

box (polygon) → box
Computes bounding box of polygon.

box(polygon '((0,0),(1,1),(2,0))') → (2,1),(0,0)

77

Functions and Operators

Function
Description
Example(s)

 bound_box (box, box) → box
Computes bounding box of two boxes.

bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)') → (4,4),(0,0)

 circle (box) → circle
Computes smallest circle enclosing box.

circle(box '(1,1),(0,0)') → <(0.5,0.5),0.7071067811865476>

circle (point, double precision) → circle
Constructs circle from center and radius.

circle(point '(0,0)', 2.0) → <(0,0),2>

circle (polygon) → circle
Converts polygon to circle. The circle's center is the mean of the positions of the polygon's points,
and the radius is the average distance of the polygon's points from that center.

circle(polygon '((0,0),(1,3),(2,0))') → <(1,1),1.6094757082487299>

 line (point, point) → line
Converts two points to the line through them.

line(point '(-1,0)', point '(1,0)') → {0,-1,0}

 lseg (box) → lseg
Extracts box's diagonal as a line segment.

lseg(box '(1,0),(-1,0)') → [(1,0),(-1,0)]

lseg (point, point) → lseg
Constructs line segment from two endpoints.

lseg(point '(-1,0)', point '(1,0)') → [(-1,0),(1,0)]

 path (polygon) → path
Converts polygon to a closed path with the same list of points.

path(polygon '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

 point (double precision, double precision) → point
Constructs point from its coordinates.

point(23.4, -44.5) → (23.4,-44.5)

point (box) → point
Computes center of box.

point(box '(1,0),(-1,0)') → (0,0)

point (circle) → point
Computes center of circle.

point(circle '<(0,0),2>') → (0,0)

point (lseg) → point
Computes center of line segment.

point(lseg '[(-1,0),(1,0)]') → (0,0)

point (polygon) → point
Computes center of polygon (the mean of the positions of the polygon's points).

point(polygon '((0,0),(1,1),(2,0))') → (1,0.3333333333333333)

78

Functions and Operators

Function
Description
Example(s)

 polygon (box) → polygon
Converts box to a 4-point polygon.

polygon(box '(1,1),(0,0)') → ((0,0),(0,1),(1,1),(1,0))

polygon (circle) → polygon
Converts circle to a 12-point polygon.

polygon(circle '<(0,0),2>') → ((-2,0),
(-1.7320508075688774,0.9999999999999999),
(-1.0000000000000002,1.7320508075688772),
(-1.2246063538223773e-16,2),
(0.9999999999999996,1.7320508075688774),
(1.732050807568877,1.0000000000000007),(2,2.4492127076447545e-16),
(1.7320508075688776,-0.9999999999999994),
(1.0000000000000009,-1.7320508075688767),
(3.673819061467132e-16,-2),
(-0.9999999999999987,-1.732050807568878),
(-1.7320508075688767,-1.0000000000000009))

polygon (integer, circle) → polygon
Converts circle to an n-point polygon.

polygon(4, circle '<(3,0),1>') → ((2,0),(3,1),
(4,1.2246063538223773e-16),(3,-1))

polygon (path) → polygon
Converts closed path to a polygon with the same list of points.

polygon(path '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

It is possible to access the two component numbers of a point as though the point were an array with indexes
0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X coordinate and
UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of type box or lseg can
be treated as an array of two point values.

9.12. Network Address Functions and Opera-
tors
The IP network address types, cidr and inet, support the usual comparison operators shown in Table 9.1 as
well as the specialized operators and functions shown in Table 9.39 and Table 9.40.

Any cidr value can be cast to inet implicitly; therefore, the operators and functions shown below as operating
on inet also work on cidr values. (Where there are separate functions for inet and cidr, it is because the
behavior should be different for the two cases.) Also, it is permitted to cast an inet value to cidr. When this is
done, any bits to the right of the netmask are silently zeroed to create a valid cidr value.

Table 9.39. IP Address Operators

Operator
Description
Example(s)

inet << inet → boolean
Is subnet strictly contained by subnet? This operator, and the next four, test for subnet inclusion.
They consider only the network parts of the two addresses (ignoring any bits to the right of the net-
masks) and determine whether one network is identical to or a subnet of the other.

79

Functions and Operators

Operator
Description
Example(s)

inet '192.168.1.5' << inet '192.168.1/24' → t
inet '192.168.0.5' << inet '192.168.1/24' → f
inet '192.168.1/24' << inet '192.168.1/24' → f

inet <<= inet → boolean
Is subnet contained by or equal to subnet?

inet '192.168.1/24' <<= inet '192.168.1/24' → t

inet >> inet → boolean
Does subnet strictly contain subnet?

inet '192.168.1/24' >> inet '192.168.1.5' → t

inet >>= inet → boolean
Does subnet contain or equal subnet?

inet '192.168.1/24' >>= inet '192.168.1/24' → t

inet && inet → boolean
Does either subnet contain or equal the other?

inet '192.168.1/24' && inet '192.168.1.80/28' → t
inet '192.168.1/24' && inet '192.168.2.0/28' → f

~ inet → inet
Computes bitwise NOT.

~ inet '192.168.1.6' → 63.87.254.249

inet & inet → inet
Computes bitwise AND.

inet '192.168.1.6' & inet '0.0.0.255' → 0.0.0.6

inet | inet → inet
Computes bitwise OR.

inet '192.168.1.6' | inet '0.0.0.255' → 192.168.1.255

inet + bigint → inet
Adds an offset to an address.

inet '192.168.1.6' + 25 → 192.168.1.31

bigint + inet → inet
Adds an offset to an address.

200 + inet '::ffff:fff0:1' → ::ffff:255.240.0.201

inet - bigint → inet
Subtracts an offset from an address.

inet '192.168.1.43' - 36 → 192.168.1.7

inet - inet → bigint
Computes the difference of two addresses.

inet '192.168.1.43' - inet '192.168.1.19' → 24
inet '::1' - inet '::ffff:1' → -4294901760

80

Functions and Operators

Table 9.40. IP Address Functions

Function
Description
Example(s)

 abbrev (inet) → text
Creates an abbreviated display format as text. (The result is the same as the inet output function
produces; it is “abbreviated” only in comparison to the result of an explicit cast to text, which for
historical reasons will never suppress the netmask part.)

abbrev(inet '10.1.0.0/32') → 10.1.0.0

abbrev (cidr) → text
Creates an abbreviated display format as text. (The abbreviation consists of dropping all-zero octets
to the right of the netmask; more examples are in Table 8.22.)

abbrev(cidr '10.1.0.0/16') → 10.1/16

 broadcast (inet) → inet
Computes the broadcast address for the address's network.

broadcast(inet '192.168.1.5/24') → 192.168.1.255/24

 family (inet) → integer
Returns the address's family: 4 for IPv4, 6 for IPv6.

family(inet '::1') → 6

 host (inet) → text
Returns the IP address as text, ignoring the netmask.

host(inet '192.168.1.0/24') → 192.168.1.0

 hostmask (inet) → inet
Computes the host mask for the address's network.

hostmask(inet '192.168.23.20/30') → 0.0.0.3

 inet_merge (inet, inet) → cidr
Computes the smallest network that includes both of the given networks.

inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24') →
192.168.0.0/22

 inet_same_family (inet, inet) → boolean
Tests whether the addresses belong to the same IP family.

inet_same_family(inet '192.168.1.5/24', inet '::1') → f

 masklen (inet) → integer
Returns the netmask length in bits.

masklen(inet '192.168.1.5/24') → 24

 netmask (inet) → inet
Computes the network mask for the address's network.

netmask(inet '192.168.1.5/24') → 255.255.255.0

 network (inet) → cidr
Returns the network part of the address, zeroing out whatever is to the right of the netmask. (This is
equivalent to casting the value to cidr.)

network(inet '192.168.1.5/24') → 192.168.1.0/24

 set_masklen (inet, integer) → inet
Sets the netmask length for an inet value. The address part does not change.

81

Functions and Operators

Function
Description
Example(s)

set_masklen(inet '192.168.1.5/24', 16) → 192.168.1.5/16

set_masklen (cidr, integer) → cidr
Sets the netmask length for a cidr value. Address bits to the right of the new netmask are set to ze-
ro.

set_masklen(cidr '192.168.1.0/24', 16) → 192.168.0.0/16

 text (inet) → text
Returns the unabbreviated IP address and netmask length as text. (This has the same result as an ex-
plicit cast to text.)

text(inet '192.168.1.5') → 192.168.1.5/32

Tip

The abbrev, host, and text functions are primarily intended to offer alternative display for-
mats for IP addresses.

The MAC address types, macaddr and macaddr8, support the usual comparison operators shown in Table 9.1
as well as the specialized functions shown in Table 9.41. In addition, they support the bitwise logical operators ~,
& and | (NOT, AND and OR), just as shown above for IP addresses.

Table 9.41. MAC Address Functions

Function
Description
Example(s)

 trunc (macaddr) → macaddr
Sets the last 3 bytes of the address to zero. The remaining prefix can be associated with a particular
manufacturer (using data not included in PostgreSQL).

trunc(macaddr '12:34:56:78:90:ab') → 12:34:56:00:00:00

trunc (macaddr8) → macaddr8
Sets the last 5 bytes of the address to zero. The remaining prefix can be associated with a particular
manufacturer (using data not included in PostgreSQL).

trunc(macaddr8 '12:34:56:78:90:ab:cd:ef') → 12:34:56:00:00:00:00:00

 macaddr8_set7bit (macaddr8) → macaddr8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for inclusion in an
IPv6 address.

macaddr8_set7bit(macaddr8 '00:34:56:ab:cd:ef') →
02:34:56:ff:fe:ab:cd:ef

9.13. Text Search Functions and Operators
Table 9.42, Table 9.43 and Table 9.44 summarize the functions and operators that are provided for full text search-
ing. See Chapter 12 for a detailed explanation of PostgreSQL's text search facility.

82

Functions and Operators

Table 9.42. Text Search Operators

Operator
Description
Example(s)

tsvector @@ tsquery → boolean
tsquery @@ tsvector → boolean

Does tsvector match tsquery? (The arguments can be given in either order.)

to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat') → t

text @@ tsquery → boolean
Does text string, after implicit invocation of to_tsvector(), match tsquery?

'fat cats ate rats' @@ to_tsquery('cat & rat') → t

tsvector || tsvector → tsvector
Concatenates two tsvectors. If both inputs contain lexeme positions, the second input's positions
are adjusted accordingly.

'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector → 'a':1 'b':2,5 'c':3
'd':4

tsquery && tsquery → tsquery
ANDs two tsquerys together, producing a query that matches documents that match both input
queries.

'fat | rat'::tsquery && 'cat'::tsquery → ('fat' | 'rat') & 'cat'

tsquery || tsquery → tsquery
ORs two tsquerys together, producing a query that matches documents that match either input
query.

'fat | rat'::tsquery || 'cat'::tsquery → 'fat' | 'rat' | 'cat'

!! tsquery → tsquery
Negates a tsquery, producing a query that matches documents that do not match the input query.

!! 'cat'::tsquery → !'cat'

tsquery <-> tsquery → tsquery
Constructs a phrase query, which matches if the two input queries match at successive lexemes.

to_tsquery('fat') <-> to_tsquery('rat') → 'fat' <-> 'rat'

tsquery @> tsquery → boolean
Does first tsquery contain the second? (This considers only whether all the lexemes appearing in
one query appear in the other, ignoring the combining operators.)

'cat'::tsquery @> 'cat & rat'::tsquery → f

tsquery <@ tsquery → boolean
Is first tsquery contained in the second? (This considers only whether all the lexemes appearing in
one query appear in the other, ignoring the combining operators.)

'cat'::tsquery <@ 'cat & rat'::tsquery → t
'cat'::tsquery <@ '!cat & rat'::tsquery → t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are available for
types tsvector and tsquery. These are not very useful for text searching but allow, for example, unique
indexes to be built on columns of these types.

83

Functions and Operators

Table 9.43. Text Search Functions

Function
Description
Example(s)

 array_to_tsvector (text[]) → tsvector
Converts an array of text strings to a tsvector. The given strings are used as lexemes as-is, with-
out further processing. Array elements must not be empty strings or NULL.

array_to_tsvector('{fat,cat,rat}'::text[]) → 'cat' 'fat' 'rat'

 get_current_ts_config () → regconfig
Returns the OID of the current default text search configuration (as set by default_text_search_con-
fig).

get_current_ts_config() → english

 length (tsvector) → integer
Returns the number of lexemes in the tsvector.

length('fat:2,4 cat:3 rat:5A'::tsvector) → 3

 numnode (tsquery) → integer
Returns the number of lexemes plus operators in the tsquery.

numnode('(fat & rat) | cat'::tsquery) → 5

 plainto_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configuration.
Any punctuation in the string is ignored (it does not determine query operators). The resulting query
matches documents containing all non-stopwords in the text.

plainto_tsquery('english', 'The Fat Rats') → 'fat' & 'rat'

 phraseto_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configuration.
Any punctuation in the string is ignored (it does not determine query operators). The resulting query
matches phrases containing all non-stopwords in the text.

phraseto_tsquery('english', 'The Fat Rats') → 'fat' <-> 'rat'
phraseto_tsquery('english', 'The Cat and Rats') → 'cat' <2> 'rat'

 websearch_to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configuration.
Quoted word sequences are converted to phrase tests. The word “or” is understood as producing an
OR operator, and a dash produces a NOT operator; other punctuation is ignored. This approximates
the behavior of some common web search tools.

websearch_to_tsquery('english', '"fat rat" or cat dog') → 'fat' <->
'rat' | 'cat' & 'dog'

 querytree (tsquery) → text
Produces a representation of the indexable portion of a tsquery. A result that is empty or just T in-
dicates a non-indexable query.

querytree('foo & ! bar'::tsquery) → 'foo'

 setweight (vector tsvector, weight "char") → tsvector
Assigns the specified weight to each element of the vector.

setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A') → 'cat':3A
'fat':2A,4A 'rat':5A

 setweight (vector tsvector, weight "char", lexemes text[]) → tsvector

84

Functions and Operators

Function
Description
Example(s)

Assigns the specified weight to elements of the vector that are listed in lexemes. The strings
in lexemes are taken as lexemes as-is, without further processing. Strings that do not match any
lexeme in vector are ignored.

setweight('fat:2,4 cat:3 rat:5,6B'::tsvector, 'A', '{cat,rat}') →
'cat':3A 'fat':2,4 'rat':5A,6A

 strip (tsvector) → tsvector
Removes positions and weights from the tsvector.

strip('fat:2,4 cat:3 rat:5A'::tsvector) → 'cat' 'fat' 'rat'

 to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default configuration.
The words must be combined by valid tsquery operators.

to_tsquery('english', 'The & Fat & Rats') → 'fat' & 'rat'

 to_tsvector ([config regconfig,] document text) → tsvector
Converts text to a tsvector, normalizing words according to the specified or default configura-
tion. Position information is included in the result.

to_tsvector('english', 'The Fat Rats') → 'fat':2 'rat':3

to_tsvector ([config regconfig,] document json) → tsvector
to_tsvector ([config regconfig,] document jsonb) → tsvector

Converts each string value in the JSON document to a tsvector, normalizing words according to
the specified or default configuration. The results are then concatenated in document order to pro-
duce the output. Position information is generated as though one stopword exists between each pair
of string values. (Beware that “document order” of the fields of a JSON object is implementation-de-
pendent when the input is jsonb; observe the difference in the examples.)
to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json)

→ 'dog':5 'fat':2 'rat':3
to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::jsonb)

→ 'dog':1 'fat':4 'rat':5

 json_to_tsvector ([config regconfig,] document json, filter jsonb) → tsvector
 jsonb_to_tsvector ([config regconfig,] document jsonb, filter jsonb) → tsvec-

tor
Selects each item in the JSON document that is requested by the filter and converts each one to
a tsvector, normalizing words according to the specified or default configuration. The results
are then concatenated in document order to produce the output. Position information is generated as
though one stopword exists between each pair of selected items. (Beware that “document order” of
the fields of a JSON object is implementation-dependent when the input is jsonb.) The filter
must be a jsonb array containing zero or more of these keywords: "string" (to include all string
values), "numeric" (to include all numeric values), "boolean" (to include all boolean values),
"key" (to include all keys), or "all" (to include all the above). As a special case, the filter can
also be a simple JSON value that is one of these keywords.
json_to_tsvector('english', '{"a": "The Fat Rats", "b":

123}'::json, '["string", "numeric"]') → '123':5 'fat':2 'rat':3
json_to_tsvector('english', '{"cat": "The Fat Rats", "dog":

123}'::json, '"all"') → '123':9 'cat':1 'dog':7 'fat':4 'rat':5

 ts_delete (vector tsvector, lexeme text) → tsvector
Removes any occurrence of the given lexeme from the vector. The lexeme string is treated as a
lexeme as-is, without further processing.

85

Functions and Operators

Function
Description
Example(s)

ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat') → 'cat':3
'rat':5A

ts_delete (vector tsvector, lexemes text[]) → tsvector
Removes any occurrences of the lexemes in lexemes from the vector. The strings in lexemes
are taken as lexemes as-is, without further processing. Strings that do not match any lexeme in vec-
tor are ignored.

ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat']) →
'cat':3

 ts_filter (vector tsvector, weights "char"[]) → tsvector
Selects only elements with the given weights from the vector.

ts_filter('fat:2,4 cat:3b,7c rat:5A'::tsvector, '{a,b}') → 'cat':3B
'rat':5A

 ts_headline ([config regconfig,] document text, query tsquery [, options text])

→ text
Displays, in an abbreviated form, the match(es) for the query in the document, which must be
raw text not a tsvector. Words in the document are normalized according to the specified or de-
fault configuration before matching to the query. Use of this function is discussed in Section 12.3.4,
which also describes the available options.

ts_headline('The fat cat ate the rat.', 'cat') → The fat cat
ate the rat.

ts_headline ([config regconfig,] document json, query tsquery [, options text]) →
text

ts_headline ([config regconfig,] document jsonb, query tsquery [, options text])

→ text
Displays, in an abbreviated form, match(es) for the query that occur in string values within the
JSON document. See Section 12.3.4 for more details.

ts_headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat') →
{"cat": "raining cats and dogs"}

 ts_rank ([weights real[],] vector tsvector, query tsquery [, normalization inte-

ger]) → real
Computes a score showing how well the vector matches the query. See Section 12.3.3 for de-
tails.

ts_rank(to_tsvector('raining cats and dogs'), 'cat') → 0.06079271

 ts_rank_cd ([weights real[],] vector tsvector, query tsquery [, normalization

integer]) → real
Computes a score showing how well the vector matches the query, using a cover density algo-
rithm. See Section 12.3.3 for details.

ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat') → 0.1

 ts_rewrite (query tsquery, target tsquery, substitute tsquery) → tsquery
Replaces occurrences of target with substitute within the query. See Section 12.4.2.1 for
details.

ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery) → 'b'
& ('foo' | 'bar')

ts_rewrite (query tsquery, select text) → tsquery
Replaces portions of the query according to target(s) and substitute(s) obtained by executing a
SELECT command. See Section 12.4.2.1 for details.

86

Functions and Operators

Function
Description
Example(s)

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases') → 'b'
& ('foo' | 'bar')

 tsquery_phrase (query1 tsquery, query2 tsquery) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 at successive lexemes
(same as <-> operator).

tsquery_phrase(to_tsquery('fat'), to_tsquery('cat')) → 'fat' <->
'cat'

tsquery_phrase (query1 tsquery, query2 tsquery, distance integer) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 that occur exactly
distance lexemes apart.

tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) → 'fat'
<10> 'cat'

 tsvector_to_array (tsvector) → text[]
Converts a tsvector to an array of lexemes.

tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector) → {cat,fat,rat}

 unnest (tsvector) → setof record (lexeme text, positions smallint[], weights
text)
Expands a tsvector into a set of rows, one per lexeme.

select * from unnest('cat:3 fat:2,4 rat:5A'::tsvector) →

 lexeme | positions | weights
--------+-----------+---------
 cat | {3} | {D}
 fat | {2,4} | {D,D}
 rat | {5} | {A}

Note

All the text search functions that accept an optional regconfig argument will use the configu-
ration specified by default_text_search_config when that argument is omitted.

The functions in Table 9.44 are listed separately because they are not usually used in everyday text searching
operations. They are primarily helpful for development and debugging of new text search configurations.

Table 9.44. Text Search Debugging Functions

Function
Description
Example(s)

 ts_debug ([config regconfig,] document text) → setof record (alias text, de-
scription text, token text, dictionaries regdictionary[], dictionary reg-
dictionary, lexemes text[])
Extracts and normalizes tokens from the document according to the specified or default text search
configuration, and returns information about how each token was processed. See Section 12.8.1 for
details.

ts_debug('english', 'The Brightest supernovaes') → (asciiword,"Word,
all ASCII",The,{english_stem},english_stem,{}) ...

87

Functions and Operators

Function
Description
Example(s)

 ts_lexize (dict regdictionary, token text) → text[]
Returns an array of replacement lexemes if the input token is known to the dictionary, or an empty
array if the token is known to the dictionary but it is a stop word, or NULL if it is not a known word.
See Section 12.8.3 for details.

ts_lexize('english_stem', 'stars') → {star}

 ts_parse (parser_name text, document text) → setof record (tokid integer, token
text)
Extracts tokens from the document using the named parser. See Section 12.8.2 for details.

ts_parse('default', 'foo - bar') → (1,foo) ...

ts_parse (parser_oid oid, document text) → setof record (tokid integer, token
text)
Extracts tokens from the document using a parser specified by OID. See Section 12.8.2 for details.

ts_parse(3722, 'foo - bar') → (1,foo) ...

 ts_token_type (parser_name text) → setof record (tokid integer, alias text, de-
scription text)
Returns a table that describes each type of token the named parser can recognize. See Section 12.8.2
for details.

ts_token_type('default') → (1,asciiword,"Word, all ASCII") ...

ts_token_type (parser_oid oid) → setof record (tokid integer, alias text, de-
scription text)
Returns a table that describes each type of token a parser specified by OID can recognize. See Sec-
tion 12.8.2 for details.

ts_token_type(3722) → (1,asciiword,"Word, all ASCII") ...

 ts_stat (sqlquery text [, weights text]) → setof record (word text, ndoc integer,
nentry integer)
Executes the sqlquery, which must return a single tsvector column, and returns statistics
about each distinct lexeme contained in the data. See Section 12.4.4 for details.

ts_stat('SELECT vector FROM apod') → (foo,10,15) ...

9.14. UUID Functions
Table 9.45 shows the PostgreSQL functions that can be used to generate UUIDs.

Table 9.45. UUID Generation Functions

Function
Description
Example(s)

gen_random_uuid → uuid
uuidv4 → uuid

Generate a version 4 (random) UUID.

gen_random_uuid() → 5b30857f-0bfa-48b5-ac0b-5c64e28078d1
uuidv4() → b42410ee-132f-42ee-9e4f-09a6485c95b8

uuidv7 ([shift interval]) → uuid

88

Functions and Operators

Function
Description
Example(s)

Generate a version 7 (time-ordered) UUID. The timestamp is computed using UNIX timestamp with
millisecond precision + sub-millisecond timestamp + random. The optional parameter shift will
shift the computed timestamp by the given interval.

uuidv7() → 019535d9-3df7-79fb-b466-fa907fa17f9e

Note

The uuid-ossp module provides additional functions that implement other standard algorithms for
generating UUIDs.

Table 9.46 shows the PostgreSQL functions that can be used to extract information from UUIDs.

Table 9.46. UUID Extraction Functions

Function
Description
Example(s)

uuid_extract_timestamp (uuid) → timestamp with time zone
Extracts a timestamp with time zone from UUID version 1 and 7. For other versions, this
function returns null. Note that the extracted timestamp is not necessarily exactly equal to the time
the UUID was generated; this depends on the implementation that generated the UUID.
uuid_extract_timestamp('019535d9-3df7-79fb-b466-fa907fa17f9e'::u-

uid) → 2025-02-23 21:46:24.503-05

uuid_extract_version (uuid) → smallint
Extracts the version from a UUID of the variant described by RFC 95622. For other variants, this
function returns null. For example, for a UUID generated by gen_random_uuid, this function
will return 4.
uuid_extract_version('41db1265-8bc1-4ab3-992f-885799a4af1d'::uuid)

→ 4
uuid_extract_version('019535d9-3df7-79fb-b466-fa907fa17f9e'::uuid)

→ 7

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

See Section 8.12 for details on the data type uuid in PostgreSQL.

9.15. XML Functions
The functions and function-like expressions described in this section operate on values of type xml. See Sec-
tion 8.13 for information about the xml type. The function-like expressions xmlparse and xmlserialize
for converting to and from type xml are documented there, not in this section.

Use of most of these functions requires PostgreSQL to have been built with configure --with-libxml.

9.15.1. Producing XML Content
A set of functions and function-like expressions is available for producing XML content from SQL data. As such,
they are particularly suitable for formatting query results into XML documents for processing in client applications.

2 https://datatracker.ietf.org/doc/html/rfc9562

89

https://datatracker.ietf.org/doc/html/rfc9562
https://datatracker.ietf.org/doc/html/rfc9562

Functions and Operators

9.15.1.1. xmltext

xmltext (text) → xml

The function xmltext returns an XML value with a single text node containing the input argument as its content.
Predefined entities like ampersand (&), left and right angle brackets (< >), and quotation marks ("") are escaped.

Example:

SELECT xmltext('< foo & bar >');
 xmltext

 < foo & bar >

9.15.1.2. xmlcomment

xmlcomment (text) → xml

The function xmlcomment creates an XML value containing an XML comment with the specified text as content.
The text cannot contain “--” or end with a “-”, otherwise the resulting construct would not be a valid XML
comment. If the argument is null, the result is null.

Example:

SELECT xmlcomment('hello');

 xmlcomment

 <!--hello-->

9.15.1.3. xmlconcat

xmlconcat (xml [, ...]) → xml

The function xmlconcat concatenates a list of individual XML values to create a single value containing an
XML content fragment. Null values are omitted; the result is only null if there are no nonnull arguments.

Example:

SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version de-
claration, that version is used in the result, else no version is used. If all argument values have the standalone
declaration value “yes”, then that value is used in the result. If all argument values have a standalone declaration
value and at least one is “no”, then that is used in the result. Else the result will have no standalone declaration. If
the result is determined to require a standalone declaration but no version declaration, a version declaration with
version 1.0 will be used because XML requires an XML declaration to contain a version declaration. Encoding
declarations are ignored and removed in all cases.

Example:

90

Functions and Operators

SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1"
 standalone="no"?><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

9.15.1.4. xmlelement

xmlelement (NAME name [, XMLATTRIBUTES (attvalue [AS attname]

 [, ...])] [, content [, ...]]) → xml

The xmlelement expression produces an XML element with the given name, attributes, and content. The name
and attname items shown in the syntax are simple identifiers, not values. The attvalue and content items
are expressions, which can yield any PostgreSQL data type. The argument(s) within XMLATTRIBUTES generate
attributes of the XML element; the content value(s) are concatenated to form its content.

Examples:

SELECT xmlelement(name foo);

 xmlelement

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont',
 'ent');

 xmlelement

 <foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending characters by
the sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which case the
column's name will be used as the attribute name by default. In other cases, the attribute must be given an explicit
name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

But these are not:

91

Functions and Operators

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type xml,
complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the characters
<, >, and & will be converted to entities. Binary data (data type bytea) will be represented in base64 or hex en-
coding, depending on the setting of the configuration parameter xmlbinary. The particular behavior for individual
data types is expected to evolve in order to align the PostgreSQL mappings with those specified in SQL:2006 and
later, as discussed in Section D.3.1.3.

9.15.1.5. xmlforest

xmlforest (content [AS name] [, ...]) → xml

The xmlforest expression produces an XML forest (sequence) of elements using the given names and content.
As for xmlelement, each name must be a simple identifier, while the content expressions can have any
data type.

Examples:

SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest

 <table_name>pg_authid</table_name><column_name>rolname</column_name>
 <table_name>pg_authid</table_name><column_name>rolsuper</column_name>
 ...

As seen in the second example, the element name can be omitted if the content value is a column reference, in
which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly, content
data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might be
useful to wrap xmlforest expressions in xmlelement.

92

Functions and Operators

9.15.1.6. xmlpi

xmlpi (NAME name [, content]) → xml

The xmlpi expression creates an XML processing instruction. As for xmlelement, the name must be a simple
identifier, while the content expression can have any data type. The content, if present, must not contain
the character sequence ?>.

Example:

SELECT xmlpi(name php, 'echo "hello world";');

 xmlpi

 <?php echo "hello world";?>

9.15.1.7. xmlroot

xmlroot (xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO

 VALUE}]) → xml

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified, it
replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces the value
in the root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</
content>'),
 version '1.0', standalone yes);

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

9.15.1.8. xmlagg

xmlagg (xml) → xml

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates the
input values to the aggregate function call, much like xmlconcat does, except that concatenation occurs across
rows rather than across expressions in a single row. See Section 9.21 for additional information about aggregate
functions.

Example:

CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

93

Functions and Operators

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call as described
in Section 4.2.7. For example:

SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be useful in
specific cases:

SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

9.15.2. XML Predicates
The expressions described in this section check properties of xml values.

9.15.2.1. IS DOCUMENT

xml IS DOCUMENT → boolean

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false if it is
not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the difference between
documents and content fragments.

9.15.2.2. IS NOT DOCUMENT

xml IS NOT DOCUMENT → boolean

The expression IS NOT DOCUMENT returns false if the argument XML value is a proper XML document, true
if it is not (that is, it is a content fragment), or null if the argument is null.

9.15.2.3. XMLEXISTS

XMLEXISTS (text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}]) → boolean

The function xmlexists evaluates an XPath 1.0 expression (the first argument), with the passed XML value as
its context item. The function returns false if the result of that evaluation yields an empty node-set, true if it yields
any other value. The function returns null if any argument is null. A nonnull value passed as the context item must
be an XML document, not a content fragment or any non-XML value.

Example:

SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE
 '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

94

Functions and Operators

The BY REF and BY VALUE clauses are accepted in PostgreSQL, but are ignored, as discussed in Section D.3.2.

In the SQL standard, the xmlexists function evaluates an expression in the XML Query language, but Post-
greSQL allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.2.4. xml_is_well_formed

xml_is_well_formed (text) → boolean

xml_is_well_formed_document (text) → boolean

xml_is_well_formed_content (text) → boolean

These functions check whether a text string represents well-formed XML, returning a Boolean
result. xml_is_well_formed_document checks for a well-formed document, while xm-
l_is_well_formed_content checks for well-formed content. xml_is_well_formed does the former
if the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to CONTENT. This means
that xml_is_well_formed is useful for seeing whether a simple cast to type xml will succeed, whereas the
other two functions are useful for seeing whether the corresponding variants of XMLPARSE will succeed.

Examples:

SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://
postgresql.org/stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://
postgresql.org/stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

95

Functions and Operators

9.15.3. Processing XML
To process values of data type xml, PostgreSQL offers the functions xpath and xpath_exists, which eval-
uate XPath 1.0 expressions, and the XMLTABLE table function.

9.15.3.1. xpath

xpath (xpath text, xml xml [, nsarray text[]]) → xml[]

The function xpath evaluates the XPath 1.0 expression xpath (given as text) against the XML value xml. It
returns an array of XML values corresponding to the node-set produced by the XPath expression. If the XPath
expression returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root node element.

The optional third argument of the function is an array of namespace mappings. This array should be a two-
dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an array of arrays,
each of which consists of exactly 2 elements). The first element of each array entry is the namespace name (alias),
the second the namespace URI. It is not required that aliases provided in this array be the same as those being
used in the XML document itself (in other words, both in the XML document and in the xpath function context,
aliases are local).

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</
my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}
(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', 'test</
b>',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

9.15.3.2. xpath_exists

xpath_exists (xpath text, xml xml [, nsarray text[]]) → boolean

The function xpath_exists is a specialized form of the xpath function. Instead of returning the individual
XML values that satisfy the XPath 1.0 expression, this function returns a Boolean indicating whether the query
was satisfied or not (specifically, whether it produced any value other than an empty node-set). This function is
equivalent to the XMLEXISTS predicate, except that it also offers support for a namespace mapping argument.

Example:

96

Functions and Operators

SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://
example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

9.15.3.3. xmltable

XMLTABLE (
 [XMLNAMESPACES (namespace_uri AS namespace_name [, ...]),]
 row_expression PASSING [BY {REF|VALUE}] document_expression [BY
 {REF|VALUE}]
 COLUMNS name { type [PATH column_expression]
 [DEFAULT default_expression] [NOT NULL | NULL]
 | FOR ORDINALITY }
 [, ...]

) → setof record

The xmltable expression produces a table based on an XML value, an XPath filter to extract rows, and a set
of column definitions. Although it syntactically resembles a function, it can only appear as a table in a query's
FROM clause.

The optional XMLNAMESPACES clause gives a comma-separated list of namespace definitions, where each
namespace_uri is a text expression and each namespace_name is a simple identifier. It specifies the XML
namespaces used in the document and their aliases. A default namespace specification is not currently supported.

The required row_expression argument is an XPath 1.0 expression (given as text) that is evaluated, passing
the XML value document_expression as its context item, to obtain a set of XML nodes. These nodes are
what xmltable transforms into output rows. No rows will be produced if the document_expression is
null, nor if the row_expression produces an empty node-set or any value other than a node-set.

document_expression provides the context item for the row_expression. It must be a well-formed XML
document; fragments/forests are not accepted. The BY REF and BY VALUE clauses are accepted but ignored,
as discussed in Section D.3.2.

In the SQL standard, the xmltable function evaluates expressions in the XML Query language, but PostgreSQL
allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See the syntax
summary above for the format. A name is required for each column, as is a data type (unless FOR ORDINALITY
is specified, in which case type integer is implicit). The path, default and nullability clauses are optional.

A column marked FOR ORDINALITY will be populated with row numbers, starting with 1, in the order of nodes
retrieved from the row_expression's result node-set. At most one column may be marked FOR ORDINALI-
TY.

Note

XPath 1.0 does not specify an order for nodes in a node-set, so code that relies on a particular order
of the results will be implementation-dependent. Details can be found in Section D.3.1.2.

The column_expression for a column is an XPath 1.0 expression that is evaluated for each row, with the
current node from the row_expression result as its context item, to find the value of the column. If no col-
umn_expression is given, then the column name is used as an implicit path.

97

Functions and Operators

If a column's XPath expression returns a non-XML value (which is limited to string, boolean, or double in XPath
1.0) and the column has a PostgreSQL type other than xml, the column will be set as if by assigning the value's
string representation to the PostgreSQL type. (If the value is a boolean, its string representation is taken to be 1
or 0 if the output column's type category is numeric, otherwise true or false.)

If a column's XPath expression returns a non-empty set of XML nodes and the column's PostgreSQL type is xml,
the column will be assigned the expression result exactly, if it is of document or content form. 3

A non-XML result assigned to an xml output column produces content, a single text node with the string value
of the result. An XML result assigned to a column of any other type may not have more than one node, or an error
is raised. If there is exactly one node, the column will be set as if by assigning the node's string value (as defined
for the XPath 1.0 string function) to the PostgreSQL type.

The string value of an XML element is the concatenation, in document order, of all text nodes contained in that
element and its descendants. The string value of an element with no descendant text nodes is an empty string (not
NULL). Any xsi:nil attributes are ignored. Note that the whitespace-only text() node between two non-text
elements is preserved, and that leading whitespace on a text() node is not flattened. The XPath 1.0 string
function may be consulted for the rules defining the string value of other XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in Section D.3.1.3.

If the path expression returns an empty node-set (typically, when it does not match) for a given row, the column
will be set to NULL, unless a default_expression is specified; then the value resulting from evaluating that
expression is used.

A default_expression, rather than being evaluated immediately when xmltable is called, is evaluated
each time a default is needed for the column. If the expression qualifies as stable or immutable, the repeat evalu-
ation may be skipped. This means that you can usefully use volatile functions like nextval in default_ex-
pression.

Columns may be marked NOT NULL. If the column_expression for a NOT NULL column does not match
anything and there is no DEFAULT or the default_expression also evaluates to null, an error is reported.

Examples:

CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
 <ROW id="1">
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 </ROW>
 <ROW id="5">
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
 <SIZE unit="sq_mi">145935</SIZE>
 </ROW>
 <ROW id="6">
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <SIZE unit="sq_km">697</SIZE>
 </ROW>
</ROWS>
$$ AS data;

3 A result containing more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form.
An XPath result can be of neither form, for example if it returns an attribute node selected from the element that contains it. Such a result will
be put into content form with each such disallowed node replaced by its string value, as defined for the XPath 1.0 string function.

98

Functions and Operators

SELECT xmltable.*
 FROM xmldata,
 XMLTABLE('//ROWS/ROW'
 PASSING data
 COLUMNS id int PATH '@id',
 ordinality FOR ORDINALITY,
 "COUNTRY_NAME" text,
 country_id text PATH 'COUNTRY_ID',
 size_sq_km float PATH 'SIZE[@unit = "sq_km"]',
 size_other text PATH
 'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!
="sq_km"]/@unit)',
 premier_name text PATH 'PREMIER_NAME' DEFAULT 'not
 specified');

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km | size_other |
 premier_name
----+------------+--------------+------------+------------+--------------
+---------------
 1 | 1 | Australia | AU | | |
 not specified
 5 | 2 | Japan | JP | | 145935 sq_mi |
 Shinzo Abe
 6 | 3 | Singapore | SG | 697 | |
 not specified

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath filter,
and the treatment of whitespace, XML comments and processing instructions:

CREATE TABLE xmlelements AS SELECT
xml $$
 <root>
 <element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</x>CC </
element>
 </root>
$$ AS data;

SELECT xmltable.*
 FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element text);
 element

 Hello2a2 bbbxxxCC

The following example illustrates how the XMLNAMESPACES clause can be used to specify a list of namespaces
used in the XML document as well as in the XPath expressions:

WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
 FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
 'http://example.com/b' AS "B"),
 '/x:example/x:item'

99

Functions and Operators

 PASSING (SELECT data FROM xmldata)
 COLUMNS foo int PATH '@foo',
 bar int PATH '@B:bar');
 foo | bar
-----+-----
 1 | 2
 3 | 4
 4 | 5
(3 rows)

9.15.4. Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as XML
export functionality:

table_to_xml (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xml (cursor refcursor, count integer, nulls boolean,

 tableforest boolean, targetns text) → xml

table_to_xml maps the content of the named table, passed as parameter table. The regclass type accepts
strings identifying tables using the usual notation, including optional schema qualification and double quotes (see
Section 8.19 for details). query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the parameter
cursor. This variant is recommended if large tables have to be mapped, because the result value is built up in
memory by each function.

If tableforest is false, then the resulting XML document looks like this:

<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:

<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>
 ...
</tablename>

100

Functions and Operators

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the first
format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which will be
important in many applications. The second format tends to be more useful in the cursor_to_xml function
if the result values are to be reassembled into one document later on. The functions for producing XML content
discussed above, in particular xmlelement, can be used to alter the results to taste.

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null values in
columns are represented as:

<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace declaration will
be added to the result value. If false, columns containing null values are simply omitted from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace is
wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the corresponding
functions above:

table_to_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xmlschema (cursor refcursor, nulls boolean,

 tableforest boolean, targetns text) → xml

It is essential that the same parameters are passed in order to obtain matching XML data mappings and XML
Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one document (or
forest), linked together. They can be useful where self-contained and self-describing results are wanted:

table_to_xml_and_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml_and_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml

In addition, the following functions are available to produce analogous mappings of entire schemas or the entire
current database:

schema_to_xml (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml
schema_to_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml
schema_to_xml_and_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml

database_to_xml (nulls boolean,

101

Functions and Operators

 tableforest boolean, targetns text) → xml
database_to_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml
database_to_xml_and_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml

These functions ignore tables that are not readable by the current user. The database-wide functions additionally
ignore schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting content
mappings of large schemas or databases, it might be worthwhile to consider mapping the tables separately instead,
possibly even through a cursor.

The result of a schema content mapping looks like this:

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:

<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT stylesheet that con-
verts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular rendition of
the table data. In a similar manner, the results from these functions can be converted into other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"

102

Functions and Operators

>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/
@type"/>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=$tabletypename]/
xsd:sequence/xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>
 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=
$rowtypename]/xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

9.16. JSON Functions and Operators
This section describes:

• functions and operators for processing and creating JSON data

• the SQL/JSON path language

• the SQL/JSON query functions

To provide native support for JSON data types within the SQL environment, PostgreSQL implements the SQL/
JSON data model. This model comprises sequences of items. Each item can hold SQL scalar values, with an
additional SQL/JSON null value, and composite data structures that use JSON arrays and objects. The model is a
formalization of the implied data model in the JSON specification RFC 71594.

4 https://datatracker.ietf.org/doc/html/rfc7159

103

https://datatracker.ietf.org/doc/html/rfc7159
https://datatracker.ietf.org/doc/html/rfc7159

Functions and Operators

SQL/JSON allows you to handle JSON data alongside regular SQL data, with transaction support, including:

• Uploading JSON data into the database and storing it in regular SQL columns as character or binary strings.

• Generating JSON objects and arrays from relational data.

• Querying JSON data using SQL/JSON query functions and SQL/JSON path language expressions.

To learn more about the SQL/JSON standard, see [sqltr-19075-6]. For details on JSON types supported in Post-
greSQL, see Section 8.14.

9.16.1. Processing and Creating JSON Data
Table 9.47 shows the operators that are available for use with JSON data types (see Section 8.14). In addition, the
usual comparison operators shown in Table 9.1 are available for jsonb, though not for json. The comparison
operators follow the ordering rules for B-tree operations outlined in Section 8.14.4. See also Section 9.21 for the
aggregate function json_agg which aggregates record values as JSON, the aggregate function json_objec-
t_agg which aggregates pairs of values into a JSON object, and their jsonb equivalents, jsonb_agg and
jsonb_object_agg.

Table 9.47. json and jsonb Operators

Operator
Description
Example(s)

json -> integer → json
jsonb -> integer → jsonb

Extracts n'th element of JSON array (array elements are indexed from zero, but negative integers
count from the end).

'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2 → {"c":"baz"}
'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3 → {"a":"foo"}

json -> text → json
jsonb -> text → jsonb

Extracts JSON object field with the given key.

'{"a": {"b":"foo"}}'::json -> 'a' → {"b":"foo"}

json ->> integer → text
jsonb ->> integer → text

Extracts n'th element of JSON array, as text.

'[1,2,3]'::json ->> 2 → 3

json ->> text → text
jsonb ->> text → text

Extracts JSON object field with the given key, as text.

'{"a":1,"b":2}'::json ->> 'b' → 2

json #> text[] → json
jsonb #> text[] → jsonb

Extracts JSON sub-object at the specified path, where path elements can be either field keys or array
indexes.

'{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}' → "bar"

json #>> text[] → text
jsonb #>> text[] → text

104

Functions and Operators

Operator
Description
Example(s)

Extracts JSON sub-object at the specified path as text.

'{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}' → bar

Note

The field/element/path extraction operators return NULL, rather than failing, if the JSON input
does not have the right structure to match the request; for example if no such key or array element
exists.

Some further operators exist only for jsonb, as shown in Table 9.48. Section 8.14.4 describes how these operators
can be used to effectively search indexed jsonb data.

Table 9.48. Additional jsonb Operators

Operator
Description
Example(s)

jsonb @> jsonb → boolean
Does the first JSON value contain the second? (See Section 8.14.3 for details about containment.)

'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb → t

jsonb <@ jsonb → boolean
Is the first JSON value contained in the second?

'{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb → t

jsonb ? text → boolean
Does the text string exist as a top-level key or array element within the JSON value?

'{"a":1, "b":2}'::jsonb ? 'b' → t
'["a", "b", "c"]'::jsonb ? 'b' → t

jsonb ?| text[] → boolean
Do any of the strings in the text array exist as top-level keys or array elements?

'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] → t

jsonb ?& text[] → boolean
Do all of the strings in the text array exist as top-level keys or array elements?

'["a", "b", "c"]'::jsonb ?& array['a', 'b'] → t

jsonb || jsonb → jsonb
Concatenates two jsonb values. Concatenating two arrays generates an array containing all the el-
ements of each input. Concatenating two objects generates an object containing the union of their
keys, taking the second object's value when there are duplicate keys. All other cases are treated by
converting a non-array input into a single-element array, and then proceeding as for two arrays. Does
not operate recursively: only the top-level array or object structure is merged.

'["a", "b"]'::jsonb || '["a", "d"]'::jsonb → ["a", "b", "a", "d"]
'{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb → {"a": "b", "c": "d"}
'[1, 2]'::jsonb || '3'::jsonb → [1, 2, 3]
'{"a": "b"}'::jsonb || '42'::jsonb → [{"a": "b"}, 42]
To append an array to another array as a single entry, wrap it in an additional layer of array, for ex-
ample:

105

Functions and Operators

Operator
Description
Example(s)

'[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb) → [1, 2, [3,
4]]

jsonb - text → jsonb
Deletes a key (and its value) from a JSON object, or matching string value(s) from a JSON array.

'{"a": "b", "c": "d"}'::jsonb - 'a' → {"c": "d"}
'["a", "b", "c", "b"]'::jsonb - 'b' → ["a", "c"]

jsonb - text[] → jsonb
Deletes all matching keys or array elements from the left operand.

'{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] → {}

jsonb - integer → jsonb
Deletes the array element with specified index (negative integers count from the end). Throws an er-
ror if JSON value is not an array.

'["a", "b"]'::jsonb - 1 → ["a"]

jsonb #- text[] → jsonb
Deletes the field or array element at the specified path, where path elements can be either field keys
or array indexes.

'["a", {"b":1}]'::jsonb #- '{1,b}' → ["a", {}]

jsonb @? jsonpath → boolean
Does JSON path return any item for the specified JSON value? (This is useful only with SQL-stan-
dard JSON path expressions, not predicate check expressions, since those always return a value.)

'{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)' → t

jsonb @@ jsonpath → boolean
Returns the result of a JSON path predicate check for the specified JSON value. (This is useful on-
ly with predicate check expressions, not SQL-standard JSON path expressions, since it will return
NULL if the path result is not a single boolean value.)

'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2' → t

Note

The jsonpath operators @? and @@ suppress the following errors: missing object field or array
element, unexpected JSON item type, datetime and numeric errors. The jsonpath-related func-
tions described below can also be told to suppress these types of errors. This behavior might be
helpful when searching JSON document collections of varying structure.

Table 9.49 shows the functions that are available for constructing json and jsonb values. Some functions in
this table have a RETURNING clause, which specifies the data type returned. It must be one of json, jsonb,
bytea, a character string type (text, char, or varchar), or a type that can be cast to json. By default, the
json type is returned.

Table 9.49. JSON Creation Functions

Function
Description
Example(s)

 to_json (anyelement) → json

106

Functions and Operators

Function
Description
Example(s)

 to_jsonb (anyelement) → jsonb
Converts any SQL value to json or jsonb. Arrays and composites are converted recursively to ar-
rays and objects (multidimensional arrays become arrays of arrays in JSON). Otherwise, if there is
a cast from the SQL data type to json, the cast function will be used to perform the conversion;a

otherwise, a scalar JSON value is produced. For any scalar other than a number, a Boolean, or a null
value, the text representation will be used, with escaping as necessary to make it a valid JSON string
value.

to_json('Fred said "Hi."'::text) → "Fred said \"Hi.\""
to_jsonb(row(42, 'Fred said "Hi."'::text)) → {"f1": 42, "f2": "Fred
said \"Hi.\""}

 array_to_json (anyarray [, boolean]) → json
Converts an SQL array to a JSON array. The behavior is the same as to_json except that line feeds
will be added between top-level array elements if the optional boolean parameter is true.

array_to_json('{{1,5},{99,100}}'::int[]) → [[1,5],[99,100]]

 json_array ([{ value_expression [FORMAT JSON] } [, ...]] [{ NULL | ABSENT } ON NULL] [
RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])

json_array ([query_expression] [RETURNING data_type [FORMAT JSON [ENCODING
UTF8]]])
Constructs a JSON array from either a series of value_expression parameters or from
the results of query_expression, which must be a SELECT query returning a single col-
umn. If ABSENT ON NULL is specified, NULL values are ignored. This is always the case if a
query_expression is used.

json_array(1,true,json '{"a":null}') → [1, true, {"a":null}]
json_array(SELECT * FROM (VALUES(1),(2)) t) → [1, 2]

 row_to_json (record [, boolean]) → json
Converts an SQL composite value to a JSON object. The behavior is the same as to_json except
that line feeds will be added between top-level elements if the optional boolean parameter is true.

row_to_json(row(1,'foo')) → {"f1":1,"f2":"foo"}

 json_build_array (VARIADIC "any") → json
 jsonb_build_array (VARIADIC "any") → jsonb

Builds a possibly-heterogeneously-typed JSON array out of a variadic argument list. Each argument
is converted as per to_json or to_jsonb.

json_build_array(1, 2, 'foo', 4, 5) → [1, 2, "foo", 4, 5]

 json_build_object (VARIADIC "any") → json
 jsonb_build_object (VARIADIC "any") → jsonb

Builds a JSON object out of a variadic argument list. By convention, the argument list consists of al-
ternating keys and values. Key arguments are coerced to text; value arguments are converted as per
to_json or to_jsonb.

json_build_object('foo', 1, 2, row(3,'bar')) → {"foo" : 1, "2" :
{"f1":3,"f2":"bar"}}

 json_object ([{ key_expression { VALUE | ':' } value_expression [FORMAT JSON [EN-
CODING UTF8]] }[, ...]] [{ NULL | ABSENT } ON NULL] [{ WITH | WITHOUT } UNIQUE [
KEYS]] [RETURNING data_type [FORMAT JSON [ENCODING UTF8]]])
Constructs a JSON object of all the key/value pairs given, or an empty object if none are giv-
en. key_expression is a scalar expression defining the JSON key, which is converted to the
text type. It cannot be NULL nor can it belong to a type that has a cast to the json type. If WITH
UNIQUE KEYS is specified, there must not be any duplicate key_expression. Any pair for

107

Functions and Operators

Function
Description
Example(s)

which the value_expression evaluates to NULL is omitted from the output if ABSENT ON
NULL is specified; if NULL ON NULL is specified or the clause omitted, the key is included with
value NULL.

json_object('code' VALUE 'P123', 'title': 'Jaws') → {"code" :
"P123", "title" : "Jaws"}

 json_object (text[]) → json
 jsonb_object (text[]) → jsonb

Builds a JSON object out of a text array. The array must have either exactly one dimension with an
even number of members, in which case they are taken as alternating key/value pairs, or two dimen-
sions such that each inner array has exactly two elements, which are taken as a key/value pair. All
values are converted to JSON strings.

json_object('{a, 1, b, "def", c, 3.5}') → {"a" : "1", "b" : "def",
"c" : "3.5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') → {"a" : "1", "b" :
"def", "c" : "3.5"}

json_object (keys text[], values text[]) → json
jsonb_object (keys text[], values text[]) → jsonb

This form of json_object takes keys and values pairwise from separate text arrays. Otherwise it
is identical to the one-argument form.

json_object('{a,b}', '{1,2}') → {"a": "1", "b": "2"}

 json (expression [FORMAT JSON [ENCODING UTF8]] [{ WITH | WITHOUT } UNIQUE [KEYS

]]) → json
Converts a given expression specified as text or bytea string (in UTF8 encoding) into a JSON
value. If expression is NULL, an SQL null value is returned. If WITH UNIQUE is specified, the
expression must not contain any duplicate object keys.

json('{"a":123, "b":[true,"foo"], "a":"bar"}') → {"a":123, "b":
[true,"foo"], "a":"bar"}

 json_scalar (expression)
Converts a given SQL scalar value into a JSON scalar value. If the input is NULL, an SQL null is re-
turned. If the input is number or a boolean value, a corresponding JSON number or boolean value is
returned. For any other value, a JSON string is returned.

json_scalar(123.45) → 123.45
json_scalar(CURRENT_TIMESTAMP) → "2022-05-10T10:51:04.62128-04:00"

json_serialize (expression [FORMAT JSON [ENCODING UTF8]] [RETURNING da-
ta_type [FORMAT JSON [ENCODING UTF8]]])
Converts an SQL/JSON expression into a character or binary string. The expression can be of
any JSON type, any character string type, or bytea in UTF8 encoding. The returned type used in
RETURNING can be any character string type or bytea. The default is text.

json_serialize('{ "a" : 1 } ' RETURNING bytea) →
\x7b20226122203a2031207d20

a For example, the hstore extension has a cast from hstore to json, so that hstore values converted via the JSON creation functions will
be represented as JSON objects, not as primitive string values.

Table 9.50 details SQL/JSON facilities for testing JSON.

108

Functions and Operators

Table 9.50. SQL/JSON Testing Functions

Function signature
Description
Example(s)

 expression IS [NOT] JSON [{ VALUE | SCALAR | ARRAY | OBJECT }] [{ WITH | WITHOUT }
UNIQUE [KEYS]]
This predicate tests whether expression can be parsed as JSON, possibly of a specified type. If
SCALAR or ARRAY or OBJECT is specified, the test is whether or not the JSON is of that particular
type. If WITH UNIQUE KEYS is specified, then any object in the expression is also tested to
see if it has duplicate keys.

SELECT js,
 js IS JSON "json?",
 js IS JSON SCALAR "scalar?",
 js IS JSON OBJECT "object?",
 js IS JSON ARRAY "array?"
FROM (VALUES
 ('123'), ('"abc"'), ('{"a": "b"}'), ('[1,2]'),('abc'))
 foo(js);
 js | json? | scalar? | object? | array?
------------+-------+---------+---------+--------
 123 | t | t | f | f
 "abc" | t | t | f | f
 {"a": "b"} | t | f | t | f
 [1,2] | t | f | f | t
 abc | f | f | f | f

SELECT js,
 js IS JSON OBJECT "object?",
 js IS JSON ARRAY "array?",
 js IS JSON ARRAY WITH UNIQUE KEYS "array w. UK?",
 js IS JSON ARRAY WITHOUT UNIQUE KEYS "array w/o UK?"
FROM (VALUES ('[{"a":"1"},
 {"b":"2","b":"3"}]')) foo(js);
-[RECORD 1]-+--------------------
js | [{"a":"1"}, +
 | {"b":"2","b":"3"}]
object? | f
array? | t
array w. UK? | f
array w/o UK? | t

Table 9.51 shows the functions that are available for processing json and jsonb values.

Table 9.51. JSON Processing Functions

Function
Description
Example(s)

 json_array_elements (json) → setof json
 jsonb_array_elements (jsonb) → setof jsonb

Expands the top-level JSON array into a set of JSON values.

select * from json_array_elements('[1,true, [2,false]]') →

109

Functions and Operators

Function
Description
Example(s)

 value

 1
 true
 [2,false]

 json_array_elements_text (json) → setof text
 jsonb_array_elements_text (jsonb) → setof text

Expands the top-level JSON array into a set of text values.

select * from json_array_elements_text('["foo", "bar"]') →

 value

 foo
 bar

 json_array_length (json) → integer
 jsonb_array_length (jsonb) → integer

Returns the number of elements in the top-level JSON array.

json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]') → 5
jsonb_array_length('[]') → 0

 json_each (json) → setof record (key text, value json)

 jsonb_each (jsonb) → setof record (key text, value jsonb)
Expands the top-level JSON object into a set of key/value pairs.

select * from json_each('{"a":"foo", "b":"bar"}') →

 key | value
-----+-------
 a | "foo"
 b | "bar"

 json_each_text (json) → setof record (key text, value text)

 jsonb_each_text (jsonb) → setof record (key text, value text)
Expands the top-level JSON object into a set of key/value pairs. The returned values will be of type
text.

select * from json_each_text('{"a":"foo", "b":"bar"}') →

 key | value
-----+-------
 a | foo
 b | bar

 json_extract_path (from_json json, VARIADIC path_elems text[]) → json
 jsonb_extract_path (from_json jsonb, VARIADIC path_elems text[]) → jsonb

Extracts JSON sub-object at the specified path. (This is functionally equivalent to the #> operator,
but writing the path out as a variadic list can be more convenient in some cases.)

110

Functions and Operators

Function
Description
Example(s)

json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}',

'f4', 'f6') → "foo"

 json_extract_path_text (from_json json, VARIADIC path_elems text[]) → text
 jsonb_extract_path_text (from_json jsonb, VARIADIC path_elems text[]) → text

Extracts JSON sub-object at the specified path as text. (This is functionally equivalent to the #>>
operator.)
json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}',

'f4', 'f6') → foo

 json_object_keys (json) → setof text
 jsonb_object_keys (jsonb) → setof text

Returns the set of keys in the top-level JSON object.
select * from json_object_keys('{"f1":"abc","f2":{"f3":"a",

"f4":"b"}}') →

 json_object_keys

 f1
 f2

 json_populate_record (base anyelement, from_json json) → anyelement
 jsonb_populate_record (base anyelement, from_json jsonb) → anyelement

Expands the top-level JSON object to a row having the composite type of the base argument. The
JSON object is scanned for fields whose names match column names of the output row type, and
their values are inserted into those columns of the output. (Fields that do not correspond to any out-
put column name are ignored.) In typical use, the value of base is just NULL, which means that any
output columns that do not match any object field will be filled with nulls. However, if base isn't
NULL then the values it contains will be used for unmatched columns.
To convert a JSON value to the SQL type of an output column, the following rules are applied in se-
quence:

• A JSON null value is converted to an SQL null in all cases.
• If the output column is of type json or jsonb, the JSON value is just reproduced exactly.
• If the output column is a composite (row) type, and the JSON value is a JSON object, the fields of

the object are converted to columns of the output row type by recursive application of these rules.
• Likewise, if the output column is an array type and the JSON value is a JSON array, the elements

of the JSON array are converted to elements of the output array by recursive application of these
rules.

• Otherwise, if the JSON value is a string, the contents of the string are fed to the input conversion
function for the column's data type.

• Otherwise, the ordinary text representation of the JSON value is fed to the input conversion func-
tion for the column's data type.

While the example below uses a constant JSON value, typical use would be to reference a json
or jsonb column laterally from another table in the query's FROM clause. Writing json_popu-
late_record in the FROM clause is good practice, since all of the extracted columns are available
for use without duplicate function calls.
create type subrowtype as (d int, e text); create type myrowtype as
(a int, b text[], c subrowtype);
select * from json_populate_record(null::myrowtype, '{"a": 1, "b":

["2", "a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo"}') →

111

Functions and Operators

Function
Description
Example(s)

 a | b | c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")

 jsonb_populate_record_valid (base anyelement, from_json json) → boolean
Function for testing jsonb_populate_record. Returns true if the input jsonb_popu-
late_record would finish without an error for the given input JSON object; that is, it's valid in-
put, false otherwise.
create type jsb_char2 as (a char(2));
select jsonb_populate_record_valid(NULL::jsb_char2, '{"a":

"aaa"}'); →

 jsonb_populate_record_valid

 f
(1 row)

select * from jsonb_populate_record(NULL::jsb_char2, '{"a":

"aaa"}') q; →

ERROR: value too long for type character(2)

select jsonb_populate_record_valid(NULL::jsb_char2, '{"a": "aa"}');

→

 jsonb_populate_record_valid

 t
(1 row)

select * from jsonb_populate_record(NULL::jsb_char2, '{"a": "aa"}')

q; →

 a

 aa
(1 row)

 json_populate_recordset (base anyelement, from_json json) → setof anyelement
 jsonb_populate_recordset (base anyelement, from_json jsonb) → setof anyele-

ment
Expands the top-level JSON array of objects to a set of rows having the composite type of the base
argument. Each element of the JSON array is processed as described above for json[b]_popu-
late_record.
create type twoints as (a int, b int);
select * from json_populate_recordset(null::twoints,

'[{"a":1,"b":2}, {"a":3,"b":4}]') →

112

Functions and Operators

Function
Description
Example(s)

 a | b
---+---
 1 | 2
 3 | 4

 json_to_record (json) → record
 jsonb_to_record (jsonb) → record

Expands the top-level JSON object to a row having the composite type defined by an AS clause. (As
with all functions returning record, the calling query must explicitly define the structure of the
record with an AS clause.) The output record is filled from fields of the JSON object, in the same
way as described above for json[b]_populate_record. Since there is no input record value,
unmatched columns are always filled with nulls.
create type myrowtype as (a int, b text);
select * from json_to_record('{"a":1,"b":[1,2,3],"c":
[1,2,3],"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b

text, c int[], d text, r myrowtype) →

 a | b | c | d | r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} | | (123,"a b c")

 json_to_recordset (json) → setof record
 jsonb_to_recordset (jsonb) → setof record

Expands the top-level JSON array of objects to a set of rows having the composite type defined by
an AS clause. (As with all functions returning record, the calling query must explicitly define the
structure of the record with an AS clause.) Each element of the JSON array is processed as described
above for json[b]_populate_record.
select * from json_to_recordset('[{"a":1,"b":"foo"},

{"a":"2","c":"bar"}]') as x(a int, b text) →

 a | b
---+-----
 1 | foo
 2 |

 jsonb_set (target jsonb, path text[], new_value jsonb [, create_if_missing

boolean]) → jsonb
Returns target with the item designated by path replaced by new_value, or with new_val-
ue added if create_if_missing is true (which is the default) and the item designated by path
does not exist. All earlier steps in the path must exist, or the target is returned unchanged. As with
the path oriented operators, negative integers that appear in the path count from the end of JSON
arrays. If the last path step is an array index that is out of range, and create_if_missing is true,
the new value is added at the beginning of the array if the index is negative, or at the end of the array
if it is positive.
jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]',

false) → [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]') → [{"f1":
1, "f2": null, "f3": [2, 3, 4]}, 2]

 jsonb_set_lax (target jsonb, path text[], new_value jsonb [, create_if_missing

boolean [, null_value_treatment text]]) → jsonb

113

Functions and Operators

Function
Description
Example(s)

If new_value is not NULL, behaves identically to jsonb_set. Otherwise behaves accord-
ing to the value of null_value_treatment which must be one of 'raise_exception',
'use_json_null', 'delete_key', or 'return_target'. The default is 'use_j-
son_null'.

jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null) →
[{"f1": null, "f2": null}, 2, null, 3]
jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true, 're-

turn_target') → [{"f1": 99, "f2": null}, 2]

 jsonb_insert (target jsonb, path text[], new_value jsonb [, insert_after boolean

]) → jsonb
Returns target with new_value inserted. If the item designated by the path is an array ele-
ment, new_value will be inserted before that item if insert_after is false (which is the de-
fault), or after it if insert_after is true. If the item designated by the path is an object field,
new_value will be inserted only if the object does not already contain that key. All earlier steps in
the path must exist, or the target is returned unchanged. As with the path oriented operators, nega-
tive integers that appear in the path count from the end of JSON arrays. If the last path step is an ar-
ray index that is out of range, the new value is added at the beginning of the array if the index is neg-
ative, or at the end of the array if it is positive.

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"') → {"a": [0,
"new_value", 1, 2]}

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true) →
{"a": [0, 1, "new_value", 2]}

 json_strip_nulls (target json [,strip_in_arrays boolean]) → json
 jsonb_strip_nulls (target jsonb [,strip_in_arrays boolean]) → jsonb

Deletes all object fields that have null values from the given JSON value, recursively. If
strip_in_arrays is true (the default is false), null array elements are also stripped. Otherwise
they are not stripped. Bare null values are never stripped.

json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]') →
[{"f1":1},2,null,3]

jsonb_strip_nulls('[1,2,null,3,4]', true); → [1,2,3,4]

 jsonb_path_exists (target jsonb, path jsonpath [, vars jsonb [, silent boolean]])

→ boolean
Checks whether the JSON path returns any item for the specified JSON value. (This is useful on-
ly with SQL-standard JSON path expressions, not predicate check expressions, since those always
return a value.) If the vars argument is specified, it must be a JSON object, and its fields provide
named values to be substituted into the jsonpath expression. If the silent argument is specified
and is true, the function suppresses the same errors as the @? and @@ operators do.
jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <=

$max)', '{"min":2, "max":4}') → t

 jsonb_path_match (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean
Returns the SQL boolean result of a JSON path predicate check for the specified JSON value. (This
is useful only with predicate check expressions, not SQL-standard JSON path expressions, since it
will either fail or return NULL if the path result is not a single boolean value.) The optional vars
and silent arguments act the same as for jsonb_path_exists.
jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min

&& @ <= $max))', '{"min":2, "max":4}') → t

114

Functions and Operators

Function
Description
Example(s)

 jsonb_path_query (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
setof jsonb
Returns all JSON items returned by the JSON path for the specified JSON value. For SQL-standard
JSON path expressions it returns the JSON values selected from target. For predicate check ex-
pressions it returns the result of the predicate check: true, false, or null. The optional vars
and silent arguments act the same as for jsonb_path_exists.
select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >=

$min && @ <= $max)', '{"min":2, "max":4}') →

 jsonb_path_query

 2
 3
 4

 jsonb_path_query_array (target jsonb, path jsonpath [, vars jsonb [, silent

boolean]]) → jsonb
Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON array.
The parameters are the same as for jsonb_path_query.
jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min &&

@ <= $max)', '{"min":2, "max":4}') → [2, 3, 4]

 jsonb_path_query_first (target jsonb, path jsonpath [, vars jsonb [, silent

boolean]]) → jsonb
Returns the first JSON item returned by the JSON path for the specified JSON value, or NULL if
there are no results. The parameters are the same as for jsonb_path_query.
jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min &&

@ <= $max)', '{"min":2, "max":4}') → 2

 jsonb_path_exists_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean

]]) → boolean
 jsonb_path_match_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean

]]) → boolean
 jsonb_path_query_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean

]]) → setof jsonb
 jsonb_path_query_array_tz (target jsonb, path jsonpath [, vars jsonb [, silent

boolean]]) → jsonb
 jsonb_path_query_first_tz (target jsonb, path jsonpath [, vars jsonb [, silent

boolean]]) → jsonb
These functions act like their counterparts described above without the _tz suffix, except that these
functions support comparisons of date/time values that require timezone-aware conversions. The ex-
ample below requires interpretation of the date-only value 2015-08-02 as a timestamp with time
zone, so the result depends on the current TimeZone setting. Due to this dependency, these functions
are marked as stable, which means these functions cannot be used in indexes. Their counterparts are
immutable, and so can be used in indexes; but they will throw errors if asked to make such compar-
isons.
jsonb_path_exists_tz('["2015-08-01 12:00:00-05"]', '$[*] ? (@.date-

time() < "2015-08-02".datetime())') → t

 jsonb_pretty (jsonb) → text
Converts the given JSON value to pretty-printed, indented text.

115

Functions and Operators

Function
Description
Example(s)

jsonb_pretty('[{"f1":1,"f2":null}, 2]') →

[
 {
 "f1": 1,
 "f2": null
 },
 2
]

 json_typeof (json) → text
 jsonb_typeof (jsonb) → text

Returns the type of the top-level JSON value as a text string. Possible types are object, array,
string, number, boolean, and null. (The null result should not be confused with an SQL
NULL; see the examples.)

json_typeof('-123.4') → number
json_typeof('null'::json) → null
json_typeof(NULL::json) IS NULL → t

9.16.2. The SQL/JSON Path Language
SQL/JSON path expressions specify item(s) to be retrieved from a JSON value, similarly to XPath expressions
used for access to XML content. In PostgreSQL, path expressions are implemented as the jsonpath data type
and can use any elements described in Section 8.14.7.

JSON query functions and operators pass the provided path expression to the path engine for evaluation. If the
expression matches the queried JSON data, the corresponding JSON item, or set of items, is returned. If there is
no match, the result will be NULL, false, or an error, depending on the function. Path expressions are written in
the SQL/JSON path language and can include arithmetic expressions and functions.

A path expression consists of a sequence of elements allowed by the jsonpath data type. The path expression
is normally evaluated from left to right, but you can use parentheses to change the order of operations. If the
evaluation is successful, a sequence of JSON items is produced, and the evaluation result is returned to the JSON
query function that completes the specified computation.

To refer to the JSON value being queried (the context item), use the $ variable in the path expression. The first
element of a path must always be $. It can be followed by one or more accessor operators, which go down the
JSON structure level by level to retrieve sub-items of the context item. Each accessor operator acts on the result(s)
of the previous evaluation step, producing zero, one, or more output items from each input item.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

SELECT '{
 "track": {
 "segments": [
 {
 "location": [47.763, 13.4034],
 "start time": "2018-10-14 10:05:14",
 "HR": 73
 },
 {
 "location": [47.706, 13.2635],

116

Functions and Operators

 "start time": "2018-10-14 10:39:21",
 "HR": 135
 }
]
 }
}' AS json \gset

(The above example can be copied-and-pasted into psql to set things up for the following examples. Then psql
will expand :'json' into a suitably-quoted string constant containing the JSON value.)

To retrieve the available track segments, you need to use the .key accessor operator to descend through sur-
rounding JSON objects, for example:

=> select jsonb_path_query(:'json', '$.track.segments');

 jsonb_path_query

 [{"HR": 73, "location": [47.763, 13.4034], "start time": "2018-10-14
 10:05:14"}, {"HR": 135, "location": [47.706, 13.2635], "start time":
 "2018-10-14 10:39:21"}]

To retrieve the contents of an array, you typically use the [*] operator. The following example will return the
location coordinates for all the available track segments:

=> select jsonb_path_query(:'json', '$.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

Here we started with the whole JSON input value ($), then the .track accessor selected the JSON object asso-
ciated with the "track" object key, then the .segments accessor selected the JSON array associated with
the "segments" key within that object, then the [*] accessor selected each element of that array (producing a
series of items), then the .location accessor selected the JSON array associated with the "location" key
within each of those objects. In this example, each of those objects had a "location" key; but if any of them
did not, the .location accessor would have simply produced no output for that input item.

To return the coordinates of the first segment only, you can specify the corresponding subscript in the [] accessor
operator. Recall that JSON array indexes are 0-relative:

=> select jsonb_path_query(:'json', '$.track.segments[0].location');
 jsonb_path_query

 [47.763, 13.4034]

The result of each path evaluation step can be processed by one or more of the jsonpath operators and methods
listed in Section 9.16.2.3. Each method name must be preceded by a dot. For example, you can get the size of
an array:

=> select jsonb_path_query(:'json', '$.track.segments.size()');
 jsonb_path_query

 2

117

Functions and Operators

More examples of using jsonpath operators and methods within path expressions appear below in Sec-
tion 9.16.2.3.

A path can also contain filter expressions that work similarly to the WHERE clause in SQL. A filter expression
begins with a question mark and provides a condition in parentheses:

? (condition)

Filter expressions must be written just after the path evaluation step to which they should apply. The result of that
step is filtered to include only those items that satisfy the provided condition. SQL/JSON defines three-valued
logic, so the condition can produce true, false, or unknown. The unknown value plays the same role as
SQL NULL and can be tested for with the is unknown predicate. Further path evaluation steps use only those
items for which the filter expression returned true.

The functions and operators that can be used in filter expressions are listed in Table 9.53. Within a filter expression,
the @ variable denotes the value being considered (i.e., one result of the preceding path step). You can write
accessor operators after @ to retrieve component items.

For example, suppose you would like to retrieve all heart rate values higher than 130. You can achieve this as
follows:

=> select jsonb_path_query(:'json', '$.track.segments[*].HR ? (@ > 130)');
 jsonb_path_query

 135

To get the start times of segments with such values, you have to filter out irrelevant segments before selecting the
start times, so the filter expression is applied to the previous step, and the path used in the condition is different:

=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.HR >
 130)."start time"');
 jsonb_path_query

 "2018-10-14 10:39:21"

You can use several filter expressions in sequence, if required. The following example selects start times of all
segments that contain locations with relevant coordinates and high heart rate values:

=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] <
 13.4) ? (@.HR > 130)."start time"');
 jsonb_path_query

 "2018-10-14 10:39:21"

Using filter expressions at different nesting levels is also allowed. The following example first filters all segments
by location, and then returns high heart rate values for these segments, if available:

=> select jsonb_path_query(:'json', '$.track.segments[*] ? (@.location[1] <
 13.4).HR ? (@ > 130)');
 jsonb_path_query

 135

You can also nest filter expressions within each other. This example returns the size of the track if it contains any
segments with high heart rate values, or an empty sequence otherwise:

118

Functions and Operators

=> select jsonb_path_query(:'json', '$.track ? (exists(@.segments[*] ?
 (@.HR > 130))).segments.size()');
 jsonb_path_query

 2

9.16.2.1. Deviations from the SQL Standard

PostgreSQL's implementation of the SQL/JSON path language has the following deviations from the SQL/JSON
standard.

9.16.2.1.1. Boolean Predicate Check Expressions

As an extension to the SQL standard, a PostgreSQL path expression can be a Boolean predicate, whereas the SQL
standard allows predicates only within filters. While SQL-standard path expressions return the relevant element(s)
of the queried JSON value, predicate check expressions return the single three-valued jsonb result of the predi-
cate: true, false, or null. For example, we could write this SQL-standard filter expression:

=> select jsonb_path_query(:'json', '$.track.segments ?(@[*].HR > 130)');
 jsonb_path_query

 {"HR": 135, "location": [47.706, 13.2635], "start time": "2018-10-14
 10:39:21"}

The similar predicate check expression simply returns true, indicating that a match exists:

=> select jsonb_path_query(:'json', '$.track.segments[*].HR > 130');
 jsonb_path_query

 true

Note

Predicate check expressions are required in the @@ operator (and the jsonb_path_match func-
tion), and should not be used with the @? operator (or the jsonb_path_exists function).

9.16.2.1.2. Regular Expression Interpretation

There are minor differences in the interpretation of regular expression patterns used in like_regex filters, as
described in Section 9.16.2.4.

9.16.2.2. Strict and Lax Modes

When you query JSON data, the path expression may not match the actual JSON data structure. An attempt to
access a non-existent member of an object or element of an array is defined as a structural error. SQL/JSON path
expressions have two modes of handling structural errors:

• lax (default) — the path engine implicitly adapts the queried data to the specified path. Any structural errors
that cannot be fixed as described below are suppressed, producing no match.

• strict — if a structural error occurs, an error is raised.

Lax mode facilitates matching of a JSON document and path expression when the JSON data does not conform
to the expected schema. If an operand does not match the requirements of a particular operation, it can be auto-
matically wrapped as an SQL/JSON array, or unwrapped by converting its elements into an SQL/JSON sequence
before performing the operation. Also, comparison operators automatically unwrap their operands in lax mode,

119

Functions and Operators

so you can compare SQL/JSON arrays out-of-the-box. An array of size 1 is considered equal to its sole element.
Automatic unwrapping is not performed when:

• The path expression contains type() or size() methods that return the type and the number of elements
in the array, respectively.

• The queried JSON data contain nested arrays. In this case, only the outermost array is unwrapped, while all
the inner arrays remain unchanged. Thus, implicit unwrapping can only go one level down within each path
evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an array of
segments when using lax mode:

=> select jsonb_path_query(:'json', 'lax $.track.segments.location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

In strict mode, the specified path must exactly match the structure of the queried JSON document, so using this
path expression will cause an error:

=> select jsonb_path_query(:'json', 'strict $.track.segments.location');
ERROR: jsonpath member accessor can only be applied to an object

To get the same result as in lax mode, you have to explicitly unwrap the segments array:

=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]

The unwrapping behavior of lax mode can lead to surprising results. For instance, the following query using the
.** accessor selects every HR value twice:

=> select jsonb_path_query(:'json', 'lax $.**.HR');
 jsonb_path_query

 73
 135
 73
 135

This happens because the .** accessor selects both the segments array and each of its elements, while the .HR
accessor automatically unwraps arrays when using lax mode. To avoid surprising results, we recommend using
the .** accessor only in strict mode. The following query selects each HR value just once:

=> select jsonb_path_query(:'json', 'strict $.**.HR');
 jsonb_path_query

 73
 135

The unwrapping of arrays can also lead to unexpected results. Consider this example, which selects all the lo-
cation arrays:

120

Functions and Operators

=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]
(2 rows)

As expected it returns the full arrays. But applying a filter expression causes the arrays to be unwrapped to evaluate
each item, returning only the items that match the expression:

=> select jsonb_path_query(:'json', 'lax $.track.segments[*].location ?
(@[*] > 15)');
 jsonb_path_query

 47.763
 47.706
(2 rows)

This despite the fact that the full arrays are selected by the path expression. Use strict mode to restore selecting
the arrays:

=> select jsonb_path_query(:'json', 'strict $.track.segments[*].location ?
(@[*] > 15)');
 jsonb_path_query

 [47.763, 13.4034]
 [47.706, 13.2635]
(2 rows)

9.16.2.3. SQL/JSON Path Operators and Methods

Table 9.52 shows the operators and methods available in jsonpath. Note that while the unary operators and
methods can be applied to multiple values resulting from a preceding path step, the binary operators (addition etc.)
can only be applied to single values. In lax mode, methods applied to an array will be executed for each value in
the array. The exceptions are .type() and .size(), which apply to the array itself.

Table 9.52. jsonpath Operators and Methods

Operator/Method
Description
Example(s)

number + number → number
Addition

jsonb_path_query('[2]', '$[0] + 3') → 5

+ number → number
Unary plus (no operation); unlike addition, this can iterate over multiple values

jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x') → [2, 3, 4]

number - number → number
Subtraction

jsonb_path_query('[2]', '7 - $[0]') → 5

- number → number
Negation; unlike subtraction, this can iterate over multiple values

121

Functions and Operators

Operator/Method
Description
Example(s)

jsonb_path_query_array('{"x": [2,3,4]}', '- $.x') → [-2, -3, -4]

number * number → number
Multiplication

jsonb_path_query('[4]', '2 * $[0]') → 8

number / number → number
Division

jsonb_path_query('[8.5]', '$[0] / 2') → 4.2500000000000000

number % number → number
Modulo (remainder)

jsonb_path_query('[32]', '$[0] % 10') → 2

value . type() → string
Type of the JSON item (see json_typeof)

jsonb_path_query_array('[1, "2", {}]', '$[*].type()') → ["number",
"string", "object"]

value . size() → number
Size of the JSON item (number of array elements, or 1 if not an array)

jsonb_path_query('{"m": [11, 15]}', '$.m.size()') → 2

value . boolean() → boolean
Boolean value converted from a JSON boolean, number, or string

jsonb_path_query_array('[1, "yes", false]', '$[*].boolean()') →
[true, true, false]

value . string() → string
String value converted from a JSON boolean, number, string, or datetime

jsonb_path_query_array('[1.23, "xyz", false]', '$[*].string()') →
["1.23", "xyz", "false"]
jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp().string()')

→ "2023-08-15T12:34:56"

value . double() → number
Approximate floating-point number converted from a JSON number or string

jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2') → 3.8

number . ceiling() → number
Nearest integer greater than or equal to the given number

jsonb_path_query('{"h": 1.3}', '$.h.ceiling()') → 2

number . floor() → number
Nearest integer less than or equal to the given number

jsonb_path_query('{"h": 1.7}', '$.h.floor()') → 1

number . abs() → number
Absolute value of the given number

jsonb_path_query('{"z": -0.3}', '$.z.abs()') → 0.3

value . bigint() → bigint
Big integer value converted from a JSON number or string

122

Functions and Operators

Operator/Method
Description
Example(s)

jsonb_path_query('{"len": "9876543219"}', '$.len.bigint()') →
9876543219

value . decimal([precision [, scale]]) → decimal
Rounded decimal value converted from a JSON number or string (precision and scale must be
integer values)

jsonb_path_query('1234.5678', '$.decimal(6, 2)') → 1234.57

value . integer() → integer
Integer value converted from a JSON number or string

jsonb_path_query('{"len": "12345"}', '$.len.integer()') → 12345

value . number() → numeric
Numeric value converted from a JSON number or string

jsonb_path_query('{"len": "123.45"}', '$.len.number()') → 123.45

string . datetime() → datetime_type (see note)
Date/time value converted from a string
jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.date-

time() < "2015-08-2".datetime())') → "2015-8-1"

string . datetime(template) → datetime_type (see note)
Date/time value converted from a string using the specified to_timestamp template
jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("H-

H24:MI")') → ["12:30:00", "18:40:00"]

string . date() → date
Date value converted from a string

jsonb_path_query('"2023-08-15"', '$.date()') → "2023-08-15"

string . time() → time without time zone
Time without time zone value converted from a string

jsonb_path_query('"12:34:56"', '$.time()') → "12:34:56"

string . time(precision) → time without time zone
Time without time zone value converted from a string, with fractional seconds adjusted to the given
precision

jsonb_path_query('"12:34:56.789"', '$.time(2)') → "12:34:56.79"

string . time_tz() → time with time zone
Time with time zone value converted from a string

jsonb_path_query('"12:34:56 +05:30"', '$.time_tz()') →
"12:34:56+05:30"

string . time_tz(precision) → time with time zone
Time with time zone value converted from a string, with fractional seconds adjusted to the given pre-
cision

jsonb_path_query('"12:34:56.789 +05:30"', '$.time_tz(2)') →
"12:34:56.79+05:30"

string . timestamp() → timestamp without time zone
Timestamp without time zone value converted from a string

123

Functions and Operators

Operator/Method
Description
Example(s)

jsonb_path_query('"2023-08-15 12:34:56"', '$.timestamp()') →
"2023-08-15T12:34:56"

string . timestamp(precision) → timestamp without time zone
Timestamp without time zone value converted from a string, with fractional seconds adjusted to the
given precision

jsonb_path_query('"2023-08-15 12:34:56.789"', '$.timestamp(2)') →
"2023-08-15T12:34:56.79"

string . timestamp_tz() → timestamp with time zone
Timestamp with time zone value converted from a string
jsonb_path_query('"2023-08-15 12:34:56 +05:30"', '$.timestam-

p_tz()') → "2023-08-15T12:34:56+05:30"

string . timestamp_tz(precision) → timestamp with time zone
Timestamp with time zone value converted from a string, with fractional seconds adjusted to the giv-
en precision
jsonb_path_query('"2023-08-15 12:34:56.789 +05:30"', '$.timestam-

p_tz(2)') → "2023-08-15T12:34:56.79+05:30"

object . keyvalue() → array
The object's key-value pairs, represented as an array of objects containing three fields: "key",
"value", and "id"; "id" is a unique identifier of the object the key-value pair belongs to

jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()') →
[{"id": 0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "val-
ue": 32}]

Note

The result type of the datetime() and datetime(template) methods can be date,
timetz, time, timestamptz, or timestamp. Both methods determine their result type dy-
namically.

The datetime() method sequentially tries to match its input string to the ISO formats for date,
timetz, time, timestamptz, and timestamp. It stops on the first matching format and
emits the corresponding data type.

The datetime(template) method determines the result type according to the fields used in
the provided template string.

The datetime() and datetime(template) methods use the same parsing rules as the
to_timestamp SQL function does (see Section 9.8), with three exceptions. First, these meth-
ods don't allow unmatched template patterns. Second, only the following separators are allowed in
the template string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and
space. Third, separators in the template string must exactly match the input string.

If different date/time types need to be compared, an implicit cast is applied. A date value can be
cast to timestamp or timestamptz, timestamp can be cast to timestamptz, and time
to timetz. However, all but the first of these conversions depend on the current TimeZone setting,
and thus can only be performed within timezone-aware jsonpath functions. Similarly, other
date/time-related methods that convert strings to date/time types also do this casting, which may
involve the current TimeZone setting. Therefore, these conversions can also only be performed
within timezone-aware jsonpath functions.

124

Functions and Operators

Table 9.53 shows the available filter expression elements.

Table 9.53. jsonpath Filter Expression Elements

Predicate/Value
Description
Example(s)

value == value → boolean
Equality comparison (this, and the other comparison operators, work on all JSON scalar values)

jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)') → [1, 1]
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")') →
["a"]

value != value → boolean
value <> value → boolean

Non-equality comparison

jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)') → [2, 3]
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")') →
["a", "c"]

value < value → boolean
Less-than comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)') → [1]

value <= value → boolean
Less-than-or-equal-to comparison

jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")') →
["a", "b"]

value > value → boolean
Greater-than comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)') → [3]

value >= value → boolean
Greater-than-or-equal-to comparison

jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)') → [2, 3]

true → boolean
JSON constant true
jsonb_path_query('[{"name": "John", "parent": false}, {"name":

"Chris", "parent": true}]', '$[*] ? (@.parent == true)') → {"name":
"Chris", "parent": true}

false → boolean
JSON constant false
jsonb_path_query('[{"name": "John", "parent": false}, {"name":

"Chris", "parent": true}]', '$[*] ? (@.parent == false)') → {"name":
"John", "parent": false}

null → value
JSON constant null (note that, unlike in SQL, comparison to null works normally)
jsonb_path_query('[{"name": "Mary", "job": null}, {"name":

"Michael", "job": "driver"}]', '$[*] ? (@.job == null) .name') →
"Mary"

boolean && boolean → boolean

125

Functions and Operators

Predicate/Value
Description
Example(s)

Boolean AND

jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)') → 3

boolean || boolean → boolean
Boolean OR

jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)') → 7

! boolean → boolean
Boolean NOT

jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))') → 7

boolean is unknown → boolean
Tests whether a Boolean condition is unknown.
jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is un-

known)') → "foo"

string like_regex string [flag string] → boolean
Tests whether the first operand matches the regular expression given by the second operand, option-
ally with modifications described by a string of flag characters (see Section 9.16.2.4).
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c")') → ["abc", "abdacb"]
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c" flag "i")') → ["abc", "aBdC", "ab-
dacb"]

string starts with string → boolean
Tests whether the second operand is an initial substring of the first operand.
jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]',

'$[*] ? (@ starts with "John")') → "John Smith"

exists (path_expression) → boolean
Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if the path
expression would result in an error; the second example uses this to avoid a no-such-key error in
strict mode.
jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (ex-

ists (@ ? (@[*] > 2)))') → [2, 4]
jsonb_path_query_array('{"value": 41}', 'strict $? (exists

(@.name)) .name') → []

9.16.2.4. SQL/JSON Regular Expressions

SQL/JSON path expressions allow matching text to a regular expression with the like_regex filter. For ex-
ample, the following SQL/JSON path query would case-insensitively match all strings in an array that start with
an English vowel:

$[*] ? (@ like_regex "^[aeiou]" flag "i")

The optional flag string may include one or more of the characters i for case-insensitive match, m to allow ̂ and
$ to match at newlines, s to allow . to match a newline, and q to quote the whole pattern (reducing the behavior
to a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the LIKE_REGEX operator, which in
turn uses the XQuery standard. PostgreSQL does not currently support the LIKE_REGEX operator. Therefore, the

126

Functions and Operators

like_regex filter is implemented using the POSIX regular expression engine described in Section 9.7.3. This
leads to various minor discrepancies from standard SQL/JSON behavior, which are cataloged in Section 9.7.3.8.
Note, however, that the flag-letter incompatibilities described there do not apply to SQL/JSON, as it translates the
XQuery flag letters to match what the POSIX engine expects.

Keep in mind that the pattern argument of like_regex is a JSON path string literal, written according to the rules
given in Section 8.14.7. This means in particular that any backslashes you want to use in the regular expression
must be doubled. For example, to match string values of the root document that contain only digits:

$.* ? (@ like_regex "^\\d+$")

9.16.3. SQL/JSON Query Functions

SQL/JSON functions JSON_EXISTS(), JSON_QUERY(), and JSON_VALUE() described in Table 9.54 can
be used to query JSON documents. Each of these functions apply a path_expression (an SQL/JSON path
query) to a context_item (the document). See Section 9.16.2 for more details on what the path_expres-
sion can contain. The path_expression can also reference variables, whose values are specified with their
respective names in the PASSING clause that is supported by each function. context_item can be a jsonb
value or a character string that can be successfully cast to jsonb.

Table 9.54. SQL/JSON Query Functions

Function signature
Description
Example(s)

JSON_EXISTS (
context_item, path_expression
[PASSING { value AS varname } [, ...]]

[{ TRUE | FALSE | UNKNOWN | ERROR } ON ERROR]) → boolean

• Returns true if the SQL/JSON path_expression applied to the context_item yields any items, false
otherwise.

• The ON ERROR clause specifies the behavior if an error occurs during path_expression evaluation.
Specifying ERROR will cause an error to be thrown with the appropriate message. Other options include re-
turning boolean values FALSE or TRUE or the value UNKNOWN which is actually an SQL NULL. The de-
fault when no ON ERROR clause is specified is to return the boolean value FALSE.

Examples:
JSON_EXISTS(jsonb '{"key1": [1,2,3]}', 'strict $.key1[*] ? (@ >

$x)' PASSING 2 AS x) → t
JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'lax $.a[5]' ERROR ON ERROR) → f
JSON_EXISTS(jsonb '{"a": [1,2,3]}', 'strict $.a[5]' ERROR ON ERROR)

→

ERROR: jsonpath array subscript is out of bounds

JSON_QUERY (
context_item, path_expression
[PASSING { value AS varname } [, ...]]
[RETURNING data_type [FORMAT JSON [ENCODING UTF8]]]

127

Functions and Operators

Function signature
Description
Example(s)

[{ WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ARRAY
] WRAPPER]
[{ KEEP | OMIT } QUOTES [ON SCALAR STRING]]
[{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT }
 | DEFAULT expression } ON EMPTY]
[{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT }

 | DEFAULT expression } ON ERROR]) → jsonb

• Returns the result of applying the SQL/JSON path_expression to the context_item.

• By default, the result is returned as a value of type jsonb, though the RETURNING clause can be used to
return as some other type to which it can be successfully coerced.

• If the path expression may return multiple values, it might be necessary to wrap those values using the WITH
WRAPPER clause to make it a valid JSON string, because the default behavior is to not wrap them, as if
WITHOUT WRAPPER were specified. The WITH WRAPPER clause is by default taken to mean WITH UN-
CONDITIONAL WRAPPER, which means that even a single result value will be wrapped. To apply the
wrapper only when multiple values are present, specify WITH CONDITIONAL WRAPPER. Getting multi-
ple values in result will be treated as an error if WITHOUT WRAPPER is specified.

• If the result is a scalar string, by default, the returned value will be surrounded by quotes, making it a valid
JSON value. It can be made explicit by specifying KEEP QUOTES. Conversely, quotes can be omitted by
specifying OMIT QUOTES. To ensure that the result is a valid JSON value, OMIT QUOTES cannot be spec-
ified when WITH WRAPPER is also specified.

• The ON EMPTY clause specifies the behavior if evaluating path_expression yields an empty set. The
ON ERROR clause specifies the behavior if an error occurs when evaluating path_expression, when
coercing the result value to the RETURNING type, or when evaluating the ON EMPTY expression if the
path_expression evaluation returns an empty set.

• For both ON EMPTY and ON ERROR, specifying ERROR will cause an error to be thrown with the appropri-
ate message. Other options include returning an SQL NULL, an empty array (EMPTY [ARRAY]), an empty
object (EMPTY OBJECT), or a user-specified expression (DEFAULT expression) that can be coerced to
jsonb or the type specified in RETURNING. The default when ON EMPTY or ON ERROR is not specified is
to return an SQL NULL value.

Examples:
JSON_QUERY(jsonb '[1,[2,3],null]', 'lax $[*][$off]' PASSING 1 AS

off WITH CONDITIONAL WRAPPER) → 3
JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' OMIT QUOTES) → [1, 2]
JSON_QUERY(jsonb '{"a": "[1, 2]"}', 'lax $.a' RETURNING int[] OMIT

QUOTES ERROR ON ERROR) →

ERROR: malformed array literal: "[1, 2]"
DETAIL: Missing "]" after array dimensions.

JSON_VALUE (
context_item, path_expression
[PASSING { value AS varname } [, ...]]
[RETURNING data_type]
[{ ERROR | NULL | DEFAULT expression } ON EMPTY]

[{ ERROR | NULL | DEFAULT expression } ON ERROR]) → text

128

Functions and Operators

Function signature
Description
Example(s)

• Returns the result of applying the SQL/JSON path_expression to the context_item.

• Only use JSON_VALUE() if the extracted value is expected to be a single SQL/JSON scalar item; getting
multiple values will be treated as an error. If you expect that extracted value might be an object or an array,
use the JSON_QUERY function instead.

• By default, the result, which must be a single scalar value, is returned as a value of type text, though the
RETURNING clause can be used to return as some other type to which it can be successfully coerced.

• The ON ERROR and ON EMPTY clauses have similar semantics as mentioned in the description of
JSON_QUERY, except the set of values returned in lieu of throwing an error is different.

• Note that scalar strings returned by JSON_VALUE always have their quotes removed, equivalent to specify-
ing OMIT QUOTES in JSON_QUERY.

Examples:

JSON_VALUE(jsonb '"123.45"', '$' RETURNING float) → 123.45
JSON_VALUE(jsonb '"03:04 2015-02-01"', '$.datetime("HH24:MI YYYY-

MM-DD")' RETURNING date) → 2015-02-01
JSON_VALUE(jsonb '[1,2]', 'strict $[$off]' PASSING 1 as off) → 2
JSON_VALUE(jsonb '[1,2]', 'strict $[*]' DEFAULT 9 ON ERROR) → 9

Note

The context_item expression is converted to jsonb by an implicit cast if the expression is not
already of type jsonb. Note, however, that any parsing errors that occur during that conversion
are thrown unconditionally, that is, are not handled according to the (specified or implicit) ON
ERROR clause.

Note

JSON_VALUE() returns an SQL NULL if path_expression returns a JSON null, whereas
JSON_QUERY() returns the JSON null as is.

9.16.4. JSON_TABLE
JSON_TABLE is an SQL/JSON function which queries JSON data and presents the results as a relational view,
which can be accessed as a regular SQL table. You can use JSON_TABLE inside the FROM clause of a SELECT,
UPDATE, or DELETE and as data source in a MERGE statement.

Taking JSON data as input, JSON_TABLE uses a JSON path expression to extract a part of the provided data to
use as a row pattern for the constructed view. Each SQL/JSON value given by the row pattern serves as source
for a separate row in the constructed view.

To split the row pattern into columns, JSON_TABLE provides the COLUMNS clause that defines the schema of
the created view. For each column, a separate JSON path expression can be specified to be evaluated against the
row pattern to get an SQL/JSON value that will become the value for the specified column in a given output row.

JSON data stored at a nested level of the row pattern can be extracted using the NESTED PATH clause. Each
NESTED PATH clause can be used to generate one or more columns using the data from a nested level of the row

129

Functions and Operators

pattern. Those columns can be specified using a COLUMNS clause that looks similar to the top-level COLUMNS
clause. Rows constructed from NESTED COLUMNS are called child rows and are joined against the row con-
structed from the columns specified in the parent COLUMNS clause to get the row in the final view. Child columns
themselves may contain a NESTED PATH specification thus allowing to extract data located at arbitrary nesting
levels. Columns produced by multiple NESTED PATHs at the same level are considered to be siblings of each
other and their rows after joining with the parent row are combined using UNION.

The rows produced by JSON_TABLE are laterally joined to the row that generated them, so you do not have to
explicitly join the constructed view with the original table holding JSON data.

The syntax is:

JSON_TABLE (
 context_item, path_expression [AS json_path_name] [PASSING { value
 AS varname } [, ...]]
 COLUMNS (json_table_column [, ...])
 [{ ERROR | EMPTY [ARRAY]} ON ERROR]
)

where json_table_column is:

 name FOR ORDINALITY
 | name type
 [FORMAT JSON [ENCODING UTF8]]
 [PATH path_expression]
 [{ WITHOUT | WITH { CONDITIONAL | [UNCONDITIONAL] } } [ARRAY]
 WRAPPER]
 [{ KEEP | OMIT } QUOTES [ON SCALAR STRING]]
 [{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression
 } ON EMPTY]
 [{ ERROR | NULL | EMPTY { [ARRAY] | OBJECT } | DEFAULT expression
 } ON ERROR]
 | name type EXISTS [PATH path_expression]
 [{ ERROR | TRUE | FALSE | UNKNOWN } ON ERROR]
 | NESTED [PATH] path_expression [AS json_path_name] COLUMNS
 (json_table_column [, ...])

Each syntax element is described below in more detail.

context_item, path_expression [AS json_path_name] [PASSING { value AS
varname } [, ...]]

The context_item specifies the input document to query, the path_expression is an SQL/JSON path
expression defining the query, and json_path_name is an optional name for the path_expression.
The optional PASSING clause provides data values for the variables mentioned in the path_expression.
The result of the input data evaluation using the aforementioned elements is called the row pattern, which is
used as the source for row values in the constructed view.

COLUMNS (json_table_column [, ...])

The COLUMNS clause defining the schema of the constructed view. In this clause, you can specify each column
to be filled with an SQL/JSON value obtained by applying a JSON path expression against the row pattern.
json_table_column has the following variants:

name FOR ORDINALITY

Adds an ordinality column that provides sequential row numbering starting from 1. Each NESTED PATH
(see below) gets its own counter for any nested ordinality columns.

130

Functions and Operators

name type [FORMAT JSON [ENCODING UTF8]] [PATH path_expression]

Inserts an SQL/JSON value obtained by applying path_expression against the row pattern into the
view's output row after coercing it to specified type.

Specifying FORMAT JSON makes it explicit that you expect the value to be a valid json object. It only
makes sense to specify FORMAT JSON if type is one of bpchar, bytea, character varying,
name, json, jsonb, text, or a domain over these types.

Optionally, you can specify WRAPPER and QUOTES clauses to format the output. Note that specifying
OMIT QUOTES overrides FORMAT JSON if also specified, because unquoted literals do not constitute
valid json values.

Optionally, you can use ON EMPTY and ON ERROR clauses to specify whether to throw the error or
return the specified value when the result of JSON path evaluation is empty and when an error occurs
during JSON path evaluation or when coercing the SQL/JSON value to the specified type, respectively.
The default for both is to return a NULL value.

Note

This clause is internally turned into and has the same semantics as JSON_VALUE or
JSON_QUERY. The latter if the specified type is not a scalar type or if either of FORMAT
JSON, WRAPPER, or QUOTES clause is present.

name type EXISTS [PATH path_expression]

Inserts a boolean value obtained by applying path_expression against the row pattern into the view's
output row after coercing it to specified type.

The value corresponds to whether applying the PATH expression to the row pattern yields any values.

The specified type should have a cast from the boolean type.

Optionally, you can use ON ERROR to specify whether to throw the error or return the specified value
when an error occurs during JSON path evaluation or when coercing SQL/JSON value to the specified
type. The default is to return a boolean value FALSE.

Note

This clause is internally turned into and has the same semantics as JSON_EXISTS.

NESTED [PATH] path_expression [AS json_path_name] COLUMNS (json_table_col-
umn [, ...])

Extracts SQL/JSON values from nested levels of the row pattern, generates one or more columns as
defined by the COLUMNS subclause, and inserts the extracted SQL/JSON values into those columns. The
json_table_column expression in the COLUMNS subclause uses the same syntax as in the parent
COLUMNS clause.

The NESTED PATH syntax is recursive, so you can go down multiple nested levels by specifying several
NESTED PATH subclauses within each other. It allows to unnest the hierarchy of JSON objects and
arrays in a single function invocation rather than chaining several JSON_TABLE expressions in an SQL
statement.

131

Functions and Operators

Note

In each variant of json_table_column described above, if the PATH clause is omitted,
path expression $.name is used, where name is the provided column name.

AS json_path_name

The optional json_path_name serves as an identifier of the provided path_expression. The name
must be unique and distinct from the column names.

{ ERROR | EMPTY } ON ERROR

The optional ON ERROR can be used to specify how to handle errors when evaluating the top-level
path_expression. Use ERROR if you want the errors to be thrown and EMPTY to return an empty table,
that is, a table containing 0 rows. Note that this clause does not affect the errors that occur when evaluating
columns, for which the behavior depends on whether the ON ERROR clause is specified against a given
column.

Examples

In the examples that follow, the following table containing JSON data will be used:

CREATE TABLE my_films (js jsonb);

INSERT INTO my_films VALUES (
'{ "favorites" : [
 { "kind" : "comedy", "films" : [
 { "title" : "Bananas",
 "director" : "Woody Allen"},
 { "title" : "The Dinner Game",
 "director" : "Francis Veber" }] },
 { "kind" : "horror", "films" : [
 { "title" : "Psycho",
 "director" : "Alfred Hitchcock" }] },
 { "kind" : "thriller", "films" : [
 { "title" : "Vertigo",
 "director" : "Alfred Hitchcock" }] },
 { "kind" : "drama", "films" : [
 { "title" : "Yojimbo",
 "director" : "Akira Kurosawa" }] }
] }');

The following query shows how to use JSON_TABLE to turn the JSON objects in the my_films table to a view
containing columns for the keys kind, title, and director contained in the original JSON along with an
ordinality column:

SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*]' COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 title text PATH '$.films[*].title' WITH WRAPPER,
 director text PATH '$.films[*].director' WITH WRAPPER)) AS jt;

 id | kind | title | director

132

Functions and Operators

----+----------+--------------------------------
+----------------------------------
 1 | comedy | ["Bananas", "The Dinner Game"] | ["Woody Allen", "Francis
 Veber"]
 2 | horror | ["Psycho"] | ["Alfred Hitchcock"]
 3 | thriller | ["Vertigo"] | ["Alfred Hitchcock"]
 4 | drama | ["Yojimbo"] | ["Akira Kurosawa"]
(4 rows)

The following is a modified version of the above query to show the usage of PASSING arguments in the filter
specified in the top-level JSON path expression and the various options for the individual columns:

SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*] ? (@.films[*].director == $filter)'
 PASSING 'Alfred Hitchcock' AS filter
 COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 title text FORMAT JSON PATH '$.films[*].title' OMIT QUOTES,
 director text PATH '$.films[*].director' KEEP QUOTES)) AS jt;

 id | kind | title | director
----+----------+---------+--------------------
 1 | horror | Psycho | "Alfred Hitchcock"
 2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)

The following is a modified version of the above query to show the usage of NESTED PATH for populating title
and director columns, illustrating how they are joined to the parent columns id and kind:

SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*] ? (@.films[*].director == $filter)'
 PASSING 'Alfred Hitchcock' AS filter
 COLUMNS (
 id FOR ORDINALITY,
 kind text PATH '$.kind',
 NESTED PATH '$.films[*]' COLUMNS (
 title text FORMAT JSON PATH '$.title' OMIT QUOTES,
 director text PATH '$.director' KEEP QUOTES))) AS jt;

 id | kind | title | director
----+----------+---------+--------------------
 1 | horror | Psycho | "Alfred Hitchcock"
 2 | thriller | Vertigo | "Alfred Hitchcock"
(2 rows)

The following is the same query but without the filter in the root path:

SELECT jt.* FROM
 my_films,
 JSON_TABLE (js, '$.favorites[*]'
 COLUMNS (
 id FOR ORDINALITY,

133

Functions and Operators

 kind text PATH '$.kind',
 NESTED PATH '$.films[*]' COLUMNS (
 title text FORMAT JSON PATH '$.title' OMIT QUOTES,
 director text PATH '$.director' KEEP QUOTES))) AS jt;

 id | kind | title | director
----+----------+-----------------+--------------------
 1 | comedy | Bananas | "Woody Allen"
 1 | comedy | The Dinner Game | "Francis Veber"
 2 | horror | Psycho | "Alfred Hitchcock"
 3 | thriller | Vertigo | "Alfred Hitchcock"
 4 | drama | Yojimbo | "Akira Kurosawa"
(5 rows)

The following shows another query using a different JSON object as input. It shows the UNION "sibling join"
between NESTED paths $.movies[*] and $.books[*] and also the usage of FOR ORDINALITY column
at NESTED levels (columns movie_id, book_id, and author_id):

SELECT * FROM JSON_TABLE (
'{"favorites":
 [{"movies":
 [{"name": "One", "director": "John Doe"},
 {"name": "Two", "director": "Don Joe"}],
 "books":
 [{"name": "Mystery", "authors": [{"name": "Brown Dan"}]},
 {"name": "Wonder", "authors": [{"name": "Jun Murakami"},
 {"name":"Craig Doe"}]}]
}]}'::json, '$.favorites[*]'
COLUMNS (
 user_id FOR ORDINALITY,
 NESTED '$.movies[*]'
 COLUMNS (
 movie_id FOR ORDINALITY,
 mname text PATH '$.name',
 director text),
 NESTED '$.books[*]'
 COLUMNS (
 book_id FOR ORDINALITY,
 bname text PATH '$.name',
 NESTED '$.authors[*]'
 COLUMNS (
 author_id FOR ORDINALITY,
 author_name text PATH '$.name'))));

 user_id | movie_id | mname | director | book_id | bname | author_id |
 author_name
---------+----------+-------+----------+---------+---------+-----------
+--------------
 1 | 1 | One | John Doe | | | |
 1 | 2 | Two | Don Joe | | | |
 1 | | | | 1 | Mystery | 1 |
 Brown Dan
 1 | | | | 2 | Wonder | 1 |
 Jun Murakami
 1 | | | | 2 | Wonder | 2 |
 Craig Doe

134

Functions and Operators

(5 rows)

9.17. Sequence Manipulation Functions
This section describes functions for operating on sequence objects, also called sequence generators or just se-
quences. Sequence objects are special single-row tables created with CREATE SEQUENCE. Sequence objects
are commonly used to generate unique identifiers for rows of a table. The sequence functions, listed in Table 9.55,
provide simple, multiuser-safe methods for obtaining successive sequence values from sequence objects.

Table 9.55. Sequence Functions

Function
Description

 nextval (regclass) → bigint
Advances the sequence object to its next value and returns that value. This is done atomically: even
if multiple sessions execute nextval concurrently, each will safely receive a distinct sequence val-
ue. If the sequence object has been created with default parameters, successive nextval calls will
return successive values beginning with 1. Other behaviors can be obtained by using appropriate pa-
rameters in the CREATE SEQUENCE command.
This function requires USAGE or UPDATE privilege on the sequence.

 setval (regclass, bigint [, boolean]) → bigint
Sets the sequence object's current value, and optionally its is_called flag. The two-parameter
form sets the sequence's last_value field to the specified value and sets its is_called field to
true, meaning that the next nextval will advance the sequence before returning a value. The val-
ue that will be reported by currval is also set to the specified value. In the three-parameter form,
is_called can be set to either true or false. true has the same effect as the two-parameter
form. If it is set to false, the next nextval will return exactly the specified value, and sequence
advancement commences with the following nextval. Furthermore, the value reported by cur-
rval is not changed in this case. For example,

SELECT setval('myseq', 42); Next nextval will return 43
SELECT setval('myseq', 42, true); Same as above
SELECT setval('myseq', 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.
This function requires UPDATE privilege on the sequence.

 currval (regclass) → bigint
Returns the value most recently obtained by nextval for this sequence in the current session. (An
error is reported if nextval has never been called for this sequence in this session.) Because this is
returning a session-local value, it gives a predictable answer whether or not other sessions have exe-
cuted nextval since the current session did.
This function requires USAGE or SELECT privilege on the sequence.

 lastval () → bigint
Returns the value most recently returned by nextval in the current session. This function is iden-
tical to currval, except that instead of taking the sequence name as an argument it refers to
whichever sequence nextval was most recently applied to in the current session. It is an error to
call lastval if nextval has not yet been called in the current session.
This function requires USAGE or SELECT privilege on the last used sequence.

Caution

To avoid blocking concurrent transactions that obtain numbers from the same sequence, the val-
ue obtained by nextval is not reclaimed for re-use if the calling transaction later aborts. This

135

Functions and Operators

means that transaction aborts or database crashes can result in gaps in the sequence of assigned
values. That can happen without a transaction abort, too. For example an INSERT with an ON
CONFLICT clause will compute the to-be-inserted tuple, including doing any required nextval
calls, before detecting any conflict that would cause it to follow the ON CONFLICT rule instead.
Thus, PostgreSQL sequence objects cannot be used to obtain “gapless” sequences.

Likewise, sequence state changes made by setval are immediately visible to other transactions,
and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a nextval or setval
call, the sequence state change might not have made its way to persistent storage, so that it is
uncertain whether the sequence will have its original or updated state after the cluster restarts.
This is harmless for usage of the sequence within the database, since other effects of uncommitted
transactions will not be visible either. However, if you wish to use a sequence value for persistent
outside-the-database purposes, make sure that the nextval call has been committed before doing
so.

The sequence to be operated on by a sequence function is specified by a regclass argument, which is simply
the OID of the sequence in the pg_class system catalog. You do not have to look up the OID by hand, however,
since the regclass data type's input converter will do the work for you. See Section 8.19 for details.

9.18. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in PostgreSQL.

Tip

If your needs go beyond the capabilities of these conditional expressions, you might want to con-
sider writing a server-side function in a more expressive programming language.

Note

Although COALESCE, GREATEST, and LEAST are syntactically similar to functions, they are not
ordinary functions, and thus cannot be used with explicit VARIADIC array arguments.

9.18.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other programming
languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns a
boolean result. If the condition's result is true, the value of the CASE expression is the result that follows
the condition, and the remainder of the CASE expression is not processed. If the condition's result is not true, any
subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields true, the value of
the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and no condition is true,
the result is null.

136

Functions and Operators

An example:

SELECT * FROM test;

 a

 1
 2
 3

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5 for
more details.

There is a “simple” form of CASE expression that is a variant of the general form above:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses until
one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value) is returned.
This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For example,
this is a possible way of avoiding a division-by-zero failure:

137

Functions and Operators

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note

As described in Section 4.2.14, there are various situations in which subexpressions of an expres-
sion are evaluated at different times, so that the principle that “CASE evaluates only necessary
subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually result in
a division-by-zero failure at planning time, even if it's within a CASE arm that would never be
entered at run time.

9.18.2. COALESCE

COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all arguments
are null. It is often used to substitute a default value for null values when data is retrieved for display, for example:

SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise
(none).

The arguments must all be convertible to a common data type, which will be the type of the result (see Section 10.5
for details).

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result; that
is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard function provides
capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.18.3. NULLIF

NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This can be
used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF(value, '(none)') ...

In this example, if value is (none), null is returned, otherwise the value of value is returned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had written
value1 = value2, so there must be a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is the first
argument of the implied = operator, and in some cases that will have been promoted to match the second argument's
type. For example, NULLIF(1, 2.2) yields numeric, because there is no integer = numeric operator,
only numeric = numeric.

9.18.4. GREATEST and LEAST

138

Functions and Operators

GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of expressions.
The expressions must all be convertible to a common data type, which will be the type of the result (see Section 10.5
for details).

NULL values in the argument list are ignored. The result will be NULL only if all the expressions evaluate to
NULL. (This is a deviation from the SQL standard. According to the standard, the return value is NULL if any
argument is NULL. Some other databases behave this way.)

9.19. Array Functions and Operators
Table 9.56 shows the specialized operators available for array types. In addition to those, the usual comparison
operators shown in Table 9.1 are available for arrays. The comparison operators compare the array contents ele-
ment-by-element, using the default B-tree comparison function for the element data type, and sort based on the
first difference. In multidimensional arrays the elements are visited in row-major order (last subscript varies most
rapidly). If the contents of two arrays are equal but the dimensionality is different, the first difference in the di-
mensionality information determines the sort order.

Table 9.56. Array Operators

Operator
Description
Example(s)

anyarray @> anyarray → boolean
Does the first array contain the second, that is, does each element appearing in the second array equal
some element of the first array? (Duplicates are not treated specially, thus ARRAY[1] and AR-
RAY[1,1] are each considered to contain the other.)

ARRAY[1,4,3] @> ARRAY[3,1,3] → t

anyarray <@ anyarray → boolean
Is the first array contained by the second?

ARRAY[2,2,7] <@ ARRAY[1,7,4,2,6] → t

anyarray && anyarray → boolean
Do the arrays overlap, that is, have any elements in common?

ARRAY[1,4,3] && ARRAY[2,1] → t

anycompatiblearray || anycompatiblearray → anycompatiblearray
Concatenates the two arrays. Concatenating a null or empty array is a no-op; otherwise the arrays
must have the same number of dimensions (as illustrated by the first example) or differ in number of
dimensions by one (as illustrated by the second). If the arrays are not of identical element types, they
will be coerced to a common type (see Section 10.5).

ARRAY[1,2,3] || ARRAY[4,5,6,7] → {1,2,3,4,5,6,7}
ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9.9]] → {{1,2,3},{4,5,6},
{7,8,9.9}}

anycompatible || anycompatiblearray → anycompatiblearray
Concatenates an element onto the front of an array (which must be empty or one-dimensional).

3 || ARRAY[4,5,6] → {3,4,5,6}

anycompatiblearray || anycompatible → anycompatiblearray
Concatenates an element onto the end of an array (which must be empty or one-dimensional).

ARRAY[4,5,6] || 7 → {4,5,6,7}

139

Functions and Operators

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about which
operators support indexed operations.

Table 9.57 shows the functions available for use with array types. See Section 8.15 for more information and
examples of the use of these functions.

Table 9.57. Array Functions

Function
Description
Example(s)

 array_append (anycompatiblearray, anycompatible) → anycompatiblearray
Appends an element to the end of an array (same as the anycompatiblearray || any-
compatible operator).

array_append(ARRAY[1,2], 3) → {1,2,3}

 array_cat (anycompatiblearray, anycompatiblearray) → anycompatiblearray
Concatenates two arrays (same as the anycompatiblearray || anycompatiblearray op-
erator).

array_cat(ARRAY[1,2,3], ARRAY[4,5]) → {1,2,3,4,5}

 array_dims (anyarray) → text
Returns a text representation of the array's dimensions.

array_dims(ARRAY[[1,2,3], [4,5,6]]) → [1:2][1:3]

 array_fill (anyelement, integer[] [, integer[]]) → anyarray
Returns an array filled with copies of the given value, having dimensions of the lengths specified by
the second argument. The optional third argument supplies lower-bound values for each dimension
(which default to all 1).

array_fill(11, ARRAY[2,3]) → {{11,11,11},{11,11,11}}
array_fill(7, ARRAY[3], ARRAY[2]) → [2:4]={7,7,7}

 array_length (anyarray, integer) → integer
Returns the length of the requested array dimension. (Produces NULL instead of 0 for empty or
missing array dimensions.)

array_length(array[1,2,3], 1) → 3
array_length(array[]::int[], 1) → NULL
array_length(array['text'], 2) → NULL

 array_lower (anyarray, integer) → integer
Returns the lower bound of the requested array dimension.

array_lower('[0:2]={1,2,3}'::integer[], 1) → 0

 array_ndims (anyarray) → integer
Returns the number of dimensions of the array.

array_ndims(ARRAY[[1,2,3], [4,5,6]]) → 2

 array_position (anycompatiblearray, anycompatible [, integer]) → integer
Returns the subscript of the first occurrence of the second argument in the array, or NULL if it's not
present. If the third argument is given, the search begins at that subscript. The array must be one-di-
mensional. Comparisons are done using IS NOT DISTINCT FROM semantics, so it is possible to
search for NULL.
array_position(ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri',

'sat'], 'mon') → 2

 array_positions (anycompatiblearray, anycompatible) → integer[]

140

Functions and Operators

Function
Description
Example(s)

Returns an array of the subscripts of all occurrences of the second argument in the array given as first
argument. The array must be one-dimensional. Comparisons are done using IS NOT DISTINCT
FROM semantics, so it is possible to search for NULL. NULL is returned only if the array is NULL; if
the value is not found in the array, an empty array is returned.

array_positions(ARRAY['A','A','B','A'], 'A') → {1,2,4}

 array_prepend (anycompatible, anycompatiblearray) → anycompatiblearray
Prepends an element to the beginning of an array (same as the anycompatible || anycompat-
iblearray operator).

array_prepend(1, ARRAY[2,3]) → {1,2,3}

 array_remove (anycompatiblearray, anycompatible) → anycompatiblearray
Removes all elements equal to the given value from the array. The array must be one-dimension-
al. Comparisons are done using IS NOT DISTINCT FROM semantics, so it is possible to remove
NULLs.

array_remove(ARRAY[1,2,3,2], 2) → {1,3}

 array_replace (anycompatiblearray, anycompatible, anycompatible) → any-
compatiblearray
Replaces each array element equal to the second argument with the third argument.

array_replace(ARRAY[1,2,5,4], 5, 3) → {1,2,3,4}

 array_reverse (anyarray) → anyarray
Reverses the first dimension of the array.

array_reverse(ARRAY[[1,2],[3,4],[5,6]]) → {{5,6},{3,4},{1,2}}

 array_sample (array anyarray, n integer) → anyarray
Returns an array of n items randomly selected from array. n may not exceed the length of ar-
ray's first dimension. If array is multi-dimensional, an “item” is a slice having a given first sub-
script.

array_sample(ARRAY[1,2,3,4,5,6], 3) → {2,6,1}
array_sample(ARRAY[[1,2],[3,4],[5,6]], 2) → {{5,6},{1,2}}

 array_shuffle (anyarray) → anyarray
Randomly shuffles the first dimension of the array.

array_shuffle(ARRAY[[1,2],[3,4],[5,6]]) → {{5,6},{1,2},{3,4}}

 array_sort (array anyarray [, descending boolean [, nulls_first boolean]]) → an-
yarray
Sorts the first dimension of the array. The sort order is determined by the default sort ordering of the
array's element type; however, if the element type is collatable, the collation to use can be specified
by adding a COLLATE clause to the array argument.
If descending is true then sort in descending order, otherwise ascending order. If omitted, the de-
fault is ascending order. If nulls_first is true then nulls appear before non-null values, other-
wise nulls appear after non-null values. If omitted, nulls_first is taken to have the same value
as descending.

array_sort(ARRAY[[2,4],[2,1],[6,5]]) → {{2,1},{2,4},{6,5}}

 array_to_string (array anyarray, delimiter text [, null_string text]) → text
Converts each array element to its text representation, and concatenates those separated by the de-
limiter string. If null_string is given and is not NULL, then NULL array entries are repre-
sented by that string; otherwise, they are omitted. See also string_to_array.

array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') → 1,2,3,*,5

141

Functions and Operators

Function
Description
Example(s)

 array_upper (anyarray, integer) → integer
Returns the upper bound of the requested array dimension.

array_upper(ARRAY[1,8,3,7], 1) → 4

 cardinality (anyarray) → integer
Returns the total number of elements in the array, or 0 if the array is empty.

cardinality(ARRAY[[1,2],[3,4]]) → 4

 trim_array (array anyarray, n integer) → anyarray
Trims an array by removing the last n elements. If the array is multidimensional, only the first di-
mension is trimmed.

trim_array(ARRAY[1,2,3,4,5,6], 2) → {1,2,3,4}

 unnest (anyarray) → setof anyelement
Expands an array into a set of rows. The array's elements are read out in storage order.

unnest(ARRAY[1,2]) →

 1
 2

unnest(ARRAY[['foo','bar'],['baz','quux']]) →

 foo
 bar
 baz
 quux

unnest (anyarray, anyarray [, ...]) → setof anyelement, anyelement [, ...]
Expands multiple arrays (possibly of different data types) into a set of rows. If the arrays are not all
the same length then the shorter ones are padded with NULLs. This form is only allowed in a query's
FROM clause; see Section 7.2.1.4.
select * from unnest(ARRAY[1,2], ARRAY['foo','bar','baz']) as

x(a,b) →

 a | b
---+-----
 1 | foo
 2 | bar
 | baz

See also Section 9.21 about the aggregate function array_agg for use with arrays.

9.20. Range/Multirange Functions and Opera-
tors
See Section 8.17 for an overview of range types.

Table 9.58 shows the specialized operators available for range types. Table 9.59 shows the specialized operators
available for multirange types. In addition to those, the usual comparison operators shown in Table 9.1 are available

142

Functions and Operators

for range and multirange types. The comparison operators order first by the range lower bounds, and only if those
are equal do they compare the upper bounds. The multirange operators compare each range until one is unequal.
This does not usually result in a useful overall ordering, but the operators are provided to allow unique indexes
to be constructed on ranges.

Table 9.58. Range Operators

Operator
Description
Example(s)

anyrange @> anyrange → boolean
Does the first range contain the second?

int4range(2,4) @> int4range(2,3) → t

anyrange @> anyelement → boolean
Does the range contain the element?

'[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp → t

anyrange <@ anyrange → boolean
Is the first range contained by the second?

int4range(2,4) <@ int4range(1,7) → t

anyelement <@ anyrange → boolean
Is the element contained in the range?

42 <@ int4range(1,7) → f

anyrange && anyrange → boolean
Do the ranges overlap, that is, have any elements in common?

int8range(3,7) && int8range(4,12) → t

anyrange << anyrange → boolean
Is the first range strictly left of the second?

int8range(1,10) << int8range(100,110) → t

anyrange >> anyrange → boolean
Is the first range strictly right of the second?

int8range(50,60) >> int8range(20,30) → t

anyrange &< anyrange → boolean
Does the first range not extend to the right of the second?

int8range(1,20) &< int8range(18,20) → t

anyrange &> anyrange → boolean
Does the first range not extend to the left of the second?

int8range(7,20) &> int8range(5,10) → t

anyrange -|- anyrange → boolean
Are the ranges adjacent?

numrange(1.1,2.2) -|- numrange(2.2,3.3) → t

anyrange + anyrange → anyrange
Computes the union of the ranges. The ranges must overlap or be adjacent, so that the union is a sin-
gle range (but see range_merge()).

numrange(5,15) + numrange(10,20) → [5,20)

anyrange * anyrange → anyrange
Computes the intersection of the ranges.

143

Functions and Operators

Operator
Description
Example(s)

int8range(5,15) * int8range(10,20) → [10,15)

anyrange - anyrange → anyrange
Computes the difference of the ranges. The second range must not be contained in the first in such a
way that the difference would not be a single range.

int8range(5,15) - int8range(10,20) → [5,10)

Table 9.59. Multirange Operators

Operator
Description
Example(s)

anymultirange @> anymultirange → boolean
Does the first multirange contain the second?

'{[2,4)}'::int4multirange @> '{[2,3)}'::int4multirange → t

anymultirange @> anyrange → boolean
Does the multirange contain the range?

'{[2,4)}'::int4multirange @> int4range(2,3) → t

anymultirange @> anyelement → boolean
Does the multirange contain the element?
'{[2011-01-01,2011-03-01)}'::tsmultirange @> '2011-01-10'::time-

stamp → t

anyrange @> anymultirange → boolean
Does the range contain the multirange?

'[2,4)'::int4range @> '{[2,3)}'::int4multirange → t

anymultirange <@ anymultirange → boolean
Is the first multirange contained by the second?

'{[2,4)}'::int4multirange <@ '{[1,7)}'::int4multirange → t

anymultirange <@ anyrange → boolean
Is the multirange contained by the range?

'{[2,4)}'::int4multirange <@ int4range(1,7) → t

anyrange <@ anymultirange → boolean
Is the range contained by the multirange?

int4range(2,4) <@ '{[1,7)}'::int4multirange → t

anyelement <@ anymultirange → boolean
Is the element contained by the multirange?

4 <@ '{[1,7)}'::int4multirange → t

anymultirange && anymultirange → boolean
Do the multiranges overlap, that is, have any elements in common?

'{[3,7)}'::int8multirange && '{[4,12)}'::int8multirange → t

anymultirange && anyrange → boolean
Does the multirange overlap the range?

'{[3,7)}'::int8multirange && int8range(4,12) → t

144

Functions and Operators

Operator
Description
Example(s)

anyrange && anymultirange → boolean
Does the range overlap the multirange?

int8range(3,7) && '{[4,12)}'::int8multirange → t

anymultirange << anymultirange → boolean
Is the first multirange strictly left of the second?

'{[1,10)}'::int8multirange << '{[100,110)}'::int8multirange → t

anymultirange << anyrange → boolean
Is the multirange strictly left of the range?

'{[1,10)}'::int8multirange << int8range(100,110) → t

anyrange << anymultirange → boolean
Is the range strictly left of the multirange?

int8range(1,10) << '{[100,110)}'::int8multirange → t

anymultirange >> anymultirange → boolean
Is the first multirange strictly right of the second?

'{[50,60)}'::int8multirange >> '{[20,30)}'::int8multirange → t

anymultirange >> anyrange → boolean
Is the multirange strictly right of the range?

'{[50,60)}'::int8multirange >> int8range(20,30) → t

anyrange >> anymultirange → boolean
Is the range strictly right of the multirange?

int8range(50,60) >> '{[20,30)}'::int8multirange → t

anymultirange &< anymultirange → boolean
Does the first multirange not extend to the right of the second?

'{[1,20)}'::int8multirange &< '{[18,20)}'::int8multirange → t

anymultirange &< anyrange → boolean
Does the multirange not extend to the right of the range?

'{[1,20)}'::int8multirange &< int8range(18,20) → t

anyrange &< anymultirange → boolean
Does the range not extend to the right of the multirange?

int8range(1,20) &< '{[18,20)}'::int8multirange → t

anymultirange &> anymultirange → boolean
Does the first multirange not extend to the left of the second?

'{[7,20)}'::int8multirange &> '{[5,10)}'::int8multirange → t

anymultirange &> anyrange → boolean
Does the multirange not extend to the left of the range?

'{[7,20)}'::int8multirange &> int8range(5,10) → t

anyrange &> anymultirange → boolean
Does the range not extend to the left of the multirange?

int8range(7,20) &> '{[5,10)}'::int8multirange → t

anymultirange -|- anymultirange → boolean

145

Functions and Operators

Operator
Description
Example(s)

Are the multiranges adjacent?

'{[1.1,2.2)}'::nummultirange -|- '{[2.2,3.3)}'::nummultirange → t

anymultirange -|- anyrange → boolean
Is the multirange adjacent to the range?

'{[1.1,2.2)}'::nummultirange -|- numrange(2.2,3.3) → t

anyrange -|- anymultirange → boolean
Is the range adjacent to the multirange?

numrange(1.1,2.2) -|- '{[2.2,3.3)}'::nummultirange → t

anymultirange + anymultirange → anymultirange
Computes the union of the multiranges. The multiranges need not overlap or be adjacent.

'{[5,10)}'::nummultirange + '{[15,20)}'::nummultirange → {[5,10),
[15,20)}

anymultirange * anymultirange → anymultirange
Computes the intersection of the multiranges.

'{[5,15)}'::int8multirange * '{[10,20)}'::int8multirange → {[10,15)}

anymultirange - anymultirange → anymultirange
Computes the difference of the multiranges.

'{[5,20)}'::int8multirange - '{[10,15)}'::int8multirange → {[5,10),
[15,20)}

The left-of/right-of/adjacent operators always return false when an empty range or multirange is involved; that is,
an empty range is not considered to be either before or after any other range.

Elsewhere empty ranges and multiranges are treated as the additive identity: anything unioned with an empty value
is itself. Anything minus an empty value is itself. An empty multirange has exactly the same points as an empty
range. Every range contains the empty range. Every multirange contains as many empty ranges as you like.

The range union and difference operators will fail if the resulting range would need to contain two disjoint sub-
ranges, as such a range cannot be represented. There are separate operators for union and difference that take
multirange parameters and return a multirange, and they do not fail even if their arguments are disjoint. So if you
need a union or difference operation for ranges that may be disjoint, you can avoid errors by first casting your
ranges to multiranges.

Table 9.60 shows the functions available for use with range types. Table 9.61 shows the functions available for
use with multirange types.

Table 9.60. Range Functions

Function
Description
Example(s)

 lower (anyrange) → anyelement
Extracts the lower bound of the range (NULL if the range is empty or has no lower bound).

lower(numrange(1.1,2.2)) → 1.1

 upper (anyrange) → anyelement
Extracts the upper bound of the range (NULL if the range is empty or has no upper bound).

upper(numrange(1.1,2.2)) → 2.2

146

Functions and Operators

Function
Description
Example(s)

 isempty (anyrange) → boolean
Is the range empty?

isempty(numrange(1.1,2.2)) → f

 lower_inc (anyrange) → boolean
Is the range's lower bound inclusive?

lower_inc(numrange(1.1,2.2)) → t

 upper_inc (anyrange) → boolean
Is the range's upper bound inclusive?

upper_inc(numrange(1.1,2.2)) → f

 lower_inf (anyrange) → boolean
Does the range have no lower bound? (A lower bound of -Infinity returns false.)

lower_inf('(,)'::daterange) → t

 upper_inf (anyrange) → boolean
Does the range have no upper bound? (An upper bound of Infinity returns false.)

upper_inf('(,)'::daterange) → t

 range_merge (anyrange, anyrange) → anyrange
Computes the smallest range that includes both of the given ranges.

range_merge('[1,2)'::int4range, '[3,4)'::int4range) → [1,4)

Table 9.61. Multirange Functions

Function
Description
Example(s)

 lower (anymultirange) → anyelement
Extracts the lower bound of the multirange (NULL if the multirange is empty or has no lower bound).

lower('{[1.1,2.2)}'::nummultirange) → 1.1

 upper (anymultirange) → anyelement
Extracts the upper bound of the multirange (NULL if the multirange is empty or has no upper bound).

upper('{[1.1,2.2)}'::nummultirange) → 2.2

 isempty (anymultirange) → boolean
Is the multirange empty?

isempty('{[1.1,2.2)}'::nummultirange) → f

 lower_inc (anymultirange) → boolean
Is the multirange's lower bound inclusive?

lower_inc('{[1.1,2.2)}'::nummultirange) → t

 upper_inc (anymultirange) → boolean
Is the multirange's upper bound inclusive?

upper_inc('{[1.1,2.2)}'::nummultirange) → f

 lower_inf (anymultirange) → boolean
Does the multirange have no lower bound? (A lower bound of -Infinity returns false.)

lower_inf('{(,)}'::datemultirange) → t

147

Functions and Operators

Function
Description
Example(s)

 upper_inf (anymultirange) → boolean
Does the multirange have no upper bound? (An upper bound of Infinity returns false.)

upper_inf('{(,)}'::datemultirange) → t

 range_merge (anymultirange) → anyrange
Computes the smallest range that includes the entire multirange.

range_merge('{[1,2), [3,4)}'::int4multirange) → [1,4)

 multirange (anyrange) → anymultirange
Returns a multirange containing just the given range.

multirange('[1,2)'::int4range) → {[1,2)}

 unnest (anymultirange) → setof anyrange
Expands a multirange into a set of ranges in ascending order.

unnest('{[1,2), [3,4)}'::int4multirange) →

 [1,2)
 [3,4)

The lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range
or multirange.

9.21. Aggregate Functions
Aggregate functions compute a single result from a set of input values. The built-in general-purpose aggregate
functions are listed in Table 9.62 while statistical aggregates are in Table 9.63. The built-in within-group or-
dered-set aggregate functions are listed in Table 9.64 while the built-in within-group hypothetical-set ones are
in Table 9.65. Grouping operations, which are closely related to aggregate functions, are listed in Table 9.66.
The special syntax considerations for aggregate functions are explained in Section 4.2.7. Consult Section 2.7 for
additional introductory information.

Aggregate functions that support Partial Mode are eligible to participate in various optimizations, such as parallel
aggregation.

While all aggregates below accept an optional ORDER BY clause (as outlined in Section 4.2.7), the clause has
only been added to aggregates whose output is affected by ordering.

Table 9.62. General-Purpose Aggregate Functions

Function
Description

Partial
Mode

 any_value (anyelement) → same as input type
Returns an arbitrary value from the non-null input values.

Yes

 array_agg (anynonarray ORDER BY input_sort_columns) → anyarray
Collects all the input values, including nulls, into an array.

Yes

array_agg (anyarray ORDER BY input_sort_columns) → anyarray
Concatenates all the input arrays into an array of one higher dimension. (The inputs must
all have the same dimensionality, and cannot be empty or null.)

Yes

 avg (smallint) → numeric
avg (integer) → numeric

Yes

148

Functions and Operators

Function
Description

Partial
Mode

avg (bigint) → numeric
avg (numeric) → numeric
avg (real) → double precision
avg (double precision) → double precision
avg (interval) → interval

Computes the average (arithmetic mean) of all the non-null input values.

 bit_and (smallint) → smallint
bit_and (integer) → integer
bit_and (bigint) → bigint
bit_and (bit) → bit

Computes the bitwise AND of all non-null input values.

Yes

 bit_or (smallint) → smallint
bit_or (integer) → integer
bit_or (bigint) → bigint
bit_or (bit) → bit

Computes the bitwise OR of all non-null input values.

Yes

 bit_xor (smallint) → smallint
bit_xor (integer) → integer
bit_xor (bigint) → bigint
bit_xor (bit) → bit

Computes the bitwise exclusive OR of all non-null input values. Can be useful as a check-
sum for an unordered set of values.

Yes

 bool_and (boolean) → boolean
Returns true if all non-null input values are true, otherwise false.

Yes

 bool_or (boolean) → boolean
Returns true if any non-null input value is true, otherwise false.

Yes

 count (*) → bigint
Computes the number of input rows.

Yes

count ("any") → bigint
Computes the number of input rows in which the input value is not null.

Yes

 every (boolean) → boolean
This is the SQL standard's equivalent to bool_and.

Yes

 json_agg (anyelement ORDER BY input_sort_columns) → json
 jsonb_agg (anyelement ORDER BY input_sort_columns) → jsonb

Collects all the input values, including nulls, into a JSON array. Values are converted to
JSON as per to_json or to_jsonb.

No

 json_agg_strict (anyelement) → json
 jsonb_agg_strict (anyelement) → jsonb

Collects all the input values, skipping nulls, into a JSON array. Values are converted to
JSON as per to_json or to_jsonb.

No

149

Functions and Operators

Function
Description

Partial
Mode

 json_arrayagg ([value_expression] [ORDER BY sort_expression] [{ NULL
| ABSENT } ON NULL] [RETURNING data_type [FORMAT JSON [ENCODING
UTF8]]])
Behaves in the same way as json_array but as an aggregate function so it only takes
one value_expression parameter. If ABSENT ON NULL is specified, any NULL
values are omitted. If ORDER BY is specified, the elements will appear in the array in that
order rather than in the input order.

SELECT json_arrayagg(v) FROM (VALUES(2),(1)) t(v) → [2, 1]

No

 json_objectagg ([{ key_expression { VALUE | ':' } value_expression }] [{
NULL | ABSENT } ON NULL] [{ WITH | WITHOUT } UNIQUE [KEYS]] [RETURNING
data_type [FORMAT JSON [ENCODING UTF8]]])
Behaves like json_object, but as an aggregate function, so it only takes one key_ex-
pression and one value_expression parameter.
SELECT json_objectagg(k:v) FROM (VALUES ('a'::text,cur-

rent_date),('b',current_date + 1)) AS t(k,v) → { "a" :
"2022-05-10", "b" : "2022-05-11" }

No

 json_object_agg (key "any", value "any" ORDER BY input_sort_columns) →
json

 jsonb_object_agg (key "any", value "any" ORDER BY input_sort_columns)

→ jsonb
Collects all the key/value pairs into a JSON object. Key arguments are coerced to text; val-
ue arguments are converted as per to_json or to_jsonb. Values can be null, but keys
cannot.

No

 json_object_agg_strict (key "any", value "any") → json
 jsonb_object_agg_strict (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to text; val-
ue arguments are converted as per to_json or to_jsonb. The key can not be null. If
the value is null then the entry is skipped,

No

 json_object_agg_unique (key "any", value "any") → json
 jsonb_object_agg_unique (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to text; val-
ue arguments are converted as per to_json or to_jsonb. Values can be null, but keys
cannot. If there is a duplicate key an error is thrown.

No

 json_object_agg_unique_strict (key "any", value "any") → json
 jsonb_object_agg_unique_strict (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to text; val-
ue arguments are converted as per to_json or to_jsonb. The key can not be null. If
the value is null then the entry is skipped. If there is a duplicate key an error is thrown.

No

 max (see text) → same as input type
Computes the maximum of the non-null input values. Available for any numeric, string,
date/time, or enum type, as well as bytea, inet, interval, money, oid, pg_lsn,
tid, xid8, and also arrays and composite types containing sortable data types.

Yes

 min (see text) → same as input type
Computes the minimum of the non-null input values. Available for any numeric, string,
date/time, or enum type, as well as bytea, inet, interval, money, oid, pg_lsn,
tid, xid8, and also arrays and composite types containing sortable data types.

Yes

 range_agg (value anyrange) → anymultirange No

150

Functions and Operators

Function
Description

Partial
Mode

range_agg (value anymultirange) → anymultirange
Computes the union of the non-null input values.

 range_intersect_agg (value anyrange) → anyrange
range_intersect_agg (value anymultirange) → anymultirange

Computes the intersection of the non-null input values.

No

 string_agg (value text, delimiter text) → text
string_agg (value bytea, delimiter bytea ORDER BY input_sort_columns)

→ bytea
Concatenates the non-null input values into a string. Each value after the first is preceded
by the corresponding delimiter (if it's not null).

Yes

 sum (smallint) → bigint
sum (integer) → bigint
sum (bigint) → numeric
sum (numeric) → numeric
sum (real) → real
sum (double precision) → double precision
sum (interval) → interval
sum (money) → money

Computes the sum of the non-null input values.

Yes

 xmlagg (xml ORDER BY input_sort_columns) → xml
Concatenates the non-null XML input values (see Section 9.15.1.8).

No

It should be noted that except for count, these functions return a null value when no rows are selected. In par-
ticular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather than an
empty array when there are no input rows. The coalesce function can be used to substitute zero or an empty
array for null when necessary.

The aggregate functions array_agg, json_agg, jsonb_agg, json_agg_strict, jsonb_ag-
g_strict, json_object_agg, jsonb_object_agg, json_object_agg_strict, jsonb_ob-
ject_agg_strict, json_object_agg_unique, jsonb_object_agg_unique, json_objec-
t_agg_unique_strict, jsonb_object_agg_unique_strict, string_agg, and xmlagg, as well
as similar user-defined aggregate functions, produce meaningfully different result values depending on the order
of the input values. This ordering is unspecified by default, but can be controlled by writing an ORDER BY clause
within the aggregate call, as shown in Section 4.2.7. Alternatively, supplying the input values from a sorted sub-
query will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a join, because
that might cause the subquery's output to be reordered before the aggregate is computed.

Note

The boolean aggregates bool_and and bool_or correspond to the standard SQL aggregates
every and any or some. PostgreSQL supports every, but not any or some, because there is
an ambiguity built into the standard syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

151

Functions and Operators

Here ANY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

Note

Users accustomed to working with other SQL database management systems might be disappoint-
ed by the performance of the count aggregate when it is applied to the entire table. A query like:

SELECT count(*) FROM sometable;

will require effort proportional to the size of the table: PostgreSQL will need to scan either the
entire table or the entirety of an index that includes all rows in the table.

Table 9.63 shows aggregate functions typically used in statistical analysis. (These are separated out merely to
avoid cluttering the listing of more-commonly-used aggregates.) Functions shown as accepting numeric_type
are available for all the types smallint, integer, bigint, numeric, real, and double precision.
Where the description mentions N, it means the number of input rows for which all the input expressions are non-
null. In all cases, null is returned if the computation is meaningless, for example when N is zero.

Table 9.63. Aggregate Functions for Statistics

Function
Description

Partial
Mode

 corr (Y double precision, X double precision) → double precision
Computes the correlation coefficient.

Yes

 covar_pop (Y double precision, X double precision) → double precision
Computes the population covariance.

Yes

 covar_samp (Y double precision, X double precision) → double preci-
sion
Computes the sample covariance.

Yes

 regr_avgx (Y double precision, X double precision) → double precision
Computes the average of the independent variable, sum(X)/N.

Yes

 regr_avgy (Y double precision, X double precision) → double precision
Computes the average of the dependent variable, sum(Y)/N.

Yes

 regr_count (Y double precision, X double precision) → bigint
Computes the number of rows in which both inputs are non-null.

Yes

 regr_intercept (Y double precision, X double precision) → double pre-
cision
Computes the y-intercept of the least-squares-fit linear equation determined by the (X, Y)
pairs.

Yes

 regr_r2 (Y double precision, X double precision) → double precision
Computes the square of the correlation coefficient.

Yes

 regr_slope (Y double precision, X double precision) → double preci-
sion
Computes the slope of the least-squares-fit linear equation determined by the (X, Y) pairs.

Yes

152

Functions and Operators

Function
Description

Partial
Mode

 regr_sxx (Y double precision, X double precision) → double precision
Computes the “sum of squares” of the independent variable, sum(X^2) -
sum(X)^2/N.

Yes

 regr_sxy (Y double precision, X double precision) → double precision
Computes the “sum of products” of independent times dependent variables, sum(X*Y) -
sum(X) * sum(Y)/N.

Yes

 regr_syy (Y double precision, X double precision) → double precision
Computes the “sum of squares” of the dependent variable, sum(Y^2) - sum(Y)^2/N.

Yes

 stddev (numeric_type) → double precision for real or double precision,
otherwise numeric
This is a historical alias for stddev_samp.

Yes

 stddev_pop (numeric_type) → double precision for real or double preci-
sion, otherwise numeric
Computes the population standard deviation of the input values.

Yes

 stddev_samp (numeric_type) → double precision for real or double pre-
cision, otherwise numeric
Computes the sample standard deviation of the input values.

Yes

 variance (numeric_type) → double precision for real or double preci-
sion, otherwise numeric
This is a historical alias for var_samp.

Yes

 var_pop (numeric_type) → double precision for real or double precision,
otherwise numeric
Computes the population variance of the input values (square of the population standard
deviation).

Yes

 var_samp (numeric_type) → double precision for real or double preci-
sion, otherwise numeric
Computes the sample variance of the input values (square of the sample standard devia-
tion).

Yes

Table 9.64 shows some aggregate functions that use the ordered-set aggregate syntax. These functions are some-
times referred to as “inverse distribution” functions. Their aggregated input is introduced by ORDER BY, and they
may also take a direct argument that is not aggregated, but is computed only once. All these functions ignore null
values in their aggregated input. For those that take a fraction parameter, the fraction value must be between
0 and 1; an error is thrown if not. However, a null fraction value simply produces a null result.

Table 9.64. Ordered-Set Aggregate Functions

Function
Description

Partial
Mode

 mode () WITHIN GROUP (ORDER BY anyelement) → anyelement
Computes the mode, the most frequent value of the aggregated argument (arbitrarily
choosing the first one if there are multiple equally-frequent values). The aggregated argu-
ment must be of a sortable type.

No

 percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY

double precision) → double precision
percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY

interval) → interval

No

153

Functions and Operators

Function
Description

Partial
Mode

Computes the continuous percentile, a value corresponding to the specified fraction
within the ordered set of aggregated argument values. This will interpolate between adja-
cent input items if needed.

percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY

double precision) → double precision[]
percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY

interval) → interval[]
Computes multiple continuous percentiles. The result is an array of the same dimensions as
the fractions parameter, with each non-null element replaced by the (possibly interpo-
lated) value corresponding to that percentile.

No

 percentile_disc (fraction double precision) WITHIN GROUP (ORDER BY

anyelement) → anyelement
Computes the discrete percentile, the first value within the ordered set of aggregated argu-
ment values whose position in the ordering equals or exceeds the specified fraction.
The aggregated argument must be of a sortable type.

No

percentile_disc (fractions double precision[]) WITHIN GROUP (ORDER BY

anyelement) → anyarray
Computes multiple discrete percentiles. The result is an array of the same dimensions as
the fractions parameter, with each non-null element replaced by the input value corre-
sponding to that percentile. The aggregated argument must be of a sortable type.

No

Each of the “hypothetical-set” aggregates listed in Table 9.65 is associated with a window function of the same
name defined in Section 9.22. In each case, the aggregate's result is the value that the associated window function
would have returned for the “hypothetical” row constructed from args, if such a row had been added to the sorted
group of rows represented by the sorted_args. For each of these functions, the list of direct arguments given
in args must match the number and types of the aggregated arguments given in sorted_args. Unlike most
built-in aggregates, these aggregates are not strict, that is they do not drop input rows containing nulls. Null values
sort according to the rule specified in the ORDER BY clause.

Table 9.65. Hypothetical-Set Aggregate Functions

Function
Description

Partial
Mode

 rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, with gaps; that is, the row number of the first
row in its peer group.

No

 dense_rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, without gaps; this function effectively counts
peer groups.

No

 percent_rank (args) WITHIN GROUP (ORDER BY sorted_args) → double pre-
cision
Computes the relative rank of the hypothetical row, that is (rank - 1) / (total rows - 1).
The value thus ranges from 0 to 1 inclusive.

No

 cume_dist (args) WITHIN GROUP (ORDER BY sorted_args) → double preci-
sion
Computes the cumulative distribution, that is (number of rows preceding or peers with hy-
pothetical row) / (total rows). The value thus ranges from 1/N to 1.

No

154

Functions and Operators

Table 9.66. Grouping Operations

Function
Description

 GROUPING (group_by_expression(s)) → integer
Returns a bit mask indicating which GROUP BY expressions are not included in the current grouping
set. Bits are assigned with the rightmost argument corresponding to the least-significant bit; each bit
is 0 if the corresponding expression is included in the grouping criteria of the grouping set generating
the current result row, and 1 if it is not included.

The grouping operations shown in Table 9.66 are used in conjunction with grouping sets (see Section 7.2.4) to
distinguish result rows. The arguments to the GROUPING function are not actually evaluated, but they must exactly
match expressions given in the GROUP BY clause of the associated query level. For example:

=> SELECT * FROM items_sold;
 make | model | sales
-------+-------+-------
 Foo | GT | 10
 Foo | Tour | 20
 Bar | City | 15
 Bar | Sport | 5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold
 GROUP BY ROLLUP(make,model);
 make | model | grouping | sum
-------+-------+----------+-----
 Foo | GT | 0 | 10
 Foo | Tour | 0 | 20
 Bar | City | 0 | 15
 Bar | Sport | 0 | 5
 Foo | | 1 | 30
 Bar | | 1 | 20
 | | 3 | 50
(7 rows)

Here, the grouping value 0 in the first four rows shows that those have been grouped normally, over both the
grouping columns. The value 1 indicates that model was not grouped by in the next-to-last two rows, and the
value 3 indicates that neither make nor model was grouped by in the last row (which therefore is an aggregate
over all the input rows).

9.22. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the current
query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.67. Note that these functions must be invoked using window
function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or hypotheti-
cal-set aggregates) can be used as a window function; see Section 9.21 for a list of the built-in aggregates. Aggre-
gate functions act as window functions only when an OVER clause follows the call; otherwise they act as plain
aggregates and return a single row for the entire set.

155

Functions and Operators

Table 9.67. General-Purpose Window Functions

Function
Description

 row_number () → bigint
Returns the number of the current row within its partition, counting from 1.

 rank () → bigint
Returns the rank of the current row, with gaps; that is, the row_number of the first row in its peer
group.

 dense_rank () → bigint
Returns the rank of the current row, without gaps; this function effectively counts peer groups.

 percent_rank () → double precision
Returns the relative rank of the current row, that is (rank - 1) / (total partition rows - 1). The value
thus ranges from 0 to 1 inclusive.

 cume_dist () → double precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with current
row) / (total partition rows). The value thus ranges from 1/N to 1.

 ntile (num_buckets integer) → integer
Returns an integer ranging from 1 to the argument value, dividing the partition as equally as possible.

 lag (value anycompatible [, offset integer [, default anycompatible]]) → any-
compatible
Returns value evaluated at the row that is offset rows before the current row within the parti-
tion; if there is no such row, instead returns default (which must be of a type compatible with
value). Both offset and default are evaluated with respect to the current row. If omitted,
offset defaults to 1 and default to NULL.

 lead (value anycompatible [, offset integer [, default anycompatible]]) → any-
compatible
Returns value evaluated at the row that is offset rows after the current row within the partition;
if there is no such row, instead returns default (which must be of a type compatible with value).
Both offset and default are evaluated with respect to the current row. If omitted, offset de-
faults to 1 and default to NULL.

 first_value (value anyelement) → anyelement
Returns value evaluated at the row that is the first row of the window frame.

 last_value (value anyelement) → anyelement
Returns value evaluated at the row that is the last row of the window frame.

 nth_value (value anyelement, n integer) → anyelement
Returns value evaluated at the row that is the n'th row of the window frame (counting from 1); re-
turns NULL if there is no such row.

All of the functions listed in Table 9.67 depend on the sort ordering specified by the ORDER BY clause of the
associated window definition. Rows that are not distinct when considering only the ORDER BY columns are said
to be peers. The four ranking functions (including cume_dist) are defined so that they give the same answer
for all rows of a peer group.

Note that first_value, last_value, and nth_value consider only the rows within the “window frame”,
which by default contains the rows from the start of the partition through the last peer of the current row. This is
likely to give unhelpful results for last_value and sometimes also nth_value. You can redefine the frame
by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause. See Section 4.2.8 for
more information about frame specifications.

156

Functions and Operators

When an aggregate function is used as a window function, it aggregates over the rows within the current row's
window frame. An aggregate used with ORDER BY and the default window frame definition produces a “running
sum” type of behavior, which may or may not be what's wanted. To obtain aggregation over the whole partition,
omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
Other frame specifications can be used to obtain other effects.

Note

The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag,
first_value, last_value, and nth_value. This is not implemented in PostgreSQL: the
behavior is always the same as the standard's default, namely RESPECT NULLS. Likewise, the
standard's FROM FIRST or FROM LAST option for nth_value is not implemented: only the
default FROM FIRST behavior is supported. (You can achieve the result of FROM LAST by
reversing the ORDER BY ordering.)

9.23. Merge Support Functions
PostgreSQL includes one merge support function that may be used in the RETURNING list of a MERGE command
to identify the action taken for each row; see Table 9.68.

Table 9.68. Merge Support Functions

Function
Description

 merge_action () → text
Returns the merge action command executed for the current row. This will be 'INSERT', 'UP-
DATE', or 'DELETE'.

Example:

MERGE INTO products p
 USING stock s ON p.product_id = s.product_id
 WHEN MATCHED AND s.quantity > 0 THEN
 UPDATE SET in_stock = true, quantity = s.quantity
 WHEN MATCHED THEN
 UPDATE SET in_stock = false, quantity = 0
 WHEN NOT MATCHED THEN
 INSERT (product_id, in_stock, quantity)
 VALUES (s.product_id, true, s.quantity)
 RETURNING merge_action(), p.*;

 merge_action | product_id | in_stock | quantity
--------------+------------+----------+----------
 UPDATE | 1001 | t | 50
 UPDATE | 1002 | f | 0
 INSERT | 1003 | t | 10

Note that this function can only be used in the RETURNING list of a MERGE command. It is an error to use it
in any other part of a query.

9.24. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in PostgreSQL. All of the expression
forms documented in this section return Boolean (true/false) results.

157

Functions and Operators

9.24.1. EXISTS

EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to determine
whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if the subquery returns
no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any one eval-
uation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is returned, not
all the way to completion. It is unwise to write a subquery that has side effects (such as calling sequence functions);
whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the output
list of the subquery is normally unimportant. A common coding convention is to write all EXISTS tests in the
form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule however, such as subqueries that
use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1 row,
even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

9.24.2. IN

expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression
is evaluated and compared to each row of the subquery result. The result of IN is “true” if any equal subquery row
is found. The result is “false” if no equal row is found (including the case where the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-
hand row yields null, the result of the IN construct will be null, not false. This is in accordance with SQL's normal
rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result. The result
of IN is “true” if any equal subquery row is found. The result is “false” if no equal row is found (including the
case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are
considered equal if all their corresponding members are non-null and equal; the rows are unequal if any corre-
sponding members are non-null and unequal; otherwise the result of that row comparison is unknown (null). If all
the per-row results are either unequal or null, with at least one null, then the result of IN is null.

9.24.3. NOT IN

158

Functions and Operators

expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression
is evaluated and compared to each row of the subquery result. The result of NOT IN is “true” if only unequal
subquery rows are found (including the case where the subquery returns no rows). The result is “false” if any
equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-
hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance with SQL's
normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions in the left-
hand row. The left-hand expressions are evaluated and compared row-wise to each row of the subquery result.
The result of NOT IN is “true” if only unequal subquery rows are found (including the case where the subquery
returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two rows are
considered equal if all their corresponding members are non-null and equal; the rows are unequal if any corre-
sponding members are non-null and unequal; otherwise the result of that row comparison is unknown (null). If all
the per-row results are either unequal or null, with at least one null, then the result of NOT IN is null.

9.24.4. ANY/SOME

expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression
is evaluated and compared to each row of the subquery result using the given operator, which must yield a
Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true result is
found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result, the result of
the ANY construct will be null, not false. This is in accordance with SQL's normal rules for Boolean combinations
of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result, using the given
operator. The result of ANY is “true” if the comparison returns true for any subquery row. The result is “false”
if the comparison returns false for every subquery row (including the case where the subquery returns no rows).
The result is NULL if no comparison with a subquery row returns true, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.24.5. ALL

159

Functions and Operators

expression operator ALL (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression
is evaluated and compared to each row of the subquery result using the given operator, which must yield a
Boolean result. The result of ALL is “true” if all rows yield true (including the case where the subquery returns
no rows). The result is “false” if any false result is found. The result is NULL if no comparison with a subquery
row returns false, and at least one comparison returns NULL.

NOT IN is equivalent to <> ALL.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the left-hand row.
The left-hand expressions are evaluated and compared row-wise to each row of the subquery result, using the given
operator. The result of ALL is “true” if the comparison returns true for all subquery rows (including the case
where the subquery returns no rows). The result is “false” if the comparison returns false for any subquery row.
The result is NULL if no comparison with a subquery row returns false, and at least one comparison returns NULL.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.24.6. Single-Row Comparison

row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a parenthesized
subquery, which must return exactly as many columns as there are expressions in the left-hand row. Furthermore,
the subquery cannot return more than one row. (If it returns zero rows, the result is taken to be null.) The left-hand
side is evaluated and compared row-wise to the single subquery result row.

See Section 9.25.5 for details about the meaning of a row constructor comparison.

9.25. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups of values.
These forms are syntactically related to the subquery forms of the previous section, but do not involve subqueries.
The forms involving array subexpressions are PostgreSQL extensions; the rest are SQL-compliant. All of the
expression forms documented in this section return Boolean (true/false) results.

9.25.1. IN

expression IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's result
is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-
hand expression yields null, the result of the IN construct will be null, not false. This is in accordance with SQL's
normal rules for Boolean combinations of null values.

160

Functions and Operators

9.25.2. NOT IN

expression NOT IN (value [, ...])

The right-hand side is a parenthesized list of expressions. The result is “true” if the left-hand expression's result
is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2
AND
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one right-
hand expression yields null, the result of the NOT IN construct will be null, not true as one might naively expect.
This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip

x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much
more likely to trip up the novice when working with NOT IN than when working with IN. It is
best to express your condition positively if possible.

9.25.3. ANY/SOME (array)

expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is
evaluated and compared to each element of the array using the given operator, which must yield a Boolean
result. The result of ANY is “true” if any true result is obtained. The result is “false” if no true result is found
(including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields null, the
result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a different result).
Also, if the right-hand array contains any null elements and no true comparison result is obtained, the result of
ANY will be null, not false (again, assuming a strict comparison operator). This is in accordance with SQL's normal
rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.25.4. ALL (array)

expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand expression is
evaluated and compared to each element of the array using the given operator, which must yield a Boolean
result. The result of ALL is “true” if all comparisons yield true (including the case where the array has zero
elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields null, the
result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a different result).
Also, if the right-hand array contains any null elements and no false comparison result is obtained, the result of

161

Functions and Operators

ALL will be null, not true (again, assuming a strict comparison operator). This is in accordance with SQL's normal
rules for Boolean combinations of null values.

9.25.5. Row Constructor Comparison

row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row constructors must have the same
number of fields. The given operator is applied to each pair of corresponding fields. (Since the fields could be
of different types, this means that a different specific operator could be selected for each pair.) All the selected
operators must be members of some B-tree operator class, or be the negator of an = member of a B-tree operator
class, meaning that row constructor comparison is only possible when the operator is =, <>, <, <=, >, or >=,
or has semantics similar to one of these.

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their corre-
sponding members are non-null and equal; the rows are unequal if any corresponding members are non-null and
unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal or null
pair of elements is found. If either of this pair of elements is null, the result of the row comparison is unknown
(null); otherwise comparison of this pair of elements determines the result. For example, ROW(1,2,NULL) <
ROW(1,3,0) yields true, not null, because the third pair of elements are not considered.

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any null value
is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal (not distinct).
Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any null value
is considered unequal to (distinct from) any non-null value, and any two nulls are considered equal (not distinct).
Thus the result will always be either true or false, never null.

9.25.6. Composite Type Comparison

record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing two
NULL values or a NULL and a non-NULL. PostgreSQL does this only when comparing the results of two row
constructors (as in Section 9.25.5) or comparing a row constructor to the output of a subquery (as in Section 9.24).
In other contexts where two composite-type values are compared, two NULL field values are considered equal,
and a NULL is considered larger than a non-NULL. This is necessary in order to have consistent sorting and
indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when the op-
erator is =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an operator can be
a row comparison operator if it is a member of a B-tree operator class, or is the negator of the = member of a B-
tree operator class.) The default behavior of the above operators is the same as for IS [NOT] DISTINCT
FROM for row constructors (see Section 9.25.5).

To support matching of rows which include elements without a default B-tree operator class, the following oper-
ators are defined for composite type comparison: *=, *<>, *<, *<=, *>, and *>=. These operators compare the
internal binary representation of the two rows. Two rows might have a different binary representation even though

162

Functions and Operators

comparisons of the two rows with the equality operator is true. The ordering of rows under these comparison oper-
ators is deterministic but not otherwise meaningful. These operators are used internally for materialized views and
might be useful for other specialized purposes such as replication and B-Tree deduplication (see Section 65.1.4.3).
They are not intended to be generally useful for writing queries, though.

9.26. Set Returning Functions
This section describes functions that possibly return more than one row. The most widely used functions in this
class are series generating functions, as detailed in Table 9.69 and Table 9.70. Other, more specialized set-returning
functions are described elsewhere in this manual. See Section 7.2.1.4 for ways to combine multiple set-returning
functions.

Table 9.69. Series Generating Functions

Function
Description

 generate_series (start integer, stop integer [, step integer]) → setof integer
generate_series (start bigint, stop bigint [, step bigint]) → setof bigint
generate_series (start numeric, stop numeric [, step numeric]) → setof numeric

Generates a series of values from start to stop, with a step size of step. step defaults to 1.

generate_series (start timestamp, stop timestamp, step interval) → setof time-
stamp

generate_series (start timestamp with time zone, stop timestamp with time

zone, step interval [, timezone text]) → setof timestamp with time zone
Generates a series of values from start to stop, with a step size of step. In the timezone-aware
form, times of day and daylight-savings adjustments are computed according to the time zone named
by the timezone argument, or the current TimeZone setting if that is omitted.

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is nega-
tive, zero rows are returned if start is less than stop. Zero rows are also returned if any input is NULL. It is
an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
 generate_series

 2
 3
 4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series

 5
 3
 1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series

(0 rows)

SELECT generate_series(1.1, 4, 1.3);

163

Functions and Operators

 generate_series

 1.1
 2.4
 3.7
(3 rows)

-- this example relies on the date-plus-integer operator:
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
 dates

 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
 '2008-03-04 12:00', '10 hours');
 generate_series

 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

-- this example assumes that TimeZone is set to UTC; note the DST
 transition:
SELECT * FROM generate_series('2001-10-22 00:00 -04:00'::timestamptz,
 '2001-11-01 00:00 -05:00'::timestamptz,
 '1 day'::interval, 'America/New_York');
 generate_series

 2001-10-22 04:00:00+00
 2001-10-23 04:00:00+00
 2001-10-24 04:00:00+00
 2001-10-25 04:00:00+00
 2001-10-26 04:00:00+00
 2001-10-27 04:00:00+00
 2001-10-28 04:00:00+00
 2001-10-29 05:00:00+00
 2001-10-30 05:00:00+00
 2001-10-31 05:00:00+00
 2001-11-01 05:00:00+00
(11 rows)

Table 9.70. Subscript Generating Functions

Function
Description

 generate_subscripts (array anyarray, dim integer) → setof integer
Generates a series comprising the valid subscripts of the dim'th dimension of the given array.

164

Functions and Operators

Function
Description

generate_subscripts (array anyarray, dim integer, reverse boolean) → setof in-
teger
Generates a series comprising the valid subscripts of the dim'th dimension of the given array. When
reverse is true, returns the series in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the specified
dimension of the given array. Zero rows are returned for arrays that do not have the requested dimension, or if
any input is NULL. Some examples follow:

-- basic usage:
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s

 1
 2
 3
 4
(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;
 a

 {-1,-2}
 {100,200,300}
(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
 array | subscript | value
---------------+-----------+-------
 {-1,-2} | 1 | -1
 {-1,-2} | 2 | -2
 {100,200,300} | 1 | 100
 {100,200,300} | 2 | 200
 {100,200,300} | 3 | 300
(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
 from generate_subscripts($1,1) g1(i),
 generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2

 1
 2
 3
 4

165

Functions and Operators

(4 rows)

When a function in the FROM clause is suffixed by WITH ORDINALITY, a bigint column is appended to the
function's output column(s), which starts from 1 and increments by 1 for each row of the function's output. This
is most useful in the case of set returning functions such as unnest().

-- set returning function WITH ORDINALITY:
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
 ls | n
-----------------+----
 pg_serial | 1
 pg_twophase | 2
 postmaster.opts | 3
 pg_notify | 4
 postgresql.conf | 5
 pg_tblspc | 6
 logfile | 7
 base | 8
 postmaster.pid | 9
 pg_ident.conf | 10
 global | 11
 pg_xact | 12
 pg_snapshots | 13
 pg_multixact | 14
 PG_VERSION | 15
 pg_wal | 16
 pg_hba.conf | 17
 pg_stat_tmp | 18
 pg_subtrans | 19
(19 rows)

9.27. System Information Functions and Op-
erators
The functions described in this section are used to obtain various information about a PostgreSQL installation.

9.27.1. Session Information Functions
Table 9.71 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics system
that also provide system information. See Section 27.2.26 for more information.

Table 9.71. Session Information Functions

Function
Description

 current_catalog → name
 current_database () → name

Returns the name of the current database. (Databases are called “catalogs” in the SQL standard, so
current_catalog is the standard's spelling.)

 current_query () → text
Returns the text of the currently executing query, as submitted by the client (which might contain
more than one statement).

166

Functions and Operators

Function
Description

 current_role → name
This is equivalent to current_user.

 current_schema → name
current_schema () → name

Returns the name of the schema that is first in the search path (or a null value if the search path is
empty). This is the schema that will be used for any tables or other named objects that are created
without specifying a target schema.

 current_schemas (include_implicit boolean) → name[]
Returns an array of the names of all schemas presently in the effective search path, in their prior-
ity order. (Items in the current search_path setting that do not correspond to existing, searchable
schemas are omitted.) If the Boolean argument is true, then implicitly-searched system schemas
such as pg_catalog are included in the result.

 current_user → name
Returns the user name of the current execution context.

 inet_client_addr () → inet
Returns the IP address of the current client, or NULL if the current connection is via a Unix-domain
socket.

 inet_client_port () → integer
Returns the IP port number of the current client, or NULL if the current connection is via a Unix-do-
main socket.

 inet_server_addr () → inet
Returns the IP address on which the server accepted the current connection, or NULL if the current
connection is via a Unix-domain socket.

 inet_server_port () → integer
Returns the IP port number on which the server accepted the current connection, or NULL if the cur-
rent connection is via a Unix-domain socket.

 pg_backend_pid () → integer
Returns the process ID of the server process attached to the current session.

 pg_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with the
specified process ID from acquiring a lock, or an empty array if there is no such server process or it
is not blocked.
One server process blocks another if it either holds a lock that conflicts with the blocked process's
lock request (hard block), or is waiting for a lock that would conflict with the blocked process's lock
request and is ahead of it in the wait queue (soft block). When using parallel queries the result always
lists client-visible process IDs (that is, pg_backend_pid results) even if the actual lock is held
or awaited by a child worker process. As a result of that, there may be duplicated PIDs in the result.
Also note that when a prepared transaction holds a conflicting lock, it will be represented by a zero
process ID.
Frequent calls to this function could have some impact on database performance, because it needs ex-
clusive access to the lock manager's shared state for a short time.

 pg_conf_load_time () → timestamp with time zone
Returns the time when the server configuration files were last loaded. If the current session was alive
at the time, this will be the time when the session itself re-read the configuration files (so the reading
will vary a little in different sessions). Otherwise it is the time when the postmaster process re-read
the configuration files.

 pg_current_logfile ([text]) → text

167

Functions and Operators

Function
Description

Returns the path name of the log file currently in use by the logging collector. The path includes the
log_directory directory and the individual log file name. The result is NULL if the logging collector is
disabled. When multiple log files exist, each in a different format, pg_current_logfile with-
out an argument returns the path of the file having the first format found in the ordered list: stderr,
csvlog, jsonlog. NULL is returned if no log file has any of these formats. To request information
about a specific log file format, supply either csvlog, jsonlog or stderr as the value of the op-
tional parameter. The result is NULL if the log format requested is not configured in log_destination.
The result reflects the contents of the current_logfiles file.
This function is restricted to superusers and roles with privileges of the pg_monitor role by de-
fault, but other users can be granted EXECUTE to run the function.

 pg_get_loaded_modules () → setof record (module_name text, version text,
file_name text)
Returns a list of the loadable modules that are loaded into the current server session. The mod-
ule_name and version fields are NULL unless the module author supplied values for them us-
ing the PG_MODULE_MAGIC_EXT macro. The file_name field gives the file name of the module
(shared library).

 pg_my_temp_schema () → oid
Returns the OID of the current session's temporary schema, or zero if it has none (because it has not
created any temporary tables).

 pg_is_other_temp_schema (oid) → boolean
Returns true if the given OID is the OID of another session's temporary schema. (This can be useful,
for example, to exclude other sessions' temporary tables from a catalog display.)

 pg_jit_available () → boolean
Returns true if a JIT compiler extension is available (see Chapter 30) and the jit configuration para-
meter is set to on.

 pg_numa_available () → boolean
Returns true if the server has been compiled with NUMA support.

 pg_listening_channels () → setof text
Returns the set of names of asynchronous notification channels that the current session is listening to.

 pg_notification_queue_usage () → double precision
Returns the fraction (0–1) of the asynchronous notification queue's maximum size that is currently
occupied by notifications that are waiting to be processed. See LISTEN and NOTIFY for more infor-
mation.

 pg_postmaster_start_time () → timestamp with time zone
Returns the time when the server started.

 pg_safe_snapshot_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with the
specified process ID from acquiring a safe snapshot, or an empty array if there is no such server
process or it is not blocked.
A session running a SERIALIZABLE transaction blocks a SERIALIZABLE READ ONLY DE-
FERRABLE transaction from acquiring a snapshot until the latter determines that it is safe to avoid
taking any predicate locks. See Section 13.2.3 for more information about serializable and deferrable
transactions.
Frequent calls to this function could have some impact on database performance, because it needs ac-
cess to the predicate lock manager's shared state for a short time.

 pg_trigger_depth () → integer
Returns the current nesting level of PostgreSQL triggers (0 if not called, directly or indirectly, from
inside a trigger).

168

Functions and Operators

Function
Description

 session_user → name
Returns the session user's name.

 system_user → text
Returns the authentication method and the identity (if any) that the user presented during the authen-
tication cycle before they were assigned a database role. It is represented as auth_method:iden-
tity or NULL if the user has not been authenticated (for example if Trust authentication has been
used).

 user → name
This is equivalent to current_user.

Note

current_catalog, current_role, current_schema, current_user, ses-
sion_user, and user have special syntactic status in SQL: they must be called without trailing
parentheses. In PostgreSQL, parentheses can optionally be used with current_schema, but not
with the others.

The session_user is normally the user who initiated the current database connection; but superusers can
change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier that
is applicable for permission checking. Normally it is equal to the session user, but it can be changed with SET
ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER. In Unix
parlance, the session user is the “real user” and the current user is the “effective user”. current_role and
user are synonyms for current_user. (The SQL standard draws a distinction between current_role and
current_user, but PostgreSQL does not, since it unifies users and roles into a single kind of entity.)

9.27.2. Access Privilege Inquiry Functions
Table 9.72 lists functions that allow querying object access privileges programmatically. (See Section 5.8 for
more information about privileges.) In these functions, the user whose privileges are being inquired about can
be specified by name or by OID (pg_authid.oid), or if the name is given as public then the privileges
of the PUBLIC pseudo-role are checked. Also, the user argument can be omitted entirely, in which case the
current_user is assumed. The object that is being inquired about can be specified either by name or by OID,
too. When specifying by name, a schema name can be included if relevant. The access privilege of interest is
specified by a text string, which must evaluate to one of the appropriate privilege keywords for the object's type
(e.g., SELECT). Optionally, WITH GRANT OPTION can be added to a privilege type to test whether the privilege
is held with grant option. Also, multiple privilege types can be listed separated by commas, in which case the
result will be true if any of the listed privileges is held. (Case of the privilege string is not significant, and extra
whitespace is allowed between but not within privilege names.) Some examples:

SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH GRANT
 OPTION');

Table 9.72. Access Privilege Inquiry Functions

Function
Description

 has_any_column_privilege ([user name or oid,] table text or oid, privilege text)

→ boolean

169

Functions and Operators

Function
Description

Does user have privilege for any column of table? This succeeds either if the privilege is held for the
whole table, or if there is a column-level grant of the privilege for at least one column. Allowable
privilege types are SELECT, INSERT, UPDATE, and REFERENCES.

 has_column_privilege ([user name or oid,] table text or oid, column text or small-

int, privilege text) → boolean
Does user have privilege for the specified table column? This succeeds either if the privilege is held
for the whole table, or if there is a column-level grant of the privilege for the column. The column
can be specified by name or by attribute number (pg_attribute.attnum). Allowable privilege
types are SELECT, INSERT, UPDATE, and REFERENCES.

 has_database_privilege ([user name or oid,] database text or oid, privilege text)

→ boolean
Does user have privilege for database? Allowable privilege types are CREATE, CONNECT, TEMPO-
RARY, and TEMP (which is equivalent to TEMPORARY).

 has_foreign_data_wrapper_privilege ([user name or oid,] fdw text or oid, privi-

lege text) → boolean
Does user have privilege for foreign-data wrapper? The only allowable privilege type is USAGE.

 has_function_privilege ([user name or oid,] function text or oid, privilege text)

→ boolean
Does user have privilege for function? The only allowable privilege type is EXECUTE.
When specifying a function by name rather than by OID, the allowed input is the same as for the
regprocedure data type (see Section 8.19). An example is:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)',
 'execute');

 has_language_privilege ([user name or oid,] language text or oid, privilege text)

→ boolean
Does user have privilege for language? The only allowable privilege type is USAGE.

 has_largeobject_privilege ([user name or oid,] largeobject oid, privilege text)

→ boolean
Does user have privilege for large object? Allowable privilege types are SELECT and UPDATE.

 has_parameter_privilege ([user name or oid,] parameter text, privilege text) →
boolean
Does user have privilege for configuration parameter? The parameter name is case-insensitive. Al-
lowable privilege types are SET and ALTER SYSTEM.

 has_schema_privilege ([user name or oid,] schema text or oid, privilege text) →
boolean
Does user have privilege for schema? Allowable privilege types are CREATE and USAGE.

 has_sequence_privilege ([user name or oid,] sequence text or oid, privilege text)

→ boolean
Does user have privilege for sequence? Allowable privilege types are USAGE, SELECT, and UP-
DATE.

 has_server_privilege ([user name or oid,] server text or oid, privilege text) →
boolean
Does user have privilege for foreign server? The only allowable privilege type is USAGE.

 has_table_privilege ([user name or oid,] table text or oid, privilege text) →
boolean

170

Functions and Operators

Function
Description

Does user have privilege for table? Allowable privilege types are SELECT, INSERT, UPDATE,
DELETE, TRUNCATE, REFERENCES, TRIGGER, and MAINTAIN.

 has_tablespace_privilege ([user name or oid,] tablespace text or oid, privilege

text) → boolean
Does user have privilege for tablespace? The only allowable privilege type is CREATE.

 has_type_privilege ([user name or oid,] type text or oid, privilege text) →
boolean
Does user have privilege for data type? The only allowable privilege type is USAGE. When specify-
ing a type by name rather than by OID, the allowed input is the same as for the regtype data type
(see Section 8.19).

 pg_has_role ([user name or oid,] role text or oid, privilege text) → boolean
Does user have privilege for role? Allowable privilege types are MEMBER, USAGE, and SET. MEM-
BER denotes direct or indirect membership in the role without regard to what specific privileges may
be conferred. USAGE denotes whether the privileges of the role are immediately available without
doing SET ROLE, while SET denotes whether it is possible to change to the role using the SET
ROLE command. WITH ADMIN OPTION or WITH GRANT OPTION can be added to any of these
privilege types to test whether the ADMIN privilege is held (all six spellings test the same thing). This
function does not allow the special case of setting user to public, because the PUBLIC pseu-
do-role can never be a member of real roles.

 row_security_active (table text or oid) → boolean
Is row-level security active for the specified table in the context of the current user and current envi-
ronment?

Table 9.73 shows the operators available for the aclitem type, which is the catalog representation of access
privileges. See Section 5.8 for information about how to read access privilege values.

Table 9.73. aclitem Operators

Operator
Description
Example(s)

 aclitem = aclitem → boolean
Are aclitems equal? (Notice that type aclitem lacks the usual set of comparison operators; it
has only equality. In turn, aclitem arrays can only be compared for equality.)

'calvin=r*w/hobbes'::aclitem = 'calvin=r*w*/hobbes'::aclitem → f

 aclitem[] @> aclitem → boolean
Does array contain the specified privileges? (This is true if there is an array entry that matches the
aclitem's grantee and grantor, and has at least the specified set of privileges.)
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] @>

'calvin=r*/hobbes'::aclitem → t

aclitem[] ~ aclitem → boolean
This is a deprecated alias for @>.
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] ~ 'calvin=r*/

hobbes'::aclitem → t

Table 9.74 shows some additional functions to manage the aclitem type.

171

Functions and Operators

Table 9.74. aclitem Functions

Function
Description

 acldefault (type "char", ownerId oid) → aclitem[]
Constructs an aclitem array holding the default access privileges for an object of type type be-
longing to the role with OID ownerId. This represents the access privileges that will be assumed
when an object's ACL entry is null. (The default access privileges are described in Section 5.8.) The
type parameter must be one of 'c' for COLUMN, 'r' for TABLE and table-like objects, 's' for SE-
QUENCE, 'd' for DATABASE, 'f' for FUNCTION or PROCEDURE, 'l' for LANGUAGE, 'L' for LARGE
OBJECT, 'n' for SCHEMA, 'p' for PARAMETER, 't' for TABLESPACE, 'F' for FOREIGN DATA
WRAPPER, 'S' for FOREIGN SERVER, or 'T' for TYPE or DOMAIN.

 aclexplode (aclitem[]) → setof record (grantor oid, grantee oid, privi-
lege_type text, is_grantable boolean)
Returns the aclitem array as a set of rows. If the grantee is the pseudo-role PUBLIC, it is repre-
sented by zero in the grantee column. Each granted privilege is represented as SELECT, INSERT,
etc (see Table 5.1 for a full list). Note that each privilege is broken out as a separate row, so only one
keyword appears in the privilege_type column.

 makeaclitem (grantee oid, grantor oid, privileges text, is_grantable boolean) →
aclitem
Constructs an aclitem with the given properties. privileges is a comma-separated list of priv-
ilege names such as SELECT, INSERT, etc, all of which are set in the result. (Case of the privilege
string is not significant, and extra whitespace is allowed between but not within privilege names.)

9.27.3. Schema Visibility Inquiry Functions
Table 9.75 shows functions that determine whether a certain object is visible in the current schema search path.
For example, a table is said to be visible if its containing schema is in the search path and no table of the same
name appears earlier in the search path. This is equivalent to the statement that the table can be referenced by
name without explicit schema qualification. Thus, to list the names of all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

For functions and operators, an object in the search path is said to be visible if there is no object of the same name
and argument data type(s) earlier in the path. For operator classes and families, both the name and the associated
index access method are considered.

Table 9.75. Schema Visibility Inquiry Functions

Function
Description

 pg_collation_is_visible (collation oid) → boolean
Is collation visible in search path?

 pg_conversion_is_visible (conversion oid) → boolean
Is conversion visible in search path?

 pg_function_is_visible (function oid) → boolean
Is function visible in search path? (This also works for procedures and aggregates.)

 pg_opclass_is_visible (opclass oid) → boolean
Is operator class visible in search path?

 pg_operator_is_visible (operator oid) → boolean
Is operator visible in search path?

172

Functions and Operators

Function
Description

 pg_opfamily_is_visible (opclass oid) → boolean
Is operator family visible in search path?

 pg_statistics_obj_is_visible (stat oid) → boolean
Is statistics object visible in search path?

 pg_table_is_visible (table oid) → boolean
Is table visible in search path? (This works for all types of relations, including views, materialized
views, indexes, sequences and foreign tables.)

 pg_ts_config_is_visible (config oid) → boolean
Is text search configuration visible in search path?

 pg_ts_dict_is_visible (dict oid) → boolean
Is text search dictionary visible in search path?

 pg_ts_parser_is_visible (parser oid) → boolean
Is text search parser visible in search path?

 pg_ts_template_is_visible (template oid) → boolean
Is text search template visible in search path?

 pg_type_is_visible (type oid) → boolean
Is type (or domain) visible in search path?

All these functions require object OIDs to identify the object to be checked. If you want to test an object by
name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator,
regconfig, or regdictionary), for example:

SELECT pg_type_is_visible('myschema.widget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the name can
be recognized at all, it must be visible.

9.27.4. System Catalog Information Functions
Table 9.76 lists functions that extract information from the system catalogs.

Table 9.76. System Catalog Information Functions

Function
Description

 format_type (type oid, typemod integer) → text
Returns the SQL name for a data type that is identified by its type OID and possibly a type modifier.
Pass NULL for the type modifier if no specific modifier is known.

 pg_basetype (regtype) → regtype
Returns the OID of the base type of a domain identified by its type OID. If the argument is the OID
of a non-domain type, returns the argument as-is. Returns NULL if the argument is not a valid type
OID. If there's a chain of domain dependencies, it will recurse until finding the base type.
Assuming CREATE DOMAIN mytext AS text:

pg_basetype('mytext'::regtype) → text

 pg_char_to_encoding (encoding name) → integer
Converts the supplied encoding name into an integer representing the internal identifier used in some
system catalog tables. Returns -1 if an unknown encoding name is provided.

173

Functions and Operators

Function
Description

 pg_encoding_to_char (encoding integer) → name
Converts the integer used as the internal identifier of an encoding in some system catalog tables into
a human-readable string. Returns an empty string if an invalid encoding number is provided.

 pg_get_catalog_foreign_keys () → setof record (fktable regclass, fkcols
text[], pktable regclass, pkcols text[], is_array boolean, is_opt boolean)
Returns a set of records describing the foreign key relationships that exist within the PostgreSQL
system catalogs. The fktable column contains the name of the referencing catalog, and the fk-
cols column contains the name(s) of the referencing column(s). Similarly, the pktable column
contains the name of the referenced catalog, and the pkcols column contains the name(s) of the ref-
erenced column(s). If is_array is true, the last referencing column is an array, each of whose ele-
ments should match some entry in the referenced catalog. If is_opt is true, the referencing colum-
n(s) are allowed to contain zeroes instead of a valid reference.

 pg_get_constraintdef (constraint oid [, pretty boolean]) → text
Reconstructs the creating command for a constraint. (This is a decompiled reconstruction, not the
original text of the command.)

 pg_get_expr (expr pg_node_tree, relation oid [, pretty boolean]) → text
Decompiles the internal form of an expression stored in the system catalogs, such as the default value
for a column. If the expression might contain Vars, specify the OID of the relation they refer to as the
second parameter; if no Vars are expected, passing zero is sufficient.

 pg_get_functiondef (func oid) → text
Reconstructs the creating command for a function or procedure. (This is a decompiled reconstruc-
tion, not the original text of the command.) The result is a complete CREATE OR REPLACE
FUNCTION or CREATE OR REPLACE PROCEDURE statement.

 pg_get_function_arguments (func oid) → text
Reconstructs the argument list of a function or procedure, in the form it would need to appear in
within CREATE FUNCTION (including default values).

 pg_get_function_identity_arguments (func oid) → text
Reconstructs the argument list necessary to identify a function or procedure, in the form it would
need to appear in within commands such as ALTER FUNCTION. This form omits default values.

 pg_get_function_result (func oid) → text
Reconstructs the RETURNS clause of a function, in the form it would need to appear in within CRE-
ATE FUNCTION. Returns NULL for a procedure.

 pg_get_indexdef (index oid [, column integer, pretty boolean]) → text
Reconstructs the creating command for an index. (This is a decompiled reconstruction, not the origi-
nal text of the command.) If column is supplied and is not zero, only the definition of that column is
reconstructed.

 pg_get_keywords () → setof record (word text, catcode "char", barelabel boolean,
catdesc text, baredesc text)
Returns a set of records describing the SQL keywords recognized by the server. The word column
contains the keyword. The catcode column contains a category code: U for an unreserved key-
word, C for a keyword that can be a column name, T for a keyword that can be a type or function
name, or R for a fully reserved keyword. The barelabel column contains true if the keyword
can be used as a “bare” column label in SELECT lists, or false if it can only be used after AS.
The catdesc column contains a possibly-localized string describing the keyword's category. The
baredesc column contains a possibly-localized string describing the keyword's column label sta-
tus.

 pg_get_partkeydef (table oid) → text

174

Functions and Operators

Function
Description

Reconstructs the definition of a partitioned table's partition key, in the form it would have in the
PARTITION BY clause of CREATE TABLE. (This is a decompiled reconstruction, not the original
text of the command.)

 pg_get_ruledef (rule oid [, pretty boolean]) → text
Reconstructs the creating command for a rule. (This is a decompiled reconstruction, not the original
text of the command.)

 pg_get_serial_sequence (table text, column text) → text
Returns the name of the sequence associated with a column, or NULL if no sequence is associated
with the column. If the column is an identity column, the associated sequence is the sequence inter-
nally created for that column. For columns created using one of the serial types (serial, small-
serial, bigserial), it is the sequence created for that serial column definition. In the latter case,
the association can be modified or removed with ALTER SEQUENCE OWNED BY. (This function
probably should have been called pg_get_owned_sequence; its current name reflects the fact
that it has historically been used with serial-type columns.) The first parameter is a table name with
optional schema, and the second parameter is a column name. Because the first parameter potentially
contains both schema and table names, it is parsed per usual SQL rules, meaning it is lower-cased by
default. The second parameter, being just a column name, is treated literally and so has its case pre-
served. The result is suitably formatted for passing to the sequence functions (see Section 9.17).
A typical use is in reading the current value of the sequence for an identity or serial column, for ex-
ample:

SELECT currval(pg_get_serial_sequence('sometable', 'id'));

 pg_get_statisticsobjdef (statobj oid) → text
Reconstructs the creating command for an extended statistics object. (This is a decompiled recon-
struction, not the original text of the command.)

 pg_get_triggerdef (trigger oid [, pretty boolean]) → text
Reconstructs the creating command for a trigger. (This is a decompiled reconstruction, not the origi-
nal text of the command.)

 pg_get_userbyid (role oid) → name
Returns a role's name given its OID.

 pg_get_viewdef (view oid [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a decom-
piled reconstruction, not the original text of the command.)

pg_get_viewdef (view oid, wrap_column integer) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a decom-
piled reconstruction, not the original text of the command.) In this form of the function, pretty-print-
ing is always enabled, and long lines are wrapped to try to keep them shorter than the specified num-
ber of columns.

pg_get_viewdef (view text [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view, working from a tex-
tual name for the view rather than its OID. (This is deprecated; use the OID variant instead.)

 pg_index_column_has_property (index regclass, column integer, property text)

→ boolean
Tests whether an index column has the named property. Common index column properties are listed
in Table 9.77. (Note that extension access methods can define additional property names for their in-
dexes.) NULL is returned if the property name is not known or does not apply to the particular object,
or if the OID or column number does not identify a valid object.

175

Functions and Operators

Function
Description

 pg_index_has_property (index regclass, property text) → boolean
Tests whether an index has the named property. Common index properties are listed in Table 9.78.
(Note that extension access methods can define additional property names for their indexes.) NULL
is returned if the property name is not known or does not apply to the particular object, or if the OID
does not identify a valid object.

 pg_indexam_has_property (am oid, property text) → boolean
Tests whether an index access method has the named property. Access method properties are listed
in Table 9.79. NULL is returned if the property name is not known or does not apply to the particular
object, or if the OID does not identify a valid object.

 pg_options_to_table (options_array text[]) → setof record (option_name text,
option_value text)
Returns the set of storage options represented by a value from pg_class.reloptions or
pg_attribute.attoptions.

 pg_settings_get_flags (guc text) → text[]
Returns an array of the flags associated with the given GUC, or NULL if it does not exist. The result
is an empty array if the GUC exists but there are no flags to show. Only the most useful flags listed
in Table 9.80 are exposed.

 pg_tablespace_databases (tablespace oid) → setof oid
Returns the set of OIDs of databases that have objects stored in the specified tablespace. If this func-
tion returns any rows, the tablespace is not empty and cannot be dropped. To identify the specific ob-
jects populating the tablespace, you will need to connect to the database(s) identified by pg_ta-
blespace_databases and query their pg_class catalogs.

 pg_tablespace_location (tablespace oid) → text
Returns the file system path that this tablespace is located in.

 pg_typeof ("any") → regtype
Returns the OID of the data type of the value that is passed to it. This can be helpful for troubleshoot-
ing or dynamically constructing SQL queries. The function is declared as returning regtype, which
is an OID alias type (see Section 8.19); this means that it is the same as an OID for comparison pur-
poses but displays as a type name.

pg_typeof(33) → integer

 COLLATION FOR ("any") → text
Returns the name of the collation of the value that is passed to it. The value is quoted and schema-
qualified if necessary. If no collation was derived for the argument expression, then NULL is re-
turned. If the argument is not of a collatable data type, then an error is raised.

collation for ('foo'::text) → "default"
collation for ('foo' COLLATE "de_DE") → "de_DE"

 to_regclass (text) → regclass
Translates a textual relation name to its OID. A similar result is obtained by casting the string to type
regclass (see Section 8.19); however, this function will return NULL rather than throwing an error
if the name is not found.

 to_regcollation (text) → regcollation
Translates a textual collation name to its OID. A similar result is obtained by casting the string
to type regcollation (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found.

 to_regnamespace (text) → regnamespace

176

Functions and Operators

Function
Description

Translates a textual schema name to its OID. A similar result is obtained by casting the string to type
regnamespace (see Section 8.19); however, this function will return NULL rather than throwing
an error if the name is not found.

 to_regoper (text) → regoper
Translates a textual operator name to its OID. A similar result is obtained by casting the string to
type regoper (see Section 8.19); however, this function will return NULL rather than throwing an
error if the name is not found or is ambiguous.

 to_regoperator (text) → regoperator
Translates a textual operator name (with parameter types) to its OID. A similar result is obtained
by casting the string to type regoperator (see Section 8.19); however, this function will return
NULL rather than throwing an error if the name is not found.

 to_regproc (text) → regproc
Translates a textual function or procedure name to its OID. A similar result is obtained by casting
the string to type regproc (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found or is ambiguous.

 to_regprocedure (text) → regprocedure
Translates a textual function or procedure name (with argument types) to its OID. A similar result is
obtained by casting the string to type regprocedure (see Section 8.19); however, this function
will return NULL rather than throwing an error if the name is not found.

 to_regrole (text) → regrole
Translates a textual role name to its OID. A similar result is obtained by casting the string to type
regrole (see Section 8.19); however, this function will return NULL rather than throwing an error
if the name is not found.

 to_regtype (text) → regtype
Parses a string of text, extracts a potential type name from it, and translates that name into a type
OID. A syntax error in the string will result in an error; but if the string is a syntactically valid type
name that happens not to be found in the catalogs, the result is NULL. A similar result is obtained by
casting the string to type regtype (see Section 8.19), except that that will throw error for name not
found.

 to_regtypemod (text) → integer
Parses a string of text, extracts a potential type name from it, and translates its type modifier, if any.
A syntax error in the string will result in an error; but if the string is a syntactically valid type name
that happens not to be found in the catalogs, the result is NULL. The result is -1 if no type modifier
is present.
to_regtypemod can be combined with to_regtype to produce appropriate inputs for format_type,
allowing a string representing a type name to be canonicalized.
format_type(to_regtype('varchar(32)'), to_regtypemod('var-

char(32)')) → character varying(32)

Most of the functions that reconstruct (decompile) database objects have an optional pretty flag, which if true
causes the result to be “pretty-printed”. Pretty-printing suppresses unnecessary parentheses and adds whitespace
for legibility. The pretty-printed format is more readable, but the default format is more likely to be interpreted
the same way by future versions of PostgreSQL; so avoid using pretty-printed output for dump purposes. Passing
false for the pretty parameter yields the same result as omitting the parameter.

Table 9.77. Index Column Properties

Name Description

asc Does the column sort in ascending order on a forward
scan?

177

Functions and Operators

Name Description

desc Does the column sort in descending order on a forward
scan?

nulls_first Does the column sort with nulls first on a forward
scan?

nulls_last Does the column sort with nulls last on a forward
scan?

orderable Does the column possess any defined sort ordering?

distance_orderable Can the column be scanned in order by a “distance”
operator, for example ORDER BY col <-> con-
stant ?

returnable Can the column value be returned by an index-only
scan?

search_array Does the column natively support col = ANY(ar-
ray) searches?

search_nulls Does the column support IS NULL and IS NOT
NULL searches?

Table 9.78. Index Properties

Name Description

clusterable Can the index be used in a CLUSTER command?

index_scan Does the index support plain (non-bitmap) scans?

bitmap_scan Does the index support bitmap scans?

backward_scan Can the scan direction be changed in mid-scan (to sup-
port FETCH BACKWARD on a cursor without needing
materialization)?

Table 9.79. Index Access Method Properties

Name Description

can_order Does the access method support ASC, DESC and relat-
ed keywords in CREATE INDEX?

can_unique Does the access method support unique indexes?

can_multi_col Does the access method support indexes with multiple
columns?

can_exclude Does the access method support exclusion constraints?

can_include Does the access method support the INCLUDE clause
of CREATE INDEX?

Table 9.80. GUC Flags

Flag Description

EXPLAIN Parameters with this flag are included in EXPLAIN
(SETTINGS) commands.

NO_SHOW_ALL Parameters with this flag are excluded from SHOW
ALL commands.

NO_RESET Parameters with this flag do not support RESET com-
mands.

178

Functions and Operators

Flag Description

NO_RESET_ALL Parameters with this flag are excluded from RESET
ALL commands.

NOT_IN_SAMPLE Parameters with this flag are not included in post-
gresql.conf by default.

RUNTIME_COMPUTED Parameters with this flag are runtime-computed ones.

9.27.5. Object Information and Addressing Functions

Table 9.81 lists functions related to database object identification and addressing.

Table 9.81. Object Information and Addressing Functions

Function
Description

 pg_get_acl (classid oid, objid oid, objsubid integer) → aclitem[]
Returns the ACL for a database object, specified by catalog OID, object OID and sub-object ID. This
function returns NULL values for undefined objects.

 pg_describe_object (classid oid, objid oid, objsubid integer) → text
Returns a textual description of a database object identified by catalog OID, object OID, and sub-ob-
ject ID (such as a column number within a table; the sub-object ID is zero when referring to a whole
object). This description is intended to be human-readable, and might be translated, depending on
server configuration. This is especially useful to determine the identity of an object referenced in the
pg_depend catalog. This function returns NULL values for undefined objects.

 pg_identify_object (classid oid, objid oid, objsubid integer) → record (type
text, schema text, name text, identity text)
Returns a row containing enough information to uniquely identify the database object specified by
catalog OID, object OID and sub-object ID. This information is intended to be machine-readable,
and is never translated. type identifies the type of database object; schema is the schema name
that the object belongs in, or NULL for object types that do not belong to schemas; name is the name
of the object, quoted if necessary, if the name (along with schema name, if pertinent) is sufficient to
uniquely identify the object, otherwise NULL; identity is the complete object identity, with the
precise format depending on object type, and each name within the format being schema-qualified
and quoted as necessary. Undefined objects are identified with NULL values.

 pg_identify_object_as_address (classid oid, objid oid, objsubid integer) →
record (type text, object_names text[], object_args text[])
Returns a row containing enough information to uniquely identify the database object specified by
catalog OID, object OID and sub-object ID. The returned information is independent of the current
server, that is, it could be used to identify an identically named object in another server. type iden-
tifies the type of database object; object_names and object_args are text arrays that together
form a reference to the object. These three values can be passed to pg_get_object_address to
obtain the internal address of the object.

 pg_get_object_address (type text, object_names text[], object_args text[]) →
record (classid oid, objid oid, objsubid integer)
Returns a row containing enough information to uniquely identify the database object specified by
a type code and object name and argument arrays. The returned values are the ones that would be
used in system catalogs such as pg_depend; they can be passed to other system functions such as
pg_describe_object or pg_identify_object. classid is the OID of the system cat-
alog containing the object; objid is the OID of the object itself, and objsubid is the sub-object
ID, or zero if none. This function is the inverse of pg_identify_object_as_address. Unde-
fined objects are identified with NULL values.

179

Functions and Operators

pg_get_acl is useful for retrieving and inspecting the privileges associated with database objects without look-
ing at specific catalogs. For example, to retrieve all the granted privileges on objects in the current database:

postgres=# SELECT
 (pg_identify_object(s.classid,s.objid,s.objsubid)).*,
 pg_catalog.pg_get_acl(s.classid,s.objid,s.objsubid) AS acl
FROM pg_catalog.pg_shdepend AS s
JOIN pg_catalog.pg_database AS d
 ON d.datname = current_database() AND
 d.oid = s.dbid
JOIN pg_catalog.pg_authid AS a
 ON a.oid = s.refobjid AND
 s.refclassid = 'pg_authid'::regclass
WHERE s.deptype = 'a';
-[RECORD 1]---
type | table
schema | public
name | testtab
identity | public.testtab
acl | {postgres=arwdDxtm/postgres,foo=r/postgres}

9.27.6. Comment Information Functions

The functions shown in Table 9.82 extract comments previously stored with the COMMENT command. A null
value is returned if no comment could be found for the specified parameters.

Table 9.82. Comment Information Functions

Function
Description

 col_description (table oid, column integer) → text
Returns the comment for a table column, which is specified by the OID of its table and its column
number. (obj_description cannot be used for table columns, since columns do not have OIDs
of their own.)

 obj_description (object oid, catalog name) → text
Returns the comment for a database object specified by its OID and the name of the containing sys-
tem catalog. For example, obj_description(123456, 'pg_class') would retrieve the
comment for the table with OID 123456.

obj_description (object oid) → text
Returns the comment for a database object specified by its OID alone. This is deprecated since there
is no guarantee that OIDs are unique across different system catalogs; therefore, the wrong comment
might be returned.

 shobj_description (object oid, catalog name) → text
Returns the comment for a shared database object specified by its OID and the name of the contain-
ing system catalog. This is just like obj_description except that it is used for retrieving com-
ments on shared objects (that is, databases, roles, and tablespaces). Some system catalogs are glob-
al to all databases within each cluster, and the descriptions for objects in them are stored globally as
well.

9.27.7. Data Validity Checking Functions

The functions shown in Table 9.83 can be helpful for checking validity of proposed input data.

180

Functions and Operators

Table 9.83. Data Validity Checking Functions

Function
Description
Example(s)

 pg_input_is_valid (string text, type text) → boolean
Tests whether the given string is valid input for the specified data type, returning true or false.
This function will only work as desired if the data type's input function has been updated to report in-
valid input as a “soft” error. Otherwise, invalid input will abort the transaction, just as if the string
had been cast to the type directly.

pg_input_is_valid('42', 'integer') → t
pg_input_is_valid('42000000000', 'integer') → f
pg_input_is_valid('1234.567', 'numeric(7,4)') → f

 pg_input_error_info (string text, type text) → record (message text, detail
text, hint text, sql_error_code text)
Tests whether the given string is valid input for the specified data type; if not, return the details of
the error that would have been thrown. If the input is valid, the results are NULL. The inputs are the
same as for pg_input_is_valid.
This function will only work as desired if the data type's input function has been updated to report in-
valid input as a “soft” error. Otherwise, invalid input will abort the transaction, just as if the string
had been cast to the type directly.

SELECT * FROM pg_input_error_info('42000000000', 'integer') →

 message | detail |
 hint | sql_error_code
--+--------
+------+----------------
 value "42000000000" is out of range for type integer | |
 | 22003

9.27.8. Transaction ID and Snapshot Information Func-
tions
The functions shown in Table 9.84 provide server transaction information in an exportable form. The main use of
these functions is to determine which transactions were committed between two snapshots.

Table 9.84. Transaction ID and Snapshot Information Functions

Function
Description

 age (xid) → integer
Returns the number of transactions between the supplied transaction id and the current transaction
counter.

 mxid_age (xid) → integer
Returns the number of multixacts IDs between the supplied multixact ID and the current multixacts
counter.

 pg_current_xact_id () → xid8
Returns the current transaction's ID. It will assign a new one if the current transaction does not have
one already (because it has not performed any database updates); see Section 67.1 for details. If exe-
cuted in a subtransaction, this will return the top-level transaction ID; see Section 67.3 for details.

 pg_current_xact_id_if_assigned () → xid8

181

Functions and Operators

Function
Description

Returns the current transaction's ID, or NULL if no ID is assigned yet. (It's best to use this variant if
the transaction might otherwise be read-only, to avoid unnecessary consumption of an XID.) If exe-
cuted in a subtransaction, this will return the top-level transaction ID.

 pg_xact_status (xid8) → text
Reports the commit status of a recent transaction. The result is one of in progress, commit-
ted, or aborted, provided that the transaction is recent enough that the system retains the commit
status of that transaction. If it is old enough that no references to the transaction survive in the sys-
tem and the commit status information has been discarded, the result is NULL. Applications might
use this function, for example, to determine whether their transaction committed or aborted after the
application and database server become disconnected while a COMMIT is in progress. Note that pre-
pared transactions are reported as in progress; applications must check pg_prepared_x-
acts if they need to determine whether a transaction ID belongs to a prepared transaction.

 pg_current_snapshot () → pg_snapshot
Returns a current snapshot, a data structure showing which transaction IDs are now in-progress. On-
ly top-level transaction IDs are included in the snapshot; subtransaction IDs are not shown; see Sec-
tion 67.3 for details.

 pg_snapshot_xip (pg_snapshot) → setof xid8
Returns the set of in-progress transaction IDs contained in a snapshot.

 pg_snapshot_xmax (pg_snapshot) → xid8
Returns the xmax of a snapshot.

 pg_snapshot_xmin (pg_snapshot) → xid8
Returns the xmin of a snapshot.

 pg_visible_in_snapshot (xid8, pg_snapshot) → boolean
Is the given transaction ID visible according to this snapshot (that is, was it completed before the
snapshot was taken)? Note that this function will not give the correct answer for a subtransaction ID
(subxid); see Section 67.3 for details.

The internal transaction ID type xid is 32 bits wide and wraps around every 4 billion transactions. However, the
functions shown in Table 9.84, except age and mxid_age, use a 64-bit type xid8 that does not wrap around
during the life of an installation and can be converted to xid by casting if required; see Section 67.1 for details.
The data type pg_snapshot stores information about transaction ID visibility at a particular moment in time. Its
components are described in Table 9.85. pg_snapshot's textual representation is xmin:xmax:xip_list.
For example 10:20:10,14,15 means xmin=10, xmax=20, xip_list=10, 14, 15.

Table 9.85. Snapshot Components

Name Description

xmin Lowest transaction ID that was still active. All transac-
tion IDs less than xmin are either committed and visi-
ble, or rolled back and dead.

xmax One past the highest completed transaction ID. All
transaction IDs greater than or equal to xmax had not
yet completed as of the time of the snapshot, and thus
are invisible.

xip_list Transactions in progress at the time of the snapshot.
A transaction ID that is xmin <= X < xmax and
not in this list was already completed at the time of
the snapshot, and thus is either visible or dead accord-
ing to its commit status. This list does not include the
transaction IDs of subtransactions (subxids).

182

Functions and Operators

In releases of PostgreSQL before 13 there was no xid8 type, so variants of these functions were provided that
used bigint to represent a 64-bit XID, with a correspondingly distinct snapshot data type txid_snapshot.
These older functions have txid in their names. They are still supported for backward compatibility, but may be
removed from a future release. See Table 9.86.

Table 9.86. Deprecated Transaction ID and Snapshot Information Functions

Function
Description

 txid_current () → bigint
See pg_current_xact_id().

 txid_current_if_assigned () → bigint
See pg_current_xact_id_if_assigned().

 txid_current_snapshot () → txid_snapshot
See pg_current_snapshot().

 txid_snapshot_xip (txid_snapshot) → setof bigint
See pg_snapshot_xip().

 txid_snapshot_xmax (txid_snapshot) → bigint
See pg_snapshot_xmax().

 txid_snapshot_xmin (txid_snapshot) → bigint
See pg_snapshot_xmin().

 txid_visible_in_snapshot (bigint, txid_snapshot) → boolean
See pg_visible_in_snapshot().

 txid_status (bigint) → text
See pg_xact_status().

9.27.9. Committed Transaction Information Functions
The functions shown in Table 9.87 provide information about when past transactions were committed. They only
provide useful data when the track_commit_timestamp configuration option is enabled, and only for transactions
that were committed after it was enabled. Commit timestamp information is routinely removed during vacuum.

Table 9.87. Committed Transaction Information Functions

Function
Description

 pg_xact_commit_timestamp (xid) → timestamp with time zone
Returns the commit timestamp of a transaction.

 pg_xact_commit_timestamp_origin (xid) → record (timestamp timestamp with
time zone, roident oid)
Returns the commit timestamp and replication origin of a transaction.

 pg_last_committed_xact () → record (xid xid, timestamp timestamp with time
zone, roident oid)
Returns the transaction ID, commit timestamp and replication origin of the latest committed transac-
tion.

9.27.10. Control Data Functions
The functions shown in Table 9.88 print information initialized during initdb, such as the catalog version. They
also show information about write-ahead logging and checkpoint processing. This information is cluster-wide,

183

Functions and Operators

not specific to any one database. These functions provide most of the same information, from the same source,
as the pg_controldata application.

Table 9.88. Control Data Functions

Function
Description

 pg_control_checkpoint () → record
Returns information about current checkpoint state, as shown in Table 9.89.

 pg_control_system () → record
Returns information about current control file state, as shown in Table 9.90.

 pg_control_init () → record
Returns information about cluster initialization state, as shown in Table 9.91.

 pg_control_recovery () → record
Returns information about recovery state, as shown in Table 9.92.

Table 9.89. pg_control_checkpoint Output Columns

Column Name Data Type

checkpoint_lsn pg_lsn

redo_lsn pg_lsn

redo_wal_file text

timeline_id integer

prev_timeline_id integer

full_page_writes boolean

next_xid text

next_oid oid

next_multixact_id xid

next_multi_offset xid

oldest_xid xid

oldest_xid_dbid oid

oldest_active_xid xid

oldest_multi_xid xid

oldest_multi_dbid oid

oldest_commit_ts_xid xid

newest_commit_ts_xid xid

checkpoint_time timestamp with time zone

Table 9.90. pg_control_system Output Columns

Column Name Data Type

pg_control_version integer

catalog_version_no integer

system_identifier bigint

pg_control_last_modified timestamp with time zone

184

Functions and Operators

Table 9.91. pg_control_init Output Columns

Column Name Data Type

max_data_alignment integer

database_block_size integer

blocks_per_segment integer

wal_block_size integer

bytes_per_wal_segment integer

max_identifier_length integer

max_index_columns integer

max_toast_chunk_size integer

large_object_chunk_size integer

float8_pass_by_value boolean

data_page_checksum_version integer

default_char_signedness boolean

Table 9.92. pg_control_recovery Output Columns

Column Name Data Type

min_recovery_end_lsn pg_lsn

min_recovery_end_timeline integer

backup_start_lsn pg_lsn

backup_end_lsn pg_lsn

end_of_backup_record_required boolean

9.27.11. Version Information Functions

The functions shown in Table 9.93 print version information.

Table 9.93. Version Information Functions

Function
Description

 version () → text
Returns a string describing the PostgreSQL server's version. You can also get this information from
server_version, or for a machine-readable version use server_version_num. Software developers
should use server_version_num (available since 8.2) or PQserverVersion instead of pars-
ing the text version.

 unicode_version () → text
Returns a string representing the version of Unicode used by PostgreSQL.

 icu_unicode_version () → text
Returns a string representing the version of Unicode used by ICU, if the server was built with ICU
support; otherwise returns NULL

9.27.12. WAL Summarization Information Functions

The functions shown in Table 9.94 print information about the status of WAL summarization. See summarize_wal.

185

Functions and Operators

Table 9.94. WAL Summarization Information Functions

Function
Description

 pg_available_wal_summaries () → setof record (tli bigint, start_lsn pg_lsn,
end_lsn pg_lsn)
Returns information about the WAL summary files present in the data directory, under pg_w-
al/summaries. One row will be returned per WAL summary file. Each file summarizes WAL
on the indicated TLI within the indicated LSN range. This function might be useful to determine
whether enough WAL summaries are present on the server to take an incremental backup based on
some prior backup whose start LSN is known.

 pg_wal_summary_contents (tli bigint, start_lsn pg_lsn, end_lsn pg_lsn) → setof
record (relfilenode oid, reltablespace oid, reldatabase oid, relforknum-
ber smallint, relblocknumber bigint, is_limit_block boolean)
Returns one information about the contents of a single WAL summary file identified by TLI and
starting and ending LSNs. Each row with is_limit_block false indicates that the block identi-
fied by the remaining output columns was modified by at least one WAL record within the range of
records summarized by this file. Each row with is_limit_block true indicates either that (a) the
relation fork was truncated to the length given by relblocknumber within the relevant range of
WAL records or (b) that the relation fork was created or dropped within the relevant range of WAL
records; in such cases, relblocknumber will be zero.

 pg_get_wal_summarizer_state () → record (summarized_tli bigint, summarized_l-
sn pg_lsn, pending_lsn pg_lsn, summarizer_pid int)
Returns information about the progress of the WAL summarizer. If the WAL summarizer has nev-
er run since the instance was started, then summarized_tli and summarized_lsn will be 0
and 0/0 respectively; otherwise, they will be the TLI and ending LSN of the last WAL summary
file written to disk. If the WAL summarizer is currently running, pending_lsn will be the ending
LSN of the last record that it has consumed, which must always be greater than or equal to summa-
rized_lsn; if the WAL summarizer is not running, it will be equal to summarized_lsn. sum-
marizer_pid is the PID of the WAL summarizer process, if it is running, and otherwise NULL.
As a special exception, the WAL summarizer will refuse to generate WAL summary files if run on
WAL generated under wal_level=minimal, since such summaries would be unsafe to use as
the basis for an incremental backup. In this case, the fields above will continue to advance as if sum-
maries were being generated, but nothing will be written to disk. Once the summarizer reaches WAL
generated while wal_level was set to replica or higher, it will resume writing summaries to
disk.

9.28. System Administration Functions
The functions described in this section are used to control and monitor a PostgreSQL installation.

9.28.1. Configuration Settings Functions
Table 9.95 shows the functions available to query and alter run-time configuration parameters.

Table 9.95. Configuration Settings Functions

Function
Description
Example(s)

 current_setting (setting_name text [, missing_ok boolean]) → text
Returns the current value of the setting setting_name. If there is no such setting, curren-
t_setting throws an error unless missing_ok is supplied and is true (in which case NULL is
returned). This function corresponds to the SQL command SHOW.

186

Functions and Operators

Function
Description
Example(s)

current_setting('datestyle') → ISO, MDY

 set_config (setting_name text, new_value text, is_local boolean) → text
Sets the parameter setting_name to new_value, and returns that value. If is_local is
true, the new value will only apply during the current transaction. If you want the new value to
apply for the rest of the current session, use false instead. This function corresponds to the SQL
command SET.
set_config accepts the NULL value for new_value, but as settings cannot be null, it is inter-
preted as a request to reset the setting to its default value.

set_config('log_statement_stats', 'off', false) → off

9.28.2. Server Signaling Functions
The functions shown in Table 9.96 send control signals to other server processes. Use of these functions is restricted
to superusers by default but access may be granted to others using GRANT, with noted exceptions.

Each of these functions returns true if the signal was successfully sent and false if sending the signal failed.

Table 9.96. Server Signaling Functions

Function
Description

 pg_cancel_backend (pid integer) → boolean
Cancels the current query of the session whose backend process has the specified process ID. This is
also allowed if the calling role is a member of the role whose backend is being canceled or the call-
ing role has privileges of pg_signal_backend, however only superusers can cancel superuser
backends. As an exception, roles with privileges of pg_signal_autovacuum_worker are per-
mitted to cancel autovacuum worker processes, which are otherwise considered superuser backends.

 pg_log_backend_memory_contexts (pid integer) → boolean
Requests to log the memory contexts of the backend with the specified process ID. This function
can send the request to backends and auxiliary processes except logger. These memory contexts
will be logged at LOG message level. They will appear in the server log based on the log configura-
tion set (see Section 19.8 for more information), but will not be sent to the client regardless of clien-
t_min_messages.

 pg_reload_conf () → boolean
Causes all processes of the PostgreSQL server to reload their configuration files. (This is initiat-
ed by sending a SIGHUP signal to the postmaster process, which in turn sends SIGHUP to each of
its children.) You can use the pg_file_settings, pg_hba_file_rules and pg_iden-
t_file_mappings views to check the configuration files for possible errors, before reloading.

 pg_rotate_logfile () → boolean
Signals the log-file manager to switch to a new output file immediately. This works only when the
built-in log collector is running, since otherwise there is no log-file manager subprocess.

 pg_terminate_backend (pid integer, timeout bigint DEFAULT 0) → boolean
Terminates the session whose backend process has the specified process ID. This is also allowed if
the calling role is a member of the role whose backend is being terminated or the calling role has
privileges of pg_signal_backend, however only superusers can terminate superuser backends.
As an exception, roles with privileges of pg_signal_autovacuum_worker are permitted to
terminate autovacuum worker processes, which are otherwise considered superuser backends.
If timeout is not specified or zero, this function returns true whether the process actually termi-
nates or not, indicating only that the sending of the signal was successful. If the timeout is speci-

187

Functions and Operators

Function
Description

fied (in milliseconds) and greater than zero, the function waits until the process is actually terminated
or until the given time has passed. If the process is terminated, the function returns true. On time-
out, a warning is emitted and false is returned.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively) to
backend processes identified by process ID. The process ID of an active backend can be found from the pid
column of the pg_stat_activity view, or by listing the postgres processes on the server (using ps on
Unix or the Task Manager on Windows). The role of an active backend can be found from the usename column
of the pg_stat_activity view.

pg_log_backend_memory_contexts can be used to log the memory contexts of a backend process. For
example:

postgres=# SELECT pg_log_backend_memory_contexts(pg_backend_pid());
 pg_log_backend_memory_contexts

 t
(1 row)

One message for each memory context will be logged. For example:

LOG: logging memory contexts of PID 10377
STATEMENT: SELECT pg_log_backend_memory_contexts(pg_backend_pid());
LOG: level: 1; TopMemoryContext: 80800 total in 6 blocks; 14432 free (5
 chunks); 66368 used
LOG: level: 2; pgstat TabStatusArray lookup hash table: 8192 total in 1
 blocks; 1408 free (0 chunks); 6784 used
LOG: level: 2; TopTransactionContext: 8192 total in 1 blocks; 7720 free (1
 chunks); 472 used
LOG: level: 2; RowDescriptionContext: 8192 total in 1 blocks; 6880 free (0
 chunks); 1312 used
LOG: level: 2; MessageContext: 16384 total in 2 blocks; 5152 free (0
 chunks); 11232 used
LOG: level: 2; Operator class cache: 8192 total in 1 blocks; 512 free (0
 chunks); 7680 used
LOG: level: 2; smgr relation table: 16384 total in 2 blocks; 4544 free (3
 chunks); 11840 used
LOG: level: 2; TransactionAbortContext: 32768 total in 1 blocks; 32504
 free (0 chunks); 264 used
...
LOG: level: 2; ErrorContext: 8192 total in 1 blocks; 7928 free (3 chunks);
 264 used
LOG: Grand total: 1651920 bytes in 201 blocks; 622360 free (88 chunks);
 1029560 used

If there are more than 100 child contexts under the same parent, the first 100 child contexts are logged, along with
a summary of the remaining contexts. Note that frequent calls to this function could incur significant overhead,
because it may generate a large number of log messages.

9.28.3. Backup Control Functions
The functions shown in Table 9.97 assist in making on-line backups. These functions cannot be executed during
recovery (except pg_backup_start, pg_backup_stop, and pg_wal_lsn_diff).

For details about proper usage of these functions, see Section 25.3.

188

Functions and Operators

Table 9.97. Backup Control Functions

Function
Description

 pg_create_restore_point (name text) → pg_lsn
Creates a named marker record in the write-ahead log that can later be used as a recovery target, and
returns the corresponding write-ahead log location. The given name can then be used with recov-
ery_target_name to specify the point up to which recovery will proceed. Avoid creating multiple re-
store points with the same name, since recovery will stop at the first one whose name matches the re-
covery target.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_current_wal_flush_lsn () → pg_lsn
Returns the current write-ahead log flush location (see notes below).

 pg_current_wal_insert_lsn () → pg_lsn
Returns the current write-ahead log insert location (see notes below).

 pg_current_wal_lsn () → pg_lsn
Returns the current write-ahead log write location (see notes below).

 pg_backup_start (label text [, fast boolean]) → pg_lsn
Prepares the server to begin an on-line backup. The only required parameter is an arbitrary user-de-
fined label for the backup. (Typically this would be the name under which the backup dump file will
be stored.) If the optional second parameter is given as true, it specifies executing pg_back-
up_start as quickly as possible. This forces an immediate checkpoint which will cause a spike in
I/O operations, slowing any concurrently executing queries.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_backup_stop ([wait_for_archive boolean]) → record (lsn pg_lsn, labelfile
text, spcmapfile text)
Finishes performing an on-line backup. The desired contents of the backup label file and the table-
space map file are returned as part of the result of the function and must be written to files in the
backup area. These files must not be written to the live data directory (doing so will cause Post-
greSQL to fail to restart in the event of a crash).
There is an optional parameter of type boolean. If false, the function will return immediately after
the backup is completed, without waiting for WAL to be archived. This behavior is only useful with
backup software that independently monitors WAL archiving. Otherwise, WAL required to make the
backup consistent might be missing and make the backup useless. By default or when this parame-
ter is true, pg_backup_stop will wait for WAL to be archived when archiving is enabled. (On a
standby, this means that it will wait only when archive_mode = always. If write activity on the
primary is low, it may be useful to run pg_switch_wal on the primary in order to trigger an im-
mediate segment switch.)
When executed on a primary, this function also creates a backup history file in the write-ahead log
archive area. The history file includes the label given to pg_backup_start, the starting and end-
ing write-ahead log locations for the backup, and the starting and ending times of the backup. After
recording the ending location, the current write-ahead log insertion point is automatically advanced
to the next write-ahead log file, so that the ending write-ahead log file can be archived immediately
to complete the backup.
The result of the function is a single record. The lsn column holds the backup's ending write-ahead
log location (which again can be ignored). The second column returns the contents of the backup la-
bel file, and the third column returns the contents of the tablespace map file. These must be stored as
part of the backup and are required as part of the restore process.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_switch_wal () → pg_lsn

189

Functions and Operators

Function
Description

Forces the server to switch to a new write-ahead log file, which allows the current file to be archived
(assuming you are using continuous archiving). The result is the ending write-ahead log location plus
1 within the just-completed write-ahead log file. If there has been no write-ahead log activity since
the last write-ahead log switch, pg_switch_wal does nothing and returns the start location of the
write-ahead log file currently in use.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_walfile_name (lsn pg_lsn) → text
Converts a write-ahead log location to the name of the WAL file holding that location.

 pg_walfile_name_offset (lsn pg_lsn) → record (file_name text, file_offset in-
teger)
Converts a write-ahead log location to a WAL file name and byte offset within that file.

 pg_split_walfile_name (file_name text) → record (segment_number numeric,
timeline_id bigint)
Extracts the sequence number and timeline ID from a WAL file name.

 pg_wal_lsn_diff (lsn1 pg_lsn, lsn2 pg_lsn) → numeric
Calculates the difference in bytes (lsn1 - lsn2) between two write-ahead log locations. This can
be used with pg_stat_replication or some of the functions shown in Table 9.97 to get the
replication lag.

pg_current_wal_lsn displays the current write-ahead log write location in the same format used by the
above functions. Similarly, pg_current_wal_insert_lsn displays the current write-ahead log insertion
location and pg_current_wal_flush_lsn displays the current write-ahead log flush location. The insertion
location is the “logical” end of the write-ahead log at any instant, while the write location is the end of what has
actually been written out from the server's internal buffers, and the flush location is the last location known to be
written to durable storage. The write location is the end of what can be examined from outside the server, and is
usually what you want if you are interested in archiving partially-complete write-ahead log files. The insertion
and flush locations are made available primarily for server debugging purposes. These are all read-only operations
and do not require superuser permissions.

You can use pg_walfile_name_offset to extract the corresponding write-ahead log file name and byte
offset from a pg_lsn value. For example:

postgres=# SELECT * FROM pg_walfile_name_offset((pg_backup_stop()).lsn);
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

Similarly, pg_walfile_name extracts just the write-ahead log file name.

pg_split_walfile_name is useful to compute a LSN from a file offset and WAL file name, for example:

postgres=# \set file_name '000000010000000100C000AB'
postgres=# \set offset 256
postgres=# SELECT '0/0'::pg_lsn + pd.segment_number * ps.setting::int
 + :offset AS lsn
 FROM pg_split_walfile_name(:'file_name') pd,
 pg_show_all_settings() ps
 WHERE ps.name = 'wal_segment_size';
 lsn

190

Functions and Operators

 C001/AB000100
(1 row)

9.28.4. Recovery Control Functions
The functions shown in Table 9.98 provide information about the current status of a standby server. These functions
may be executed both during recovery and in normal running.

Table 9.98. Recovery Information Functions

Function
Description

 pg_is_in_recovery () → boolean
Returns true if recovery is still in progress.

 pg_last_wal_receive_lsn () → pg_lsn
Returns the last write-ahead log location that has been received and synced to disk by streaming
replication. While streaming replication is in progress this will increase monotonically. If recovery
has completed then this will remain static at the location of the last WAL record received and synced
to disk during recovery. If streaming replication is disabled, or if it has not yet started, the function
returns NULL.

 pg_last_wal_replay_lsn () → pg_lsn
Returns the last write-ahead log location that has been replayed during recovery. If recovery is still in
progress this will increase monotonically. If recovery has completed then this will remain static at the
location of the last WAL record applied during recovery. When the server has been started normally
without recovery, the function returns NULL.

 pg_last_xact_replay_timestamp () → timestamp with time zone
Returns the time stamp of the last transaction replayed during recovery. This is the time at which
the commit or abort WAL record for that transaction was generated on the primary. If no transac-
tions have been replayed during recovery, the function returns NULL. Otherwise, if recovery is still in
progress this will increase monotonically. If recovery has completed then this will remain static at the
time of the last transaction applied during recovery. When the server has been started normally with-
out recovery, the function returns NULL.

 pg_get_wal_resource_managers () → setof record (rm_id integer, rm_name text,
rm_builtin boolean)
Returns the currently-loaded WAL resource managers in the system. The column rm_builtin in-
dicates whether it's a built-in resource manager, or a custom resource manager loaded by an exten-
sion.

The functions shown in Table 9.99 control the progress of recovery. These functions may be executed only during
recovery.

Table 9.99. Recovery Control Functions

Function
Description

 pg_is_wal_replay_paused () → boolean
Returns true if recovery pause is requested.

 pg_get_wal_replay_pause_state () → text
Returns recovery pause state. The return values are not paused if pause is not requested,
pause requested if pause is requested but recovery is not yet paused, and paused if the recov-
ery is actually paused.

 pg_promote (wait boolean DEFAULT true, wait_seconds integer DEFAULT 60) →
boolean

191

Functions and Operators

Function
Description

Promotes a standby server to primary status. With wait set to true (the default), the function waits
until promotion is completed or wait_seconds seconds have passed, and returns true if promo-
tion is successful and false otherwise. If wait is set to false, the function returns true imme-
diately after sending a SIGUSR1 signal to the postmaster to trigger promotion.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_wal_replay_pause () → void
Request to pause recovery. A request doesn't mean that recovery stops right away. If you want a
guarantee that recovery is actually paused, you need to check for the recovery pause state returned
by pg_get_wal_replay_pause_state(). Note that pg_is_wal_replay_paused() re-
turns whether a request is made. While recovery is paused, no further database changes are applied.
If hot standby is active, all new queries will see the same consistent snapshot of the database, and no
further query conflicts will be generated until recovery is resumed.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_wal_replay_resume () → void
Restarts recovery if it was paused.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

pg_wal_replay_pause and pg_wal_replay_resume cannot be executed while a promotion is ongoing.
If a promotion is triggered while recovery is paused, the paused state ends and promotion continues.

If streaming replication is disabled, the paused state may continue indefinitely without a problem. If streaming
replication is in progress then WAL records will continue to be received, which will eventually fill available disk
space, depending upon the duration of the pause, the rate of WAL generation and available disk space.

9.28.5. Snapshot Synchronization Functions
PostgreSQL allows database sessions to synchronize their snapshots. A snapshot determines which data is visible
to the transaction that is using the snapshot. Synchronized snapshots are necessary when two or more sessions need
to see identical content in the database. If two sessions just start their transactions independently, there is always
a possibility that some third transaction commits between the executions of the two START TRANSACTION
commands, so that one session sees the effects of that transaction and the other does not.

To solve this problem, PostgreSQL allows a transaction to export the snapshot it is using. As long as the exporting
transaction remains open, other transactions can import its snapshot, and thereby be guaranteed that they see
exactly the same view of the database that the first transaction sees. But note that any database changes made by any
one of these transactions remain invisible to the other transactions, as is usual for changes made by uncommitted
transactions. So the transactions are synchronized with respect to pre-existing data, but act normally for changes
they make themselves.

Snapshots are exported with the pg_export_snapshot function, shown in Table 9.100, and imported with
the SET TRANSACTION command.

Table 9.100. Snapshot Synchronization Functions

Function
Description

 pg_export_snapshot () → text
Saves the transaction's current snapshot and returns a text string identifying the snapshot. This
string must be passed (outside the database) to clients that want to import the snapshot. The snapshot
is available for import only until the end of the transaction that exported it.
A transaction can export more than one snapshot, if needed. Note that doing so is only useful in
READ COMMITTED transactions, since in REPEATABLE READ and higher isolation levels, trans-

192

Functions and Operators

Function
Description

actions use the same snapshot throughout their lifetime. Once a transaction has exported any snap-
shots, it cannot be prepared with PREPARE TRANSACTION.

 pg_log_standby_snapshot () → pg_lsn
Take a snapshot of running transactions and write it to WAL, without having to wait for bgwriter or
checkpointer to log one. This is useful for logical decoding on standby, as logical slot creation has to
wait until such a record is replayed on the standby.

9.28.6. Replication Management Functions
The functions shown in Table 9.101 are for controlling and interacting with replication features. See Section 26.2.5,
Section 26.2.6, and Chapter 48 for information about the underlying features. Use of functions for replication
origin is only allowed to the superuser by default, but may be allowed to other users by using the GRANT command.
Use of functions for replication slots is restricted to superusers and users having REPLICATION privilege.

Many of these functions have equivalent commands in the replication protocol; see Section 54.4.

The functions described in Section 9.28.3, Section 9.28.4, and Section 9.28.5 are also relevant for replication.

Table 9.101. Replication Management Functions

Function
Description

 pg_create_physical_replication_slot (slot_name name [, immediately_reserve

boolean, temporary boolean]) → record (slot_name name, lsn pg_lsn)
Creates a new physical replication slot named slot_name. The optional second parameter, when
true, specifies that the LSN for this replication slot be reserved immediately; otherwise the LSN
is reserved on first connection from a streaming replication client. Streaming changes from a phys-
ical slot is only possible with the streaming-replication protocol — see Section 54.4. The option-
al third parameter, temporary, when set to true, specifies that the slot should not be permanent-
ly stored to disk and is only meant for use by the current session. Temporary slots are also released
upon any error. This function corresponds to the replication protocol command CREATE_REPLI-
CATION_SLOT ... PHYSICAL.

 pg_drop_replication_slot (slot_name name) → void
Drops the physical or logical replication slot named slot_name. Same as replication protocol com-
mand DROP_REPLICATION_SLOT.

 pg_create_logical_replication_slot (slot_name name, plugin name [, temporary

boolean, twophase boolean, failover boolean]) → record (slot_name name,
lsn pg_lsn)
Creates a new logical (decoding) replication slot named slot_name using the output plugin plu-
gin. The optional third parameter, temporary, when set to true, specifies that the slot should not
be permanently stored to disk and is only meant for use by the current session. Temporary slots are
also released upon any error. The optional fourth parameter, twophase, when set to true, speci-
fies that the decoding of prepared transactions is enabled for this slot. The optional fifth parameter,
failover, when set to true, specifies that this slot is enabled to be synced to the standbys so that
logical replication can be resumed after failover. A call to this function has the same effect as the
replication protocol command CREATE_REPLICATION_SLOT ... LOGICAL.

 pg_copy_physical_replication_slot (src_slot_name name, dst_slot_name name [,

temporary boolean]) → record (slot_name name, lsn pg_lsn)
Copies an existing physical replication slot named src_slot_name to a physical replication slot
named dst_slot_name. The copied physical slot starts to reserve WAL from the same LSN as
the source slot. temporary is optional. If temporary is omitted, the same value as the source
slot is used. Copy of an invalidated slot is not allowed.

193

Functions and Operators

Function
Description

 pg_copy_logical_replication_slot (src_slot_name name, dst_slot_name name [,

temporary boolean [, plugin name]]) → record (slot_name name, lsn pg_lsn)
Copies an existing logical replication slot named src_slot_name to a logical replication slot
named dst_slot_name, optionally changing the output plugin and persistence. The copied logical
slot starts from the same LSN as the source logical slot. Both temporary and plugin are option-
al; if they are omitted, the values of the source slot are used. The failover option of the source
logical slot is not copied and is set to false by default. This is to avoid the risk of being unable to
continue logical replication after failover to standby where the slot is being synchronized. Copy of an
invalidated slot is not allowed.

 pg_logical_slot_get_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges

integer, VARIADIC options text[]) → setof record (lsn pg_lsn, xid xid, da-
ta text)
Returns changes in the slot slot_name, starting from the point from which changes have been con-
sumed last. If upto_lsn and upto_nchanges are NULL, logical decoding will continue un-
til end of WAL. If upto_lsn is non-NULL, decoding will include only those transactions which
commit prior to the specified LSN. If upto_nchanges is non-NULL, decoding will stop when
the number of rows produced by decoding exceeds the specified value. Note, however, that the actu-
al number of rows returned may be larger, since this limit is only checked after adding the rows pro-
duced when decoding each new transaction commit. If the specified slot is a logical failover slot then
the function will not return until all physical slots specified in synchronized_standby_slots
have confirmed WAL receipt.

 pg_logical_slot_peek_changes (slot_name name, upto_lsn pg_lsn, upto_nchanges

integer, VARIADIC options text[]) → setof record (lsn pg_lsn, xid xid, da-
ta text)
Behaves just like the pg_logical_slot_get_changes() function, except that changes are
not consumed; that is, they will be returned again on future calls.

 pg_logical_slot_get_binary_changes (slot_name name, upto_lsn pg_lsn, upto_n-

changes integer, VARIADIC options text[]) → setof record (lsn pg_lsn, xid
xid, data bytea)
Behaves just like the pg_logical_slot_get_changes() function, except that changes are
returned as bytea.

 pg_logical_slot_peek_binary_changes (slot_name name, upto_lsn pg_lsn, upto_n-

changes integer, VARIADIC options text[]) → setof record (lsn pg_lsn, xid
xid, data bytea)
Behaves just like the pg_logical_slot_peek_changes() function, except that changes are
returned as bytea.

 pg_replication_slot_advance (slot_name name, upto_lsn pg_lsn) → record (
slot_name name, end_lsn pg_lsn)
Advances the current confirmed position of a replication slot named slot_name. The slot will not
be moved backwards, and it will not be moved beyond the current insert location. Returns the name
of the slot and the actual position that it was advanced to. The updated slot position information is
written out at the next checkpoint if any advancing is done. So in the event of a crash, the slot may
return to an earlier position. If the specified slot is a logical failover slot then the function will not re-
turn until all physical slots specified in synchronized_standby_slots have confirmed WAL
receipt.

 pg_replication_origin_create (node_name text) → oid
Creates a replication origin with the given external name, and returns the internal ID assigned to it.
The name must be no longer than 512 bytes.

 pg_replication_origin_drop (node_name text) → void
Deletes a previously-created replication origin, including any associated replay progress.

194

Functions and Operators

Function
Description

 pg_replication_origin_oid (node_name text) → oid
Looks up a replication origin by name and returns the internal ID. If no such replication origin is
found, NULL is returned.

 pg_replication_origin_session_setup (node_name text) → void
Marks the current session as replaying from the given origin, allowing replay progress to be tracked.
Can only be used if no origin is currently selected. Use pg_replication_origin_ses-
sion_reset to undo.

 pg_replication_origin_session_reset () → void
Cancels the effects of pg_replication_origin_session_setup().

 pg_replication_origin_session_is_setup () → boolean
Returns true if a replication origin has been selected in the current session.

 pg_replication_origin_session_progress (flush boolean) → pg_lsn
Returns the replay location for the replication origin selected in the current session. The parame-
ter flush determines whether the corresponding local transaction will be guaranteed to have been
flushed to disk or not.

 pg_replication_origin_xact_setup (origin_lsn pg_lsn, origin_timestamp time-

stamp with time zone) → void
Marks the current transaction as replaying a transaction that has committed at the given LSN and
timestamp. Can only be called when a replication origin has been selected using pg_replica-
tion_origin_session_setup.

 pg_replication_origin_xact_reset () → void
Cancels the effects of pg_replication_origin_xact_setup().

 pg_replication_origin_advance (node_name text, lsn pg_lsn) → void
Sets replication progress for the given node to the given location. This is primarily useful for setting
up the initial location, or setting a new location after configuration changes and similar. Be aware
that careless use of this function can lead to inconsistently replicated data.

 pg_replication_origin_progress (node_name text, flush boolean) → pg_lsn
Returns the replay location for the given replication origin. The parameter flush determines
whether the corresponding local transaction will be guaranteed to have been flushed to disk or not.

 pg_logical_emit_message (transactional boolean, prefix text, content text [,

flush boolean DEFAULT false]) → pg_lsn
pg_logical_emit_message (transactional boolean, prefix text, content bytea [,

flush boolean DEFAULT false]) → pg_lsn
Emits a logical decoding message. This can be used to pass generic messages to logical decoding
plugins through WAL. The transactional parameter specifies if the message should be part of
the current transaction, or if it should be written immediately and decoded as soon as the logical de-
coder reads the record. The prefix parameter is a textual prefix that can be used by logical decod-
ing plugins to easily recognize messages that are interesting for them. The content parameter is
the content of the message, given either in text or binary form. The flush parameter (default set to
false) controls if the message is immediately flushed to WAL or not. flush has no effect with
transactional, as the message's WAL record is flushed along with its transaction.

 pg_sync_replication_slots () → void
Synchronize the logical failover replication slots from the primary server to the standby server. This
function can only be executed on the standby server. Temporary synced slots, if any, cannot be used
for logical decoding and must be dropped after promotion. See Section 47.2.3 for details. Note that
this function cannot be executed if sync_replication_slots is enabled and the slotsync
worker is already running to perform the synchronization of slots.

195

Functions and Operators

Function
Description

Caution

If, after executing the function, hot_standby_feedback is disabled on the standby or the
physical slot configured in primary_slot_name is removed, then it is possible that the
necessary rows of the synchronized slot will be removed by the VACUUM process on the pri-
mary server, resulting in the synchronized slot becoming invalidated.

9.28.7. Database Object Management Functions
The functions shown in Table 9.102 calculate the disk space usage of database objects, or assist in presentation
or understanding of usage results. bigint results are measured in bytes. If an OID that does not represent an
existing object is passed to one of these functions, NULL is returned.

Table 9.102. Database Object Size Functions

Function
Description

 pg_column_size ("any") → integer
Shows the number of bytes used to store any individual data value. If applied directly to a table col-
umn value, this reflects any compression that was done.

 pg_column_compression ("any") → text
Shows the compression algorithm that was used to compress an individual variable-length value. Re-
turns NULL if the value is not compressed.

 pg_column_toast_chunk_id ("any") → oid
Shows the chunk_id of an on-disk TOASTed value. Returns NULL if the value is un-TOASTed or
not on-disk. See Section 66.2 for more information about TOAST.

 pg_database_size (name) → bigint
pg_database_size (oid) → bigint

Computes the total disk space used by the database with the specified name or OID. To use this func-
tion, you must have CONNECT privilege on the specified database (which is granted by default) or
have privileges of the pg_read_all_stats role.

 pg_indexes_size (regclass) → bigint
Computes the total disk space used by indexes attached to the specified table.

 pg_relation_size (relation regclass [, fork text]) → bigint
Computes the disk space used by one “fork” of the specified relation. (Note that for most purposes
it is more convenient to use the higher-level functions pg_total_relation_size or pg_ta-
ble_size, which sum the sizes of all forks.) With one argument, this returns the size of the main
data fork of the relation. The second argument can be provided to specify which fork to examine:

• main returns the size of the main data fork of the relation.
• fsm returns the size of the Free Space Map (see Section 66.3) associated with the relation.
• vm returns the size of the Visibility Map (see Section 66.4) associated with the relation.
• init returns the size of the initialization fork, if any, associated with the relation.

 pg_size_bytes (text) → bigint
Converts a size in human-readable format (as returned by pg_size_pretty) into bytes. Valid
units are bytes, B, kB, MB, GB, TB, and PB.

 pg_size_pretty (bigint) → text

196

Functions and Operators

Function
Description

pg_size_pretty (numeric) → text
Converts a size in bytes into a more easily human-readable format with size units (bytes, kB, MB,
GB, TB, or PB as appropriate). Note that the units are powers of 2 rather than powers of 10, so 1kB
is 1024 bytes, 1MB is 10242 = 1048576 bytes, and so on.

 pg_table_size (regclass) → bigint
Computes the disk space used by the specified table, excluding indexes (but including its TOAST ta-
ble if any, free space map, and visibility map).

 pg_tablespace_size (name) → bigint
pg_tablespace_size (oid) → bigint

Computes the total disk space used in the tablespace with the specified name or OID. To use this
function, you must have CREATE privilege on the specified tablespace or have privileges of the
pg_read_all_stats role, unless it is the default tablespace for the current database.

 pg_total_relation_size (regclass) → bigint
Computes the total disk space used by the specified table, including all indexes and TOAST data.
The result is equivalent to pg_table_size + pg_indexes_size.

The functions above that operate on tables or indexes accept a regclass argument, which is simply the OID of
the table or index in the pg_class system catalog. You do not have to look up the OID by hand, however, since
the regclass data type's input converter will do the work for you. See Section 8.19 for details.

The functions shown in Table 9.103 assist in identifying the specific disk files associated with database objects.

Table 9.103. Database Object Location Functions

Function
Description

 pg_relation_filenode (relation regclass) → oid
Returns the “filenode” number currently assigned to the specified relation. The filenode is the base
component of the file name(s) used for the relation (see Section 66.1 for more information). For
most relations the result is the same as pg_class.relfilenode, but for certain system catalogs
relfilenode is zero and this function must be used to get the correct value. The function returns
NULL if passed a relation that does not have storage, such as a view.

 pg_relation_filepath (relation regclass) → text
Returns the entire file path name (relative to the database cluster's data directory, PGDATA) of the re-
lation.

 pg_filenode_relation (tablespace oid, filenode oid) → regclass
Returns a relation's OID given the tablespace OID and filenode it is stored under. This is essentially
the inverse mapping of pg_relation_filepath. For a relation in the database's default table-
space, the tablespace can be specified as zero. Returns NULL if no relation in the current database is
associated with the given values.

Table 9.104 lists functions used to manage collations.

Table 9.104. Collation Management Functions

Function
Description

 pg_collation_actual_version (oid) → text
Returns the actual version of the collation object as it is currently installed in the operating system. If
this is different from the value in pg_collation.collversion, then objects depending on the
collation might need to be rebuilt. See also ALTER COLLATION.

197

Functions and Operators

Function
Description

 pg_database_collation_actual_version (oid) → text
Returns the actual version of the database's collation as it is currently installed in the operating sys-
tem. If this is different from the value in pg_database.datcollversion, then objects depend-
ing on the collation might need to be rebuilt. See also ALTER DATABASE.

 pg_import_system_collations (schema regnamespace) → integer
Adds collations to the system catalog pg_collation based on all the locales it finds in the operat-
ing system. This is what initdb uses; see Section 23.2.2 for more details. If additional locales are
installed into the operating system later on, this function can be run again to add collations for the
new locales. Locales that match existing entries in pg_collation will be skipped. (But collation
objects based on locales that are no longer present in the operating system are not removed by this
function.) The schema parameter would typically be pg_catalog, but that is not a requirement;
the collations could be installed into some other schema as well. The function returns the number of
new collation objects it created. Use of this function is restricted to superusers.

Table 9.105 lists functions used to manipulate statistics. These functions cannot be executed during recovery.

Warning

Changes made by these statistics manipulation functions are likely to be overwritten by autovac-
uum (or manual VACUUM or ANALYZE) and should be considered temporary.

Table 9.105. Database Object Statistics Manipulation Functions

Function
Description

 pg_restore_relation_stats (VARIADIC kwargs "any") → boolean
Updates table-level statistics. Ordinarily, these statistics are collected automatically or updated as a
part of VACUUM or ANALYZE, so it's not necessary to call this function. However, it is useful af-
ter a restore to enable the optimizer to choose better plans if ANALYZE has not been run yet.
The tracked statistics may change from version to version, so arguments are passed as pairs of
argname and argvalue in the form:

SELECT pg_restore_relation_stats(
 'arg1name', 'arg1value'::arg1type,
 'arg2name', 'arg2value'::arg2type,
 'arg3name', 'arg3value'::arg3type);

For example, to set the relpages and reltuples values for the table mytable:

SELECT pg_restore_relation_stats(
 'schemaname', 'myschema',
 'relname', 'mytable',
 'relpages', 173::integer,
 'reltuples', 10000::real);

The arguments schemaname and relname are required, and specify the table. Other arguments
are the names and values of statistics corresponding to certain columns in pg_class. The current-
ly-supported relation statistics are relpages with a value of type integer, reltuples with a
value of type real, relallvisible with a value of type integer, and relallfrozen with
a value of type integer.

198

Functions and Operators

Function
Description

Additionally, this function accepts argument name version of type integer, which specifies the
server version from which the statistics originated. This is anticipated to be helpful in porting statis-
tics from older versions of PostgreSQL.
Minor errors are reported as a WARNING and ignored, and remaining statistics will still be restored.
If all specified statistics are successfully restored, returns true, otherwise false.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

 pg_clear_relation_stats (schemaname text, relname text) → void
Clears table-level statistics for the given relation, as though the table was newly created.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

 pg_restore_attribute_stats (VARIADIC kwargs "any") → boolean
Creates or updates column-level statistics. Ordinarily, these statistics are collected automatically or
updated as a part of VACUUM or ANALYZE, so it's not necessary to call this function. However, it
is useful after a restore to enable the optimizer to choose better plans if ANALYZE has not been run
yet.
The tracked statistics may change from version to version, so arguments are passed as pairs of
argname and argvalue in the form:

SELECT pg_restore_attribute_stats(
 'arg1name', 'arg1value'::arg1type,
 'arg2name', 'arg2value'::arg2type,
 'arg3name', 'arg3value'::arg3type);

For example, to set the avg_width and null_frac values for the attribute col1 of the table
mytable:

SELECT pg_restore_attribute_stats(
 'schemaname', 'myschema',
 'relname', 'mytable',
 'attname', 'col1',
 'inherited', false,
 'avg_width', 125::integer,
 'null_frac', 0.5::real);

The required arguments are schemaname and relname with a value of type text which specify
the table; either attname with a value of type text or attnum with a value of type smallint,
which specifies the column; and inherited, which specifies whether the statistics include values
from child tables. Other arguments are the names and values of statistics corresponding to columns in
pg_stats.
Additionally, this function accepts argument name version of type integer, which specifies the
server version from which the statistics originated. This is anticipated to be helpful in porting statis-
tics from older versions of PostgreSQL.
Minor errors are reported as a WARNING and ignored, and remaining statistics will still be restored.
If all specified statistics are successfully restored, returns true, otherwise false.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

 pg_clear_attribute_stats (schemaname text, relname text, attname text, inherit-

ed boolean) → void
Clears column-level statistics for the given relation and attribute, as though the table was newly cre-
ated.
The caller must have the MAINTAIN privilege on the table or be the owner of the database.

Table 9.106 lists functions that provide information about the structure of partitioned tables.

199

Functions and Operators

Table 9.106. Partitioning Information Functions

Function
Description

 pg_partition_tree (regclass) → setof record (relid regclass, parentrelid reg-
class, isleaf boolean, level integer)
Lists the tables or indexes in the partition tree of the given partitioned table or partitioned index, with
one row for each partition. Information provided includes the OID of the partition, the OID of its im-
mediate parent, a boolean value telling if the partition is a leaf, and an integer telling its level in the
hierarchy. The level value is 0 for the input table or index, 1 for its immediate child partitions, 2 for
their partitions, and so on. Returns no rows if the relation does not exist or is not a partition or parti-
tioned table.

 pg_partition_ancestors (regclass) → setof regclass
Lists the ancestor relations of the given partition, including the relation itself. Returns no rows if the
relation does not exist or is not a partition or partitioned table.

 pg_partition_root (regclass) → regclass
Returns the top-most parent of the partition tree to which the given relation belongs. Returns NULL if
the relation does not exist or is not a partition or partitioned table.

For example, to check the total size of the data contained in a partitioned table measurement, one could use
the following query:

SELECT pg_size_pretty(sum(pg_relation_size(relid))) AS total_size
 FROM pg_partition_tree('measurement');

9.28.8. Index Maintenance Functions
Table 9.107 shows the functions available for index maintenance tasks. (Note that these maintenance tasks are
normally done automatically by autovacuum; use of these functions is only required in special cases.) These
functions cannot be executed during recovery. Use of these functions is restricted to superusers and the owner
of the given index.

Table 9.107. Index Maintenance Functions

Function
Description

 brin_summarize_new_values (index regclass) → integer
Scans the specified BRIN index to find page ranges in the base table that are not currently summa-
rized by the index; for any such range it creates a new summary index tuple by scanning those table
pages. Returns the number of new page range summaries that were inserted into the index.

 brin_summarize_range (index regclass, blockNumber bigint) → integer
Summarizes the page range covering the given block, if not already summarized. This is like
brin_summarize_new_values except that it only processes the page range that covers the giv-
en table block number.

 brin_desummarize_range (index regclass, blockNumber bigint) → void
Removes the BRIN index tuple that summarizes the page range covering the given table block, if
there is one.

 gin_clean_pending_list (index regclass) → bigint
Cleans up the “pending” list of the specified GIN index by moving entries in it, in bulk, to the main
GIN data structure. Returns the number of pages removed from the pending list. If the argument is
a GIN index built with the fastupdate option disabled, no cleanup happens and the result is ze-
ro, because the index doesn't have a pending list. See Section 65.4.4.1 and Section 65.4.5 for details
about the pending list and fastupdate option.

200

Functions and Operators

9.28.9. Generic File Access Functions
The functions shown in Table 9.108 provide native access to files on the machine hosting the server. Only files
within the database cluster directory and the log_directory can be accessed, unless the user is a superuser or
is granted the role pg_read_server_files. Use a relative path for files in the cluster directory, and a path
matching the log_directory configuration setting for log files.

Note that granting users the EXECUTE privilege on pg_read_file(), or related functions, allows them the
ability to read any file on the server that the database server process can read; these functions bypass all in-
database privilege checks. This means that, for example, a user with such access is able to read the contents of
the pg_authid table where authentication information is stored, as well as read any table data in the database.
Therefore, granting access to these functions should be carefully considered.

When granting privilege on these functions, note that the table entries showing optional parameters are mostly
implemented as several physical functions with different parameter lists. Privilege must be granted separately
on each such function, if it is to be used. psql's \df command can be useful to check what the actual function
signatures are.

Some of these functions take an optional missing_ok parameter, which specifies the behavior when the file
or directory does not exist. If true, the function returns NULL or an empty result set, as appropriate. If false,
an error is raised. (Failure conditions other than “file not found” are reported as errors in any case.) The default
is false.

Table 9.108. Generic File Access Functions

Function
Description

 pg_ls_dir (dirname text [, missing_ok boolean, include_dot_dirs boolean]) →
setof text
Returns the names of all files (and directories and other special files) in the specified directory. The
include_dot_dirs parameter indicates whether “.” and “..” are to be included in the result set;
the default is to exclude them. Including them can be useful when missing_ok is true, to distin-
guish an empty directory from a non-existent directory.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_ls_logdir () → setof record (name text, size bigint, modification timestamp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's log di-
rectory. Filenames beginning with a dot, directories, and other special files are excluded.
This function is restricted to superusers and roles with privileges of the pg_monitor role by de-
fault, but other users can be granted EXECUTE to run the function.

 pg_ls_waldir () → setof record (name text, size bigint, modification timestamp
with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's write-
ahead log (WAL) directory. Filenames beginning with a dot, directories, and other special files are
excluded.
This function is restricted to superusers and roles with privileges of the pg_monitor role by de-
fault, but other users can be granted EXECUTE to run the function.

 pg_ls_logicalmapdir () → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
pg_logical/mappings directory. Filenames beginning with a dot, directories, and other special
files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

201

Functions and Operators

Function
Description

 pg_ls_logicalsnapdir () → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
pg_logical/snapshots directory. Filenames beginning with a dot, directories, and other spe-
cial files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

 pg_ls_replslotdir (slot_name text) → setof record (name text, size bigint, mod-
ification timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
pg_replslot/slot_name directory, where slot_name is the name of the replication slot pro-
vided as input of the function. Filenames beginning with a dot, directories, and other special files are
excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

 pg_ls_summariesdir () → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's WAL
summaries directory (pg_wal/summaries). Filenames beginning with a dot, directories, and oth-
er special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

 pg_ls_archive_statusdir () → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's WAL
archive status directory (pg_wal/archive_status). Filenames beginning with a dot, directo-
ries, and other special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

 pg_ls_tmpdir ([tablespace oid]) → setof record (name text, size bigint, modifi-
cation timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the temporary file
directory for the specified tablespace. If tablespace is not provided, the pg_default ta-
blespace is examined. Filenames beginning with a dot, directories, and other special files are exclud-
ed.
This function is restricted to superusers and members of the pg_monitor role by default, but other
users can be granted EXECUTE to run the function.

 pg_read_file (filename text [, offset bigint, length bigint] [, missing_ok

boolean]) → text
Returns all or part of a text file, starting at the given byte offset, returning at most length bytes
(less if the end of file is reached first). If offset is negative, it is relative to the end of the file. If
offset and length are omitted, the entire file is returned. The bytes read from the file are inter-
preted as a string in the database's encoding; an error is thrown if they are not valid in that encoding.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

 pg_read_binary_file (filename text [, offset bigint, length bigint] [, missing_ok

boolean]) → bytea
Returns all or part of a file. This function is identical to pg_read_file except that it can read ar-
bitrary binary data, returning the result as bytea not text; accordingly, no encoding checks are
performed.

202

Functions and Operators

Function
Description

This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.
In combination with the convert_from function, this function can be used to read a text file in a
specified encoding and convert to the database's encoding:

SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'),
 'UTF8');

 pg_stat_file (filename text [, missing_ok boolean]) → record (size bigint, ac-
cess timestamp with time zone, modification timestamp with time zone,
change timestamp with time zone, creation timestamp with time zone, is-
dir boolean)
Returns a record containing the file's size, last access time stamp, last modification time stamp, last
file status change time stamp (Unix platforms only), file creation time stamp (Windows only), and a
flag indicating if it is a directory.
This function is restricted to superusers by default, but other users can be granted EXECUTE to run
the function.

9.28.10. Advisory Lock Functions
The functions shown in Table 9.109 manage advisory locks. For details about proper use of these functions, see
Section 13.3.5.

All these functions are intended to be used to lock application-defined resources, which can be identified either
by a single 64-bit key value or two 32-bit key values (note that these two key spaces do not overlap). If another
session already holds a conflicting lock on the same resource identifier, the functions will either wait until the
resource becomes available, or return a false result, as appropriate for the function. Locks can be either shared
or exclusive: a shared lock does not conflict with other shared locks on the same resource, only with exclusive
locks. Locks can be taken at session level (so that they are held until released or the session ends) or at transaction
level (so that they are held until the current transaction ends; there is no provision for manual release). Multiple
session-level lock requests stack, so that if the same resource identifier is locked three times there must then be
three unlock requests to release the resource in advance of session end.

Table 9.109. Advisory Lock Functions

Function
Description

 pg_advisory_lock (key bigint) → void
pg_advisory_lock (key1 integer, key2 integer) → void

Obtains an exclusive session-level advisory lock, waiting if necessary.

 pg_advisory_lock_shared (key bigint) → void
pg_advisory_lock_shared (key1 integer, key2 integer) → void

Obtains a shared session-level advisory lock, waiting if necessary.

 pg_advisory_unlock (key bigint) → boolean
pg_advisory_unlock (key1 integer, key2 integer) → boolean

Releases a previously-acquired exclusive session-level advisory lock. Returns true if the lock is
successfully released. If the lock was not held, false is returned, and in addition, an SQL warning
will be reported by the server.

 pg_advisory_unlock_all () → void
Releases all session-level advisory locks held by the current session. (This function is implicitly in-
voked at session end, even if the client disconnects ungracefully.)

203

Functions and Operators

Function
Description

 pg_advisory_unlock_shared (key bigint) → boolean
pg_advisory_unlock_shared (key1 integer, key2 integer) → boolean

Releases a previously-acquired shared session-level advisory lock. Returns true if the lock is suc-
cessfully released. If the lock was not held, false is returned, and in addition, an SQL warning will
be reported by the server.

 pg_advisory_xact_lock (key bigint) → void
pg_advisory_xact_lock (key1 integer, key2 integer) → void

Obtains an exclusive transaction-level advisory lock, waiting if necessary.

 pg_advisory_xact_lock_shared (key bigint) → void
pg_advisory_xact_lock_shared (key1 integer, key2 integer) → void

Obtains a shared transaction-level advisory lock, waiting if necessary.

 pg_try_advisory_lock (key bigint) → boolean
pg_try_advisory_lock (key1 integer, key2 integer) → boolean

Obtains an exclusive session-level advisory lock if available. This will either obtain the lock immedi-
ately and return true, or return false without waiting if the lock cannot be acquired immediately.

 pg_try_advisory_lock_shared (key bigint) → boolean
pg_try_advisory_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared session-level advisory lock if available. This will either obtain the lock immediately
and return true, or return false without waiting if the lock cannot be acquired immediately.

 pg_try_advisory_xact_lock (key bigint) → boolean
pg_try_advisory_xact_lock (key1 integer, key2 integer) → boolean

Obtains an exclusive transaction-level advisory lock if available. This will either obtain the lock im-
mediately and return true, or return false without waiting if the lock cannot be acquired immedi-
ately.

 pg_try_advisory_xact_lock_shared (key bigint) → boolean
pg_try_advisory_xact_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared transaction-level advisory lock if available. This will either obtain the lock immedi-
ately and return true, or return false without waiting if the lock cannot be acquired immediately.

9.29. Trigger Functions
While many uses of triggers involve user-written trigger functions, PostgreSQL provides a few built-in trigger
functions that can be used directly in user-defined triggers. These are summarized in Table 9.110. (Additional
built-in trigger functions exist, which implement foreign key constraints and deferred index constraints. Those are
not documented here since users need not use them directly.)

For more information about creating triggers, see CREATE TRIGGER.

Table 9.110. Built-In Trigger Functions

Function
Description
Example Usage

 suppress_redundant_updates_trigger () → trigger
Suppresses do-nothing update operations. See below for details.
CREATE TRIGGER ... suppress_redundant_updates_trigger()

 tsvector_update_trigger () → trigger

204

Functions and Operators

Function
Description
Example Usage

Automatically updates a tsvector column from associated plain-text document column(s). The
text search configuration to use is specified by name as a trigger argument. See Section 12.4.3 for de-
tails.
CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_cata-
log.swedish', title, body)

 tsvector_update_trigger_column () → trigger
Automatically updates a tsvector column from associated plain-text document column(s). The
text search configuration to use is taken from a regconfig column of the table. See Section 12.4.3
for details.
CREATE TRIGGER ... tsvector_update_trigger_column(tsvcol, tsconfig-
col, title, body)

The suppress_redundant_updates_trigger function, when applied as a row-level BEFORE UPDATE
trigger, will prevent any update that does not actually change the data in the row from taking place. This overrides
the normal behavior which always performs a physical row update regardless of whether or not the data has
changed. (This normal behavior makes updates run faster, since no checking is required, and is also useful in
certain cases.)

Ideally, you should avoid running updates that don't actually change the data in the record. Redundant updates
can cost considerable unnecessary time, especially if there are lots of indexes to alter, and space in dead rows that
will eventually have to be vacuumed. However, detecting such situations in client code is not always easy, or even
possible, and writing expressions to detect them can be error-prone. An alternative is to use suppress_re-
dundant_updates_trigger, which will skip updates that don't change the data. You should use this with
care, however. The trigger takes a small but non-trivial time for each record, so if most of the records affected by
updates do actually change, use of this trigger will make updates run slower on average.

The suppress_redundant_updates_trigger function can be added to a table like this:

CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();

In most cases, you need to fire this trigger last for each row, so that it does not override other triggers that might
wish to alter the row. Bearing in mind that triggers fire in name order, you would therefore choose a trigger name
that comes after the name of any other trigger you might have on the table. (Hence the “z” prefix in the example.)

9.30. Event Trigger Functions
PostgreSQL provides these helper functions to retrieve information from event triggers.

For more information about event triggers, see Chapter 38.

9.30.1. Capturing Changes at Command End

pg_event_trigger_ddl_commands () → setof record

pg_event_trigger_ddl_commands returns a list of DDL commands executed by each user action, when
invoked in a function attached to a ddl_command_end event trigger. If called in any other context, an error
is raised. pg_event_trigger_ddl_commands returns one row for each base command executed; some
commands that are a single SQL sentence may return more than one row. This function returns the following
columns:

205

Functions and Operators

Name Type Description

classid oid OID of catalog the object belongs in

objid oid OID of the object itself

objsubid integer Sub-object ID (e.g., attribute num-
ber for a column)

command_tag text Command tag

object_type text Type of the object

schema_name text Name of the schema the object be-
longs in, if any; otherwise NULL.
No quoting is applied.

object_identity text Text rendering of the object identi-
ty, schema-qualified. Each identifier
included in the identity is quoted if
necessary.

in_extension boolean True if the command is part of an
extension script

command pg_ddl_command A complete representation of the
command, in internal format. This
cannot be output directly, but it can
be passed to other functions to ob-
tain different pieces of information
about the command.

9.30.2. Processing Objects Dropped by a DDL Com-
mand

pg_event_trigger_dropped_objects () → setof record

pg_event_trigger_dropped_objects returns a list of all objects dropped by the command in whose
sql_drop event it is called. If called in any other context, an error is raised. This function returns the following
columns:

Name Type Description

classid oid OID of catalog the object belonged
in

objid oid OID of the object itself

objsubid integer Sub-object ID (e.g., attribute num-
ber for a column)

original boolean True if this was one of the root ob-
ject(s) of the deletion

normal boolean True if there was a normal depen-
dency relationship in the dependen-
cy graph leading to this object

is_temporary boolean True if this was a temporary object

object_type text Type of the object

schema_name text Name of the schema the object be-
longed in, if any; otherwise NULL.
No quoting is applied.

206

Functions and Operators

Name Type Description

object_name text Name of the object, if the combi-
nation of schema and name can be
used as a unique identifier for the
object; otherwise NULL. No quot-
ing is applied, and name is never
schema-qualified.

object_identity text Text rendering of the object identi-
ty, schema-qualified. Each identifier
included in the identity is quoted if
necessary.

address_names text[] An array that, together with
object_type and ad-
dress_args, can be used by the
pg_get_object_address
function to recreate the object ad-
dress in a remote server containing
an identically named object of the
same kind.

address_args text[] Complement for ad-
dress_names

The pg_event_trigger_dropped_objects function can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_for_drops()
 RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
 obj record;
BEGIN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
 LOOP
 RAISE NOTICE '% dropped object: % %.% %',
 tg_tag,
 obj.object_type,
 obj.schema_name,
 obj.object_name,
 obj.object_identity;
 END LOOP;
END;
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
 ON sql_drop
 EXECUTE FUNCTION test_event_trigger_for_drops();

9.30.3. Handling a Table Rewrite Event
The functions shown in Table 9.111 provide information about a table for which a table_rewrite event has
just been called. If called in any other context, an error is raised.

Table 9.111. Table Rewrite Information Functions

Function
Description

 pg_event_trigger_table_rewrite_oid () → oid

207

Functions and Operators

Function
Description

Returns the OID of the table about to be rewritten.

 pg_event_trigger_table_rewrite_reason () → integer
Returns a code explaining the reason(s) for rewriting. The value is a bitmap built from the following
values: 1 (the table has changed its persistence), 2 (default value of a column has changed), 4 (a col-
umn has a new data type) and 8 (the table access method has changed).

These functions can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'rewriting table % for reason %',
 pg_event_trigger_table_rewrite_oid()::regclass,
 pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
 ON table_rewrite
 EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();

9.31. Statistics Information Functions
PostgreSQL provides a function to inspect complex statistics defined using the CREATE STATISTICS com-
mand.

9.31.1. Inspecting MCV Lists

pg_mcv_list_items (pg_mcv_list) → setof record

pg_mcv_list_items returns a set of records describing all items stored in a multi-column MCV list. It returns
the following columns:

Name Type Description

index integer index of the item in the MCV list

values text[] values stored in the MCV item

nulls boolean[] flags identifying NULL values

frequency double precision frequency of this MCV item

base_frequency double precision base frequency of this MCV item

The pg_mcv_list_items function can be used like this:

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid =
 stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts';

Values of the pg_mcv_list type can be obtained only from the pg_statistic_ext_data.stxdmcv col-
umn.

208

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Functions and Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.4.1. format

	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions
	9.7.3.8. Differences from SQL Standard and XQuery

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, date_part
	9.9.2. date_trunc
	9.9.3. date_bin
	9.9.4. AT TIME ZONE and AT LOCAL
	9.9.5. Current Date/Time
	9.9.6. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. UUID Functions
	9.15. XML Functions
	9.15.1. Producing XML Content
	9.15.1.1. xmltext
	9.15.1.2. xmlcomment
	9.15.1.3. xmlconcat
	9.15.1.4. xmlelement
	9.15.1.5. xmlforest
	9.15.1.6. xmlpi
	9.15.1.7. xmlroot
	9.15.1.8. xmlagg

	9.15.2. XML Predicates
	9.15.2.1. IS DOCUMENT
	9.15.2.2. IS NOT DOCUMENT
	9.15.2.3. XMLEXISTS
	9.15.2.4. xml_is_well_formed

	9.15.3. Processing XML
	9.15.3.1. xpath
	9.15.3.2. xpath_exists
	9.15.3.3. xmltable

	9.15.4. Mapping Tables to XML

	9.16. JSON Functions and Operators
	9.16.1. Processing and Creating JSON Data
	9.16.2. The SQL/JSON Path Language
	9.16.2.1. Deviations from the SQL Standard
	9.16.2.1.1. Boolean Predicate Check Expressions
	9.16.2.1.2. Regular Expression Interpretation

	9.16.2.2. Strict and Lax Modes
	9.16.2.3. SQL/JSON Path Operators and Methods
	9.16.2.4. SQL/JSON Regular Expressions

	9.16.3. SQL/JSON Query Functions
	9.16.4. JSON_TABLE

	9.17. Sequence Manipulation Functions
	9.18. Conditional Expressions
	9.18.1. CASE
	9.18.2. COALESCE
	9.18.3. NULLIF
	9.18.4. GREATEST and LEAST

	9.19. Array Functions and Operators
	9.20. Range/Multirange Functions and Operators
	9.21. Aggregate Functions
	9.22. Window Functions
	9.23. Merge Support Functions
	9.24. Subquery Expressions
	9.24.1. EXISTS
	9.24.2. IN
	9.24.3. NOT IN
	9.24.4. ANY/SOME
	9.24.5. ALL
	9.24.6. Single-Row Comparison

	9.25. Row and Array Comparisons
	9.25.1. IN
	9.25.2. NOT IN
	9.25.3. ANY/SOME (array)
	9.25.4. ALL (array)
	9.25.5. Row Constructor Comparison
	9.25.6. Composite Type Comparison

	9.26. Set Returning Functions
	9.27. System Information Functions and Operators
	9.27.1. Session Information Functions
	9.27.2. Access Privilege Inquiry Functions
	9.27.3. Schema Visibility Inquiry Functions
	9.27.4. System Catalog Information Functions
	9.27.5. Object Information and Addressing Functions
	9.27.6. Comment Information Functions
	9.27.7. Data Validity Checking Functions
	9.27.8. Transaction ID and Snapshot Information Functions
	9.27.9. Committed Transaction Information Functions
	9.27.10. Control Data Functions
	9.27.11. Version Information Functions
	9.27.12. WAL Summarization Information Functions

	9.28. System Administration Functions
	9.28.1. Configuration Settings Functions
	9.28.2. Server Signaling Functions
	9.28.3. Backup Control Functions
	9.28.4. Recovery Control Functions
	9.28.5. Snapshot Synchronization Functions
	9.28.6. Replication Management Functions
	9.28.7. Database Object Management Functions
	9.28.8. Index Maintenance Functions
	9.28.9. Generic File Access Functions
	9.28.10. Advisory Lock Functions

	9.29. Trigger Functions
	9.30. Event Trigger Functions
	9.30.1. Capturing Changes at Command End
	9.30.2. Processing Objects Dropped by a DDL Command
	9.30.3. Handling a Table Rewrite Event

	9.31. Statistics Information Functions
	9.31.1. Inspecting MCV Lists

