
Chapter 66. Database Physical
Storage
This chapter provides an overview of the physical storage format used by PostgreSQL databases.

66.1. Database File Layout
This section describes the storage format at the level of files and directories.

Traditionally, the configuration and data files used by a database cluster are stored together within the cluster's
data directory, commonly referred to as PGDATA (after the name of the environment variable that can be used
to define it). A common location for PGDATA is /var/lib/pgsql/data. Multiple clusters, managed by
different server instances, can exist on the same machine.

The PGDATA directory contains several subdirectories and control files, as shown in Table 66.1. In addition to these
required items, the cluster configuration files postgresql.conf, pg_hba.conf, and pg_ident.conf
are traditionally stored in PGDATA, although it is possible to place them elsewhere.

Table 66.1. Contents of PGDATA

Item Description

PG_VERSION A file containing the major version number of PostgreSQL

base Subdirectory containing per-database subdirectories

current_logfiles File recording the log file(s) currently written to by the logging collector

global Subdirectory containing cluster-wide tables, such as pg_database

pg_commit_ts Subdirectory containing transaction commit timestamp data

pg_dynshmem Subdirectory containing files used by the dynamic shared memory sub-
system

pg_logical Subdirectory containing status data for logical decoding

pg_multixact Subdirectory containing multitransaction status data (used for shared row
locks)

pg_notify Subdirectory containing LISTEN/NOTIFY status data

pg_replslot Subdirectory containing replication slot data

pg_serial Subdirectory containing information about committed serializable trans-
actions

pg_snapshots Subdirectory containing exported snapshots

pg_stat Subdirectory containing permanent files for the statistics subsystem

pg_stat_tmp Subdirectory containing temporary files for the statistics subsystem

pg_subtrans Subdirectory containing subtransaction status data

pg_tblspc Subdirectory containing symbolic links to tablespaces

pg_twophase Subdirectory containing state files for prepared transactions

pg_wal Subdirectory containing WAL (Write Ahead Log) files

pg_xact Subdirectory containing transaction commit status data

postgresql.auto.conf A file used for storing configuration parameters that are set by ALTER
SYSTEM

postmaster.opts A file recording the command-line options the server was last started with

1



Database Physical Storage

Item Description

postmaster.pid A lock file recording the current postmaster process ID (PID), cluster da-
ta directory path, postmaster start timestamp, port number, Unix-domain
socket directory path (could be empty), first valid listen_address (IP ad-
dress or *, or empty if not listening on TCP), and shared memory seg-
ment ID (this file is not present after server shutdown)

For each database in the cluster there is a subdirectory within PGDATA/base, named after the database's OID in
pg_database. This subdirectory is the default location for the database's files; in particular, its system catalogs
are stored there.

Note that the following sections describe the behavior of the builtin heap table access method, and the builtin
index access methods. Due to the extensible nature of PostgreSQL, other access methods might work differently.

Each table and index is stored in a separate file. For ordinary relations, these files are named after the table or
index's filenode number, which can be found in pg_class.relfilenode. But for temporary relations, the file
name is of the form tBBB_FFF, where BBB is the process number of the backend which created the file, and FFF
is the filenode number. In either case, in addition to the main file (a/k/a main fork), each table and index has a free
space map (see Section 66.3), which stores information about free space available in the relation. The free space
map is stored in a file named with the filenode number plus the suffix _fsm. Tables also have a visibility map,
stored in a fork with the suffix _vm, to track which pages are known to have no dead tuples. The visibility map is
described further in Section 66.4. Unlogged tables and indexes have a third fork, known as the initialization fork,
which is stored in a fork with the suffix _init (see Section 66.5).

Caution

Note that while a table's filenode often matches its OID, this is not necessarily the case; some op-
erations, like TRUNCATE, REINDEX, CLUSTER and some forms of ALTER TABLE, can change
the filenode while preserving the OID. Avoid assuming that filenode and table OID are the same.
Also, for certain system catalogs including pg_class itself, pg_class.relfilenode con-
tains zero. The actual filenode number of these catalogs is stored in a lower-level data structure,
and can be obtained using the pg_relation_filenode() function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized segments. The first segment's file name
is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This arrangement avoids
problems on platforms that have file size limitations. (Actually, 1 GB is just the default segment size. The segment
size can be adjusted using the configuration option --with-segsize when building PostgreSQL.) In principle,
free space map and visibility map forks could require multiple segments as well, though this is unlikely to happen
in practice.

A table that has columns with potentially large entries will have an associated TOAST table, which is used for out-
of-line storage of field values that are too large to keep in the table rows proper. pg_class.reltoastrelid
links from a table to its TOAST table, if any. See Section 66.2 for more information.

The contents of tables and indexes are discussed further in Section 66.6.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link inside the
PGDATA/pg_tblspc directory, which points to the physical tablespace directory (i.e., the location specified
in the tablespace's CREATE TABLESPACE command). This symbolic link is named after the tablespace's OID.
Inside the physical tablespace directory there is a subdirectory with a name that depends on the PostgreSQL
server version, such as PG_9.0_201008051. (The reason for using this subdirectory is so that successive ver-
sions of the database can use the same CREATE TABLESPACE location value without conflicts.) Within the
version-specific subdirectory, there is a subdirectory for each database that has elements in the tablespace, named
after the database's OID. Tables and indexes are stored within that directory, using the filenode naming scheme.
The pg_default tablespace is not accessed through pg_tblspc, but corresponds to PGDATA/base. Simi-
larly, the pg_global tablespace is not accessed through pg_tblspc, but corresponds to PGDATA/global.

2



Database Physical Storage

The pg_relation_filepath() function shows the entire path (relative to PGDATA) of any relation. It is
often useful as a substitute for remembering many of the above rules. But keep in mind that this function just gives
the name of the first segment of the main fork of the relation — you may need to append a segment number and/
or _fsm, _vm, or _init to find all the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in memory) are created within PGDATA/
base/pgsql_tmp, or within a pgsql_tmp subdirectory of a tablespace directory if a tablespace other than
pg_default is specified for them. The name of a temporary file has the form pgsql_tmpPPP.NNN, where
PPP is the PID of the owning backend and NNN distinguishes different temporary files of that backend.

66.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

PostgreSQL uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages. There-
fore, it is not possible to store very large field values directly. To overcome this limitation, large field values are
compressed and/or broken up into multiple physical rows. This happens transparently to the user, with only small
impact on most of the backend code. The technique is affectionately known as TOAST (or “the best thing since
sliced bread”). The TOAST infrastructure is also used to improve handling of large data values in-memory.

Only certain data types support TOAST — there is no need to impose the overhead on data types that cannot
produce large field values. To support TOAST, a data type must have a variable-length (varlena) representation,
in which, ordinarily, the first four-byte word of any stored value contains the total length of the value in bytes
(including itself). TOAST does not constrain the rest of the data type's representation. The special representations
collectively called TOASTed values work by modifying or reinterpreting this initial length word. Therefore, the C-
level functions supporting a TOAST-able data type must be careful about how they handle potentially TOASTed
input values: an input might not actually consist of a four-byte length word and contents until after it's been
detoasted. (This is normally done by invoking PG_DETOAST_DATUM before doing anything with an input value,
but in some cases more efficient approaches are possible. See Section 36.13.1 for more detail.)

TOAST usurps two bits of the varlena length word (the high-order bits on big-endian machines, the low-order bits
on little-endian machines), thereby limiting the logical size of any value of a TOAST-able data type to 1 GB (230 -
1 bytes). When both bits are zero, the value is an ordinary un-TOASTed value of the data type, and the remaining
bits of the length word give the total datum size (including length word) in bytes. When the highest-order or
lowest-order bit is set, the value has only a single-byte header instead of the normal four-byte header, and the
remaining bits of that byte give the total datum size (including length byte) in bytes. This alternative supports
space-efficient storage of values shorter than 127 bytes, while still allowing the data type to grow to 1 GB at need.
Values with single-byte headers aren't aligned on any particular boundary, whereas values with four-byte headers
are aligned on at least a four-byte boundary; this omission of alignment padding provides additional space savings
that is significant compared to short values. As a special case, if the remaining bits of a single-byte header are all
zero (which would be impossible for a self-inclusive length), the value is a pointer to out-of-line data, with several
possible alternatives as described below. The type and size of such a TOAST pointer are determined by a code
stored in the second byte of the datum. Lastly, when the highest-order or lowest-order bit is clear but the adjacent
bit is set, the content of the datum has been compressed and must be decompressed before use. In this case the
remaining bits of the four-byte length word give the total size of the compressed datum, not the original data. Note
that compression is also possible for out-of-line data but the varlena header does not tell whether it has occurred
— the content of the TOAST pointer tells that, instead.

The compression technique used for either in-line or out-of-line compressed data can be selected for each column
by setting the COMPRESSION column option in CREATE TABLE or ALTER TABLE. The default for columns
with no explicit setting is to consult the default_toast_compression parameter at the time data is inserted.

As mentioned, there are multiple types of TOAST pointer datums. The oldest and most common type is a pointer
to out-of-line data stored in a TOAST table that is separate from, but associated with, the table containing the
TOAST pointer datum itself. These on-disk pointer datums are created by the TOAST management code (in
access/common/toast_internals.c) when a tuple to be stored on disk is too large to be stored as-is.
Further details appear in Section 66.2.1. Alternatively, a TOAST pointer datum can contain a pointer to out-of-
line data that appears elsewhere in memory. Such datums are necessarily short-lived, and will never appear on-

3



Database Physical Storage

disk, but they are very useful for avoiding copying and redundant processing of large data values. Further details
appear in Section 66.2.2.

66.2.1. Out-of-Line, On-Disk TOAST Storage

If any of the columns of a table are TOAST-able, the table will have an associated TOAST table, whose OID
is stored in the table's pg_class.reltoastrelid entry. On-disk TOASTed values are kept in the TOAST
table, as described in more detail below.

Out-of-line values are divided (after compression if used) into chunks of at most TOAST_MAX_CHUNK_SIZE
bytes (by default this value is chosen so that four chunk rows will fit on a page, making it about 2000 bytes). Each
chunk is stored as a separate row in the TOAST table belonging to the owning table. Every TOAST table has the
columns chunk_id (an OID identifying the particular TOASTed value), chunk_seq (a sequence number for
the chunk within its value), and chunk_data (the actual data of the chunk). A unique index on chunk_id and
chunk_seq provides fast retrieval of the values. A pointer datum representing an out-of-line on-disk TOASTed
value therefore needs to store the OID of the TOAST table in which to look and the OID of the specific value
(its chunk_id). For convenience, pointer datums also store the logical datum size (original uncompressed data
length), physical stored size (different if compression was applied), and the compression method used, if any.
Allowing for the varlena header bytes, the total size of an on-disk TOAST pointer datum is therefore 18 bytes
regardless of the actual size of the represented value.

The TOAST management code is triggered only when a row value to be stored in a table is wider than TOAST_TU-
PLE_THRESHOLD bytes (normally 2 kB). The TOAST code will compress and/or move field values out-of-line
until the row value is shorter than TOAST_TUPLE_TARGET bytes (also normally 2 kB, adjustable) or no more
gains can be had. During an UPDATE operation, values of unchanged fields are normally preserved as-is; so an
UPDATE of a row with out-of-line values incurs no TOAST costs if none of the out-of-line values change.

The TOAST management code recognizes four different strategies for storing TOAST-able columns on disk:

• PLAIN prevents either compression or out-of-line storage. This is the only possible strategy for columns of
non-TOAST-able data types.

• EXTENDED allows both compression and out-of-line storage. This is the default for most TOAST-able data
types. Compression will be attempted first, then out-of-line storage if the row is still too big.

• EXTERNAL allows out-of-line storage but not compression. Use of EXTERNAL will make substring operations
on wide text and bytea columns faster (at the penalty of increased storage space) because these operations
are optimized to fetch only the required parts of the out-of-line value when it is not compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be performed for
such columns, but only as a last resort when there is no other way to make the row small enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy for a given
table column can be altered with ALTER TABLE ... SET STORAGE.

TOAST_TUPLE_TARGET can be adjusted for each table using ALTER TABLE ... SET (toast_tu-
ple_target = N)

This scheme has a number of advantages compared to a more straightforward approach such as allowing row
values to span pages. Assuming that queries are usually qualified by comparisons against relatively small key
values, most of the work of the executor will be done using the main row entry. The big values of TOASTed
attributes will only be pulled out (if selected at all) at the time the result set is sent to the client. Thus, the main
table is much smaller and more of its rows fit in the shared buffer cache than would be the case without any out-
of-line storage. Sort sets shrink also, and sorts will more often be done entirely in memory. A little test showed
that a table containing typical HTML pages and their URLs was stored in about half of the raw data size including
the TOAST table, and that the main table contained only about 10% of the entire data (the URLs and some small
HTML pages). There was no run time difference compared to an un-TOASTed comparison table, in which all the
HTML pages were cut down to 7 kB to fit.

4



Database Physical Storage

66.2.2. Out-of-Line, In-Memory TOAST Storage
TOAST pointers can point to data that is not on disk, but is elsewhere in the memory of the current server process.
Such pointers obviously cannot be long-lived, but they are nonetheless useful. There are currently two sub-cases:
pointers to indirect data and pointers to expanded data.

Indirect TOAST pointers simply point at a non-indirect varlena value stored somewhere in memory. This case was
originally created merely as a proof of concept, but it is currently used during logical decoding to avoid possibly
having to create physical tuples exceeding 1 GB (as pulling all out-of-line field values into the tuple might do).
The case is of limited use since the creator of the pointer datum is entirely responsible that the referenced data
survives for as long as the pointer could exist, and there is no infrastructure to help with this.

Expanded TOAST pointers are useful for complex data types whose on-disk representation is not especially suited
for computational purposes. As an example, the standard varlena representation of a PostgreSQL array includes
dimensionality information, a nulls bitmap if there are any null elements, then the values of all the elements in
order. When the element type itself is variable-length, the only way to find the N'th element is to scan through all
the preceding elements. This representation is appropriate for on-disk storage because of its compactness, but for
computations with the array it's much nicer to have an “expanded” or “deconstructed” representation in which all
the element starting locations have been identified. The TOAST pointer mechanism supports this need by allowing
a pass-by-reference Datum to point to either a standard varlena value (the on-disk representation) or a TOAST
pointer that points to an expanded representation somewhere in memory. The details of this expanded represen-
tation are up to the data type, though it must have a standard header and meet the other API requirements given
in src/include/utils/expandeddatum.h. C-level functions working with the data type can choose to
handle either representation. Functions that do not know about the expanded representation, but simply apply
PG_DETOAST_DATUM to their inputs, will automatically receive the traditional varlena representation; so support
for an expanded representation can be introduced incrementally, one function at a time.

TOAST pointers to expanded values are further broken down into read-write and read-only pointers. The point-
ed-to representation is the same either way, but a function that receives a read-write pointer is allowed to modify
the referenced value in-place, whereas one that receives a read-only pointer must not; it must first create a copy
if it wants to make a modified version of the value. This distinction and some associated conventions make it
possible to avoid unnecessary copying of expanded values during query execution.

For all types of in-memory TOAST pointer, the TOAST management code ensures that no such pointer datum
can accidentally get stored on disk. In-memory TOAST pointers are automatically expanded to normal in-line
varlena values before storage — and then possibly converted to on-disk TOAST pointers, if the containing tuple
would otherwise be too big.

66.3. Free Space Map
Each heap and index relation, except for hash indexes, has a Free Space Map (FSM) to keep track of available
space in the relation. It's stored alongside the main relation data in a separate relation fork, named after the filenode
number of the relation, plus a _fsm suffix. For example, if the filenode of a relation is 12345, the FSM is stored
in a file called 12345_fsm, in the same directory as the main relation file.

The Free Space Map is organized as a tree of FSM pages. The bottom level FSM pages store the free space
available on each heap (or index) page, using one byte to represent each such page. The upper levels aggregate
information from the lower levels.

Within each FSM page is a binary tree, stored in an array with one byte per node. Each leaf node represents a heap
page, or a lower level FSM page. In each non-leaf node, the higher of its children's values is stored. The maximum
value in the leaf nodes is therefore stored at the root.

See src/backend/storage/freespace/README for more details on how the FSM is structured, and how
it's updated and searched. The pg_freespacemap module can be used to examine the information stored in free
space maps.

66.4. Visibility Map

5



Database Physical Storage

Each heap relation has a Visibility Map (VM) to keep track of which pages contain only tuples that are known
to be visible to all active transactions; it also keeps track of which pages contain only frozen tuples. It's stored
alongside the main relation data in a separate relation fork, named after the filenode number of the relation, plus
a _vm suffix. For example, if the filenode of a relation is 12345, the VM is stored in a file called 12345_vm, in
the same directory as the main relation file. Note that indexes do not have VMs.

The visibility map stores two bits per heap page. The first bit, if set, indicates that the page is all-visible, or in
other words that the page does not contain any tuples that need to be vacuumed. This information can also be used
by index-only scans to answer queries using only the index tuple. The second bit, if set, means that all tuples on
the page have been frozen. That means that even an anti-wraparound vacuum need not revisit the page.

The map is conservative in the sense that we make sure that whenever a bit is set, we know the condition is true,
but if a bit is not set, it might or might not be true. Visibility map bits are only set by vacuum, but are cleared by
any data-modifying operations on a page.

The pg_visibility module can be used to examine the information stored in the visibility map.

66.5. The Initialization Fork
Each unlogged table, and each index on an unlogged table, has an initialization fork. The initialization fork is an
empty table or index of the appropriate type. When an unlogged table must be reset to empty due to a crash, the
initialization fork is copied over the main fork, and any other forks are erased (they will be recreated automatically
as needed).

66.6. Database Page Layout
This section provides an overview of the page format used within PostgreSQL tables and indexes.1 Sequences and
TOAST tables are formatted just like a regular table.

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to an individual
data value that is stored on a page. In a table, an item is a row; in an index, an item is an index entry.

Every table and index is stored as an array of pages of a fixed size (usually 8 kB, although a different page size
can be selected when compiling the server). In a table, all the pages are logically equivalent, so a particular item
(row) can be stored in any page. In indexes, the first page is generally reserved as a metapage holding control
information, and there can be different types of pages within the index, depending on the index access method.

Table 66.2 shows the overall layout of a page. There are five parts to each page.

Table 66.2. Overall Page Layout

Item Description

PageHeaderData 24 bytes long. Contains general information about the page, including
free space pointers.

ItemIdData Array of item identifiers pointing to the actual items. Each entry is an
(offset,length) pair. 4 bytes per item.

Free space The unallocated space. New item identifiers are allocated from the start
of this area, new items from the end.

Items The actual items themselves.

Special space Index access method specific data. Different methods store different data.
Empty in ordinary tables.

1 Actually, use of this page format is not required for either table or index access methods. The heap table access method always uses this
format. All the existing index methods also use the basic format, but the data kept on index metapages usually doesn't follow the item layout
rules.

6



Database Physical Storage

The first 24 bytes of each page consists of a page header (PageHeaderData). Its format is detailed in Ta-
ble 66.3. The first field tracks the most recent WAL entry related to this page. The second field contains the page
checksum if -k are enabled. Next is a 2-byte field containing flag bits. This is followed by three 2-byte integer
fields (pd_lower, pd_upper, and pd_special). These contain byte offsets from the page start to the start
of unallocated space, to the end of unallocated space, and to the start of the special space. The next 2 bytes of
the page header, pd_pagesize_version, store both the page size and a version indicator. Beginning with
PostgreSQL 8.3 the version number is 4; PostgreSQL 8.1 and 8.2 used version number 3; PostgreSQL 8.0 used
version number 2; PostgreSQL 7.3 and 7.4 used version number 1; prior releases used version number 0. (The
basic page layout and header format has not changed in most of these versions, but the layout of heap row headers
has.) The page size is basically only present as a cross-check; there is no support for having more than one page
size in an installation. The last field is a hint that shows whether pruning the page is likely to be profitable: it
tracks the oldest un-pruned XMAX on the page.

Table 66.3. PageHeaderData Layout

Field Type Length Description

pd_lsn PageXLogRecPtr 8 bytes LSN: next byte after last
byte of WAL record for
last change to this page

pd_checksum uint16 2 bytes Page checksum

pd_flags uint16 2 bytes Flag bits

pd_lower LocationIndex 2 bytes Offset to start of free
space

pd_upper LocationIndex 2 bytes Offset to end of free space

pd_special LocationIndex 2 bytes Offset to start of special
space

pd_pagesize_version uint16 2 bytes Page size and layout ver-
sion number information

pd_prune_xid TransactionId 4 bytes Oldest unpruned XMAX
on page, or zero if none

All the details can be found in src/include/storage/bufpage.h.

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item identifier con-
tains a byte-offset to the start of an item, its length in bytes, and a few attribute bits which affect its interpretation.
New item identifiers are allocated as needed from the beginning of the unallocated space. The number of item
identifiers present can be determined by looking at pd_lower, which is increased to allocate a new identifier.
Because an item identifier is never moved until it is freed, its index can be used on a long-term basis to reference
an item, even when the item itself is moved around on the page to compact free space. In fact, every pointer to
an item (ItemPointer, also known as CTID) created by PostgreSQL consists of a page number and the index
of an item identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The exact struc-
ture varies depending on what the table is to contain. Tables and sequences both use a structure named HeapTu-
pleHeaderData, described below.

The final section is the “special section” which can contain anything the access method wishes to store. For ex-
ample, b-tree indexes store links to the page's left and right siblings, as well as some other data relevant to the
index structure. Ordinary tables do not use a special section at all (indicated by setting pd_special to equal
the page size).

Figure 66.1 illustrates how these parts are laid out in a page.

7



Database Physical Storage

Figure 66.1. Page Layout

PageHeaderData

Item

ItemId ItemId

Item Special

66.6.1. Table Row Layout
All table rows are structured in the same way. There is a fixed-size header (occupying 23 bytes on most machines),
followed by an optional null bitmap, an optional object ID field, and the user data. The header is detailed in
Table 66.4. The actual user data (columns of the row) begins at the offset indicated by t_hoff, which must always
be a multiple of the MAXALIGN distance for the platform. The null bitmap is only present if the HEAP_HASNULL
bit is set in t_infomask. If it is present it begins just after the fixed header and occupies enough bytes to have
one bit per data column (that is, the number of bits that equals the attribute count in t_infomask2). In this list
of bits, a 1 bit indicates not-null, a 0 bit is a null. When the bitmap is not present, all columns are assumed not-
null. The object ID is only present if the HEAP_HASOID_OLD bit is set in t_infomask. If present, it appears
just before the t_hoff boundary. Any padding needed to make t_hoff a MAXALIGN multiple will appear
between the null bitmap and the object ID. (This in turn ensures that the object ID is suitably aligned.)

Table 66.4. HeapTupleHeaderData Layout

Field Type Length Description

t_xmin TransactionId 4 bytes insert XID stamp

t_xmax TransactionId 4 bytes delete XID stamp

t_cid CommandId 4 bytes insert and/or delete CID
stamp (overlays with t_x-
vac)

t_xvac TransactionId 4 bytes XID for VACUUM opera-
tion moving a row version

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_infomask2 uint16 2 bytes number of attributes, plus
various flag bits

t_infomask uint16 2 bytes various flag bits

t_hoff uint8 1 byte offset to user data

All the details can be found in src/include/access/htup_details.h.

Interpreting the actual data can only be done with information obtained from other tables, mostly pg_at-
tribute. The key values needed to identify field locations are attlen and attalign. There is no way to
directly get a particular attribute, except when there are only fixed width fields and no null values. All this trickery
is wrapped up in the functions heap_getattr, fastgetattr and heap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL according to
the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the field is a fixed width

8



Database Physical Storage

field, then all the bytes are simply placed. If it's a variable length field (attlen = -1) then it's a bit more complicated.
All variable-length data types share the common header structure struct varlena, which includes the total
length of the stored value and some flag bits. Depending on the flags, the data can be either inline or in a TOAST
table; it might be compressed, too (see Section 66.2).

66.7. Heap-Only Tuples (HOT)
To allow for high concurrency, PostgreSQL uses multiversion concurrency control (MVCC) to store rows. How-
ever, MVCC has some downsides for update queries. Specifically, updates require new versions of rows to be
added to tables. This can also require new index entries for each updated row, and removal of old versions of rows
and their index entries can be expensive.

To help reduce the overhead of updates, PostgreSQL has an optimization called heap-only tuples (HOT). This
optimization is possible when:

• The update does not modify any columns referenced by the table's indexes, not including summarizing indexes.
The only summarizing index method in the core PostgreSQL distribution is BRIN.

• There is sufficient free space on the page containing the old row for the updated row.

In such cases, heap-only tuples provide two optimizations:

• New index entries are not needed to represent updated rows, however, summary indexes may still need to be
updated.

• When a row is updated multiple times, row versions other than the oldest and the newest can be completely
removed during normal operation, including SELECTs, instead of requiring periodic vacuum operations. (In-
dexes always refer to the page item identifier of the original row version. The tuple data associated with that
row version is removed, and its item identifier is converted to a redirect that points to the oldest version that may
still be visible to some concurrent transaction. Intermediate row versions that are no longer visible to anyone
are completely removed, and the associated page item identifiers are made available for reuse.)

You can increase the likelihood of sufficient page space for HOT updates by decreasing a table's fillfactor.
If you don't, HOT updates will still happen because new rows will naturally migrate to new pages and existing
pages with sufficient free space for new row versions. The system view pg_stat_all_tables allows monitoring of
the occurrence of HOT and non-HOT updates.

9


	Chapter 66. Database Physical Storage
	66.1. Database File Layout
	66.2. TOAST
	66.2.1. Out-of-Line, On-Disk TOAST Storage
	66.2.2. Out-of-Line, In-Memory TOAST Storage

	66.3. Free Space Map
	66.4. Visibility Map
	66.5. The Initialization Fork
	66.6. Database Page Layout
	66.6.1. Table Row Layout

	66.7. Heap-Only Tuples (HOT)


