
Page 1 of 12

Ajin’s “Empty Transaction” patch V11
- Performance and Traffic Test Results

Background
The purpose of the patch is to reduce the network traffic of the “empty transactions”. i.e., those

transactions which were only for table not participating in the subscription.

The patch removes the empty transactions for both normal commit and two-phase commit

transactions, so both kinds are included in this testing.

Patch discussion/reference
https://www.postgresql.org/message-

id/flat/CAFPTHDaQFuASQPjxrYTcRPjF6exewjxXVyfuz1hCWJeCJpOSsQ%40mail.gmail.com#d9dbe3d1

95f1acccddbd81e46ded2315

https://www.postgresql.org/message-id/flat/CAFPTHDaQFuASQPjxrYTcRPjF6exewjxXVyfuz1hCWJeCJpOSsQ%40mail.gmail.com#d9dbe3d195f1acccddbd81e46ded2315
https://www.postgresql.org/message-id/flat/CAFPTHDaQFuASQPjxrYTcRPjF6exewjxXVyfuz1hCWJeCJpOSsQ%40mail.gmail.com#d9dbe3d195f1acccddbd81e46ded2315
https://www.postgresql.org/message-id/flat/CAFPTHDaQFuASQPjxrYTcRPjF6exewjxXVyfuz1hCWJeCJpOSsQ%40mail.gmail.com#d9dbe3d195f1acccddbd81e46ded2315

Page 2 of 12

Test Overview
Clearly the patch will behave differently for different user scenarios.

- Different amounts of empty transactions

- Different operations performed by the transaction

- Different network speeds

- etc

I have tried to keep the scenarios simple so that a fair comparison can be made. YMMV.

Main Features

- There are 2 similar tables. One table is published; the other is not.

- Equivalent simple SQL operations are performed on these tables. E.g.

- INSERT/UPDATE/DELETE using normal COMMIT

- INSERT/UPDATE/DELETE using 2PC COMMIT PREPARED

- pg_bench is used to measure the throughput for different mixes of empty and not-empty

transactions sent. E.g.

- 0% are empty

- 25% are empty

- 50% are empty

- 75% are empty

- 100% are empty

- The apply_dispatch code has been temporarily modified to log the number of protocol

messages/bytes being processed.

- At the conclusion of the test run the logs are processed to extract the numbers

- Each test run is 15 minutes elapsed time.

- The tests are repeated without and with the patch applied

- So, there are 2 (without/with patch) x 5 (different mixes) = 10 test results

- Transaction throughput results are from pg_bench

- Protocol message bytes are extracted from the logs (from modified apply_dispatch)

- Also, the entire set of 10 test cases was repeated with synchronous_standby_names setting

enable/disabled.

- Enabled, so the results are for total round-trip processing of the pub/sub.

- Disabled. no waiting at the publisher side.

Page 3 of 12

Test Details

postgresql.conf configurations

PUB-node

wal_level = logical
max_wal_senders = 10
logical_decoding_work_mem
= 64kB

checkpoint_timeout = 30min
min_wal_size = 10GB
max_wal_size = 20GB
shared_buffers = 2GB

synchronous_standby_names
= 'sync_sub' (for synchronous
testing only)

SUB-node

max_worker_processes = 11
max_logical_replication_workers
= 10

checkpoint_timeout = 30min
min_wal_size = 10GB
max_wal_size = 20GB
shared_buffers = 2GB

SQL
test_empty_not_published.sql

-- Operations for table not published
BEGIN;
INSERT INTO test_tab_nopub VALUES(1, 'foo');
UPDATE test_tab_nopub SET b = 'bar' WHERE a = 1;
DELETE FROM test_tab_nopub WHERE a = 1;
COMMIT;

-- 2PC operations for table not published
BEGIN;
INSERT INTO test_tab_nopub VALUES(2, 'fizz');
UPDATE test_tab_nopub SET b = 'bang' WHERE a = 2;
DELETE FROM test_tab_nopub WHERE a = 2;
PREPARE TRANSACTION 'gid_nopub';
COMMIT PREPARED 'gid_nopub';

SQL test_empty_published.sql

Exactly same as above but uses different table (test_tab)

TABLES
(published and not publised)

CREATE TABLE test_tab (a int primary key, b text, c timestamptz
DEFAULT now(), d bigint DEFAULT 999);

CREATE TABLE test_tab_nopub (a int primary key, b text, c
timestamptz DEFAULT now(), d bigint DEFAULT 999);

pg_bench command example
using a 25:75 mix of not-
published table operations

pgbench -s 100 -T 900 -c 1 -f test_empty_not_published.sql@5 -f
test_empty_published.sql@15 test_pub

Page 4 of 12

Result Data
Raw data.

Synchronous mode

 Mixture Transactions apply_dispatch

Patch NoPub Pub TxNoPub TxPub TxTotal Gain TpsNoPub Gain TpsPub Gain msgs bytes msgs/tx Gain bytes/tx Gain

No 0% 100% 0 1562 1562 0.00 1.73555 15621 992815 10.0 635.6

No 25% 75% 526 1589 2115 0.584116 1.7646 17998 1112213 8.5 525.9

No 50% 50% 1637 1677 3314 1.818577 1.863 23329 1384028 7.0 417.6

No 75% 25% 5002 1672 6674 5.555316 1.857 36734 2033539 5.5 304.7

No 100% 0% 116221 0 116221 129.13457 0.00 464892 22547262 4.0 194.0

Yes 0% 100% 0 1579 1579 1.09% 0.00 0.00% 1.754 1.06% 15792 1003818 10.0 0.01% 635.7 0.02%

Yes 25% 75% 526 1626 2152 1.75% 0.584206 0.02% 1.8059 2.34% 16262 1033620 7.6 -11.20% 480.3 -8.66%

Yes 50% 50% 1703 1661 3364 1.51% 1.891083 3.99% 1.8444 -1.00% 16614 1055946 4.9 -29.84% 313.9 -24.84%

Yes 75% 25% 4999 1682 6681 0.10% 5.550849 -0.08% 1.8677 0.58% 16828 1069734 2.5 -54.24% 160.1 -47.45%

Yes 100% 0% 124621 0 124621 7.23% 138.46789 7.23% 0.00 0.00% 0 0 0.0 -100.00% 0.0 -100.00%

 2.34% 2.23% 0.60%

Page 5 of 12

NOT Synchronous mode

 Mixture Transactions apply_dispatch
Patch NoPub Pub TxNoPub TxPub TxTotal Gain TpsNoPub Gain TpsPub Gain msgs bytes msgs/tx Gain bytes/tx Gain

No 0% 100% 0 138545 138545 0.00 153.93926 1385495 88056849 10.0 635.6

No 25% 75% 33911 101041 134952 37.67873 112.2673 1146112 70799881 8.5 524.6

No 50% 50% 67845 67896 135741 75.38358 75.44024 950394 56317227 7.0 414.9

No 75% 25% 108557 36027 144584 120.619 40.03005 794543 43959927 5.5 304.0

No 100% 0% 148945 0 148945 165.49503 0.00 1165522 11734575 7.8 78.8

Yes 0% 100% 0 142143 142143 2.60% 0.00 0.00% 157.9368 2.60% 1421468 90342786 10.0 0.00% 635.6 0.00%

Yes 25% 75% 36091 108277 144368 6.98% 40.10088 6.43% 120.3071 7.16% 1082797 68818487 7.5 -11.69% 476.7 -9.14%

Yes 50% 50% 70398 70842 141240 4.05% 78.22022 3.76% 78.71356 4.34% 708448 45027264 5.0 -28.36% 318.8 -23.16%

Yes 75% 25% 109355 36209 145564 0.68% 121.5059 0.74% 40.23234 0.51% 362104 23013958 2.5 -54.73% 158.1 -48.00%

Yes 100% 0% 153738 0 153738 3.22% 170.8199 3.22% 0.00 0.00% 0 0 0.0 -100.00% 0.0 -100.00%

 3.50% 2.83% 2.92%

Page 6 of 12

Observations (Synchronous mode)

Total Transactions

- As the percentage mix of empty transactions increases, so does the transaction throughput.

I assume this is because we are using synchronous mode; so when there is less waiting time,

then there is more time available for transaction processing

- The performance was generally similar before/after the patch, but there was an observed

throughput improvement of ~2% (averaged across the all mixes)

0

20

40

60

80

100

120

140

0 % 2 5 % 5 0 % 7 5 % 1 0 0 %

TO
TA

L
TR

A
N

SA
C

TI
O

N
S

TH
O

U
SA

N
D

S

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 7 of 12

Protocol (Network) Bytes

- The number of protocol bytes is associated with the number of transactions that are

processed during the test time of 15 minutes. This adds up to a significant number of bytes

even when the transactions are empty.

- For the unpatched code as the transaction rate increases, then so does the amount of traffic

bytes.

- The patch improves this significantly by eliminating all the empty transaction traffic.

0

5000

10000

15000

20000

25000

0% 25% 50% 75% 100%

TO
TA

L
P

R
O

TO
C

O
L

B
YT

ES

TH
O

U
SA

N
D

S

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 8 of 12

Protocol (Network) Bytes / Transaction

- The reduction in traffic can also be shown (below) by plotting the average bytes processed

by apply_dispatch per transaction. Of course, the number of bytes/transaction decreases as

there are more empty transactions in the mixture.

- Before the patch, even “empty transactions” are processing some bytes, so it can never

reach zero. After the patch, empty transaction traffic is eliminated entirely.

0

100

200

300

400

500

600

700

0% 25% 50% 75% 100%

P
R

O
TO

C
O

L
B

YT
ES

 P
ER

 T
R

A
N

SA
C

TI
O

N

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 9 of 12

Observations (NOT Synchronous mode)

Total Transactions

- Since there is no synchronous waiting for round trips, the transaction throughput is

generally consistent regardless of the empty transaction mix.

- There is a hint of a small overall improvement in throughput as the empty transaction mix

approaches near 100%. For my test environment both the pub/sub nodes are using the

same machine/CPU, so I guess is that when there is less CPU spent processing messages in

the Apply Worker then there is more CPU available to pump transactions at the publisher

side.

- The patch transaction throughput seems ~3% better than for non-patched. This might also

be attributable to the same reason mentioned above - less CPU spent processing empty

messages at the subscriber side leaves more CPU available to pump transactions from the

publisher side.

0

20

40

60

80

100

120

140

160

180

0 % 2 5 % 5 0 % 7 5 % 1 0 0 %

TO
TA

L
TR

A
N

SA
C

TI
O

N
S

TH
O

U
SA

N
D

S

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

NOT SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 10 of 12

Protocol (Network) Bytes

- The number of protocol bytes is associated with the number of transactions that are

processed during the test time of 15 minutes.

- Because the transaction throughput is consistent, the traffic of protocol bytes here is

determined mainly by the proportion of “empty transactions” in the mixture.

- Before the patch, even “empty transactions” are processing some bytes, so it can never

reach zero. After the patch, the empty transaction traffic is eliminated entirely.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

0% 25% 50% 75% 100%

TO
TA

L
P

R
O

TO
C

O
L

B
YT

ES

TH
O

U
SA

N
D

S

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

NOT SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 11 of 12

Protocol (Network) Bytes / Transaction

- This is almost same as the Synchronous graph of bytes/transaction – and this is as expected

because the kinds of transactions (and therefore the numbers of bytes per transaction) is

same for both the Synchronous/NOT Synchronous testing

- Before the patch, even “empty transactions” are processing some bytes, so it can never

reach zero. After the patch, the empty transaction traffic is eliminated entirely.

0

100

200

300

400

500

600

700

0% 25% 50% 75% 100%

P
R

O
TO

C
O

L
B

YT
ES

 P
ER

 T
R

A
N

SA
C

TI
O

N

MIX OF TRANSACTIONS FOR NON-PUBLISHED TABLES

NOT SYNC - 15 MINS X PUB/NOPUB MIX

Not patched Patched

Page 12 of 12

Conclusion

The results clearly show protocol traffic is greatly reduced by this patch.

In practice, how much this reduced traffic will impact actual transaction throughput will depend on

many factors (e.g., what was the mix of empty transactions; how much table data is getting

replicated; what is the speed of the network etc.).

In my test environment the general observations of the patch are:

- There is a potentially very large reduction of network traffic

- Transaction throughput improved ~2% (average across mixtures) for Synchronous mode

- Transaction throughput improved ~3% (average across mixtures) for NOT Synchronous

mode

YMMV.

[END]

