
Postgresql GSoC 2014 Proposal!!
This proposal expands on Simon Riggs’s original proposal here)!1!
Background!
When Postgresql must store a variable-length datum that is too large to fit into one page, it uses
TOAST (The Oversized-Attribute Storage Technique), which compresses and/or stores the
datum in a separate TOAST table, slicing it into smaller parts if necessary. When the user
accesses the datum in the future, Postgresql de-toasts it transparently by choosing the correct
slices to retrieve.!!
There are four toasting strategies: PLAIN (no TOAST), MAIN (compressed, in-line), EXTERNAL
(uncompressed, out-of-line), and EXTENDED (compressed, out-of-line). In particular, text and
bytea are EXTERNAL by default, so that substring operations can seek straight to the exact slice
(which is O(1)) instead of de-toasting the whole datum (which is O(file	 size)). Specifically,
varlena.c’s text_substring(…) and bytea_substring(…) call DatumGetTextPSlice(…), which
retrieves only the slice(s) at an easily-computed offset.!!
Proposal!
As a GSoC student, I will implement a similar optimization for substring operations of other
predictably structured data types, in two phases:!!
1. First, I will optimize array element retrieval and UTF-8 substring retrieval. Both are

straightforward, as they involve calculating slice numbers and using similar code to above.!
2. Second, I will implement a SPLITTER clause for the CREATE	 TYPE statement. As 1 proposes,

one would define a type, for example:!!
CREATE	 TYPE	 my_xml	
	 	 LIKE	 xml	
	 	 SPLITTER	 	 my_xml_splitter;	 !
with a SPLITTER function “that gets called iteratively on a column value until it returns no further
slices” (1). Here is my mockup for such a function, technical aspects to be corrected later:!!
static	 Datum[]	 my_xml_splitter(PG_FUNCTION_ARGS)	 {	
	 Datum	 **results	 =	 (Datum**)	 palloc(2	 *	 TOAST_TUPLE_TARGET);	
	 xmltype	 *chunk	 =	 PG_GETARG_XML_P(0);	
	 int	 size	 =	 VARSIZE(chunk);	
	 if	 (size	 >	 TOAST_TUPLE_TARGET)	 {	
	 	 //	 Use	 code	 similar	 to	 tuptoaster.c’s	 toast_save_datum()’s	 	
	 	 //	 “Split	 up	 the	 item	 into	 chunks”	 section.	 	
	 	 results[0]	 =	 a	 small	 slice	 ready	 for	 toasting	
	 	 results[1]	 =	 the	 remaining	 part	 of	 the	 datum	 after	 slice	
	 }	
	 else	 {	
	 	 results[0]	 =	 chunk;	
	 	 results[1]	 =	 NULL;	
	 }	
	 return	 results;	
}	 !

�1

� www.postgresql.org/message-id/CA+U5nMJGgJNt5VXqkR=crtDqXFmuyzwEF23-fD5NuSns+6N5dA@mail.gmail.com1

http://www.postgresql.org/message-id/CA+U5nMJGgJNt5VXqkR=crtDqXFmuyzwEF23-fD5NuSns+6N5dA@mail.gmail.com
http://doxygen.postgresql.org/fmgr_8h.html#a9b74168cdb1a5ff4f248420ba8c09443
mailto:www.postgresql.org/message-id/CA+U5nMJGgJNt5VXqkR=crtDqXFmuyzwEF23-fD5NuSns+6N5dA@mail.gmail.com

Then, user-defined my_xml functions can optimize seeking by determining the correct slice
number, perhaps as a best guess before retrieving the entire datum as usual. For example, the
first element might always be in the first slice. Or, certain elements might usually be in a certain
slice because the previous elements are of predictable lengths (as real-world preconditions or
asspecified by the XML schema).!!
Deliverables!
• Optimized text_substring for UTF-8 text!
• Optimized array element retrieval!
• SPLITTER clause in CREATE	 TYPE statement!
• Primary documentation. As far as I can tell, in these sections of the official documentation:!

• TOAST: explanation of splitting, which is to remain optional!
• User-Defined Types: where TOAST is mentioned, mention splitting option!
• CREATE	 TYPE and ALTER	 TYPE descriptions: explain the SPLITTER clause and how it requires
STORAGE/SET	 STORAGE to be EXTERNAL.!

• Secondary documentation. Here, I recommend splitting as a work-around to existing
Postgresql problems. For example, but not limited to,!
• XML Type: Currently, one must search for a specific XML element by serializing the

document and doing a textual search. The documentation here suggests that XML should 2

have built-in text search one day. But in the meantime, mention the splitting option.!
• BLOB and bytea storage are better for different applications; for example, BLOBs support

streaming but bytea does not. Here , Pavel Stehule supports the idea of bytea streaming 3

functionality; and here , Pavel Golub connects Stehule’s idea to this splitting project. Since 4

bytea streaming does not exist yet, wherever the pros and cons between BLOB and bytea are
mentioned in the Postgresql or JDBC driver documentation, I will mention splitting as an
alternative.!!

Schedule!
You are reading a first draft of this proposal. I’ll devise a schedule closer to the proposal
submission deadline.!!
Bio!
I am a third year computer science and math student at California State University, Long Beach,
USA. After graduating, I would like to work with databases as an architect, analyst, admin, etc.
In the meantime (this summer + my fourth year), I would like to produce a public portfolio of
work with Postgresql starting with, but not ending with, this Google Summer of Code project.

�2

� www.postgresql.org/docs/9.3/static/datatype-xml.html2

� www.postgresql.org/message-id/BANLkTini+ChGKfnyjkF1rsHSQ2kMktSDjg@mail.gmail.com3

� www.postgresql.org/message-id/1886757050.20130515120151@gf.microolap.com4

