Postgres Pro Standard 14.3.2 Documentation

Postgres Professional
https://postgrespro.com

https://postgrespro.com

Postgres Pro Standard 14.3.2 Documentation
Postgres Professional
Copyright © 2016-2022 The Postgres Professional company

Legal Notice
This documentation is intended solely for the use with the Postgres Pro DBMS and for users of this DBMS.

It is not allowed to use the documentation for third-party products or as part of documentation for other
products.

Other terms of use of the documentation are given in the User Agreement.
Postgres Pro is Copyright © 2016-2022 by Postgres Professional.

IN NO EVENT SHALL THE POSTGRES PROFESSIONAL COMPANY BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
PROFITS, ARISING OUT OF THE USE OF POSTGRES PRO DBMS IN ALL VERSIONS AND ITS
DOCUMENTATION, EVEN IF THE POSTGRES PROFESSIONAL COMPANY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE POSTGRES PROFESSIONAL COMPANY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE POSTGRES PRO DBMS IN ALL VERSIONS AND
ITS DOCUMENTATION PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE POSTGRES
PROFESSIONAL COMPANY HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Distribution of this documentation or its parts that are not contained in the PostgreSQL documentation,
in the original or modified form, requires an explicit written permission from the Postgres Professional
company.

Postgres Pro DBMS documentation is based on the PostgreSQL documentation, which is
distributed under the following license:

PostgreSQL is Copyright © 1996-2022 by the PostgreSQL Global Development Group.
Postgres95 is Copyright © 1994-5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

| 24 =Y = o <SP xxii

1. What Is Postgres Pro Standard?cccoooiiiiiiiiii et et e e e et e e e e e et e e a e aaeees xxii
2. Difference between Postgres Pro Standard and PostgreSQLccoooiiiiiiiiiiiiiniiie e, xxii
3. A Brief History of PoOStgTeSQLciiniiiiiiieii et e e et e et e e e e e et e et e eaee e e eeenaeanns XXiv
3.1. The Berkeley POSTGRES PIOJECE ...ccuuiiiniiiiiiieiiie et ee ettt et e e et e et e e e e saeeann e XXiv

G I oo 1] 10 (=TS 1S TN XXV

G TR T o 1] o 1 /=1 PPN XXV

4. CONVEINETIONS ..euiiiiiiiiieiie ettt ettt et et e et e et e et e et etaaeetaeean s etaetaaettaetnsetuneenasernsesneenneenneren XXV
5. Bug Reporting GUIAELNESuiiiiiiiiieiiieii et e e et e et e et e e e et e et e e e e ea e et eaaeseneenns XXVi
5.1. TAentifyiNg BUGS ..oouniiiiiiiiiie ettt e et e e et e et e e et e et e et e et e e e et e et aanaaaannes XXVi
ST/ o B) A o T 2 U)o 10) o PN XXVi
5.3. Where t0 REPOTE BUGS ..uiiuiiiiiiieiiie ittt e e e e et e et e et e et e et e e e e et e saneeanaeaenesennns xXxVii

| B I 01 o) i T 1 RO OP PR PPRRPTRRRPR 1
I LY o o o S =Y =T 2
I T 5T =Y < L o) s OO TPPOTR PPN 2
1.2. Architectural FUNAamentalsccoouuiiiiiiiiiii ettt et e et e e e e 2
1.3. Creating @ Dat@basec..ciiuiiiiiiiieiiie e e et e et e et e et e e e et e et e e e e et aanaas 2
1.4. AccesSing @ Data@basecouiiiiiiiiiii i a e eaans 4

N N T 1@] I - oo 1D =Y [T S 6
P20 I § 01 0 1o L1 (o o) o KOOSR PPNt 6
W 00 1 1o1<] o] %SO 6
2.3. Creating @ NEeW Tableccuiiiiiiiii et e et e e e e e et e e e e saneeaneeaaaaannaes 6
2.4. Populating a Table With ROWSccuiiiiiiiiiii e e e ee e e et e e a e e e aees 7
S T O 0 1Y v o o = T = o] LSRN 7
2.6. JOINS BEtWEEN TaDIESccuniiiiiiiiiii et e e e e et e et e et e et e et e e e e ean e et eaae e e aaens 9
2.7. Aggregate FUNCEIONS ...t et e et e e et et e e e e e e e e eans 10
PR & T U o Y b= 1 - SN 12
P8 B B 1= (<] 5 L) o T T OO OPPRUUPPRPRt 12

3. AdVANCEA FEATUTESoiiiiiiiiiiiii ettt e et e et e et e ett e e et e e et s e et e eetnneaananas 13
G 700 I § 0 1 0 1o 11 (o v o) + KPP PP 13
32, VB ittt ittt et ettt et et e et e e e et e et e et et e et e et e th e th et a et et e eha e et et e th e taeeanaaneanes 13

G TR T a0 o= To o N 05) 2= S RN 13
3.4, TTANSACEIONS ..eeniiiiiiiieiiie ittt ettt ettt e et e et e et eta e et e et s ean e etneeraeeeaneennaaneaarasesnaennnns 14
3.5. WINAOW FUNCEIONS ...iiiiiiiiiieiii ettt et e et e et e et e e et e e eeaa s e et s eeeaeseaennes 15
3.6, INNETIEATICE ..euiiiiiiiie ettt e et e et e e et e e et e e et e e aba e e et s eeebaaees 18
I 00 s Tod 11 153 (o) s KSR PP 19

L TSR T I I o U 1 - Vo £SO 20
T 1 0) I 4 01 - - QPPN 21
7 R =) Lo 1 S w (o 1 o SRR 21
V£ T LT b q o) =TT 0) o - SNt 28
G T OF-Y 15 Vo B Vs Lod [0 F= SN 40

5. Data DEfINITION civuuiiiiiiiii ettt et e et et et e et e et e et e et e eaaans 43
5.1, TADIE BASICS .uuiiiiuiiiiiieii ettt ettt ettt ettt e et e et e et e et e e aaaeeaaas 43
5.2, DEfAUll VALUES ..couniiiiiiiieee e ettt e et e e et e e et e e et e e e e e ebeeees 44
5.3. Generated COLUIINSoouuiiiii ettt et s e et e e et e e et e e et e e et e e et eeananas 45
5.4, COMSITAINES .oeuiiiiiieii et ettt et et e e et e et e et s eaneeaaeeeneeenneaneaanaaennnns 46
5.5, SYSEEIM COIUITIIIS ...ciuniiiiiii ittt e et e et e et e e et e st e et e et eaaneeenaesnaeanesnnessnsssnnssnnesen 53
oI T\ (oo b7 b Vo B =] 1Y S 54
TR o v 74 1 (=To [T 56
5.8. ROW SeCUTILY POLICIES ..cvuiiiiiiiiiiiii et e e et e et e e e et e et e e raeaeneeanaeanns 60
R B o 1 1< o < 1< SO OTPT O PTPPR 65
5.10. INNETILANICE ..uuiiiiiiiiie ettt e et e e et e e et e e et e e et e eebaseeenaseeebaaees 69
R R =Y o) (= oY 1) o Yo 73

T 2 o) 4 c) o 1 o D - | - PN 85
5.13. Other Database ODJECES ...ccvuiiiiiiiiii e e e e e e et e et e e aeeeaneeanns 85
ORI R D 1= oY= o =3 0 o VA I = Yo L« 1 o o NN 85

6. Data ManipuUlationcoiuiiiiiie e e et e et e et e et et e et e et e et e et e et et e e raaaas 87
6.1, INSETTING DAt cuuivniiniiiiii ettt et et et st te et e e s e et et seneeaaanaaneeaaenns 87

iii

Postgres Pro Standard
14.3.2 Documentation

ST U o Yo k= 1k Vo B D 1<) - 88
LS TC T B TCY =] o Yo D - 1 - Nt 88
6.4. Returning Data from Modified ROWSccuuiiiiiiiiiiiii e e eaas 89
0 1§ 1<) o 1Y SN 90
A R O)= T 1=) PP 90
7.2. Table EXPIESSIONS ..ivuuiiiiiiiieiiieiie e et et et e et e ete e et e et e et e et e st estnaaannaannesenasanasanassnnassnnsrnnns 90
78S TR 1= = To A I 3 104
7.4. Combining Queries (UNION, INTERSECT, EXCEPT) vituueteuereueerneeeueeesneesneesnneennsesneenneesnassnnnes 105
7.5. SOTTING ROWS (ORDER BY) tutttuieiuiiiinetineiineetneetieeuneetnsetneetuneeunsesnsemnessuessnnsemnsemnsesnesnnsesnsennns 106
7.6. LIMIT QIA OFFSET ttuuueeettttuueeeettuuueeetttuueeretsuaeeeeesuaneereenaeaeteesnneteennaeereemnneereemmneeeeennnns 107
7.7 VALUES LISES ittt ittt ettt e e et e e e et e e e e e et e e e e s et et et aanaaneansannenneansanneens 107
7.8. WITH Queries (Common Table EXPreSSions)cccciiiiiiiiiiiiiiieieeeeeee et 108
LT B - = T 7 o 1= T SRS UPRPRUR 117
8.1, INUIMETIC TYPES «ittniiiuiiiieiiie ittt ettt e et e e te et et e et e et e et e et et aaunsatnsasnsasnneennsannsesneennns 118
L TN\ o] o Lo =Ny A 7 o 1= T SO PRRN 123
L TG B O o o = o =) i 5 o 1= T PRSPt 123
8.4. BINATY Data THPES .uiiuiiiiiiiiiiiiiiiiie ettt e et et e et e e ae e et e et s et s e s eaaneeaneaaneaaanaes 125
8.5, DAte/TIME TYPES ..cenieiiieiiiii ettt et ettt e et e e et e e et e e et e e etneeeaneeeanaees 127
I T = To o] LoT N B 7 o 1= SRR PRRPRRNt 136
8.7. ENUMETALEA THPES .uiiniiiiiiiiiiiit ettt ettt e e e e et e e te et e et e et eeaneatneatnsasnesansennsasnnees 137
8.8. GEOMETTIC TYPES .uituniiiiiiiieiiietiiet it e et et et eete et e et s et et eeanseansatnaaensaansesneeennsenneasnsannns 138
8.9. NEtWOTK AQATESS THPES .uivuiiiiiiiiiiiiie ettt e e e et et e ete et e et eetn s et s aaneeanseaaeesnesarneannnns 140
8.10. Bit SETING Ty PES itiutiiiiiiiiiiii ittt et et et e et e et et e et e et eat e et satnsasnsaaasannsaaneennns 143
8.11. TEXE SEATCR T PES ittt ettt e et e et e et e et e et e et s et s aansaaaeesansasnaannnas 144
R I O U D B 4 o1 YRR 146
R R T €1 I 74 oY= YOS 146
B.14. JSON TYPES .ueeetueeiiieetiieeetieeeetieeettaeetteeettaeastnaeettnaserenasarenaserunaessssermnsseessneessnneesreesnsneees 148
T T AN = | £ OO 157
8.16. COMPOSIEE TYPES tivuierniiiiiiitii et eie ettt e eteete et e et e etae et et sernsatneaunsatnsarnsatneesnneennsesnss 165
8.17. RANGE THPES tuuiiuniiiitiiiiieeie ettt et e et et et eete et e et s et s et eaan s et satnataasatnsatnsarneasnneenneesnss 170
8.18. DOMAIN THPES teuniitniiiiiiiieiiieeiit et et et e eteetie et e et e et eetaeeunsetnsaaneetunsernsetneetnnesunsernsesnsernnns 176
8.19. ODbjecCt IAenTIfier TYPES ..iiuniiiiiiiiiieiiie ettt e et e e e et e et e et e et eeansaaneaaneesneeannses 176
T B oo =Y oW T o 1 SN 178
T I Y=Y Lo Lo T 74 o Y=Y UTRN 179
S T VE o Toa o) s FoR= RaTe MO o1=Y =1 o) =S TT 181
1S IR oo i Tot= Y B @ oY) i<} o) SRRt 181
9.2. Comparison Functions and OPeratorsccc..eeiiiiiiiiiiieiiieeiie e iee e eeeae e e e e saaas 181
9.3. Mathematical Functions and Operatorscc..ceiieiiiiiiiiiiiieeie e ee e e e 185
9.4. String Functions and OPETatorseiiieiiiiiiiieei et e e e et e e e e e e saaeeaans 192
9.5. Binary String Functions and OPeratorsccccueiiiiiiiiiiiiiii et e e e e e 200
9.6. Bit String Functions and OPeratorsccouueiiiiiiiiiiiie et ee e e e et e e e eaanaes 204
9.7. Pattern MatChingccouiiiiiiii e e et e et e et e e e et e et e it e aaaaaas 206
9.8. Data Type Formatting FUNCLIONSccouiiiiiii et e e aeaaas 222
9.9. Date/Time Functions and OPeratorscccuueiiiiiiiiiiiieeiie e e e e e e et e e e e e 229
9.10. Enum SuppoOrt FUNCEIONS ..couiiiiiiiiiii et e e e e et et e e e e e e eneeaneans 243
9.11. Geometric Functions and OPeratorscccuiiiiiiiiiiiiieieeeeeee e e e e e e e e e e e eens 243
9.12. Network Address Functions and OpPeratorsccoeiuieiieiiiieiiieiiieeiie e e e e eaaes 250
9.13. Text Search Functions and OPeTatorscc..ceeiuiiiiiiiiiiiiieeie et et e e et e e e e e eanas 253
.14, UUID FUNCEIONIS t.uttuniiiniiiiiiiieeiee et eete et et e et e et s et et e et e et eatneatnsetasetnseaneannsesnaesneeanns 258
.15, XML FUINCEIONS .uttuiiiiiiiieiiieii ettt ettt et eete et e et e et e et ettneate e et et eaaneesnseeneeaneaannsannns 259
9.16. JSON Functions and OPeTratorsSceiuueeiiieiiieiieeiieeieeeieeetie et e et e et e et e st essesaneeanaasnnnas 271
9.17. Sequence Manipulation FUNCLIONSoiiiiiiiiiiii e e aan s 287
9.18. Conditional EXPIreSSIONS ..ccuuiiiuiiiiiiiiiiiie et e e e et e e e teete e e e et e st e e s e s e et esanaaaans 289
9.19. Array Functions and OPeTatorsc.eiiiiiiiiiiiieiie et et e e et e e ae e e e et esaeeaes 291
9.20. Range/Multirange Functions and Operatorscc.coevieiiiiiiiieiiieeiie e e e e ea e 294
9.21. Aggregate FUNCLIONSciiiiiiiii et e et e e e it e e e et et e e e eaeeaneanaannas 300
9.22. WINAOW FUNCEIONS ..eivuniiiiiiiiiiiniiiis st e e e et e e et e e et e e et s e et s eetanseasnnsaasnnsaesnnsensnnsees 306

iv

Postgres Pro Standard
14.3.2 Documentation

10.

11.

12.

13.

14.

15.

9.23. SUDQUETY EXPIESSIONS ..cuuiiiiiiiiiiiiiiieie et et e et e e te et e et e ete et e st e st e et esnaeennerenaesnaesnesens 307
9.24. RowW and Array COMPATISOIS ...uiivuiirueeiieeiineetieetneeteeetteetnestneesnesnessneernaernaessnessaessnnesnnesens 310
9.25. Set Returning FUNCTIONScuiiiiiiii et e et e et e e e e et s e e e e eanas 312
9.26. System Information Functions and Operatorscccocueeiiiiiiiiiiiieiiie e eee e eeas 315
9.27. System Administration FUNCLIONSccuuiiiiiiiiiii e e e e 331
1 J072 S T s o [0 £ il 1 0B o] (o) o - SRS 346
9.29. Event Trigger FUNCEIONSiiiiiiiiii et e et e ee e e e e e e e e e e e eans 347
9.30. Statistics Information FUNCLIONSccovniiiiiiiii e e e e e 350
TYPE COMVETSION .uevuiiniiiiieitie ittt et ettt et e te et et ettt eansanetu et eanstassneanssnesnassnsenssnsasnrenesnesnnsens 351
I R 0 112 = L PP 351
IO @ 013 =1 Mo) o PP 352
[TR 1 2 T v 0) o 1= PP 355
LR V=Y LTI) i Lo £ SRS 359
10.5. UNTON, CASE, and Related COnStIUCEScoivviiiiiiiiiiii e e e e 359
10.6. SELECT OULPUL COIUIMIS ..ouiiiiiiiiiiici ettt e e e e et et e r e e et e s e eaeans 361
IIMAEXES ettt e et ettt et e e e et et et e b et et e et et et et e e eaanes 362
TR R B /o Yo 6 Lo T) APPSR OPR PP PRRTPRt 362
[e =5 G 7 o 1= T S PP PR ST PTPRN 363
11.3. MUltiCOlUIMN INAEXES ..cvuiiiiiiiiiiiiii et ettt e et et e et s et e et e et s etneeaaeaaaneannnas 364
11.4. INdeXES ANA ORDER BY .iittuurttuueetuueetiuneetuneertenseesunsertunsestunsersnnsersnssessnsemmasemmmsersnsersnsens 365
11.5. Combining Multiple INAEXESccouiiiuiiiiiiie i e et e e et e e a e e e e e eeans 366
L T U ok o O TR Y0 (o) (Y 367
11.7. IndeXeS ON EXPIESSIONS ..ccuuiiiniiiieiiieeiieeiiee et e ete et et e eteeteeata e st eetaasanesenestneesneesnassnnasnnns 367
11.8. Partial INAEXES ...uiiieniiiiiieiiiie ettt ettt ettt e e et e e et s e et s e et e eaeaseetaneeataneeerneeannnns 368
11.9. Index-Only Scans and Covering INAEXESc..oiiuieiiiiiiieiiieiii et e e e e e e e saeeaanas 370
11.10. Operator Classes and Operator Famili€sccooviiiiiiiiiiiiiiiie e 372
11.11. Indexes and COllatiONSccuuviiiiieiiiiiiiei ettt e e et e eeieeeea e e et s eesanseannnss 374
11.12. Examining INAEX USAQE ...ccuuiiiniiiiiiiiiiiiieiiiee et e e e ie et e e e et e et e et estesaneeaneeenaesnnassnnns 374
FULL TEXE SEATCR ..uiiiiiiiiii et et e et s e et et et e e eea s e eat s e et s e aaanseaennseasansans 376
D200 I a1 oo 1o 1 Toa v (o) s S PP 376
12.2. Tables @nd INAEXES ...cccuuiiiiiiieiii ettt ettt e et e e eas e e et s e et e eatnseaannseernnseannnns 379
12.3. Controlling TeXt SEATCRciuiiii e e e e et e e eaeeaanas 381
12.4. Additional FEATUTES ..i.uiiiiiiiiiiiiiiiee et e et e e et s e et s e et s e et s e aaaseanaeeasaneees 387
12,5, PATSETS ..ottt ettt et et e et e e e et e et s et e ta e et e et e et e et e et e et e ta e ean et aannes 392
12.6. DICTIOTIATIES .ueruniiinieiieiiieeiie ettt et e e et e et e et e te e et e et etteeataeetasetaetnneesnesenseennetnnsasnsesnnenns 394
12.7. Configuration EXAMPLEcccuiiiiiiiiiiiieii et e e et e et e e e et e et e et et e e aaanas 402
12.8. Testing and Debugging TeXt SEATCRccuiiiiiiiiiii e ea e 403
12.9. Preferred Index Types for TexXt Searchcccouiiiiiiiiiiii e 407
L O o TTo | U o] o Yo o APt 407
12,17, LIMIEAETIONS ..euiiiiiiiiiiiie ettt ettt e et e et e et e et e eaa e eaneeat e et e et et aens 410
(0701010 b /=Y o Loy A) 1 1 o/] EESS IS 411
R 00 I a1 oo 7o 10 Toa v (o) s S PR 411
13.2. Transaction ISOLATIONceiiiiiiiiiiiiiii et e et s et s e et e e aaaseaaanaees 411
(RGO TN 55 ¢ o] § (o3 | A o Yo -« 1o Vo [Nt 416
13.4. Data Consistency Checks at the Application Levelccoooiiiiiiiiiiiiiiiiieeeee e, 422
13,0, CAVEALS ettt ettt ettt et et et et et ettt et e e et et e aaeeaaeen 423
13.6. LoCKING @Nd INAEXES ...uiiiniiiiiiiieiieeie et e e e et e et e e et e et e st e et e st esaneeseaesnnasenneen 423
PeTrfOTIMANICE TAPS .uiitniiiiiiie e e e et e et e et e et e e et e st e st eateaaestnassnearnnasnnesenanen 425
14.1. USINQG EXPLATN .ituttuttnttutenretnttnetneeueetrenseuattsenstnettsensenstsstnstnsssesensensasertasensenmenssensenmesarnnns 425
14.2. Statistics Used Dy the PLannercccuiiiiiiiiiiieie e e e e e e eaeeanaas 435
14.3. Controlling the Planner with Explicit JOIN ClauSescc.ceeeiueiiiiiiiiiiiiiiiiciieeceieeeeeee 440
14.4. Populating @ Databasecccuviiiiiiiiiiiii e aa e eas 441
14.5. NON-DUTrable SEeTTINQS ..ccuuiiiiiiiiiiiiiiiit ettt e e et e e e e e s eaaeeeaeeaens 444
PaT@llE] QUETY ..evniiiiiiieie ettt et e et e et et et e e te et e et e et e e ta e eanseansaanaanesansatnsasnsarnneees 445
15.1. How Parallel QUETY WOTKSc.uiiiiiiiiiiiiiiiiiiiie sttt et e ete et e e s et e eaie e e e et sennaaees 445
15.2. When Can Parallel Query Be USEA?ciiuniiiiiiiiiiiiiii et eie et e e e eveeae e e 446
15.3. PArT@lle]l PLANS ..ccuuiiiiiiiiii ittt e et et e e e et e et et e et e et et e et e aa e aaaaaanas 446

Postgres Pro Standard
14.3.2 Documentation

15.4. Paralle] SAfELy ...ccuniieeiiiiii e e e et e 448
ITI. Server AdmINISTIationciiuiiiiiii et e et e et e e e et e et e et e st e et e asaeaennaeenneen 450
16. Binary INStallationcooeeiiiiiiiiie e e e et e e e e e e et e et e et e et e et e a e e aans 451
16.1. Installing Postgres Pro Standard on LiNUXcccceeiiiiiiiiiiiiiiiince e e een e 451
16.2. Installing Postgres Pro Standard on WIindOWSccccuviiiiiiiiiiieiiiece e 457
16.3. Installing Additional Supplied MOAUIESc..eeiuiiiiiiiieiiie e e e e e eaas 461
16.4. Migrating £t0 POSEGTES PrO ... e 462
17. Server Setup and OPETAtioncciiueiiiiiiiiiiii e e e et e et e e e et e eae e s eaanesaneesaaees 463
17.1. The Postgres Pro USEr ACCOUNLcouuiiiiiiiiiiiie et et ee et e et eeee e e e st e eaeeaeeeenaees 463
17.2. Creating a Database ClUSLEToiiiiiiiii et e e e e e e eaaaea 463
17.3. Starting the Database SEIVET ... et e e e eaa e 465
17.4. Managing Kernel RESOUICESc..ciiuiiiiiiiiiiie e ee et e e e e e e e e et e et e e e eraneeannees 468
17.5. Shutting DOWN the SETVETciniiiiii e e e e e e e et e e e e s e eanaas 475
17.6. Upgrading a Postgres Pro CIUSEETcivuiiiiiiiici et e e e e e e 476
17.7. Preventing Server SPOOTIIIG ...oiuuiiiiiiii e e e et e e et e e e et e et e e e e e e eaneeanns 478
R T 25 Lol oy 74 01w 10} A B @] o] 10} s 1~ SIS 479
17.9. Secure TCP/IP Connections wWith SSLccoiiiiiiiiiii e 480
17.10. Secure TCP/IP Connections with GSSAPI Encryptioncccceveeiieiiiiiiiiiiieeieeieeenne, 483
17.11. Secure TCP/IP Connections with SSH Tunnelsccccoeiiiiiiiiiiiiiiin e, 484
17.12. Registering Event Log on WINAOWSceiuiiiiiiiiiiiiiiie et er e e e e e e 484
18. Server ConfiguIationciiiiiii i e et e et e et e et e e et e et e sa e e e e aaeeraaannas 486
18.1. Setting ParamELerSc..iiniiniiiiiiiiii ettt e e et e et et e e s et et seneeneeaaaneanananns 486

RS T2 w1 1T I Yok= 1 (o) s 1= RNt 489
18.3. Connections and Authenticationcoooueiiiiiiiii e 490
18.4. ReSOUIrCe CONSUIMPEIOTL tuuivuiiiiiiiiiitiieiie et ie e et et e te et et ett et et sanesaeesnsaneeneenneenesnesnnsensens 497

R T T A L AN Y=Y o B o Yo Rt 505
[T T A V=Y o) Tok=1 L) o P 514

R T @10 1Y oy v o F a1 o o PR 520
18.8. Error Reporting and LOGQingccuceiieiiiiiiiieiiie et e e et et e e e et e et e et e et e et e e s aannnas 526
18.9. RUN-TIME STATISTICS Luvniiiiiiiii et e e e e e et e e e ee et e e e eneaaaanaens 537
18.10. AUtOmMAtIiC VACUUINIIIQ «.uivniiniiiiiiie it e e et et e et et e et et e e et eaneaneeneaneanasnesnneeneens 538
18.11. Client Connection Defaultsccoouiiiiiiiiiii e e e e eaas 540
18.12. LOCK MaANAQEIMEINTE ...cuuiiiiiiiiieiiieiii e e e et et e et e et e et e ete e et e et e et eaneennastnessnaasnneennaeen 550
18.13. Version and Platform Compatibilitycccceiiiiiiiiiiiiiiie e 551
18.14. MEINOTY PUTGEiniiiiiiiiii ettt e e et e e e et et et e et e e e e e et aeneeneaenaanaens 552
RS TR TR 5 oo)l = o 1 o Yo [553

[T T o 4 T Y Y A) o] o) o - S PPN 554
18.17. CuStOmMIZEd OPLIONIS ...vvniiiiiiiiieie et e e e et e et e e e e et e saneeaneeaenssnnesanaannnns 555
18.18. DEVEIOPET OPEIONIS ..ivuniiiiiiiiiie ittt e e e et e et e e e e et e et e et e et e et e sanaesnssenessnaernneeen 556
TR e T o o) it A0) o] T) o TSNt 560
19. Client AUthentiCationcouiiiiii e et e e e et e et e e e e et e e e e e e eaenas 561
19.1. The pg_hba.cont Fill ..ttt e enes 561
19.2. USET NAME MAPS itiiniinitiiiiiiiieieieee et e et et et e e et et etaetetetastesnstastesnstassesnstastesnstastesserassnrens 568
19.3. Authentication Methodsooiiiiiiiiiii ettt 569
19.4. Trust AUthentiCationco.iiiiiiiii ettt e e e e 569
19.5. Password AuthentiCationoiiiiiiiiiiiii et 570
19.6. GSSAPI AUthentiCationc..ciiiuiiiiiii et et 571
19.7. SSPI AUthentiCationc..coeiuiiiiiiiii et ettt e e e e e 572
19.8. Ident AULhentiCationo et 573
19.9. Peer AUthentiCationc.. ittt e e e e 573
19.10. LDAP AUthentiCationcccuui it ettt eeaas 574
19.11. RADIUS AUthentiCationoiiuuiiiiiiiiie ettt e e e e 576
19.12. Certificate AUthentiCationc..coiiuiiiiiiiii e 577
19.13. PAM AUThentiCatION ..cc.uiiiiiiii ettt e 577
19.14. BSD AULhentiCatiON ...c..uiiiiiiiiii ettt 578
19.15. Authentication Problems ... 578
20. DAtabase ROLES ...ttt ettt et et e eaans 580
20.1. DAtabase ROLEScouuiiiiieii ettt et e e 580

vi

Postgres Pro Standard
14.3.2 Documentation

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

20.2. ROLE ATITIDULES ..oiiiieii ettt ettt e et e e et e et e e et s e eaa e e eaaa e 581
O T 2 o) (oI (=Y 0 o 1) =] o 11 o PP 582
O D) /o] o) 01 ha Yo N 2 Vo] 1= T SRR 583
20.5. Predefined ROIESoiiiiiiiii ettt ettt aa e 584
20.6. FUNCEION SECUTILY ..vuuitniiiiiiiiiiiie ettt et et e et et et e e e et e e e eaaaaaaneeneanaansannees 585
Managing Dat@bhasEScuuiiiuiiiiiiiiie i e e e et et e et raaraaaaans 586
210, OVEIVIEW ettt ittt ettt ettt e et e et e et et e et e et e et eeaaeetaeean s eannetraetaneannaeneananesnsennnns 586
21.2. Creating @ Databaseccuuiiiiiiiiii e e e e e e e e e 586
21.3. Template Databasescc.ciiiiiiiiiiiii et e e e e e e e et e e e e e e aaaaan 587
21.4. Database Configurationc.coiiuiiiiiiiiii e e e e et e e a e e e e e a e aans 588
21.5. Destroying @ Databasecieuiiiiiiiiiiiii e e et e aaaaas 588
B B T =Y o] (=T o ¥ o =X Rt 589
| o To1=Y i b2 1 (o) s KOOSO TPPRRPPION 591
P T o Yo 1 (I 10} o) 10) o PSRt 591
A OFo) 1 - 1w To) T AU o] o Yo o AU 593
22.3. Character St SUPPOTTiii it e et e e re e e e et e et e e s e aaeeaneeraeaes 599
Routine Database Maintenance TaSKSceiiiuiiiiiiiiiiiieieiiie et e e e e e 608
23.1. ROULINE VACUUINIIIG t.uivniiniiiiiiiieitie et et e et et ete et e eae et et e ene et aansansaaneensanssneesneenesnnees 608
23.2. RoUtine ReINAEXING ...oiiniiiiiiiiiiii et e et e e e et e e re e e e et e eaneeanasenns 615
23.3. Log File MaiNtENANCEccvuniiiiiiiiie et e et e e e et e e e et e et e et e e s e et e eaneeanaeenneeens 616
BacKup and RESLOTEiiiiiiiiiieie et e e e e e et e et et e et e e e e et e et e ean e raeranaen 618
24. 1. SQL DUIND tttuttiiiiitiiiet ettt ettt e e et e e et s e et s e ett s e et e e et e ettaneaetaneeasaeeeannsaesnnseannans 618
24.2. File System Level BACKUDcovuiiiiiii ettt e e e e et e e e aan s 620
24.3. Continuous Archiving and Point-in-Time Recovery (PITR)ccccevviiiiiiiiiiiieiieceieeee, 621
High Availability, Load Balancing, and Replicationccccooeiiiiiiiiiiiiiie e 633
25.1. Comparison of Different SOIULIONScccuiiiiiiiiiiii e 633
25.2. Log-Shipping Standby SEIVETSc..ciiiiiiiiiiiiiiie e e et e et e e e e et e eaaeannas 636
25.3. FAIlOVET ..ttt ettt e e et e et e et et et b e et e et e aba s 644
A T T o) = a Lo I o7 RNt 645
Monitoring Database ACHIVILYcc.eiiiiiiiiii e e e e e 652
26.1. Standard UnNix TOOLSciiiiiiiiiiiiie e et et et e et e e e s e et s e et e eana s 652
26.2. The StatistiCs COllECTOTiiiuiiiiii ittt e e et e e e e eeeeas 653
ARG T4 T=A 04 b o O o Yo |« J S 685
26.4. ProgresS REPOTTIIIQ c.uiiuiiiiiiiiiieii ettt e et e ee et et e et e et et e e e et eaneensenaeanaansannns 685
|\ (o} aNh o) b o B D N E | O 7= Yo [694
27.1. Determining DiSK USAQE c.uuiiuniiiiiiiiiiiiieiii et et et e et e e e e et e et e et esanesaaeeaaesanaernaannnns 694
27.2. DiSK FUll FAIIUTE ...uuiiiiiiiiiiii ettt e e et e et s e et e e eei e eeaan e 695
Reliability and the Write-Ahead LOgcouiiiiiiiiiie e e et e e e e e e eaans 696
28.1. REHADIILY couuuiiiiiiiie e ettt e et e et e e et e et e et e eea e e ea e eaaaees 696
28.2. DAta ChECKSUINIS ...couiiiiiiiiii ettt et e e e et e e e e s e eb s e et e eeaanes 697
28.3. Write-Ahead Logging (WAL) ...ccouiiiiiii ettt et e e e e et e e et e st e et e e s s snnesanaannnas 698
28.4. ASynchronous COMIMILiiiiiiiiiiii e e e e et e et e e e e et e st e eaneeanesnnesenaennnns 698
RS TS TRVAVZAN IR @) a N (o 10 Niar=1 w10) o NSNS 700
28.6. WAL INEEITIALS ...ttt ettt et et e et e et e e et e e et s e et s e etaeeaaaneeeann e 703
| oY i Tot=1 B 2 0Y o) § o 1 (o) o KRNt 704
2SI O = 1 o) T oF= 1 o) o E PP PPPTROPPION 704
A IR 01 o 1< ol a1 o] w10) o NSt 705
2SR T 070 o1 o1 - SO OPPRR PR 706
20,4, RESETICEIONS .uitiiiiiiiiiiiie ittt ettt et et e e et e et e et e et etaa e eaaeeeneenneenaeesaennnanns 706
29.5. ATCRITECTUTE ...iiiiiii ettt e et e e et e e et e e et e eeaanes 707
A I G T\ [0} n N1 o] a1 T PN 708
A IR 1= To1 | i 1 1 RPN 708
29.8. Configuration SEettiNgscc.iiiiiiiiiii e e et et e et e et e e e e et e e e ea e e een 708
29.9. QUICK SBEUD ttuiiiiiiiiiiie et e et e et e et e et e et e et e et eaan e et e st eaaaanneaanaarnaaranns 709
Just-in-Time Compilation (JIT) ...cceuiiiiiiiiiiiee et et e e e e e e e et e sae e e e s e erneeannas 710
30.1. What Is JIT compilation?c.oiiiiiiiiiiiiii et e et e e et e e r e et e et e saa e e eeens 710
0.2, WREN £0 JIT? oottt ettt e et e et ettt e e et e e et s e et e e et e e aeaeeanaseeenans 710
ICTOJRC T 00 a i T 11 i< 1 (o) o H U RN 711

vii

Postgres Pro Standard
14.3.2 Documentation

GO 5 =Y o 13 o 1 1 712

G I 28 U o =N a Lol =T BT Y1 U 1 7N 713
31.1. MEINOTY PUTGE ..ottt ettt et e et e e et et e e e et et s e e et et eansaaaesnesnssnenneanen 713

N IO b 0} =Yoo A O =T < TP 714

LAY O =Y o o oL =Y o k=Y o PR 717
ICYIR N1 o] oo Bt G I 1) o= 1 oy 2 718
32.1. Database Connection Control FUNCLIONScuviiiiiiiiiiiiiie e 718
32.2. Connection Status FUNCHIONSciuiiiiiiiiii et e e e e e e 733
32.3. Command Execution FUNCLIONSoiiiiiiiiiiiie et e e e e eaae e 738
32.4. Asynchronous Command PrOCESSINGccuuiiuniiiieiiieiiieiiieeiie e et e et e eteereeeeeeaesaneeaaeenns 751
YA T 1 o 1= o LAY o T 1 755
32.6. Retrieving Query Results ROW-DY-ROWc..oiiiiiiiiiiiiic e eaes 759
32.7. Canceling QUETIES iN PrOQgTESS ..ciuuiiiiiiiiiieeiiee et et ee et e et e ete e s e st e st eereaereaaeanasannees 759
32.8. The Fast-Path INtEIfacCeccovuiiiiiiiii e et e e e et e e e e 760
32.9. Asynchronous NOtifiCationccccueiiiiiiiiii e e e e e 761
32.10. Functions Associated with the coPY Commandccceevuiiiiiiiiiiiiiniin e 762

G 72/ IO O a1 oo A 2V 2 Vo v o) o -0 USRS 766
32.12. Miscellaneous FUNCEIONSc..iiiuiiiiiiiiiie e e et e et e et e et e eaeeaeeeennaees 767
32.13. NOTICE PIrOCESSINIQ ..euuiiiiiiiiiiiiii ittt et e et et s e et et e et eteen e e eeneaneanenneens 770
32.14. EVENT SYSTEIN L.ttt et et e et et et et et e e e et et e e e et e e aans 771
32.15. Environment Variablescoooiiiiiiiiiiiiiie ettt e et e e e e e aaa s 777
32.16. The PasSWOTA Fileccuuiiiiiiiiiiii et e e e e et e et e e e e ea e eane e e aeens 778
32.17. The Connection ServiCe Filecciiiiiiiiiiiiii et e e e e e aaaas 779
32.18. LDAP Lookup of Connection Parameterscc..ciiiiiiiiiiiiiieiieeeeee e 779

G T S TR 1 1 I 1 o) 10) o PP 780
32.20. Behavior in Threaded PrOgramsccieuiiiiiieiiieiii e eie et e eieete et e e e et e eaneeaneeanees 784
32.21. Building libpg PTOQTamScuuiiiiiiiiiii et e et e et e e e et e e eaeeeaaenneaanenes 784
YAV 55 € V0] o] (ST o0 Yo 1 =Y 4 S PP 785
6 O -1 oo [T 0) o [T} ST 796
G762 IR § a1 o o 16 Toa v o) o SO P 796
33.2. Implementation FEAtUTIEScouiiiiii e e e e e e ee e e ans 796

G 6 J0C T O 1= o L 511 =) o ir= o Y SRR 796
33.4. Server-Side FUNCEIONSciiuiiiiiii e e et e e et e e e et e eaeeaneasnaees 800
TG T TN £5: <=1 00) o] (T 26 o o 1 1= 11/ KPR 801
34. ECPG — Embedded SQL Qn C ...ttt e et e e e et e et e et e e s e eaneaaneaaneasnnns 807
7 N O I s =S 00)1 1o <) o] AP 807
34.2. Managing Database CONNECLIONScccuiiiiiiiiiiiii i e e e e e e eanes 807
34.3. Running SQL COMIMANAS ...cvuuiiuniiiieiiieeiieeiieeieeie et etieeineeteeetteeetaestneetneesnnesensenneesnesrnnses 810
34.4. Using HOSt Variablesccouiiiiiiii ettt e e et e et e e e e e e e e anns 813
34.5. DYNAMIC SQL .ottt et e et et et e et et et e et e et aaanaaan 825

G T o Yo 10 74 o =T BN o) -) 7PN 827
34.7. USING DESCTIPTOT ATEAS ..oeuiiuiiiiiiiiieiietiie ettt et ee et e e e e et et e e et et eanseaneaneenanns 838
G2 < TR 5w /o) alll & 1o 1 2 o 1PNt 850
34.9. PreproCeSSOT DITECTIVES ...vuiiiiiiiiiiiie ittt et e e e e e e e et e e et et e s et e aesneaaeanens 856
34.10. Processing Embedded SQL PrOgramsceiiuiiineiiieeiieeeieeieeieeeieeieeieesneseneseneennaeens 858
34.11. Library FUNCEIONS ..couuiiiiiiiiiie st e e et e e et et e et e et e et e e eaeeaneeaneeanneeens 859
34.12. Large ODJECES ..ivuiiiiiiiiiiiiie ittt e e e et e e e e e et e it et et e it e e e e aaanas 859
34.13. CH4 APPLCALIONS ..eniieiiiiii e et e e et e e e e et e e e et et e e aaaaaans 861
34.14. Embedded SQL COMINATIIAS ..iuiuiiinininiiiii ettt ettt et eaea e e eneaeteeneneaeeaenens 864
34.15. Informix Compatibility MOAec.oiiiniiiiiiii e e e aaes 886
I G T 1 7 o o = 1 N 899
35. The Information SCREMAiiiiiiiii et e et e e et e e e e e e e e eaneaannas 901
o T B s LT Yo 1= 00 - PR 901

1o T B L= 1 = B 4 o =T S PP PP PP 901
35.3. information_schema_ Catalog TIAME ..iuierieireenernerernernerersernerernernerernerereenersererserereenerenns 902
35.4. administrable_role_aUthOTriZations .iiiiiciieiieiiireeeriereeneriereenereraenertereetereeseesernesneseses 902
I s =Y o) N R ot=1 o KT ot o N == R PP 902

viii

Postgres Pro Standard
14.3.2 Documentation

G 1o TS TE= T o ol o B o1 ot = Y= S PP TP 903
1 T) s F= S Yok o =% ol 1=} o - R U OO 905
35.8. check _constraint _ rOULINe _TSAGE tiiiiiiriiiiieterneteteetetereeterereenernetasternesaeresneraeresnesnesases 906
RIS BClsT=Ye) Sl ole) s TR uhar- 1 B o} oF= ST 906
1T N TN B R T o Ko) o = S U 906
35.11. collation_character_set_appliCabilifty .iivieieiriiiieiiiriiieeeiieeeeriererernerernernereenes 907
35,12, COLUMN_COLUMN_ USATE tttttutrnrrrrnrrnerernernrsernesnstesnesnssesnesnssessesssessesnssessesnssessesassessesnesnsseses 907
1o T B TG T N ATt il oW e 1) = B M L= 7- Ve {= 907
1o T TG TR R bl il oW o) <X o N o Y= U TP 908
G T T B TN TR R oW o F o A U R =Y =Y USRS 908
G 1o T NS TR TR AT} o U Ye N i T Yo = P PP PP 909
1o T B TN R i1 o ¥ = U 910
35.18. CONStraint_COLUMN_USEGE tuitireruernernenernererernerererneraesesnesesesnesesesneseesesseraesessessesnssesness 913
1T RS BNGTCY s ¥l ok =0 sk ol =0 o J Y U= T= Y 1= S 913
T IN2] O IG R = o4 o 1= T o 3 o A U B =Y 1= = RN 914
1IN NG TS « o0 B s Wi ote) o Y= R ol =N B o Lol =S OO P UTUTUORPINt 914
1 I NG 1) FER T oM Yo L ol b E=T=Ye = SR 915
G 1 T AC TG [1 o T B o R OO PP 915
T I TR =S 1=} oL ol v 14 o 1= Y= SO PR 917
1 IS TS EoY N =Ye M oo =Y S TP 919
35.26. foreign_data_WrapPer_OPtiOMNS tiiiiiiiiiiieieieeteeteieetetnetaeteeneteeternetasterneeerasnesastasnasaesnses 919
T IS o3 =5 Ko s o lie - N ut=N 4 aF=Y o) 1= of - SN 920
IO INA S TIE e =5 Ko b o M=1=b a4 =3 ol o) o ok N} o V= NN TP 920
T IR IR oS =R e oo M1 b v =5 ot ROt 920
IS IC 10 I e 2= Ko 1ol =1 SN R= Y} o huls e} s £ RNNT U P PPN 921
IO IRC N R oS oy oh e s o M o= 1 < 1 K== R U O OO R 921
35,32, Ky COLUMN_ USATE ttnttetuetnrreenerneraenerneraesernesetesnesssessesnssestesnesessesnesssesnesnssesnesneseesesnesnses 922
G J o TC 1 T o B o= 1= ol = b ar= S PPN 922
30,34, referential COMSE LA It S ttntnitiiette ettt ettt e e e e ettt e eneaeaeneneeaeetaeeneaenenenenes 924
35,30, 01 COLUMN_GIANTS tuttetntrnereenernerersernereenernerssesnesaesesnesesessesssessesaesessesesessessesnesesnesnenns 925
G TR T aT RSN e YR ulh B s Y=o brar= Y oL it S 925
IS TRC WA R RN =Y o0 R T b o= ¥ o L ot - R OOt 926
CIo TG T Y B oY Sl Ll b =0 o} o - R U PSP PPUURPURt 926
T IRC TS I N RSN D E=ToYe (oMo £ =% o} ot - USRS 927
35.40. rOULINE_COLUMN_ USEGTE ttutrirtrirnrnerereenrnesererrneneserrneneseeasneseseserssesesesesseseseresnerereresenennnns 928
G Jo I N R Yo DRl B o= Y o T o v 1 =Y 1= Y= R PSRN 928
35,42, rOUL INE L OUL LN USAGTE tttttiniinireinernerernernereenererernernereeternesssesnesssesnesessesneseeressesseseeneses 929
35,43, rOULiNE _ SEQUENCE_USATE ttrrrurrnrrarnerneraenetnrtaetesnesastesnetastesnesastesnssnssessesassassesesaesesnesasseses 929
T B N Rl B o= MR o= o 1 =M L= 7-Vo {= 930
K F I S T Yo D ik I o 1= Y= U U OO PPN 931
G 1 T N S T ot o1 11T N o= N PSSP 935
1 R - T=Ye Y=Y s Yo L= T RO 935
T T B B ==} b by - RSP 936
35.49. sql_implementation_dMFO tiiiiiiiiieiiiieieieieet ettt et et eteet et eteete it et et et aaateretaetareaaaraanas 937
G T e 1O =T g N <Y B o o - RO 937
T oY =T =T 2 I oL U 937
G I NSV =0 o) R oTo) oF=k ol af= o} ot - EEOU U U OSSP 938
1o I8e 16 TR = N SN o h ok B I =Y oY PP 938
T e T T =Y N Y= RO PP 939
T T 1o T o =Y o F=E et = 11 Y= S O U U U 940
35.56. triggered _UPdate_COLUMNS .iiirieeererernernereenernesessesnesessesnesessesnesaesesnesaeresnesaesessesneseenns 940
1 TS WA o o K fo 1= of - RPN 941
T IR TRl Ll o b o A T B =Y == U 942
I TS M=oY T oF o A7 B K=Y 1= Y- RO U OO U PP 943
G oI ST O RS E=ToV oo [=% ik o Y=To N w74 o 1= Y= RN 943
TN O Y BRRTE-T-S ol Fohe) s B oYe fle) o) sl Ko s XU N 945

ix

Postgres Pro Standard
14.3.2 Documentation

I N Y AR E=T=F ol F=h o) B o L 1= R PPN 945
35,03, Vi W COLUMN_ USETE ttuittinitnerernernerernernerernereserneresesneresersernesessesneseeserneraeserersesernereesernens 946

G TN Y TR RS L e YR ul B s Y= M DR Yo 1= S TRt 946

G O 1o IRV =Y i =Y o B =T T Yo = R PP PP 947
o T o1 S T & =1 2= TN 947

AVARRS =) v/ ol o oo b =N 1010 B Yo AN 949
36. EXTENdINg SQL ..ouiiiiiiiiiiii ettt et e et e et e et e et e et e et e et e et et et e et aae et aaanaanns 950
36.1. How ExXtensibility WOTKSc..iiiuiiiiiiiiiiiieiis ettt e e e e e e e e e e e a e e e e aan e 950
36.2. The Postgres Pro TYPe SYSTEIM ...c..viiiiiiiiiiiiiie ettt e e e e aan s 950
36.3. User-Defined FUNCEIONSccuuiiiiiiiiiiiiei ettt et e e et e e e e et e ea e eaaaees 953
36.4. User-Defined PTOCEAUTEScouiiiiiiiiiieiii ettt et e e et e et e e e e e e eaeeaaeeeans 954
36.5. Query Language (SQL) FUNCEIONS ...cvuiiiiiiiiiiiiiiiiie et ea et et e eaeeee e e e ean e 954
36.6. FUNCtion OVETIOAGITIG .vuuiiiniiiiiiiieiiieie et e et e e e et e et e e et e et e eaaeesaneaaneasnaannnas 968
36.7. Function Volatility Cat@goTieseiiuiiiiiiiiiiiiiiiiiiiii ettt et et e et e ete e e e et s aaaeeaan e 969
36.8. Procedural Language FUNCHIONSc.cviiiiiiiiiiiiin et e e eais 970
36.9. Internal FUNCEIONS ...ciuiiiiiiiii ettt e et e et e e e e et e et e et eeaneeaneannes 970
36.10. C-Language FUNCEIONSciiuiiiiiiiiiiiie ettt e e e e et e et e e e e e e aaneannnas 971
36.11. Function Optimization Information ..., 989
36.12. User-Defined AQQTegatesciiuiiiiiiiieiiiie ettt et e e e et e et e et e eaeeaaeeansennes 990
36.13. USETr-DEefINEd TYPES .iiuiiiiiiiiiiiiiieiie et e ete et et e et e et et e et e et e e ta s et eansaenneeansarnsasnnns 997
36.14. User-Defined OPETatorscouiiiiiiiiiiie e e e e e e et e e e it e ae et eanaans 1000
36.15. Operator Optimization INformationccouiiiiiiiiii e, 1001
36.16. Interfacing Extensions 0 INAeXESc.coiiuiiiiiiiiiiiiiiiiie e 1005
36.17. Packaging Related Objects into an EXtensionccovevvviiiiiiiiiiiiniiin e, 1017
36.18. Extension Building INfrastruCturec.ccooiiiiiiiiiiiiii e e e e 1025
G B T [0 1) PP 1029
37.1. Overview of Trigger Behaviorc.ccciiiiiiiiiiiiiiiii e e e ean s 1029
37.2. Visibility of Data CRANQESccuviiiniiiiiiiieiiie et e e et e e e ea e eaaeeaan e 1032
37.3. Writing Trigger FUNCHIONS N C ..ot e v e e v e e e eaneee 1032
37.4. A Complete Trigger EXAmPLeooiuiiiiiiiiiiiiiiiiiiie ettt e ea e e e e e eane s 1035

G S T SR 7Y L A I [o 1Y i S PSPPI OPRPRt 1039
38.1. Overview of Event Trigger Behaviorcccuoviiiiiiiiiiiiiiiiie e 1039
38.2. Event Trigger Firing MalliXcocuiiiiiiiiiiiiriie ittt e et e et e et e et e e eeanes 1040
38.3. Writing Event Trigger FUNCtions in Cccooiiiiiiiiiiiiiiiiiin ettt e e 1043
38.4. A Complete Event Trigger EXampleccooviiiiiiiiiiiiiiinin et ee e e eieeais 1044
38.5. A Table Rewrite Event Trigger EXampPleccooviiiiiiiiiiiiiiiiiiiieiiie e eeais 1045
39. The RUIE SYSTEIN c.uuiiiiiiiiiii ettt e e te e et e et e et e et e e s aaneaaneeeans 1047
39.1. The QUETY TIEE ..ouiiiiiieiiiiiiit ettt e et e et e et e et e e s et s et e e et s et eatnsasneaeaneanneennss 1047
39.2. Views and the Rule SySTEIMccoiiiiiiiiiiiiii e e e e 1048
39.3. MaAterialiZed VIEWS ...ciuuiiiiiiiiiieiii ettt e e et e et s et e et e et s ea e et eetnearneasnsananns 1055
39.4. Rules on INSERT, UPDATE, @Nd DELETEuvtttuureerenreerunrerenneersnneersnnsermnnsermnsrmsnesennnseernnns 1057
39.5. Rules and PriVIIEgEScovuiiiiii e e et e e e et e et e e aaaa s 1066
39.6. Rules and Command STAtUScccceuueriiiieriiiineiiiineeiin et e et eeeineeerteeernnserninserennsersnneens 1068
39.7. RULES VETSUS TTIGGETS couiiuiiiiiiieiiieeiie et ettt e et et e e et e e ae e e e st e et e eaaeeaaestnesrnaesneenns 1069
40. Procedural LaNQUAaGgESccuuieuueiiieiieeieetieetieeiteeteeteetteestnessnesanaastnsstesrasssnaesenessnessnessnassnnees 1071
40.1. Installing Procedural LanguUagEScceuueeiuieiieiieeiieeiiee et eeieeeteeeieeeteetneesneeatesresaneans 1071
41. PL/pgSQL — SQL Procedural LangUageeeeuueiineeiieiiieeieeieeiieeeieeete et esaeetnesrneesnnesnnnees 1073
AT 1. OVEIVIEW ..iiiiiiiiiiii ettt ettt et eete et et e et e et s etaettaettaeetueauneatnsetasetasetnneesnsesneeaneeenneesnnes 1073
41.2. Structure Of PL/DGSQL .uiiiiii e e et e e e et e et e et e e e et e e a e a e e aas 1074

22 NG TR B T=Tod F- = 1 [0) o - T OO 1075
S 4 0} (=11 T 1) £ PN 1081
41.5. BaSIC STtAteIMENES ..ouuiiiiiiiiiiie ittt ettt e e et et e e 1082
41.6. CONLLOL SETUCLUTES ...iiiiniiiiiieiiiirieiee et e et e et e et e e et e eeteeeeanesetanseanansertansaasnnsersnnsesnnns 1089
1.7, CUTSOTS .eetuituitieii ettt et ettt e et e et etuetta e et etasetanetunsttnsatattunetuneatnsetnsesnseannsesnsesnseanneenns 1102
41.8. Transaction ManageImMentc.ciiiiieiiiiiiiie et e e e e e e e e et eaeaeaneeanaanaens 1107
41.9. Errors and MESSAGES ...uivuniiieiiieeiieetieeieeteeteettettettestaeestaestaestnaernaesnaesraesaessnaesaeesnns 1108
471.10. Trigger FUNCHIONS ..couiiiiiiiiiiiiiee ettt et e et et e et e e e ete et et e e e et aaneanaeanns 1110

Postgres Pro Standard
14.3.2 Documentation

41.11. PL/pgSQL under the HOOdooieiiiiiieieee et e e e e e e e e e e e een 1118
41.12. Tips for Developing in PL/PGSQL ...ouniiiiiieiiee et e et e e et e e a e e e eees 1121
41.13. Porting from Oracle PL/SQLcouuiiiiiiiiii et e e e et e et e e et e e ae e s aeenaas 1124
42. PL/Tcl — Tcl Procedural LanQUagec.eivueeiunieiiiiieieeie e eeieeee et e st eetneernaeseneeenesanasanaesens 1133
2.1, OVEIVIEW .iiiiieiieii ettt ettt ettt et et e et s eta e et e et e eeueeueeetasetasetnseenneasnseeneanneennsernnns 1133
42.2. PL/Tcl Functions and ATQUINENESccuuiiiiiiiiiieeiee e eiee et e e et e et eeaeeeeeesaneeaneeaaneenns 1133
42.3. Data Values In PLITCLo.uiiiiiiii ettt e e e e et e e e e e eea e 1135
42.4. Global Data in PL/TCL ...ciiiiiiie ettt et e et e e e e s e e e e eeeaees 1135
42.5. Database Access from PL/TCLcc.uiiiiiiiiiiiii ettt 1135
42.6. Trigger Functions in PL/TCL ... e e e e e e e eaens 1137
42.7. Event Trigger Functions in PL/TCLc.cooiuiiiiiiiiie et e e 1139
42.8. Error Handling in PL/TCLcouiiniiii et e et e e e e e e e e e e e eens 1140
42.9. Explicit Subtransactions in PL/TClcccoiiiiiiiiii e e e e 1140
42.10. Transaction Managementccc.viiiiiiiiiiir et e e e et e e e e eaeaneannees 1141

22 /0% 100 R o IV ¥ o R0) o o 1 = 1 o) o T 1142
42.12. TCl ProCedUre NAINEScievuuiiiiiiiii ettt e et et e e et e e tie e et e e et s e et s e etteeaenneeeannaes 1142
43. PL/Perl — Perl Procedural LanguUagecccuueeiuieiiniiiieieeieeeiee et et e e e eteeaee s eeanesaneeaneenns 1143
43.1. PL/Per]l Functions and ATQUIMENTEScceiuiiiiiiiieiiieeiie et ete e e et ee e e e ea e ea e e e eeens 1143
43.2. Data Values In PL/PETLcoouiiiiiiiiii ettt e e e et e e e e e 1147
43.3. BUilt-In FUNCEIONS ..iiiiiiiiieiii ettt et s e et e e et s e eae e e easeeeiaees 1147
43.4. Global Values in PL/PETLoiiiiiiiiiiiiie ettt et e et e et e e e e eees 1152
43.5. Trusted and Untrusted PL/PeTLcoouuiiiiiiiiiii et 1153
G T = IV == ol B s o T o =3 = 1154
43.7. PL/Per] EVENt TTIGQETS ..uuiiniiiiiiiieiiieeiie et et e et e ete et e st e ete e st e st e st e sansannesenasanaesnnesnnnes 1155
43.8. PL/Per]l Under the HOOQcoiiiiiiiiii ettt et e e e e eeaas 1155
44, PL/Python — Python Procedural Languagec.cceeiiiiiniiiieiiieeciieeieete e e e e e e e e ea e eaaaas 1157
2 O v o o) R v T o 1) 4 G 1157
44.2. PL/PYthon FUNCLIONS ...iivniiiiiiiie ettt e e e e e e et e et e et e et e et e e s eeenees 1158
44.3. DAtA VAIUES ...iiiiiiiiie ettt ettt e et e et e aa e aanas 1159
2 S =Y oo o J D - - N 1164
44.5. AnNonymous Code BIOCKSccuuiiiiiiiiiiiiie ettt e et e e e e et e e a e e e e 1164
44.6. TTIgQET FUNCEIONS ...ttt et et e et st e et et s e e et et e e eeaaanaenaeanns 1164
4.7, DAtADASE ACCESS ..uuiiiuniiiiieetie ettt ettt ettt et e et e et e et e et e et e et e ta e et eaaaaes 1165

44 .8. EXplicit SUDLTANSACTIONS ...vveiiiiiiii it e e e e e e e e e e e s e eraaeaanas 1168
44.9. Transaction ManageIMENTc.ciuiiieiiieiiiie et ete et e ee et et e e e et eanaaneeneennaeneens 1170
27 O TR v 1 7 V0 o o o) £ N 1170
44.11. Environment Variables ... 1171
45. Server Programming INEETTACEccouniiiniiiiii e e e 1172
45.1. Interface FUNCEIONS ...cuuuiiiiiiiiiie ettt et e e et et e e et e eana e eaens 1172
45.2. Interface SUPPOTt FUNCLIONScvviiieiiii e e e e e 1211

S TRCTLY (=Y 0 aTo) VN =N a = Yo o3 4 0 TS o | AP 1220
45.4. Transaction ManageIMENTcc.iiiiieiiiiiie et ete et e te et ea e e e et eaneaneeneeanaenaens 1230
45.5. Visibility of Data Changescc.ciiiiiiiiiiiiiiie et e et e e e e e ae e e e e e eaaeeees 1233
S T b ¢V 1]) [N 1233
46. Background WOTKET PTOCESSESc.uiiiuiiiiiiiiiiiiieie et e e ete et et e et e eteeaeesan e et e sanesnnsssnasraneees 1237
22 /A o Yo s o= B D 1= ToTo Yo b hia Lo S 1240
47.1. Logical Decoding EXamMPIEScc.uiiiuiiiiiiiiiiiiiee et et e e e et e e e e et e eae e s e saaeannas 1240
47.2. Logical Decoding CONCEPESuiiuiiiiieiiiieiiieiii e e e e et e et e e e et e et e e e e saneeannees 1243
47.3. Streaming Replication Protocol Interfacec.coevviiiiiiiiiiie e, 1244
47.4. Logical Decoding SQL INterfacecccuoeiiuiiiiiiiii e e e e 1244
47.5. System Catalogs Related to Logical Decodingcccoeveiiiiiiiiiiiieiiieie e, 1244
47.6. Logical Decoding Output PIUGINSccoiiiiiiiiiiiiiie et e e 1244
47.7. Logical Decoding Output WIILETScuuiiiiiiiiii e e e e 1251
47.8. Synchronous Replication Support for Logical Decodingcccoeeviiiiiiineiieiinnennnnnnn. 1251
47.9. Streaming of Large Transactions for Logical Decodingccccccoevvviiiiiiiiiiiiniinneennnnn. 1251
47.10. Two-phase Commit Support for Logical Decodingccceeveeiiiiiiieiiieiiniiieeeieeienen 1252
48. Replication Progress TTaCKITIgciuueiieiiiiiiie et e et ee e et e e e te et e st e et e eaeaernnasenassnaeanesnnnns 1254
VI, RELETEIICE ..ouniiiiiiiiee ettt et e et e et e et e e et s e et s e e bt s e et s e eaaeeaaaneeananaes 1255

xi

Postgres Pro Standard
14.3.2 Documentation

| ST) I O} a0} 00 T< 1 s Lo - JNUTPORN
FN 10) 2 AT
ALTER AGGREGATE ..ottt ettt ettt e et e et e et et et et ea e e e saeanees
ALTER COLLATION ..ottt ettt et e e et e et ea et e tas et e e e ta st sanesneaneanaes
ALTER CONVERSION .ottt ettt ettt e et e et e e et e e et et e e eaeans
ALTER DATABASE ..ottt ettt ettt e et e et et et et e et et e e e ea et eaneeneeaeanas
ALTER DEFAULT PRIVILEGES ..ottt ettt et e et et e et e e eaeanas
ALTER DOMAIN Lottt ettt ettt e ettt et ettt ea et st e e s tas st et eanssaebneanesnnens
ALTER EVENT TRIGGER ..ottt ettt ettt e et e e e eans
ALTER EXTENSION ..ottt et et e et e et e e et et e e e et st e e et e aneeneeaneans
ALTER FOREIGN DATA WRAPPER ...ttt et
ALTER FOREIGN TABLE ...ouitiiiiiiiiiie ettt ettt ettt e et e e et e et e et st eaneeneaneanes
ALTER FUNGCTION oottt ettt e et e e et e et et et et et et et et e sneaeaneenenns
ALTER GROUP .ottt ettt e et et ettt et et et e it st et et e b saeaneanas
ALTER INDEX oottt ettt e ettt e et e et e e et et et ea st et eaeaastneen et eanssnenns
ALTER LANGUARGE ..ottt et e et e e et e et et et et e e ane s eaneas
ALTER LARGE OBJECT ..ottt ettt e et e et e e et e e et e e et e e sateesatn e e st eestaesatanasaranns
ALTER MATERIALIZED VIEW ..ottt ettt e et et e et e et et et e e s s eaneas
ALTER OPERATIOR ..ottt ettt ettt et et e et ettt e et et et s ea et et e ene st eaneaneanes
ALTER OPERATOR CLASS ..ottt ettt ettt e et et e e e et e it e e e eaeanas
ALTER OPERATOR FAMILY ..ottt ettt ettt et e e et e e e eans
ALTER POLICY ottt ettt ettt et et e et e et e et et eta e et et san et et eensenereansennes
ALTER PROCEDURE ...ttt e ettt et et e ettt e et et e b eanesnneas
ALTER PROFILE ..ottt ettt ettt et ettt e et et et et e et eea e et et e taeeaeteenseneanes
ALTER PUBLICATION ...itiiniiiiiiit ettt et e e et e e ettt st e taseas st s sassaeaneanssaeaneans
PN 2 O) I PP
ALTER ROUTINE ..ottt ettt e et e ettt et e e e et esaetaeaeanesnnens
FN I 2 2 U Y TP
ALTER SCHEMA ..ottt ettt e ettt e e e et e e et et et e et et eaeans
ALTER SEQUENC E ..ottt ettt ettt ettt e et et et e e et et e e e e aneeneans
ALTER SERVER ..ottt ettt et e e et e ettt et e te st et e b et e a e e esneeneans
ALTER STATISTICS oottt ettt ettt e et e et et et e b et st st st et e tas et ernssnesnnens
ALTER SUBSCRIPTION ..ottt ettt et ettt e et e et et e et et e tneea et etneeneeneaneens
ALTER SYSTEM .ouiiiiiiiiiiiiie ettt ettt et et e et e e et et et e ts et et st et et et etneeneaneens
ALTER TABLE ..ottt ettt ettt e et et e et e et e et s ea et et s ea et et e ensenerneansennes

(03 10 1 TSP PPRR PP

xii

Postgres Pro Standard
14.3.2 Documentation

CREATE COLLATION ...ttt ettt ettt e e ettt e e e e et e et e e e ena e eena e eena e eananeen 1394
CREATE CONVERSION ...ttt ettt ettt e et e et e et e e et e eeneeeena s 1396
CREATE DATABASE ..ottt ettt et e e et et e et e e e e e e e eenans 1398
CREATE DOMALIN ...ttt ettt ettt et e e e e e et et e e e tan e e eaa e eeaa e eenaeeenanes 1401
CREATE EVENT TRIGGER ...ttt ettt e e e e e 1404
CREATE EXTENSION ..ottt et ettt e e e e e e e e e ren e eena e 1406
CREATE FOREIGN DATA WRAPPER ...ttt 1408
CREATE FOREIGN TABLE ...ttt et ettt e e e et et e e e e e e e eeaaeeeee 1410
CREATE FUNCTION ...oiiiiiiiiiii ettt ettt et e et e et e e et e e e e e e rana e eeanneennaeees 1414
CREATE GROURP ...ttt ettt ettt e et et e e ea e e ean e e eaaes 1422
CREATE INDEX ...ttt ettt ettt et e et et e e e et s e eea e e ran e e raneeenaeeees 1423
CREATE LANGUAGE ...ttt e e e e e 1431
CREATE MATERIALIZED VIEW ..ottt ettt e e e e 1433
CREATE OPERATOR ...ttt ettt e e e e e s e e e e e raneeeens 1435
CREATE OPERATOR CLASS ittt ettt et sttt e e e e e 1438
CREATE OPERATOR FAMILY ..ottt ettt et e e e e e 1441
CREATE POLICY .ottt ettt ettt et et et e e e et e e eaa e e eaeeeeaa e ennns 1442
CREATE PROCEDURE ...ttt ettt e e e e e et e e 1447
CREATE PROFILE ..ottt ettt ettt ettt et e et e et et e e e ean s eenn e eenees 1451
CREATE PUBLICATTION ..ottt et ettt e e e e e e e e e e e enenes 1454
CREATE ROLE ...ttt ettt e et e et e et e et e e e e ren e eeana e 1456
CREATE RULE ...ttt et ettt et e e et e e et e e e e ran e eeanaees 1461
CREATE SCHEMA ..ttt ettt et e et et e e e et e e e e enneeeanaeeeens 1464
CREATE SEQUENRCEE ...ttt ettt et e e et e e e e et e e ran e eeaneees 1466
CREATE SERVER ...ttt ettt e e e et et e e ran e eeana e 1469
CREATE STATISTICS ...ttt et e e e e e e e eea e eenaees 1471
CREATE SUBSCRIPTION ...ttt ettt ettt e e et et e et e e e e ennaeees 1475
CREATE TABLE .ttt ettt e ettt e e e et e eeaa e e nne e eenaees 1478
CREATE TABLE AS ittt et et e e e et e et e e e e eena e eanaees 1498
CREATE TABLESPACE ...ttt ettt ettt et e et e et e e e e e e e eenaes 1501
CREATE TEXT SEARCH CONFIGURATIONitiiiiiiiiiiiiiiieii ettt 1503
CREATE TEXT SEARCH DICTIONARYcouiiiiiiiiiiii ettt ee e 1504
CREATE TEXT SEARCH PARSER ..ottt 1506
CREATE TEXT SEARCH TEMPLATEcooiiiiiiiiii ettt 1508
CREATE TRANSFORM ...ttt ettt ettt et e e et e et e e e e eenaees 1509
CREATE TRIGGER ... ittt et ettt e et e et e et e e et e e eneeeena s 1511
CREATE TYPE .ottt ettt e et e et e e ee e e e s eena e eenaees 1518
CREATE USER ...ttt ettt e et e et et e et e e e e eeaa e eenaeeeeneeeens 1527
CREATE USER MAPPING ..ottt ettt et e e e ette e een e een e eena e 1528
CREATE VIEW ittt ettt ettt et et e e et e e et s e e aa e e tan e eranneennneeees 1529
DEALLOGCATE ...ttt ettt ettt e et et s et e e ea e e e eaa e e e eennaeennaenens 1533
DECLARE ...ttt ettt ettt ettt e e e e eeaaee 1534
DELETE ..ottt ettt ettt e e e e et e et e et e et e e e e e e e e r e ena e e eaa e 1537
DISCARD .ttt ettt ettt ettt et et et et et e e ea e eeaas 1540
DO ettt et ettt et e e et e e e rens 1541
DROP ACCESS METHOD ..ottt ettt e e e ea e eees 1542
DROP AGGREGATE ...ttt ettt ettt e ettt e et e e e eeaa e enaees 1543
DROP CAST .ottt ettt et ettt e et e et e et e e e e e een e e ran e e raneeenaeees 1545
DROP COLLATTON ...eiiiitiiiet ittt et ettt e et e et e et e et e e een e e rana e renaeeenneees 1546
DROP CONVERSION ...ttt ettt ettt e e et e e et e e eea e e ran e eeaneees 1547
DROP DATABASE ...ttt ettt ettt e e s e e e e ea e eaaees 1548
DROP DOMALIN ..ottt ettt et e e e et e et e ten e e tana s eeaa s eenae e eenaneennnnnes 1549
DROP EVENT TRIGGERciiiiiiiiiiiiii ettt et e e e e e ea 1550
DROP EXTENSION ...ttt et ettt e ettt e e e e eaa s e et e eena e e taaeeranneenaneens 1551
DROP FOREIGN DATA WRAPPER ...ttt et et 1552
DROP FOREIGN TABLE ...ttt ettt et e e e e e e ee e eens 1553
DROP FUNCTION ..ottt et ettt e et e et e et e et e e ea e eena e eenaeeenannes 1554
DROP GROUP ...t ettt et e et e et e et e et e e eaa e eena e eenans 1556

xiii

Postgres Pro Standard
14.3.2 Documentation

DROP INDEX ...ttt ettt ettt ettt e et e et e e ta e e tr e ean e tana e ranaeeenaneennaeeens 1557
DROP LANGUAGE ...ttt ettt ettt et e e et et e e e e eena e eenaees 1558
DROP MATERIALIZED VIEW ..ottt et ettt e e e e e ee e 1559
DROP OPERATOR ..ottt ettt ettt e e et et e et e e eae e enaa e eenas 1560
DROP OPERATOR CLASS ...ttt ettt et et e e et e e e e e e ean e eeaees 1561
DROP OPERATOR FAMILY ..ottt ettt e et e et e e s e e e eenaeeee 1562
DROP OWNED ...ttt ettt et e e ettt e et e et e e e e e e e ren e renaees 1563
DROP POLICY ..ttt ettt ettt e et e et e et et e e ean s e e e s eeaae e eeaneeeaaeenaneennans 1564
DROP PROCEDURE ...ttt et ettt e et e e s eene e e eneeeenae e 1565
DROP PROFILE ...ttt ettt ettt e et e et e e e e e eaa e enna e eenaees 1567
DROP PUBLICATTON ...ttt ettt ettt e e e e et e et e e eae e e en e enna e ennans 1568
DROP ROLE ...ttt ettt et e et e et e et e e et e e eaa e e taa e e raa e ennaeees 1569
DROP ROUTINE ...ttt ettt e e e et e e e e et e e ena e eenaees 1570
DROP RULE ...ttt ettt et e ettt ee e et e e et e e et e e eaa s e eaa e e raneennaeeees 1571
DROP SCHEMA .ttt ettt e et e e e et e e e e e e ean e e raneeenens 1572
DROP SEQUENGCE ...ttt et ettt et e et et e e e ren e e ean e eenaeeeees 1573
DROP SERVER ...ttt ettt ettt e e et e e e e e e taa e e ran e e raaeennaeees 1574
DROP STATISTICS ..ottt ettt et e e e e et ettt e e e e e e e s eeaa e eeaneennnenes 1575
DROP SUBSCRIPTIONouiiiiiiiiiiiiie ettt ettt et e e e et e e e e e tan e e ean e ennaeennaeeeens 1576
DRODP TABLE ...ttt ettt et e et ettt e et et e e et et a et et e ena e 1577
DROP TABLESPACE ...ttt ettt et e e e e et e et e e e e e e e ean e eanees 1578
DROP TEXT SEARCH CONFIGURATION ...ttt ettt 1579
DROP TEXT SEARCH DICTIONARYoiiiiiiiiiiiiie ettt ettt e e e e e eeaee 1580
DROP TEXT SEARCH PARSER ...ttt ettt 1581
DROP TEXT SEARCH TEMPLATE ...ttt ettt e een e eenees 1582
DROP TRANSFORM ...ttt ettt ettt e et e e e eena e e enae e eenaes 1583
DROP TRIGGER ..ottt ettt ettt s e et e e et e e ee e e ran e eeana e 1584
DROP TYPE ..ottt et e et ettt ten e et s e e e e e et e e ena e eena s 1585
DROP USER ...ttt ettt e et e ettt et et e e et e e e e e e e e ran e eeaas 1586
DROP USER MAPPINGooutiiiiiiiiiieiie ettt ettt ettt e e et e et e et e e e e ennaeeees 1587
DROP VIEW L.ttt ettt ettt e et e et e et e et e e e e ran e e ean e eenneeeees 1588
BN D ettt ettt ettt e e e e e e a e eaaaes 1589
EXECUTE ...ttt ettt et e et e et e et e et e et e e ean s eeaae e eeaneeernnnnan 1590
EXPLAIN L.ttt ettt et e e e s e et e e et e et e e e taa e e tan e e tn e enna e e an e eena e 1591
FETCH .ottt ettt ettt e e et e e e e e e et e e eaa e e raa e eraneennanees 1596
GRAIN T e et ettt ettt e et e et e e et e et e e taa e e tan e e et e een e en e eena s 1600
IMPORT FOREIGN SCHEMA ...ttt et e e et e e e ean e 1605
N S ERT ettt ettt ettt e e e e et e et e et et ea et ea e e e e e e e eaaaes 1607
| S 0 A PP PPPRRTRTRN 1614
LOAD ettt e e ettt e e e et e e e eens 1616
LOCK et ettt ettt ettt et et et et e e e e e e ees 1617
IMOVE et ettt ettt e e e et e et et et et ettt en e een e 1620
INOTTEY ettt ettt et et e e et e et et e e e taa e e taa e e et e eena e eanaeranaeennanees 1622
PREPARE ...ttt ettt ettt et e e et et e e e e e e e e e anaes 1624
PREPARE TRANSACTION ..ottt ettt e et e e e e e e ran e enn e 1627
REASSIGN OWINEDiiiiiiii ettt et ettt e e e et e et e e eaeeeena e eenas 1629
REFRESH MATERIALIZED VIEW ..ottt e eene e 1630
REINDEX ...ttt ettt ettt et e ettt ea e et e e e e e s e ean e eeaa e eraneeeranneennanees 1632
RELEASE SAVEPOINT ..ottt ettt e e e e e e ne e e een e e ran e eeenes 1637
RE S BT et ettt ettt e e e ettt e et e e e e et e et e e e e ran e eanes 1638
REVOKE ..ottt ettt et e et e et e et et e e e et e e ean e e ean e e raneeenens 1639
ROLLBACK ...ttt ettt et ettt et e et e et e et e tena e e eana s eeane e eaneeeraneenens 1643
ROLLBACK PREPARED ...ttt ettt et e e e e e e e e e e enn e 1644
ROLLBACK TO SAVEPOINT ...ttt ettt et et e e e e e e e eenas 1645
SAVEPOINT ..ottt et ettt e et e et e e et et e e ean e e rana e eeane s eenaeeeenaees 1647
SECURITY LABEL ..ottt ettt et e et e e et e e et e e e e e rana e eeanaees 1649
SELECT .ttt et ettt ettt et e et ettt e et e e e e en e naaees 1651
SELECT INTIO .ottt ettt e e e e et e et e e e e e eaa e e et e eeaaeeenanen 1671

Xiv

Postgres Pro Standard
14.3.2 Documentation

IS] A PP PUPPION 1673
SET CONSTRAINTS .ottt ettt ettt e ettt e et e e et e e et s e et e e et e etaa s eetanseetnaseaennaeens 1676
SET ROLE ..ottt et ettt ettt e e et s e et e e et e e taa e e et e e et e e et e eeba e eannseeenneeennns 1677
SET SESSION AUTHORIZATTION ...uuiiiiiiiiiiietie ettt et e e et e et e e et e e tee e e eea e e et e eebaeeasaeas 1679
SET TRANSACTTION ..ottt ettt ettt e et e e et e e et e e et e e et s e aaa s e et seetaneeasaneaasnneenans 1681
] = (O 1O OP PRSPPI 1684
START TRANSACTION ...ttt ettt ettt e e et e e et s e et e e et e e et s e etaa s eeanaseaanaseaanneeens 1686
TRUNGCATE .ottt ettt ettt e et e e et s e et e e e tu s e etu e e et e e et e etta e etsaeeannserannsaesnnaaes 1687
UNLISTEN ettt ettt e et e et e et b e e et e e taaa e e etaa s eetaa s eatanseatnneeannsaeesaseansanaees 1689
L0124 B AN TSP OPPTUPPRN 1690
VACTUUDM ittt ettt ettt e e et s e et s e et e e et e e eaa s e et s eebun s eatanseesaeeanneeeaanaaes 1694
VALUES .ottt ettt et ettt e e et e et e e et e et b e e ab e et e et e et e et e aaa e aaans 1698
II. Postgres Pro Client APPLICATIONSuiiiniiiiiii e e e e e e et e e e e eaeeaanas 1700
Lod LI ES] 1] oo | o T PPN 1701
T3 4 =T- 1 7= Te | o T PPN 1704
CTEALEUSEYT ..oeuniiiiii ettt ettt et et e e et e et e et e ta e et e ean e au e et et etuneauaeeaneesnsaanseanaeeeneranaenneenes 1707
6 By} 076 1 o J 1711
6 By 010 F=1=Y 1714
704 o Yo E P PP PRRPN 1716
o Yo JE=V a0 [od s 1Yo - QOO PPPR 1718
PG DASEDACKUD ettt e e e e e e 1723
9701 0 1=1 s Vol o U 1731
oTo Je10) 1V o SO RO PPPR PPN 1749
o Yo Je L0 N1 o J OO PPPPR TR 1752
o Yo Je Lbha] o¥- 1 | KPP PRRTPTRRt 1765
1910 B ES] A= T- Vo | ORI TP PPPPRRPRt 1772
DG TECERIVEWAL ...ttt et e e e et e et e e et e e e et e e e e s e et s e et s eebaeeenaas 1774
o Yo B A=Toa T4 o Te 1 [o}- 1 U OIS 1778
DU TESTOTE ..ottt ettt ettt et et e et et e et e et e e tn e eaaetaasean s eaueeanaeetnsetnseanneenneeenns 1782
10 2= 0] 01 AP PP PRRR 1790
PG VETIETDACKUD «.oetiiiiiiieiii et et et e et e e et e e et s e et s e ean e e eaaeees 1792
1910 1 S 1795
130010 125 (6 | o PSPPI 1834
VACUUINAD ..o ettt e et e et e e et s e et e e et e e et e e et e eena e 1837
ITI. Postgres Pro Server APPLICAtIONScccuiiiiiiieii et e e et e e et e e e e e e eens 1842
1811 e | o TP PPPRRPRt 1843
PG ATCRIVECLEATITD ..iiiitiiii ittt e e et e et e e e e e et s e et s e et s eeanneeaens 1847
PG ChECKSUINS «.ciiiiiiiiiii ettt e et e et e e et e e et e e eaa s e eaa s e et eeenanes 1849
o Yo i et0) a1 o) Ko b= 1 - OIS 1851
o1 2 1 RO PP PRSPPIt 1852
PO TESEEWAL ..ttt ettt ettt e ettt e e et e et e et b e et e e et e eat s 1857
1910 B A=) o Lo OO PP ROPPT PP 1861
10 T SY AU o I TP 1865
PG EESE FSYTIC ettt ettt ettt e e et et et e e et e e e eaa e 1867
o Jo ST Al 0214 o o S PP UP TP PPTPPRUPRURt 1868
o Yo JRVY o Yo 1 o= Yo [T U OU O OTPRUOPPRRRS 1871
PG WALAUINID ©oeiiiiie ittt ettt ettt et e e ete e et e e e ta s e e tb s e ett e e aana e e aean e eabaneeebaneeesaeeennaes 1879
|10 1 T SRR 1881
TS m a0 b) =) PN 1888
VN B § o LY o o 1 OO PPRRRPN 1889
49. Overview of Postgres Pro INtEINaAlsciiiiiiiiiiiii et e e e e eaas 1890
49.1. The Path Of @ QUETY ..ucvuniiiiiieeie et e e et e e e et e e te e s e et e et e e e e aeneeanasrnaeees 1890
49.2. How Connections Are Establishedcccooiiiiiiiiii e 1890
78S TRG T N o T =) =T =) Al] = Vo [RN 1891
49.4. The Postgres Pro RUle SYSLEIMc.uiiiiiiiiiiiiii et e e 1892
2/ NS TN T = N 0 o T=Y o7 @)] 01 =) Ot 1892
4O9.6. EXCCULOT .ottt et et e et e et et et e et e b et e ea e eaeeaa e 1893
O 4] 1Y 0 N O 1 = 1 Lo o £ 1895

XV

Postgres Pro Standard
14.3.2 Documentation

50.1.
50.2.
50.3.
50.4.
50.5.
50.6.
50.7.
50.8.
50.9.

50.10.
50.11.
50.12.
50.13.
50.14.
50.15.
50.16.
50.17.
50.18.
50.19.
50.20.
50.21.
50.22.
50.23.
50.24.
50.25.
50.26.
50.27.
50.28.
50.29.
50.30.
50.31.
50.32.
50.33.
50.34.
50.35.
50.36.
50.37.
50.38.
50.39.
50.40.
50.41.
50.42.
50.43.
50.44.
50.45.
50.46.
50.47.
50.48.
50.49.
50.50.
50.51.
50.52.
50.53.
50.54.
50.55.
50.56.

jole = 11 ok ol o o N PPN
ST = i ot L
o1 = N A i I X

ST S R
ST T 0 = =
o2 e T I = il I 3 o P
jelefieTel o ¥=h vl ar- b B o L NN PP PP
fS1e TR o RV ot I o
<1 T = R it 2= = =
jele e] ol o MR YINT N ol ol I o Lo APPSO PPPPPPP
ST @ L= B = X N
1 @ T = 0 e
jsle Mo [SF=Tak ki o) ulli N o) o B PP

jole i Bs Lo 1=) - SR PP PP PPN
1o RIS 0¥ o TS kA o PPN
L1 T I o T v
<1 = o L G = K P
jele M R-B ale foTe) oy oY ol A PP PPN
jele - Rale ool o3y Yo h il 11 1) o= Lo k- N ot NN
DO NAME SPACE tuttuutnntanernteneeaneaneantaneenteantanaaneanteansnsensenssnaentsnsaneensensensennsensensenseneeneennenns
J o1 o) oY o N = N
S L) ST U
o1 e & = ¢ B N
jele il e X-Bak ik B wli o) o 1<t o MR t=1 o 1 K T PPN
PO 0 L L Oy tttenttrenteeteeaneeeneeenueeensesanessnseesssssnssesnsssnsssnssssnsssnssssssssnssssssssnsssnssssnsssnssesnssonns

T o
S T ok

jele il o) oIk e Tt vl Nl o N PP PP PPN
el b1 NIk NeF-N vl Ho) o Mk ol =N K PPN
jole JN o= BeYe | PN
jele i<y N I Nel-} vl Nel s Ml o} ak Ko i I s RN TR O PP PP PPN
ol R AN i A o PPN
ST N T @ T = ol N
<1 =TT =0« 1= T
ol E=1=Ye 15 1Y o o1 Y
S 1 TS 0 LS €T o ¥
oo JE=0 e X@ TS X a1y i N o
oL =T o B=T Yo AN o = N
jole = R Rl A= ol o R PPN
Jo 1o TSR u= R il A= i I = - N
[eIe =y =Rk =R ulk NN 5 Qi e I- 1 o= B PP
jele SR1 oF-Tohah o} vl N o) o BN U T PP PPN
jeleMINIbY oF-Tohah i o) i ol o Nl ol SN KN
ST T =T Ty T

XVi

Postgres Pro Standard
14.3.2 Documentation

51.

50.57.
50.58.
50.59.
50.60.
50.61.
50.62.
50.63.
50.64.
50.65.
50.66.
50.67.
50.68.
50.69.
50.70.
50.71.
50.72.
50.73.
50.74.
50.75.
50.76.
50.77.
50.78.
50.79.
50.80.
50.81.
50.82.
50.83.
50.84.
50.85.
50.86.
50.87.
50.88.
50.89.
50.90.
50.91.
50.92.
50.93.
50.94.
50.95.
50.96.
50.97.
50.98.
50.99.

ST R T o= 8 o = il B 1
jole vl ok e [« 1 el PPN
L1 T =T o) o i N N
j <X M X TR eTo) o il Ke F (= T R
oo i =T B ol S PPN
L T = T © T s

jele il oX-Tel IV o Yo M (ST 1iTe i AN ol e o Rul b= 4 it TN
21 J T o B« N
jole o1t Nat=T ol ol = R PPN
jole M B R TN =T=Y ol i B o L £ P PP PP
o K o @ 5)
Jo 1 J o o = N e Y o 6
J <1 R o Te LoD == N
<1 I Y & <
PO A T VL WS tuttitttetrintetieeeenteeeeennseenseossssenssssnssonsssssesnssssssssasssnsssssssssssssssssnsssnssonnsssnss
<1 X 30 = P

J ST I SR al =y X el T N = L = e
PO _PULlication _f£ables it e
PO _replication _Origin ST atlls tiiiiiiiiiiiiiiiiiiiiieireieiieeeeanteeeneeeneeeanteeneeenneesnseenneeenens
jele R a=Y NI Nel-} vl Ne) o =N K o) o - R PP PP
S 1 a0 =
21 B N
J ST =TT @ I < T TN
DO _SEOUETIICES tuttuutnntinttntenttaeiaetstentttersetssssesntsetssetssestsseentseessesssestssessttraessessesnessseseses
o1 TN T A w0 L
<1 = 0= K L 3
PO _ShMEm_ Al 1 OCat 1 0MS tiitiiitiiitieitiiittertrertterntreetensesaasssssessnsssnsossnsssnssesnsssnssesssssnssones
S N T U= U
T TN U= W T = -
| ST TS R = N o= T - =D =
1 =0 @ T
J ST T I LS @ o TS TN= 1 o) o ol e
jele Mo B (VAo o L= T 11 LY PPN

jole RUEICH ol (111 o) ol Nis Lo 1= R T
PO oV L W S tiiittiititieteiteetteeeneeeeeeaneeeneeenaeeeneeenseesneeensssnnsesnsssnsessnsssnseenssesnesennsesneesnasenneennes

Frontend/Backend PrOtOCOLo.iuieiiiiiie ettt ettt et et et e e ae e eenenes

51.1.
51.2.
51.3.
51.4.
51.5.
51.6.
51.7.
51.8.
51.9.
51.10

OVEBIVIEW .ttt ettt et et et e et et e et e et et e et e e e eanetnaeeaneaneaenaaenanns
MESSAFE FLOW .ttt e et e et e e e et e et e et e et e et e eaneaaneaeaaeaneaannns
SASL AUtREentICAtION ...citiiiiii ettt et e e
Streaming Replication ProtoColcoiuiiiiiiiii e

Logical Streaming Replication Protocolc.coiiiiiiiiiiiiiiiiiie e

MeESSAFE DALA TYPES .uiiniintiiiiiiiiie ettt et e et et e e s et et een s et et eansaaaaasanaannas
MeESSAGE FOTINALS ..iuiiniiiiiiii ittt et s e e et et s e s et et e e s anannaanns
Error and Notice Message FieldsScocuiiiiiiiiiiiiiiii e
Logical Replication Message FOrmatscccccuiiiiiiiiiiiiiiiiiece e

. Summary of Changes since ProtoCol 2.0cccooeiiiiiiiiiiiiiiii e
52. Writing a Procedural Language Handler

53. Writing a Foreign Data WIaDPDET ..c.uiiuiiiiiiiiie ettt ettt et e e e et e ee e e e e es e eeeaneanneens

ST R o T o= (20 =

jele MR ETSRalil (=) o) ol o Lo R PPN
N1 TV A TSN R

PO _avallabl e eX i en Sl oS tiiiiiiiiiiiiitiitiiiitirttittetettiettittetiatriatetiaeeiteettaetnarennens
Pg_available exXtensSion VeI SiONS tiiiiiiiitiiiittrenieeteraneeereesneeseesanessessnsessesnnseseonnssseenns

jele il e =) eX-Balcte M- A o= Rull Y 1S) o} wlf= R PN

xvii

Postgres Pro Standard
14.3.2 Documentation

54.

55.

56.

57.
58.

59.
60.

61.

62.

63.

64.

65.

66.

53.1. Foreign Data Wrapper FUNCEIONSciuiiiiiiiiiiie et e e e e 2021
53.2. Foreign Data Wrapper Callback ROULINESceivniiiiiiiiiiii i 2021
53.3. Foreign Data Wrapper Helper FUNCLIONSc.coviiiiiiiiiiiii e 2035
53.4. Foreign Data Wrapper Query Planningccc.oeiveiiiiiiiiii et ee e eaenas 2036
53.5. Row Locking in Foreign Data WIapPeTSc.eeiuiiiiiiiiieiie et e e e e e e e e eaneeaens 2038
Writing a Table Sampling Methodcoouniiiiiiii e 2040
54.1. Sampling Method Support FUNCLIONScovniiiniiiie e 2040
Writing @ Custom SCaAn ProvViderouiiiiiiiiiiii e e e e e e et e eaeeaanas 2043
55.1. Creating Custom Scan Pathsc.cooiiiiiiiiiii e e 2043
55.2. Creating Custom ScCan PIANScccuiiiiiiiiiiiiieeie e e et e e e et e e ae e e e eanns 2044
55.3. Executing CUSEOI SCAIS ...ivuiiiiiiiiiiiiiie ettt et e e e e ee et et e ene et eaneaneaanaanns 2045
GenetiC QUETY OPTIIIZET ..ivuiiniiiiiiiiiie et e et e e e e et e et et e e e et eanetnaaneeeneeneeneaeneens 2047
56.1. Query Handling as a Complex Optimization Problemc.cccooiiiiiiiiiiiiiiiiiiieiieeeens 2047
ST I ©1=) o T=Y mTolVAN Lo £} o o 1 00 - TS TR 2047
56.3. Genetic Query Optimization (GEQO) in Postgres Proc.ccocoeeiiiiiiiieiiiiiiiiecicecieeins 2048
56.4. FUIther REAMING ..ccvuiiiiiiiiii et e et e et e et e e e e et e et e e s esnnesenaannnas 2050
Table Access Method Interface Definitioncccoeiiiiiiiiiiiiiiii e 2051
Index Access Method Interface Definitionccoeiiiiiiiiiiiiiiiiiiii e 2052
58.1. Basic API Structure for INAEXESceiiiuiiiiiiiiiiii ettt eeaaees 2052
58.2. Index Access Method FUNCLIONSoiiiiiiiiiiiiiiii e 2054
TS TG T B a Lo 1) i Tot=1 o1 1 o RPN 2060
58.4. Index Locking ConsSiderationsccccueiiieiiiiiiiieiiie et e e e e e e e e e e e ea e eaaeeannas 2061
58.5. Index Uniqueness CRECKSccuiiiiiiiiiiiieee et e et e e e e et e e e e e e e et e eane e s eeens 2062
58.6. Index Cost Estimation FUNCTIONSviiiiiiiiiiiiiiiiiii e e 2063
GENETIC WAL RECOTAS ..ueiiiiiiiiiieiie ettt et ettt e et e e et s e et s e et e e eaaeeeeaasaeabaaees 2066
B-TTEE IMAEXES ..eeuniiiiiieiie ettt ettt e et e et e et e e et e e et e e et s e et s eatan e eaaneeennseeenns 2068
B0.1. INEFOAUCTION .eviniiiiiiiiii et ettt e e et e et e e et e e eaa e e et e e et e eebaneeenaens 2068
60.2. Behavior of B-Tree Operator ClaSSEScccuviiiiiiiieiieiiieeieeeieeeteeie e e eaeeaesaeesenasaanas 2068
60.3. B-Tree Support FUNCEIONSc.oiiiiiiiiiiii ettt et e e et et e e e e eaeanee 2069
60.4. IMPLEMENtAtION L..iveiiiiiieee et e et e et e et e et e et e et e et e a e et araaaeaan 2071
L@ A B 1o L= (T SO 2075
1.1, INETOAUCTION .eetiniiiiiieiii ettt et e e et s e et e e et e e eaa e e et e e et e eebaeeenaens 2075
61.2. BUilt-in OpPerator CLASSES ...c.uciiuiiiiiiiiiiieeii et e e e et et eeteete e s e et e et e eaeaearesanaernaesnnesnns 2075
O RC TR 5 Y o 1531 31) RN 2078
I B a0} 0] Lo a =Y a1 =Y) o N 2089
N T 5= 1101 o] (=T S 2089
SP-GIST INAEXES ...eeiuniiiiiieiiiee ettt ettt e et e et s e et e e et e e et e e et e eatan s easaseasaeeenaeennans 2091
2/ IO 4 L o Lo L T o1 1 o) o A OO 2091
62.2. BUilt-in OPerator CLASSES ...c.uiiiuiiiiiiiieieeii et e e e e e e et e e te e s e et e et e eaeaeaeeeanaernaesnneeens 2091
LSV G T 0 1Y o 531 031 1 RN 2093
Y N 00} 0] = a =Y a1 =Y) o PN 2100
GIN INAEXES .euteitiiiiietei ettt ettt e et e et e et e e et e e e tt s e eta s e eaaa e e eaan s eetanseataneeasanseannneaenans 2102
76 T80 IO B4 L 4 0 To L T o1 1 o) o AU OO 2102
63.2. BUilt-in OpPerator CLASSES ...c.uciiuiiiiniiiieiee et e e e e et e et e e te e s e et e et e eaeeeaenesanaernaesnneenns 2102
LS36 T0C T 05 1Y o 531 031 51 PR 2103
L0 T T B a0} 0] = a =Y a1 =Y) o TS 2105
63.5. GIN TipS @nd TTICKS ..icvuiiiiiiiiiiiieiiie e e et e e e et e e e e et e st e et e eseeeenneeanaeaneenns 2107
63.6. LIMITATIONS .oeuniniiiiiii ettt et et et e et e et e et e eb e ea e ean e e eenas 2107
(36 0 5 <= 1111 o] (=T S 2107
BRIN INAEXES ..uiiiunieiiitiiiieee ettt ettt e et e et e e et e e et e e et e e e et eetta e etaa e etanseeenneeasaneessanaenen 2109
N IO 4 L 4 o To L o1 1 o) o A OO OO 2109
64.2. BUilt-in OpPerator CLASSES ...c.uiiiuiiiiiiiieieeii et e e e et et e et e e te e s e et e et e eaeeeaeeeanaernaesnneenns 2109
O G T 5 1Y o 531 01 1 RN 2117
HASH INAEXES «oeuiiiiiieiit ettt et e et ettt e e et e e et e e et s e et e eeaa e e et eeabanaees 2122
05.1. OVEIVIEW .euiiiiiiiiiiit ettt et ettt et et e et e et e ea e eaa e et s eann e the e et eanetnsaanneennaeeneenns 2122
65.2. IMPLeMENtAtION ...iveiiiiei e e et e et e e et e et e e e e aaeaan 2123
Database PhySiCal STOTAGEcivuiiiiiii i e et e e e et e et e et e et e e e e aenasannas 2124
66.1. Database File LayOulcccuiiiiiiiiiiiie et e e e e et e et e e e e e e ea e e e e aana s 2124

xviii

Postgres Pro Standard
14.3.2 Documentation

0.2, TOA ST .ottt et e et e e et e e et e e et e et e et et et e eaa e et e et eeaanns
06.3. FIEE SPACE MAPD tiuiiniiiiiiiiiii ettt et e e e e et et e et et e e e et e e et e e aan e e e aans
L R VA 1=y 1 oY 1 v Y - o S
66.5. The Initialization FOTKcoiiiiiiii et e e e e et e e aeeeaeeens
66.6. Database Page LayOulc.coiiiiiiiiiiii et e et e e e e aaas
67. How the Planner Uses StatiStiCsooiiuiiiiiiiiiiiie e e e

67.1

. Row Estimation EXampPLesccooiiuiiiiiiiiiiiee et e et e e e et e e e e s e st eaanas

67.2. Multivariate StatisticsS EXamPILESc.uiiiniiiiiiiiiii et
67.3. Planner Statistics and SeCUTILYcoivuiiiiiiiiiii e
68. Backup Manifest FOIMAtcccuuiiiiiiiii et e e et e e e et e e e e e e e e eanaas

68.1

. Backup Manifest TOP-1eVel ODJECEcouniiiiiiiiiie e e e e

68.2. Backup Manifest File ODJECE ...ccvniiiiiiiei e e

68.3. Backup Manifest WAL Range ODJECt ...c.uiiuniiiiiiiiiiie e

AV 0 N o) 1= o T b (=Y SN
PN o T W 4 T o T o) O o o LY

B. Date/Time SUPPOTTE «.ouniiiiii ettt et e et et e et et e e e et eaa et e e aaneaneeneannaeneens

B.1.
B.2.
B.3.
B.4.
B.5.
B.6.
B.7.
C. SQL
D. SQL
D.1.
D.2.
D.3.

Date/Time Input INterpretationccccvii i e e e e e e
Handling of Invalid or Ambiguous Timestampsccccuoiviiiiiiiiieiieee e,
Date/Time KEY WOTAS ...cvniiiiiieeiiiei e et e et e et e et e et e e e et e e e e e e e st e saneasaneees
Date/Time Configuration FileSccc.oiiiiiiiiiiiiii e e e e e e e e
POSIX Time Zone SPecCifiCationsccccueiiiiiiiiiiiiiii e e e e e e eanes
i D]) oy 0 i U 0 £ NN
LTt N B T =TSN
L) L (0) (o
CONTOTINATICE .oeuuiiiiiieii ettt et e et e et e e et s e et e e et e e eaa e eeaaeeebaeeesaeeannaes
SUPPOTEEA FEALUTIES ...eniiniiiiii et e et e et e et e et e et e et e et e eaneeaneeanns
Unsupported FEAtUTEScouiiiiiiiieiie e e e e e et e e e et e et e e e e e e eaneasneees
XML Limits and Conformance to SQL/XML ...ttt aeaens

B REIEASE INOLES euininiiiiiin ittt ettt ettt ettt e st e e s et e en s et e enea et e eneassaenenensseenenenns

. Postgres Pro Standard 14.3.2 ...t et a e a e aas

Postgres Pro Standard 14.3.1 ... e e e a e a e aas
Postgres Pro Standard 14.2.1 ...t e e e e e e e a e aas
Postgres Pro Standard 14.1.1 ...t e e e e e e e e e e aa e aas
RELEASE 14.3 ..ottt ettt et et e e et e et e et e et e e aaa e eaa e
RELEASE 14.2 oottt e et e et e e et e et e et e et e e aaa e eaa e
RELEASE L14.1 oottt ettt e et e et e e et e e et e e et e e et e e et e e aan e et e
RELEASE 14 ...ttt e e et e et et e e et et e ea e e ab e e e

B o o (o) ol R UEY (Yo oL - RO

F. Additional Supplied MOGUIESc..oiiiniiiiiiiiii et et e e e e et e e e e st e eae e e e saneannnas

F.1.
F.2.
F.3.
F4.
F.5.
F.6.
F.7.
F.8.
F.9

F.10.
F.11.
F.12.
F.13.
F.14.
F.15.
F.16.
F.17.
F.18.
F.19.

o Te Ba 0} o Vo] : NN
N0 To] 11T o) ORI
AUEN dELAY oeeiiiii ettt et e et e e eaaa s
oI 5):q] F= 1 RPN
o] (oo 1's ES PP
o) cTC T o 11 R PPN
o1y cTC R o 1) AU PRt
(012« APPSR OP TSP

[0 101 A o L PP TOPPRPUPRRt
o hlof b <) 1 RO OTPRUUPRRRRt
(o LB N0} S - PP PP
CATTNAISTATICE ..eiviiiiiii ettt e et e et e et e e e e e eees

| 7S] M0) 4 S PR

Xix

Postgres Pro Standard
14.3.2 Documentation

F.20.
F.21.
F.22.
F.23.
F.24.
F.25.
F.26.
F.27.
F.28.
F.29.
F.30.
F.31.
F.32.
F.33.
F.34.
F.35.
F.36.
F.37.
F.38.
F.39.
F.40.
F41.
F.42.
F.43.
F.44.
F.45.
F.46.
F.47.
F.48.
F.49.
F.50.
F.51.
F.52.
F.53.
F.54.
F.55.
F.56.
F.57.
F.58.
F.59.
F.60.
F.61.
F.62.
F.63.
F.64.

101 %< Lo £ E RPNt
1S3 o R PP

| o XN

ONLINE ANALYZE ..oiviiiiiii ettt et e e et e e e e e
o) (o S T-Y o 1] a o | PP OTPRUPPPRRPRt
=T e (3101 1< o VPP
T 330 e Lol o =T od - RN
PG DUITETCACKE ..ueiiiici e e e e e e e e eaas
| 916 (04 174 01 {0 R PPN
DG fTEESPACEIMAD .uuiiiiieiii ettt ettt ettt e et e et e et e et e et e et e e et e e e b e et eaaanes
oYo oY= 1 a1 0= o H ORISR
910 J o) 4o -1t L 1 PP OPRRU PPN
DODTO DWT ettt ettt ettt e et e e et e e et e e et e etta e eeta s aetaa s eatuaeetuaeaannaeeennseetansaesanseesansennneesnns
DO DPTEWATTIL «euueiiuneettineettieetuneetunseetuaeetueettuneeteaneettaseetsaeatsnetennseesnnsessnnseesnnseesnseeennsees
PODIO SEALS Lttt et e eaa e
PO QUETY SEALE ..oniiniiiii i e
10 10N 10 Yol <
PG stat statements
L0 FST = 1 b o) 1SRN

910 JES10 N 4o 1= oy PPN

910 [A 1 8 1 R PP PPPPTPPPR
PO TSPATSET .t ettt et ettt et ettt e e e e e

PG VATIADLIES ettt ettt et e e e e et e et e eai e aaa e eaa e
PG VISIDILIEY oeniiiiie et ea e
o1 E= N b o 1= RN
POSETES FAW ettt et e et e e et e e et s e et s e et e eanaeeeans
0101 o] : SN
Y=Y o SR

=TS e LeTodoTe Yo AU PPPTRPOTRN
TSI SYSTEIM TOWS L.eeiiniii ettt et e e eas
ESIN SYSTEIMN TIIMIE L.eenniiiiii ettt et e e et e e e e e e e e e e ena s
UNACCEINT ettt e e e e e
LUV L0 B 011 o N
b4 01 O PP PPTRR PPN

G. Additional SUppPlied PIrOQTamSiiiuiiiieieeiie et eie et e e e e te et e st e st e et aeaaeennessneeanaeanesnnnns
G.1. Client APPICATIONS ..ouuiiiiiiiiiei i e e e e e et e et e e e et e et e eaaeanneeanaeanns
(CTVRIETC) =) AN o] 01§ (o= 1 o) o - PPN

| R 5 =Y = | o 4 0 =T PNt
H.1. CLENt INTEITACES .oeeuiiiiiiiiiie ettt e et e et e e et e e et e e et e eenaens
H.2. AdminiStration TOOLScciiuuiiiiiiiiiiie ettt e et e e et e e et e e eaaeeeaans
H.3. Procedural LanQUagESceeuueeiuneiiieieeieetieeieetiesteeestestastneesnnessnessnaereaesrnesanassneesnnesnns
H.Z. EXTEIISIONS .tuuiiiiiiiiiiiiieiie ettt ettt et et et e et et et e et e et eeb e et e etnsetnneeaneeaneanneaneearanennnns

I. Configuring Postgres Pro for 1C SOIULIONSovieiiiiiiiiiiii et e e e

J. POSEGTES Pro LIIMIES ..ouiiniiiiiiiiii e et e et e e e et e e e e e e e e e e e e e e e aans

K. Demo Database “AITlIIES”ccouuiiiiiiiiiii ettt ettt e et e et e et s e et e eeb e e eeaneeeanaaes
KL, INSEALIATION ceunniiiiie ittt ettt e et e et e e et e e eaa e e e b e e et e e et e eenanes
| SO Tod =T a0 = T D) T Yo 1 = 1o o RS PPURN

XX

Postgres Pro Standard
14.3.2 Documentation

| SORC T Tod a =] a0 = N D T=Y-Toa o § o] 1 10) o NS RRN 2653

| Yo 1= a0 = N @] o)=Y od SRt 2654

| T T Yo [PR 2660

| AN od a0) 1172 40 - TP UPPPRRE 2668

AV B] L0 T3 7- ¥ oy 2N 2673

A T O0) 1o ol AV o) 010) o O 2684
N.1. When ColoT IS USEA ...ouivuiiiiiiiiieieieei e e e e et e et e e e et et e e e st eaesneeneeanns 2684

N.2. Configuring the COlOTSciiiiiiiiiiiiiie et e e e e e e et e et e e s e aeneeanaeanns 2684

O. Obsolete or Renamed FEALUTESoouiiiiiiiii e e e e e ee e e e e e eaeens 2685
0.1. recovery.conf file merged into postgresgl.Conf .iuiiiiiiiiiieiiii i 2685

0.2. Default Roles Renamed to Predefined ROIEScoivniiiiiiiiiiiieeeee e, 2685

0.3. pg_xlogdump renamed 0 PG WaLldUMD .oeuieriiririeniiniieineiiieenernerernererernerererserereererernenerns 2685

0.4. pg_resetxlog renamed 0 PG_TeSEEWAL civiiiiiieiiiieieeieeieeeeeererereereerererneerernernns 2685

0O.5. pg_receivexlog renamed t0 pPg_reCeivVeWal wovviii ittt e e eeaaas 2685

L0 0] E 0T =1 o 07/ 2686
| aTo 1= SO 2688

xXxXi

Preface

This book is the official documentation of Postgres Pro Standard. It has been written by the Postgres
Pro developers, PostgreSQL community, and other volunteers in parallel to the development of the
PostgreSQL and Postgres Pro software. It describes all the functionality that the current version of
Postgres Pro officially supports.

To make the large amount of information about Postgres Pro manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
Postgres Pro experience:

e PartIis an informal introduction for new users.

* Part Il documents the SQL query language environment, including data types and functions, as well
as user-level performance tuning. Every Postgres Pro user should read this.

e Part III describes the installation and administration of the server. Everyone who runs a Postgres
Pro server, be it for private use or for others, should read this part.

* Part IV describes the programming interfaces for Postgres Pro client programs.

¢ Part V contains information for advanced users about the extensibility capabilities of the server.
Topics include user-defined data types and functions.

e Part VI contains reference information about SQL commands, client and server programs. This part
supports the other parts with structured information sorted by command or program.

e Part VII contains assorted information that might be of use to Postgres Pro developers.

1. What Is Postgres Pro Standard?

Postgres Pro Standard is an object-relational database management system (ORDBMS), developed by
Postgres Professional in the Postgres Pro fork of PostgreSQL, which is in turn based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

Both PostgreSQL and Postgres Pro Standard support a large part of the SQL standard and offer many
modern features:

complex queries

foreign keys

triggers

updatable views

transactional integrity
multiversion concurrency control

Besides, PostgreSQL and Postgres Pro can be extended by the user in many ways, for example by adding
new

data types

functions

operators

aggregate functions
index methods
procedural languages

2. Difference between Postgres Pro Standard and
PostgreSQL

Postgres Pro provides the most actual PostgreSQL version with some additional patches applied and
extensions added. It includes new features developed by Postgres Professional, as well as third-party

xxii

http://postgresql.org
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

patches already accepted by the PostgreSQL community for the upcoming PostgreSQL versions. Postgres
Pro Standard users thus have early access to important features and fixes.

Note

Postgres Pro Standard is provided under the following license: https://postgrespro.com/products/
postgrespro/eula. Make sure to review the license terms before downloading Postgres Pro
Standard.

Postgres Pro Standard provides the following enhancements over PostgreSQL.:

e Improved deadlock detection mechanism that does not cause performance degradation.

* Better planning speed and accuracy for various query types.

* Reduced memory consumption in complex queries that involve multiple tables.

¢ Displaying planning time in the output of the auto explain module.

* NUL byte replacement with the specified ASCII code while loading data using the copy FrROM
command. (See nul byte replacement on import parameter description.)

e ICU collation support on all platforms to provide platform-independent sort for various locales. By
default, the icu collation provider is used for all locales except ¢ and pPOSIX. (See Section 22.2.2.)

« PTRACK implementation, which enables pg probackup to track page changes on the fly when
creating incremental backups.

* Support for reading pg_control of previous PostgreSQL/Postgres Pro major versions by
pgpro_controldata.

¢ Cluster compatibility verification, which allows you to determine whether the current Postgres
Pro version is compatible with the specified cluster and identify all parameters that can affect the
compatibility without starting the cluster. (See pgpro controldata and -7 option of postgres.)

* Changing the restore_command parameter without restarting the server.

* Improvements for command-line editing using WinEditLine in the Windows version of psql,
including autocomplete support in psql console and changing the psql default encoding to UTF-8.

» Unified structure of binary installation packages across all Linux distributions, which facilitates
migration between them and allows to install different PostgreSQL-based products side by side,
without any conflicts. (See Chapter 16.)

¢ Advanced authentication policies that provide effective password management and access control.
(See CREATE PROFILE and ALTER ROLE).

* Built-in data security mechanisms that enable sanitizing an object by filling it with zeroes before
deletion. Zeroing can be done before purging files in external memory and removing outdated row
versions (page vacuum), freeing RAM, and deleting or overwriting WAL files. (Certified edition
only.)

Postgres Pro Standard also includes the following additional modules:

« dump stat module that allows to save and restore database statistics when dumping/restoring the
database.

» fasttrun module that provides transaction-unsafe function to truncate temporary tables without
growing pg_class Size.

» fulleq module that provides additional equivalence operator for compatibility with Microsoft SQL
Server.

¢ hunspell-dict module that provides dictionaries for several languages.

* jsquery module that provides a specific language for effective index-supported querying of JSONB
data.

* mamonsu monitoring service, which is implemented as a Zabbix agent.

* mchar module that provides additional data type for compatibility with Microsoft SQL Server.

* online analyze module that provides a set of changes to immediately update statistics after INSERT,
UPDATE, DELETE or SELECT INTO operations applied for affected tables.

* pgbouncer connection pooler.

* pg integrity check module that calculates and validates checksums for controlled files. (Certified
edition only.)

xxiii

https://postgrespro.com/products/postgrespro/eula
https://postgrespro.com/products/postgrespro/eula

Preface

* pg pathman module that provides optimized partitioning mechanism and functions to manage
partitions. Starting from Postgres Pro 12, using pg pathman is not recommended. Use vanilla
declarative partitioning instead, as described in Section 5.11.

* pg proaudit extension that enables detailed logging of various security events.

* pg probackup, a backup and recovery manager.

* pgpro controldata, an application to display control information of a PostgreSQL/Postgres Pro
database cluster and compatibility information for a cluster and/or server.

* pgpro pwr extension that enables you to generate workload reports, which help to discover most
resource-intensive activities in your database.

* pgpro stats extension that combines tracking execution statistics of SQL statements and
calculating wait event statistics.

* pg query state module that enables you to get the current state of query execution for a backend.

* pg repack utility for reorganizing tables.

* pg tsparser module, which is an alternative text search parser.

* pg variables module that provides functions for working with variables of various types.

¢ plantuner module that provides hints for the planner to disable or enable indexes for query
execution.

* shared ispell module that enables storing dictionaries in shared memory.

Postgres Pro Standard releases follow PostgreSQL releases, though sometimes occur more frequently.
The Postgres Pro Standard versioning scheme is based on the PostgreSQL one and has an additional
decimal place.

3. A Brief History of PostgreSQL

The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

3.1. The Berkeley POSTGRES Project

The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (later merged into Informix, which is now owned by IBM) picked up the code and
commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000
scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

XXiv

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

3.2. Postgres95

In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30-50% faster on the Wisconsin
Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

* The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpg was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was also added.

* A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

* A new front-end library, 1ibpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

¢ The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

* The instance-level rule system was removed. Rules were still available as rewrite rules.

* A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

¢ GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

3. PostgreSQL

By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

w

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

4. Conventions

The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (.. .)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Postgres Pro system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

XXV

Preface

5. Bug Reporting Guidelines

When you find a bug in Postgres Pro we want to hear about it. Your bug reports play an important part
in making Postgres Pro more reliable because even the utmost care cannot guarantee that every part of
Postgres Pro will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

5.1. Identifying Bugs

Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:

* A program terminates with a fatal signal or an operating system error message that would point to
a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

¢ A program produces the wrong output for any given input.
* A program refuses to accept valid input (as defined in the documentation).

* A program accepts invalid input without a notice or error message. But keep in mind that your idea
of invalid input might be our idea of an extension or compatibility with traditional practice.

* Postgres Pro fails to install according to the instructions on supported platforms.

Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

5.2. What to Report

When reporting a bug, make sure to state all the facts. Each bug report should contain the following
items:

* The exact sequence of steps from program start-up necessary to reproduce the problem. This
should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqglrc start-up file.) An
easy way to create this file is to use pg dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries.

* The output you got. If there is an error message, show it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of your test
case is a program crash or otherwise obvious it might not happen on our platform. The easiest
thing is to copy the output from the terminal, if possible.

Note

If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the

XXVi

Preface

server log, set the run-time parameter log error verbosity to verbose so that all details are
logged.

Note

In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server.

¢ The output you expect is very important to state. Please provide the expected output, if applicable.

* Any command line options and other start-up options, including any relevant environment variables
or configuration files that you changed from the default.

e Anything you did at all differently from the installation instructions.

* The Postgres Pro version. You can run the command SELECT pgpro_version (); to find out the
version of the server you are connected to. Most executable programs also support a —-version
option; at least postgres --version and psqgl --version should work.

¢ Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on.

5.3. Where to Report Bugs

In general, send bug reports to our support email address at <bugs@postgrespro.ru>. You are requested
to use a descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports specific to Postgres Pro to the PostgreSQL support email address,
as Postgres Pro is not supported by the PostgreSQL community. But you can send reports to
<pgsgl-bugs@lists.postgresql.org> for any bugs related to PostgreSQL.

Even if your bug is not specific to Postgres Pro, do not send bug reports to any of the user mailing
lists, such as <pgsql-sqgl@lists.postgresql.org> Or <pgsqgl—-general@lists.postgresql.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers' mailing list
<pgsgl-hackers@lists.postgresqgl.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if the community could keep the bug reports separate. The community might choose
to take up a discussion about your bug report on pgsgl-hackers, if the PostgreSQL-related problem
needs more review.

xXxVii

Part |. Tutorial

Welcome to the Postgres Pro Tutorial. The following few chapters are intended to give a simple
introduction to Postgres Pro, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers. No
particular Unix or programming experience is required. This part is mainly intended to give you some
hands-on experience with important aspects of the Postgres Pro system. It makes no attempt to be a
complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applications for
Postgres Pro. When learning SQL, you can use the demo database described in Appendix K. Those who
set up and manage their own server should also read Part III.

Chapter 1. Getting Started

1.1. Installation

Before you can use Postgres Pro you need to install it, of course. It is possible that Postgres Pro is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access Postgres Pro.

If you are installing Postgres Pro Standard yourself, then see instructions on installation (Chapter 16),
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals

Before we proceed, you should understand the basic Postgres Pro system architecture. Understanding
how the parts of Postgres Pro interact will make this chapter somewhat clearer.

In database jargon, Postgres Pro uses a client/server model. A Postgres Pro session consists of the
following cooperating processes (programs):

¢ A server process, which manages the database files, accepts connections to the database from
client applications, and performs database actions on behalf of the clients. The database server
program is called postgres.

e The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, a web server that accesses the database to display web pages, or a specialized
database maintenance tool. Some client applications are supplied with the Postgres Pro
distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The Postgres Pro server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the supervisor server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database

The first test to see whether you can access the database server is to try to create a database. A running
Postgres Pro server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

Getting Started

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:
createdb: command not found

then Postgres Pro was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: No such
file or directory
Is the server running locally and accepting connections on that socket?

This means that the server was not started, or it is not listening where createdb expects to contact it.
Again, check the installation instructions or consult the administrator.

Another response could be this:

createdb: error: connection to server on socket "/tmp/.s.PGSQL.5432" failed: FATAL:
role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Postgres
Pro user account for you. (Postgres Pro user accounts are distinct from operating system user accounts.)
If you are the administrator, see Chapter 20 for help creating accounts. You will need to become the
operating system user under which Postgres Pro was installed (usually postgres) to create the first user
account. It could also be that you were assigned a Postgres Pro user name that is different from your
operating system user name; in that case you need to use the -u switch or set the PGUSER environment
variable to specify your Postgres Pro user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: error: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If Postgres Pro refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed Postgres Pro yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as.

You can also create databases with other names. Postgres Pro allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

! Asan explanation for why this works: Postgres Pro user names are separate from operating system user accounts. When you connect to a database, you can choose
what Postgres Pro user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a Postgres Pro user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a Postgres Pro user name to connect as.

Getting Started

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database

Once you have created a database, you can access it by:

* Running the Postgres Pro interactive terminal program, called psql, which allows you to
interactively enter, edit, and execute SQL commands.

+ Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC
support to create and manipulate a database. These possibilities are not covered in this tutorial.

¢ Writing a custom application, using one of the several available language bindings. These
possibilities are discussed further in Part IV.

You probably want to start up psgl to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psgl mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psgl (14.3.2)
Type "help" for help.

mydb=>

The last line could also be:

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Postgres

Pro instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psgl then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psqgl is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT pgpro_version();
version

PostgresPro 14.3.2 on x86_64-pc-linux—-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,
64-bit
(1 row)

mydb=> SELECT current_date;
date

2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
?column?

Getting Started

(1 row)

The psgl program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various Postgres Pro SQL
commands by typing:

mydb=> \h

To get out of psql, type:
mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

Chapter 2. The SQL Language

2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including melt93 and date97. You should be aware that some Postgres Pro
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

2.2. Concepts

Postgres Pro is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Postgres Pro
server instance constitutes a database cluster.

2.3. Creating a New Table

You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (

city varchar (80),

temp_1lo int, —-— low temperature
temp_hi int, —— high temperature
prcp real, —-— precipitation
date date

)i

You can enter this into psgl with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--") introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar (80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

Postgres Pro supports the standard SQL types int, smallint, real, double precision, char (N),
varchar (N), date, time, timestamp, and interval, as well as other types of general utility and a rich set
of geometric types. Postgres Pro can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

The SQL Language

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
name varchar (80),
location point

)i
The point type is an example of a Postgres Pro-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows

The 1INSERT statement is used to populate a table with rows:
INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27");

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)"');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29");

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.
Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used copy to load large amounts of data from flat-text files. This is usually faster
because the copy command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the copy
command in COPY.

2.5. Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here + is a shorthand for “all columns”. ! So the same result would be had with:

! While sErECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;
The output should be:

city | temp_lo | temp_hi | prcp | date
——————————————— o
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 43 | 57 | 0O | 1994-11-29
Hayward \ 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:
SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;
This should give:

city | temp_avg | date
_______________ T
San Francisco | 48 | 1994-11-27
San Francisco | 50 | 1994-11-29
Hayward \ 45 | 1994-11-29
(3 rows)

Notice how the As clause is used to relabel the output column. (The As clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather

WHERE city = 'San Francisco' AND prcp > 0.0;
Result:
city | temp_lo | temp_hi | prcp | date
——————————————— B S e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
ORDER BY city;

city | temp_lo | temp_hi | prcp | date
——————————————— -t
Hayward \ 37 | 54 | | 1994-11-29
San Francisco | 43 | 57 | 0 | 1994-11-29
San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
FROM weather;

Hayward
San Francisco

The SQL Language

(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
FROM weather
ORDER BY city;

2.6. Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at
once, or access the same table in such a way that multiple rows of the table are being processed at the
same time. Queries that access multiple tables (or multiple instances of the same table) at one time are
called join queries. They combine rows from one table with rows from a second table, with an expression
specifying which rows are to be paired. For example, to return all the weather records together with
the location of the associated city, the database needs to compare the city column of each row of the
weather table with the name column of all rows in the cities table, and select the pairs of rows where
these values match.’ This would be accomplished by the following query:

SELECT * FROM weather JOIN cities ON city = name;

city | temp_lo | temp_hi | prcp | date \ name | location
——————————————— et e e e 2t e

San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)

San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(2 rows)

Observe two things about the result set:

e There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

» There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
FROM weather JOIN cities ON city = name;

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
weather.prcp, weather.date, cities.location
FROM weather JOIN cities ON weather.city = cities.name;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.
Join queries of the kind seen thus far can also be written in this form:

SELECT *
FROM weather, cities
WHERE city = name;

This syntax pre-dates the J01N/ON syntax, which was introduced in SQL-92. The tables are simply listed in
the FroM clause, and the comparison expression is added to the WHERE clause. The results from this older

2 In some database systems, including older versions of Postgres Pro, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current Postgres Pro does not guarantee that DISTINCT causes the rows to be ordered.

3 This is only a conceptual model. The join is usually performed in a more efficient manner than actually comparing each possible pair of rows, but this is invisible
to the user.

The SQL Language

implicit syntax and the newer explicit JOIN/ON syntax are identical. But for a reader of the query, the
explicit syntax makes its meaning easier to understand: The join condition is introduced by its own key
word whereas previously the condition was mixed into the WHERE clause together with other conditions.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
FROM weather LEFT OUTER JOIN cities ON weather.city = cities.name;
city | temp_lo | temp_hi | prcp | date \ name | location
fffffffffffffff e e st e
Hayward \ 37 | 54 | | 1994-11-29 |
San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
San Francisco | 43 | 57 | 0O | 1994-11-29 | San Francisco | (-194,53)

(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT wl.city, wl.temp_lo AS low, wl.temp_hi AS high,
w2.city, w2.temp_lo AS low, w2.temp_hi AS high
FROM weather wl JOIN weather w2
ON wl.temp_lo < w2.temp_lo AND wl.temp_hi > w2.temp_hi;

city | low | high | city | low | high
——————————————— s s e ittt FE
San Francisco | 43 | 57 | San Francisco | 46 | 50
Hayward \ 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as w1 and w2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
FROM weather w JOIN cities ¢ ON w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

Like most other relational database products, Postgres Pro supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max (temp_lo) FROM weather;

10

The SQL Language

(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:
SELECT city FROM weather WHERE temp_lo = max (temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the wWHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
WHERE temp_lo = (SELECT max (temp_lo) FROM weather);

San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GRour BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city;

city | max
_______________ +_____
Hayward \ 37
San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
FROM weather
GROUP BY city
HAVING max (temp_lo) < 40;

city | max
_________ b
Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_1o values below 40. Finally, if we
only care about cities whose names begin with “s”, we might do:

SELECT city, max(temp_lo)
FROM weather
WHERE city LIKE 'S%' -
GROUP BY city
HAVING max (temp_lo) < 40;

The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will

11

The SQL Language

be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates

You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
WHERE date > '1994-11-28"';

Look at the new state of the data:

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— Bt T s At e
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29
Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions

Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';
All weather records belonging to Hayward are removed.

SELECT * FROM weather;

city | temp_lo | temp_hi | prcp | date
——————————————— B s e A
San Francisco | 46 | 50 | 0.25 | 1994-11-27
San Francisco | 41 | 55 | 0 | 1994-11-29

(2 rows)

One should be wary of statements of the form
DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

12

Chapter 3. Advanced Features

3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Postgres
Pro. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some Postgres Pro extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views

Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
SELECT name, temp_lo, temp_hi, prcp, date, location
FROM weather, cities
WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys

Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so Postgres Pro can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
name varchar (80) primary key,
location point

)i

CREATE TABLE weather (
city varchar (80) references cities (name),
temp_1lo int,
temp_hi int,
prcp real,
date date
)i

Now try inserting an invalid record:

13

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28");

ERROR: insert or update on table "weather" violates foreign key constraint
"weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions

Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:

UPDATE accounts SET balance = balance - 100.00

WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00

WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00

WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In Postgres Pro, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and coMMIT commands. So our banking transaction would actually look like:

BEGIN;
UPDATE accounts SET balance = balance - 100.00

14

Advanced Features

WHERE name = 'Alice';
—-— etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of commIT, and all our
updates so far will be canceled.

Postgres Pro actually treats every SQL statement as being executed within a transaction. If you do
not issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
coMMIT wrapped around it. A group of statements surrounded by BEGIN and coMMIT is sometimes called
a transaction block.

Note

Some client libraries issue BEGIN and coMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use
of savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing
the rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back to
it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:

BEGIN;
UPDATE accounts SET balance = balance - 100.00
WHERE name = 'Alice';

SAVEPOINT my_savepoint;
UPDATE accounts SET balance
WHERE name = 'Bob';

-— oops ... forget that and use Wally's account

ROLLBACK TO my_savepoint;

UPDATE accounts SET balance = balance + 100.00
WHERE name = 'Wally';

COMMIT;

balance + 100.00

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions

A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

15

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

depname | empno | salary | avg
——————————— e e
develop \ 11 | 5200 | 5020.0000000000000000
develop \ 7 4200 | 5020.0000000000000000
develop \ 9 | 4500 | 5020.0000000000000000
develop \ 8 | 6000 | 5020.0000000000000000
develop \ 10 | 5200 | 5020.0000000000000000
personnel | 5 | 3500 | 3700.0000000000000000
personnel | 2 3900 | 3700.0000000000000000
sales \ 3 | 4800 | 4866.6666666666666667
sales \ 1 | 5000 | 4866.6666666666666667
sales \ 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The oVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within ovER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
rank () OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

depname | empno | salary | rank
——————————— R
develop \ 8 | 6000 | 1
develop \ 10 | 5200 | 2
develop \ 11 | 5200 | 2
develop \ 9 | 4500 | 4
develop \ 7 4200 | 5
personnel | 2| 3900 | 1
personnel | 5 | 3500 | 2
sales \ 1| 5000 | 1
sales \ 4 | 4800 | 2
sales \ 3 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank for each distinct oORDER BY value in the
current row's partition, using the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the ovER clause.

16

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FrROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different over clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. ! Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;
salary | sum
,,,,,,,, I
5200 | 47100
5000 | 47100
3500 | 47100
4800 | 47100
3900 | 47100
4200 | 47100
4500 | 47100
4800 | 47100
6000 | 47100
5200 | 47100

(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

salary | sum
________ I
3500 | 3500
3900 | 7400
4200 | 11600
4500 | 16100
4800 | 25700
4800 | 25700
5000 | 30700
5200 | 41100
5200 | 41100
6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the seLECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window

! There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

17

Advanced Features

aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
(SELECT depname, empno, salary, enroll_date,
rank () OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a wINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
FROM empsalary
WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance

Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (

name text,

population real,

elevation int, -— (in ft)
state char (2)

)i

CREATE TABLE non_capitals (

name text,
population real,
elevation 1int -— (in ft)

)i

CREATE VIEW cities AS
SELECT name, population, elevation FROM capitals
UNION
SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.
A better solution is this:

CREATE TABLE cities (
name text,

18

Advanced Features

population real,
elevation int —— (in ft)
)i

CREATE TABLE capitals (
state char (2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native Postgres Pro type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
Postgres Pro, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

which returns:

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953
Madison \ 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ o
Las Vegas | 2174
Mariposa | 1953
(2 rows)

Here the oNLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note

Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

3.7. Conclusion

Postgres Pro has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

19

https://www.postgresql.org

Part Il. The SQL Language

This part describes the use of the SQL language in Postgres Pro. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a complete
description of a particular command should see Part VI.

Readers of this part should know how to connect to a Postgres Pro database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the Postgres Pro interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax

This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to Postgres Pro.

4.1. Lexical Structure

4

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,

terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

1.1. Identifiers and Key Words

Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes.

Key words and unquoted identifiers are case insensitive. Therefore:

UPDATE MY_TABLE SET A = 5;

21

SQL Syntax

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;
A convention often used is to write key words in upper case and names in lower case, e.g.:

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers F00O, foo, and "foo" are considered the same by Postgres Pro, but
"Foo" and "roo" are different from these three and each other. (The folding of unquoted names to lower
case in Postgres Pro is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you
want to write portable applications you are advised to always quote a particular name or never quote it.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with Us (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example Us"foo". (Note that this creates
an ambiguity with the operator «. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as

U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the vEscaptclause
after the string, for example:

U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

4.1.2. Constants

There are three kinds of implicitly-typed constants in Postgres Pro: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

22

SQL Syntax

4.1.2.1. String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'
'bar’';

is equivalent to:
SELECT 'foobar';
but:
SELECT 'foo' 'bar';
is not valid syntax. (This slightly bizarre behavior is specified by SQL; Postgres Pro is following the
standard.)
4.1.2.2. String Constants with C-Style Escapes

Postgres Pro also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter £ (upper or lower case) just before the opening
single quote, e.g., E' foo'. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation

\b backspace

\f form feed

\n newline

\r carriage return

\t tab

\o, \oo, \ooo (o = 0-7) octal byte value

\xh, \xhh (h = 0-9, A-F) hexadecimal byte value

\uxxxx, \Uxxxxxxxx (x = 0-9, A-F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \ ', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. A useful alternative
is to use Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then
the server will check that the character conversion is possible.

Caution

If the configuration parameter standard conforming strings is of f, then Postgres Pro recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This

23

SQL Syntax

behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to of f, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape string warning and backslash quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes

Postgres Pro also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with us (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example Us'foo'. (Note that this creates an ambiguity with the operator . Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data’' could be written as

Us'd\0061t\+000061"
The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

Us&'\0441\043B\043E\043D"'

If a different escape character than backslash is desired, it can be specified using the UEscapPEclause
after the string, for example:

U&'d!0061t!4+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard conforming strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security issues.
If the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants

While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, Postgres Pro provides another way,
called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar
sign (s), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of
characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

SSDianne's horseS$$

24

SQL Syntax

$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:

S$function$
BEGIN
RETURN ($1 ~ gS[\t\r\n\v\\]1qg);
END;
$function$

Here, the sequence g [\t\r\n\v\\]g represents a dollar-quoted literal string [\t\r\n\v\\], which
will be recognized when the function body is executed by Postgres Pro. But since the sequence does not
match the outer dollar quoting delimiter $functions, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagstring contenttag is correct, but
STAGSString contenttag is not

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written as
four backslashes, which would be reduced to two backslashes in parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants

Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading x (upper or
lower case), e.g., X' 1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits] [e[+-]1digits]

[digits].digits|[e[+-]digits]

digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.

There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

25

SQL Syntax

42

3.5

4,

.001

5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL '1.23' -- string style
1.23::REAL —-— Postgres Pro (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, casT (), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type

'string' syntax is that it does not work for array types; use :: or CAST () to specify the type of an array
constant.

The casT () syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but Postgres Pro allows it for all types. The syntax with
: : is historical Postgres Pro usage, as is the function-call syntax.

4.1.3. Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:
+-F¥/<>=~1@Q@#% " &| 7
There are a few restrictions on operator names, however:

* ——and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

26

SQL Syntax

* A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:

~1@#% "~ &|?

For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a prefix operator named
@, you cannot write x*@Yy; you must write x* @y to ensure that Postgres Pro reads it as two operator
names not one.

4.1.4. Special Characters

4.

Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.

* A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a
function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

* Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

* Brackets ([1) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

* Commas (,) are used in some syntactical constructs to separate the elements of a list.

* The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,
except within a string constant or quoted identifier.

* The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such
as Embedded SQL), the colon is used to prefix variable names.

* The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.
It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

* The period (.) is used in numeric constants, and to separate schema, table, and column names.

1.5. Comments

A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

—— This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* with nesting: /* nested block comment */
*/
where the comment begins with /* and extends to the matching occurrence of */. These block comments

nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

1.6. Operator Precedence

27

SQL Syntax

Table 4.2 shows the precedence and associativity of the operators in Postgres Pro. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rules imply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
left table/column name separator
left Postgres Pro-style typecast
[] left array element selection
+ - right unary plus, unary minus
~ left exponentiation
* /g left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined
operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set membership,
string matching
<>=<=>=<> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS
DISTINCT FROM, etc
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:

SELECT 3 OPERATOR (pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR () .

Note

PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; 1s tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported.

4.2. Value Expressions

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The

28

SQL Syntax

result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
* A constant or literal value

* A column reference

* A positional parameter reference, in the body of a function definition or prepared statement
¢ A subscripted expression

e A field selection expression

* An operator invocation

* A function call

* An aggregate expression

* A window function call

* A type cast

¢ A collation expression

e A scalar subquery

* An array constructor

* A row constructor

¢ Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the 1S NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References
A column can be referenced in the form:

correlation.columnname

correlationisthe name of a table (possibly qualified with a schema name), or an alias for a table defined
by means of a FroM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters

A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:

Snumber

For example, consider the definition of a function, dept, as:

CREATE FUNCTION dept (text) RETURNS dept
AS $$ SELECT * FROM dept WHERE name = $1 $$
LANGUAGE SQL;

Here the s1 references the value of the first function argument whenever the function is invoked.

29

SQL Syntax

4.2.3. Subscripts

If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing

expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression|[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will
be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:

mytable.arraycolumn (4]
mytable.two_d_column[17] [34]
$1[10:42]
(arrayfunction(a,b)) [42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection

If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing

expression.fieldname
In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:

mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)) .col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:

(compositecol) .somefield
(mytable.compositecol) .somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing . *:
(compositecol) . *

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are two possible syntaxes for an operator invocation:

expression operator expression (binary infix operator)
operator expression (unary prefix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:
OPERATOR (schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

30

SQL Syntax

4.2.6. Function Calls

4

The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name (|[expression [, expression ...]])

For example, the following computes the square root of 2:

sgrt (2)
The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note

A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col (table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in Postgres Pro because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

2.7. Aggregate Expressions

An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order by clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (ALL expression [, ... 1 [order_by_clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order by clause]) [FILTER
(WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter clause)]
aggregate_name ([expression [, ...] 1) WITHIN GROUP (order_by_clause) [FILTER

(WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since aLL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count (*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

For example, count (*) yields the total number of input rows; count (£f1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count (distinct f1) yields the number of
distinct non-null values of £1.

31

SQL Syntax

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs
in. However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order _by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;
not this:
SELECT string_agg(a ORDER BY a, ', ') FROM table; -— incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If prsTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note

The ability to specify both DISTINCT and ORDER BY in an aggregate function is a Postgres Pro
extension.

Placing OrRDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order by clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order by clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order_by_clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-wITHIN
GROUP order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used
for things like percentile fractions, which only make sense as a single value per aggregation calculation.
The direct argument list can be empty; in this case, write just () not (*). (Postgres Pro will actually
accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont (0.5) WITHIN GROUP (ORDER BY income) FROM households;
percentile_cont

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
TOWS.

32

SQL Syntax

If FILTER is specified, then only the input rows for which the filter clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:

SELECT

count (*) AS unfiltered,

count (*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
unfiltered | filtered

(1 row)

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the
aggregate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls

A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:

function_name (|[expression [, expression ...]]) [FILTER (WHERE filter clause)]
OVER window_name

function_name (|[expression [, expression ...]]) [FILTER (WHERE filter clause)]
OVER (window_definition)

function_name (*) [FILTER (WHERE filter _clause)] OVER window_name
function_name (*) [FILTER (WHERE filter clause)] OVER (window_definition)

where window_definition has the syntax

[existing_window_name]
[PARTITION BY expression [, ...] 1
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]

[, «..1 1]
[frame_clause]

The optional frame_clause can be one of

{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion |
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame start and frame_end can be one of

UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW

offset FOLLOWING

33

SQL Syntax

UNBOUNDED FOLLOWING
and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's wiNDow clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the wINDOw clause; see the SELECT reference page for details. It's worth
pointing out that ovER wname is not exactly equivalent to OVER (wname ...); the latter implies copying
and modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:

* In rROWS mode, the offset must yield a non-null, non-negative integer, and the option means that
the frame starts or ends the specified number of rows before or after the current row.

* In GrROUPS mode, the offset again must yield a non-null, non-negative integer, and the option
means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

* In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For
example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

34

SQL Syntax

4

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both rows and GrROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
rROW. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. ExCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED
PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.62. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count (*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

2.9. Type Casts

A type cast specifies a conversion from one data type to another. Postgres Pro accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression: :type

The casT syntax conforms to SQL; the syntax with : : is historical Postgres Pro usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply

35

SQL Syntax

a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time,
and timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be
avoided.

Note

The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions

The coLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:

SELECT a, b, c¢c FROM tbl WHERE ... ORDER BY a COLLATE "C";
and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the coLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:

SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

But this is an error:

SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable

data type boolean.

4.2.11. Scalar Subqueries

36

SQL Syntax

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:
SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
FROM states;

4.2.12. Array Constructors

An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word aArRRrAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket 1. For example:

SELECT ARRAY[1,2,3+4];

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNTON or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:

SELECT ARRAY[1,2,22.7]::integer[];

{1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:

SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]1];

{{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2]1,1[3,411;

{{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:

CREATE TABLE arr(fl int[], £f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]1], ARRAY[[5,6]1,[7,811);

37

SQL Syntax

SELECT ARRAY[f1l, f2, '{{9,10},{11,12}}'"::int[]] FROM arr;
array

{{1,2},{3,4}},{{5,6},{7,8}+},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer([];

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY (SELECT oid FROM pg_proc WHERE proname LIKE 'bytea$%');
array

{2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY (SELECT ARRAY[i, 1*2] FROM generate_series(1,5) AS a(i));

{1,2},4{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARrRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors

A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word row, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5, 'this is a test');

The key word row is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note

Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW (t.*, 42) created a two-field row whose first field was another row value. The new behavior

38

SQL Syntax

is usually more useful. If you need the old behavior of nested row values, write the inner row value
without . *, for instance rRow (£, 42).

By default, the value created by a rRow expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable (fl1 int, f2 float, £3 text);

CREATE FUNCTION getfl (mytable) RETURNS int AS 'SELECT $1.fl1' LANGUAGE SQL;

—— No cast needed since only one getfl () exists
SELECT getfl (ROW(1,2.5,'this is a test'));
getfl

1
(1 row)

CREATE TYPE myrowtype AS (f1 int, £2 text, f£3 numeric);
CREATE FUNCTION getfl (myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-— Now we need a cast to indicate which function to call:
SELECT getfl (ROW(1,2.5,'this is a test'));
ERROR: function getfl (record) is not unique

SELECT getfl (ROW(1,2.5, 'this is a test')::mytable);
getfl

SELECT getfl (CAST(ROW (11, 'this is a test',2.5) AS myrowtype));
getfl

11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or Is NOT NULL, for example:

SELECT ROW(1,2.5, 'this is a test') = ROW(1l, 3, 'not the same');

SELECT ROW (table.*) IS NULL FROM table; —-— detect all-null rows
For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules

The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc () would (probably) not be called at all. The same would be the case if one wrote:

39

SQL Syntax

SELECT somefunc () OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(anD/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;
But this is safe:
SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A caskE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 36.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the EL.SE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min (employees) > 0
THEN avg (expenses / employees)
END
FROM departments;

The min () and avg () aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min (). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions

Postgres Pro allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function

40

SQL Syntax

parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

Postgres Pro also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:

CREATE FUNCTION concat_lower_or_upper (a text, b text, uppercase boolean DEFAULT false)
RETURNS text

AS
$$
SELECT CASE
WHEN $3 THEN UPPER($1 || ' ' || $2)
ELSE LOWER(S1 || ' ' || $2)
END;
$$

LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 36 for more information).

4.3.1. Using Positional Notation

Positional notation is the traditional mechanism for passing arguments to functions in Postgres Pro. An
example is:

SELECT concat_lower_or_upper ('Hello', 'World', true);
concat_lower_or_upper

HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:

SELECT concat_lower_or_upper ('Hello', 'World');
concat_lower_or_upper

hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation

In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:

SELECT concat_lower_or_upper (a => 'Hello', b => 'World');
concat_lower_or_upper

hello world
(1 row)

41

SQL Syntax

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
concat_lower_or_upper

HELLO WORLD

(1 row)
An older syntax based on ":=" is supported for backward compatibility:
SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');

concat_lower_or_upper

HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation

The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper ('Hello', 'World', uppercase => true);
concat_lower_or_upper

HELLO WORLD

(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note

Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

42

Chapter 5. Data Definition

This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics

A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

Postgres Pro includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers,
numeric for possibly fractional numbers, text for character strings, date for dates, t ime for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
first_column text,
second_column integer

)i

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
product_no integer,
name text,
price numeric

)i

(The numeric type can store fractional components, as would be typical of monetary amounts.)

43

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for

the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values

A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
product_no integer,
name text,
price numeric DEFAULT 9.99
)i

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default
of CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In Postgres Pro this is typically done by something like:

CREATE TABLE products (
product_no integer DEFAULT nextval ('products_product_no_seq'),
)

where the nextval () function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (
product_no SERIAL,

44

Data Definition

)i

The SeErRIAL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns

A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A
stored generated column is computed when it is written (inserted or updated) and occupies storage as
if it were a normal column. A virtual generated column occupies no storage and is computed when it is
read. Thus, a virtual generated column is similar to a view and a stored generated column is similar to
a materialized view (except that it is always updated automatically). Postgres Pro currently implements
only stored generated columns.

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for example:

CREATE TABLE people (
-7
height_cm numeric,
height_in numeric GENERATED ALWAYS AS (height_cm / 2.54) STORED
)i

The keyword sTORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In INSERT or UPDATE commands, a value cannot be
specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default
is evaluated once when the row is first inserted if no other value was provided; a generated column
is updated whenever the row changes and cannot be overridden. A column default may not refer to
other columns of the table; a generation expression would normally do so. A column default can use
volatile functions, for example random () or functions referring to the current time; this is not allowed
for generated columns.

Several restrictions apply to the definition of generated columns and tables involving generated columns:

* The generation expression can only use immutable functions and cannot use subqueries or
reference anything other than the current row in any way.

* A generation expression cannot reference another generated column.

* A generation expression cannot reference a system column, except tableoid.

e A generated column cannot have a column default or an identity definition.

* A generated column cannot be part of a partition key.

» Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

¢ For inheritance:

» If a parent column is a generated column, a child column must also be a generated column using
the same expression. In the definition of the child column, leave off the GENERATED clause, as it
will be copied from the parent.

* In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns and with the same expression.

» If a parent column is not a generated column, a child column may be defined to be a generated
column or not.

Additional considerations apply to the use of generated columns.

45

Data Definition

* Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

* Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints

Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that
would violate a constraint, an error is raised. This applies even if the value came from the default value
definition.

5.4.1. Check Constraints

A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0)
)

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:

CREATE TABLE products (

product_no integer,

name text,

price numeric CONSTRAINT positive_price CHECK (price > 0)
)i

So, to specify a named constraint, use the key word consTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:

CREATE TABLE products (
product_no integer,
name text,
price numeric CHECK (price > 0),
discounted_price numeric CHECK (discounted_price > 0),
CHECK (price > discounted_price)

46

Data Definition

)i

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (Postgres Pro doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
CHECK (price > 0),
discounted_price numeric,
CHECK (discounted_price > 0),
CHECK (price > discounted_price)
)i

or even:

CREATE TABLE products (

product_no integer,

name text,

price numeric CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0 AND price > discounted_price)
)

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (

product_no integer,

name text,

price numeric,

CHECK (price > 0),

discounted_price numeric,

CHECK (discounted_price > 0),

CONSTRAINT valid_discount CHECK (price > discounted_price)
)

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note

Postgres Pro does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the

47

Data Definition

constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/reload problem because pg dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note

Postgres Pro assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. Postgres Pro does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints

A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in Postgres Pro
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way:.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (

)i

product_no integer NOT NULL,
name text NOT NULL,
price numeric NOT NULL CHECK (price > 0)

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to Postgres Pro to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (

product_no integer NULL,
name text NULL,
price numeric NULL

48

Data Definition

)i
and then insert the NOT key word where desired.

Tip

In most database designs the majority of columns should be marked not null.

5.4.3. Unique Constraints

Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
product_no integer UNIQUE,
name text,
price numeric
)
when written as a column constraint, and:

CREATE TABLE products (
product_no integer,
name text,
price numeric,
UNIQUE (product_no)

)i

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
a integer,
b integer,
c integer,
UNIQUE (a, c)
)i

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
product_no integer CONSTRAINT must_be_different UNIQUE,
name text,
price numeric

)i

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

49

Data Definition

5.4.4. Primary Keys

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:

CREATE TABLE products (
product_no integer UNIQUE NOT NULL,
name text,
price numeric

)i

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)
Primary keys can span more than one column; the syntax is similar to unique constraints:

CREATE TABLE example (
a integer,
b integer,
c integer,
PRIMARY KEY (a, c)
)

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by Postgres Pro, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.4.5. Foreign Keys

A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products (product_no),

50

Data Definition

quantity integer
)i

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:

CREATE TABLE orders (
order_id integer PRIMARY KEY,
product_no integer REFERENCES products,
quantity integer
)
because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:

CREATE TABLE t1 (
a integer PRIMARY KEY,
b integer,
c integer,
FOREIGN KEY (b, c) REFERENCES other_table (cl, c2)
)i
Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write

CREATE TABLE tree (
node_id integer PRIMARY KEY,
parent_id integer REFERENCES tree,
name text,

)i

A top-level node would have NULL parent_id, while non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

51

Data Definition

)i

CREATE TABLE order_items (
product_no integer REFERENCES products,
order_id integer REFERENCES orders,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:

* Disallow deleting a referenced product
* Delete the orders as well
¢ Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:

CREATE TABLE products (
product_no integer PRIMARY KEY,
name text,
price numeric

)i

CREATE TABLE orders (
order_id integer PRIMARY KEY,
shipping_address text,

)i

CREATE TABLE order_items (
product_no integer REFERENCES products ON DELETE RESTRICT,
order_id integer REFERENCES orders ON DELETE CASCADE,
quantity integer,
PRIMARY KEY (product_no, order_id)

)i

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO acT10N allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SeT DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to oN DELETE there is also oN UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the

52

Data Definition

constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.4.6. Exclusion Constraints

Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:

CREATE TABLE circles (

c circle,

EXCLUDE USING gist (c WITH &&)
)i

See also CREATE TARLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns

Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from partitioned tables (see Section 5.11) or inheritance hierarchies (see Section 5.10), since without
it, it's difficult to tell which individual table a row came from. The tableoid can be joined against
the oid column of pg_class to obtain the table name.
xmin
The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)
cmin

The command identifier (starting at zero) within the inserting transaction.

Xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

53

Data Definition

The command identifier within the deleting transaction, or zero.
ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by vacuum
FULL. Therefore ctid is useless as a long-term row identifier. A primary key should be used to identify
logical rows.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 pillion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.6. Modifying Tables

When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore Postgres Pro provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:

¢ Add columns

¢ Remove columns

¢ Add constraints

¢ Remove constraints

¢ Change default values

* Change column data types
¢ Rename columns

¢ Rename tables

All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.6.1. Adding a Column

To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

Tip
From Postgres Pro 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead, the

default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., clock_timestamp ()) each row will need to be updated
with the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy update
operation, particularly if you intend to fill the column with mostly nondefault values anyway, it

54

Data Definition

may be preferable to add the column with no default, insert the correct values using UPDATE, and
then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the App will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.6.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, Postgres Pro will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;
See Section 5.14 for a description of the general mechanism behind this.

5.6.3. Adding a Constraint

To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint

To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add cascaDE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:
ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;
(Recall that not-null constraints do not have names.)

5.6.5. Changing a Column's Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

55

Data Definition

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:
ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.6.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

Postgres Pro will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.6.7. Renaming a Column
To rename a column:

ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.6.8. Renaming a Table
To rename a table:

ALTER TABLE products RENAME TO items;

5.7. Privileges

When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary
depending on the object's type (table, function, etc). More detail about the meanings of these privileges
appears below. The following sections and chapters will also show you how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 20.3.)

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
for example

ALTER TABLE table_name OWNER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:

GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

56

Data Definition

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 20.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

REVOKE ALL ON accounts FROM PUBLIC;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of a table, view, materialized view, or other
table-like object. Also allows use of copy TO. This privilege is also needed to reference existing column
values in UPDATE or DELETE. For sequences, this privilege also allows use of the currval function.
For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into a table, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the INSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR UPDATE
and SELECT ... FOR SHARE also require this privilege on at least one column, in addition to the
SELECT privilege. For sequences, this privilege allows use of the nextval and setval functions. For
large objects, this privilege allows writing or truncating the object.

DELETE

Allows DELETE of a row from a table, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows to
delete.)

TRUNCATE

Allows TRUNCATE on a table.

REFERENCES

Allows creation of a foreign key constraint referencing a table, or specific column(s) of a table.

TRIGGER

Allows creation of a trigger on a table, view, etc.

CREATE

For databases, allows new schemas and publications to be created within the database, and allows
trusted extensions to be installed within the database.

57

Data Definition

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.

CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY

Allows temporary tables to be created while using the database.

EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on top
of the function. This is the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, allows use of the language for the creation of functions in that language.
This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects' own
privilege requirements are also met). Essentially this allows the grantee to “look up” objects within
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements that
have previously performed this lookup, so this is not a completely secure way to prevent object
access.

For sequences, allows use of the currval and nextval functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control all “usage” of the type, such as values of
the type appearing in queries. It only prevents objects from being created that depend on the type.
The main purpose of this privilege is controlling which users can create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

Postgres Pro grants privileges on some types of objects to PUBLIC by default when the objects are
created. No privileges are granted to PUBLIC by default on tables, table columns, sequences, foreign data
wrappers, foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default
privileges granted to PUBLIC are as follows: CONNECT and TEMPORARY (create temporary tables) privileges
for databases; ExecUTE privilege for functions and procedures; and USAGE privilege for languages and
data types (including domains). The object owner can, of course, REVOKE both default and expressly
granted privileges. (For maximum security, issue the REVOKE in the same transaction that creates the
object; then there is no window in which another user can use the object.) Also, these default privilege
settings can be overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL (Access
Control List) values. You will see these letters in the output of the psql commands listed below, or when
looking at ACL columns of system catalogs.

58

Data Definition

Table 5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types

SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and table-like
objects), table column

INSERT a (“append”) TABLE, table column

UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table column

DELETE d TABLE

TRUNCATE D TABLE

REFERENCES x TABLE, table column

TRIGGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE

CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTION, PROCEDURE

USAGE U DOMAIN, FOREIGN DATA WRAPPER, FOREIGN SERVER,
LANGUAGE, SCHEMA, SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psql command that can be used to examine privilege settings for each object

type.

Table 5.2. Summary of Access Privileges

Object Type All Privileges Default pPUBLIC psql Command
Privileges
DATABASE CTc Tc \1
DOMAIN U U \dD+
FUNCTION Or PROCEDURE X X \df+
FOREIGN DATA WRAPPER U none \dew+
FOREIGN SERVER U none \des+
LANGUAGE U U \dL+
LARGE OBJECT rw none
SCHEMA ucC none \dn+
SEQUENCE rwU none \dp
TABLE (and table-like objects) arwdDxt none \dp
Table column arwx none \dp
TABLESPACE C none \db+
TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of aclitem entries,
where each aclitem describes the permissions of one grantee that have been granted by a particular
grantor. For example, calvin=r*w/hobbes specifies that the role calvin has the privilege SELECT (r)
with grant option (*) as well as the non-grantable privilege UPDATE (w), both granted by the role hobbes.
If calvin also has some privileges on the same object granted by a different grantor, those would appear
as a separate aclitem entry. An empty grantee field in an aclitem stands for PUBLIC.

As an example, suppose that user miriam creates table mytable and does:

59

Data Definition

GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (coll), UPDATE (coll) ON mytable TO miriam_rw;

Then psql's \dp command would show:

=> \dp mytable
Access privileges

Schema | Name | Type | Access privileges \ Column privileges | Policies
———————— e s st
public | mytable | table | miriam=arwdDxt/miriam+| coll: + |
\ \ | =r/miriam + | miriam rw=rw/miriam |
\ \ | admin=arw/miriam \
(1 row)

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLIC depending on the object type, as
explained above. The first GRANT or REVOKE on an object will instantiate the default privileges (producing,
for example, miriam=arwdDxt/miriam) and then modify them per the specified request. Similarly, entries
are shown in “Column privileges” only for columns with nondefault privileges. (Note: for this purpose,
“default privileges” always means the built-in default privileges for the object's type. An object whose
privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be shown with
an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies

In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptions to this rule are leakproof functions, which
are guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the
row-security check.) Rows for which the expression does not return t rue will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

60

Data Definition

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

When multiple policies apply to a given query, they are combined using either or (for permissive policies,
which are the default) or using AND (for restrictive policies). This is similar to the rule that a given role
has the privileges of all roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);
ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, Or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name pPUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
FOR SELECT
USING (true);

CREATE POLICY user_mod_policy ON users
USING (user_name = current_user);

In a sELECT command, these two policies are combined using ORr, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

—— Simple passwd-file based example

61

Data Definition

CREATE TABLE passwd (

user_name text UNIQUE NOT NULL,
pwhash text,
uid int PRIMARY KEY,
gid int NOT NULL,
real_name text NOT NULL,
home_phone text,
extra_info text,
home_dir text NOT NULL,
shell text NOT NULL
)i
CREATE ROLE admin; —-- Administrator
CREATE ROLE bob; —— Normal user
CREATE ROLE alice; —-- Normal user

—-— Populate the table
INSERT INTO passwd VALUES

('admin', 'xxx',0,0, "Admin', '111-222-3333"',null, '/root', '/bin/dash"');
INSERT INTO passwd VALUES

('bob', 'xxx',1,1, 'Bob', '123-456-7890"',null, ' /home/bob', ' /bin/zsh'");
INSERT INTO passwd VALUES

('alice', "xxx',2,1,"'Alice"','098-765-4321"',null, '/home/alice', '/bin/zsh'");

—-— Be sure to enable row-level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

—-— Create policies
—— Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
—— Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
—-— Normal users can update their own records, but
—— limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
USING (current_user = user_name)
WITH CHECK (
current_user = user_name AND
shell IN ('/bin/bash', '/bin/sh','/bin/dash', '/bin/zsh','/bin/tcsh')
)i

—— Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
—-— Users only get select access on public columns
GRANT SELECT
(user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
ON passwd TO public;
—-— Allow users to update certain columns
GRANT UPDATE
(pwhash, real_name, home_phone, extra_info, shell)
ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

—-— admin can view all rows and fields
postgres=> set role admin;

SET

postgres=> table passwd;

62

Data Definition

user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir
shell

admin | xxx \ 0 | 0 | Admin | 111-222-3333 | | /root

| /bin/dash

bob | xxx \ 1 | 1 | Bob | 123-456-7890 | | /home/bob

| /bin/zsh

alice | xxx \ 2 1 | Alice | 098-765-4321 | | /home/alice
| /bin/zsh

(3 rows)

—— Test what Alice is able to do

postgres=> set role alice;

SET

postgres=> table passwd;

ERROR: permission denied for relation passwd

postgres=> select user_name, real_name, home_phone,extra_info,home_dir, shell from passwd;

user_name | real_name | home_phone | extra_info | home_dir \ shell
——————————— et e s st
admin | Admin | 111-222-3333 | | /root | /bin/dash
bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)
postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for relation passwd
—— Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE O
postgres=> update passwd set shell = '/bin/xx';

ERROR: new row violates WITH CHECK OPTION for "passwd"

postgres=> delete from passwd;

ERROR: permission denied for relation passwd

postgres=> insert into passwd (user_name) values ('xxx');

ERROR: permission denied for relation passwd

—— Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';

UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined using
the “AND” Boolean operator). Building on the example above, we add a restrictive policy to require the
administrator to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
current_user

63

Data Definition

(1 row)

=> select inet_client_addr();
inet_client_addr

=> TABLE passwd;
user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
shell

=> UPDATE passwd set pwhash = NULL;
UPDATE O

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row security configuration parameter to of£. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work this way. If it is necessary to consult other rows or other tables to make a
policy decision, that can be accomplished using sub-SELECTS, or functions that contain SELECTS, in the
policy expressions. Be aware however that such accesses can create race conditions that could allow
information leakage if care is not taken. As an example, consider the following table design:

—— definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
group_name text NOT NULL) ;

INSERT INTO groups VALUES

(1, "low'"),
(2, 'medium'),
(5, 'high'");
GRANT ALL ON groups TO alice; -- alice is the administrator

GRANT SELECT ON groups TO public;

—— definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
('alice', 5),
("bob', 2),
('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

64

Data Definition

—-— table holding the information to be protected
CREATE TABLE information (info text,
group_id int NOT NULL REFERENCES groups);

INSERT INTO information VALUES
('barely secret', 1),
('slightly secret', 2),
('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

—— a row should be visible to/updatable by users whose security group_id is
—-— greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT

USING (group_id <= (SELECT group_id FROM users WHERE user_name
CREATE POLICY fp_u ON information FOR UPDATE

USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

current_user));

-— we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;

UPDATE users SET group_id = 1 WHERE user_name = 'mallory';

UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,

SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTSs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-sSELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the
referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of
the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas

A Postgres Pro database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

65

Data Definition

Note

Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases
in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schemal and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:
* To allow many users to use one database without interfering with each other.
* To organize database objects into logical groups to make them more manageable.

* Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.9.1. Creating a Schema

To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax
database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
)i

To drop a schema if it's empty (all objects in it have been dropped), use:
DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

66

Data Definition

CREATE SCHEMA schema_name AUTHORIZATION user_name;

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.9.2. The Public Schema

In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:

CREATE TABLE products (...);
and:

CREATE TABLE public.products (...);

5.9.3. The Schema Search Path

Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in Postgres Pro internals, adding a schema to search_path effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;
In the default setup this returns:

search_path

"Suser", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:

SET search_path TO myschema, public;

67

Data Definition

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:
SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR (schema.operator)
This is needed to avoid syntactic ambiguity. An example is:
SELECT 3 OPERATOR (pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.9.4. Schemas and Privileges

By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects
in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.9.5. The System Catalog Schema

In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.9.6. Usage Patterns

Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a

68

Data Definition

secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing non-superuser-writable schemas from search_path. There are
a few usage patterns easily supported by the default configuration:

* Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

* Remove the public schema from the default search path, by modifying postgresgl.conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Everyone retains the ability to create
objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If
you create functions or extensions in the public schema, use the first pattern instead. Otherwise,
like the first pattern, this is secure unless an untrusted user is the database owner or holds the
CREATEROLE privilege.

* Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search path,
as they choose.

5.9.7. Portability

In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user_name.table_name. This is how Postgres Pro will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.10. Inheritance

Postgres Pro implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital

69

Data Definition

or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (

name text,
population float,
elevation int —-— in feet

)i

CREATE TABLE capitals (
state char (2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In Postgres Pro, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
FROM cities
WHERE elevation > 500;

Given the sample data from the Postgres Pro tutorial (see Section 2.1), this returns:

name | elevation
,,,,,,,,,,, S,
Las Vegas | 2174
Mariposa | 1953
Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
FROM ONLY cities
WHERE elevation > 500;

name | elevation
___________ I
Las Vegas | 2174
Mariposa | 1953

Here the onLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the oNLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT name, elevation
FROM cities*
WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation

70

Data Definition

FROM cities c
WHERE c.elevation > 500;

which returns:

tableoid | name | elevation

__________ IO
139793 | Las Vegas | 2174
139793 | Mariposa | 1953
139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities ¢, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

relname | name | elevation
,,,,,,,,,, e
cities | Las Vegas | 2174

cities | Mariposa | 1953

capitals | Madison \ 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or cOPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 39). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant

71

Data Definition

of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the cAsCaADE
option (see Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as well,
when they are accessed through cities. This preserves the appearance that the data is (also) in the
parent table. But the capitals table could not be updated directly without an additional grant. In a
similar way, the parent table's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats

Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

* If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

* Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

* Specifying that another table's column REFERENCES cities (name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

72

Data Definition

5.11. Table Partitioning

Postgres Pro supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview

Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:

¢ Query performance can be improved dramatically in certain situations, particularly when most
of the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

« When queries or updates access a large percentage of a single partition, performance can be
improved by using a sequential scan of that partition instead of using an index, which would
require random-access reads scattered across the whole table.

¢ Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the vAcuuM overhead caused by a bulk DELETE.

¢ Seldom-used data can be migrated to cheaper and slower storage media.

These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Postgres Pro offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning

The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning

The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNTON ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning

Postgres Pro allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition

73

Data Definition

stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table
will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE for
more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION Sub-
commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.11.2.1. Example

Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:

1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which
includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition

key.

CREATE TABLE measurement (
city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

) PARTITION BY RANGE (logdate);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal Postgres Pro tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement

74

Data Definition

FOR VALUES FROM ('2006-02-01") TO ('2006-03-01");

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
FOR VALUES FROM ('2006-03-01') TO ('2006-04-01");

CREATE TABLE measurement_y2007ml1l PARTITION OF measurement
FOR VALUES FROM ('2007-11-01') TO ('2007-12-01");

CREATE TABLE measurement_y2007ml12 PARTITION OF measurement
FOR VALUES FROM ('2007-12-01') TO ('2008-01-01")
TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
FOR VALUES FROM ('2008-01-01') TO ('2008-02-01")
WITH (parallel_workers = 4)
TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
FOR VALUES FROM ('2006-02-01') TO ('2006-03-01")
PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);
4. Ensure that the enable partition pruning configuration parameter is not disabled in
postgresql.conf. If it is, queries will not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance

Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

75

Data Definition

The simplest option for removing old data is to drop the partition that is no longer necessary:
DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESs EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right. This has two forms:

ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02 CONCURRENTLY;

These allow further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using copy, pg dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports. The first
form of the command requires an ACCESS EXCLUSIVE lock on the parent table. Adding the CONCURRENTLY
qualifier as in the second form allows the detach operation to require only SHARE UPDATE EXCLUSIVE
lock on the parent table, but see ALTER TABLE ... DETACH PARTITION for details on the restrictions.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:

CREATE TABLE measurement_y2008m02 PARTITION OF measurement
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01")
TABLESPACE fasttablespace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows new data to be loaded, checked, and transformed prior
to it appearing in the partitioned table. The CREATE TABLE ... LIKE option is helpful to avoid tediously
repeating the parent table's definition:

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"');

\copy measurement_y2008m02 from 'measurement_y2008m02"'
—— possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
FOR VALUES FROM ('2008-02-01') TO ('2008-03-01");

The ATTACH PARTITION command requires taking a SHARE UPDATE EXCLUSIVE lock on the partitioned
table.

Before running the ATTACH PARTITION command, it is recommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way,
the system will be able to skip the scan which is otherwise needed to validate the implicit partition
constraint. Without the CHECK constraint, the table will be scanned to validate the partition constraint
while holding an AcCESS EXCLUSIVE lock on that partition. It is recommended to drop the now-redundant
CHECK constraint after the ATTACH PARTITION is complete. If the table being attached is itself a partitioned
table, then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK constraint
which excludes the to-be-attached partition's constraint. If this is not done then the DEFAULT partition will
be scanned to verify that it contains no records which should be located in the partition being attached.

76

Data Definition

This operation will be performed whilst holding an ACCESS EXCLUSIVE lock on the DEFAULT partition. If
the DEFAULT partition is itself a partitioned table, then each of its partitions will be recursively checked
in the same way as the table being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically to the entire hierarchy. This is very convenient, as not only will the existing partitions
become indexed, but also any partitions that are created in the future will. One limitation is that it's not
possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock
times, it is possible to use CREATE INDEX ON ONLY the partitioned table; such an index is marked invalid,
and the partitions do not get the index applied automatically. The indexes on partitions can be created
individually using CONCURRENTLY, and then attached to the index on the parent using ALTER INDEX
ATTACH PARTITION. Once indexes for all partitions are attached to the parent index, the parent index
is marked valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX measurement_usls_200602_idx
ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
ATTACH PARTITION measurement_usls_200602_idx;

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;

5.11.2.3. Limitations
The following limitations apply to partitioned tables:

* Unique constraints (and hence primary keys) on partitioned tables must include all the partition
key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

* There is no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

* BEFORE ROW triggers on INSERT cannot change which partition is the final destination for a new row.

* Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the
partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.10, with a
few exceptions:

77

Data Definition

Partitions cannot have columns that are not present in the parent. It is not possible to specify
columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE

ATTACH PARTITION only if their columns exactly match the parent.

Both cHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO INHERIT are not allowed to be created on partitioned tables.
You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

Using oNLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using oNLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.11.3. Partitioning Using Inheritance

While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allows for several features not supported by declarative partitioning, such as:

For declarative partitioning, partitions must have exactly the same set of columns as the
partitioned table, whereas with table inheritance, child tables may have extra columns not present
in the parent.

Table inheritance allows for multiple inheritance.

Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

5.11.3.1. Example

This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “root” table, from which all of the “child” tables will inherit. This table will contain no

data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For
our example, the root table is the measurement table as originally defined:

CREATE TABLE measurement (

city_id int not null,
logdate date not null,
peaktemp int,
unitsales int

)i

. Create several “child” tables that each inherit from the root table. Normally, these tables will not add

any columns to the set inherited from the root. Just as with declarative partitioning, these tables are
in every way normal Postgres Pro tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
CREATE TABLE measurement_y2007ml1l () INHERITS (measurement);
CREATE TABLE measurement_y2007ml12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

3. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x =1)

78

Data Definition

CHECK (
CHECK (

county IN ('Oxfordshire',

'Buckinghamshire’',
outletID >= 100 AND outletID < 200)

'Warwickshire'))

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (
CHECK (

outletID BETWEEN 100 AND 200
outletID BETWEEN 200 AND 300

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges

should be defined in this style:

CREATE TABLE measurement_y2006m02
CHECK (logdate >= DATE
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03
CHECK (logdate >= DATE
) INHERITS (measurement);

CREATE TABLE measurement_y2007mll
CHECK (logdate >= DATE
) INHERITS (measurement);

CREATE TABLE measurement_y2007ml2
CHECK (logdate >= DATE
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01
CHECK (logdate >= DATE
) INHERITS (measurement);

(

'2006-02-01"

(

'2006-03-01"

(

'2007-11-01"

(

'2007-12-01"

(

'2008-01-01"

AND

AND

AND

AND

AND

logdate < DATE '2006-03-01"')
logdate < DATE '2006-04-01"')
logdate < DATE '2007-12-01"')
logdate < DATE '2008-01-01"')
logdate < DATE '2008-02-01"')

. For each child table, create an index on the key column(s), as well as any other indexes you might

want.

CREATE
CREATE
CREATE
CREATE
CREATE

INDEX measurement_y2006m02_logdate
INDEX measurement_y2006m03_logdate
INDEX measurement_y2007mll_logdate
INDEX measurement_y2007ml2_logdate
INDEX measurement_y2008m0l1_logdate

ON
ON
ON
ON
ON

. We want our application to be able to say INSERT
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger
function to the root table. If data will be added only to the latest child, we can use a very simple

trigger function:

measurement_y2006m02
measurement_y2006m03
measurement_y2007ml1l
measurement_y2007ml2
measurement_y2008m01

INTO measurement

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()

RETURNS TRIGGER AS $$
BEGIN

INSERT INTO measurement_y2008m01 VALUES

RETURN NULL;
END;
$$
LANGUAGE plpgsqgl;

(NEW.*) ;

4

(logdate)

(logdate);
(logdate);
() ;
()

4

logdate
logdate

4

. and have the data be

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger

BEFORE INSERT ON measurement

FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

Data Definition

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger ()
RETURNS TRIGGER AS $$
BEGIN
IF (NEW.logdate >= DATE '2006-02-01"' AND
NEW.logdate < DATE '2006-03-01"') THEN
INSERT INTO measurement_y2006m02 VALUES (NEW.*);
ELSIF (NEW.logdate >= DATE '2006-03-01"' AND
NEW.logdate < DATE '2006-04-01"') THEN
INSERT INTO measurement_y2006m03 VALUES (NEW.*);

ELSIF (NEW.logdate >= DATE '2008-01-01"' AND
NEW.logdate < DATE '2008-02-01"') THEN
INSERT INTO measurement_y2008m01 VALUES (NEW.*);
ELSE
RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger ()
function!"';
END IF;
RETURN NULL;
END;
SS
LANGUAGE plpgsqgl;

The trigger definition is the same as before. Note that each 1F test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note

In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the root table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01"')
DO INSTEAD

INSERT INTO measurement_y2006m02 VALUES (NEW.*);

CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE

(logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01"')
DO INSTEAD

80

Data Definition

INSERT INTO measurement_y2008m01 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that copy ignores rules. If you want to use copy to insert data, you'll need to copy into
the correct child table rather than directly into the root. copy does fire triggers, so you can use it
normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the root table instead.

6. Ensure that the constraint exclusion configuration parameter is not disabled in postgresqgl.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"')
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
(LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS) ;
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01"');
\copy measurement_y2008m02 from 'measurement_y2008m02"'
—-— possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.11.3.3. Caveats
The following caveats apply to partitioning implemented using inheritance:

* There is no automatic way to verify that all of the cHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

* Indexes and foreign key constraints apply to single tables and not to their inheritance children,
hence they have some caveats to be aware of.

e The schemes shown here assume that the values of a row's key column(s) never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts to
do that will fail because of the CHECK constraints. If you need to handle such cases, you can put

81

Data Definition

suitable update triggers on the child tables, but it makes management of the structure much more
complicated.

* If you are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each child table individually. A command like:

ANALYZE measurement;
will only process the root table.

* INSERT statements with oN CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child
relations.

» Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning

Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enable_partition_pruning = on; —-— the default
SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01"';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable partition pruning configuration parameter; it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01";
QUERY PLAN
Aggregate (cost=188.76..188.77 rows=1 width=8)
-> Append (cost=0.00..181.05 rows=3085 width=0)
-> Seqg Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)
-> Seq Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seqg Scan on measurement_y2007mll (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seqg Scan on measurement_y2007ml2 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

-> Seqg Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
Filter: (logdate >= '2008-01-01"'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count (*) FROM measurement WHERE logdate >= DATE '2008-01-01";
QUERY PLAN
Aggregate (cost=37.75..37.76 rows=1 width=8)
-> Seqg Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)

82

Data Definition

Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether
an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:

* During initialization of the query plan. Partition pruning can be performed here for parameter
values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to
determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAIN output.

¢ During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this
phase requires careful inspection of the 1oops property in the EXPLAIN ANALYZE output. Subplans
corresponding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable partition pruning setting.

5.11.5. Partitioning and Constraint Exclusion

Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other
purposes, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint exclusion is neither on nor of f, but an intermediate
setting called partition, which causes the technique to be applied only to queries that are likely to
be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

The following caveats apply to constraint exclusion:

* Constraint exclusion is only applied during query planning, unlike partition pruning, which can also
be applied during query execution.

* Constraint exclusion only works when the query's WHERE clause contains constants (or externally
supplied parameters). For example, a comparison against a non-immutable function such as

83

Data Definition

CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

* Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the
partition key.

¢ All constraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try to
use many thousands of children.

5.11.6. Best Practices for Declarative Partitioning

The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY Or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HAsH and choose
a reasonable number of partitions rather than trying to partition by .1sT and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The
query planner is generally able to handle partition hierarchies with up to a few thousand partitions
fairly well, provided that typical queries allow the query planner to prune all but a small number
of partitions. Planning times become longer and memory consumption becomes higher when more
partitions remain after the planner performs partition pruning. Another reason to be concerned about
having a large number of partitions is that the server's memory consumption may grow significantly
over time, especially if many sessions touch large numbers of partitions. That's because each partition
requires its metadata to be loaded into the local memory of each session that touches it.

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

84

Data Definition

5.12. Foreign Data

Postgres Pro implements portions of the SQL/MED specification, allowing you to access data that resides
outside Postgres Pro using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 53.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage in
the Postgres Pro server. Whenever it is used, Postgres Pro asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current Postgres Pro role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.13. Other Database Objects

Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

* Views

¢ Functions, procedures, and operators
* Data types and domains

* Triggers and rewrite rules

Detailed information on these topics appears in Part V.

5.14. Dependency Tracking

When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, Postgres Pro makes sure that you cannot
drop objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.4.5, with the orders table depending on it, would result in an error message
like this:

DROP TABLE products;
ERROR: cannot drop table products because other objects depend on it

DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

85

Data Definition

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run prop without cAscaDE and read the DETAIL output.)

Almost all brROP commands in Postgres Pro support specifying cascape. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note

According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT Or CASCADE varies across systems.

If a brOP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tabl, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that cASCADE is needed to succeed.

For user-defined functions, Postgres Pro tracks dependencies associated with a function's externally-
visible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
'SELECT note FROM my_colors WHERE color = $1'
LANGUAGE SOQL;

(See Section 36.5 for an explanation of SQL-language functions.) Postgres Pro will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But Postgres Pro will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

86

Chapter 6. Data Manipulation

The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data

When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is inserted one row at a time. You can also insert more than one row in a single
command, but it is not possible to insert something that is not a complete row. Even if you know only
some column values, a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
product_no integer,
name text,
price numeric
)i
An example command to insert a row would be:
INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a Postgres Pro extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
(1, 'Cheese', 9.99),
(2, 'Bread', 1.99),
(3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
SELECT product_no, name, price FROM new_products
WHERE release_date = 'today';

87

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as

flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data

The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:

1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:
UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word upDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the wHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WwHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the seT clause. For example:

UPDATE mytable SET a = 5, b =3, ¢ = 1 WHERE a > 0;

6.3. Deleting Data

So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

88

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;
If you simply write:
DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows

Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table in
order.

In an 1NSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
WHERE price <= 99.99
RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
WHERE obsoletion_date = 'today'
RETURNING *;

If there are triggers (Chapter 37) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

89

Chapter 7. Queries

The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview

The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]
The following sections describe the details of the select list, the table expression, and the sort
specification. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:
SELECT * FROM tablel;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from tablel. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if tablel has columns named a, b, and ¢ (and perhaps
others) you can make the following query:

SELECT a, b + ¢ FROM tablel;
(assuming that b and ¢ are of a numerical data type). See Section 7.3 for more details.
FROM tablel is a simple kind of table expression: it reads just one table. In general, table expressions can

be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random() ;

7.2. Table Expressions

A table expression computes a table. The table expression contains a FrROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FroM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The rroM Clause

The rFroM clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FrROM

90

Queries

clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).
The result of the FroM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word oNLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing onLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tables is now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables

A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

Tl join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both 71 and 72 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types
Cross join
T1 CROSS JOIN T2

For every possible combination of rows from 71 and 72 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in 71 followed by all columns in 72. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FrROM T1, T2.

Note

This latter equivalence does not hold exactly when more than two tables appear, because JoIn
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference 71 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

91

Queries

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

LEFT OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN

First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The on clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from 71 and 72 match if the ON expression
evaluates to true.

The UsING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining 77 and 72 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JoIN oN produces all columns
from 71 followed by all columns from 72, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from 71, followed by
any remaining columns from 72.

Finally, NATURAL is a shorthand form of UsING: it forms a USING list consisting of all column names
that appear in both input tables. As with UsING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note

USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:

92

Queries

num | value
_____ +_______
1] xxx
3 | yyy
5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM tl1 CROSS JOIN t2;
num | name | num value

XXX
Yyy
ZZZ
XXX
Yyy
ZZZ
XXX

Yyy
ZZZ

=> SELECT * FROM tl1 INNER JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S
11 a \ 1 | xxx
3] c \ 31 yyy
(2 rows)

=> SELECT * FROM tl1 INNER JOIN t2 USING (num);

_____ +______+_______
11 a | xxx
3 1 c | yyy
(2 rows)

=> SELECT * FROM tl NATURAL INNER JOIN t2;

num | name | value
_____ +______+_______
11 a | xxx
31 ¢ | yyy
(2 rows)

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e S

11 a \ 1 | xxx

2 1 b \ \

3] c \ 3 |1 yyy
(3 rows)

=> SELECT * FROM tl LEFT JOIN t2 USING (num);

num | name | value
_____ +______+_______
11 a | xxx
2 1 b \
3 c | yyy
(3 rows)

93

Queries

=> SELECT * FROM tl RIGHT JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
1] a \ 1] xxx
3] c \ 31 yyy
\ \ 5 | zzz
(3 rows)

=> SELECT * FROM tl1 FULL JOIN t2 ON tl.num = t2.num;

num | name | num | value
————— e et
11 a \ 1 | xxx
2 1 b \
3] c \ 31 yyy
\ 5| zzz
(4 rows)

The join condition specified with oN can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON tl.num = t2.num AND t2.value = 'xxx';
num | name | num | value
_____ +______ —_—— —_———— e —
11 a \ 1 | xxx
2 1 Db \ \
3 1 c \ \
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM tl1 LEFT JOIN t2 ON tl.num = t2.num WHERE t2.value = 'xxx';

name num value

This is because a restriction placed in the oN clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters

a lot with outer joins.
7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.
To create a table alias, write
FROM table reference AS alias
or
FROM table_reference alias
The as key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_ long_name a ON s.id =

a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

94

Queries

SELECT * FROM my_table AS m WHERE my_table.a > 5; —-— wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;
Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).
Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the

alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table reference [AS] alias (columnl [, column2 [, ...]]1)

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a Jo1N clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries

Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM tablel) AS alias_name

This example is equivalent to FROM tablel AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
AS names (first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions

Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FroM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the Rows FrRoOM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ... 1)]1]
ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias

L, ... 111

95

Queries

If the wITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an As clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST (array_expression [, ...]) [WITH ORDINALITY] [[AS] table _alias [(column_alias
[, .. 1)1]

If no table_aliasis specified, the function name is used as the table name; in the case of a ROWS FROM ()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:

CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $S
SELECT * FROM foo WHERE fooid = $1;
S LANGUAGE SQL;

SELECT * FROM getfoo(l) AS t1;

SELECT * FROM foo
WHERE foosubid IN (
SELECT foosubid
FROM getfoo (foo.fooid) z
WHERE z.fooid = foo.fooid
)i

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1l);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no ouT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ... 1) [, ... 1)

When not using the rows FROM() syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the rroM item; the names in the column definitions serve as
column aliases. When using the ROwWS FROM () syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause, a
column_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:

SELECT *
FROM dblink ('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
AS tl (proname name, prosrc text)

96

Queries

WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
(
json_to_recordset ('[{"a":40, "b":"foo"},{"a":"100","b":"bar"}]")
AS (a INTEGER, b TEXT),
generate_series (1, 3)
) AS x (p, 49, s)

ORDER BY p;
p I a | s
_____ +_____ —_—
40 | foo | 1
100 | bar | 2
\ | 3

It joins two functions into a single FrROM target. json_to_recordset () is instructed to return two
columns, the first integer and the second text. The result of generate_series () is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries

Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FroM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FroM item.)

Table functions appearing in FrROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FroM list, or within a JoIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JoIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FrROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;
This is not especially useful since it has exactly the same result as the more conventional
SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices (polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT pl.id, p2.id, vl, v2
FROM polygons pl, polygons p2,
LATERAL vertices (pl.poly) vli,

97

Queries

LATERAL vertices (p2.poly) v2
WHERE (vl <-> v2) < 10 AND pl.id != p2.id;

This query could also be written

SELECT pl.id, p2.id, vi1, v2

FROM polygons pl CROSS JOIN LATERAL vertices (pl.poly) vi,
polygons p2 CROSS JOIN LATERAL vertices (p2.poly) v2

WHERE (vl <-> v2) < 10 AND pl.id '= p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names ()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names (m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The wHERE Clause
The syntax of the WHERE clause is
WHERE search_condition
where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.
After the processing of the FroM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one

column of the table generated in the FrROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note

The join condition of an inner join can be written either in the WHERE clause or in the Jo1IN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5
or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FroM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FroM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE cl > 5

SELECT ... FROM fdt WHERE cl IN (1, 2, 3)

98

Queries

SELECT ... FROM fdt WHERE cl IN (SELECT cl FROM t2)

SELECT ... FROM fdt WHERE cl IN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10)

SELECT ... FROM fdt WHERE cl BETWEEN (SELECT c¢3 FROM t2 WHERE c2 = fdt.cl + 10) AND 100
SELECT ... FROM fdt WHERE EXISTS (SELECT cl FROM t2 WHERE c2 > fdt.cl)

fdt is the table derived in the FroOM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as £dt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GrROUP RY and HAVING Clauses

After passing the WwHERE filter, the derived input table might be subject to grouping, using the GrRoup BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_1list
FROM
[WHERE ...]
GROUP BY grouping_column_reference [, grouping column_reference]...

The crour BY clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:

=> SELECT * FROM testl;

x |y
___+___
a | 3
c | 2
b | 5
a | 1
(4 rows)

(3 rows)

In the second query, we could not have written SELECT * FROM testl GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:

=> SELECT x, sum(y) FROM testl GROUP BY x;
sum

99

Queries

(3 rows)

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the D1STINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
FROM products p LEFT JOIN sales s USING (product_id)
GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GrROUP BY list since it is only used in an aggregate expression (sum (. . .)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GroOUP BY can only group by columns of the source table but Postgres Pro extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING sum(y) > 3;

X | sum
e
a | 4
b | 5
(2 rows)

=> SELECT x, sum(y) FROM testl GROUP BY x HAVING x < 'c';

X | sum
e
a | 4
b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit
FROM products p LEFT JOIN sales s USING (product_id)
WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'

100

Queries

GROUP BY product_id, p.name, p.price, p.cost
HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP

More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FrROM and WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then the
results returned. For example:

=> SELECT * FROM items_sold;

brand | size | sales
_______ +______+_______
Foo | L | 10
Foo | M | 20
Bar | M | 15
Bar | L | 5

(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
(size), ());

brand | size | sum
_______ +______+_____
Foo \ | 30
Bar | | 20
| L | 15
| M | 35
\ | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GrRouP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.61.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form
ROLLUP (el, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (

(el, e2, e3, ...),
(el, e2),
(el),

101

Queries

)

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (el, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus
CUBE (a, b, c)

is equivalent to

GROUPING SETS (

(a, b, c),
(a, b)
(a, c)y
(a)y
(b, c),
(b)
()
()

)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))
is equivalent to

GROUPING SETS (
(a, b, ¢, d)
(a, b),
(c, d)
()

)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
(a, b, ¢, d),
(a, b, c),
(a)
()

14

)

The cuBk and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))
is equivalent to

GROUP BY GROUPING SETS (

102

Queries

(a, b, ¢, d), (a, b, c, e),
(a, b, d), (a, b, e),
(a, c, d), (a, c, e),
(a, d), (a, e)

)

When specifying multiple grouping items together, the final set of grouping sets might contain duplicates.
For example:

GROUP BY ROLLUP (a, b), ROLLUP (a, c)
is equivalent to

GROUP BY GROUPING SETS (

(a, b, <),
(a, b),
(a, b),
(a, c),
(a),

(a),

(a, c),
(a),

()

)

If these duplicates are undesirable, they can be removed using the DISTINCT clause directly on the GRoOUP
BY. Therefore:

GROUP BY DISTINCT ROLLUP (a, b), ROLLUP (a, c)
is equivalent to

GROUP BY GROUPING SETS (

(a, b, c),
a, b),
a, c),

)

This is not the same as using SELECT DISTINCT because the output rows may still contain duplicates.
If any of the ungrouped columns contains NULL, it will be indistinguishable from the NULL used when
that same column is grouped.

Note

The construct (a, b) is normally recognized in expressions as a row constructor. Within the Group
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW (a, b).

7.2.5. Window Function Processing

If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not

103

Queries

uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists

As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

7.3.1. Select-List Items

The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, ¢ FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:
SELECT tbll.a, tbl2.a, tbll.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:
SELECT tbll.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table name.* notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FroM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels

The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + ¢ AS sum FROM ...

If no output column name is specified using as, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The as key word is usually optional, but in some cases where the desired column name matches a
Postgres Pro key word, you must write As or double-quote the column name in order to avoid ambiguity.
(Appendix C shows which key words require As to be used as a column label.) For example, FROM is one
such key word, so this does not work:

SELECT a from, b + ¢ AS sum FROM ...

104

Queries

but either of these do:

SELECT a AS from, b + ¢ AS sum FROM ...
SELECT a "from", b + ¢ AS sum FROM ...

For greatest safety against possible future key word additions, it is recommended that you always either
write AS or double-quote the output column name.

Note

The naming of output columns here is different from that done in the FrROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT

After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DI1STINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list

(Instead of DIsTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:
SELECT DISTINCT ON (expression [, expression ...]) select_list

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DIsTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GRouP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries (UNION, INTERSECT, EXCEPT)

The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is

queryl UNION [ALL] queryZ2
queryl INTERSECT [ALL] queryZ2
queryl EXCEPT [ALL] queryZ2

where query! and query2 are queries that can use any of the features discussed up to this point.
UNION effectively appends the result of query2 to the result of query (although there is no guarantee

that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

105

Queries

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example

queryl UNION queryZ2 EXCEPT query3

which is equivalent to

(queryl UNION queryZ2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNION
and EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus

queryl UNION queryZ2 INTERSECT query3
means
queryl UNION (queryZ2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to
use any of the clauses discussed in following sections, such as L.1MIT. Without parentheses, you'll get a
syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of its inputs. For example,

SELECT a FROM b UNION SELECT x FROM y LIMIT 10
is accepted, but it means

(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10
not

SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

7.5. Sorting Rows (ORDER BY)

After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

The ORDER BY clause specifies the sort order:

SELECT select_1list
FROM table expression
ORDER BY sort_expressionl [ASC | DESC] [NULLS { FIRST | LAST }]
[, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:
SELECT a, b FROM tablel ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional asc or DEsC keyword
to set the sort direction to ascending or descending. Asc order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. !

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

! Actually, Postgres Pro uses the default B-tree operator class for the expression's data type to determine the sort ordering for Asc and pEsc. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

106

Queries

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c¢ FROM tablel ORDER BY sum;
SELECT a, max(b) FROM tablel GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, ¢ FROM tablel ORDER BY sum + c; —-— wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use As to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET

LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_1list
FROM table_expression
[ORDER BY ...]
[LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the L.IMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. oOFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for L1MIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with orRDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an orrFsET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists

VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...1) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must

107

Queries

have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:
VALUES (1, 'one'), (2, 'two'), (3, 'three');
will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS columnl, 'one' AS column2
UNION ALL

SELECT 2, 'two'

UNION ALL

SELECT 3, 'three';

By default, Postgres Pro assigns the names columni, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently, so
it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num, letter);
num | letter
_____ e
1 | one
2 | two
3 | three
(3 rows)

Syntactically, vALUES followed by expression lists is treated as equivalent to:
SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table Expressions)

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WwITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, Or DELETE.

7.8.1. SELECT in WITH

The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
SELECT region, SUM(amount) AS total_sales
FROM orders
GROUP BY region
), top_regions AS (
SELECT region
FROM regional_sales
WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
product,
SUM (quantity) AS product_units,
SUM (amount) AS product_sales

108

Queries

FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The wiTH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without wiTH, but we'd have needed two levels of nested sub-seLECTs. It's a bit easier
to follow this way:.

7.8.2. Recursive Queries

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t (n) AS (
VALUES (1)
UNION ALL
SELECT n+1 FROM t WHERE n < 100

)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For un1oN (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. Solong as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For uNION (but not UNION ALL), discard duplicate rows and rows that
duplicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

Note

Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology chosen
by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:

WITH RECURSIVE included_parts (sub_part, part, quantity) AS (
SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part, p.quantity
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part

109

Queries

)

SELECT sub_part, SUM(quantity) as total_guantity
FROM included_parts

GROUP BY sub_part

7.8.2.1. Search Order

When computing a tree traversal using a recursive query, you might want to order the results in either
depth-first or breadth-first order. This can be done by computing an ordering column alongside the other
data columns and using that to sort the results at the end. Note that this does not actually control in
which order the query evaluation visits the rows; that is as always in SQL implementation-dependent.
This approach merely provides a convenient way to order the results afterwards.

To create a depth-first order, we compute for each result row an array of rows that we have visited so
far. For example, consider the following query that searches a table tree using a 1ink field:

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNION ALL
SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link

)
SELECT * FROM search_tree;

To add depth-first ordering information, you can write this:

WITH RECURSIVE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[t.id]
FROM tree t

UNION ALL

SELECT t.id, t.link, t.data, path || t.id
FROM tree t, search_tree st
WHERE t.id = st.link

)

SELECT * FROM search_tree ORDER BY path;

In the general case where more than one field needs to be used to identify a row, use an array of rows.
For example, if we needed to track fields £1 and f2:

WITH RECURSIVE search_tree(id, link, data, path) AS (
SELECT t.id, t.link, t.data, ARRAY[ROW(t.fl, t.£f2)]
FROM tree t

UNION ALL
SELECT t.id, t.link, t.data, path || ROW(t.£f1l, t.£f2)
FROM tree t, search_tree st
WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY path;

Tip
Omit the row () syntax in the common case where only one field needs to be tracked. This allows
a simple array rather than a composite-type array to be used, gaining efficiency.

To create a breadth-first order, you can add a column that tracks the depth of the search, for example:

WITH RECURSIVE search_tree(id, link, data, depth) AS (
SELECT t.id, t.link, t.data, O

110

Queries

FROM tree t
UNION ALL
SELECT t.id, t.link, t.data, depth + 1
FROM tree t, search_tree st
WHERE t.id = st.link
)
SELECT * FROM search_tree ORDER BY depth;

To get a stable sort, add data columns as secondary sorting columns.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order.
However, this is an implementation detail and it is perhaps unsound to rely on it. The order of

the rows within each level is certainly undefined, so some explicit ordering might be desired in
any case.

There is built-in syntax to compute a depth- or breadth-first sort column. For example:

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t

UNION ALL

SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link

) SEARCH DEPTH FIRST BY id SET ordercol

SELECT * FROM search_tree ORDER BY ordercol;

WITH RECURSIVE search_tree(id, link, data) AS (
SELECT t.id, t.link, t.data
FROM tree t
UNION ALL
SELECT t.id, t.link, t.data
FROM tree t, search_tree st
WHERE t.id = st.link
) SEARCH BREADTH FIRST BY id SET ordercol
SELECT * FROM search_tree ORDER BY ordercol;

This syntax is internally expanded to something similar to the above hand-written forms. The SEARCH
clause specifies whether depth- or breadth first search is wanted, the list of columns to track for sorting,
and a column name that will contain the result data that can be used for sorting. That column will
implicitly be added to the output rows of the CTE.

7.8.2.2. Cycle Detection

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just one
or a few fields to see if the same point has been reached before. The standard method for handling such
situations is to compute an array of the already-visited values. For example, consider again the following
query that searches a table graph using a 1ink field:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, O
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1

111

Queries

FROM graph g, search_graph sg

WHERE g.id = sg.link
)
SELECT * FROM search_graph;
This query will loop if the 1ink relationships contain cycles. Because we require a “depth” output, just
changing unIoN ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns

is_cycle and path to the loop-prone query:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
SELECT g.id, g.link, g.data, O,

false,
ARRAY [g.id]
FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1,
g.id = ANY (path),
path || g.id
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;
Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields £1 and £2:

WITH RECURSIVE search_graph(id, link, data, depth, is_cycle, path) AS (
SELECT g.id, g.link, g.data, O,
false,
ARRAY[ROW(g.fl, g.f2)]
FROM graph g
UNION ALL
SELECT g.id, g.link, g.data, sg.depth + 1,
ROW(g.fl, g.f2) = ANY(path),
path || ROW(g.fl, g.f2)
FROM graph g, search_graph sg
WHERE g.id = sg.link AND NOT is_cycle
)
SELECT * FROM search_graph;

Tip
Omit the rOW () syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

There is built-in syntax to simplify cycle detection. The above query can also be written like this:

WITH RECURSIVE search_graph(id, link, data, depth) AS (
SELECT g.id, g.link, g.data, 1
FROM graph g

UNION ALL

SELECT g.id, g.link, g.data, sg.depth + 1
FROM graph g, search_graph sg
WHERE g.id = sg.link

) CYCLE id SET is_cycle USING path

112

Queries

SELECT * FROM search_graph;

and it will be internally rewritten to the above form. The cycLE clause specifies first the list of columns
to track for cycle detection, then a column name that will show whether a cycle has been detected, and
finally the name of another column that will track the path. The cycle and path columns will implicitly
be added to the output rows of the CTE.

Tip
The cycle path column is computed in the same way as the depth-first ordering column show in
the previous section. A query can have both a SEARCH and a CYCLE clause, but a depth-first search
specification and a cycle detection specification would create redundant computations, so it's more

efficient to just use the cvycLE clause and order by the path column. If breadth-first ordering is
wanted, then specifying both sEArRCcH and cYCLE can be useful.

A helpful trick for testing queries when you are not certain if they might loop is to place a L.IMIT in the
parent query. For example, this query would loop forever without the L.TMIT:

WITH RECURSIVE t (n) AS (
SELECT 1
UNION ALL
SELECT n+l1 FROM t

)
SELECT n FROM t LIMIT 100;

This works because Postgres Pro's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the WITH query's output anyway.

7.8.3. Common Table Expression Materialization

A useful property of WwiTH queries is that they are normally evaluated only once per execution of the
parent query, even if they are referred to more than once by the parent query or sibling WITH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a WITH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations of
functions with side-effects. However, the other side of this coin is that the optimizer is not able to push
restrictions from the parent query down into a multiply-referenced wITH query, since that might affect all
uses of the wiTH query's output when it should affect only one. The multiply-referenced wiTa query will
be evaluated as written, without suppression of rows that the parent query might discard afterwards.
(But, as mentioned above, evaluation might stop early if the reference(s) to the query demand only a
limited number of rows.)

However, if a WITH query is non-recursive and side-effect-free (that is, it is a SELECT containing no volatile
functions) then it can be folded into the parent query, allowing joint optimization of the two query levels.
By default, this happens if the parent query references the wiTH query just once, but not if it references
the wIiTH query more than once. You can override that decision by specifying MATERIALIZED to force
separate calculation of the wITH query, or by specifying NOT MATERIALIZED to force it to be merged into
the parent query. The latter choice risks duplicate computation of the wiTH query, but it can still give a
net savings if each usage of the WITH query needs only a small part of the wiTH query's full output.

A simple example of these rules is

WITH w AS (
SELECT * FROM big_table

)
SELECT * FROM w WHERE key = 123;

This wiTH query will be folded, producing the same execution plan as

113

Queries

SELECT * FROM big_table WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WITH w AS (
SELECT * FROM big_table
)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.key = w2.ref
WHERE w2.key = 123;

the wiTH query will be materialized, producing a temporary copy of big_table that is then joined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

WITH w AS NOT MATERIALIZED (
SELECT * FROM big_table
)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.key = w2.ref
WHERE w2.key = 123;

so that the parent query's restrictions can be applied directly to scans of big_table.

An example where NOT MATERIALIZED could be undesirable is

WITH w AS (
SELECT key, very_expensive_function(val) as f FROM some_table

)
SELECT * FROM w AS wl JOIN w AS w2 ON wl.f = w2.f;

Here, materialization of the wITH query ensures that very_expensive_function is evaluated only once
per table row, not twice.

The examples above only show wITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.4. Data-Modifying Statements in wIiTH

You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to perform
several different operations in the same query. An example is:

WITH moved_rows AS (
DELETE FROM products
WHERE
"date" >= '2010-10-01"' AND
"date" < '2010-11-01"
RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the wiTH clause is attached to the INSERT, not the sub-SELECT
within the 1NSERT. This is necessary because data-modifying statements are only allowed in wITH clauses
that are attached to the top-level statement. However, normal w1TH visibility rules apply, so it is possible
to refer to the wITH statement's output from the sub-SELECT.

Data-modifying statements in wITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying
statement, that forms the temporary table that can be referred to by the rest of the query. If a data-

114

Queries

modifying statement in wiTH lacks a RETURNING clause, then it forms no temporary table and cannot be
referred to in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-
useful example is:

WITH t AS (
DELETE FROM foo

)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive wiTH, for example:

WITH RECURSIVE included_parts (sub_part, part) AS (
SELECT sub_part, part FROM parts WHERE part = 'our_product'
UNION ALL
SELECT p.sub_part, p.part
FROM included_parts pr, parts p
WHERE p.part = pr.sub_part
)
DELETE FROM parts
WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WwITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WwiTH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in wiTH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNING data is the only
way to communicate changes between different wiTH sub-statements and the main query. An example
of this is that in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)

SELECT * FROM products;

the outer seLECT would return the original prices before the action of the UpDATE, while in

WITH t AS (
UPDATE products SET price = price * 1.05
RETURNING *

)

SELECT * FROM t;

the outer seLECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also
applies to deleting a row that was already updated in the same statement: only the update is performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing WwiTH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

115

Queries

At present, any table used as the target of a data-modifying statement in w1 TH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

116

Chapter 8. Data Types

Postgres Pro has a rich set of native data types available to users. Users can add new types to Postgres
Pro using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by Postgres Pro for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description

bigint int8 signed eight-byte integer

bigserial serials8 autoincrementing eight-byte integer

bit [(n)] fixed-length bit string

bit varying [(n)] varbit [(n)] |variable-length bit string

boolean bool logical Boolean (true/false)

box rectangular box on a plane

bytea binary data (“byte array”)

character [(n)] char [(n)] fixed-length character string

character varying [(n)] varchar [(n)] |variable-length character string

cidr IPv4 or IPv6 network address

circle circle on a plane

date calendar date (year, month, day)

double precision floats double precision floating-point number
(8 bytes)

inet IPv4 or IPv6 host address

integer int, int4 signed four-byte integer

interval [fields 1 [(p)] time span

json textual JSON data

jsonb binary JSON data, decomposed

line infinite line on a plane

lseg line segment on a plane

macaddr MAC (Media Access Control) address

macaddr8 MAC (Media Access Control) address (
EUI-64 format)

money currency amount

numeric [(p, s)] decimal [(p, exact numeric of selectable precision

s) 1

path geometric path on a plane

pg_lsn Postgres Pro Log Sequence Number

pPg_snapshot user-level transaction ID snapshot

point geometric point on a plane

polygon closed geometric path on a plane

real float4 single precision floating-point number (
4 bytes)

117

Data Types

Name Aliases Description
smallint int2 signed two-byte integer
smallserial serial? autoincrementing two-byte integer
serial seriald autoincrementing four-byte integer
text variable-length character string
time [(p)] [without time time of day (no time zone)
zone]
time [(p)] with time =zone timetz time of day, including time zone
timestamp [(p)] [without time date and time (no time zone)
zone |
timestamp [(p)] with time zone |timestamptz date and time, including time zone
tsquery text search query
tsvector text search document
txid_snapshot user-level transaction ID snapshot (

deprecated; see pg_snapshot)
uuid universally unique identifier
xml XML data

Compatibility

The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character varying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), timestamp (with or without
time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to Postgres Pro,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types

Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size|Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for integer -2147483648 to
+2147483647
bigint 8 bytes large-range integer -9223372036854775808 to
+9223372036854775807
decimal variable user-specified precision, up to 131072 digits before
exact the decimal point; up to
16383 digits after the
decimal point
numeric variable user-specified precision, up to 131072 digits before
exact the decimal point; up to

118

Data Types

8

Name Storage Size |Description Range
16383 digits after the
decimal point
real 4 bytes variable-precision, inexact |6 decimal digits precision
double precision 8 bytes variable-precision, inexact |15 decimal digits precision
smallserial 2 bytes small autoincrementing 1 to 32767
integer
serial 4 bytes autoincrementing integer 1to 2147483647
bigserial 8 bytes large autoincrementing 1 t0 9223372036854775807
integer

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

1.1. Integer Types

The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (Or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers

The type numeric can store numbers with a very large number of digits. It is especially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
numeric values yield exact results where possible, e.g., addition, subtraction, multiplication. However,
calculations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC (precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERIC (precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates an “unconstrained numeric” column in which numeric values of
any length can be stored, up to the implementation limits. A column of this kind will not coerce input
values to any particular scale, whereas numeric columns with a declared scale will coerce input values
to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find
this a bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

119

Data Types

Note

The maximum precision that can be explicitly specified in a NUMERIC type declaration is 1000. An
unconstrained NUMERIC column is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar (n) than to char (n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type has several special values:

Infinity
-Infinity
NaN

” o«

These are adapted from the IEEE 754 standard, and represent “infinity”, “negative infinity”, and “not-a-
number”, respectively. When writing these values as constants in an SQL command, you must put quotes
around them, for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized
in a case-insensitive manner. The infinity values can alternatively be spelled inf and -inf.

The infinity values behave as per mathematical expectations. For example, Infinity plus any finite
value equals Infinity, as does Infinity plus Infinity; but Infinity minus Infinity yields NaN (not
a number), because it has no well-defined interpretation. Note that an infinity can only be stored in an
unconstrained numeric column, because it notionally exceeds any finite precision limit.

The NaN (not a number) value is used to represent undefined calculational results. In general, any
operation with a NaN input yields another NaN. The only exception is when the operation's other inputs
are such that the same output would be obtained if the NaN were to be replaced by any finite or infinite
numeric value; then, that output value is used for NaN too. (An example of this principle is that NaN raised
to the zero power yields one.)

Note

In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, Postgres Pro treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:

SELECT x,
round (x: :numeric) AS num_round,
round (x: :double precision) AS dbl_round

FROM generate_series(-3.5, 3.5, 1) as x;

X | num_round | dbl_round
______ +___________+___________
-3.5 | -4 | -4
-2.5 | -3 | -2
-1.5 | -2 | -2

120

Data Types

w NP, OO
o O 01 On
Ssw NN e
SN OO

\
\
\
\
.5 |
(8 rows)

8.1.3. Floating-Point Types

The data types real and double precision are inexact, variable-precision numeric types. On all
currently supported platforms, these types are implementations of IEEE Standard 754 for Binary
Floating-Point Arithmetic (single and double precision, respectively), to the extent that the underlying
processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

* If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

» If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

* Comparing two floating-point values for equality might not always work as expected.

On all currently supported platforms, the real type has a range of around 1E-37 to 1E+37 with a
precision of at least 6 decimal digits. The double precision type has a range of around 1E-307 to 1E
+308 with a precision of at least 15 digits. Values that are too large or too small will cause an error.
Rounding might take place if the precision of an input number is too high. Numbers too close to zero
that are not representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two
representable values, in order to avoid a widespread bug where input routines do not properly respect
the round-to-nearest-even rule.) This value will use at most 17 significant decimal digits for float8
values, and at most 9 digits for f1oat4 values.

Note

This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of Postgres Pro, and to allow the output
precision to be reduced, the extra float digits parameter can be used to select rounded decimal output
instead. Setting a value of 0 restores the previous default of rounding the value to 6 (for float4) or 15
(for f1oats) significant decimal digits. Setting a negative value reduces the number of digits further;
for example -2 would round output to 4 or 13 digits respectively.

Any value of extra float digits greater than 0 selects the shortest-precise format.

Note

Applications that wanted precise values have historically had to set extra float digits to 3 to obtain
them. For maximum compatibility between versions, they should continue to do so.

121

Data Types

In addition to ordinary numeric values, the floating-point types have several special values:

Infinity
—Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”,
respectively. When writing these values as constants in an SQL command, you must put quotes around
them, for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized in a
case-insensitive manner. The infinity values can alternatively be spelled inf and -inf.

Note

IEEE 754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Postgres
Pro treats NaN values as equal, and greater than all non-NaN values.

Postgres Pro also supports the SQL-standard notations float and float (p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. Postgres Pro
accepts float (1) to float (24) as selecting the real type, while float (25) to float (53) select double
precision. Values of p outside the allowed range draw an error. f1oat with no precision specified is
taken to mean double precision.

8.1.4. Serial Types

Note

This section describes a Postgres Pro-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at CREATE TABLE.

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported
by some other databases). In the current implementation, specifying:

CREATE TABLE tablename (
colname SERIAL

)

is equivalent to specifying:

CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (

colname integer NOT NULL DEFAULT nextval ('tablename_colname_seq')
)i
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;
Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note

Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value

122

Data Types

is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval () in Section 9.17 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 23! identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created fora serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types

The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc monetary setting. The range shown in the table assumes
there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as '$1,000.00'. Output is generally in the
latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size |Description Range

money 8 bytes currency amount -92233720368547758.08 to
+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of 1c_monetary. To avoid problems, before restoring a dump into a new
database make sure 1c_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

SELECT '12.34'::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a

money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types

Table 8.4. Character Types

Name Description

character varying(n), varchar(n) variable-length with limit

123

Data Types

Name Description
character (n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8.4 shows the general-purpose character types available in Postgres Pro.

SQL defines two primary character types: character varying(n) and character (n), where n is a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store the
shorter string.

If one explicitly casts a value to character varying(n) or character (n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar (n) and char (n) are aliases for character varying(n) and character (n),
respectively. character without length specifier is equivalent to character (1) . If character varyingis
used without length specifier, the type accepts strings of any size. The latter is a Postgres Pro extension.

In addition, Postgres Pro provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregarded
when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a
\n'::CHAR (2) returns true, even though c locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is L1KE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the
character with code zero (sometimes called NUL) cannot be stored. For more information refer to
Section 22.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character (n) has performance advantages in some other
database systems, there is no such advantage in Postgres Pro; in fact character (n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

124

Data Types

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE testl (a character(4));
INSERT INTO testl VALUES ('ok');

SELECT a, char_length(a) FROM testl; --
a | char_length

______ +_____________

ok \ 2

CREATE TABLE test2 (b wvarchar(5));

INSERT INTO test2 VALUES ('ok');

INSERT INTO test2 VALUES ('good ')

INSERT INTO test2 VALUES ('too long');

ERROR: value too long for type character varying(5)

INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

b | char_length
_______ e
ok \ 2
good | 5
too 1 | 5

The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in Postgres Pro, shown in Table 8.5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length might change in a future release.
The type "char" (note the quotes) is different from char (1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description

bytea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual

125

Data Types

bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The input
format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format

The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

Example:

SELECT '\xDEADBEEF';

8.4.2. bytea Escape Format

The “escape” format is the traditional Postgres Pro format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet Description Escaped Input Example Hex

Value Representation Representation
0 zero octet "\000" "\000"'::bytea \x00

39 single quote "rrroor '\047" "''1'::bytea \x27

92 backslash "\\"' or '\134" "\\'::bytea \x5¢c

0 to 31 and 127 to |“non-printable” "\xxx' (octal "\001"'::bytea \x01

255 octets value)

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in an SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just

126

Data Types

one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:

SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124"'::bytea;
bytea

abc klm *\251T
The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet Description Escaped Output |Example Output Result
Value Representation
92 backslash \\ '"\134"'::bytea A\
0 to 31 and 127 to |“non-printable” \xxx (octal value) |'\001"'::bytea \001
255 octets
32 to 126 “printable” octets |client character "\176"'::bytea ~
set representation

Depending on the front end to Postgres Pro you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types

Postgres Pro supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size |Description Low Value High Value Resolution
timestamp 8 bytes both date and [4713 BC 294276 AD 1 microsecond
[(p)] time (no time
[without zZone)
time zone]
timestamp [(|8 bytes both date and (4713 BC 294276 AD 1 microsecond
p) 1 with time, with time
time zone zone
date 4 bytes date (no time of (4713 BC 5874897 AD 1 day
day)
time [(p) 1 |8 bytes time of day (no [00:00:00 24:00:00 1 microsecond
[without date)
time zone]
time [(p) 1 |12 bytes time of day (no |{00:00:00+1559 |24:00:00-1559 |1 microsecond
with time date), with time
zone zone

127

Data Types

8

Name Storage Size |Description Low Value High Value Resolution
interval [16 bytes time interval -178000000 178000000 1 microsecond
fields 1 [(years years
p)]
Note

The SQL standard requires that writing just t imestamp be equivalent to timestamp without time
zone, and Postgres Pro honors that behavior. timestamptz is accepted as an abbreviation for
timestamp with time zone; this is a Postgres Pro extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from O to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR

MONTH

DAY

HOUR

MINUTE

SECOND

YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields mustinclude SECOND, since the precision applies
only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without
time zone, and timestamp with time zone should provide a complete range of date/time functionality
required by any application.

5.1. Date/Time Input

Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, pMy to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

Postgres Pro is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p) 1 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no

128

Data Types

precision is specified in a constant specification, it defaults to the precision of the literal value (but not
more than 6 digits).

8.5.1.1. Dates

Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description

1999-01-08 ISO 8601; January 8 in any mode (recommended format)

January 8, 1999 unambiguous in any datestyle input mode

1/8/1999 January 8 in MDY mode; August 1 in bMY mode

1/18/1999 January 18 in MDY mode; rejected in other modes

01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode;
February 3, 2001 in YMD mode

1999-Jan-08 January 8 in any mode

Jan-08-1999 January 8 in any mode

08-Jan-1999 January 8 in any mode

99-Jan-08 January 8 in YMD mode, else error

08-Jan-99 January 8, except error in YMD mode

Jan-08-99 January 8, except error in YMD mode

19990108 ISO 8601; January 8, 1999 in any mode

990108 ISO 8601; January 8, 1999 in any mode

1999.008 year and day of year

J2451187 Julian date

January 8, 99 BC year 99 BC

8.5.1.2. Times

The time-of-day types are time [(p)] without time zone and time [(p)] with time zone.time
alone is equivalent to time without time =zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently ignored.
You can also specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as America/New_York. In this case specifying the date is required in order
to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recorded in the time with time zone value.

Table 8.11. Time Input

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM same as 04:05; AM does not affect value

04:05 PM same as 16:05; input hour must be <=
12

04:05:06.789-8 ISO 8601, with time zone as UTC offset

129

Data Types

Example Description

04:05:06-08:00 ISO 8601, with time zone as UTC offset

04:05-08:00 ISO 8601, with time zone as UTC offset

040506-08 ISO 8601, with time zone as UTC offset

040506+0730 ISO 8601, with fractional-hour time
zone as UTC offset

040506+07:30:00 UTC offset specified to seconds (not
allowed in ISO 8601)

04:05:06 PST time zone specified by abbreviation

2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 8.12. Time Zone Input

Example Description

PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name

PST8PDT POSIX-style time zone specification

-8:00:00 UTC offset for PST

-8:00 UTC offset for PST (ISO 8601 extended format)
-800 UTC offset for PST (ISO 8601 basic format)

-8 UTC offset for PST (ISO 8601 basic format)
zulu Military abbreviation for UTC

z Short form of zulu (also in ISO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps

Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional aAD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 —-8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time zone literals

by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,

TIMESTAMP '2004-10-19 10:23:54"
isa timestamp without time zone, while
TIMESTAMP '2004-10-19 10:23:54+02"

is a timestamp with time =zone. Postgres Pro never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02"

130

Data Types

In a literal that has been determined to be timestamp without time =zone, Postgres Pro will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter,
and is converted to UTC using the offset for the timezone zone.

When a timestamp with time =zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZzONE construct (see Section 9.9.4).

Conversions between timestamp without time zone and timestamp with time zone normally assume
that the timestamp without time zone value should be taken or given as t imezone local time. A different
time zone can be specified for the conversion using AT TIME ZONE.

8.5.1.4. Special Values

Postgres Pro supports several special date/time input values for convenience, as shown in Table 8.13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description

epoch date, timestamp 1970-01-01 00:00:00+00 (Unix
system time zero)

infinity date, timestamp later than all other time stamps

—-infinity date, timestamp earlier than all other time
stamps

now date, time, timestamp current transaction's start time

today date, timestamp midnight (00:00) today

tomorrow date, timestamp midnight (00:00) tomorrow

yesterday date, timestamp midnight (00:00) yesterday

allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. (See Section 9.9.5.) Note that these are SQL functions and are not recognized in data
input strings.

Caution

While the input strings now, today, tomorrow, and yesterday are fine to use in interactive
SQL commands, they can have surprising behavior when the command is saved to be executed
later, for example in prepared statements, views, and function definitions. The string can be
converted to a specific time value that continues to be used long after it becomes stale. Use one
of the SQL functions instead in such contexts. For example, CURRENT_DATE + 1 is safer than
'tomorrow': :date.

131

Data Types

8.5.2. Date/Time Output

The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL’” output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example

IS0 ISO 8601, SQL standard [1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

Postgres original style Wed Dec 17 07:37:16 1997 PST

German regional style 17.12.1997 07:37:16.00 PST
Note

ISO 8601 specifies the use of uppercase letter T to separate the date and time. Postgres Pro accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output

SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET
SQL, MDY month/day/year 12/17/1997 07:37:16.00 PST
Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:mm if it is an integral number of minutes, else as hh:mm:ss. (The third case is not
possible with any modern time zone standard, but it can appear when working with timestamps that
predate the adoption of standardized time zones.) In the other date styles, the time zone is shown as an
alphabetic abbreviation if one is in common use in the current zone. Otherwise it appears as a signed
numeric offset in ISO 8601 basic format (hh or hhmm).

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresgl.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones

Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. Postgres Pro uses the widely-
used IANA (Olson) time zone database for information about historical time zone rules. For times in the

132

https://tools.ietf.org/html/rfc3339

Data Types

future, the assumption is that the latest known rules for a given time zone will continue to be observed
indefinitely far into the future.

Postgres Pro endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

* Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

* The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported by
Postgres Pro for legacy applications and for compliance with the SQL standard). Postgres Pro assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

Postgres Pro allows you to specify time zones in three different forms:

* A full time zone name, for example America/New_York. The recognized time zone names are listed
in the pg_timezone_names view (see Section 50.96). Postgres Pro uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

* A time zone abbreviation, for example psT. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 50.95). You cannot set the configuration parameters TimeZone or log timezone to a time
zone abbreviation, but you can use abbreviations in date/time input values and with the AT TIME
ZONE operator.

e In addition to the timezone names and abbreviations, Postgres Pro will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. Postgres Pro interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under . . . /share/timezone/ and . ../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresqgl.conf, or in any of the other
standard ways described in Chapter 18. There are also some special ways to set it:

* The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling
of SET TIMEZONE TO with a more SQL-spec-compatible syntax.

133

Data Types

* The pGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the
server upon connection.

8.5.4. Interval Input
interval values can be written using the following verbose syntax:
[@] gquantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit iS microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units;
direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to postgres_verbose.

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10°' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of
years and months can be specified with a dash; for example '200-10" is read the same as '200 years
10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a p, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning

Years

Months (in the date part)
Weeks

Days

Hours

Minutes (in the time part)

W XIEY =R

Seconds

In the alternative format:
P [years—-months—days] [T hours:minutes:seconds]

the string must begin with p, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04"
applies to both the days and hour/minute/second parts. Postgres Pro allows the fields to have different

134

Data Types

signs, and traditionally treats each field in the textual representation as independently signed, so that the
hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional Postgres Pro interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

Field values can have fractional parts: for example, '1.5 weeks' or '01:02:03.45'. However, because
interval internally stores only three integer units (months, days, microseconds), fractional units must
be spilled to smaller units. Fractional parts of units greater than months are truncated to be an integer
number of months, e.g. '1.5 years' becomes '1 year 6 mons'. Fractional parts of weeks and days
are computed to be an integer number of days and microseconds, assuming 30 days per month and 24
hours per day, e.g., '1.75 months' becomes 1 mon 22 days 12:00:00. Only seconds will ever be shown
as fractional on output.

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description

1-2 SQL standard format: 1 year 2 months

3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6
seconds

1 year 2 months 3 days 4 hours 5 minutes 6 |ITraditional Postgres format: 1 year 2 months 3

seconds days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and microseconds. This is done because the
number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. The months and days fields are integers while the microseconds field can store fractional
seconds. Because intervals are usually created from constant strings or timestamp subtraction, this
storage method works well in most cases, but can cause unexpected results:

SELECT EXTRACT (hours from '80 minutes'::interval);
date_part

SELECT EXTRACT (days from '80 hours'::interval);
date_part

Functions justify_days and justify_hours are available for adjusting days and hours that overflow
their normal ranges.

8.5.5. Interval Output

The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, Or iso_8601, using the command SET intervalstyle. The default is the postgres
format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

135

Data Types

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to 150.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-1s0 output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval |Day-Time Interval Mixed Interval

sql_standard 1-2 3 4:05:06 -1-2 43 -4:05:06

postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days
-04:05:06

postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins @ 1 year 2 mons -3 days

6 secs 4 hours 5 mins 6 secs

ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type

Postgres Pro provides the standard SQL type boolean; see Table 8.19. The boolean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description

boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true” state:

true
yes
on

1

and these representations for the “false” state:

false
no
off

0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or £, as shown in Example 8.2.

Example 8.2. Using the boolean Type

CREATE TABLE testl (a boolean, b text);
INSERT INTO testl VALUES (TRUE, 'sic est');
INSERT INTO testl VALUES (FALSE, 'non est');
SELECT * FROM testl;

a | b

___+ _________

t | sic est

136

Data Types

f | non est

SELECT * FROM testl WHERE a;
a | b
___+ _________

t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example 'yes': :boolean.

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to boolean
explicitly, for example NULL: :boolean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type boolean.

8.7. Enumerated Types

Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:
CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy'):;

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (

name text,

current_mood mood

)i

INSERT INTO person VALUES ('Moe', 'happy');

SELECT * FROM person WHERE current_mood = 'happy';
name | current_mood

______ +______________

Moe | happy

(1 row)

8.7.2. Ordering

The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
name | current_mood

FROM person WHERE current_mood > 'sad' ORDER BY current_mood;

name current_mood

137

Data Types

Moe | happy
(2 rows)

SELECT name

FROM person

WHERE current_mood = (SELECT MIN(current_mood) FROM person);
name

8.7.3. Type Safety

Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:

CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (

num_weeks integer,

happiness happiness

)i

INSERT INTO holidays (num_weeks, happiness) VALUES (4, 'happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (6, 'very happy');
INSERT INTO holidays (num_weeks, happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays (num_weeks, happiness) VALUES (2, 'sad');
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:
SELECT person.name, holidays.num_weeks FROM person, holidays

WHERE person.current_mood::text = holidays.happiness::text;
name | num_weeks

8.7.4. Implementation Details

Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into Postgres Pro; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types

Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in Postgres Pro.

138

Data Types

Table 8.20. Geometric Types

Name Storage Size Description Representation

point 16 bytes Point on a plane (x,y)

line 32 bytes Infinite line {A,B,C}

lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))

box 32 bytes Rectangular box ((x1,y1),(x2,y2))

path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)

path 16+16n bytes Open path [(x1,y1),...]

polygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)

circle 24 bytes Circle <(x,y),r> (center
point and radius)

Arich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points

Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x, v)
X,y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines

Lines are represented by the linear equation ax + By + ¢ = 0, where 4 and B are not both zero. Values
of type 1line are input and output in the following form:

{4, B, C}

Alternatively, any of the following forms can be used for input:

[(x1, y1) , (x2, y2) 1
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are two different points on the line.

8.8.3. Line Segments

Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
1seg are specified using any of the following syntaxes:

[(x1, y1) , (x2, y2)]
((x1, y1) , (x2, y2))
(x1 , y1) , (x2, y2)
x1 , yl , x2 , y2

where (x1,y1) and (x2, y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes

139

Data Types

Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1, y1) , (x2, y2))
(x1, y1) , (x2, y2)
x1 , vyl , x2 , y2

where (x1,y1) and (x2, y2) are any two opposite corners of the box.
Boxes are output using the second syntax.

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths

Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[((x1 , y1) , , ((xn , yn) 1
((x1, y1) , , ((xn , yn))
(x1 , y1) , , ((xn , yn)

(x1 , yl , , xn , yn)
x1 , yl , , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([1])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons

Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1, y1) , , ((xn , yn))
(x1 , y1) , , ((xn , yn)
(x1 , yl , , xn , yn)
x1 , vyl , , Xxn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles

Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

>

<
A«)
(

XX XX
N R

14 14
14 14
14 14
14 14

r

where (x, y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types

140

Data Types

Postgres Pro offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description

cidr 7 or 19 bytes IPv4 and IPv6 networks

inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses

macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet

The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the /y portion is omitted, the netmask is taken to be 32 for IPv4 or 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr

The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network's lowest address represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev (cidr)
192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16

128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24

10.1 10.1.0.0/16 10.1/16

10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32

141

Data Types

cidr Input

cidr Output

abbrev (cidr)

2001:418:3:ba::/64

2001:4£8:3:ba::/64

2001:418:3:ba/64

2001:418:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:418:3:ba:
2e0:81ff:fe22:d1f1/128

.. ffff:1.2.3.0/120

«ffff:1.2.3.0/120

.o ffff:1.2.3/120

.. ffff:1.2.3.0/128

.:ffff:1.2.3.0/128

::ffff:1.2.3.0/128

8.9.3. inet VS. cidr

The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet
but not for cidr.

Tip
If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr

The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03"
'08-00-2b-01-02-03"'
'08002b:010203"
'08002b-010203"
'0800.2b01.0203"
'0800-2b01-0203"
'08002b010203"

These examples all specify the same address. Upper and lower case is accepted for the digits a through
£. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as the bit-reversed notation, so that
08-00-2b-01-02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant
only for obsolete network protocols (such as Token Ring). Postgres Pro makes no provisions for bit
reversal, and all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddrs8

The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given
in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE,
respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after
the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally
speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated
consistently by oneof ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes)
or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats
that are accepted:

'08:00:2b:01:02:03:04:05"

142

Data Types

'08-00-2b-01-02-03-04-05"
'08002b:0102030405"
'08002b-0102030405"
'0800.2b01.0203.0405"
'0800-2b01-0203-0405"
'08002b01:02030405"
'08002b0102030405"

These examples all specify the same address. Upper and lower case is accepted for the digits a through
£. Output is always in the first of the forms shown.

The last six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit ('08:00:2b:01:02:03");

macaddr8_set7bit

0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types

Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit (n) and bit varying(n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit (1), while bit varying without a length
specification means unlimited length.

Note

If one explicitly casts a bit-string value to bit (n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(S));
INSERT INTO test VALUES (B'101', B'00'");
INSERT INTO test VALUES (B'10', B'101'");

ERROR: bit string length 2 does not match type bit (3)

INSERT INTO test VALUES (B'10'::bit(3), B'101'");
SELECT * FROM test;

a \ b
_____ +_____

101 | 00

100 | 101

143

Data Types

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

8.11. Text Search Types

Postgres Pro provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the t squery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector

A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
tsvector
'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $Sthe lexeme ' ' contains spaces$$::tsvector;
tsvector

! ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $Sthe lexeme 'Joe''s' contains a quote$$::tsvector;
tsvector

'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'
Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
tsvector

'a':1,6,10 'and':8 'ate':9 'cat':3 '"fat':2,11 'mat':7 'on':5 'rat':12 'sat':4
A position normally indicates the source word's location in the document. Positional information can be

used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set
to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be &, B, ¢, or D. D is the
default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
tsvector

'a':1A 'cat':5 '"fat':2B, 4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the tsvector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;

144

Data Types

tsvector

'Fat' 'Rats' 'The'

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn't care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
to_tsvector

'fat':2 'rat':3
Again, see Chapter 12 for more detail.

8.11.2. tsquery

A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <n> of the FOLLOWED BY operator, where v is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then s« (AND), with | (OR) binding the least
tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
tsquery

SELECT 'fat & (rat | cat)'::tsquery;
tsquery
'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
tsquery

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them
to match only tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
tsquery

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
tsquery

'super':¥*
This query will match any word in a tsvector that begins with “super”.
Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with

tsvector, any required normalization of words must be done before converting to the t squery type. The
to_tsquery function is convenient for performing such normalization:

145

Data Types

SELECT to_tsquery('Fat:ab & Cats');
to_tsquery

Note that to_tsquery will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
?column?

because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
to_tsvector | to_tsquery

_______________ +____________
'postgradu':1 | 'postgr':*

which will match the stemmed form of postgraduate.

8.12. UUID Type

The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using
the same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12
digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

aleebc99-9c0b-4ef8-bb6d-6bb9%0bd380all

Postgres Pro also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four
digits. Examples are:

AOEEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380all}
aleebc999c0b4ef8bb6dbbb9bd380all
alee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0all
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380all}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

8.13. XML Type

The xml data type can be used to store XML data. Its advantage over storing XML data in a text field
is that it checks the input values for well-formedness, and there are support functions to perform type-
safe operations on it; see Section 9.15. Use of this data type requires the installation to have been built
with configure —--with-libxml.

The xm1 type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node” of the XQuery and
XPath data model. Roughly, this means that content fragments can have more than one top-level element
or character node. The expression xmlivalue IS DOCUMENT can be used to evaluate whether a particular
xml value is a full document or only a content fragment.

146

https://tools.ietf.org/html/rfc4122
https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

Limits and compatibility notes for the xm1 data type can be found in Section D.3.

8.13.1. Creating XML Values

To produce a value of type xml from character data, use the function xmlparse:
XMLPARSE ({ DOCUMENT | CONTENT } value)
Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</
chapter></book>")
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>")

While this is the only way to convert character strings into XML values according to the SQL standard,
the Postgres Pro-specific syntaxes:

xml '<foo>bar</foo>"
'<foo>bar</foo>"'::xml

can also be used.

The xm1 type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xm1, uses the function xmlserialize:
XMLSERTALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again, according to
the SQL standard, this is the only way to convert between type xml and character types, but Postgres
Pro also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML option”
session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };
or the more Postgres Pro-like syntax
SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling

Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results
to the client (which is the normal mode), Postgres Pro converts all character data passed between the
client and the server and vice versa to the character encoding of the respective end; see Section 22.3.
This includes string representations of XML values, such as in the above examples. This would ordinarily
mean that encoding declarations contained in XML data can become invalid as the character data is
converted to other encodings while traveling between client and server, because the embedded encoding
declaration is not changed. To cope with this behavior, encoding declarations contained in character
strings presented for input to the xml type are ignored, and content is assumed to be in the current
server encoding. Consequently, for correct processing, character strings of XML data must be sent
from the client in the current client encoding. It is the responsibility of the client to either convert
documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xm1 will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in

147

Data Types

the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that Postgres Pro does not support UTF-16). On output, data will have an
encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case
it will be omitted.

Needless to say, processing XML data with Postgres Pro will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution

Some XML-related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. This is known to be an issue for xmltable () and xpath () in particular.

8.13.3. Accessing XML Values

The xml1 data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xm1 data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in Postgres Pro can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the Postgres Pro distribution.

8.14. JSON Types

JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each
stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and
operators available for data stored in these data types; see Section 9.16.

Postgres Pro offers two types for storing JSON data: json and jsonb. To implement efficient query
mechanisms for these data types, Postgres Pro also provides the jsonpath data type described in
Section 8.14.7.

The json and jsonb data types accept almost identical sets of values as input. The major practical
difference is one of efficiency. The json data type stores an exact copy of the input text, which processing
functions must reparse on each execution; while jsonb data is stored in a decomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. jsonb also supports indexing, which can be a significant advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys
are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite
specialized needs, such as legacy assumptions about ordering of object keys.

148

https://tools.ietf.org/html/rfc7159

Data Types

RFC 7159 specifies that JSON strings should be encoded in UTF8. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts
to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uxxxx. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input function
for jsonb is stricter: it disallows Unicode escapes for characters that cannot be represented in the
database encoding. The jsonb type also rejects \u0000 (because that cannot be represented in Postgres
Pro's text type), and it insists that any use of Unicode surrogate pairs to designate characters outside
the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted to the equivalent
single character for storage; this includes folding surrogate pairs into a single character.

Note

Many of the JSON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even
if their input is of type json not jsonb. The fact that the json input function does not make
these checks may be considered a historical artifact, although it does allow for simple storage
(without processing) of JSON Unicode escapes in a database encoding that does not support the
represented characters.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are
effectively mapped onto native Postgres Pro types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor
to JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the Postgres Pro numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However,
in practice such problems are far more likely to occur in other implementations, as it is common to
represent JSON's number primitive type as IEEE 754 double precision floating point (which RFC 7159
explicitly anticipates and allows for). When using JSON as an interchange format with such systems,
the danger of losing numeric precision compared to data originally stored by Postgres Pro should be
considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding Postgres Pro types.

Table 8.23. JSON Primitive Types and Corresponding Postgres Pro Types

JSON primitive type Postgres Pro type Notes

string text \u0000 is disallowed, as are Unicode escapes
representing characters not available in the
database encoding

number numeric NaN and infinity values are disallowed

boolean boolean Only lowercase true and false spellings are
accepted

null (none) SQL nuLL is a different concept

8.14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

—— Simple scalar/primitive value

149

Data Types

—-— Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::Jjson;

—-— Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

—— Object containing pairs of keys and values
—-— Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

—-— Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
json
{"bar": "baz", "balance": 7.77, "active":false}
(1 row)
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
jsonb
{"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with E
notation will be printed without it, for example:

SELECT '{"reading": 1.230e-5}"'::json, '{"reading": 1.230e-5}"'::jsonb;
json \ jsonb
_______________________ o
{"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

For the list of built-in functions and operators available for constructing and processing JSON values,
see Section 9.16.

14.2. Designing JSON Documents

Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have a
somewhat fixed structure. The structure is typically unenforced (though enforcing some business rules
declaratively is possible), but having a predictable structure makes it easier to write queries that usefully
summarize a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row. Consider limiting JSON documents to a manageable size in order to
decrease lock contention among updating transactions. Ideally, JSON documents should each represent
an atomic datum that business rules dictate cannot reasonably be further subdivided into smaller datums
that could be modified independently.

150

Data Types

8.14.3. jsonb Containment and Existence

Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

—— Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

—-— The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

—-— Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

—— Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

—-— The object with a single pair on the right side is contained

—-— within the object on the left side:

SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @>
'{"version": 9.4}'::jsonb;

—-— The array on the right side is not considered contained within the
—-— array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]1'::jsonb @> '[1, 3]'::jsonb; -— yields false

-— But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]11'::jsonb @> '[[1, 3]]'::jsonb;

—-— Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -— yields false

—-— A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when doing
a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain
a primitive value:

—— This array contains the primitive string value:

SELECT '["foo", "bar"]'::jsonb @> '""bar"'::jsonb;
—— This exception is not reciprocal —-- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

-— String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

—-— String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

151

Data Types

—— Object values are not considered:
SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

—-— As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-— A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do not
need to be searched linearly.

Tip
Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level,
with most objects containing tags fields that contain arrays of sub-objects. This query finds entries

in which sub-objects containing both "term":"paris" and "term":"food" appear, while ignoring
any such keys outside the tags array:

SELECT doc->'site_name' FROM websites
WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

One could accomplish the same thing with, say,

SELECT doc->'site_name' FROM websites
WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.16.

8.14.4. jsonb Indexing

GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators 2, 2¢
and ?| operators and path/value-exists operator @>. (For details of the semantics that these operators
implement, see Table 9.45.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An example
of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{
"guid": "9c36adcl-7fb5-4d5b-83b4-90356a46061a",
"name": "Angela Barton",
"is_active": true,
"company": "Magnafone",

152

Data Types

"address": "178 Howard Place, Gulf, Washington, 702",
"registered": "2009-11-07T08:53:22 +08:00",
"latitude": 19.793713,
"longitude": 86.513373,
"tags": [

"enim",

"aliquip",

qui

}

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is created
on this column, queries like the following can make use of the index:

—-— Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc—->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator 2 is
indexable, it is not applied directly to the indexed column jdoc:

—— Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc—->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:

CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the indexable
operator 2 to the indexed expression jdoc -> 'tags'. (More information on expression indexes can
be found in Section 11.7.)

Also, GIN index supports @@ and @? operators, which perform jsonpath matching.
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ 'S.tags[*] == "qui"';
SELECT jdoc—>'guid', jdoc->'name' FROM api WHERE Jjdoc @? 'S$.tags[*] ? (@ == "qui")';

GIN index extracts statements of following form out of jsonpath: accessors_chain = const. ACCeSSOTs
chain may consist of .key, [*], and [index] accessors. jsonb_ops additionally supports .* and .**
accessors.

Another approach to querying is to exploit containment, for example:

—-— Find documents in which the key "tags" contains array element "qui"
SELECT jdoc—->'guid', jdoc—->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]l}';

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since
it supports queries about any key), targeted expression indexes are likely to be smaller and faster to
search than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @>, @@ and @? operators,
it has notable performance advantages over the default operator class jsonb_ops. A jsonb_path_ops
index is usually much smaller than a jsonb_ops index over the same data, and the specificity of searches
is better, particularly when queries contain keys that appear frequently in the data. Therefore search
operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 1 Basically, each jsonb_path_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would

! For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

153

Data Types

be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query
looking for this structure would result in an extremely specific index search; but there is no way at all
to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three
index items representing foo, bar, and baz separately; then to do the containment query, it would look
for rows containing all three of these items. While GIN indexes can perform such an AND search fairly
efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search, especially
if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}.If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited
for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The bt ree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > Null
Object with n pairs > object with n - 1 pairs

Array with n elements > array with n — 1 elements
Objects with equal numbers of pairs are compared in the order:
key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "C": 1} > {"b": 1, "d": 1}
Similarly, arrays with equal numbers of elements are compared in the order:
element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Postgres
Pro data type. Strings are compared using the default database collation.

8.14.5. jsonb Subscripting

The jsonb data type supports array-style subscripting expressions to extract and modify elements.
Nested values can be indicated by chaining subscripting expressions, following the same rules as the
path argument in the jsonb_set function. If a jsonb value is an array, numeric subscripts start at zero,
and negative integers count backwards from the last element of the array. Slice expressions are not
supported. The result of a subscripting expression is always of the jsonb data type.

UPDATE statements may use subscripting in the SET clause to modify jsonb values. Subscript paths must

be traversable for all affected values insofar as they exist. For instance, the path val['a']1['b']['c']
can be traversed all the way to c ifeveryval,val['a'],andval['a']['b'] isan object. fanyval['a"']
orval['a']l['b'] is not defined, it will be created as an empty object and filled as necessary. However,

if any val itself or one of the intermediary values is defined as a non-object such as a string, number, or
jsonb null, traversal cannot proceed so an error is raised and the transaction aborted.

An example of subscripting syntax:

—-— Extract object value by key
SELECT ('{"a": 1}'::jsonb)['a']l;

-— Extract nested object value by key path
SELECT ('{"a": {"b": {"c": 1}}}'::jsonb)['a']l['b']['c'];

154

Data Types

-— Extract array element by index
SELECT ('[1, "2", null]'::jsonb) [1];

—-— Update object value by key. Note the quotes around 'l': the assigned
-— value must be of the Jjsonb type as well

UPDATE table_name SET Jjsonb_field['key'] = '1';

—— This will raise an error if any record's jsonb_field['a']l['b'] is something
—— other than an object. For example, the value {"a": 1} has a numeric value
-— of the key 'a'.

UPDATE table_name SET Jjsonb_field['a']l['b']l['c'] = "1';

—-— Filter records using a WHERE clause with subscripting. Since the result of
—— subscripting is jsonb, the value we compare it against must also be jsonb.
—— The double quotes make "value" also a valid jsonb string.

SELECT * FROM table_name WHERE jsonb_field['key'] = '""value"';

jsonb assignment via subscripting handles a few edge cases differently from jsonb_set. When a source
jsonb value is NULL, assignment via subscripting will proceed as if it was an empty JSON value of the
type (object or array) implied by the subscript key:

—— Where jsonb_field was NULL, it is now {"a": 1}
UPDATE table_name SET Jjsonb_field['a'] = '1';

—— Where jsonb_field was NULL, it is now [1]
UPDATE table_name SET Jjsonb_field[0] = "1"';

If an index is specified for an array containing too few elements, NULL elements will be appended until
the index is reachable and the value can be set.

—— Where jsonb_field was [], it is now [null, null, 2];
—— where jsonb_field was [0], it is now [0, null, 2]
UPDATE table_name SET Jjsonb_field[2] = '2"';

A jsonb value will accept assignments to nonexistent subscript paths as long as the last existing element
to be traversed is an object or array, as implied by the corresponding subscript (the element indicated by
the last subscript in the path is not traversed and may be anything). Nested array and object structures
will be created, and in the former case null-padded, as specified by the subscript path until the assigned
value can be placed.

—— Where jsonb_field was {}, it is now {'a': [{'b': 1}]}
UPDATE table_name SET jsonb_field['a'][O]['b'] = '1";

—— Where jsonb_field was [], it is now [null, {'a': 1}]
UPDATE table_name SET Jjsonb_field[l]['a'] = '1';

8.14.6. Transforms

Additional extensions are available that implement transforms for the jsonb type for different procedural
languages.

The extensions for PL/Perl are called jsonb_plperl and jsonb_plperlu. If you use them, jsonb values
are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are called jsonb_plpythonu, jsonb_plpython2u, and jsonb_plpython3u
(see Section 44.1 for the PL/Python naming convention). If you use them, jsonb values are mapped to
Python dictionaries, lists, and scalars, as appropriate.

Of these extensions, jsonb_plperl is considered “trusted”, that is, it can be installed by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.7. jsonpath Type

155

Data Types

The jsonpath type implements support for the SQL/JSON path language in Postgres Pro to efficiently
query JSON data. It provides a binary representation of the parsed SQL/JSON path expression that
specifies the items to be retrieved by the path engine from the JSON data for further processing with
the SQL/JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the same time,
to provide a natural way of working with JSON data, SQL/JSON path syntax uses some JavaScript
conventions:

* Dot (.) is used for member access.

* Square brackets ([1) are used for array access.

¢ SQL/JSON arrays are 0-relative, unlike regular SQL arrays that start from 1.

An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal, so
it must be enclosed in single quotes, and any single quotes desired within the value must be doubled (see
Section 4.1.2.1). Some forms of path expressions require string literals within them. These embedded
string literals follow JavaScript/ECMAScript conventions: they must be surrounded by double quotes,
and backslash escapes may be used within them to represent otherwise-hard-to-type characters. In
particular, the way to write a double quote within an embedded string literal is \", and to write a
backslash itself, you must write \\. Other special backslash sequences include those recognized in JSON
strings: \b, \£, \n, \r, \t, \v for various ASCII control characters, and \unnnN for a Unicode character
identified by its 4-hex-digit code point. The backslash syntax also includes two cases not allowed by
JSON: \xNN for a character code written with only two hex digits, and \u{n. ..} for a character code
written with 1 to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:
¢ Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.

» Path variables listed in Table 8.24.

e Accessor operators listed in Table 8.25.

* Jsonpath operators and methods listed in Section 9.16.2.2.

¢ Parentheses, which can be used to provide filter expressions or define the order of path evaluation.
For details on using jsonpath expressions with SQL/JSON query functions, see Section 9.16.2.

Table 8.24. jsonpath Variables

Variable Description

$ A variable representing the JSON value being queried (the context
item).

$varname A named variable. Its value can be set by the parameter vars of
several JSON processing functions; see Table 9.47 for details.

@ A variable representing the result of path evaluation in filter
expressions.

Table 8.25. jsonpath Accessors

Accessor Operator Description

.key Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with $

."$varname" or does not meet the JavaScript rules for an identifier, it must be

enclosed in double quotes to make it a string literal.

Lx Wildcard member accessor that returns the values of all members
located at the top level of the current object.

Lxx Recursive wildcard member accessor that processes all levels
of the JSON hierarchy of the current object and returns all the

156

Data Types

Accessor Operator Description

member values, regardless of their nesting level. This is a Postgres
Pro extension of the SQL/JSON standard.

*x{level} Like . **, but selects only the specified levels of the JSON
hierarchy. Nesting levels are specified as integers. Level zero

.**{start_level to end_ corresponds to the current object. To access the lowest nesting

level } level, you can use the 1ast keyword. This is a Postgres Pro
extension of the SQL/JSON standard.

[subscript, ...] Array element accessor. subscript can be given in two forms:

index Or start_index to end_index . The first form returns
a single array element by its index. The second form returns an
array slice by the range of indexes, including the elements that
correspond to the provided start_index and end_index .

The specified index can be an integer, as well as an expression
returning a single numeric value, which is automatically cast to
integer. Index zero corresponds to the first array element. You can
also use the 1ast keyword to denote the last array element, which
is useful for handling arrays of unknown length.

[*] Wildcard array element accessor that returns all array elements.

8.15. Arrays

Postgres Pro allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (

name text,
pay_by_quarter integer|[],
schedule text[][]

)

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee's
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee's
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
squares integer[3] [3]
)i
However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_qguarter could have been defined as:

pay_by_quarter integer ARRAY[4],

157

Data Types

Or, if no array size is to be specified:
pay_by_quarter integer ARRAY,
As before, however, Postgres Pro does not enforce the size restriction in any case.

8.15.2. Array Value Input

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ vall delim val2 delim ... }'

where delimis the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the Postgres Pro distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

"{{1,2,3},{4,5,6},{7,8,9}}"'
This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULIL’, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
VALUES ('Bill',
'{10000, 10000, 10000, 210000%}"',
'"{{"meeting", "lunch"}, {"training", "presentation"}}'");

INSERT INTO sal_emp
VALUES ('Carol',
'{20000, 25000, 25000, 25000%}"',
'{{"breakfast", "consulting"}, {"meeting", "lunch"}}'");

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;

name | pay_by_dguarter \ schedule

_______ +___________________________+___
Bill | {10000,10000,10000,10000} | {{meeting,lunch}, {training,presentation}}
Carol | {20000,25000,25000,25000} | {{breakfast,consulting}, {meeting, lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
VALUES ('Bill',
'{10000, 10000, 10000, 10000}"',
'"{{"meeting", "lunch"}, {"meeting"}}');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp

158

Data Types

VALUES ('Bill'"',
ARRAY[10000, 10000, 10000, 100007,
ARRAY [['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp
VALUES ('Carol',
ARRAY [20000, 25000, 25000, 2500017,
ARRAY [['breakfast', 'consulting'], ['meeting', 'lunch']l]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays

Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[l] <> pay_by_quarter[2];

The array subscript numbers are written within square brackets. By default Postgres Pro uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

pay_by_qgquarter

10000
25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound: upper—bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

schedule

{{meeting}, {training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified.
For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

schedule

{{meeting, lunch}, {training, presentation}}
(1 row)

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1:2]
[1:1],not [2][1:1].

159

Data Types

It is possible to omit the 1ower-bound and/or upper-bound of a slice specifier; the missing bound is
replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

schedule

{{lunch}, {presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name

'Bill';

schedule

{{meeting}, {training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3] [1:2] then referencing schedule[3] [3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims (schedule) FROM sal_emp WHERE name = 'Carol';

array_dims

[1:2]1[1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper (schedule, 1) FROM sal_emp WHERE name = 'Carol';

array_upper

(1 row)
array_length will return the length of a specified array dimension:

SELECT array_length (schedule, 1) FROM sal_emp WHERE name = 'Carol';

array_Jlength

(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

160

Data Types

cardinality

(1 row)

8.15.4. Modifying Arrays

An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}"
WHERE name = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter
WHERE name = 'Carol';

ARRAY [25000,25000,27000,27000]

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_gquarter[4] = 15000
WHERE name = 'Bill';

or updated in a slice:

UPDATE sal_emp SET pay_by_gquarter[1:2] = '{27000,27000}"
WHERE name = 'Carol';

The slice syntaxes with omitted 1ower-bound and/or upper-bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, | |:

SELECT ARRAY[1,2] || ARRAY[3,4];
?column?
{1,2,3,4}
(1 row)
SELECT ARRAY[5,6] || ARRAY[[1,2],1[3,41];
?column?

{{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || '"[0:1]={2,3}'::int[]);
array_dims

161

Data Types

SELECT array_dims (ARRAY[1,2] || 3);
array_dims

[1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[3,4,5]);
array_dims

[1:5]
(1 row)

SELECT array_dims (ARRAY[[1,2],[3,41] || ARRAY[[5,6],[7,81,19,011);
array_dims

[1:5][1:2]
(1 row)

When an nv-dimensional array is pushed onto the beginning or end of an nv+1-dimensional array, the result
is analogous to the element-array case above. Each n-dimensional sub-array is essentially an element of
the nv+1-dimensional array's outer dimension. For example:

SELECT array_dims (ARRAY[1,2] || ARRAY[[3,4],[5,611]1);
array_dims

[1:3]1[1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append, Or array_cat.
The first two only support one-dimensional arrays, but array_cat supports multidimensional arrays.
Some examples:

SELECT array_prepend(l, ARRAY[2,3]);
array_prepend

{1,2,3}
(1 row)

SELECT array_append (ARRAY[1,2], 3);
array_append

{1,2,3}
(1 row)

SELECT array_cat (ARRAY[1,2], ARRAY[3,4]);
array_cat

{1,2,3,4}
(1 row)
SELECT array_cat (ARRAY[[1,2],[3,4]1]1, ARRAY[5,6]);

array_cat

162

Data Types

{{1,2},4{3,4},{5,6}}
(1 row)

SELECT array_cat (ARRAY[5,6], ARRAY[[1,2],1[3,4]11);
array_cat

{{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve all three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '"{3, 4}'; —-- the untyped literal is taken as an array
?column?
{1,2,3,4}

SELECT ARRAY[1, 2] || '7'; —— so 1s this one

ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; —— so 1is an undecorated NULL
?column?

{1,2}

(1 row)

SELECT array_append (ARRAY[1, 2], NULL); —— this might have been meant

array_append

{1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So
the concatenation operator is presumed to represent array_cat, not array_append. When that's the
wrong choice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays

To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
pay_by_quarter[2] = 10000 OR
pay_by_quarter[3] = 10000 OR
pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_gqguarter);
In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT * FROM
(SELECT pay_by_quarter,
generate_subscripts (pay_by_quarter, 1) AS s

163

Data Types

FROM sal_emp) AS foo
WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9.64.

You can also search an array using the ss operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal_emp WHERE pay_by_gquarter && ARRAY[10000];

This and other array operators are further described in Section 9.19. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions
functions. The former returns the subscript of the first occurrence of a value in an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT array_position (ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'], 'mon');
array_position

(1 row)

SELECT array_positions (ARRAY[1, 4, 3, 1, 3, 4, 2, 11, 1);
array_positions

{1,4,8}
(1 row)

Tip
Arrays are not sets; searching for specific array elements can be a sign of database misdesign.

Consider using a separate table with a row for each item that would be an array element. This will
be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax

The external text representation of an array value consists of items that are interpreted according to
the I/0 conversion rules for the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else: it
is determined by the typdelim setting for the array's element type. Among the standard data types
provided in the Postgres Pro distribution, all use a comma, except for type box, which uses a semicolon
(;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces,
and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric
data types it is safe to assume that double quotes will never appear, but for textual data types one should
be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension's lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1]1([-2][3] AS el, f1[1]1[-11[5] AS e2
FROM (SELECT '[1:1][-2:-1]11[3:51={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

164

Data Types

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL"
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array nulls
configuration parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type's delimiter character), double
quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings
matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted array
element value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-
escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip
The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-

literal syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types

A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. Postgres Pro allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:

CREATE TYPE complex AS (
r double precision,
i double precision

)i

CREATE TYPE inventory_item AS (

name text,
supplier_id integer,
price numeric

)i

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the as keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

165

Data Types

Having defined the types, we can use them to create tables:

CREATE TABLE on_hand (
item inventory_item,
count integer
)
INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);
or functions:
CREATE FUNCTION price_extension (inventory_item, integer) RETURNS numeric
AS 'SELECT $l.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:

CREATE TABLE inventory_item (

name text,
supplier_id integer REFERENCES suppliers,
price numeric CHECK (price > 0)

)i

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (To work around this, create a domain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values

To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:

'(vall , valz2 , ...)"
An example is:
'("fuzzy dice",42,1.99)"

which would be a valid value of the inventory_item type defined above. To make a field be NULL, write
no characters at all in its position in the list. For example, this constant specifies a NULL third field:

'("fuzzy dice",42,)"

If you want an empty string rather than NULL, write double quotes:
t("n,42,)"

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in
Section 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input
conversion routine. An explicit type specification might be necessary to tell which type to convert the
constant to.)

The row expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We already used this method above:

ROW ('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

166

Data Types

0

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:

('"fuzzy dice', 42, 1.99)
("', 42, NULL)

The row expression syntax is discussed in more detail in Section 4.2.13.

16.3. Accessing Composite Types

To access a field of a composite column, one writes a dot and the field name, much like selecting a field
from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:

SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:

SELECT (item) .name FROM on_hand WHERE (item) .price > 9.99;
or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item) .name FROM on_hand WHERE (on_hand.item) .price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:

SELECT (my_func(...)).field FROM ...
Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

16.4. Modifying Composite Types

Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:

INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits rRow, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:

UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name
appearing just after seT, but we do need parentheses when referencing the same column in the
expression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:

INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

16.5. Using Composite Types in Queries

There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

167

Data Types

In Postgres Pro, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table inventory_item as shown above, we
could write:

SELECT ¢ FROM inventory_item cj;

This query produces a single composite-valued column, so we might get output like:

("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as applying
field selection to the composite value of the table's current row. (For efficiency reasons, it's not actually
implemented that way.)

When we write
SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

name | supplier_id | price
____________ T T
fuzzy dice | 42 | 1.99
(1 row)

as if the query were
SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

Postgres Pro will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that . * is applied to whenever it's not a simple
table name. For example, if myfunc () is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip
Postgres Pro handles column expansion by actually transforming the first form into the second.

So, in this example, myfunc () would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

Placing the function in a LATERAL FROM item keeps it from being invoked more than once per row.
m. * is still expanded intom.a, m.b, m.c, but now those variables are just references to the output
of the FroM item. (The LATERAL keyword is optional here, but we show it to clarify that the function
is getting x from some_table.)

The composite_value.* syntax results in column expansion of this kind when it appears at the top level
of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause, or a row constructor.
In all other contexts (including when nested inside one of those constructs), attaching . * to a composite
value does not change the value, since it means “all columns” and so the same composite value is
produced again. For example, if somefunc () accepts a composite-valued argument, these queries are
the same:

SELECT somefunc(c.*) FROM inventory_item c;

168

Data Types

SELECT somefunc(c) FROM inventory_item c;

In both cases, the current row of inventory_itemis passed to the function as a single composite-valued
argument. Even though . * does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider c in c. * to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without . *, it is not clear whether
c means a table name or a column name, and in fact the column-name interpretation will be preferred
if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c¢ ORDER BY c;
SELECT * FROM inventory_item c¢ ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.24.6. However, if inventory_item contained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c¢ ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c¢ ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word row omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table. field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item ¢ WHERE c.price > 1000;
SELECT name (c) FROM inventory_item ¢ WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that somefunc isn't a real column of the table.

Tip

Because of this behavior, it's unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-name
interpretation, unless the syntax of the call required it to be a function call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema. func(compositevalue).

8.16.6. Composite Type Input and Output Syntax

The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

169

Data Types

] (42)]
the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note

Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in
a composite value, you'd need to write:

INSERT ... VALUES (' ("\"\\")");

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type's input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip
The rROW constructor syntax is usually easier to work with than the composite-literal syntax when

writing composite values in SQL commands. In row, individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types

Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of t imestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is
the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

Every range type has a corresponding multirange type. A multirange is an ordered list of non-contiguous,
non-empty, non-null ranges. Most range operators also work on multiranges, and they have a few
functions of their own.

170

Data Types

8.17.1. Built-in Range and Multirange Types

Postgres Pro comes with the following built-in range types:

* intd4range — Range of integer, int4multirange — corresponding Multirange

* int8range — Range of bigint, int8multirange — corresponding Multirange

* numrange — Range of numeric, nummultirange — corresponding Multirange

* tsrange — Range of timestamp without time zone, tsmultirange — corresponding Multirange
* tstzrange — Range of timestamp with time zone, tstzmultirange — corresponding Multirange
* daterange — Range of date, datemultirange — corresponding Multirange

In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples

CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
(1108, '[2010-01-01 14:30, 2010-01-01 15:30)");

—-— Containment
SELECT int4range (10, 20) @> 3;

—-— Overlaps
SELECT numrange (11.1, 22.2) && numrange (20.0, 30.0);

—-— Extract the upper bound
SELECT upper (int8range (15, 25));

—— Compute the intersection
SELECT int4range (10, 20) * inté4range (15, 25);

—-— Is the range empty?
SELECT isempty (numrange (1, 5));

See Table 9.53 and Table 9.55 for complete lists of operators and functions on range types.

17.3. Inclusive and Exclusive Bounds

Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.
In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “ (”. Likewise, an inclusive upper bound is represented by “1”, while an exclusive
upper bound is represented by “) ”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

17.4. Infinite (Unbounded) Ranges

The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included in the range, e.g., (, 3]1. Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound as inclusive
is automatically converted to exclusive, e.g., [, 1 is converted to (,). You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

171

Data Types

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [today, infinity) excludes the special timestamp value infinity, while
[today, infinity] include it, as does [today,) and [today,].

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respectively.

8.17.5. Range Input/Output

The input for a range value must follow one of the following patterns:

lower—-bound, upper—-bound
lower—-bound, upper—-bound
lower—-bound, upper—-bound
lower—-bound, upper—-bound
empty

()
(]
[)
[]

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range
that contains no points).

The 1ower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters
that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string,
write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might
or might not be significant.)

Note

These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:

—— includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

—— does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

—— includes only the single point 4
SELECT '[4,4]'::int4range;

—— includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

The input for a multirange is curly brackets ({ and }) containing zero or more valid ranges, separated by
commas. Whitespace is permitted around the brackets and commas. This is intended to be reminiscent
of array syntax, although multiranges are much simpler: they have just one dimension and there is no
need to quote their contents. (The bounds of their ranges may be quoted as above however.)

172

Data Types

Examples:

SELECT '{}'::int4multirange;
SELECT '{[3,7)}'::int4dmultirange;
SELECT '{[3,7), [8,9)}'::intdmultirange;

8.17.6. Constructing Ranges and Multiranges

Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third
argument. The third argument must be one of the strings “()”, “(1”7, “1)”, or “[1”. For example:

—— The full form is: lower bound, upper bound, and text argument indicating
—— inclusivity/exclusivity of bounds.
SELECT numrange (1.0, 14.0, '"(1'");

—— If the third argument is omitted, '[)' is assumed.
SELECT numrange (1.0, 14.0);

—— Although '(]' is specified here, on display the value will be converted to
—— canonical form, since int8range is a discrete range type (see below).
SELECT int8range(l, 14, '(1');

—— Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange (NULL, 2.2);

Each range type also has a multirange constructor with the same name as the multirange type. The
constructor function takes zero or more arguments which are all ranges of the appropriate type. For
example:

SELECT nummultirange () ;
SELECT nummultirange (numrange (1.0, 14.0));
SELECT nummultirange (numrange (1.0, 14.0), numrange(20.0, 25.0));

8.17.7. Discrete Range Types

A discrete range is one whose element type has a well-defined “step”, such as integer or date. In these
types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as
discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4, 8] and (3, 9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If
a canonicalization function is not specified, then ranges with different formatting will always be treated
as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

173

Data Types

8.17.8. Defining New Range Types

Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
float$8:

CREATE TYPE floatrange AS RANGE (
subtype = floats,
subtype_diff = float8mi

)

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.
When you define your own range you automatically get a corresponding multirange type.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output
for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8),
must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of
an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subtype_diff, function. (The index will still work without subtype_diff, butit is likely to
be considerably less efficient than if a difference function is provided.) The subtype difference function
takes two input values of the subtype, and returns their difference (i.e., x minus v) represented as a
float8 value. In our example above, the function float8mi that underlies the regular float8 minus
operator can be used; but for any other subtype, some type conversion would be necessary. Some creative
thought about how to represent differences as numbers might be needed, too. To the greatest extent
possible, the subtype_di ff function should agree with the sort ordering implied by the selected operator
class and collation; that is, its result should be positive whenever its first argument is greater than its
second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT (EPOCH FROM (x - vy))' LANGUAGE sgl STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
subtype = time,
subtype_diff = time_subtype_diff
)i
SELECT '[11:10, 23:00]'::timerange;
See CREATE TYPE for more information about creating range types.

8.17.9. Indexing

GiST and SP-GiST indexes can be created for table columns of range types. GiST indexes can be also
created for table columns of multirange types. For instance, to create a GiST index:

174

Data Types

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index on ranges can accelerate queries involving these range operators: =, s&, <@, @>,
<<, >>, -|-, &<, and &>. A GiST index on multiranges can accelerate queries involving the same set of
multirange operators. A GiST index on ranges and GiST index on multiranges can also accelerate queries
involving these cross-type range to multirange and multirange to range operators correspondingly: s,
<@, @>, <<, >>, — |-, &<, and &>. See Table 9.53 for more information.

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges

While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead,
an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
during tsrange,
EXCLUDE USING GIST (during WITH &&)
)
That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
('[2010-01-01 11:30, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO reservation VALUES
('[2010-01-01 14:45, 2010-01-01 15:45)");
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00™)).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist is
installed, the following constraint will reject overlapping ranges only if the meeting room numbers are
equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (

room text,

during tsrange,

EXCLUDE USING GIST (room WITH =, during WITH &&)
)i

INSERT INTO room_reservation VALUES
('"123A', '[2010-01-01 14:00, 2010-01-01 15:00)");
INSERT 0 1

INSERT INTO room_reservation VALUES
('"123A', '[2010-01-01 14:30, 2010-01-01 15:30)");
ERROR: conflicting key value violates exclusion constraint
"room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00"))
conflicts
with existing key (room, during)=(123A7A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

175

Data Types

INSERT INTO room_reservation VALUES
('123B', '[2010-01-01 14:30, 2010-01-01 15:30)");
INSERT 0 1

8.18. Domain Types

A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);

INSERT INTO mytable VALUES (1) ; -— works

INSERT INTO mytable VALUES (-1); -— fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, the result of mytable.id - 1 is
considered to be of type integer not posint. We could write (mytable.id - 1)::posint to cast the
result back to posint, causing the domain's constraints to be rechecked. In this case, that would result
in an error if the expression had been applied to an id value of 1. Assigning a value of the underlying
type to a field or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

8.19. Object Identifier Types

Object identifiers (OIDs) are used internally by Postgres Pro as primary keys for various system tables.
Type oid represents an object identifier. There are also several alias types for oid, each named
regsomething. Table 8.26 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:

SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;
rather than:

SELECT * FROM pg_attribute
WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to regclass is handy for symbolic
display of a numeric OID.

176

Data Types

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier |564182
regclass prg_class relation name pg_type
regcollation pg_collation collation name "POSIX"
regconfig pg_ts_config text search english
configuration
regdictionary pg_ts_dict text search dictionary simple
regnamespace pg_namespace namespace name pg_catalog
regoper pg_operator operator name +
regoperator pg_operator operatorvvﬂilargurnent * (integer, integer)
types or - (NONE, integer)
regproc pg_proc function name sum
regprocedure pPg_proc function with argument |sum(int4)
types
regrole pg_authid role name smithee
regtype pPg_type data type name integer

All of the OID alias types for objects that are grouped by namespace accept schema-qualified names,
and will display schema-qualified names on output if the object would not be found in the current search
path without being qualified. For example, myschema.mytable is acceptable input for regclass (if there
is such a table). That value might be output as myschema.mytable, or just mytable, depending on the
current search path. The regproc and regoper alias types will only accept input names that are unique
(not overloaded), so they are of limited use; for most uses regprocedure Or regoperator are more
appropriate. For regoperator, unary operators are identified by writing NoNE for the unused operand.

The input functions for these types allow whitespace between tokens, and will fold upper-case letters to
lower case, except within double quotes; this is done to make the syntax rules similar to the way object
names are written in SQL. Conversely, the output functions will use double quotes if needed to make
the output be a valid SQL identifier. For example, the OID of a function named Foo (with upper case
F) taking two integer arguments could be entered as ' "Foo" (int, integer) '::regprocedure.
The output would look like "Foo" (integer, integer). Both the function name and the argument type
names could be schema-qualified, too.

Many built-in PostgreSQL functions accept the OID of a table, or another kind of database object, and
for convenience are declared as taking regclass (or the appropriate OID alias type). This means you do
not have to look up the object's OID by hand, but can just enter its name as a string literal. For example,
the nextval (regclass) function takes a sequence relation's OID, so you could call it like this:

nextval ('foo') operates on sequence foo
nextval ('FOO"') same as above

nextval ('"Foo""'") operates on sequence Foo
nextval ('myschema.foo') operates on myschema.foo
nextval ('"myschema".foo') same as above

nextval ('foo') searches search path for foo

Note

When you write the argument of such a function as an unadorned literal string, it becomes a
constant of type regclass (or the appropriate type). Since this is really just an OID, it will track the
originally identified object despite later renaming, schema reassignment, etc. This “early binding”
behavior is usually desirable for object references in column defaults and views. But sometimes

177

Data Types

you might want “late binding” where the object reference is resolved at run time. To get late-
binding behavior, force the constant to be stored as a text constant instead of regclass:

nextval ('foo'::text) foo is looked up at runtime

The to_regclass () function and its siblings can also be used to perform run-time lookups. See
Table 9.70.

Another practical example of use of regclass is to look up the OID of a table listed in the
information_schema views, which don't supply such OIDs directly. One might for example wish to call
the pg_relation_size () function, which requires the table OID. Taking the above rules into account,
the correct way to do that is

SELECT table_schema, table_name,
pg_relation_size ((quote_ident (table_schema) || '."' |
quote_ident (table_name)) : :regclass)
FROM information_schema.tables
WHERE ...

The quote_ident () function will take care of double-quoting the identifiers where needed. The
seemingly easier

SELECT pg_relation_size(table_name)
FROM information_schema.tables
WHERE ...

is not recommended, because it will fail for tables that are outside your search path or have names that
require quoting.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval ('my_seq'::regclass), Postgres Pro understands that the default expression depends on the
sequence my_segq, so the system will not let the sequence be dropped without first removing the default
expression. The alternative of nextval ('my_seq'::text) does not create a dependency. (regrole is an
exception to this property. Constants of this type are not allowed in stored expressions.)

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities. In some
contexts, a 64-bit variant xids is used. Unlike xid values, xid8 values increase strictly monotonically
and cannot be reused in the lifetime of a database cluster.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.5.)

8.20. pg_1sn Type

The pg_1sn data type can be used to store LSN (Log Sequence Number) data which is a pointer to a
location in the WAL. This type is a representation of XL.ogRecPtr and an internal system type of Postgres
Pro.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example,
16/B374D848. The pg_1lsn type supports the standard comparison operators, like = and >. Two LSNs

178

Data Types

can be subtracted using the - operator; the result is the number of bytes separating those write-
ahead log locations. Also the number of bytes can be added into and subtracted from LSN using
the + (pg_1lsn,numeric) and - (pg_lsn,numeric) operators, respectively. Note that the calculated LSN
should be in the range of pg_1sn type, i.e., between 0/0 and FFFFFFFF/FFFFFFFF.

8.21. Pseudo-Types

The Postgres Pro type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.27 lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description

any Indicates that a function accepts any input data type.

anyelement Indicates that a function accepts any data type (see
Section 36.2.5).

anyarray Indicates that a function accepts any array data type (see
Section 36.2.5).

anynonarray Indicates that a function accepts any non-array data type (
see Section 36.2.5).

anyenum Indicates that a function accepts any enum data type (see
Section 36.2.5 and Section 8.7).

anyrange Indicates that a function accepts any range data type (see
Section 36.2.5 and Section 8.17).

anymultirange Indicates that a function accepts any multirange data type (
see Section 36.2.5 and Section 8.17).

anycompatible Indicates that a function accepts any data type, with

automatic promotion of multiple arguments to a common
data type (see Section 36.2.5).

anycompatiblearray

Indicates that a function accepts any array data type, with
automatic promotion of multiple arguments to a common
data type (see Section 36.2.5).

anycompatiblenonarray

Indicates that a function accepts any non-array data type,
with automatic promotion of multiple arguments to a
common data type (see Section 36.2.5).

anycompatiblerange

Indicates that a function accepts any range data type, with
automatic promotion of multiple arguments to a common
data type (see Section 36.2.5 and Section 8.17).

anycompatiblemultirange

Indicates that a function accepts any multirange data type,
with automatic promotion of multiple arguments to a
common data type (see Section 36.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-
terminated C string.
internal Indicates that a function accepts or returns a server-internal

data type.

language_handler

A procedural language call handler is declared to return
language_handler .

fdw_handler

A foreign-data wrapper handler is declared to return fdw_
handler .

179

Data Types

Name Description

table_am_handler A table access method handler is declared to return table_
am_handler

index_am_handler An index access method handler is declared to return
index_am_handler

tsm_handler A tablesample method handler is declared to return tsm_
handler .

record Identifies a function taking or returning an unspecified row
type.

trigger A trigger function is declared to return trigger.

event_trigger An event trigger function is declared to return event_
trigger.

pg_ddl_command Identifies a representation of DDL commands that is
available to event triggers.

void Indicates that a function returns no value.

unknown Identifies a not-yet-resolved type, e.g., of an undecorated

string literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo-types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only void and record as a result type (plus trigger or event_trigger when the function is used
as a trigger or event trigger). Some also support polymorphic functions using the polymorphic pseudo-
types, which are shown above and discussed in detail in Section 36.2.5.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

180

Chapter 9. Functions and Operators

Postgres Pro provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of
the manual. Users can also define their own functions and operators, as described in Part V. The psql
commands \df and \do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function
or operator is like this:

repeat (text, integer) - text

which says that the function repeat takes one text and one integer argument and returns a result of
type text. The right arrow is also used to indicate the result of an example, thus:

repeat ('Pg', 4) - PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations.

9.1. Logical Operators
The usual logical operators are available:

boolean AND boolean - boolean
boolean OR boolean — boolean
NOT boolean - boolean

SQL uses a three-valued logic system with true, false, and nul1, which represents “unknown”. Observe
the following truth tables:

a b a AND b aOR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL
a NOT a

TRUE FALSE

FALSE TRUE

NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without
affecting the result. (However, it is not guaranteed that the left operand is evaluated before the right
operand. See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators

The usual comparison operators are available, as shown in Table 9.1.

181

Functions and Operators

Table 9.1. Comparison Operators

Operator Description

datatype < datatype — boolean Less than

datatype > datatype — boolean Greater than

datatype <= datatype - boolean Less than or equal to

datatype >= datatype — boolean Greater than or equal to

datatype = datatype — boolean Equal

datatype <> datatype - boolean Not equal

datatype != datatype — boolean Not equal

Note

<> is the standard SQL notation for “not equal”. != is an alias, which is converted to <> at a very
early stage of parsing. Hence, it is not possible to implement ! = and <> operators that do different
things.

These comparison operators are available for all built-in data types that have a natural ordering,
including numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be
compared if their component data types are comparable.

It is usually possible to compare values of related data types as well; for example integer > bigint will
work. Some cases of this sort are implemented directly by “cross-type” comparison operators, but if no
such operator is available, the parser will coerce the less-general type to the more-general type and
apply the latter's comparison operator.

As shown above, all comparison operators are binary operators that return values of type boolean. Thus,
expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a Boolean value
with 3). Use the BETWEEN predicates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

datatype BETWEEN datatype AND datatype —» boolean
Between (inclusive of the range endpoints).

2 BETWEEN 1 AND 3 - t
2 BETWEEN 3 AND 1 - f

datatype NOT BETWEEN datatype AND datatype — boolean
Not between (the negation of BETWEEN).

2 NOT BETWEEN 1 AND 3 - f

datatype BETWEEN SYMMETRIC datatype AND datatype — boolean
Between, after sorting the two endpoint values.

2 BETWEEN SYMMETRIC 3 AND 1 - t

datatype NOT BETWEEN SYMMETRIC datatype AND datatype — boolean
Not between, after sorting the two endpoint values.

2 NOT BETWEEN SYMMETRIC 3 AND 1 - £

182

Functions and Operators

Predicate
Description
Example(s)

datatype IS DISTINCT FROM datatype — boolean
Not equal, treating null as a comparable value.

1 IS DISTINCT FROM NULL - t (rather than NULL)
NULL IS DISTINCT FROM NULL - f (rather than NULL)

datatype IS NOT DISTINCT FROM datatype - boolean
Equal, treating null as a comparable value.

1 IS NOT DISTINCT FROM NULL - f (rather than NULL)
NULL IS NOT DISTINCT FROM NULL - t (rather than NULL)

datatype IS NULL - boolean
Test whether value is null.

1.5 IS NULL - £

datatype IS NOT NULL - boolean
Test whether value is not null.

'null' IS NOT NULL - t

datatype ISNULL - boolean
Test whether value is null (nonstandard syntax).

datatype NOTNULL — boolean
Test whether value is not null (nonstandard syntax).

boolean IS TRUE - boolean
Test whether boolean expression yields true.

true IS TRUE - t
NULL: :boolean IS TRUE - f (rather than NULL)

boolean IS NOT TRUE - boolean
Test whether boolean expression yields false or unknown.

true IS NOT TRUE - f
NULL: :boolean IS NOT TRUE - t (rather than NULL)

boolean IS FALSE - boolean
Test whether boolean expression yields false.

true IS FALSE - f
NULL: :boolean IS FALSE - f (rather than NULL)

boolean IS NOT FALSE - boolean
Test whether boolean expression yields true or unknown.

true IS NOT FALSE — t
NULL: :boolean IS NOT FALSE - t (rather than NULL)

boolean IS UNKNOWN - boolean
Test whether boolean expression yields unknown.

true IS UNKNOWN - f
NULL: :boolean IS UNKNOWN - t (rather than NULL)

boolean IS NOT UNKNOWN - boolean
Test whether boolean expression yields true or false.

true IS NOT UNKNOWN - t
NULL: :boolean IS NOT UNKNOWN - f (rather than NULL)

183

Functions and Operators

The BETWEEN predicate simplifies range tests:
a BETWEEN x AND y

is equivalent to

a > x AND a <=y

Notice that BETWEEN treats the endpoint values as included in the range. BETWEEN SYMMETRIC is like
BETWEEN except there is no requirement that the argument to the left of AND be less than or equal to the
argument on the right. If it is not, those two arguments are automatically swapped, so that a nonempty
range is always implied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and
therefore will work for any data type(s) that can be compared.

Note

The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical operator.
To resolve this, only a limited set of expression types are allowed as the second argument of a
BETWEEN clause. If you need to write a more complex sub-expression in BETWEEN, write parentheses
around the sub-expression.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the Is [NOT] DISTINCT FROM predicates:

a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is identical to
= for non-null inputs, but it returns true when both inputs are null, and false when only one input is null.
Thus, these predicates effectively act as though null were a normal data value, rather than “unknown”.

To check whether a value is or is not null, use the predicates:

expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:

expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expression = NULL returns true if expression evaluates to
the null value. It is highly recommended that these applications be modified to comply with the

SQL standard. However, if that cannot be done the transform null equals configuration variable
is available. If it is enabled, Postgres Pro will convert x = NULL clauses to x IS NULL.

If the expression is row-valued, then 1S NULL is true when the row expression itself is null or when all
the row's fields are null, while Is NOT NULL is true when the row expression itself is non-null and all
the row's fields are non-null. Because of this behavior, 1s NULL and IS NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. In some cases, it may be preferable to write row 1s
DISTINCT FROM NULL OT row IS NOT DISTINCT FROM NULL, which will simply check whether the overall
row value is null without any additional tests on the row fields.

184

Functions and Operators

Boolean values can also be tested using the predicates

boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that 1S UNKNOWN and IS NOT UNKNOWN are effectively the
same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num_nonnulls (VARIADIC "any") — integer
Returns the number of non-null arguments.

num_nonnulls (1, NULL, 2) - 2

num_nulls (VARIADIC "any") — integer
Returns the number of null arguments.

num_nulls (1, NULL, 2) -1

9.3. Mathematical Functions and Operators

Mathematical operators are provided for many Postgres Pro types. For types without standard
mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless
otherwise noted, operators shown as accepting numeric_type are available for all the types smallint,
integer, bigint, numeric, real, and double precision. Operators shown as accepting integral_type
are available for the types smallint, integer, and bigint. Except where noted, each form of an operator
returns the same data type as its argument(s). Calls involving multiple argument data types, such as
integer + numeric, are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

numeric_type + numeric_type - numeric_type

Addition
2+ 3 -5

+ numeric_type - numeric_type
Unary plus (no operation)

+ 3.5 5 3.5
numeric_type - numeric_type - numeric_type
Subtraction
2 - 3-5-1
- numeric_type - numeric_type
Negation
- (-4) -4

185

Functions and Operators

Operator
Description
Example(s)

numeric_type * numeric_type - numeric_type
Multiplication
2 * 356

numeric_type / numeric_type — numeric_type
Division (for integral types, division truncates the result towards zero)

5.0 / 2 - 2.5000000000000000
5/ 252
(=5) / 2 - -2

Q

numeric_type % numeric_type — numeric_type
Modulo (remainder); available for smallint, integer, bigint, and numeric
5 4 - 1

o\°

~ numeric - numeric

numeric
double precision * double precision - double precision
Exponentiation
2"~ 3-8
Unlike typical mathematical practice, multiple uses of ~ will associate left to right by default:
2~ 3 7~ 3 5512

2~ (3 7~ 3) - 134217728

| / double precision — double precision
Square root

|/ 25.0 - 5

| | / double precision - double precision
Cube root

|1/ 64.0 - 4

@ numeric_type — numeric_type
Absolute value

@ _5.0—>5

integral_ type & integral type - integral_ type
Bitwise AND
91 & 15 - 11

integral_type | integral_ type - integral_type
Bitwise OR
32 | 3 - 35

integral_type # integral_type - integral_type
Bitwise exclusive OR

17 # 5 - 20

~ integral_type - integral_type
Bitwise NOT
~1 - =2

integral_type << integer - integral_type
Bitwise shift left
1 << 4 516

186

Functions and Operators

Operator
Description
Example(s)

integral_type >> integer - integral_type
Bitwise shift right
8 >> 2 52

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple
forms with different argument types. Except where noted, any given form of a function returns the
same data type as its argument(s); cross-type cases are resolved in the same way as explained above
for operators. The functions working with double precision data are mostly implemented on top of
the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on

the host system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (numeric_type) - numeric_type
Absolute value

abs(-17.4) - 17.4

cbrt (double precision) — double precision
Cube root

cbrt (64.0) - 4

ceil (numeric) - numeric

ceil (double precision) — double precision
Nearest integer greater than or equal to argument

ceil (42.2) - 43
ceil (-42.8) - —42

ceiling (numeric) - numeric

ceiling (double precision) — double precision
Nearest integer greater than or equal to argument (same as ceil)

ceiling(95.3) - 96

degrees (double precision) - double precision
Converts radians to degrees

degrees (0.5) - 28.64788975654116

div (y numeric, x numeric) - numeric
Integer quotient of y/x (truncates towards zero)

div (9, 4) - 2

exp (numeric) - numeric

exp (double precision) — double precision
Exponential (e raised to the given power)
exp(l1.0) - 2.7182818284590452

factorial (bigint) - numeric
Factorial

factorial (5) - 120

floor (numeric) — numeric

floor (double precision) — double precision

187

Functions and Operators

Function
Description
Example(s)

Nearest integer less than or equal to argument
floor (42.8) - 42
floor(-42.8) - —43

gcd (numeric_type , numeric_type) — numeric_type
Greatest common divisor (the largest positive number that divides both inputs with no
remainder); returns 0 if both inputs are zero; available for integer, bigint, and numeric

gcd (1071, 462) - 21

lcm (numeric_type , numeric_type) — numeric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of
both inputs); returns 0 if either input is zero; available for integer, bigint, and numeric

lem (1071, 462) - 23562

1n (numeric) - numeric

1n (double precision) - double precision
Natural logarithm

In(2.0) - 0.6931471805599453

log (numeric) - numeric

log (double precision) - double precision
Base 10 logarithm

log(100) - 2

1log10 (numeric) - numeric

1og10 (double precision) — double precision
Base 10 logarithm (same as 1og)
logl0(1000) -3

log (b numeric, x numeric) —» numeric
Logarithm of x to base b

log (2.0, 64.0) - 6.0000000000

min_scale (numeric) - integer
Minimum scale (number of fractional decimal digits) needed to represent the supplied value
precisely

min_scale(8.4100) - 2

mod (y numeric_type , x numeric_type) — numeric_type
Remainder of y/x; available for smallint, integer, bigint, and numeric
mod (9, 4) -1

pi () - double precision
Approximate value of Tt
pi() - 3.141592653589793

power (@ numeric, b numeric) — numeric

power (a double precision, b double precision) - double precision
a raised to the power of b
power (9, 3) - 729

radians (double precision) — double precision
Converts degrees to radians

188

Functions and Operators

Function
Description
Example(s)

radians (45.0) - 0.7853981633974483

round (numeric) - numeric

round (double precision) = double precision
Rounds to nearest integer. For numeric, ties are broken by rounding away from zero. For
double precision, the tie-breaking behavior is platform dependent, but “round to nearest
even” is the most common rule.

round (42.4) - 42

round (v numeric, s integer) » numeric
Rounds v to s decimal places. Ties are broken by rounding away from zero.

round (42.4382, 2) - 42.44

scale (numeric) - integer
Scale of the argument (the number of decimal digits in the fractional part)

scale (8.4100) - 4

sign (numeric) - numeric

sign (double precision) — double precision
Sign of the argument (-1, 0, or +1)

sign(-8.4) - -1

sgrt (numeric) - numeric

sqgrt (double precision) — double precision
Square root

sgrt (2) - 1.4142135623730951

trim_scale (numeric) - numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes

trim_scale (8.4100) - 8.41

trunc (numeric) - numeric

trunc (double precision) - double precision
Truncates to integer (towards zero)

trunc(42.8) - 42
trunc(-42.8) - —-42

trunc (vnumeric, s integer) - numeric
Truncates v to s decimal places

trunc(42.4382, 2) - 42.43

width_bucket (operandnumeric, low numeric, high numeric, count integer) —» integer
width_bucket (operand double precision, low double precision, high double precision,
count integer) - integer
Returns the number of the bucket in which operand falls in a histogram having count equal-
width buckets spanning the range 1ow to high. Returns 0 or count+1 for an input outside that
range.

width_bucket (5.35, 0.024, 10.06, 5) - 3

width_bucket (operand anycompatible, thresholds anycompatiblearray) — integer
Returns the number of the bucket in which operand falls given an array listing the lower
bounds of the buckets. Returns 0 for an input less than the first lower bound. operand and the
array elements can be of any type having standard comparison operators. The thresholds
array must be sorted, smallest first, or unexpected results will be obtained.

189

Functions and Operators

Function
Description
Example(s)
width_bucket (now (), array|['yesterday', 'today',
'tomorrow']::timestamptz([]) - 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random () —» double precision
Returns a random value in the range 0.0 <=x < 1.0

random() - 0.897124072839091

setseed (double precision) - void
Sets the seed for subsequent random () calls; argument must be between -1.0 and 1.0,
inclusive
setseed (0.12345)

The random() function uses a simple linear congruential algorithm. It is fast but not suitable for
cryptographic applications; see the pgcrypto module for a more secure alternative. If setseed () is called,
the series of results of subsequent random () calls in the current session can be repeated by re-issuing
setseed () with the same argument.

Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants,
one that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function
Description
Example(s)

acos (double precision) — double precision
Inverse cosine, result in radians

acos (1) -0

acosd (double precision) — double precision
Inverse cosine, result in degrees

acosd(0.5) - 60

asin (double precision) - double precision
Inverse sine, result in radians

asin(l) - 1.5707963267948966

asind (double precision) - double precision
Inverse sine, result in degrees

asind(0.5) - 30

atan (double precision) - double precision
Inverse tangent, result in radians

atan(l) - 0.7853981633974483

atand (double precision) — double precision
Inverse tangent, result in degrees

atand (1) - 45

190

Functions and Operators

Function
Description
Example(s)

atan2 (y double precision, x double precision) — double precision
Inverse tangent of y/x, result in radians
atan2 (1, 0) - 1.5707963267948966

atan2d (y double precision, x double precision) - double precision
Inverse tangent of y/x, result in degrees
atan2d (1, 0) - 90

cos (double precision) - double precision
Cosine, argument in radians

cos(0) -1

cosd (double precision) - double precision
Cosine, argument in degrees

cosd(60) - 0.5

cot (double precision) = double precision
Cotangent, argument in radians

cot (0.5) - 1.830487721712452

cotd (double precision) - double precision
Cotangent, argument in degrees

cotd(45) -1

sin (double precision) - double precision
Sine, argument in radians

sin(l) - 0.8414709848078965

sind (double precision) — double precision
Sine, argument in degrees

sind(30) - 0.5

tan (double precision) — double precision
Tangent, argument in radians

tan(l) - 1.5574077246549023

tand (double precision) - double precision
Tangent, argument in degrees

tand (45) -1

Note

Another way to work with angles measured in degrees is to use the unit transformation functions
radians () and degrees() shown earlier. However, using the degree-based trigonometric
functions is preferred, as that way avoids round-off error for special cases such as sind (30).

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

sinh (double precision) — double precision

191

Functions and Operators

Function
Description
Example(s)

Hyperbolic sine
sinh (1) - 1.1752011936438014

cosh (double precision) — double precision
Hyperbolic cosine

cosh(0) -1

tanh (double precision) - double precision

Hyperbolic tangent
tanh(l1) - 0.7615941559557649

Inverse hyperbolic sine

asinh (1) - 0.881373587019543

asinh (double precision) — double precision

Inverse hyperbolic cosine

acosh(1l) -0

acosh (double precision) - double precision

Inverse hyperbolic tangent
atanh(0.5) - 0.5493061443340548

atanh (double precision) — double precision

9.4. String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in

this context include values of the types character,

character varying, and text. Except where noted,

these functions and operators are declared to accept and return type text. They will interchangeably
accept character varying arguments. Values of type character will be converted to text before the
function or operator is applied, resulting in stripping any trailing spaces in the character value.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.9. Postgres Pro also provides versions of these functions that use the regular

function invocation syntax (see Table 9.10).

be used to have non-string input accepted.

Note

The string concatenation operator (| |) will accept non-string input, so long as at least one input
is of string type, as shown in Table 9.9. For other cases, inserting an explicit coercion to text can

Table 9.9. SQL String Functions and Operators

Function/Operator
Description
Example(s)

text || text - text
Concatenates the two strings.

'Post' || 'greSQL' - PostgreSQL
text || anynonarray - text
anynonarray || text - text

192

Functions and Operators

Function/Operator
Description
Example(s)

Converts the non-string input to text, then concatenates the two strings. (The non-string input
cannot be of an array type, because that would create ambiguity with the array | | operators.
If you want to concatenate an array's text equivalent, cast it to text explicitly.)

'Value: " || 42 - Value: 42

text IS [NOT][form] NORMALIZED — boolean
Checks whether the string is in the specified Unicode normalization form. The optional form
key word specifies the form: NFcC (the default), NFD, NFKC, or NFKD. This expression can only
be used when the server encoding is UTF8. Note that checking for normalization using this
expression is often faster than normalizing possibly already normalized strings.

U&'\0061\0308bc' IS NFD NORMALIZED - t

bit_length (text) - integer
Returns number of bits in the string (8 times the octet_length).
bit_length('jose') - 32

char_length (text) - integer

character_length (text) - integer
Returns number of characters in the string.

char_length('josé"') - 4

lower (text) - text
Converts the string to all lower case, according to the rules of the database's locale.

lower ('TOM') — tom

normalize (text [, form]) - text
Converts the string to the specified Unicode normalization form. The optional form key word
specifies the form: NFcC (the default), NFD, NFKC, or NFKD. This function can only be used when
the server encoding is UTFS8.

normalize (U&'\0061\0308bc"', NFC) - U&'\OOE4bc'

octet_length (text) - integer
Returns number of bytes in the string.

octet_length('josé') - 5 (if server encoding is UTF8)

octet_length (character) - integer
Returns number of bytes in the string. Since this version of the function accepts type
character directly, it will not strip trailing spaces.

octet_length ('abc '::character (4)) - 4

overlay (string text PLACING newsubstring text FROM start integer [FOR count integer]) -
text
Replaces the substring of string that starts at the start'th character and extends for count
characters with newsubstring. If count is omitted, it defaults to the length of newsubstring.

overlay ('Txxxxas' placing 'hom' from 2 for 4) — Thomas

position (substring text IN string text) - integer
Returns first starting index of the specified substring within string, or zero if it's not
present.

position('om' in 'Thomas') - 3

substring (string text [FROM start integer][FOR count integer]) - text
Extracts the substring of string starting at the start'th character if that is specified, and
stopping after count characters if that is specified. Provide at least one of start and count.

193

Functions and Operators

Function/Operator
Description
Example(s)

substring('Thomas' from 2 for 3) - hom
substring('Thomas' from 3) - omas

substring('Thomas' for 2) - Th

substring (string text FROM pattern text) - text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.

substring ('Thomas' from '...$') - mas

substring (string text SIMILAR pattern text ESCAPE escape text) - text

substring (string text FROM pattern text FOR escape text) — text
Extracts the first substring matching SQL regular expression; see Section 9.7.2. The first
form has been specified since SQL:2003; the second form was only in SQL:1999 and should
be considered obsolete.

substring ('Thomas' similar '$#"o_a#"_' escape '#') - oma

trim ([LEADING | TRAILING | BOTH] [characters text] FROM string text) — text
Removes the longest string containing only characters in characters (a space by default)
from the start, end, or both ends (BoTH is the default) of string.

trim(both 'xyz' from 'yxTomxx') - Tom

trim ([LEADING | TRAILING | BOTH] [FROM]| string text [, characters text]) - text
This is a non-standard syntax for trim ()

trim(both from 'yxTomxx', 'xyz') — Tom

upper (text) -» text
Converts the string to all upper case, according to the rules of the database's locale.

upper ('tom') - TOM

Additional string manipulation functions are available and are listed in Table 9.10. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9.9.

Table 9.10. Other String Functions

Function
Description
Example(s)

ascii (text) - integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns
the Unicode code point of the character. In other multibyte encodings, the argument must be
an ASCII character.

ascii('x'") - 120

btrim (string text [, characters text]) - text
Removes the longest string containing only characters in characters (a space by default)
from the start and end of string.

btrim('xyxtrimyyx', 'xyz') - trim

chr (integer) - text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCII
character. chr (0) is disallowed because text data types cannot store that character.

Chr(65) - A

concat (vall "any" [, vali2 "any" [, ...]1]) - text
Concatenates the text representations of all the arguments. NULL arguments are ignore