
Postgres Pro Standard 13.7.2 Documentation

Postgres Professional
https://postgrespro.com

https://postgrespro.com

Postgres Pro Standard 13.7.2 Documentation
Postgres Professional
Copyright © 2016–2022 The Postgres Professional company
Legal Notice

This documentation is intended solely for the use with the Postgres Pro DBMS and for users of this DBMS.

It is not allowed to use the documentation for third-party products or as part of documentation for other
products.

Other terms of use of the documentation are given in the User Agreement.

Postgres Pro is Copyright © 2016–2022 by Postgres Professional.

IN NO EVENT SHALL THE POSTGRES PROFESSIONAL COMPANY BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST
PROFITS, ARISING OUT OF THE USE OF POSTGRES PRO DBMS IN ALL VERSIONS AND ITS
DOCUMENTATION, EVEN IF THE POSTGRES PROFESSIONAL COMPANY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE POSTGRES PROFESSIONAL COMPANY SPECIFICALLY DISCLAIMS ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND
FITNESS FOR A PARTICULAR PURPOSE. THE POSTGRES PRO DBMS IN ALL VERSIONS AND
ITS DOCUMENTATION PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND THE POSTGRES
PROFESSIONAL COMPANY HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT, UPDATES,
ENHANCEMENTS, OR MODIFICATIONS.

Distribution of this documentation or its parts that are not contained in the PostgreSQL documentation,
in the original or modified form, requires an explicit written permission from the Postgres Professional
company.

Postgres Pro DBMS documentation is based on the PostgreSQL documentation, which is
distributed under the following license:

PostgreSQL is Copyright © 1996–2022 by the PostgreSQL Global Development Group.

Postgres95 is Copyright © 1994–5 by the Regents of the University of California.

Permission to use, copy, modify, and distribute this software and its documentation for any purpose,
without fee, and without a written agreement is hereby granted, provided that the above copyright notice
and this paragraph and the following two paragraphs appear in all copies.

IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR DIRECT,
INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING LOST PROFITS,
ARISING OUT OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE
UNIVERSITY OF CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES, INCLUDING,
BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS ON AN “AS-IS” BASIS, AND
THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATIONS TO PROVIDE MAINTENANCE, SUPPORT,
UPDATES, ENHANCEMENTS, OR MODIFICATIONS.

Preface ... xxii
1. What Is Postgres Pro Standard? ... xxii
2. Difference between Postgres Pro Standard and PostgreSQL ... xxii
3. A Brief History of PostgreSQL ... xxiv

3.1. The Berkeley POSTGRES Project .. xxiv
3.2. Postgres95 .. xxiv
3.3. PostgreSQL .. xxv

4. Conventions .. xxv
5. Bug Reporting Guidelines ... xxv

5.1. Identifying Bugs ... xxvi
5.2. What to Report .. xxvi
5.3. Where to Report Bugs .. xxvii

I. Tutorial .. 1
1. Getting Started ... 2

1.1. Installation .. 2
1.2. Architectural Fundamentals ... 2
1.3. Creating a Database ... 2
1.4. Accessing a Database ... 4

2. The SQL Language ... 6
2.1. Introduction .. 6
2.2. Concepts ... 6
2.3. Creating a New Table .. 6
2.4. Populating a Table With Rows ... 7
2.5. Querying a Table .. 7
2.6. Joins Between Tables ... 9
2.7. Aggregate Functions .. 10
2.8. Updates ... 12
2.9. Deletions ... 12

3. Advanced Features .. 13
3.1. Introduction .. 13
3.2. Views ... 13
3.3. Foreign Keys ... 13
3.4. Transactions ... 14
3.5. Window Functions .. 15
3.6. Inheritance .. 18
3.7. Conclusion .. 19

II. The SQL Language ... 20
4. SQL Syntax .. 21

4.1. Lexical Structure .. 21
4.2. Value Expressions ... 28
4.3. Calling Functions .. 40

5. Data Definition .. 43
5.1. Table Basics .. 43
5.2. Default Values ... 44
5.3. Generated Columns .. 45
5.4. Constraints .. 46
5.5. System Columns ... 53
5.6. Modifying Tables .. 54
5.7. Privileges .. 56
5.8. Row Security Policies ... 60
5.9. Schemas .. 65
5.10. Inheritance .. 69
5.11. Table Partitioning ... 73
5.12. Foreign Data ... 85
5.13. Other Database Objects ... 85
5.14. Dependency Tracking ... 85

6. Data Manipulation ... 87
6.1. Inserting Data ... 87

iii

Postgres Pro Standard
13.7.2 Documentation

6.2. Updating Data .. 88
6.3. Deleting Data .. 88
6.4. Returning Data from Modified Rows ... 89

7. Queries .. 90
7.1. Overview ... 90
7.2. Table Expressions ... 90
7.3. Select Lists ... 103
7.4. Combining Queries ... 105
7.5. Sorting Rows .. 105
7.6. LIMIT and OFFSET ... 106
7.7. VALUES Lists .. 107
7.8. WITH Queries (Common Table Expressions) ... 107

8. Data Types .. 114
8.1. Numeric Types ... 115
8.2. Monetary Types .. 119
8.3. Character Types ... 120
8.4. Binary Data Types .. 122
8.5. Date/Time Types ... 124
8.6. Boolean Type .. 133
8.7. Enumerated Types .. 134
8.8. Geometric Types ... 135
8.9. Network Address Types ... 137
8.10. Bit String Types ... 140
8.11. Text Search Types .. 141
8.12. UUID Type .. 143
8.13. XML Type ... 143
8.14. JSON Types ... 145
8.15. Arrays ... 153
8.16. Composite Types .. 161
8.17. Range Types ... 166
8.18. Domain Types ... 171
8.19. Object Identifier Types ... 172
8.20. pg_lsn Type ... 173
8.21. Pseudo-Types .. 173

9. Functions and Operators .. 176
9.1. Logical Operators ... 176
9.2. Comparison Functions and Operators ... 176
9.3. Mathematical Functions and Operators .. 180
9.4. String Functions and Operators .. 187
9.5. Binary String Functions and Operators ... 195
9.6. Bit String Functions and Operators ... 198
9.7. Pattern Matching .. 200
9.8. Data Type Formatting Functions ... 216
9.9. Date/Time Functions and Operators .. 223
9.10. Enum Support Functions ... 236
9.11. Geometric Functions and Operators .. 237
9.12. Network Address Functions and Operators ... 244
9.13. Text Search Functions and Operators ... 247
9.14. UUID Functions .. 252
9.15. XML Functions ... 252
9.16. JSON Functions and Operators .. 265
9.17. Sequence Manipulation Functions ... 281
9.18. Conditional Expressions ... 283
9.19. Array Functions and Operators ... 285
9.20. Range Functions and Operators .. 288
9.21. Aggregate Functions .. 290
9.22. Window Functions .. 296
9.23. Subquery Expressions .. 298

iv

Postgres Pro Standard
13.7.2 Documentation

9.24. Row and Array Comparisons .. 300
9.25. Set Returning Functions .. 303
9.26. System Information Functions and Operators ... 306
9.27. System Administration Functions .. 321
9.28. Trigger Functions ... 335
9.29. Event Trigger Functions .. 336
9.30. Statistics Information Functions .. 339

10. Type Conversion .. 340
10.1. Overview ... 340
10.2. Operators .. 341
10.3. Functions .. 344
10.4. Value Storage ... 348
10.5. UNION, CASE, and Related Constructs ... 348
10.6. SELECT Output Columns ... 350

11. Indexes .. 351
11.1. Introduction .. 351
11.2. Index Types .. 352
11.3. Multicolumn Indexes .. 354
11.4. Indexes and ORDER BY ... 354
11.5. Combining Multiple Indexes .. 355
11.6. Unique Indexes ... 356
11.7. Indexes on Expressions .. 356
11.8. Partial Indexes .. 357
11.9. Index-Only Scans and Covering Indexes .. 359
11.10. Operator Classes and Operator Families ... 362
11.11. Indexes and Collations ... 363
11.12. Examining Index Usage ... 363

12. Full Text Search .. 365
12.1. Introduction .. 365
12.2. Tables and Indexes ... 368
12.3. Controlling Text Search ... 370
12.4. Additional Features .. 376
12.5. Parsers .. 381
12.6. Dictionaries ... 383
12.7. Configuration Example ... 391
12.8. Testing and Debugging Text Search .. 392
12.9. Preferred Index Types for Text Search .. 396
12.10. psql Support ... 396
12.11. Limitations .. 399

13. Concurrency Control ... 400
13.1. Introduction .. 400
13.2. Transaction Isolation .. 400
13.3. Explicit Locking .. 405
13.4. Data Consistency Checks at the Application Level .. 411
13.5. Caveats ... 412
13.6. Locking and Indexes .. 412

14. Performance Tips .. 414
14.1. Using EXPLAIN .. 414
14.2. Statistics Used by the Planner ... 424
14.3. Controlling the Planner with Explicit JOIN Clauses .. 429
14.4. Populating a Database ... 430
14.5. Non-Durable Settings ... 433

15. Parallel Query ... 434
15.1. How Parallel Query Works ... 434
15.2. When Can Parallel Query Be Used? .. 435
15.3. Parallel Plans .. 435
15.4. Parallel Safety .. 437

v

Postgres Pro Standard
13.7.2 Documentation

III. Server Administration ... 439
16. Binary Installation ... 440

16.1. Installing Postgres Pro Standard on Linux .. 440
16.2. Installing Postgres Pro Standard on Windows ... 446
16.3. Installing Additional Supplied Modules ... 450
16.4. Migrating to Postgres Pro .. 451

17. Server Setup and Operation ... 452
17.1. The Postgres Pro User Account ... 452
17.2. Creating a Database Cluster .. 452
17.3. Starting the Database Server .. 454
17.4. Managing Kernel Resources .. 457
17.5. Shutting Down the Server ... 464
17.6. Upgrading a Postgres Pro Cluster ... 465
17.7. Preventing Server Spoofing ... 467
17.8. Encryption Options ... 468
17.9. Secure TCP/IP Connections with SSL .. 469
17.10. Secure TCP/IP Connections with GSSAPI Encryption ... 472
17.11. Secure TCP/IP Connections with SSH Tunnels ... 472
17.12. Registering Event Log on Windows ... 473

18. Server Configuration ... 475
18.1. Setting Parameters ... 475
18.2. File Locations ... 478
18.3. Connections and Authentication .. 479
18.4. Resource Consumption ... 485
18.5. Write Ahead Log ... 492
18.6. Replication .. 501
18.7. Query Planning ... 507
18.8. Error Reporting and Logging ... 514
18.9. Run-time Statistics ... 524
18.10. Automatic Vacuuming ... 525
18.11. Client Connection Defaults .. 527
18.12. Lock Management .. 536
18.13. Version and Platform Compatibility ... 537
18.14. Error Handling ... 539
18.15. Preset Options .. 539
18.16. Customized Options .. 541
18.17. Developer Options .. 541
18.18. Short Options ... 544

19. Client Authentication .. 546
19.1. The pg_hba.conf File ... 546
19.2. User Name Maps ... 552
19.3. Authentication Methods ... 554
19.4. Trust Authentication ... 554
19.5. Password Authentication .. 555
19.6. GSSAPI Authentication ... 556
19.7. SSPI Authentication .. 557
19.8. Ident Authentication ... 558
19.9. Peer Authentication .. 558
19.10. LDAP Authentication .. 559
19.11. RADIUS Authentication .. 561
19.12. Certificate Authentication .. 562
19.13. PAM Authentication .. 562
19.14. BSD Authentication .. 563
19.15. Authentication Problems .. 563

20. Database Roles .. 565
20.1. Database Roles ... 565
20.2. Role Attributes .. 566
20.3. Role Membership ... 567

vi

Postgres Pro Standard
13.7.2 Documentation

20.4. Dropping Roles ... 568
20.5. Default Roles .. 569
20.6. Function Security ... 570

21. Managing Databases ... 571
21.1. Overview ... 571
21.2. Creating a Database ... 571
21.3. Template Databases ... 572
21.4. Database Configuration .. 573
21.5. Destroying a Database ... 573
21.6. Tablespaces ... 574

22. Localization ... 576
22.1. Locale Support ... 576
22.2. Collation Support ... 578
22.3. Character Set Support ... 584

23. Routine Database Maintenance Tasks .. 593
23.1. Routine Vacuuming ... 593
23.2. Routine Reindexing .. 600
23.3. Log File Maintenance ... 601

24. Backup and Restore .. 603
24.1. SQL Dump .. 603
24.2. File System Level Backup .. 605
24.3. Continuous Archiving and Point-in-Time Recovery (PITR) ... 606

25. High Availability, Load Balancing, and Replication .. 618
25.1. Comparison of Different Solutions ... 618
25.2. Log-Shipping Standby Servers ... 621
25.3. Failover ... 629
25.4. Alternative Method for Log Shipping .. 630
25.5. Hot Standby .. 631

26. Monitoring Database Activity ... 639
26.1. Standard Unix Tools ... 639
26.2. The Statistics Collector .. 640
26.3. Viewing Locks ... 670
26.4. Progress Reporting ... 670

27. Monitoring Disk Usage ... 678
27.1. Determining Disk Usage .. 678
27.2. Disk Full Failure ... 679

28. Reliability and the Write-Ahead Log ... 680
28.1. Reliability .. 680
28.2. Write-Ahead Logging (WAL) ... 681
28.3. Asynchronous Commit .. 682
28.4. WAL Configuration ... 683
28.5. WAL Internals ... 686

29. Logical Replication .. 687
29.1. Publication .. 687
29.2. Subscription .. 688
29.3. Conflicts .. 689
29.4. Restrictions ... 689
29.5. Architecture .. 690
29.6. Monitoring .. 690
29.7. Security ... 691
29.8. Configuration Settings ... 691
29.9. Quick Setup .. 691

30. Just-in-Time Compilation (JIT) .. 693
30.1. What Is JIT compilation? .. 693
30.2. When to JIT? ... 693
30.3. Configuration .. 694
30.4. Extensibility .. 695

IV. Client Interfaces .. 696

vii

Postgres Pro Standard
13.7.2 Documentation

31. libpq — C Library ... 697
31.1. Database Connection Control Functions .. 697
31.2. Connection Status Functions ... 711
31.3. Command Execution Functions .. 716
31.4. Asynchronous Command Processing .. 729
31.5. Retrieving Query Results Row-by-Row .. 733
31.6. Canceling Queries in Progress ... 733
31.7. The Fast-Path Interface .. 734
31.8. Asynchronous Notification ... 735
31.9. Functions Associated with the COPY Command ... 736
31.10. Control Functions ... 740
31.11. Miscellaneous Functions .. 741
31.12. Notice Processing ... 744
31.13. Event System .. 745
31.14. Environment Variables ... 751
31.15. The Password File .. 752
31.16. The Connection Service File .. 753
31.17. LDAP Lookup of Connection Parameters ... 753
31.18. SSL Support ... 754
31.19. Behavior in Threaded Programs .. 758
31.20. Building libpq Programs .. 758
31.21. Example Programs ... 759

32. Large Objects .. 770
32.1. Introduction .. 770
32.2. Implementation Features ... 770
32.3. Client Interfaces ... 770
32.4. Server-Side Functions .. 774
32.5. Example Program ... 775

33. ECPG — Embedded SQL in C .. 781
33.1. The Concept ... 781
33.2. Managing Database Connections ... 781
33.3. Running SQL Commands ... 784
33.4. Using Host Variables .. 786
33.5. Dynamic SQL .. 799
33.6. pgtypes Library .. 800
33.7. Using Descriptor Areas .. 812
33.8. Error Handling ... 824
33.9. Preprocessor Directives ... 830
33.10. Processing Embedded SQL Programs .. 832
33.11. Library Functions ... 833
33.12. Large Objects ... 833
33.13. C++ Applications ... 835
33.14. Embedded SQL Commands .. 838
33.15. Informix Compatibility Mode ... 859
33.16. Internals .. 872

34. The Information Schema ... 874
34.1. The Schema .. 874
34.2. Data Types .. 874
34.3. information_schema_catalog_name .. 875
34.4. administrable_role_authorizations .. 875
34.5. applicable_roles .. 875
34.6. attributes ... 876
34.7. character_sets .. 878
34.8. check_constraint_routine_usage ... 879
34.9. check_constraints .. 879
34.10. collations ... 879
34.11. collation_character_set_applicability .. 880

viii

Postgres Pro Standard
13.7.2 Documentation

34.12. column_column_usage .. 880
34.13. column_domain_usage .. 880
34.14. column_options .. 881
34.15. column_privileges .. 881
34.16. column_udt_usage .. 882
34.17. columns ... 883
34.18. constraint_column_usage ... 886
34.19. constraint_table_usage ... 886
34.20. data_type_privileges .. 887
34.21. domain_constraints .. 887
34.22. domain_udt_usage .. 888
34.23. domains ... 888
34.24. element_types ... 890
34.25. enabled_roles ... 892
34.26. foreign_data_wrapper_options ... 892
34.27. foreign_data_wrappers .. 893
34.28. foreign_server_options ... 893
34.29. foreign_servers .. 893
34.30. foreign_table_options .. 894
34.31. foreign_tables .. 894
34.32. key_column_usage .. 895
34.33. parameters ... 895
34.34. referential_constraints ... 897
34.35. role_column_grants .. 898
34.36. role_routine_grants .. 898
34.37. role_table_grants .. 899
34.38. role_udt_grants .. 899
34.39. role_usage_grants .. 900
34.40. routine_privileges .. 901
34.41. routines ... 901
34.42. schemata ... 905
34.43. sequences ... 906
34.44. sql_features ... 907
34.45. sql_implementation_info ... 907
34.46. sql_parts ... 908
34.47. sql_sizing ... 908
34.48. table_constraints .. 908
34.49. table_privileges .. 909
34.50. tables ... 909
34.51. transforms ... 910
34.52. triggered_update_columns ... 911
34.53. triggers ... 911
34.54. udt_privileges .. 913
34.55. usage_privileges .. 913
34.56. user_defined_types .. 914
34.57. user_mapping_options .. 916
34.58. user_mappings ... 916
34.59. view_column_usage .. 916
34.60. view_routine_usage .. 917
34.61. view_table_usage .. 917
34.62. views ... 918

V. Server Programming ... 919
35. Extending SQL .. 920

35.1. How Extensibility Works .. 920
35.2. The Postgres Pro Type System .. 920
35.3. User-Defined Functions .. 923

ix

Postgres Pro Standard
13.7.2 Documentation

35.4. User-Defined Procedures .. 923
35.5. Query Language (SQL) Functions .. 924
35.6. Function Overloading ... 938
35.7. Function Volatility Categories .. 939
35.8. Procedural Language Functions .. 940
35.9. Internal Functions .. 940
35.10. C-Language Functions .. 941
35.11. Function Optimization Information .. 959
35.12. User-Defined Aggregates ... 960
35.13. User-Defined Types .. 966
35.14. User-Defined Operators .. 970
35.15. Operator Optimization Information .. 971
35.16. Interfacing Extensions to Indexes .. 974
35.17. Packaging Related Objects into an Extension ... 986
35.18. Extension Building Infrastructure .. 994

36. Triggers ... 998
36.1. Overview of Trigger Behavior .. 998
36.2. Visibility of Data Changes .. 1001
36.3. Writing Trigger Functions in C .. 1001
36.4. A Complete Trigger Example ... 1004

37. Event Triggers .. 1007
37.1. Overview of Event Trigger Behavior ... 1007
37.2. Event Trigger Firing Matrix ... 1008
37.3. Writing Event Trigger Functions in C ... 1011
37.4. A Complete Event Trigger Example .. 1012
37.5. A Table Rewrite Event Trigger Example ... 1013

38. The Rule System ... 1015
38.1. The Query Tree .. 1015
38.2. Views and the Rule System ... 1016
38.3. Materialized Views ... 1023
38.4. Rules on INSERT, UPDATE, and DELETE ... 1025
38.5. Rules and Privileges ... 1034
38.6. Rules and Command Status ... 1036
38.7. Rules Versus Triggers .. 1036

39. Procedural Languages .. 1039
39.1. Installing Procedural Languages ... 1039

40. PL/pgSQL — SQL Procedural Language .. 1041
40.1. Overview ... 1041
40.2. Structure of PL/pgSQL ... 1042
40.3. Declarations .. 1043
40.4. Expressions ... 1049
40.5. Basic Statements .. 1049
40.6. Control Structures .. 1056
40.7. Cursors ... 1069
40.8. Transaction Management ... 1074
40.9. Errors and Messages ... 1075
40.10. Trigger Functions ... 1077
40.11. PL/pgSQL under the Hood ... 1085
40.12. Tips for Developing in PL/pgSQL ... 1089
40.13. Porting from Oracle PL/SQL .. 1092

41. PL/Tcl — Tcl Procedural Language ... 1101
41.1. Overview ... 1101
41.2. PL/Tcl Functions and Arguments ... 1101
41.3. Data Values in PL/Tcl ... 1103
41.4. Global Data in PL/Tcl ... 1103
41.5. Database Access from PL/Tcl ... 1103
41.6. Trigger Functions in PL/Tcl ... 1105
41.7. Event Trigger Functions in PL/Tcl ... 1107

x

Postgres Pro Standard
13.7.2 Documentation

41.8. Error Handling in PL/Tcl .. 1108
41.9. Explicit Subtransactions in PL/Tcl ... 1108
41.10. Transaction Management ... 1109
41.11. PL/Tcl Configuration ... 1110
41.12. Tcl Procedure Names ... 1110

42. PL/Perl — Perl Procedural Language ... 1111
42.1. PL/Perl Functions and Arguments ... 1111
42.2. Data Values in PL/Perl .. 1115
42.3. Built-in Functions ... 1115
42.4. Global Values in PL/Perl ... 1120
42.5. Trusted and Untrusted PL/Perl .. 1121
42.6. PL/Perl Triggers ... 1122
42.7. PL/Perl Event Triggers ... 1123
42.8. PL/Perl Under the Hood ... 1123

43. PL/Python — Python Procedural Language .. 1125
43.1. Python 2 vs. Python 3 .. 1125
43.2. PL/Python Functions ... 1126
43.3. Data Values ... 1127
43.4. Sharing Data ... 1132
43.5. Anonymous Code Blocks .. 1132
43.6. Trigger Functions ... 1132
43.7. Database Access ... 1133
43.8. Explicit Subtransactions ... 1136
43.9. Transaction Management ... 1138
43.10. Utility Functions ... 1138
43.11. Environment Variables ... 1139

44. Server Programming Interface ... 1140
44.1. Interface Functions .. 1140
44.2. Interface Support Functions .. 1173
44.3. Memory Management .. 1182
44.4. Transaction Management ... 1192
44.5. Visibility of Data Changes .. 1195
44.6. Examples ... 1195

45. Background Worker Processes ... 1199
46. Logical Decoding ... 1202

46.1. Logical Decoding Examples ... 1202
46.2. Logical Decoding Concepts .. 1204
46.3. Streaming Replication Protocol Interface .. 1205
46.4. Logical Decoding SQL Interface .. 1205
46.5. System Catalogs Related to Logical Decoding .. 1205
46.6. Logical Decoding Output Plugins ... 1206
46.7. Logical Decoding Output Writers ... 1209
46.8. Synchronous Replication Support for Logical Decoding ... 1209

47. Replication Progress Tracking .. 1211
VI. Reference ... 1212

I. SQL Commands ... 1213
ABORT .. 1214
ALTER AGGREGATE .. 1215
ALTER COLLATION ... 1217
ALTER CONVERSION .. 1219
ALTER DATABASE ... 1220
ALTER DEFAULT PRIVILEGES .. 1222
ALTER DOMAIN ... 1225
ALTER EVENT TRIGGER ... 1228
ALTER EXTENSION ... 1229
ALTER FOREIGN DATA WRAPPER ... 1232
ALTER FOREIGN TABLE ... 1234
ALTER FUNCTION ... 1239

xi

Postgres Pro Standard
13.7.2 Documentation

ALTER GROUP ... 1242
ALTER INDEX .. 1243
ALTER LANGUAGE .. 1246
ALTER LARGE OBJECT ... 1247
ALTER MATERIALIZED VIEW ... 1248
ALTER OPERATOR ... 1250
ALTER OPERATOR CLASS .. 1252
ALTER OPERATOR FAMILY ... 1253
ALTER POLICY ... 1257
ALTER PROCEDURE .. 1258
ALTER PUBLICATION .. 1261
ALTER ROLE .. 1263
ALTER ROUTINE ... 1266
ALTER RULE .. 1267
ALTER SCHEMA .. 1268
ALTER SEQUENCE .. 1269
ALTER SERVER .. 1272
ALTER STATISTICS .. 1273
ALTER SUBSCRIPTION ... 1274
ALTER SYSTEM ... 1276
ALTER TABLE .. 1278
ALTER TABLESPACE ... 1293
ALTER TEXT SEARCH CONFIGURATION .. 1294
ALTER TEXT SEARCH DICTIONARY .. 1296
ALTER TEXT SEARCH PARSER .. 1298
ALTER TEXT SEARCH TEMPLATE ... 1299
ALTER TRIGGER .. 1300
ALTER TYPE ... 1301
ALTER USER .. 1305
ALTER USER MAPPING .. 1306
ALTER VIEW .. 1307
ANALYZE .. 1309
BEGIN .. 1312
CALL ... 1314
CHECKPOINT .. 1315
CLOSE .. 1316
CLUSTER .. 1317
COMMENT ... 1319
COMMIT ... 1323
COMMIT PREPARED ... 1324
COPY .. 1325
CREATE ACCESS METHOD .. 1334
CREATE AGGREGATE .. 1335
CREATE CAST .. 1342
CREATE COLLATION ... 1346
CREATE CONVERSION ... 1348
CREATE DATABASE ... 1350
CREATE DOMAIN .. 1353
CREATE EVENT TRIGGER .. 1356
CREATE EXTENSION .. 1358
CREATE FOREIGN DATA WRAPPER .. 1360
CREATE FOREIGN TABLE .. 1362
CREATE FUNCTION .. 1366
CREATE GROUP .. 1373
CREATE INDEX ... 1374
CREATE LANGUAGE ... 1382
CREATE MATERIALIZED VIEW .. 1384
CREATE OPERATOR .. 1386

xii

Postgres Pro Standard
13.7.2 Documentation

CREATE OPERATOR CLASS .. 1389
CREATE OPERATOR FAMILY .. 1392
CREATE POLICY .. 1393
CREATE PROCEDURE ... 1398
CREATE PUBLICATION ... 1401
CREATE ROLE ... 1403
CREATE RULE ... 1407
CREATE SCHEMA ... 1410
CREATE SEQUENCE ... 1412
CREATE SERVER ... 1415
CREATE STATISTICS ... 1417
CREATE SUBSCRIPTION .. 1419
CREATE TABLE .. 1422
CREATE TABLE AS .. 1442
CREATE TABLESPACE ... 1445
CREATE TEXT SEARCH CONFIGURATION .. 1447
CREATE TEXT SEARCH DICTIONARY .. 1448
CREATE TEXT SEARCH PARSER .. 1450
CREATE TEXT SEARCH TEMPLATE ... 1452
CREATE TRANSFORM .. 1453
CREATE TRIGGER ... 1455
CREATE TYPE .. 1461
CREATE USER ... 1469
CREATE USER MAPPING ... 1470
CREATE VIEW ... 1471
DEALLOCATE ... 1475
DECLARE ... 1476
DELETE .. 1479
DISCARD .. 1482
DO .. 1483
DROP ACCESS METHOD .. 1484
DROP AGGREGATE ... 1485
DROP CAST .. 1487
DROP COLLATION ... 1488
DROP CONVERSION ... 1489
DROP DATABASE ... 1490
DROP DOMAIN .. 1491
DROP EVENT TRIGGER .. 1492
DROP EXTENSION .. 1493
DROP FOREIGN DATA WRAPPER .. 1494
DROP FOREIGN TABLE .. 1495
DROP FUNCTION .. 1496
DROP GROUP .. 1498
DROP INDEX ... 1499
DROP LANGUAGE ... 1500
DROP MATERIALIZED VIEW .. 1501
DROP OPERATOR .. 1502
DROP OPERATOR CLASS .. 1504
DROP OPERATOR FAMILY .. 1505
DROP OWNED ... 1506
DROP POLICY .. 1507
DROP PROCEDURE ... 1508
DROP PUBLICATION ... 1510
DROP ROLE ... 1511
DROP ROUTINE .. 1512
DROP RULE ... 1513
DROP SCHEMA ... 1514
DROP SEQUENCE ... 1515

xiii

Postgres Pro Standard
13.7.2 Documentation

DROP SERVER ... 1516
DROP STATISTICS ... 1517
DROP SUBSCRIPTION .. 1518
DROP TABLE .. 1519
DROP TABLESPACE ... 1520
DROP TEXT SEARCH CONFIGURATION .. 1521
DROP TEXT SEARCH DICTIONARY ... 1522
DROP TEXT SEARCH PARSER .. 1523
DROP TEXT SEARCH TEMPLATE ... 1524
DROP TRANSFORM .. 1525
DROP TRIGGER ... 1526
DROP TYPE .. 1527
DROP USER ... 1528
DROP USER MAPPING ... 1529
DROP VIEW ... 1530
END .. 1531
EXECUTE ... 1532
EXPLAIN .. 1533
FETCH .. 1538
GRANT ... 1542
IMPORT FOREIGN SCHEMA .. 1547
INSERT ... 1549
LISTEN ... 1556
LOAD .. 1558
LOCK .. 1559
MOVE ... 1562
NOTIFY ... 1564
PREPARE .. 1566
PREPARE TRANSACTION .. 1569
REASSIGN OWNED ... 1571
REFRESH MATERIALIZED VIEW ... 1572
REINDEX .. 1574
RELEASE SAVEPOINT ... 1578
RESET .. 1579
REVOKE ... 1580
ROLLBACK ... 1584
ROLLBACK PREPARED .. 1585
ROLLBACK TO SAVEPOINT .. 1586
SAVEPOINT .. 1588
SECURITY LABEL .. 1590
SELECT .. 1592
SELECT INTO .. 1611
SET ... 1613
SET CONSTRAINTS ... 1616
SET ROLE .. 1617
SET SESSION AUTHORIZATION .. 1619
SET TRANSACTION .. 1621
SHOW ... 1624
START TRANSACTION .. 1626
TRUNCATE ... 1627
UNLISTEN ... 1629
UPDATE .. 1630
VACUUM .. 1634
VALUES .. 1638
WAITLSN .. 1640

II. Postgres Pro Client Applications .. 1642
clusterdb .. 1643
createdb ... 1646

xiv

Postgres Pro Standard
13.7.2 Documentation

createuser .. 1649
dropdb .. 1653
dropuser ... 1656
ecpg .. 1658
pg_basebackup ... 1660
pgbench .. 1668
pg_config .. 1686
pg_dump ... 1689
pg_dumpall ... 1701
pg_isready .. 1707
pg_receivewal ... 1709
pg_recvlogical .. 1713
pg_restore .. 1717
pg-wrapper ... 1725
pg_verifybackup ... 1727
psql ... 1730
reindexdb ... 1769
vacuumdb ... 1772

III. Postgres Pro Server Applications ... 1777
initdb .. 1778
pg_archivecleanup ... 1782
pg_checksums .. 1784
pg_controldata ... 1786
pg_ctl .. 1787
pg_resetwal .. 1792
pg_rewind ... 1796
pg-setup .. 1800
pg_test_fsync .. 1802
pg_test_timing .. 1803
pg_upgrade ... 1806
pg_waldump ... 1814
postgres .. 1816
postmaster .. 1823

VII. Internals ... 1824
48. Overview of Postgres Pro Internals .. 1825

48.1. The Path of a Query ... 1825
48.2. How Connections Are Established ... 1825
48.3. The Parser Stage .. 1826
48.4. The Postgres Pro Rule System ... 1827
48.5. Planner/Optimizer ... 1827
48.6. Executor .. 1828

49. System Catalogs .. 1830
49.1. Overview ... 1830
49.2. pg_aggregate ... 1831
49.3. pg_am ... 1833
49.4. pg_amop ... 1833
49.5. pg_amproc ... 1834
49.6. pg_attrdef ... 1835
49.7. pg_attribute ... 1835
49.8. pg_authid ... 1837
49.9. pg_auth_members .. 1838
49.10. pg_cast ... 1839
49.11. pg_class ... 1839
49.12. pg_collation ... 1842
49.13. pg_constraint ... 1842
49.14. pg_conversion ... 1844
49.15. pg_database ... 1845

xv

Postgres Pro Standard
13.7.2 Documentation

49.16. pg_db_role_setting .. 1846
49.17. pg_default_acl .. 1846
49.18. pg_depend ... 1847
49.19. pg_description .. 1849
49.20. pg_enum ... 1849
49.21. pg_event_trigger .. 1849
49.22. pg_extension ... 1850
49.23. pg_foreign_data_wrapper ... 1851
49.24. pg_foreign_server .. 1851
49.25. pg_foreign_table .. 1852
49.26. pg_index ... 1852
49.27. pg_inherits ... 1853
49.28. pg_init_privs ... 1854
49.29. pg_language ... 1854
49.30. pg_largeobject .. 1855
49.31. pg_largeobject_metadata ... 1855
49.32. pg_namespace ... 1856
49.33. pg_opclass ... 1856
49.34. pg_operator ... 1857
49.35. pg_opfamily ... 1858
49.36. pg_partitioned_table .. 1858
49.37. pg_policy ... 1859
49.38. pg_proc ... 1859
49.39. pg_publication .. 1862
49.40. pg_publication_rel .. 1862
49.41. pg_range ... 1862
49.42. pg_replication_origin .. 1863
49.43. pg_rewrite ... 1863
49.44. pg_seclabel ... 1864
49.45. pg_sequence ... 1864
49.46. pg_shdepend ... 1865
49.47. pg_shdescription .. 1866
49.48. pg_shseclabel ... 1866
49.49. pg_statistic ... 1867
49.50. pg_statistic_ext .. 1868
49.51. pg_statistic_ext_data .. 1869
49.52. pg_subscription .. 1869
49.53. pg_subscription_rel .. 1870
49.54. pg_tablespace ... 1870
49.55. pg_transform ... 1871
49.56. pg_trigger ... 1871
49.57. pg_ts_config ... 1873
49.58. pg_ts_config_map .. 1873
49.59. pg_ts_dict ... 1873
49.60. pg_ts_parser ... 1874
49.61. pg_ts_template .. 1874
49.62. pg_type ... 1875
49.63. pg_user_mapping .. 1878
49.64. System Views .. 1878
49.65. pg_available_extensions ... 1879
49.66. pg_available_extension_versions .. 1880
49.67. pg_config ... 1880
49.68. pg_cursors ... 1881
49.69. pg_file_settings .. 1881
49.70. pg_group ... 1882
49.71. pg_hba_file_rules .. 1882

xvi

Postgres Pro Standard
13.7.2 Documentation

49.72. pg_indexes ... 1883
49.73. pg_locks ... 1884
49.74. pg_matviews ... 1886
49.75. pg_policies ... 1886
49.76. pg_prepared_statements ... 1887
49.77. pg_prepared_xacts .. 1887
49.78. pg_publication_tables .. 1888
49.79. pg_replication_origin_status ... 1888
49.80. pg_replication_slots .. 1889
49.81. pg_roles ... 1890
49.82. pg_rules ... 1891
49.83. pg_seclabels ... 1891
49.84. pg_sequences ... 1892
49.85. pg_settings ... 1892
49.86. pg_shadow ... 1894
49.87. pg_shmem_allocations .. 1895
49.88. pg_stats ... 1895
49.89. pg_stats_ext ... 1897
49.90. pg_tables ... 1898
49.91. pg_timezone_abbrevs .. 1898
49.92. pg_timezone_names .. 1899
49.93. pg_user ... 1899
49.94. pg_user_mappings .. 1900
49.95. pg_views ... 1900

50. Frontend/Backend Protocol .. 1902
50.1. Overview ... 1902
50.2. Message Flow ... 1903
50.3. SASL Authentication .. 1915
50.4. Streaming Replication Protocol ... 1917
50.5. Logical Streaming Replication Protocol ... 1923
50.6. Message Data Types .. 1924
50.7. Message Formats ... 1925
50.8. Error and Notice Message Fields .. 1940
50.9. Logical Replication Message Formats ... 1942
50.10. Summary of Changes since Protocol 2.0 ... 1946

51. Writing a Procedural Language Handler .. 1947
52. Writing a Foreign Data Wrapper .. 1950

52.1. Foreign Data Wrapper Functions ... 1950
52.2. Foreign Data Wrapper Callback Routines .. 1950
52.3. Foreign Data Wrapper Helper Functions ... 1962
52.4. Foreign Data Wrapper Query Planning .. 1963
52.5. Row Locking in Foreign Data Wrappers .. 1965

53. Writing a Table Sampling Method .. 1967
53.1. Sampling Method Support Functions .. 1967

54. Writing a Custom Scan Provider .. 1970
54.1. Creating Custom Scan Paths ... 1970
54.2. Creating Custom Scan Plans .. 1971
54.3. Executing Custom Scans .. 1972

55. Genetic Query Optimizer .. 1974
55.1. Query Handling as a Complex Optimization Problem ... 1974
55.2. Genetic Algorithms ... 1974
55.3. Genetic Query Optimization (GEQO) in Postgres Pro .. 1975
55.4. Further Reading ... 1977

56. Table Access Method Interface Definition .. 1978
57. Index Access Method Interface Definition ... 1979

57.1. Basic API Structure for Indexes .. 1979
57.2. Index Access Method Functions .. 1981

xvii

Postgres Pro Standard
13.7.2 Documentation

57.3. Index Scanning ... 1986
57.4. Index Locking Considerations .. 1987
57.5. Index Uniqueness Checks .. 1988
57.6. Index Cost Estimation Functions ... 1990

58. Generic WAL Records ... 1993
59. B-Tree Indexes .. 1995

59.1. Introduction .. 1995
59.2. Behavior of B-Tree Operator Classes ... 1995
59.3. B-Tree Support Functions .. 1996
59.4. Implementation ... 1998

60. GiST Indexes ... 2001
60.1. Introduction .. 2001
60.2. Built-in Operator Classes ... 2001
60.3. Extensibility .. 2001
60.4. Implementation ... 2012
60.5. Examples ... 2012

61. SP-GiST Indexes .. 2014
61.1. Introduction .. 2014
61.2. Built-in Operator Classes ... 2014
61.3. Extensibility .. 2014
61.4. Implementation ... 2022

62. GIN Indexes .. 2024
62.1. Introduction .. 2024
62.2. Built-in Operator Classes ... 2024
62.3. Extensibility .. 2024
62.4. Implementation ... 2027
62.5. GIN Tips and Tricks ... 2028
62.6. Limitations .. 2029
62.7. Examples ... 2029

63. BRIN Indexes .. 2030
63.1. Introduction .. 2030
63.2. Built-in Operator Classes ... 2030
63.3. Extensibility .. 2031

64. Hash Indexes ... 2035
64.1. Overview ... 2035
64.2. Implementation ... 2036

65. Database Physical Storage ... 2037
65.1. Database File Layout .. 2037
65.2. TOAST ... 2039
65.3. Free Space Map ... 2042
65.4. Visibility Map .. 2042
65.5. The Initialization Fork .. 2042
65.6. Database Page Layout .. 2042

66. How the Planner Uses Statistics .. 2046
66.1. Row Estimation Examples .. 2046
66.2. Multivariate Statistics Examples .. 2050
66.3. Planner Statistics and Security .. 2053

67. Backup Manifest Format ... 2055
67.1. Backup Manifest Top-level Object .. 2055
67.2. Backup Manifest File Object .. 2055
67.3. Backup Manifest WAL Range Object ... 2056

VIII. Appendixes .. 2057
A. Postgres Pro Error Codes ... 2058
B. Date/Time Support .. 2067

B.1. Date/Time Input Interpretation ... 2067
B.2. Handling of Invalid or Ambiguous Timestamps ... 2068
B.3. Date/Time Key Words ... 2068
B.4. Date/Time Configuration Files ... 2069

xviii

Postgres Pro Standard
13.7.2 Documentation

B.5. POSIX Time Zone Specifications ... 2071
B.6. History of Units .. 2072
B.7. Julian Dates .. 2073

C. SQL Key Words ... 2075
D. SQL Conformance ... 2099

D.1. Supported Features .. 2100
D.2. Unsupported Features ... 2110
D.3. XML Limits and Conformance to SQL/XML .. 2118

E. Release Notes ... 2122
E.1. Postgres Pro Standard 13.7.2 .. 2122
E.2. Postgres Pro Standard 13.7.1 .. 2122
E.3. Postgres Pro Standard 13.6.1 .. 2123
E.4. Postgres Pro Standard 13.5.1 .. 2124
E.5. Postgres Pro Standard 13.4.1 .. 2125
E.6. Postgres Pro Standard 13.3.1 .. 2126
E.7. Postgres Pro Standard 13.2.2 .. 2127
E.8. Postgres Pro Standard 13.2.1 .. 2127
E.9. Postgres Pro Standard 13.1.1 .. 2128
E.10. Release 13.7 ... 2130
E.11. Release 13.6 ... 2133
E.12. Release 13.5 ... 2137
E.13. Release 13.4 ... 2144
E.14. Release 13.3 ... 2149
E.15. Release 13.2 ... 2153
E.16. Release 13.1 ... 2160
E.17. Release 13 .. 2164
E.18. Prior Releases .. 2181

F. Additional Supplied Modules .. 2182
F.1. adminpack ... 2182
F.2. amcheck .. 2183
F.3. auth_delay ... 2186
F.4. auto_explain .. 2187
F.5. bloom ... 2189
F.6. btree_gin ... 2192
F.7. btree_gist .. 2193
F.8. citext ... 2194
F.9. cube ... 2196
F.10. dblink .. 2200
F.11. dict_int .. 2228
F.12. dict_xsyn .. 2228
F.13. dump_stat .. 2230
F.14. earthdistance .. 2232
F.15. fasttrun .. 2233
F.16. file_fdw .. 2234
F.17. fulleq ... 2236
F.18. fuzzystrmatch .. 2237
F.19. hstore .. 2239
F.20. Hunspell Dictionaries Modules ... 2246
F.21. intagg .. 2247
F.22. intarray .. 2248
F.23. isn .. 2251
F.24. jsquery ... 2254
F.25. lo ... 2259
F.26. ltree ... 2260
F.27. mchar .. 2266
F.28. online_analyze ... 2267
F.29. pageinspect ... 2268
F.30. passwordcheck .. 2275

xix

Postgres Pro Standard
13.7.2 Documentation

F.31. pg_buffercache .. 2276
F.32. pgcrypto .. 2277
F.33. pg_freespacemap .. 2286
F.34. pg_pathman ... 2288
F.35. pgpro_pwr ... 2306
F.36. pg_prewarm .. 2353
F.37. pgpro_stats .. 2354
F.38. pg_query_state .. 2370
F.39. pgrowlocks .. 2375
F.40. pg_stat_statements .. 2376
F.41. pgstattuple .. 2382
F.42. pg_trgm ... 2386
F.43. pg_tsparser ... 2391
F.44. pg_variables .. 2392
F.45. pg_visibility ... 2400
F.46. plantuner ... 2401
F.47. postgres_fdw ... 2402
F.48. ptrack .. 2408
F.49. seg ... 2410
F.50. sepgsql .. 2412
F.51. shared_ispell ... 2419
F.52. spi .. 2421
F.53. sr_plan ... 2422
F.54. sslinfo .. 2424
F.55. tablefunc ... 2426
F.56. tcn ... 2434
F.57. test_decoding .. 2435
F.58. tsm_system_rows ... 2436
F.59. tsm_system_time ... 2436
F.60. unaccent .. 2437
F.61. uuid-ossp ... 2438
F.62. xml2 ... 2440

G. Additional Supplied Programs .. 2444
G.1. Client Applications ... 2444
G.2. Server Applications .. 2509

H. External Projects .. 2564
H.1. Client Interfaces .. 2564
H.2. Administration Tools .. 2564
H.3. Procedural Languages ... 2564
H.4. Extensions .. 2565

I. Configuring Postgres Pro for 1C Solutions ... 2566
J. Postgres Pro Limits .. 2567
K. Demo Database “Airlines” .. 2568

K.1. Installation .. 2568
K.2. Schema Diagram .. 2569
K.3. Schema Description ... 2569
K.4. Schema Objects .. 2570
K.5. Usage .. 2576

L. Acronyms ... 2584
M. Glossary .. 2589
N. Color Support ... 2600

N.1. When Color is Used ... 2600
N.2. Configuring the Colors .. 2600

O. Obsolete or Renamed Features .. 2601
O.1. recovery.conf file merged into postgresql.conf ... 2601
O.2. pg_xlogdump renamed to pg_waldump ... 2601
O.3. pg_resetxlog renamed to pg_resetwal ... 2601
O.4. pg_receivexlog renamed to pg_receivewal .. 2601

xx

Postgres Pro Standard
13.7.2 Documentation

Bibliography .. 2602
Index .. 2604

xxi

Preface
This book is the official documentation of Postgres Pro Standard. It has been written by the Postgres
Pro developers, PostgreSQL community, and other volunteers in parallel to the development of the
PostgreSQL and Postgres Pro software. It describes all the functionality that the current version of
Postgres Pro officially supports.

To make the large amount of information about Postgres Pro manageable, this book has been organized
in several parts. Each part is targeted at a different class of users, or at users in different stages of their
Postgres Pro experience:
• Part I is an informal introduction for new users.
• Part II documents the SQL query language environment, including data types and functions, as well

as user-level performance tuning. Every Postgres Pro user should read this.
• Part III describes the installation and administration of the server. Everyone who runs a Postgres

Pro server, be it for private use or for others, should read this part.
• Part IV describes the programming interfaces for Postgres Pro client programs.
• Part V contains information for advanced users about the extensibility capabilities of the server.

Topics include user-defined data types and functions.
• Part VI contains reference information about SQL commands, client and server programs. This part

supports the other parts with structured information sorted by command or program.
• Part VII contains assorted information that might be of use to Postgres Pro developers.

1. What Is Postgres Pro Standard?
Postgres Pro Standard is an object-relational database management system (ORDBMS), developed by
Postgres Professional in the Postgres Pro fork of PostgreSQL, which is in turn based on POSTGRES,
Version 4.2, developed at the University of California at Berkeley Computer Science Department.
POSTGRES pioneered many concepts that only became available in some commercial database systems
much later.

Both PostgreSQL and Postgres Pro Standard support a large part of the SQL standard and offer many
modern features:
• complex queries
• foreign keys
• triggers
• updatable views
• transactional integrity
• multiversion concurrency control
Besides, PostgreSQL and Postgres Pro can be extended by the user in many ways, for example by adding
new
• data types
• functions
• operators
• aggregate functions
• index methods
• procedural languages

2. Difference between Postgres Pro Standard and
PostgreSQL

Postgres Pro provides the most actual PostgreSQL version with some additional patches applied and
extensions added. It includes new features developed by Postgres Professional, as well as third-party

xxii

http://postgresql.org
https://dsf.berkeley.edu/postgres.html
https://dsf.berkeley.edu/postgres.html

Preface

patches already accepted by the PostgreSQL community for the upcoming PostgreSQL versions. Postgres
Pro Standard users thus have early access to important features and fixes.

Note
Postgres Pro Standard is provided under the following license: https://postgrespro.com/products/
postgrespro/eula. Make sure to review the license terms before downloading Postgres Pro
Standard.

Postgres Pro Standard provides the following enhancements over PostgreSQL:
• Improved deadlock detection mechanism that does not cause performance degradation.
• Better planning speed and accuracy for various query types.
• Reduced memory consumption in complex queries that involve multiple tables.
• Displaying planning time in the output of the auto_explain module.
• NUL byte replacement with the specified ASCII code while loading data using the COPY FROM

command. (See nul_byte_replacement_on_import parameter description.)
• ICU collation support on all platforms to provide platform-independent sort for various locales. By

default, the icu collation provider is used for all locales except C and POSIX. (See Section 22.2.2.)
• PTRACK implementation, which enables pg_probackup to track page changes on the fly when

creating incremental backups.
• Consistent reads on standby servers. (See WAITLSN.)
• Support for reading pg_control of previous PostgreSQL/Postgres Pro major versions by

pgpro_controldata.
• Cluster compatibility verification, which allows you to determine whether the current Postgres

Pro version is compatible with the specified cluster and identify all parameters that can affect the
compatibility without starting the cluster. (See pgpro_controldata and -Z option of postgres.)

• Changing the restore_command parameter without restarting the server.
• Improvements for command-line editing using WinEditLine in the Windows version of psql,

including autocomplete support in psql console and changing the psql default encoding to UTF-8.
• Unified structure of binary installation packages across all Linux distributions, which facilitates

migration between them and allows to install different PostgreSQL-based products side by side,
without any conflicts. (See Chapter 16.)

Postgres Pro Standard also includes the following additional modules:
• dump_stat module that allows to save and restore database statistics when dumping/restoring the

database.
• fasttrun module that provides transaction-unsafe function to truncate temporary tables without

growing pg_class size.
• fulleq module that provides additional equivalence operator for compatibility with Microsoft SQL

Server.
• hunspell-dict module that provides dictionaries for several languages.
• jsquery module that provides a specific language for effective index-supported querying of JSONB

data.
• mamonsu monitoring service, which is implemented as a Zabbix agent.
• mchar module that provides additional data type for compatibility with Microsoft SQL Server.
• online_analyze module that provides a set of changes to immediately update statistics after INSERT,

UPDATE, DELETE or SELECT INTO operations applied for affected tables.
• pgbouncer connection pooler.
• pg_pathman module that provides optimized partitioning mechanism and functions to manage

partitions. Starting from Postgres Pro 12, using pg_pathman is not recommended. Use vanilla
declarative partitioning instead, as described in Section 5.11.

• pg_probackup, a backup and recovery manager.
• pgpro_controldata, an application to display control information of a PostgreSQL/Postgres Pro

database cluster and compatibility information for a cluster and/or server.
• pgpro_pwr extension that enables you to generate workload reports, which help to discover most

resource-intensive activities in your database.

xxiii

https://postgrespro.com/products/postgrespro/eula
https://postgrespro.com/products/postgrespro/eula

Preface

• pgpro_stats extension that combines tracking execution statistics of SQL statements and
calculating wait event statistics.

• pg_query_state module that enables you to get the current state of query execution for a backend.
• pg_repack utility for reorganizing tables.
• pg_tsparser module, which is an alternative text search parser.
• pg_variables module that provides functions for working with variables of various types.
• plantuner module that provides hints for the planner to disable or enable indexes for query

execution.
• shared_ispell module that enables storing dictionaries in shared memory.
• sr_plan module that allows to save and restore query plans.

Postgres Pro Standard releases follow PostgreSQL releases, though sometimes occur more frequently.
The Postgres Pro Standard versioning scheme is based on the PostgreSQL one and has an additional
decimal place.

3. A Brief History of PostgreSQL
The object-relational database management system now known as PostgreSQL is derived from the
POSTGRES package written at the University of California at Berkeley. With over two decades of
development behind it, PostgreSQL is now the most advanced open-source database available anywhere.

3.1. The Berkeley POSTGRES Project
The POSTGRES project, led by Professor Michael Stonebraker, was sponsored by the Defense Advanced
Research Projects Agency (DARPA), the Army Research Office (ARO), the National Science Foundation
(NSF), and ESL, Inc. The implementation of POSTGRES began in 1986. The initial concepts for the
system were presented in ston86, and the definition of the initial data model appeared in rowe87. The
design of the rule system at that time was described in ston87a. The rationale and architecture of the
storage manager were detailed in ston87b.

POSTGRES has undergone several major releases since then. The first “demoware” system became
operational in 1987 and was shown at the 1988 ACM-SIGMOD Conference. Version 1, described in
ston90a, was released to a few external users in June 1989. In response to a critique of the first rule
system (ston89), the rule system was redesigned (ston90b), and Version 2 was released in June 1990
with the new rule system. Version 3 appeared in 1991 and added support for multiple storage managers,
an improved query executor, and a rewritten rule system. For the most part, subsequent releases until
Postgres95 (see below) focused on portability and reliability.

POSTGRES has been used to implement many different research and production applications. These
include: a financial data analysis system, a jet engine performance monitoring package, an asteroid
tracking database, a medical information database, and several geographic information systems.
POSTGRES has also been used as an educational tool at several universities. Finally, Illustra Information
Technologies (later merged into Informix, which is now owned by IBM) picked up the code and
commercialized it. In late 1992, POSTGRES became the primary data manager for the Sequoia 2000
scientific computing project.

The size of the external user community nearly doubled during 1993. It became increasingly obvious that
maintenance of the prototype code and support was taking up large amounts of time that should have
been devoted to database research. In an effort to reduce this support burden, the Berkeley POSTGRES
project officially ended with Version 4.2.

3.2. Postgres95
In 1994, Andrew Yu and Jolly Chen added an SQL language interpreter to POSTGRES. Under a new
name, Postgres95 was subsequently released to the web to find its own way in the world as an open-
source descendant of the original POSTGRES Berkeley code.

Postgres95 code was completely ANSI C and trimmed in size by 25%. Many internal changes improved
performance and maintainability. Postgres95 release 1.0.x ran about 30–50% faster on the Wisconsin

xxiv

https://www.ibm.com/analytics/informix
https://www.ibm.com/
http://meteora.ucsd.edu/s2k/s2k_home.html
http://meteora.ucsd.edu/s2k/s2k_home.html

Preface

Benchmark compared to POSTGRES, Version 4.2. Apart from bug fixes, the following were the major
enhancements:

• The query language PostQUEL was replaced with SQL (implemented in the server). (Interface
library libpq was named after PostQUEL.) Subqueries were not supported until PostgreSQL (see
below), but they could be imitated in Postgres95 with user-defined SQL functions. Aggregate
functions were re-implemented. Support for the GROUP BY query clause was also added.

• A new program (psql) was provided for interactive SQL queries, which used GNU Readline. This
largely superseded the old monitor program.

• A new front-end library, libpgtcl, supported Tcl-based clients. A sample shell, pgtclsh, provided
new Tcl commands to interface Tcl programs with the Postgres95 server.

• The large-object interface was overhauled. The inversion large objects were the only mechanism
for storing large objects. (The inversion file system was removed.)

• The instance-level rule system was removed. Rules were still available as rewrite rules.

• A short tutorial introducing regular SQL features as well as those of Postgres95 was distributed
with the source code

• GNU make (instead of BSD make) was used for the build. Also, Postgres95 could be compiled with
an unpatched GCC (data alignment of doubles was fixed).

3.3. PostgreSQL
By 1996, it became clear that the name “Postgres95” would not stand the test of time. We chose a new
name, PostgreSQL, to reflect the relationship between the original POSTGRES and the more recent
versions with SQL capability. At the same time, we set the version numbering to start at 6.0, putting the
numbers back into the sequence originally begun by the Berkeley POSTGRES project.

Many people continue to refer to PostgreSQL as “Postgres” (now rarely in all capital letters) because of
tradition or because it is easier to pronounce. This usage is widely accepted as a nickname or alias.

The emphasis during development of Postgres95 was on identifying and understanding existing problems
in the server code. With PostgreSQL, the emphasis has shifted to augmenting features and capabilities,
although work continues in all areas.

4. Conventions
The following conventions are used in the synopsis of a command: brackets ([and]) indicate optional
parts. Braces ({ and }) and vertical lines (|) indicate that you must choose one alternative. Dots (...)
mean that the preceding element can be repeated. All other symbols, including parentheses, should be
taken literally.

Where it enhances the clarity, SQL commands are preceded by the prompt =>, and shell commands are
preceded by the prompt $. Normally, prompts are not shown, though.

An administrator is generally a person who is in charge of installing and running the server. A user could
be anyone who is using, or wants to use, any part of the Postgres Pro system. These terms should not
be interpreted too narrowly; this book does not have fixed presumptions about system administration
procedures.

5. Bug Reporting Guidelines
When you find a bug in Postgres Pro we want to hear about it. Your bug reports play an important part
in making Postgres Pro more reliable because even the utmost care cannot guarantee that every part of
Postgres Pro will work on every platform under every circumstance.

The following suggestions are intended to assist you in forming bug reports that can be handled in an
effective fashion. No one is required to follow them but doing so tends to be to everyone's advantage.

xxv

Preface

5.1. Identifying Bugs
Before you report a bug, please read and re-read the documentation to verify that you can really do
whatever it is you are trying. If it is not clear from the documentation whether you can do something or
not, please report that too; it is a bug in the documentation. If it turns out that a program does something
different from what the documentation says, that is a bug. That might include, but is not limited to, the
following circumstances:
• A program terminates with a fatal signal or an operating system error message that would point to

a problem in the program. (A counterexample might be a “disk full” message, since you have to fix
that yourself.)

• A program produces the wrong output for any given input.
• A program refuses to accept valid input (as defined in the documentation).
• A program accepts invalid input without a notice or error message. But keep in mind that your idea

of invalid input might be our idea of an extension or compatibility with traditional practice.
• Postgres Pro fails to install according to the instructions on supported platforms.
Here “program” refers to any executable, not only the backend process.

Being slow or resource-hogging is not necessarily a bug. Failing to comply to the SQL standard is not
necessarily a bug either, unless compliance for the specific feature is explicitly claimed.

5.2. What to Report
When reporting a bug, make sure to state all the facts. Each bug report should contain the following
items:
• The exact sequence of steps from program start-up necessary to reproduce the problem. This

should be self-contained; it is not enough to send in a bare SELECT statement without the preceding
CREATE TABLE and INSERT statements, if the output should depend on the data in the tables.

The best format for a test case for SQL-related problems is a file that can be run through the psql
frontend that shows the problem. (Be sure to not have anything in your ~/.psqlrc start-up file.) An
easy way to create this file is to use pg_dump to dump out the table declarations and data needed
to set the scene, then add the problem query. You are encouraged to minimize the size of your
example, but this is not absolutely necessary. If the bug is reproducible, we will find it either way.

If your application uses some other client interface, such as PHP, then please try to isolate the
offending queries.

• The output you got. If there is an error message, show it. If the program terminates with an
operating system error, say which. If nothing at all happens, say so. Even if the result of your test
case is a program crash or otherwise obvious it might not happen on our platform. The easiest
thing is to copy the output from the terminal, if possible.

Note
If you are reporting an error message, please obtain the most verbose form of the message.
In psql, say \set VERBOSITY verbose beforehand. If you are extracting the message from the
server log, set the run-time parameter log_error_verbosity to verbose so that all details are
logged.

Note
In case of fatal errors, the error message reported by the client might not contain all the
information available. Please also look at the log output of the database server.

xxvi

Preface

• The output you expect is very important to state. Please provide the expected output, if applicable.
• Any command line options and other start-up options, including any relevant environment variables

or configuration files that you changed from the default.
• Anything you did at all differently from the installation instructions.
• The Postgres Pro version. You can run the command SELECT pgpro_version(); to find out the

version of the server you are connected to. Most executable programs also support a --version
option; at least postgres --version and psql --version should work.

• Platform information. This includes the kernel name and version, C library, processor, memory
information, and so on.

5.3. Where to Report Bugs
In general, send bug reports to our support email address at <bugs@postgrespro.ru>. You are requested
to use a descriptive subject for your email message, perhaps parts of the error message.

Do not send bug reports specific to Postgres Pro to the PostgreSQL support email address,
as Postgres Pro is not supported by the PostgreSQL community. But you can send reports to
<pgsql-bugs@lists.postgresql.org> for any bugs related to PostgreSQL.

Even if your bug is not specific to Postgres Pro, do not send bug reports to any of the user mailing
lists, such as <pgsql-sql@lists.postgresql.org> or <pgsql-general@lists.postgresql.org>. These
mailing lists are for answering user questions, and their subscribers normally do not wish to receive bug
reports. More importantly, they are unlikely to fix them.

Also, please do not send reports to the developers' mailing list
<pgsql-hackers@lists.postgresql.org>. This list is for discussing the development of PostgreSQL,
and it would be nice if the community could keep the bug reports separate. The community might choose
to take up a discussion about your bug report on pgsql-hackers, if the PostgreSQL-related problem
needs more review.

xxvii

Part I. Tutorial
Welcome to the Postgres Pro Tutorial. The following few chapters are intended to give a simple
introduction to Postgres Pro, relational database concepts, and the SQL language to those who are new
to any one of these aspects. We only assume some general knowledge about how to use computers. No
particular Unix or programming experience is required. This part is mainly intended to give you some
hands-on experience with important aspects of the Postgres Pro system. It makes no attempt to be a
complete or thorough treatment of the topics it covers.

After you have worked through this tutorial you might want to move on to reading Part II to gain a
more formal knowledge of the SQL language, or Part IV for information about developing applications for
Postgres Pro. When learning SQL, you can use the demo database described in Appendix K. Those who
set up and manage their own server should also read Part III.

Chapter 1. Getting Started
1.1. Installation

Before you can use Postgres Pro you need to install it, of course. It is possible that Postgres Pro is already
installed at your site, either because it was included in your operating system distribution or because
the system administrator already installed it. If that is the case, you should obtain information from the
operating system documentation or your system administrator about how to access Postgres Pro.

If you are installing Postgres Pro Standard yourself, then see instructions on installation (Chapter 16),
and return to this guide when the installation is complete. Be sure to follow closely the section about
setting up the appropriate environment variables.

If your site administrator has not set things up in the default way, you might have some more work to
do. For example, if the database server machine is a remote machine, you will need to set the PGHOST
environment variable to the name of the database server machine. The environment variable PGPORT
might also have to be set. The bottom line is this: if you try to start an application program and it
complains that it cannot connect to the database, you should consult your site administrator or, if that is
you, the documentation to make sure that your environment is properly set up. If you did not understand
the preceding paragraph then read the next section.

1.2. Architectural Fundamentals
Before we proceed, you should understand the basic Postgres Pro system architecture. Understanding
how the parts of Postgres Pro interact will make this chapter somewhat clearer.

In database jargon, Postgres Pro uses a client/server model. A Postgres Pro session consists of the
following cooperating processes (programs):
• A server process, which manages the database files, accepts connections to the database from

client applications, and performs database actions on behalf of the clients. The database server
program is called postgres.

• The user's client (frontend) application that wants to perform database operations. Client
applications can be very diverse in nature: a client could be a text-oriented tool, a graphical
application, a web server that accesses the database to display web pages, or a specialized
database maintenance tool. Some client applications are supplied with the Postgres Pro
distribution; most are developed by users.

As is typical of client/server applications, the client and the server can be on different hosts. In that case
they communicate over a TCP/IP network connection. You should keep this in mind, because the files
that can be accessed on a client machine might not be accessible (or might only be accessible using a
different file name) on the database server machine.

The Postgres Pro server can handle multiple concurrent connections from clients. To achieve this it starts
(“forks”) a new process for each connection. From that point on, the client and the new server process
communicate without intervention by the original postgres process. Thus, the master server process
is always running, waiting for client connections, whereas client and associated server processes come
and go. (All of this is of course invisible to the user. We only mention it here for completeness.)

1.3. Creating a Database
The first test to see whether you can access the database server is to try to create a database. A running
Postgres Pro server can manage many databases. Typically, a separate database is used for each project
or for each user.

Possibly, your site administrator has already created a database for your use. In that case you can omit
this step and skip ahead to the next section.

To create a new database, in this example named mydb, you use the following command:

2

Getting Started

$ createdb mydb

If this produces no response then this step was successful and you can skip over the remainder of this
section.

If you see a message similar to:

createdb: command not found

then Postgres Pro was not installed properly. Either it was not installed at all or your shell's search path
was not set to include it. Try calling the command with an absolute path instead:

$ /usr/local/pgsql/bin/createdb mydb

The path at your site might be different. Contact your site administrator or check the installation
instructions to correct the situation.

Another response could be this:

createdb: could not connect to database postgres: could not connect to server: No such
 file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

This means that the server was not started, or it was not started where createdb expected it. Again,
check the installation instructions or consult the administrator.

Another response could be this:

createdb: could not connect to database postgres: FATAL: role "joe" does not exist

where your own login name is mentioned. This will happen if the administrator has not created a Postgres
Pro user account for you. (Postgres Pro user accounts are distinct from operating system user accounts.)
If you are the administrator, see Chapter 20 for help creating accounts. You will need to become the
operating system user under which Postgres Pro was installed (usually postgres) to create the first user
account. It could also be that you were assigned a Postgres Pro user name that is different from your
operating system user name; in that case you need to use the -U switch or set the PGUSER environment
variable to specify your Postgres Pro user name.

If you have a user account but it does not have the privileges required to create a database, you will
see the following:

createdb: database creation failed: ERROR: permission denied to create database

Not every user has authorization to create new databases. If Postgres Pro refuses to create databases
for you then the site administrator needs to grant you permission to create databases. Consult your site
administrator if this occurs. If you installed Postgres Pro yourself then you should log in for the purposes
of this tutorial under the user account that you started the server as. 1

You can also create databases with other names. Postgres Pro allows you to create any number of
databases at a given site. Database names must have an alphabetic first character and are limited to 63
bytes in length. A convenient choice is to create a database with the same name as your current user
name. Many tools assume that database name as the default, so it can save you some typing. To create
that database, simply type:

$ createdb

If you do not want to use your database anymore you can remove it. For example, if you are the owner
(creator) of the database mydb, you can destroy it using the following command:

$ dropdb mydb

1 As an explanation for why this works: Postgres Pro user names are separate from operating system user accounts. When you connect to a database, you can choose
what Postgres Pro user name to connect as; if you don't, it will default to the same name as your current operating system account. As it happens, there will always
be a Postgres Pro user account that has the same name as the operating system user that started the server, and it also happens that that user always has permission
to create databases. Instead of logging in as that user you can also specify the -U option everywhere to select a Postgres Pro user name to connect as.

3

Getting Started

(For this command, the database name does not default to the user account name. You always need to
specify it.) This action physically removes all files associated with the database and cannot be undone,
so this should only be done with a great deal of forethought.

More about createdb and dropdb can be found in createdb and dropdb respectively.

1.4. Accessing a Database
Once you have created a database, you can access it by:
• Running the Postgres Pro interactive terminal program, called psql, which allows you to

interactively enter, edit, and execute SQL commands.
• Using an existing graphical frontend tool like pgAdmin or an office suite with ODBC or JDBC

support to create and manipulate a database. These possibilities are not covered in this tutorial.
• Writing a custom application, using one of the several available language bindings. These

possibilities are discussed further in Part IV.

You probably want to start up psql to try the examples in this tutorial. It can be activated for the mydb
database by typing the command:

$ psql mydb

If you do not supply the database name then it will default to your user account name. You already
discovered this scheme in the previous section using createdb.

In psql, you will be greeted with the following message:

psql (13.7.2)
Type "help" for help.

mydb=>

The last line could also be:

mydb=#

That would mean you are a database superuser, which is most likely the case if you installed the Postgres
Pro instance yourself. Being a superuser means that you are not subject to access controls. For the
purposes of this tutorial that is not important.

If you encounter problems starting psql then go back to the previous section. The diagnostics of
createdb and psql are similar, and if the former worked the latter should work as well.

The last line printed out by psql is the prompt, and it indicates that psql is listening to you and that you
can type SQL queries into a work space maintained by psql. Try out these commands:

mydb=> SELECT pgpro_version();
 version

 PostgresPro 13.7.2 on x86_64-pc-linux-gnu, compiled by gcc (Debian 4.9.2-10) 4.9.2,
 64-bit
(1 row)

mydb=> SELECT current_date;
 date

 2016-01-07
(1 row)

mydb=> SELECT 2 + 2;
 ?column?

4

Getting Started

 4
(1 row)

The psql program has a number of internal commands that are not SQL commands. They begin with
the backslash character, “\”. For example, you can get help on the syntax of various Postgres Pro SQL
commands by typing:

mydb=> \h

To get out of psql, type:

mydb=> \q

and psql will quit and return you to your command shell. (For more internal commands, type \? at the
psql prompt.) The full capabilities of psql are documented in psql. In this tutorial we will not use these
features explicitly, but you can use them yourself when it is helpful.

5

Chapter 2. The SQL Language
2.1. Introduction

This chapter provides an overview of how to use SQL to perform simple operations. This tutorial is only
intended to give you an introduction and is in no way a complete tutorial on SQL. Numerous books
have been written on SQL, including melt93 and date97. You should be aware that some Postgres Pro
language features are extensions to the standard.

In the examples that follow, we assume that you have created a database named mydb, as described in
the previous chapter, and have been able to start psql.

2.2. Concepts
Postgres Pro is a relational database management system (RDBMS). That means it is a system for
managing data stored in relations. Relation is essentially a mathematical term for table. The notion of
storing data in tables is so commonplace today that it might seem inherently obvious, but there are a
number of other ways of organizing databases. Files and directories on Unix-like operating systems form
an example of a hierarchical database. A more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns,
and each column is of a specific data type. Whereas columns have a fixed order in each row, it is important
to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Postgres Pro
server instance constitutes a database cluster.

2.3. Creating a New Table
You can create a new table by specifying the table name, along with all column names and their types:

CREATE TABLE weather (
 city varchar(80),
 temp_lo int, -- low temperature
 temp_hi int, -- high temperature
 prcp real, -- precipitation
 date date
);

You can enter this into psql with the line breaks. psql will recognize that the command is not terminated
until the semicolon.

White space (i.e., spaces, tabs, and newlines) can be used freely in SQL commands. That means you can
type the command aligned differently than above, or even all on one line. Two dashes (“--”) introduce
comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive about key
words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

varchar(80) specifies a data type that can store arbitrary character strings up to 80 characters in length.
int is the normal integer type. real is a type for storing single precision floating-point numbers. date
should be self-explanatory. (Yes, the column of type date is also named date. This might be convenient
or confusing — you choose.)

Postgres Pro supports the standard SQL types int, smallint, real, double precision, char(N),
varchar(N), date, time, timestamp, and interval, as well as other types of general utility and a rich set
of geometric types. Postgres Pro can be customized with an arbitrary number of user-defined data types.
Consequently, type names are not key words in the syntax, except where required to support special
cases in the SQL standard.

6

The SQL Language

The second example will store cities and their associated geographical location:

CREATE TABLE cities (
 name varchar(80),
 location point
);

The point type is an example of a Postgres Pro-specific data type.

Finally, it should be mentioned that if you don't need a table any longer or want to recreate it differently
you can remove it using the following command:

DROP TABLE tablename;

2.4. Populating a Table With Rows
The INSERT statement is used to populate a table with rows:

INSERT INTO weather VALUES ('San Francisco', 46, 50, 0.25, '1994-11-27');

Note that all data types use rather obvious input formats. Constants that are not simple numeric values
usually must be surrounded by single quotes ('), as in the example. The date type is actually quite
flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The point type requires a coordinate pair as input, as shown here:

INSERT INTO cities VALUES ('San Francisco', '(-194.0, 53.0)');

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows
you to list the columns explicitly:

INSERT INTO weather (city, temp_lo, temp_hi, prcp, date)
 VALUES ('San Francisco', 43, 57, 0.0, '1994-11-29');

You can list the columns in a different order if you wish or even omit some columns, e.g., if the
precipitation is unknown:

INSERT INTO weather (date, city, temp_hi, temp_lo)
 VALUES ('1994-11-29', 'Hayward', 54, 37);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

Please enter all the commands shown above so you have some data to work with in the following sections.

You could also have used COPY to load large amounts of data from flat-text files. This is usually faster
because the COPY command is optimized for this application while allowing less flexibility than INSERT.
An example would be:

COPY weather FROM '/home/user/weather.txt';

where the file name for the source file must be available on the machine running the backend process,
not the client, since the backend process reads the file directly. You can read more about the COPY
command in COPY.

2.5. Querying a Table
To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The
statement is divided into a select list (the part that lists the columns to be returned), a table list (the
part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). For example, to retrieve all the rows of table weather, type:

SELECT * FROM weather;

Here * is a shorthand for “all columns”. 1 So the same result would be had with:
1 While SELECT * is useful for off-the-cuff queries, it is widely considered bad style in production code, since adding a column to the table would change the results.

7

The SQL Language

SELECT city, temp_lo, temp_hi, prcp, date FROM weather;

The output should be:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 43 | 57 | 0 | 1994-11-29
 Hayward | 37 | 54 | | 1994-11-29
(3 rows)

You can write expressions, not just simple column references, in the select list. For example, you can do:

SELECT city, (temp_hi+temp_lo)/2 AS temp_avg, date FROM weather;

This should give:

 city | temp_avg | date
---------------+----------+------------
 San Francisco | 48 | 1994-11-27
 San Francisco | 50 | 1994-11-29
 Hayward | 45 | 1994-11-29
(3 rows)

Notice how the AS clause is used to relabel the output column. (The AS clause is optional.)

A query can be “qualified” by adding a WHERE clause that specifies which rows are wanted. The WHERE
clause contains a Boolean (truth value) expression, and only rows for which the Boolean expression is
true are returned. The usual Boolean operators (AND, OR, and NOT) are allowed in the qualification. For
example, the following retrieves the weather of San Francisco on rainy days:

SELECT * FROM weather
 WHERE city = 'San Francisco' AND prcp > 0.0;

Result:

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
(1 row)

You can request that the results of a query be returned in sorted order:

SELECT * FROM weather
 ORDER BY city;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 Hayward | 37 | 54 | | 1994-11-29
 San Francisco | 43 | 57 | 0 | 1994-11-29
 San Francisco | 46 | 50 | 0.25 | 1994-11-27

In this example, the sort order isn't fully specified, and so you might get the San Francisco rows in either
order. But you'd always get the results shown above if you do:

SELECT * FROM weather
 ORDER BY city, temp_lo;

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT city
 FROM weather;

 city

 Hayward

8

The SQL Language

 San Francisco
(2 rows)

Here again, the result row ordering might vary. You can ensure consistent results by using DISTINCT
and ORDER BY together: 2

SELECT DISTINCT city
 FROM weather
 ORDER BY city;

2.6. Joins Between Tables
Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once,
or access the same table in such a way that multiple rows of the table are being processed at the same
time. A query that accesses multiple rows of the same or different tables at one time is called a join query.
As an example, say you wish to list all the weather records together with the location of the associated
city. To do that, we need to compare the city column of each row of the weather table with the name
column of all rows in the cities table, and select the pairs of rows where these values match.

Note
This is only a conceptual model. The join is usually performed in a more efficient manner than
actually comparing each possible pair of rows, but this is invisible to the user.

This would be accomplished by the following query:

SELECT *
 FROM weather, cities
 WHERE city = name;

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(2 rows)

Observe two things about the result set:

• There is no result row for the city of Hayward. This is because there is no matching entry in the
cities table for Hayward, so the join ignores the unmatched rows in the weather table. We will see
shortly how this can be fixed.

• There are two columns containing the city name. This is correct because the lists of columns from
the weather and cities tables are concatenated. In practice this is undesirable, though, so you will
probably want to list the output columns explicitly rather than using *:

SELECT city, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

Exercise: Attempt to determine the semantics of this query when the WHERE clause is omitted.

Since the columns all had different names, the parser automatically found which table they belong to. If
there were duplicate column names in the two tables you'd need to qualify the column names to show
which one you meant, as in:

SELECT weather.city, weather.temp_lo, weather.temp_hi,
 weather.prcp, weather.date, cities.location
 FROM weather, cities

2 In some database systems, including older versions of Postgres Pro, the implementation of DISTINCT automatically orders the rows and so ORDER BY is unnecessary.
But this is not required by the SQL standard, and current Postgres Pro does not guarantee that DISTINCT causes the rows to be ordered.

9

The SQL Language

 WHERE cities.name = weather.city;

It is widely considered good style to qualify all column names in a join query, so that the query won't fail
if a duplicate column name is later added to one of the tables.

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT *
 FROM weather INNER JOIN cities ON (weather.city = cities.name);

This syntax is not as commonly used as the one above, but we show it here to help you understand the
following topics.

Now we will figure out how we can get the Hayward records back in. What we want the query to do is
to scan the weather table and for each row to find the matching cities row(s). If no matching row is
found we want some “empty values” to be substituted for the cities table's columns. This kind of query
is called an outer join. (The joins we have seen so far are inner joins.) The command looks like this:

SELECT *
 FROM weather LEFT OUTER JOIN cities ON (weather.city = cities.name);

 city | temp_lo | temp_hi | prcp | date | name | location
---------------+---------+---------+------+------------+---------------+-----------
 Hayward | 37 | 54 | | 1994-11-29 | |
 San Francisco | 46 | 50 | 0.25 | 1994-11-27 | San Francisco | (-194,53)
 San Francisco | 43 | 57 | 0 | 1994-11-29 | San Francisco | (-194,53)
(3 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will
have each of its rows in the output at least once, whereas the table on the right will only have those
rows output that match some row of the left table. When outputting a left-table row for which there is
no right-table match, empty (null) values are substituted for the right-table columns.

Exercise: There are also right outer joins and full outer joins. Try to find out what those do.

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find all
the weather records that are in the temperature range of other weather records. So we need to compare
the temp_lo and temp_hi columns of each weather row to the temp_lo and temp_hi columns of all other
weather rows. We can do this with the following query:

SELECT W1.city, W1.temp_lo AS low, W1.temp_hi AS high,
 W2.city, W2.temp_lo AS low, W2.temp_hi AS high
 FROM weather W1, weather W2
 WHERE W1.temp_lo < W2.temp_lo
 AND W1.temp_hi > W2.temp_hi;

 city | low | high | city | low | high
---------------+-----+------+---------------+-----+------
 San Francisco | 43 | 57 | San Francisco | 46 | 50
 Hayward | 37 | 54 | San Francisco | 46 | 50
(2 rows)

Here we have relabeled the weather table as W1 and W2 to be able to distinguish the left and right side
of the join. You can also use these kinds of aliases in other queries to save some typing, e.g.:

SELECT *
 FROM weather w, cities c
 WHERE w.city = c.name;

You will encounter this style of abbreviating quite frequently.

2.7. Aggregate Functions

10

The SQL Language

Like most other relational database products, Postgres Pro supports aggregate functions. An aggregate
function computes a single result from multiple input rows. For example, there are aggregates to
compute the count, sum, avg (average), max (maximum) and min (minimum) over a set of rows.

As an example, we can find the highest low-temperature reading anywhere with:

SELECT max(temp_lo) FROM weather;

 max

 46
(1 row)

If we wanted to know what city (or cities) that reading occurred in, we might try:

SELECT city FROM weather WHERE temp_lo = max(temp_lo); WRONG

but this will not work since the aggregate max cannot be used in the WHERE clause. (This restriction
exists because the WHERE clause determines which rows will be included in the aggregate calculation;
so obviously it has to be evaluated before aggregate functions are computed.) However, as is often the
case the query can be restated to accomplish the desired result, here by using a subquery:

SELECT city FROM weather
 WHERE temp_lo = (SELECT max(temp_lo) FROM weather);

 city

 San Francisco
(1 row)

This is OK because the subquery is an independent computation that computes its own aggregate
separately from what is happening in the outer query.

Aggregates are also very useful in combination with GROUP BY clauses. For example, we can get the
maximum low temperature observed in each city with:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city;

 city | max
---------------+-----
 Hayward | 37
 San Francisco | 46
(2 rows)

which gives us one output row per city. Each aggregate result is computed over the table rows matching
that city. We can filter these grouped rows using HAVING:

SELECT city, max(temp_lo)
 FROM weather
 GROUP BY city
 HAVING max(temp_lo) < 40;

 city | max
---------+-----
 Hayward | 37
(1 row)

which gives us the same results for only the cities that have all temp_lo values below 40. Finally, if we
only care about cities whose names begin with “S”, we might do:

SELECT city, max(temp_lo)
 FROM weather
 WHERE city LIKE 'S%' -- 1

11

The SQL Language

 GROUP BY city
 HAVING max(temp_lo) < 40;

1 The LIKE operator does pattern matching and is explained in Section 9.7.

It is important to understand the interaction between aggregates and SQL's WHERE and HAVING clauses.
The fundamental difference between WHERE and HAVING is this: WHERE selects input rows before groups
and aggregates are computed (thus, it controls which rows go into the aggregate computation), whereas
HAVING selects group rows after groups and aggregates are computed. Thus, the WHERE clause must not
contain aggregate functions; it makes no sense to try to use an aggregate to determine which rows will
be inputs to the aggregates. On the other hand, the HAVING clause always contains aggregate functions.
(Strictly speaking, you are allowed to write a HAVING clause that doesn't use aggregates, but it's seldom
useful. The same condition could be used more efficiently at the WHERE stage.)

In the previous example, we can apply the city name restriction in WHERE, since it needs no aggregate.
This is more efficient than adding the restriction to HAVING, because we avoid doing the grouping and
aggregate calculations for all rows that fail the WHERE check.

2.8. Updates
You can update existing rows using the UPDATE command. Suppose you discover the temperature
readings are all off by 2 degrees after November 28. You can correct the data as follows:

UPDATE weather
 SET temp_hi = temp_hi - 2, temp_lo = temp_lo - 2
 WHERE date > '1994-11-28';

Look at the new state of the data:

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
 Hayward | 35 | 52 | | 1994-11-29
(3 rows)

2.9. Deletions
Rows can be removed from a table using the DELETE command. Suppose you are no longer interested in
the weather of Hayward. Then you can do the following to delete those rows from the table:

DELETE FROM weather WHERE city = 'Hayward';

All weather records belonging to Hayward are removed.

SELECT * FROM weather;

 city | temp_lo | temp_hi | prcp | date
---------------+---------+---------+------+------------
 San Francisco | 46 | 50 | 0.25 | 1994-11-27
 San Francisco | 41 | 55 | 0 | 1994-11-29
(2 rows)

One should be wary of statements of the form

DELETE FROM tablename;

Without a qualification, DELETE will remove all rows from the given table, leaving it empty. The system
will not request confirmation before doing this!

12

Chapter 3. Advanced Features
3.1. Introduction

In the previous chapter we have covered the basics of using SQL to store and access your data in Postgres
Pro. We will now discuss some more advanced features of SQL that simplify management and prevent
loss or corruption of your data. Finally, we will look at some Postgres Pro extensions.

This chapter will on occasion refer to examples found in Chapter 2 to change or improve them, so it will
be useful to have read that chapter. Some examples from this chapter can also be found in advanced.sql
in the tutorial directory. This file also contains some sample data to load, which is not repeated here.
(Refer to Section 2.1 for how to use the file.)

3.2. Views
Refer back to the queries in Section 2.6. Suppose the combined listing of weather records and city
location is of particular interest to your application, but you do not want to type the query each time
you need it. You can create a view over the query, which gives a name to the query that you can refer
to like an ordinary table:

CREATE VIEW myview AS
 SELECT name, temp_lo, temp_hi, prcp, date, location
 FROM weather, cities
 WHERE city = name;

SELECT * FROM myview;

Making liberal use of views is a key aspect of good SQL database design. Views allow you to encapsulate
the details of the structure of your tables, which might change as your application evolves, behind
consistent interfaces.

Views can be used in almost any place a real table can be used. Building views upon other views is not
uncommon.

3.3. Foreign Keys
Recall the weather and cities tables from Chapter 2. Consider the following problem: You want to make
sure that no one can insert rows in the weather table that do not have a matching entry in the cities
table. This is called maintaining the referential integrity of your data. In simplistic database systems this
would be implemented (if at all) by first looking at the cities table to check if a matching record exists,
and then inserting or rejecting the new weather records. This approach has a number of problems and
is very inconvenient, so Postgres Pro can do this for you.

The new declaration of the tables would look like this:

CREATE TABLE cities (
 name varchar(80) primary key,
 location point
);

CREATE TABLE weather (
 city varchar(80) references cities(name),
 temp_lo int,
 temp_hi int,
 prcp real,
 date date
);

Now try inserting an invalid record:

13

Advanced Features

INSERT INTO weather VALUES ('Berkeley', 45, 53, 0.0, '1994-11-28');

ERROR: insert or update on table "weather" violates foreign key constraint
 "weather_city_fkey"
DETAIL: Key (city)=(Berkeley) is not present in table "cities".

The behavior of foreign keys can be finely tuned to your application. We will not go beyond this simple
example in this tutorial, but just refer you to Chapter 5 for more information. Making correct use
of foreign keys will definitely improve the quality of your database applications, so you are strongly
encouraged to learn about them.

3.4. Transactions
Transactions are a fundamental concept of all database systems. The essential point of a transaction is
that it bundles multiple steps into a single, all-or-nothing operation. The intermediate states between
the steps are not visible to other concurrent transactions, and if some failure occurs that prevents the
transaction from completing, then none of the steps affect the database at all.

For example, consider a bank database that contains balances for various customer accounts, as well as
total deposit balances for branches. Suppose that we want to record a payment of $100.00 from Alice's
account to Bob's account. Simplifying outrageously, the SQL commands for this might look like:
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
UPDATE branches SET balance = balance - 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Alice');
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
UPDATE branches SET balance = balance + 100.00
 WHERE name = (SELECT branch_name FROM accounts WHERE name = 'Bob');

The details of these commands are not important here; the important point is that there are several
separate updates involved to accomplish this rather simple operation. Our bank's officers will want to
be assured that either all these updates happen, or none of them happen. It would certainly not do for a
system failure to result in Bob receiving $100.00 that was not debited from Alice. Nor would Alice long
remain a happy customer if she was debited without Bob being credited. We need a guarantee that if
something goes wrong partway through the operation, none of the steps executed so far will take effect.
Grouping the updates into a transaction gives us this guarantee. A transaction is said to be atomic: from
the point of view of other transactions, it either happens completely or not at all.

We also want a guarantee that once a transaction is completed and acknowledged by the database
system, it has indeed been permanently recorded and won't be lost even if a crash ensues shortly
thereafter. For example, if we are recording a cash withdrawal by Bob, we do not want any chance that
the debit to his account will disappear in a crash just after he walks out the bank door. A transactional
database guarantees that all the updates made by a transaction are logged in permanent storage (i.e.,
on disk) before the transaction is reported complete.

Another important property of transactional databases is closely related to the notion of atomic updates:
when multiple transactions are running concurrently, each one should not be able to see the incomplete
changes made by others. For example, if one transaction is busy totalling all the branch balances, it
would not do for it to include the debit from Alice's branch but not the credit to Bob's branch, nor vice
versa. So transactions must be all-or-nothing not only in terms of their permanent effect on the database,
but also in terms of their visibility as they happen. The updates made so far by an open transaction
are invisible to other transactions until the transaction completes, whereupon all the updates become
visible simultaneously.

In Postgres Pro, a transaction is set up by surrounding the SQL commands of the transaction with BEGIN
and COMMIT commands. So our banking transaction would actually look like:
BEGIN;
UPDATE accounts SET balance = balance - 100.00

14

Advanced Features

 WHERE name = 'Alice';
-- etc etc
COMMIT;

If, partway through the transaction, we decide we do not want to commit (perhaps we just noticed that
Alice's balance went negative), we can issue the command ROLLBACK instead of COMMIT, and all our
updates so far will be canceled.

Postgres Pro actually treats every SQL statement as being executed within a transaction. If you do
not issue a BEGIN command, then each individual statement has an implicit BEGIN and (if successful)
COMMIT wrapped around it. A group of statements surrounded by BEGIN and COMMIT is sometimes called
a transaction block.

Note
Some client libraries issue BEGIN and COMMIT commands automatically, so that you might get the
effect of transaction blocks without asking. Check the documentation for the interface you are
using.

It's possible to control the statements in a transaction in a more granular fashion through the use
of savepoints. Savepoints allow you to selectively discard parts of the transaction, while committing
the rest. After defining a savepoint with SAVEPOINT, you can if needed roll back to the savepoint with
ROLLBACK TO. All the transaction's database changes between defining the savepoint and rolling back to
it are discarded, but changes earlier than the savepoint are kept.

After rolling back to a savepoint, it continues to be defined, so you can roll back to it several times.
Conversely, if you are sure you won't need to roll back to a particular savepoint again, it can be released,
so the system can free some resources. Keep in mind that either releasing or rolling back to a savepoint
will automatically release all savepoints that were defined after it.

All this is happening within the transaction block, so none of it is visible to other database sessions.
When and if you commit the transaction block, the committed actions become visible as a unit to other
sessions, while the rolled-back actions never become visible at all.

Remembering the bank database, suppose we debit $100.00 from Alice's account, and credit Bob's
account, only to find later that we should have credited Wally's account. We could do it using savepoints
like this:
BEGIN;
UPDATE accounts SET balance = balance - 100.00
 WHERE name = 'Alice';
SAVEPOINT my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Bob';
-- oops ... forget that and use Wally's account
ROLLBACK TO my_savepoint;
UPDATE accounts SET balance = balance + 100.00
 WHERE name = 'Wally';
COMMIT;

This example is, of course, oversimplified, but there's a lot of control possible in a transaction block
through the use of savepoints. Moreover, ROLLBACK TO is the only way to regain control of a transaction
block that was put in aborted state by the system due to an error, short of rolling it back completely
and starting again.

3.5. Window Functions
A window function performs a calculation across a set of table rows that are somehow related to the
current row. This is comparable to the type of calculation that can be done with an aggregate function.

15

Advanced Features

However, window functions do not cause rows to become grouped into a single output row like non-
window aggregate calls would. Instead, the rows retain their separate identities. Behind the scenes, the
window function is able to access more than just the current row of the query result.

Here is an example that shows how to compare each employee's salary with the average salary in his
or her department:

SELECT depname, empno, salary, avg(salary) OVER (PARTITION BY depname) FROM empsalary;

 depname | empno | salary | avg
-----------+-------+--------+-----------------------
 develop | 11 | 5200 | 5020.0000000000000000
 develop | 7 | 4200 | 5020.0000000000000000
 develop | 9 | 4500 | 5020.0000000000000000
 develop | 8 | 6000 | 5020.0000000000000000
 develop | 10 | 5200 | 5020.0000000000000000
 personnel | 5 | 3500 | 3700.0000000000000000
 personnel | 2 | 3900 | 3700.0000000000000000
 sales | 3 | 4800 | 4866.6666666666666667
 sales | 1 | 5000 | 4866.6666666666666667
 sales | 4 | 4800 | 4866.6666666666666667
(10 rows)

The first three output columns come directly from the table empsalary, and there is one output row for
each row in the table. The fourth column represents an average taken across all the table rows that
have the same depname value as the current row. (This actually is the same function as the non-window
avg aggregate, but the OVER clause causes it to be treated as a window function and computed across
the window frame.)

A window function call always contains an OVER clause directly following the window function's name and
argument(s). This is what syntactically distinguishes it from a normal function or non-window aggregate.
The OVER clause determines exactly how the rows of the query are split up for processing by the window
function. The PARTITION BY clause within OVER divides the rows into groups, or partitions, that share the
same values of the PARTITION BY expression(s). For each row, the window function is computed across
the rows that fall into the same partition as the current row.

You can also control the order in which rows are processed by window functions using ORDER BY within
OVER. (The window ORDER BY does not even have to match the order in which the rows are output.) Here
is an example:

SELECT depname, empno, salary,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC)
FROM empsalary;

 depname | empno | salary | rank
-----------+-------+--------+------
 develop | 8 | 6000 | 1
 develop | 10 | 5200 | 2
 develop | 11 | 5200 | 2
 develop | 9 | 4500 | 4
 develop | 7 | 4200 | 5
 personnel | 2 | 3900 | 1
 personnel | 5 | 3500 | 2
 sales | 1 | 5000 | 1
 sales | 4 | 4800 | 2
 sales | 3 | 4800 | 2
(10 rows)

As shown here, the rank function produces a numerical rank for each distinct ORDER BY value in the
current row's partition, using the order defined by the ORDER BY clause. rank needs no explicit parameter,
because its behavior is entirely determined by the OVER clause.

16

Advanced Features

The rows considered by a window function are those of the “virtual table” produced by the query's FROM
clause as filtered by its WHERE, GROUP BY, and HAVING clauses if any. For example, a row removed because
it does not meet the WHERE condition is not seen by any window function. A query can contain multiple
window functions that slice up the data in different ways using different OVER clauses, but they all act
on the same collection of rows defined by this virtual table.

We already saw that ORDER BY can be omitted if the ordering of rows is not important. It is also possible
to omit PARTITION BY, in which case there is a single partition containing all rows.

There is another important concept associated with window functions: for each row, there is a set of rows
within its partition called its window frame. Some window functions act only on the rows of the window
frame, rather than of the whole partition. By default, if ORDER BY is supplied then the frame consists
of all rows from the start of the partition up through the current row, plus any following rows that are
equal to the current row according to the ORDER BY clause. When ORDER BY is omitted the default frame
consists of all rows in the partition. 1 Here is an example using sum:

SELECT salary, sum(salary) OVER () FROM empsalary;

 salary | sum
--------+-------
 5200 | 47100
 5000 | 47100
 3500 | 47100
 4800 | 47100
 3900 | 47100
 4200 | 47100
 4500 | 47100
 4800 | 47100
 6000 | 47100
 5200 | 47100
(10 rows)

Above, since there is no ORDER BY in the OVER clause, the window frame is the same as the partition,
which for lack of PARTITION BY is the whole table; in other words each sum is taken over the whole
table and so we get the same result for each output row. But if we add an ORDER BY clause, we get very
different results:

SELECT salary, sum(salary) OVER (ORDER BY salary) FROM empsalary;

 salary | sum
--------+-------
 3500 | 3500
 3900 | 7400
 4200 | 11600
 4500 | 16100
 4800 | 25700
 4800 | 25700
 5000 | 30700
 5200 | 41100
 5200 | 41100
 6000 | 47100
(10 rows)

Here the sum is taken from the first (lowest) salary up through the current one, including any duplicates
of the current one (notice the results for the duplicated salaries).

Window functions are permitted only in the SELECT list and the ORDER BY clause of the query. They
are forbidden elsewhere, such as in GROUP BY, HAVING and WHERE clauses. This is because they
logically execute after the processing of those clauses. Also, window functions execute after non-window

1 There are options to define the window frame in other ways, but this tutorial does not cover them. See Section 4.2.8 for details.

17

Advanced Features

aggregate functions. This means it is valid to include an aggregate function call in the arguments of a
window function, but not vice versa.

If there is a need to filter or group rows after the window calculations are performed, you can use a
sub-select. For example:

SELECT depname, empno, salary, enroll_date
FROM
 (SELECT depname, empno, salary, enroll_date,
 rank() OVER (PARTITION BY depname ORDER BY salary DESC, empno) AS pos
 FROM empsalary
) AS ss
WHERE pos < 3;

The above query only shows the rows from the inner query having rank less than 3.

When a query involves multiple window functions, it is possible to write out each one with a separate
OVER clause, but this is duplicative and error-prone if the same windowing behavior is wanted for several
functions. Instead, each windowing behavior can be named in a WINDOW clause and then referenced in
OVER. For example:

SELECT sum(salary) OVER w, avg(salary) OVER w
 FROM empsalary
 WINDOW w AS (PARTITION BY depname ORDER BY salary DESC);

More details about window functions can be found in Section 4.2.8, Section 9.22, Section 7.2.5, and the
SELECT reference page.

3.6. Inheritance
Inheritance is a concept from object-oriented databases. It opens up interesting new possibilities of
database design.

Let's create two tables: A table cities and a table capitals. Naturally, capitals are also cities, so you
want some way to show the capitals implicitly when you list all cities. If you're really clever you might
invent some scheme like this:

CREATE TABLE capitals (
 name text,
 population real,
 elevation int, -- (in ft)
 state char(2)
);

CREATE TABLE non_capitals (
 name text,
 population real,
 elevation int -- (in ft)
);

CREATE VIEW cities AS
 SELECT name, population, elevation FROM capitals
 UNION
 SELECT name, population, elevation FROM non_capitals;

This works OK as far as querying goes, but it gets ugly when you need to update several rows, for one
thing.

A better solution is this:

CREATE TABLE cities (
 name text,

18

Advanced Features

 population real,
 elevation int -- (in ft)
);

CREATE TABLE capitals (
 state char(2) UNIQUE NOT NULL
) INHERITS (cities);

In this case, a row of capitals inherits all columns (name, population, and elevation) from its parent,
cities. The type of the column name is text, a native Postgres Pro type for variable length character
strings. The capitals table has an additional column, state, which shows its state abbreviation. In
Postgres Pro, a table can inherit from zero or more other tables.

For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

which returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845
(3 rows)

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
(2 rows)

Here the ONLY before cities indicates that the query should be run over only the cities table, and not
tables below cities in the inheritance hierarchy. Many of the commands that we have already discussed
— SELECT, UPDATE, and DELETE — support this ONLY notation.

Note
Although inheritance is frequently useful, it has not been integrated with unique constraints or
foreign keys, which limits its usefulness. See Section 5.10 for more detail.

3.7. Conclusion
Postgres Pro has many features not touched upon in this tutorial introduction, which has been oriented
toward newer users of SQL. These features are discussed in more detail in the remainder of this book.

If you feel you need more introductory material, please visit the PostgreSQL web site for links to more
resources.

19

https://www.postgresql.org

Part II. The SQL Language
This part describes the use of the SQL language in Postgres Pro. We start with describing the general
syntax of SQL, then explain how to create the structures to hold data, how to populate the database, and
how to query it. The middle part lists the available data types and functions for use in SQL commands.
The rest treats several aspects that are important for tuning a database for optimal performance.

The information in this part is arranged so that a novice user can follow it start to end to gain a full
understanding of the topics without having to refer forward too many times. The chapters are intended
to be self-contained, so that advanced users can read the chapters individually as they choose. The
information in this part is presented in a narrative fashion in topical units. Readers looking for a complete
description of a particular command should see Part VI.

Readers of this part should know how to connect to a Postgres Pro database and issue SQL commands.
Readers that are unfamiliar with these issues are encouraged to read Part I first. SQL commands are
typically entered using the Postgres Pro interactive terminal psql, but other programs that have similar
functionality can be used as well.

Chapter 4. SQL Syntax
This chapter describes the syntax of SQL. It forms the foundation for understanding the following
chapters which will go into detail about how SQL commands are applied to define and modify data.

We also advise users who are already familiar with SQL to read this chapter carefully because it contains
several rules and concepts that are implemented inconsistently among SQL databases or that are specific
to Postgres Pro.

4.1. Lexical Structure
SQL input consists of a sequence of commands. A command is composed of a sequence of tokens,
terminated by a semicolon (“;”). The end of the input stream also terminates a command. Which tokens
are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character
symbol. Tokens are normally separated by whitespace (space, tab, newline), but need not be if there is no
ambiguity (which is generally only the case if a special character is adjacent to some other token type).

For example, the following is (syntactically) valid SQL input:
SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one
command can be on a line, and commands can usefully be split across lines).

Additionally, comments can occur in SQL input. They are not tokens, they are effectively equivalent to
whitespace.

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands
or parameters. The first few tokens are generally the command name, so in the above example we would
usually speak of a “SELECT”, an “UPDATE”, and an “INSERT” command. But for instance the UPDATE
command always requires a SET token to appear in a certain position, and this particular variation of
INSERT also requires a VALUES in order to be complete. The precise syntax rules for each command are
described in Part VI.

4.1.1. Identifiers and Key Words
Tokens such as SELECT, UPDATE, or VALUES in the example above are examples of key words, that is, words
that have a fixed meaning in the SQL language. The tokens MY_TABLE and A are examples of identifiers.
They identify names of tables, columns, or other database objects, depending on the command they are
used in. Therefore they are sometimes simply called “names”. Key words and identifiers have the same
lexical structure, meaning that one cannot know whether a token is an identifier or a key word without
knowing the language. A complete list of key words can be found in Appendix C.

SQL identifiers and key words must begin with a letter (a-z, but also letters with diacritical marks and
non-Latin letters) or an underscore (_). Subsequent characters in an identifier or key word can be letters,
underscores, digits (0-9), or dollar signs ($). Note that dollar signs are not allowed in identifiers according
to the letter of the SQL standard, so their use might render applications less portable. The SQL standard
will not define a key word that contains digits or starts or ends with an underscore, so identifiers of this
form are safe against possible conflict with future extensions of the standard.

The system uses no more than NAMEDATALEN-1 bytes of an identifier; longer names can be written in
commands, but they will be truncated. By default, NAMEDATALEN is 64 so the maximum identifier length
is 63 bytes.

Key words and unquoted identifiers are case insensitive. Therefore:
UPDATE MY_TABLE SET A = 5;

21

SQL Syntax

can equivalently be written as:
uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.:
UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing
an arbitrary sequence of characters in double-quotes ("). A delimited identifier is always an identifier,
never a key word. So "select" could be used to refer to a column or table named “select”, whereas an
unquoted select would be taken as a key word and would therefore provoke a parse error when used
where a table or column name is expected. The example can be written with quoted identifiers like this:
UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with code zero. (To include a double
quote, write two double quotes.) This allows constructing table or column names that would otherwise
not be possible, such as ones containing spaces or ampersands. The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower
case. For example, the identifiers FOO, foo, and "foo" are considered the same by Postgres Pro, but
"Foo" and "FOO" are different from these three and each other. (The folding of unquoted names to lower
case in Postgres Pro is incompatible with the SQL standard, which says that unquoted names should be
folded to upper case. Thus, foo should be equivalent to "FOO" not "foo" according to the standard. If you
want to write portable applications you are advised to always quote a particular name or never quote it.)

A variant of quoted identifiers allows including escaped Unicode characters identified by their code
points. This variant starts with U& (upper or lower case U followed by ampersand) immediately before
the opening double quote, without any spaces in between, for example U&"foo". (Note that this creates
an ambiguity with the operator &. Use spaces around the operator to avoid this problem.) Inside the
quotes, Unicode characters can be specified in escaped form by writing a backslash followed by the four-
digit hexadecimal code point number or alternatively a backslash followed by a plus sign followed by a
six-digit hexadecimal code point number. For example, the identifier "data" could be written as
U&"d\0061t\+000061"

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:
U&"\0441\043B\043E\043D"

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:
U&"d!0061t!+000061" UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character. Note that the escape character is written in single
quotes, not double quotes, after UESCAPE.

To include the escape character in the identifier literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

4.1.2. Constants
There are three kinds of implicitly-typed constants in Postgres Pro: strings, bit strings, and numbers.
Constants can also be specified with explicit types, which can enable more accurate representation and
more efficient handling by the system. These alternatives are discussed in the following subsections.

22

SQL Syntax

4.1.2.1. String Constants
A string constant in SQL is an arbitrary sequence of characters bounded by single quotes ('), for example
'This is a string'. To include a single-quote character within a string constant, write two adjacent
single quotes, e.g., 'Dianne''s horse'. Note that this is not the same as a double-quote character (").

Two string constants that are only separated by whitespace with at least one newline are concatenated
and effectively treated as if the string had been written as one constant. For example:

SELECT 'foo'
'bar';

is equivalent to:

SELECT 'foobar';

but:

SELECT 'foo' 'bar';

is not valid syntax. (This slightly bizarre behavior is specified by SQL; Postgres Pro is following the
standard.)

4.1.2.2. String Constants with C-Style Escapes
Postgres Pro also accepts “escape” string constants, which are an extension to the SQL standard. An
escape string constant is specified by writing the letter E (upper or lower case) just before the opening
single quote, e.g., E'foo'. (When continuing an escape string constant across lines, write E only before
the first opening quote.) Within an escape string, a backslash character (\) begins a C-like backslash
escape sequence, in which the combination of backslash and following character(s) represent a special
byte value, as shown in Table 4.1.

Table 4.1. Backslash Escape Sequences

Backslash Escape Sequence Interpretation
\b backspace
\f form feed
\n newline
\r carriage return
\t tab
\o, \oo, \ooo (o = 0–7) octal byte value
\xh, \xhh (h = 0–9, A–F) hexadecimal byte value
\uxxxx, \Uxxxxxxxx (x = 0–9, A–F) 16 or 32-bit hexadecimal Unicode character value

Any other character following a backslash is taken literally. Thus, to include a backslash character, write
two backslashes (\\). Also, a single quote can be included in an escape string by writing \', in addition
to the normal way of ''.

It is your responsibility that the byte sequences you create, especially when using the octal or
hexadecimal escapes, compose valid characters in the server character set encoding. A useful alternative
is to use Unicode escapes or the alternative Unicode escape syntax, explained in Section 4.1.2.3; then
the server will check that the character conversion is possible.

Caution
If the configuration parameter standard_conforming_strings is off, then Postgres Pro recognizes
backslash escapes in both regular and escape string constants. However, as of PostgreSQL 9.1, the
default is on, meaning that backslash escapes are recognized only in escape string constants. This

23

SQL Syntax

behavior is more standards-compliant, but might break applications which rely on the historical
behavior, where backslash escapes were always recognized. As a workaround, you can set this
parameter to off, but it is better to migrate away from using backslash escapes. If you need to
use a backslash escape to represent a special character, write the string constant with an E.

In addition to standard_conforming_strings, the configuration parameters
escape_string_warning and backslash_quote govern treatment of backslashes in string constants.

The character with the code zero cannot be in a string constant.

4.1.2.3. String Constants with Unicode Escapes
Postgres Pro also supports another type of escape syntax for strings that allows specifying arbitrary
Unicode characters by code point. A Unicode escape string constant starts with U& (upper or lower
case letter U followed by ampersand) immediately before the opening quote, without any spaces in
between, for example U&'foo'. (Note that this creates an ambiguity with the operator &. Use spaces
around the operator to avoid this problem.) Inside the quotes, Unicode characters can be specified
in escaped form by writing a backslash followed by the four-digit hexadecimal code point number or
alternatively a backslash followed by a plus sign followed by a six-digit hexadecimal code point number.
For example, the string 'data' could be written as

U&'d\0061t\+000061'

The following less trivial example writes the Russian word “slon” (elephant) in Cyrillic letters:

U&'\0441\043B\043E\043D'

If a different escape character than backslash is desired, it can be specified using the UESCAPEclause
after the string, for example:

U&'d!0061t!+000061' UESCAPE '!'

The escape character can be any single character other than a hexadecimal digit, the plus sign, a single
quote, a double quote, or a whitespace character.

To include the escape character in the string literally, write it twice.

Either the 4-digit or the 6-digit escape form can be used to specify UTF-16 surrogate pairs to compose
characters with code points larger than U+FFFF, although the availability of the 6-digit form technically
makes this unnecessary. (Surrogate pairs are not stored directly, but are combined into a single code
point.)

If the server encoding is not UTF-8, the Unicode code point identified by one of these escape sequences
is converted to the actual server encoding; an error is reported if that's not possible.

Also, the Unicode escape syntax for string constants only works when the configuration parameter
standard_conforming_strings is turned on. This is because otherwise this syntax could confuse clients
that parse the SQL statements to the point that it could lead to SQL injections and similar security issues.
If the parameter is set to off, this syntax will be rejected with an error message.

4.1.2.4. Dollar-Quoted String Constants
While the standard syntax for specifying string constants is usually convenient, it can be difficult to
understand when the desired string contains many single quotes or backslashes, since each of those
must be doubled. To allow more readable queries in such situations, Postgres Pro provides another way,
called “dollar quoting”, to write string constants. A dollar-quoted string constant consists of a dollar
sign ($), an optional “tag” of zero or more characters, another dollar sign, an arbitrary sequence of
characters that makes up the string content, a dollar sign, the same tag that began this dollar quote,
and a dollar sign. For example, here are two different ways to specify the string “Dianne's horse” using
dollar quoting:

$$Dianne's horse$$

24

SQL Syntax

$SomeTag$Dianne's horse$SomeTag$

Notice that inside the dollar-quoted string, single quotes can be used without needing to be escaped.
Indeed, no characters inside a dollar-quoted string are ever escaped: the string content is always written
literally. Backslashes are not special, and neither are dollar signs, unless they are part of a sequence
matching the opening tag.

It is possible to nest dollar-quoted string constants by choosing different tags at each nesting level. This
is most commonly used in writing function definitions. For example:
$function$
BEGIN
 RETURN ($1 ~ q[\t\r\n\v\\]q);
END;
$function$

Here, the sequence q[\t\r\n\v\\]q represents a dollar-quoted literal string [\t\r\n\v\\], which
will be recognized when the function body is executed by Postgres Pro. But since the sequence does not
match the outer dollar quoting delimiter $function$, it is just some more characters within the constant
so far as the outer string is concerned.

The tag, if any, of a dollar-quoted string follows the same rules as an unquoted identifier, except that
it cannot contain a dollar sign. Tags are case sensitive, so tagString contenttag is correct, but
TAGString contenttag is not.

A dollar-quoted string that follows a keyword or identifier must be separated from it by whitespace;
otherwise the dollar quoting delimiter would be taken as part of the preceding identifier.

Dollar quoting is not part of the SQL standard, but it is often a more convenient way to write
complicated string literals than the standard-compliant single quote syntax. It is particularly useful
when representing string constants inside other constants, as is often needed in procedural function
definitions. With single-quote syntax, each backslash in the above example would have to be written as
four backslashes, which would be reduced to two backslashes in parsing the original string constant,
and then to one when the inner string constant is re-parsed during function execution.

4.1.2.5. Bit-String Constants
Bit-string constants look like regular string constants with a B (upper or lower case) immediately before
the opening quote (no intervening whitespace), e.g., B'1001'. The only characters allowed within bit-
string constants are 0 and 1.

Alternatively, bit-string constants can be specified in hexadecimal notation, using a leading X (upper or
lower case), e.g., X'1FF'. This notation is equivalent to a bit-string constant with four binary digits for
each hexadecimal digit.

Both forms of bit-string constant can be continued across lines in the same way as regular string
constants. Dollar quoting cannot be used in a bit-string constant.

4.1.2.6. Numeric Constants
Numeric constants are accepted in these general forms:
digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the
decimal point, if one is used. At least one digit must follow the exponent marker (e), if one is present.
There cannot be any spaces or other characters embedded in the constant. Note that any leading plus
or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

25

SQL Syntax

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be
type integer if its value fits in type integer (32 bits); otherwise it is presumed to be type bigint if
its value fits in type bigint (64 bits); otherwise it is taken to be type numeric. Constants that contain
decimal points and/or exponents are always initially presumed to be type numeric.

The initially assigned data type of a numeric constant is just a starting point for the type resolution
algorithms. In most cases the constant will be automatically coerced to the most appropriate type
depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it. For example, you can force a numeric value to be treated as type real (float4)
by writing:

REAL '1.23' -- string style
1.23::REAL -- Postgres Pro (historical) style

These are actually just special cases of the general casting notations discussed next.

4.1.2.7. Constants of Other Types
A constant of an arbitrary type can be entered using any one of the following notations:

type 'string'
'string'::type
CAST ('string' AS type)

The string constant's text is passed to the input conversion routine for the type called type. The result
is a constant of the indicated type. The explicit type cast can be omitted if there is no ambiguity as to
the type the constant must be (for example, when it is assigned directly to a table column), in which
case it is automatically coerced.

The string constant can be written using either regular SQL notation or dollar-quoting.

It is also possible to specify a type coercion using a function-like syntax:

typename ('string')

but not all type names can be used in this way; see Section 4.2.9 for details.

The ::, CAST(), and function-call syntaxes can also be used to specify run-time type conversions of
arbitrary expressions, as discussed in Section 4.2.9. To avoid syntactic ambiguity, the type 'string'
syntax can only be used to specify the type of a simple literal constant. Another restriction on the type
'string' syntax is that it does not work for array types; use :: or CAST() to specify the type of an array
constant.

The CAST() syntax conforms to SQL. The type 'string' syntax is a generalization of the standard: SQL
specifies this syntax only for a few data types, but Postgres Pro allows it for all types. The syntax with
:: is historical Postgres Pro usage, as is the function-call syntax.

4.1.3. Operators
An operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following list:
+ - * / < > = ~ ! @ # % ^ & | ` ?
There are a few restrictions on operator names, however:
• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a

comment.

26

SQL Syntax

• A multiple-character operator name cannot end in + or -, unless the name also contains at least one
of these characters:
~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant queries without requiring spaces between tokens.

When working with non-SQL-standard operator names, you will usually need to separate adjacent
operators with spaces to avoid ambiguity. For example, if you have defined a left unary operator named
@, you cannot write X*@Y; you must write X* @Y to ensure that Postgres Pro reads it as two operator
names not one.

4.1.4. Special Characters
Some characters that are not alphanumeric have a special meaning that is different from being an
operator. Details on the usage can be found at the location where the respective syntax element
is described. This section only exists to advise the existence and summarize the purposes of these
characters.
• A dollar sign ($) followed by digits is used to represent a positional parameter in the body of a

function definition or a prepared statement. In other contexts the dollar sign can be part of an
identifier or a dollar-quoted string constant.

• Parentheses (()) have their usual meaning to group expressions and enforce precedence. In some
cases parentheses are required as part of the fixed syntax of a particular SQL command.

• Brackets ([]) are used to select the elements of an array. See Section 8.15 for more information on
arrays.

• Commas (,) are used in some syntactical constructs to separate the elements of a list.
• The semicolon (;) terminates an SQL command. It cannot appear anywhere within a command,

except within a string constant or quoted identifier.
• The colon (:) is used to select “slices” from arrays. (See Section 8.15.) In certain SQL dialects (such

as Embedded SQL), the colon is used to prefix variable names.
• The asterisk (*) is used in some contexts to denote all the fields of a table row or composite value.

It also has a special meaning when used as the argument of an aggregate function, namely that the
aggregate does not require any explicit parameter.

• The period (.) is used in numeric constants, and to separate schema, table, and column names.

4.1.5. Comments
A comment is a sequence of characters beginning with double dashes and extending to the end of the
line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
 * with nesting: /* nested block comment */
 */

where the comment begins with /* and extends to the matching occurrence of */. These block comments
nest, as specified in the SQL standard but unlike C, so that one can comment out larger blocks of code
that might contain existing block comments.

A comment is removed from the input stream before further syntax analysis and is effectively replaced
by whitespace.

4.1.6. Operator Precedence

27

SQL Syntax

Table 4.2 shows the precedence and associativity of the operators in Postgres Pro. Most operators have
the same precedence and are left-associative. The precedence and associativity of the operators is hard-
wired into the parser. Add parentheses if you want an expression with multiple operators to be parsed
in some other way than what the precedence rules imply.

Table 4.2. Operator Precedence (highest to lowest)

Operator/Element Associativity Description
. left table/column name separator
:: left Postgres Pro-style typecast
[] left array element selection
+ - right unary plus, unary minus
^ left exponentiation
* / % left multiplication, division, modulo
+ - left addition, subtraction
(any other operator) left all other native and user-defined

operators
BETWEEN IN LIKE ILIKE SIMILAR range containment, set membership,

 string matching
< > = <= >= <> comparison operators
IS ISNULL NOTNULL IS TRUE, IS FALSE, IS NULL, IS

DISTINCT FROM, etc
NOT right logical negation
AND left logical conjunction
OR left logical disjunction

Note that the operator precedence rules also apply to user-defined operators that have the same names
as the built-in operators mentioned above. For example, if you define a “+” operator for some custom
data type it will have the same precedence as the built-in “+” operator, no matter what yours does.

When a schema-qualified operator name is used in the OPERATOR syntax, as for example in:
SELECT 3 OPERATOR(pg_catalog.+) 4;

the OPERATOR construct is taken to have the default precedence shown in Table 4.2 for “any other
operator”. This is true no matter which specific operator appears inside OPERATOR().

Note
PostgreSQL versions before 9.5 used slightly different operator precedence rules. In particular,
<= >= and <> used to be treated as generic operators; IS tests used to have higher priority; and
NOT BETWEEN and related constructs acted inconsistently, being taken in some cases as having
the precedence of NOT rather than BETWEEN. These rules were changed for better compliance with
the SQL standard and to reduce confusion from inconsistent treatment of logically equivalent
constructs. In most cases, these changes will result in no behavioral change, or perhaps in “no
such operator” failures which can be resolved by adding parentheses. However there are corner
cases in which a query might change behavior without any parsing error being reported. If you
are concerned about whether these changes have silently broken something, you can test your
application with the configuration parameter operator_precedence_warning turned on to see if
any warnings are logged.

4.2. Value Expressions

28

SQL Syntax

Value expressions are used in a variety of contexts, such as in the target list of the SELECT command,
as new column values in INSERT or UPDATE, or in search conditions in a number of commands. The
result of a value expression is sometimes called a scalar, to distinguish it from the result of a table
expression (which is a table). Value expressions are therefore also called scalar expressions (or even
simply expressions). The expression syntax allows the calculation of values from primitive parts using
arithmetic, logical, set, and other operations.

A value expression is one of the following:
• A constant or literal value
• A column reference
• A positional parameter reference, in the body of a function definition or prepared statement
• A subscripted expression
• A field selection expression
• An operator invocation
• A function call
• An aggregate expression
• A window function call
• A type cast
• A collation expression
• A scalar subquery
• An array constructor
• A row constructor
• Another value expression in parentheses (used to group subexpressions and override precedence)

In addition to this list, there are a number of constructs that can be classified as an expression but do
not follow any general syntax rules. These generally have the semantics of a function or operator and
are explained in the appropriate location in Chapter 9. An example is the IS NULL clause.

We have already discussed constants in Section 4.1.2. The following sections discuss the remaining
options.

4.2.1. Column References
A column can be referenced in the form:
correlation.columnname

correlation is the name of a table (possibly qualified with a schema name), or an alias for a table defined
by means of a FROM clause. The correlation name and separating dot can be omitted if the column name
is unique across all the tables being used in the current query. (See also Chapter 7.)

4.2.2. Positional Parameters
A positional parameter reference is used to indicate a value that is supplied externally to an SQL
statement. Parameters are used in SQL function definitions and in prepared queries. Some client
libraries also support specifying data values separately from the SQL command string, in which case
parameters are used to refer to the out-of-line data values. The form of a parameter reference is:
$number

For example, consider the definition of a function, dept, as:
CREATE FUNCTION dept(text) RETURNS dept
 AS $$ SELECT * FROM dept WHERE name = $1 $$

29

SQL Syntax

 LANGUAGE SQL;

Here the $1 references the value of the first function argument whenever the function is invoked.

4.2.3. Subscripts
If an expression yields a value of an array type, then a specific element of the array value can be extracted
by writing
expression[subscript]

or multiple adjacent elements (an “array slice”) can be extracted by writing
expression[lower_subscript:upper_subscript]

(Here, the brackets [] are meant to appear literally.) Each subscript is itself an expression, which will
be rounded to the nearest integer value.

In general the array expression must be parenthesized, but the parentheses can be omitted when the
expression to be subscripted is just a column reference or positional parameter. Also, multiple subscripts
can be concatenated when the original array is multidimensional. For example:
mytable.arraycolumn[4]
mytable.two_d_column[17][34]
$1[10:42]
(arrayfunction(a,b))[42]

The parentheses in the last example are required. See Section 8.15 for more about arrays.

4.2.4. Field Selection
If an expression yields a value of a composite type (row type), then a specific field of the row can be
extracted by writing
expression.fieldname

In general the row expression must be parenthesized, but the parentheses can be omitted when the
expression to be selected from is just a table reference or positional parameter. For example:
mytable.mycolumn
$1.somecolumn
(rowfunction(a,b)).col3

(Thus, a qualified column reference is actually just a special case of the field selection syntax.) An
important special case is extracting a field from a table column that is of a composite type:
(compositecol).somefield
(mytable.compositecol).somefield

The parentheses are required here to show that compositecol is a column name not a table name, or
that mytable is a table name not a schema name in the second case.

You can ask for all fields of a composite value by writing .*:
(compositecol).*

This notation behaves differently depending on context; see Section 8.16.5 for details.

4.2.5. Operator Invocations
There are three possible syntaxes for an operator invocation:
expression operator expression (binary infix operator)
operator expression (unary prefix operator)
expression operator (unary postfix operator)

where the operator token follows the syntax rules of Section 4.1.3, or is one of the key words AND, OR,
and NOT, or is a qualified operator name in the form:

30

SQL Syntax

OPERATOR(schema.operatorname)

Which particular operators exist and whether they are unary or binary depends on what operators have
been defined by the system or the user. Chapter 9 describes the built-in operators.

4.2.6. Function Calls
The syntax for a function call is the name of a function (possibly qualified with a schema name), followed
by its argument list enclosed in parentheses:

function_name ([expression [, expression ...]])

For example, the following computes the square root of 2:

sqrt(2)

The list of built-in functions is in Chapter 9. Other functions can be added by the user.

When issuing queries in a database where some users mistrust other users, observe security precautions
from Section 10.3 when writing function calls.

The arguments can optionally have names attached. See Section 4.3 for details.

Note
A function that takes a single argument of composite type can optionally be called using field-
selection syntax, and conversely field selection can be written in functional style. That is, the
notations col(table) and table.col are interchangeable. This behavior is not SQL-standard but
is provided in Postgres Pro because it allows use of functions to emulate “computed fields”. For
more information see Section 8.16.5.

4.2.7. Aggregate Expressions
An aggregate expression represents the application of an aggregate function across the rows selected
by a query. An aggregate function reduces multiple inputs to a single output value, such as the sum or
average of the inputs. The syntax of an aggregate expression is one of the following:

aggregate_name (expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (ALL expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (DISTINCT expression [, ...] [order_by_clause]) [FILTER
 (WHERE filter_clause)]
aggregate_name (*) [FILTER (WHERE filter_clause)]
aggregate_name ([expression [, ...]]) WITHIN GROUP (order_by_clause) [FILTER
 (WHERE filter_clause)]

where aggregate_name is a previously defined aggregate (possibly qualified with a schema name) and
expression is any value expression that does not itself contain an aggregate expression or a window
function call. The optional order_by_clause and filter_clause are described below.

The first form of aggregate expression invokes the aggregate once for each input row. The second form
is the same as the first, since ALL is the default. The third form invokes the aggregate once for each
distinct value of the expression (or distinct set of values, for multiple expressions) found in the input
rows. The fourth form invokes the aggregate once for each input row; since no particular input value
is specified, it is generally only useful for the count(*) aggregate function. The last form is used with
ordered-set aggregate functions, which are described below.

Most aggregate functions ignore null inputs, so that rows in which one or more of the expression(s) yield
null are discarded. This can be assumed to be true, unless otherwise specified, for all built-in aggregates.

31

SQL Syntax

For example, count(*) yields the total number of input rows; count(f1) yields the number of input
rows in which f1 is non-null, since count ignores nulls; and count(distinct f1) yields the number of
distinct non-null values of f1.

Ordinarily, the input rows are fed to the aggregate function in an unspecified order. In many cases this
does not matter; for example, min produces the same result no matter what order it receives the inputs
in. However, some aggregate functions (such as array_agg and string_agg) produce results that depend
on the ordering of the input rows. When using such an aggregate, the optional order_by_clause can
be used to specify the desired ordering. The order_by_clause has the same syntax as for a query-level
ORDER BY clause, as described in Section 7.5, except that its expressions are always just expressions and
cannot be output-column names or numbers. For example:

SELECT array_agg(a ORDER BY b DESC) FROM table;

When dealing with multiple-argument aggregate functions, note that the ORDER BY clause goes after all
the aggregate arguments. For example, write this:

SELECT string_agg(a, ',' ORDER BY a) FROM table;

not this:

SELECT string_agg(a ORDER BY a, ',') FROM table; -- incorrect

The latter is syntactically valid, but it represents a call of a single-argument aggregate function with two
ORDER BY keys (the second one being rather useless since it's a constant).

If DISTINCT is specified in addition to an order_by_clause, then all the ORDER BY expressions must
match regular arguments of the aggregate; that is, you cannot sort on an expression that is not included
in the DISTINCT list.

Note
The ability to specify both DISTINCT and ORDER BY in an aggregate function is a Postgres Pro
extension.

Placing ORDER BY within the aggregate's regular argument list, as described so far, is used when ordering
the input rows for general-purpose and statistical aggregates, for which ordering is optional. There
is a subclass of aggregate functions called ordered-set aggregates for which an order_by_clause is
required, usually because the aggregate's computation is only sensible in terms of a specific ordering
of its input rows. Typical examples of ordered-set aggregates include rank and percentile calculations.
For an ordered-set aggregate, the order_by_clause is written inside WITHIN GROUP (...), as shown
in the final syntax alternative above. The expressions in the order_by_clause are evaluated once per
input row just like regular aggregate arguments, sorted as per the order_by_clause's requirements,
and fed to the aggregate function as input arguments. (This is unlike the case for a non-WITHIN
GROUP order_by_clause, which is not treated as argument(s) to the aggregate function.) The argument
expressions preceding WITHIN GROUP, if any, are called direct arguments to distinguish them from
the aggregated arguments listed in the order_by_clause. Unlike regular aggregate arguments, direct
arguments are evaluated only once per aggregate call, not once per input row. This means that they can
contain variables only if those variables are grouped by GROUP BY; this restriction is the same as if the
direct arguments were not inside an aggregate expression at all. Direct arguments are typically used
for things like percentile fractions, which only make sense as a single value per aggregation calculation.
The direct argument list can be empty; in this case, write just () not (*). (Postgres Pro will actually
accept either spelling, but only the first way conforms to the SQL standard.)

An example of an ordered-set aggregate call is:

SELECT percentile_cont(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_cont

 50489

32

SQL Syntax

which obtains the 50th percentile, or median, value of the income column from table households. Here,
0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying across
rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the aggregate function; other rows are discarded. For example:
SELECT
 count(*) AS unfiltered,
 count(*) FILTER (WHERE i < 5) AS filtered
FROM generate_series(1,10) AS s(i);
 unfiltered | filtered
------------+----------
 10 | 4
(1 row)

The predefined aggregate functions are described in Section 9.21. Other aggregate functions can be
added by the user.

An aggregate expression can only appear in the result list or HAVING clause of a SELECT command. It
is forbidden in other clauses, such as WHERE, because those clauses are logically evaluated before the
results of aggregates are formed.

When an aggregate expression appears in a subquery (see Section 4.2.11 and Section 9.23), the
aggregate is normally evaluated over the rows of the subquery. But an exception occurs if the aggregate's
arguments (and filter_clause if any) contain only outer-level variables: the aggregate then belongs
to the nearest such outer level, and is evaluated over the rows of that query. The aggregate expression
as a whole is then an outer reference for the subquery it appears in, and acts as a constant over any
one evaluation of that subquery. The restriction about appearing only in the result list or HAVING clause
applies with respect to the query level that the aggregate belongs to.

4.2.8. Window Function Calls
A window function call represents the application of an aggregate-like function over some portion of
the rows selected by a query. Unlike non-window aggregate calls, this is not tied to grouping of the
selected rows into a single output row — each row remains separate in the query output. However the
window function has access to all the rows that would be part of the current row's group according
to the grouping specification (PARTITION BY list) of the window function call. The syntax of a window
function call is one of the following:
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
 OVER window_name
function_name ([expression [, expression ...]]) [FILTER (WHERE filter_clause)]
 OVER (window_definition)
function_name (*) [FILTER (WHERE filter_clause)] OVER window_name
function_name (*) [FILTER (WHERE filter_clause)] OVER (window_definition)

where window_definition has the syntax
[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
[frame_clause]

The optional frame_clause can be one of
{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_start and frame_end can be one of
UNBOUNDED PRECEDING

33

SQL Syntax

offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of

EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

Here, expression represents any value expression that does not itself contain window function calls.

window_name is a reference to a named window specification defined in the query's WINDOW clause.
Alternatively, a full window_definition can be given within parentheses, using the same syntax as for
defining a named window in the WINDOW clause; see the SELECT reference page for details. It's worth
pointing out that OVER wname is not exactly equivalent to OVER (wname ...); the latter implies copying
and modifying the window definition, and will be rejected if the referenced window specification includes
a frame clause.

The PARTITION BY clause groups the rows of the query into partitions, which are processed separately
by the window function. PARTITION BY works similarly to a query-level GROUP BY clause, except that
its expressions are always just expressions and cannot be output-column names or numbers. Without
PARTITION BY, all rows produced by the query are treated as a single partition. The ORDER BY clause
determines the order in which the rows of a partition are processed by the window function. It works
similarly to a query-level ORDER BY clause, but likewise cannot use output-column names or numbers.
Without ORDER BY, rows are processed in an unspecified order.

The frame_clause specifies the set of rows constituting the window frame, which is a subset of the
current partition, for those window functions that act on the frame instead of the whole partition. The set
of rows in the frame can vary depending on which row is the current row. The frame can be specified in
RANGE, ROWS or GROUPS mode; in each case, it runs from the frame_start to the frame_end. If frame_end
is omitted, the end defaults to CURRENT ROW.

A frame_start of UNBOUNDED PRECEDING means that the frame starts with the first row of the partition,
and similarly a frame_end of UNBOUNDED FOLLOWING means that the frame ends with the last row of the
partition.

In RANGE or GROUPS mode, a frame_start of CURRENT ROW means the frame starts with the current row's
first peer row (a row that the window's ORDER BY clause sorts as equivalent to the current row), while
a frame_end of CURRENT ROW means the frame ends with the current row's last peer row. In ROWS mode,
CURRENT ROW simply means the current row.

In the offset PRECEDING and offset FOLLOWING frame options, the offset must be an expression not
containing any variables, aggregate functions, or window functions. The meaning of the offset depends
on the frame mode:
• In ROWS mode, the offset must yield a non-null, non-negative integer, and the option means that

the frame starts or ends the specified number of rows before or after the current row.
• In GROUPS mode, the offset again must yield a non-null, non-negative integer, and the option

means that the frame starts or ends the specified number of peer groups before or after the current
row's peer group, where a peer group is a set of rows that are equivalent in the ORDER BY ordering.
(There must be an ORDER BY clause in the window definition to use GROUPS mode.)

• In RANGE mode, these options require that the ORDER BY clause specify exactly one column. The
offset specifies the maximum difference between the value of that column in the current row and
its value in preceding or following rows of the frame. The data type of the offset expression varies
depending on the data type of the ordering column. For numeric ordering columns it is typically
of the same type as the ordering column, but for datetime ordering columns it is an interval. For

34

SQL Syntax

example, if the ordering column is of type date or timestamp, one could write RANGE BETWEEN '1
day' PRECEDING AND '10 days' FOLLOWING. The offset is still required to be non-null and non-
negative, though the meaning of “non-negative” depends on its data type.

In any case, the distance to the end of the frame is limited by the distance to the end of the partition, so
that for rows near the partition ends the frame might contain fewer rows than elsewhere.

Notice that in both ROWS and GROUPS mode, 0 PRECEDING and 0 FOLLOWING are equivalent to CURRENT
ROW. This normally holds in RANGE mode as well, for an appropriate data-type-specific meaning of “zero”.

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW. With ORDER BY, this sets the frame to be all rows from the
partition start up through the current row's last ORDER BY peer. Without ORDER BY, this means all rows
of the partition are included in the window frame, since all rows become peers of the current row.

Restrictions are that frame_start cannot be UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED
PRECEDING, and the frame_end choice cannot appear earlier in the above list of frame_start and
frame_end options than the frame_start choice does — for example RANGE BETWEEN CURRENT ROW AND
offset PRECEDING is not allowed. But, for example, ROWS BETWEEN 7 PRECEDING AND 8 PRECEDING is
allowed, even though it would never select any rows.

If FILTER is specified, then only the input rows for which the filter_clause evaluates to true are fed
to the window function; other rows are discarded. Only window functions that are aggregates accept
a FILTER clause.

The built-in window functions are described in Table 9.60. Other window functions can be added by the
user. Also, any built-in or user-defined general-purpose or statistical aggregate can be used as a window
function. (Ordered-set and hypothetical-set aggregates cannot presently be used as window functions.)

The syntaxes using * are used for calling parameter-less aggregate functions as window functions, for
example count(*) OVER (PARTITION BY x ORDER BY y). The asterisk (*) is customarily not used for
window-specific functions. Window-specific functions do not allow DISTINCT or ORDER BY to be used
within the function argument list.

Window function calls are permitted only in the SELECT list and the ORDER BY clause of the query.

More information about window functions can be found in Section 3.5, Section 9.22, and Section 7.2.5.

4.2.9. Type Casts
A type cast specifies a conversion from one data type to another. Postgres Pro accepts two equivalent
syntaxes for type casts:

CAST (expression AS type)
expression::type

The CAST syntax conforms to SQL; the syntax with :: is historical Postgres Pro usage.

When a cast is applied to a value expression of a known type, it represents a run-time type conversion.
The cast will succeed only if a suitable type conversion operation has been defined. Notice that this
is subtly different from the use of casts with constants, as shown in Section 4.1.2.7. A cast applied to
an unadorned string literal represents the initial assignment of a type to a literal constant value, and
so it will succeed for any type (if the contents of the string literal are acceptable input syntax for the
data type).

35

SQL Syntax

An explicit type cast can usually be omitted if there is no ambiguity as to the type that a value expression
must produce (for example, when it is assigned to a table column); the system will automatically apply
a type cast in such cases. However, automatic casting is only done for casts that are marked “OK to
apply implicitly” in the system catalogs. Other casts must be invoked with explicit casting syntax. This
restriction is intended to prevent surprising conversions from being applied silently.

It is also possible to specify a type cast using a function-like syntax:
typename (expression)

However, this only works for types whose names are also valid as function names. For example, double
precision cannot be used this way, but the equivalent float8 can. Also, the names interval, time,
and timestamp can only be used in this fashion if they are double-quoted, because of syntactic conflicts.
Therefore, the use of the function-like cast syntax leads to inconsistencies and should probably be
avoided.

Note
The function-like syntax is in fact just a function call. When one of the two standard cast syntaxes
is used to do a run-time conversion, it will internally invoke a registered function to perform the
conversion. By convention, these conversion functions have the same name as their output type,
and thus the “function-like syntax” is nothing more than a direct invocation of the underlying
conversion function. Obviously, this is not something that a portable application should rely on.
For further details see CREATE CAST.

4.2.10. Collation Expressions
The COLLATE clause overrides the collation of an expression. It is appended to the expression it applies to:
expr COLLATE collation

where collation is a possibly schema-qualified identifier. The COLLATE clause binds tighter than
operators; parentheses can be used when necessary.

If no collation is explicitly specified, the database system either derives a collation from the columns
involved in the expression, or it defaults to the default collation of the database if no column is involved
in the expression.

The two common uses of the COLLATE clause are overriding the sort order in an ORDER BY clause, for
example:
SELECT a, b, c FROM tbl WHERE ... ORDER BY a COLLATE "C";

and overriding the collation of a function or operator call that has locale-sensitive results, for example:
SELECT * FROM tbl WHERE a > 'foo' COLLATE "C";

Note that in the latter case the COLLATE clause is attached to an input argument of the operator we
wish to affect. It doesn't matter which argument of the operator or function call the COLLATE clause is
attached to, because the collation that is applied by the operator or function is derived by considering all
arguments, and an explicit COLLATE clause will override the collations of all other arguments. (Attaching
non-matching COLLATE clauses to more than one argument, however, is an error. For more details see
Section 22.2.) Thus, this gives the same result as the previous example:
SELECT * FROM tbl WHERE a COLLATE "C" > 'foo';

But this is an error:
SELECT * FROM tbl WHERE (a > 'foo') COLLATE "C";

because it attempts to apply a collation to the result of the > operator, which is of the non-collatable
data type boolean.

4.2.11. Scalar Subqueries

36

SQL Syntax

A scalar subquery is an ordinary SELECT query in parentheses that returns exactly one row with one
column. (See Chapter 7 for information about writing queries.) The SELECT query is executed and the
single returned value is used in the surrounding value expression. It is an error to use a query that
returns more than one row or more than one column as a scalar subquery. (But if, during a particular
execution, the subquery returns no rows, there is no error; the scalar result is taken to be null.) The
subquery can refer to variables from the surrounding query, which will act as constants during any one
evaluation of the subquery. See also Section 9.23 for other expressions involving subqueries.

For example, the following finds the largest city population in each state:
SELECT name, (SELECT max(pop) FROM cities WHERE cities.state = states.name)
 FROM states;

4.2.12. Array Constructors
An array constructor is an expression that builds an array value using values for its member elements.
A simple array constructor consists of the key word ARRAY, a left square bracket [, a list of expressions
(separated by commas) for the array element values, and finally a right square bracket]. For example:
SELECT ARRAY[1,2,3+4];
 array

 {1,2,7}
(1 row)

By default, the array element type is the common type of the member expressions, determined using the
same rules as for UNION or CASE constructs (see Section 10.5). You can override this by explicitly casting
the array constructor to the desired type, for example:
SELECT ARRAY[1,2,22.7]::integer[];
 array

 {1,2,23}
(1 row)

This has the same effect as casting each expression to the array element type individually. For more on
casting, see Section 4.2.9.

Multidimensional array values can be built by nesting array constructors. In the inner constructors, the
key word ARRAY can be omitted. For example, these produce the same result:
SELECT ARRAY[ARRAY[1,2], ARRAY[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

SELECT ARRAY[[1,2],[3,4]];
 array

 {{1,2},{3,4}}
(1 row)

Since multidimensional arrays must be rectangular, inner constructors at the same level must produce
sub-arrays of identical dimensions. Any cast applied to the outer ARRAY constructor propagates
automatically to all the inner constructors.

Multidimensional array constructor elements can be anything yielding an array of the proper kind, not
only a sub-ARRAY construct. For example:
CREATE TABLE arr(f1 int[], f2 int[]);

INSERT INTO arr VALUES (ARRAY[[1,2],[3,4]], ARRAY[[5,6],[7,8]]);

37

SQL Syntax

SELECT ARRAY[f1, f2, '{{9,10},{11,12}}'::int[]] FROM arr;
 array
--
 {{{1,2},{3,4}},{{5,6},{7,8}},{{9,10},{11,12}}}
(1 row)

You can construct an empty array, but since it's impossible to have an array with no type, you must
explicitly cast your empty array to the desired type. For example:

SELECT ARRAY[]::integer[];
 array

 {}
(1 row)

It is also possible to construct an array from the results of a subquery. In this form, the array constructor
is written with the key word ARRAY followed by a parenthesized (not bracketed) subquery. For example:

SELECT ARRAY(SELECT oid FROM pg_proc WHERE proname LIKE 'bytea%');
 array
--
 {2011,1954,1948,1952,1951,1244,1950,2005,1949,1953,2006,31,2412}
(1 row)

SELECT ARRAY(SELECT ARRAY[i, i*2] FROM generate_series(1,5) AS a(i));
 array

 {{1,2},{2,4},{3,6},{4,8},{5,10}}
(1 row)

The subquery must return a single column. If the subquery's output column is of a non-array type,
the resulting one-dimensional array will have an element for each row in the subquery result, with an
element type matching that of the subquery's output column. If the subquery's output column is of an
array type, the result will be an array of the same type but one higher dimension; in this case all the
subquery rows must yield arrays of identical dimensionality, else the result would not be rectangular.

The subscripts of an array value built with ARRAY always begin with one. For more information about
arrays, see Section 8.15.

4.2.13. Row Constructors
A row constructor is an expression that builds a row value (also called a composite value) using values
for its member fields. A row constructor consists of the key word ROW, a left parenthesis, zero or more
expressions (separated by commas) for the row field values, and finally a right parenthesis. For example:

SELECT ROW(1,2.5,'this is a test');

The key word ROW is optional when there is more than one expression in the list.

A row constructor can include the syntax rowvalue.*, which will be expanded to a list of the elements
of the row value, just as occurs when the .* syntax is used at the top level of a SELECT list (see
Section 8.16.5). For example, if table t has columns f1 and f2, these are the same:

SELECT ROW(t.*, 42) FROM t;
SELECT ROW(t.f1, t.f2, 42) FROM t;

Note
Before PostgreSQL 8.2, the .* syntax was not expanded in row constructors, so that writing
ROW(t.*, 42) created a two-field row whose first field was another row value. The new behavior

38

SQL Syntax

is usually more useful. If you need the old behavior of nested row values, write the inner row value
without .*, for instance ROW(t, 42).

By default, the value created by a ROW expression is of an anonymous record type. If necessary, it can
be cast to a named composite type — either the row type of a table, or a composite type created with
CREATE TYPE AS. An explicit cast might be needed to avoid ambiguity. For example:

CREATE TABLE mytable(f1 int, f2 float, f3 text);

CREATE FUNCTION getf1(mytable) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- No cast needed since only one getf1() exists
SELECT getf1(ROW(1,2.5,'this is a test'));
 getf1

 1
(1 row)

CREATE TYPE myrowtype AS (f1 int, f2 text, f3 numeric);

CREATE FUNCTION getf1(myrowtype) RETURNS int AS 'SELECT $1.f1' LANGUAGE SQL;

-- Now we need a cast to indicate which function to call:
SELECT getf1(ROW(1,2.5,'this is a test'));
ERROR: function getf1(record) is not unique

SELECT getf1(ROW(1,2.5,'this is a test')::mytable);
 getf1

 1
(1 row)

SELECT getf1(CAST(ROW(11,'this is a test',2.5) AS myrowtype));
 getf1

 11
(1 row)

Row constructors can be used to build composite values to be stored in a composite-type table column,
or to be passed to a function that accepts a composite parameter. Also, it is possible to compare two row
values or test a row with IS NULL or IS NOT NULL, for example:

SELECT ROW(1,2.5,'this is a test') = ROW(1, 3, 'not the same');

SELECT ROW(table.*) IS NULL FROM table; -- detect all-null rows

For more detail see Section 9.24. Row constructors can also be used in connection with subqueries, as
discussed in Section 9.23.

4.2.14. Expression Evaluation Rules
The order of evaluation of subexpressions is not defined. In particular, the inputs of an operator or
function are not necessarily evaluated left-to-right or in any other fixed order.

Furthermore, if the result of an expression can be determined by evaluating only some parts of it, then
other subexpressions might not be evaluated at all. For instance, if one wrote:

SELECT true OR somefunc();

then somefunc() would (probably) not be called at all. The same would be the case if one wrote:

39

SQL Syntax

SELECT somefunc() OR true;

Note that this is not the same as the left-to-right “short-circuiting” of Boolean operators that is found
in some programming languages.

As a consequence, it is unwise to use functions with side effects as part of complex expressions. It is
particularly dangerous to rely on side effects or evaluation order in WHERE and HAVING clauses, since
those clauses are extensively reprocessed as part of developing an execution plan. Boolean expressions
(AND/OR/NOT combinations) in those clauses can be reorganized in any manner allowed by the laws of
Boolean algebra.

When it is essential to force evaluation order, a CASE construct (see Section 9.18) can be used. For
example, this is an untrustworthy way of trying to avoid division by zero in a WHERE clause:

SELECT ... WHERE x > 0 AND y/x > 1.5;

But this is safe:

SELECT ... WHERE CASE WHEN x > 0 THEN y/x > 1.5 ELSE false END;

A CASE construct used in this fashion will defeat optimization attempts, so it should only be done when
necessary. (In this particular example, it would be better to sidestep the problem by writing y > 1.5*x
instead.)

CASE is not a cure-all for such issues, however. One limitation of the technique illustrated above is that
it does not prevent early evaluation of constant subexpressions. As described in Section 35.7, functions
and operators marked IMMUTABLE can be evaluated when the query is planned rather than when it is
executed. Thus for example

SELECT CASE WHEN x > 0 THEN x ELSE 1/0 END FROM tab;

is likely to result in a division-by-zero failure due to the planner trying to simplify the constant
subexpression, even if every row in the table has x > 0 so that the ELSE arm would never be entered
at run time.

While that particular example might seem silly, related cases that don't obviously involve constants can
occur in queries executed within functions, since the values of function arguments and local variables
can be inserted into queries as constants for planning purposes. Within PL/pgSQL functions, for example,
using an IF-THEN-ELSE statement to protect a risky computation is much safer than just nesting it in a
CASE expression.

Another limitation of the same kind is that a CASE cannot prevent evaluation of an aggregate expression
contained within it, because aggregate expressions are computed before other expressions in a SELECT
list or HAVING clause are considered. For example, the following query can cause a division-by-zero error
despite seemingly having protected against it:

SELECT CASE WHEN min(employees) > 0
 THEN avg(expenses / employees)
 END
 FROM departments;

The min() and avg() aggregates are computed concurrently over all the input rows, so if any row has
employees equal to zero, the division-by-zero error will occur before there is any opportunity to test the
result of min(). Instead, use a WHERE or FILTER clause to prevent problematic input rows from reaching
an aggregate function in the first place.

4.3. Calling Functions
Postgres Pro allows functions that have named parameters to be called using either positional or named
notation. Named notation is especially useful for functions that have a large number of parameters,
since it makes the associations between parameters and actual arguments more explicit and reliable.
In positional notation, a function call is written with its argument values in the same order as they
are defined in the function declaration. In named notation, the arguments are matched to the function

40

SQL Syntax

parameters by name and can be written in any order. For each notation, also consider the effect of
function argument types, documented in Section 10.3.

In either notation, parameters that have default values given in the function declaration need not be
written in the call at all. But this is particularly useful in named notation, since any combination of
parameters can be omitted; while in positional notation parameters can only be omitted from right to left.

Postgres Pro also supports mixed notation, which combines positional and named notation. In this case,
positional parameters are written first and named parameters appear after them.

The following examples will illustrate the usage of all three notations, using the following function
definition:
CREATE FUNCTION concat_lower_or_upper(a text, b text, uppercase boolean DEFAULT false)
RETURNS text
AS
$$
 SELECT CASE
 WHEN $3 THEN UPPER($1 || ' ' || $2)
 ELSE LOWER($1 || ' ' || $2)
 END;
$$
LANGUAGE SQL IMMUTABLE STRICT;

Function concat_lower_or_upper has two mandatory parameters, a and b. Additionally there is one
optional parameter uppercase which defaults to false. The a and b inputs will be concatenated, and
forced to either upper or lower case depending on the uppercase parameter. The remaining details of
this function definition are not important here (see Chapter 35 for more information).

4.3.1. Using Positional Notation
Positional notation is the traditional mechanism for passing arguments to functions in Postgres Pro. An
example is:
SELECT concat_lower_or_upper('Hello', 'World', true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

All arguments are specified in order. The result is upper case since uppercase is specified as true.
Another example is:
SELECT concat_lower_or_upper('Hello', 'World');
 concat_lower_or_upper

 hello world
(1 row)

Here, the uppercase parameter is omitted, so it receives its default value of false, resulting in lower
case output. In positional notation, arguments can be omitted from right to left so long as they have
defaults.

4.3.2. Using Named Notation
In named notation, each argument's name is specified using => to separate it from the argument
expression. For example:
SELECT concat_lower_or_upper(a => 'Hello', b => 'World');
 concat_lower_or_upper

 hello world
(1 row)

41

SQL Syntax

Again, the argument uppercase was omitted so it is set to false implicitly. One advantage of using
named notation is that the arguments may be specified in any order, for example:

SELECT concat_lower_or_upper(a => 'Hello', b => 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

SELECT concat_lower_or_upper(a => 'Hello', uppercase => true, b => 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

An older syntax based on ":=" is supported for backward compatibility:

SELECT concat_lower_or_upper(a := 'Hello', uppercase := true, b := 'World');
 concat_lower_or_upper

 HELLO WORLD
(1 row)

4.3.3. Using Mixed Notation
The mixed notation combines positional and named notation. However, as already mentioned, named
arguments cannot precede positional arguments. For example:

SELECT concat_lower_or_upper('Hello', 'World', uppercase => true);
 concat_lower_or_upper

 HELLO WORLD
(1 row)

In the above query, the arguments a and b are specified positionally, while uppercase is specified by
name. In this example, that adds little except documentation. With a more complex function having
numerous parameters that have default values, named or mixed notation can save a great deal of writing
and reduce chances for error.

Note
Named and mixed call notations currently cannot be used when calling an aggregate function (but
they do work when an aggregate function is used as a window function).

42

Chapter 5. Data Definition
This chapter covers how one creates the database structures that will hold one's data. In a relational
database, the raw data is stored in tables, so the majority of this chapter is devoted to explaining how
tables are created and modified and what features are available to control what data is stored in the
tables. Subsequently, we discuss how tables can be organized into schemas, and how privileges can be
assigned to tables. Finally, we will briefly look at other features that affect the data storage, such as
inheritance, table partitioning, views, functions, and triggers.

5.1. Table Basics
A table in a relational database is much like a table on paper: It consists of rows and columns. The
number and order of the columns is fixed, and each column has a name. The number of rows is variable
— it reflects how much data is stored at a given moment. SQL does not make any guarantees about
the order of the rows in a table. When a table is read, the rows will appear in an unspecified order,
unless sorting is explicitly requested. This is covered in Chapter 7. Furthermore, SQL does not assign
unique identifiers to rows, so it is possible to have several completely identical rows in a table. This is
a consequence of the mathematical model that underlies SQL but is usually not desirable. Later in this
chapter we will see how to deal with this issue.

Each column has a data type. The data type constrains the set of possible values that can be assigned to
a column and assigns semantics to the data stored in the column so that it can be used for computations.
For instance, a column declared to be of a numerical type will not accept arbitrary text strings, and
the data stored in such a column can be used for mathematical computations. By contrast, a column
declared to be of a character string type will accept almost any kind of data but it does not lend itself to
mathematical calculations, although other operations such as string concatenation are available.

Postgres Pro includes a sizable set of built-in data types that fit many applications. Users can also define
their own data types. Most built-in data types have obvious names and semantics, so we defer a detailed
explanation to Chapter 8. Some of the frequently used data types are integer for whole numbers,
numeric for possibly fractional numbers, text for character strings, date for dates, time for time-of-day
values, and timestamp for values containing both date and time.

To create a table, you use the aptly named CREATE TABLE command. In this command you specify at
least a name for the new table, the names of the columns and the data type of each column. For example:

CREATE TABLE my_first_table (
 first_column text,
 second_column integer
);

This creates a table named my_first_table with two columns. The first column is named first_column
and has a data type of text; the second column has the name second_column and the type integer.
The table and column names follow the identifier syntax explained in Section 4.1.1. The type names are
usually also identifiers, but there are some exceptions. Note that the column list is comma-separated
and surrounded by parentheses.

Of course, the previous example was heavily contrived. Normally, you would give names to your tables
and columns that convey what kind of data they store. So let's look at a more realistic example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

(The numeric type can store fractional components, as would be typical of monetary amounts.)

43

Data Definition

Tip
When you create many interrelated tables it is wise to choose a consistent naming pattern for
the tables and columns. For instance, there is a choice of using singular or plural nouns for table
names, both of which are favored by some theorist or other.

There is a limit on how many columns a table can contain. Depending on the column types, it is between
250 and 1600. However, defining a table with anywhere near this many columns is highly unusual and
often a questionable design.

If you no longer need a table, you can remove it using the DROP TABLE command. For example:

DROP TABLE my_first_table;
DROP TABLE products;

Attempting to drop a table that does not exist is an error. Nevertheless, it is common in SQL script files
to unconditionally try to drop each table before creating it, ignoring any error messages, so that the
script works whether or not the table exists. (If you like, you can use the DROP TABLE IF EXISTS variant
to avoid the error messages, but this is not standard SQL.)

If you need to modify a table that already exists, see Section 5.6 later in this chapter.

With the tools discussed so far you can create fully functional tables. The remainder of this chapter is
concerned with adding features to the table definition to ensure data integrity, security, or convenience.
If you are eager to fill your tables with data now you can skip ahead to Chapter 6 and read the rest of
this chapter later.

5.2. Default Values
A column can be assigned a default value. When a new row is created and no values are specified for some
of the columns, those columns will be filled with their respective default values. A data manipulation
command can also request explicitly that a column be set to its default value, without having to know
what that value is. (Details about data manipulation commands are in Chapter 6.)

If no default value is declared explicitly, the default value is the null value. This usually makes sense
because a null value can be considered to represent unknown data.

In a table definition, default values are listed after the column data type. For example:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric DEFAULT 9.99
);

The default value can be an expression, which will be evaluated whenever the default value is inserted
(not when the table is created). A common example is for a timestamp column to have a default
of CURRENT_TIMESTAMP, so that it gets set to the time of row insertion. Another common example is
generating a “serial number” for each row. In Postgres Pro this is typically done by something like:

CREATE TABLE products (
 product_no integer DEFAULT nextval('products_product_no_seq'),
 ...
);

where the nextval() function supplies successive values from a sequence object (see Section 9.17).
This arrangement is sufficiently common that there's a special shorthand for it:

CREATE TABLE products (
 product_no SERIAL,

44

Data Definition

 ...
);

The SERIAL shorthand is discussed further in Section 8.1.4.

5.3. Generated Columns
A generated column is a special column that is always computed from other columns. Thus, it is for
columns what a view is for tables. There are two kinds of generated columns: stored and virtual. A
stored generated column is computed when it is written (inserted or updated) and occupies storage as
if it were a normal column. A virtual generated column occupies no storage and is computed when it is
read. Thus, a virtual generated column is similar to a view and a stored generated column is similar to
a materialized view (except that it is always updated automatically). Postgres Pro currently implements
only stored generated columns.

To create a generated column, use the GENERATED ALWAYS AS clause in CREATE TABLE, for example:

CREATE TABLE people (
 ...,
 height_cm numeric,
 height_in numeric GENERATED ALWAYS AS (height_cm / 2.54) STORED
);

The keyword STORED must be specified to choose the stored kind of generated column. See CREATE
TABLE for more details.

A generated column cannot be written to directly. In INSERT or UPDATE commands, a value cannot be
specified for a generated column, but the keyword DEFAULT may be specified.

Consider the differences between a column with a default and a generated column. The column default
is evaluated once when the row is first inserted if no other value was provided; a generated column
is updated whenever the row changes and cannot be overridden. A column default may not refer to
other columns of the table; a generation expression would normally do so. A column default can use
volatile functions, for example random() or functions referring to the current time; this is not allowed
for generated columns.

Several restrictions apply to the definition of generated columns and tables involving generated columns:

• The generation expression can only use immutable functions and cannot use subqueries or
reference anything other than the current row in any way.

• A generation expression cannot reference another generated column.

• A generation expression cannot reference a system column, except tableoid.

• A generated column cannot have a column default or an identity definition.

• A generated column cannot be part of a partition key.

• Foreign tables can have generated columns. See CREATE FOREIGN TABLE for details.

• For inheritance:

• If a parent column is a generated column, a child column must also be a generated column using
the same expression. In the definition of the child column, leave off the GENERATED clause, as it
will be copied from the parent.

• In case of multiple inheritance, if one parent column is a generated column, then all parent
columns must be generated columns and with the same expression.

• If a parent column is not a generated column, a child column may be defined to be a generated
column or not.

Additional considerations apply to the use of generated columns.

45

Data Definition

• Generated columns maintain access privileges separately from their underlying base columns. So,
it is possible to arrange it so that a particular role can read from a generated column but not from
the underlying base columns.

• Generated columns are, conceptually, updated after BEFORE triggers have run. Therefore, changes
made to base columns in a BEFORE trigger will be reflected in generated columns. But conversely, it
is not allowed to access generated columns in BEFORE triggers.

5.4. Constraints
Data types are a way to limit the kind of data that can be stored in a table. For many applications,
however, the constraint they provide is too coarse. For example, a column containing a product price
should probably only accept positive values. But there is no standard data type that accepts only positive
numbers. Another issue is that you might want to constrain column data with respect to other columns
or rows. For example, in a table containing product information, there should be only one row for each
product number.

To that end, SQL allows you to define constraints on columns and tables. Constraints give you as much
control over the data in your tables as you wish. If a user attempts to store data in a column that
would violate a constraint, an error is raised. This applies even if the value came from the default value
definition.

5.4.1. Check Constraints
A check constraint is the most generic constraint type. It allows you to specify that the value in a certain
column must satisfy a Boolean (truth-value) expression. For instance, to require positive product prices,
you could use:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0)
);

As you see, the constraint definition comes after the data type, just like default value definitions. Default
values and constraints can be listed in any order. A check constraint consists of the key word CHECK
followed by an expression in parentheses. The check constraint expression should involve the column
thus constrained, otherwise the constraint would not make too much sense.

You can also give the constraint a separate name. This clarifies error messages and allows you to refer
to the constraint when you need to change it. The syntax is:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CONSTRAINT positive_price CHECK (price > 0)
);

So, to specify a named constraint, use the key word CONSTRAINT followed by an identifier followed by
the constraint definition. (If you don't specify a constraint name in this way, the system chooses a name
for you.)

A check constraint can also refer to several columns. Say you store a regular price and a discounted
price, and you want to ensure that the discounted price is lower than the regular price:
CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

46

Data Definition

The first two constraints should look familiar. The third one uses a new syntax. It is not attached to a
particular column, instead it appears as a separate item in the comma-separated column list. Column
definitions and these constraint definitions can be listed in mixed order.

We say that the first two constraints are column constraints, whereas the third one is a table constraint
because it is written separately from any one column definition. Column constraints can also be written
as table constraints, while the reverse is not necessarily possible, since a column constraint is supposed
to refer to only the column it is attached to. (Postgres Pro doesn't enforce that rule, but you should
follow it if you want your table definitions to work with other database systems.) The above example
could also be written as:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CHECK (price > discounted_price)
);

or even:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0 AND price > discounted_price)
);

It's a matter of taste.

Names can be assigned to table constraints in the same way as column constraints:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 CHECK (price > 0),
 discounted_price numeric,
 CHECK (discounted_price > 0),
 CONSTRAINT valid_discount CHECK (price > discounted_price)
);

It should be noted that a check constraint is satisfied if the check expression evaluates to true or the null
value. Since most expressions will evaluate to the null value if any operand is null, they will not prevent
null values in the constrained columns. To ensure that a column does not contain null values, the not-
null constraint described in the next section can be used.

Note
Postgres Pro does not support CHECK constraints that reference table data other than the new or
updated row being checked. While a CHECK constraint that violates this rule may appear to work in
simple tests, it cannot guarantee that the database will not reach a state in which the constraint
condition is false (due to subsequent changes of the other row(s) involved). This would cause a
database dump and reload to fail. The reload could fail even when the complete database state
is consistent with the constraint, due to rows not being loaded in an order that will satisfy the
constraint. If possible, use UNIQUE, EXCLUDE, or FOREIGN KEY constraints to express cross-row and
cross-table restrictions.

47

Data Definition

If what you desire is a one-time check against other rows at row insertion, rather than a
continuously-maintained consistency guarantee, a custom trigger can be used to implement that.
(This approach avoids the dump/reload problem because pg_dump does not reinstall triggers until
after reloading data, so that the check will not be enforced during a dump/reload.)

Note
Postgres Pro assumes that CHECK constraints' conditions are immutable, that is, they will always
give the same result for the same input row. This assumption is what justifies examining CHECK
constraints only when rows are inserted or updated, and not at other times. (The warning above
about not referencing other table data is really a special case of this restriction.)

An example of a common way to break this assumption is to reference a user-defined function in
a CHECK expression, and then change the behavior of that function. Postgres Pro does not disallow
that, but it will not notice if there are rows in the table that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle
such a change is to drop the constraint (using ALTER TABLE), adjust the function definition, and
re-add the constraint, thereby rechecking it against all table rows.

5.4.2. Not-Null Constraints
A not-null constraint simply specifies that a column must not assume the null value. A syntax example:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric
);

A not-null constraint is always written as a column constraint. A not-null constraint is functionally
equivalent to creating a check constraint CHECK (column_name IS NOT NULL), but in Postgres Pro
creating an explicit not-null constraint is more efficient. The drawback is that you cannot give explicit
names to not-null constraints created this way.

Of course, a column can have more than one constraint. Just write the constraints one after another:

CREATE TABLE products (
 product_no integer NOT NULL,
 name text NOT NULL,
 price numeric NOT NULL CHECK (price > 0)
);

The order doesn't matter. It does not necessarily determine in which order the constraints are checked.

The NOT NULL constraint has an inverse: the NULL constraint. This does not mean that the column must
be null, which would surely be useless. Instead, this simply selects the default behavior that the column
might be null. The NULL constraint is not present in the SQL standard and should not be used in portable
applications. (It was only added to Postgres Pro to be compatible with some other database systems.)
Some users, however, like it because it makes it easy to toggle the constraint in a script file. For example,
you could start with:

CREATE TABLE products (
 product_no integer NULL,
 name text NULL,
 price numeric NULL
);

and then insert the NOT key word where desired.

48

Data Definition

Tip
In most database designs the majority of columns should be marked not null.

5.4.3. Unique Constraints
Unique constraints ensure that the data contained in a column, or a group of columns, is unique among
all the rows in the table. The syntax is:

CREATE TABLE products (
 product_no integer UNIQUE,
 name text,
 price numeric
);

when written as a column constraint, and:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric,
 UNIQUE (product_no)
);

when written as a table constraint.

To define a unique constraint for a group of columns, write it as a table constraint with the column
names separated by commas:

CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 UNIQUE (a, c)
);

This specifies that the combination of values in the indicated columns is unique across the whole table,
though any one of the columns need not be (and ordinarily isn't) unique.

You can assign your own name for a unique constraint, in the usual way:

CREATE TABLE products (
 product_no integer CONSTRAINT must_be_different UNIQUE,
 name text,
 price numeric
);

Adding a unique constraint will automatically create a unique B-tree index on the column or group of
columns listed in the constraint. A uniqueness restriction covering only some rows cannot be written as
a unique constraint, but it is possible to enforce such a restriction by creating a unique partial index.

In general, a unique constraint is violated if there is more than one row in the table where the values of all
of the columns included in the constraint are equal. However, two null values are never considered equal
in this comparison. That means even in the presence of a unique constraint it is possible to store duplicate
rows that contain a null value in at least one of the constrained columns. This behavior conforms to the
SQL standard, but we have heard that other SQL databases might not follow this rule. So be careful
when developing applications that are intended to be portable.

5.4.4. Primary Keys

49

Data Definition

A primary key constraint indicates that a column, or group of columns, can be used as a unique identifier
for rows in the table. This requires that the values be both unique and not null. So, the following two
table definitions accept the same data:
CREATE TABLE products (
 product_no integer UNIQUE NOT NULL,
 name text,
 price numeric
);

CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Primary keys can span more than one column; the syntax is similar to unique constraints:
CREATE TABLE example (
 a integer,
 b integer,
 c integer,
 PRIMARY KEY (a, c)
);

Adding a primary key will automatically create a unique B-tree index on the column or group of columns
listed in the primary key, and will force the column(s) to be marked NOT NULL.

A table can have at most one primary key. (There can be any number of unique and not-null constraints,
which are functionally almost the same thing, but only one can be identified as the primary key.)
Relational database theory dictates that every table must have a primary key. This rule is not enforced
by Postgres Pro, but it is usually best to follow it.

Primary keys are useful both for documentation purposes and for client applications. For example, a GUI
application that allows modifying row values probably needs to know the primary key of a table to be
able to identify rows uniquely. There are also various ways in which the database system makes use of a
primary key if one has been declared; for example, the primary key defines the default target column(s)
for foreign keys referencing its table.

5.4.5. Foreign Keys
A foreign key constraint specifies that the values in a column (or a group of columns) must match the
values appearing in some row of another table. We say this maintains the referential integrity between
two related tables.

Say you have the product table that we have used several times already:
CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

Let's also assume you have a table storing orders of those products. We want to ensure that the orders
table only contains orders of products that actually exist. So we define a foreign key constraint in the
orders table that references the products table:
CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products (product_no),
 quantity integer
);

50

Data Definition

Now it is impossible to create orders with non-NULL product_no entries that do not appear in the
products table.

We say that in this situation the orders table is the referencing table and the products table is the
referenced table. Similarly, there are referencing and referenced columns.

You can also shorten the above command to:
CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 product_no integer REFERENCES products,
 quantity integer
);

because in absence of a column list the primary key of the referenced table is used as the referenced
column(s).

You can assign your own name for a foreign key constraint, in the usual way.

A foreign key can also constrain and reference a group of columns. As usual, it then needs to be written
in table constraint form. Here is a contrived syntax example:
CREATE TABLE t1 (
 a integer PRIMARY KEY,
 b integer,
 c integer,
 FOREIGN KEY (b, c) REFERENCES other_table (c1, c2)
);

Of course, the number and type of the constrained columns need to match the number and type of the
referenced columns.

Sometimes it is useful for the “other table” of a foreign key constraint to be the same table; this is
called a self-referential foreign key. For example, if you want rows of a table to represent nodes of a
tree structure, you could write
CREATE TABLE tree (
 node_id integer PRIMARY KEY,
 parent_id integer REFERENCES tree,
 name text,
 ...
);

A top-level node would have NULL parent_id, but non-NULL parent_id entries would be constrained
to reference valid rows of the table.

A table can have more than one foreign key constraint. This is used to implement many-to-many
relationships between tables. Say you have tables about products and orders, but now you want to allow
one order to contain possibly many products (which the structure above did not allow). You could use
this table structure:
CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

51

Data Definition

CREATE TABLE order_items (
 product_no integer REFERENCES products,
 order_id integer REFERENCES orders,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

Notice that the primary key overlaps with the foreign keys in the last table.

We know that the foreign keys disallow creation of orders that do not relate to any products. But what
if a product is removed after an order is created that references it? SQL allows you to handle that as
well. Intuitively, we have a few options:
• Disallow deleting a referenced product
• Delete the orders as well
• Something else?

To illustrate this, let's implement the following policy on the many-to-many relationship example above:
when someone wants to remove a product that is still referenced by an order (via order_items), we
disallow it. If someone removes an order, the order items are removed as well:
CREATE TABLE products (
 product_no integer PRIMARY KEY,
 name text,
 price numeric
);

CREATE TABLE orders (
 order_id integer PRIMARY KEY,
 shipping_address text,
 ...
);

CREATE TABLE order_items (
 product_no integer REFERENCES products ON DELETE RESTRICT,
 order_id integer REFERENCES orders ON DELETE CASCADE,
 quantity integer,
 PRIMARY KEY (product_no, order_id)
);

Restricting and cascading deletes are the two most common options. RESTRICT prevents deletion of a
referenced row. NO ACTION means that if any referencing rows still exist when the constraint is checked,
an error is raised; this is the default behavior if you do not specify anything. (The essential difference
between these two choices is that NO ACTION allows the check to be deferred until later in the transaction,
whereas RESTRICT does not.) CASCADE specifies that when a referenced row is deleted, row(s) referencing
it should be automatically deleted as well. There are two other options: SET NULL and SET DEFAULT.
These cause the referencing column(s) in the referencing row(s) to be set to nulls or their default values,
respectively, when the referenced row is deleted. Note that these do not excuse you from observing any
constraints. For example, if an action specifies SET DEFAULT but the default value would not satisfy the
foreign key constraint, the operation will fail.

Analogous to ON DELETE there is also ON UPDATE which is invoked when a referenced column is changed
(updated). The possible actions are the same. In this case, CASCADE means that the updated values of
the referenced column(s) should be copied into the referencing row(s).

Normally, a referencing row need not satisfy the foreign key constraint if any of its referencing columns
are null. If MATCH FULL is added to the foreign key declaration, a referencing row escapes satisfying the
constraint only if all its referencing columns are null (so a mix of null and non-null values is guaranteed
to fail a MATCH FULL constraint). If you don't want referencing rows to be able to avoid satisfying the
foreign key constraint, declare the referencing column(s) as NOT NULL.

52

Data Definition

A foreign key must reference columns that either are a primary key or form a unique constraint. This
means that the referenced columns always have an index (the one underlying the primary key or unique
constraint); so checks on whether a referencing row has a match will be efficient. Since a DELETE of a
row from the referenced table or an UPDATE of a referenced column will require a scan of the referencing
table for rows matching the old value, it is often a good idea to index the referencing columns too.
Because this is not always needed, and there are many choices available on how to index, declaration of
a foreign key constraint does not automatically create an index on the referencing columns.

More information about updating and deleting data is in Chapter 6. Also see the description of foreign
key constraint syntax in the reference documentation for CREATE TABLE.

5.4.6. Exclusion Constraints
Exclusion constraints ensure that if any two rows are compared on the specified columns or expressions
using the specified operators, at least one of these operator comparisons will return false or null. The
syntax is:
CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

See also CREATE TABLE ... CONSTRAINT ... EXCLUDE for details.

Adding an exclusion constraint will automatically create an index of the type specified in the constraint
declaration.

5.5. System Columns
Every table has several system columns that are implicitly defined by the system. Therefore, these
names cannot be used as names of user-defined columns. (Note that these restrictions are separate from
whether the name is a key word or not; quoting a name will not allow you to escape these restrictions.)
You do not really need to be concerned about these columns; just know they exist.

tableoid

The OID of the table containing this row. This column is particularly handy for queries that select
from inheritance hierarchies (see Section 5.10), since without it, it's difficult to tell which individual
table a row came from. The tableoid can be joined against the oid column of pg_class to obtain
the table name.

xmin

The identity (transaction ID) of the inserting transaction for this row version. (A row version is an
individual state of a row; each update of a row creates a new row version for the same logical row.)

cmin

The command identifier (starting at zero) within the inserting transaction.

xmax

The identity (transaction ID) of the deleting transaction, or zero for an undeleted row version. It is
possible for this column to be nonzero in a visible row version. That usually indicates that the deleting
transaction hasn't committed yet, or that an attempted deletion was rolled back.

cmax

The command identifier within the deleting transaction, or zero.

ctid

The physical location of the row version within its table. Note that although the ctid can be used
to locate the row version very quickly, a row's ctid will change if it is updated or moved by VACUUM

53

Data Definition

FULL. Therefore ctid is useless as a long-term row identifier. A primary key should be used to identify
logical rows.

Transaction identifiers are also 32-bit quantities. In a long-lived database it is possible for transaction IDs
to wrap around. This is not a fatal problem given appropriate maintenance procedures; see Chapter 23
for details. It is unwise, however, to depend on the uniqueness of transaction IDs over the long term
(more than one billion transactions).

Command identifiers are also 32-bit quantities. This creates a hard limit of 232 (4 billion) SQL commands
within a single transaction. In practice this limit is not a problem — note that the limit is on the number
of SQL commands, not the number of rows processed. Also, only commands that actually modify the
database contents will consume a command identifier.

5.6. Modifying Tables
When you create a table and you realize that you made a mistake, or the requirements of the application
change, you can drop the table and create it again. But this is not a convenient option if the table is
already filled with data, or if the table is referenced by other database objects (for instance a foreign
key constraint). Therefore Postgres Pro provides a family of commands to make modifications to existing
tables. Note that this is conceptually distinct from altering the data contained in the table: here we are
interested in altering the definition, or structure, of the table.

You can:
• Add columns
• Remove columns
• Add constraints
• Remove constraints
• Change default values
• Change column data types
• Rename columns
• Rename tables
All these actions are performed using the ALTER TABLE command, whose reference page contains
details beyond those given here.

5.6.1. Adding a Column
To add a column, use a command like:
ALTER TABLE products ADD COLUMN description text;

The new column is initially filled with whatever default value is given (null if you don't specify a DEFAULT
clause).

Tip
From Postgres Pro 11, adding a column with a constant default value no longer means that each
row of the table needs to be updated when the ALTER TABLE statement is executed. Instead, the
default value will be returned the next time the row is accessed, and applied when the table is
rewritten, making the ALTER TABLE very fast even on large tables.

However, if the default value is volatile (e.g., clock_timestamp()) each row will need to be updated
with the value calculated at the time ALTER TABLE is executed. To avoid a potentially lengthy update
operation, particularly if you intend to fill the column with mostly nondefault values anyway, it
may be preferable to add the column with no default, insert the correct values using UPDATE, and
then add any desired default as described below.

You can also define constraints on the column at the same time, using the usual syntax:
ALTER TABLE products ADD COLUMN description text CHECK (description <> '');

54

Data Definition

In fact all the options that can be applied to a column description in CREATE TABLE can be used here.
Keep in mind however that the default value must satisfy the given constraints, or the ADD will fail.
Alternatively, you can add constraints later (see below) after you've filled in the new column correctly.

5.6.2. Removing a Column
To remove a column, use a command like:

ALTER TABLE products DROP COLUMN description;

Whatever data was in the column disappears. Table constraints involving the column are dropped, too.
However, if the column is referenced by a foreign key constraint of another table, Postgres Pro will
not silently drop that constraint. You can authorize dropping everything that depends on the column
by adding CASCADE:

ALTER TABLE products DROP COLUMN description CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

5.6.3. Adding a Constraint
To add a constraint, the table constraint syntax is used. For example:

ALTER TABLE products ADD CHECK (name <> '');
ALTER TABLE products ADD CONSTRAINT some_name UNIQUE (product_no);
ALTER TABLE products ADD FOREIGN KEY (product_group_id) REFERENCES product_groups;

To add a not-null constraint, which cannot be written as a table constraint, use this syntax:

ALTER TABLE products ALTER COLUMN product_no SET NOT NULL;

The constraint will be checked immediately, so the table data must satisfy the constraint before it can
be added.

5.6.4. Removing a Constraint
To remove a constraint you need to know its name. If you gave it a name then that's easy. Otherwise the
system assigned a generated name, which you need to find out. The psql command \d tablename can
be helpful here; other interfaces might also provide a way to inspect table details. Then the command is:

ALTER TABLE products DROP CONSTRAINT some_name;

(If you are dealing with a generated constraint name like $2, don't forget that you'll need to double-
quote it to make it a valid identifier.)

As with dropping a column, you need to add CASCADE if you want to drop a constraint that something else
depends on. An example is that a foreign key constraint depends on a unique or primary key constraint
on the referenced column(s).

This works the same for all constraint types except not-null constraints. To drop a not null constraint use:

ALTER TABLE products ALTER COLUMN product_no DROP NOT NULL;

(Recall that not-null constraints do not have names.)

5.6.5. Changing a Column's Default Value
To set a new default for a column, use a command like:

ALTER TABLE products ALTER COLUMN price SET DEFAULT 7.77;

Note that this doesn't affect any existing rows in the table, it just changes the default for future INSERT
commands.

To remove any default value, use:

ALTER TABLE products ALTER COLUMN price DROP DEFAULT;

55

Data Definition

This is effectively the same as setting the default to null. As a consequence, it is not an error to drop a
default where one hadn't been defined, because the default is implicitly the null value.

5.6.6. Changing a Column's Data Type
To convert a column to a different data type, use a command like:
ALTER TABLE products ALTER COLUMN price TYPE numeric(10,2);

This will succeed only if each existing entry in the column can be converted to the new type by an implicit
cast. If a more complex conversion is needed, you can add a USING clause that specifies how to compute
the new values from the old.

Postgres Pro will attempt to convert the column's default value (if any) to the new type, as well as
any constraints that involve the column. But these conversions might fail, or might produce surprising
results. It's often best to drop any constraints on the column before altering its type, and then add back
suitably modified constraints afterwards.

5.6.7. Renaming a Column
To rename a column:
ALTER TABLE products RENAME COLUMN product_no TO product_number;

5.6.8. Renaming a Table
To rename a table:
ALTER TABLE products RENAME TO items;

5.7. Privileges
When an object is created, it is assigned an owner. The owner is normally the role that executed the
creation statement. For most kinds of objects, the initial state is that only the owner (or a superuser)
can do anything with the object. To allow other roles to use it, privileges must be granted.

There are different kinds of privileges: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, TRIGGER,
CREATE, CONNECT, TEMPORARY, EXECUTE, and USAGE. The privileges applicable to a particular object vary
depending on the object's type (table, function, etc). More detail about the meanings of these privileges
appears below. The following sections and chapters will also show you how these privileges are used.

The right to modify or destroy an object is inherent in being the object's owner, and cannot be granted
or revoked in itself. (However, like all privileges, that right can be inherited by members of the owning
role; see Section 20.3.)

An object can be assigned to a new owner with an ALTER command of the appropriate kind for the object,
for example
ALTER TABLE table_name OWNER TO new_owner;

Superusers can always do this; ordinary roles can only do it if they are both the current owner of the
object (or a member of the owning role) and a member of the new owning role.

To assign privileges, the GRANT command is used. For example, if joe is an existing role, and accounts
is an existing table, the privilege to update the table can be granted with:
GRANT UPDATE ON accounts TO joe;

Writing ALL in place of a specific privilege grants all privileges that are relevant for the object type.

The special “role” name PUBLIC can be used to grant a privilege to every role on the system. Also, “group”
roles can be set up to help manage privileges when there are many users of a database — for details
see Chapter 20.

To revoke a previously-granted privilege, use the fittingly named REVOKE command:

56

Data Definition

REVOKE ALL ON accounts FROM PUBLIC;

Ordinarily, only the object's owner (or a superuser) can grant or revoke privileges on an object. However,
it is possible to grant a privilege “with grant option”, which gives the recipient the right to grant it in
turn to others. If the grant option is subsequently revoked then all who received the privilege from that
recipient (directly or through a chain of grants) will lose the privilege. For details see the GRANT and
REVOKE reference pages.

An object's owner can choose to revoke their own ordinary privileges, for example to make a table read-
only for themselves as well as others. But owners are always treated as holding all grant options, so they
can always re-grant their own privileges.

The available privileges are:
SELECT

Allows SELECT from any column, or specific column(s), of a table, view, materialized view, or other
table-like object. Also allows use of COPY TO. This privilege is also needed to reference existing
column values in UPDATE or DELETE. For sequences, this privilege also allows use of the currval
function. For large objects, this privilege allows the object to be read.

INSERT

Allows INSERT of a new row into a table, view, etc. Can be granted on specific column(s), in which
case only those columns may be assigned to in the INSERT command (other columns will therefore
receive default values). Also allows use of COPY FROM.

UPDATE

Allows UPDATE of any column, or specific column(s), of a table, view, etc. (In practice, any nontrivial
UPDATE command will require SELECT privilege as well, since it must reference table columns to
determine which rows to update, and/or to compute new values for columns.) SELECT ... FOR UPDATE
and SELECT ... FOR SHARE also require this privilege on at least one column, in addition to the
SELECT privilege. For sequences, this privilege allows use of the nextval and setval functions. For
large objects, this privilege allows writing or truncating the object.

DELETE

Allows DELETE of a row from a table, view, etc. (In practice, any nontrivial DELETE command will
require SELECT privilege as well, since it must reference table columns to determine which rows to
delete.)

TRUNCATE

Allows TRUNCATE on a table.

REFERENCES

Allows creation of a foreign key constraint referencing a table, or specific column(s) of a table.

TRIGGER

Allows creation of a trigger on a table, view, etc.

CREATE

For databases, allows new schemas and publications to be created within the database, and allows
trusted extensions to be installed within the database.

For schemas, allows new objects to be created within the schema. To rename an existing object, you
must own the object and have this privilege for the containing schema.

For tablespaces, allows tables, indexes, and temporary files to be created within the tablespace, and
allows databases to be created that have the tablespace as their default tablespace.

Note that revoking this privilege will not alter the existence or location of existing objects.

57

Data Definition

CONNECT

Allows the grantee to connect to the database. This privilege is checked at connection startup (in
addition to checking any restrictions imposed by pg_hba.conf).

TEMPORARY

Allows temporary tables to be created while using the database.

EXECUTE

Allows calling a function or procedure, including use of any operators that are implemented on top
of the function. This is the only type of privilege that is applicable to functions and procedures.

USAGE

For procedural languages, allows use of the language for the creation of functions in that language.
This is the only type of privilege that is applicable to procedural languages.

For schemas, allows access to objects contained in the schema (assuming that the objects' own
privilege requirements are also met). Essentially this allows the grantee to “look up” objects within
the schema. Without this permission, it is still possible to see the object names, e.g., by querying
system catalogs. Also, after revoking this permission, existing sessions might have statements that
have previously performed this lookup, so this is not a completely secure way to prevent object
access.

For sequences, allows use of the currval and nextval functions.

For types and domains, allows use of the type or domain in the creation of tables, functions, and other
schema objects. (Note that this privilege does not control all “usage” of the type, such as values of
the type appearing in queries. It only prevents objects from being created that depend on the type.
The main purpose of this privilege is controlling which users can create dependencies on a type,
which could prevent the owner from changing the type later.)

For foreign-data wrappers, allows creation of new servers using the foreign-data wrapper.

For foreign servers, allows creation of foreign tables using the server. Grantees may also create,
alter, or drop their own user mappings associated with that server.

The privileges required by other commands are listed on the reference page of the respective command.

Postgres Pro grants privileges on some types of objects to PUBLIC by default when the objects are
created. No privileges are granted to PUBLIC by default on tables, table columns, sequences, foreign data
wrappers, foreign servers, large objects, schemas, or tablespaces. For other types of objects, the default
privileges granted to PUBLIC are as follows: CONNECT and TEMPORARY (create temporary tables) privileges
for databases; EXECUTE privilege for functions and procedures; and USAGE privilege for languages and
data types (including domains). The object owner can, of course, REVOKE both default and expressly
granted privileges. (For maximum security, issue the REVOKE in the same transaction that creates the
object; then there is no window in which another user can use the object.) Also, these default privilege
settings can be overridden using the ALTER DEFAULT PRIVILEGES command.

Table 5.1 shows the one-letter abbreviations that are used for these privilege types in ACL (Access
Control List) values. You will see these letters in the output of the psql commands listed below, or when
looking at ACL columns of system catalogs.

Table 5.1. ACL Privilege Abbreviations

Privilege Abbreviation Applicable Object Types
SELECT r (“read”) LARGE OBJECT, SEQUENCE, TABLE (and table-like

objects), table column
INSERT a (“append”) TABLE, table column
UPDATE w (“write”) LARGE OBJECT, SEQUENCE, TABLE, table column

58

Data Definition

Privilege Abbreviation Applicable Object Types
DELETE d TABLE

TRUNCATE D TABLE

REFERENCES x TABLE, table column
TRIGGER t TABLE

CREATE C DATABASE, SCHEMA, TABLESPACE
CONNECT c DATABASE

TEMPORARY T DATABASE

EXECUTE X FUNCTION, PROCEDURE
USAGE U DOMAIN, FOREIGN DATA WRAPPER, FOREIGN SERVER,

 LANGUAGE, SCHEMA, SEQUENCE, TYPE

Table 5.2 summarizes the privileges available for each type of SQL object, using the abbreviations shown
above. It also shows the psql command that can be used to examine privilege settings for each object
type.

Table 5.2. Summary of Access Privileges

Object Type All Privileges Default PUBLIC
Privileges

psql Command

DATABASE CTc Tc \l

DOMAIN U U \dD+

FUNCTION or PROCEDURE X X \df+

FOREIGN DATA WRAPPER U none \dew+

FOREIGN SERVER U none \des+

LANGUAGE U U \dL+

LARGE OBJECT rw none
SCHEMA UC none \dn+

SEQUENCE rwU none \dp

TABLE (and table-like objects) arwdDxt none \dp

Table column arwx none \dp

TABLESPACE C none \db+

TYPE U U \dT+

The privileges that have been granted for a particular object are displayed as a list of aclitem entries,
where each aclitem describes the permissions of one grantee that have been granted by a particular
grantor. For example, calvin=r*w/hobbes specifies that the role calvin has the privilege SELECT (r)
with grant option (*) as well as the non-grantable privilege UPDATE (w), both granted by the role hobbes.
If calvin also has some privileges on the same object granted by a different grantor, those would appear
as a separate aclitem entry. An empty grantee field in an aclitem stands for PUBLIC.

As an example, suppose that user miriam creates table mytable and does:
GRANT SELECT ON mytable TO PUBLIC;
GRANT SELECT, UPDATE, INSERT ON mytable TO admin;
GRANT SELECT (col1), UPDATE (col1) ON mytable TO miriam_rw;

Then psql's \dp command would show:
=> \dp mytable
 Access privileges
 Schema | Name | Type | Access privileges | Column privileges | Policies

59

Data Definition

--------+---------+-------+-----------------------+-----------------------+----------
 public | mytable | table | miriam=arwdDxt/miriam+| col1: +|
 | | | =r/miriam +| miriam_rw=rw/miriam |
 | | | admin=arw/miriam | |
(1 row)

If the “Access privileges” column is empty for a given object, it means the object has default privileges
(that is, its privileges entry in the relevant system catalog is null). Default privileges always include all
privileges for the owner, and can include some privileges for PUBLIC depending on the object type, as
explained above. The first GRANT or REVOKE on an object will instantiate the default privileges (producing,
for example, miriam=arwdDxt/miriam) and then modify them per the specified request. Similarly, entries
are shown in “Column privileges” only for columns with nondefault privileges. (Note: for this purpose,
“default privileges” always means the built-in default privileges for the object's type. An object whose
privileges have been affected by an ALTER DEFAULT PRIVILEGES command will always be shown with
an explicit privilege entry that includes the effects of the ALTER.)

Notice that the owner's implicit grant options are not marked in the access privileges display. A * will
appear only when grant options have been explicitly granted to someone.

5.8. Row Security Policies
In addition to the SQL-standard privilege system available through GRANT, tables can have row security
policies that restrict, on a per-user basis, which rows can be returned by normal queries or inserted,
updated, or deleted by data modification commands. This feature is also known as Row-Level Security.
By default, tables do not have any policies, so that if a user has access privileges to a table according to
the SQL privilege system, all rows within it are equally available for querying or updating.

When row security is enabled on a table (with ALTER TABLE ... ENABLE ROW LEVEL SECURITY), all
normal access to the table for selecting rows or modifying rows must be allowed by a row security policy.
(However, the table's owner is typically not subject to row security policies.) If no policy exists for the
table, a default-deny policy is used, meaning that no rows are visible or can be modified. Operations that
apply to the whole table, such as TRUNCATE and REFERENCES, are not subject to row security.

Row security policies can be specific to commands, or to roles, or to both. A policy can be specified to
apply to ALL commands, or to SELECT, INSERT, UPDATE, or DELETE. Multiple roles can be assigned to a
given policy, and normal role membership and inheritance rules apply.

To specify which rows are visible or modifiable according to a policy, an expression is required that
returns a Boolean result. This expression will be evaluated for each row prior to any conditions or
functions coming from the user's query. (The only exceptions to this rule are leakproof functions, which
are guaranteed to not leak information; the optimizer may choose to apply such functions ahead of the
row-security check.) Rows for which the expression does not return true will not be processed. Separate
expressions may be specified to provide independent control over the rows which are visible and the
rows which are allowed to be modified. Policy expressions are run as part of the query and with the
privileges of the user running the query, although security-definer functions can be used to access data
not available to the calling user.

Superusers and roles with the BYPASSRLS attribute always bypass the row security system when
accessing a table. Table owners normally bypass row security as well, though a table owner can choose
to be subject to row security with ALTER TABLE ... FORCE ROW LEVEL SECURITY.

Enabling and disabling row security, as well as adding policies to a table, is always the privilege of the
table owner only.

Policies are created using the CREATE POLICY command, altered using the ALTER POLICY command,
and dropped using the DROP POLICY command. To enable and disable row security for a given table,
use the ALTER TABLE command.

Each policy has a name and multiple policies can be defined for a table. As policies are table-specific,
each policy for a table must have a unique name. Different tables may have policies with the same name.

60

Data Definition

When multiple policies apply to a given query, they are combined using either OR (for permissive policies,
which are the default) or using AND (for restrictive policies). This is similar to the rule that a given role
has the privileges of all roles that they are a member of. Permissive vs. restrictive policies are discussed
further below.

As a simple example, here is how to create a policy on the account relation to allow only members of
the managers role to access rows, and only rows of their accounts:

CREATE TABLE accounts (manager text, company text, contact_email text);

ALTER TABLE accounts ENABLE ROW LEVEL SECURITY;

CREATE POLICY account_managers ON accounts TO managers
 USING (manager = current_user);

The policy above implicitly provides a WITH CHECK clause identical to its USING clause, so that the
constraint applies both to rows selected by a command (so a manager cannot SELECT, UPDATE, or DELETE
existing rows belonging to a different manager) and to rows modified by a command (so rows belonging
to a different manager cannot be created via INSERT or UPDATE).

If no role is specified, or the special user name PUBLIC is used, then the policy applies to all users on the
system. To allow all users to access only their own row in a users table, a simple policy can be used:

CREATE POLICY user_policy ON users
 USING (user_name = current_user);

This works similarly to the previous example.

To use a different policy for rows that are being added to the table compared to those rows that are
visible, multiple policies can be combined. This pair of policies would allow all users to view all rows in
the users table, but only modify their own:

CREATE POLICY user_sel_policy ON users
 FOR SELECT
 USING (true);
CREATE POLICY user_mod_policy ON users
 USING (user_name = current_user);

In a SELECT command, these two policies are combined using OR, with the net effect being that all rows
can be selected. In other command types, only the second policy applies, so that the effects are the
same as before.

Row security can also be disabled with the ALTER TABLE command. Disabling row security does not
remove any policies that are defined on the table; they are simply ignored. Then all rows in the table are
visible and modifiable, subject to the standard SQL privileges system.

Below is a larger example of how this feature can be used in production environments. The table passwd
emulates a Unix password file:

-- Simple passwd-file based example
CREATE TABLE passwd (
 user_name text UNIQUE NOT NULL,
 pwhash text,
 uid int PRIMARY KEY,
 gid int NOT NULL,
 real_name text NOT NULL,
 home_phone text,
 extra_info text,
 home_dir text NOT NULL,
 shell text NOT NULL
);

61

Data Definition

CREATE ROLE admin; -- Administrator
CREATE ROLE bob; -- Normal user
CREATE ROLE alice; -- Normal user

-- Populate the table
INSERT INTO passwd VALUES
 ('admin','xxx',0,0,'Admin','111-222-3333',null,'/root','/bin/dash');
INSERT INTO passwd VALUES
 ('bob','xxx',1,1,'Bob','123-456-7890',null,'/home/bob','/bin/zsh');
INSERT INTO passwd VALUES
 ('alice','xxx',2,1,'Alice','098-765-4321',null,'/home/alice','/bin/zsh');

-- Be sure to enable row level security on the table
ALTER TABLE passwd ENABLE ROW LEVEL SECURITY;

-- Create policies
-- Administrator can see all rows and add any rows
CREATE POLICY admin_all ON passwd TO admin USING (true) WITH CHECK (true);
-- Normal users can view all rows
CREATE POLICY all_view ON passwd FOR SELECT USING (true);
-- Normal users can update their own records, but
-- limit which shells a normal user is allowed to set
CREATE POLICY user_mod ON passwd FOR UPDATE
 USING (current_user = user_name)
 WITH CHECK (
 current_user = user_name AND
 shell IN ('/bin/bash','/bin/sh','/bin/dash','/bin/zsh','/bin/tcsh')
);

-- Allow admin all normal rights
GRANT SELECT, INSERT, UPDATE, DELETE ON passwd TO admin;
-- Users only get select access on public columns
GRANT SELECT
 (user_name, uid, gid, real_name, home_phone, extra_info, home_dir, shell)
 ON passwd TO public;
-- Allow users to update certain columns
GRANT UPDATE
 (pwhash, real_name, home_phone, extra_info, shell)
 ON passwd TO public;

As with any security settings, it's important to test and ensure that the system is behaving as expected.
Using the example above, this demonstrates that the permission system is working properly.

-- admin can view all rows and fields
postgres=> set role admin;
SET
postgres=> table passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
 shell
-----------+--------+-----+-----+-----------+--------------+------------+-------------
+-----------
 admin | xxx | 0 | 0 | Admin | 111-222-3333 | | /root
 | /bin/dash
 bob | xxx | 1 | 1 | Bob | 123-456-7890 | | /home/bob
 | /bin/zsh
 alice | xxx | 2 | 1 | Alice | 098-765-4321 | | /home/alice
 | /bin/zsh
(3 rows)

62

Data Definition

-- Test what Alice is able to do
postgres=> set role alice;
SET
postgres=> table passwd;
ERROR: permission denied for relation passwd
postgres=> select user_name,real_name,home_phone,extra_info,home_dir,shell from passwd;
 user_name | real_name | home_phone | extra_info | home_dir | shell
-----------+-----------+--------------+------------+-------------+-----------
 admin | Admin | 111-222-3333 | | /root | /bin/dash
 bob | Bob | 123-456-7890 | | /home/bob | /bin/zsh
 alice | Alice | 098-765-4321 | | /home/alice | /bin/zsh
(3 rows)

postgres=> update passwd set user_name = 'joe';
ERROR: permission denied for relation passwd
-- Alice is allowed to change her own real_name, but no others
postgres=> update passwd set real_name = 'Alice Doe';
UPDATE 1
postgres=> update passwd set real_name = 'John Doe' where user_name = 'admin';
UPDATE 0
postgres=> update passwd set shell = '/bin/xx';
ERROR: new row violates WITH CHECK OPTION for "passwd"
postgres=> delete from passwd;
ERROR: permission denied for relation passwd
postgres=> insert into passwd (user_name) values ('xxx');
ERROR: permission denied for relation passwd
-- Alice can change her own password; RLS silently prevents updating other rows
postgres=> update passwd set pwhash = 'abc';
UPDATE 1

All of the policies constructed thus far have been permissive policies, meaning that when multiple
policies are applied they are combined using the “OR” Boolean operator. While permissive policies
can be constructed to only allow access to rows in the intended cases, it can be simpler to combine
permissive policies with restrictive policies (which the records must pass and which are combined using
the “AND” Boolean operator). Building on the example above, we add a restrictive policy to require the
administrator to be connected over a local Unix socket to access the records of the passwd table:

CREATE POLICY admin_local_only ON passwd AS RESTRICTIVE TO admin
 USING (pg_catalog.inet_client_addr() IS NULL);

We can then see that an administrator connecting over a network will not see any records, due to the
restrictive policy:

=> SELECT current_user;
 current_user

 admin
(1 row)

=> select inet_client_addr();
 inet_client_addr

 127.0.0.1
(1 row)

=> SELECT current_user;
 current_user

63

Data Definition

 admin
(1 row)

=> TABLE passwd;
 user_name | pwhash | uid | gid | real_name | home_phone | extra_info | home_dir |
 shell
-----------+--------+-----+-----+-----------+------------+------------+----------
+-------
(0 rows)

=> UPDATE passwd set pwhash = NULL;
UPDATE 0

Referential integrity checks, such as unique or primary key constraints and foreign key references,
always bypass row security to ensure that data integrity is maintained. Care must be taken when
developing schemas and row level policies to avoid “covert channel” leaks of information through such
referential integrity checks.

In some contexts it is important to be sure that row security is not being applied. For example, when
taking a backup, it could be disastrous if row security silently caused some rows to be omitted from the
backup. In such a situation, you can set the row_security configuration parameter to off. This does not
in itself bypass row security; what it does is throw an error if any query's results would get filtered by
a policy. The reason for the error can then be investigated and fixed.

In the examples above, the policy expressions consider only the current values in the row to be accessed
or updated. This is the simplest and best-performing case; when possible, it's best to design row
security applications to work this way. If it is necessary to consult other rows or other tables to make a
policy decision, that can be accomplished using sub-SELECTs, or functions that contain SELECTs, in the
policy expressions. Be aware however that such accesses can create race conditions that could allow
information leakage if care is not taken. As an example, consider the following table design:

-- definition of privilege groups
CREATE TABLE groups (group_id int PRIMARY KEY,
 group_name text NOT NULL);

INSERT INTO groups VALUES
 (1, 'low'),
 (2, 'medium'),
 (5, 'high');

GRANT ALL ON groups TO alice; -- alice is the administrator
GRANT SELECT ON groups TO public;

-- definition of users' privilege levels
CREATE TABLE users (user_name text PRIMARY KEY,
 group_id int NOT NULL REFERENCES groups);

INSERT INTO users VALUES
 ('alice', 5),
 ('bob', 2),
 ('mallory', 2);

GRANT ALL ON users TO alice;
GRANT SELECT ON users TO public;

-- table holding the information to be protected
CREATE TABLE information (info text,
 group_id int NOT NULL REFERENCES groups);

64

Data Definition

INSERT INTO information VALUES
 ('barely secret', 1),
 ('slightly secret', 2),
 ('very secret', 5);

ALTER TABLE information ENABLE ROW LEVEL SECURITY;

-- a row should be visible to/updatable by users whose security group_id is
-- greater than or equal to the row's group_id
CREATE POLICY fp_s ON information FOR SELECT
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));
CREATE POLICY fp_u ON information FOR UPDATE
 USING (group_id <= (SELECT group_id FROM users WHERE user_name = current_user));

-- we rely only on RLS to protect the information table
GRANT ALL ON information TO public;

Now suppose that alice wishes to change the “slightly secret” information, but decides that mallory
should not be trusted with the new content of that row, so she does:

BEGIN;
UPDATE users SET group_id = 1 WHERE user_name = 'mallory';
UPDATE information SET info = 'secret from mallory' WHERE group_id = 2;
COMMIT;

That looks safe; there is no window wherein mallory should be able to see the “secret from mallory”
string. However, there is a race condition here. If mallory is concurrently doing, say,
SELECT * FROM information WHERE group_id = 2 FOR UPDATE;

and her transaction is in READ COMMITTED mode, it is possible for her to see “secret from mallory”. That
happens if her transaction reaches the information row just after alice's does. It blocks waiting for
alice's transaction to commit, then fetches the updated row contents thanks to the FOR UPDATE clause.
However, it does not fetch an updated row for the implicit SELECT from users, because that sub-SELECT
did not have FOR UPDATE; instead the users row is read with the snapshot taken at the start of the query.
Therefore, the policy expression tests the old value of mallory's privilege level and allows her to see
the updated row.

There are several ways around this problem. One simple answer is to use SELECT ... FOR SHARE in
sub-SELECTs in row security policies. However, that requires granting UPDATE privilege on the referenced
table (here users) to the affected users, which might be undesirable. (But another row security policy
could be applied to prevent them from actually exercising that privilege; or the sub-SELECT could be
embedded into a security definer function.) Also, heavy concurrent use of row share locks on the
referenced table could pose a performance problem, especially if updates of it are frequent. Another
solution, practical if updates of the referenced table are infrequent, is to take an ACCESS EXCLUSIVE lock
on the referenced table when updating it, so that no concurrent transactions could be examining old
row values. Or one could just wait for all concurrent transactions to end after committing an update of
the referenced table and before making changes that rely on the new security situation.

For additional details see CREATE POLICY and ALTER TABLE.

5.9. Schemas
A Postgres Pro database cluster contains one or more named databases. Roles and a few other object
types are shared across the entire cluster. A client connection to the server can only access data in a
single database, the one specified in the connection request.

Note
Users of a cluster do not necessarily have the privilege to access every database in the cluster.
Sharing of role names means that there cannot be different roles named, say, joe in two databases

65

Data Definition

in the same cluster; but the system can be configured to allow joe access to only some of the
databases.

A database contains one or more named schemas, which in turn contain tables. Schemas also contain
other kinds of named objects, including data types, functions, and operators. The same object name
can be used in different schemas without conflict; for example, both schema1 and myschema can contain
tables named mytable. Unlike databases, schemas are not rigidly separated: a user can access objects
in any of the schemas in the database they are connected to, if they have privileges to do so.

There are several reasons why one might want to use schemas:

• To allow many users to use one database without interfering with each other.

• To organize database objects into logical groups to make them more manageable.

• Third-party applications can be put into separate schemas so they do not collide with the names of
other objects.

Schemas are analogous to directories at the operating system level, except that schemas cannot be
nested.

5.9.1. Creating a Schema
To create a schema, use the CREATE SCHEMA command. Give the schema a name of your choice. For
example:

CREATE SCHEMA myschema;

To create or access objects in a schema, write a qualified name consisting of the schema name and table
name separated by a dot:

schema.table

This works anywhere a table name is expected, including the table modification commands and the data
access commands discussed in the following chapters. (For brevity we will speak of tables only, but the
same ideas apply to other kinds of named objects, such as types and functions.)

Actually, the even more general syntax

database.schema.table

can be used too, but at present this is just for pro forma compliance with the SQL standard. If you write
a database name, it must be the same as the database you are connected to.

So to create a table in the new schema, use:

CREATE TABLE myschema.mytable (
 ...
);

To drop a schema if it's empty (all objects in it have been dropped), use:

DROP SCHEMA myschema;

To drop a schema including all contained objects, use:

DROP SCHEMA myschema CASCADE;

See Section 5.14 for a description of the general mechanism behind this.

Often you will want to create a schema owned by someone else (since this is one of the ways to restrict
the activities of your users to well-defined namespaces). The syntax for that is:

CREATE SCHEMA schema_name AUTHORIZATION user_name;

66

Data Definition

You can even omit the schema name, in which case the schema name will be the same as the user name.
See Section 5.9.6 for how this can be useful.

Schema names beginning with pg_ are reserved for system purposes and cannot be created by users.

5.9.2. The Public Schema
In the previous sections we created tables without specifying any schema names. By default such tables
(and other objects) are automatically put into a schema named “public”. Every new database contains
such a schema. Thus, the following are equivalent:
CREATE TABLE products (...);

and:
CREATE TABLE public.products (...);

5.9.3. The Schema Search Path
Qualified names are tedious to write, and it's often best not to wire a particular schema name into
applications anyway. Therefore tables are often referred to by unqualified names, which consist of just
the table name. The system determines which table is meant by following a search path, which is a list
of schemas to look in. The first matching table in the search path is taken to be the one wanted. If there
is no match in the search path, an error is reported, even if matching table names exist in other schemas
in the database.

The ability to create like-named objects in different schemas complicates writing a query that references
precisely the same objects every time. It also opens up the potential for users to change the behavior of
other users' queries, maliciously or accidentally. Due to the prevalence of unqualified names in queries
and their use in Postgres Pro internals, adding a schema to search_path effectively trusts all users
having CREATE privilege on that schema. When you run an ordinary query, a malicious user able to create
objects in a schema of your search path can take control and execute arbitrary SQL functions as though
you executed them.

The first schema named in the search path is called the current schema. Aside from being the first
schema searched, it is also the schema in which new tables will be created if the CREATE TABLE command
does not specify a schema name.

To show the current search path, use the following command:
SHOW search_path;

In the default setup this returns:
 search_path

 "$user", public

The first element specifies that a schema with the same name as the current user is to be searched. If
no such schema exists, the entry is ignored. The second element refers to the public schema that we
have seen already.

The first schema in the search path that exists is the default location for creating new objects. That is
the reason that by default objects are created in the public schema. When objects are referenced in any
other context without schema qualification (table modification, data modification, or query commands)
the search path is traversed until a matching object is found. Therefore, in the default configuration,
any unqualified access again can only refer to the public schema.

To put our new schema in the path, we use:
SET search_path TO myschema,public;

(We omit the $user here because we have no immediate need for it.) And then we can access the table
without schema qualification:

67

Data Definition

DROP TABLE mytable;

Also, since myschema is the first element in the path, new objects would by default be created in it.

We could also have written:

SET search_path TO myschema;

Then we no longer have access to the public schema without explicit qualification. There is nothing
special about the public schema except that it exists by default. It can be dropped, too.

See also Section 9.26 for other ways to manipulate the schema search path.

The search path works in the same way for data type names, function names, and operator names as it
does for table names. Data type and function names can be qualified in exactly the same way as table
names. If you need to write a qualified operator name in an expression, there is a special provision:
you must write

OPERATOR(schema.operator)

This is needed to avoid syntactic ambiguity. An example is:

SELECT 3 OPERATOR(pg_catalog.+) 4;

In practice one usually relies on the search path for operators, so as not to have to write anything so
ugly as that.

5.9.4. Schemas and Privileges
By default, users cannot access any objects in schemas they do not own. To allow that, the owner of the
schema must grant the USAGE privilege on the schema. To allow users to make use of the objects in the
schema, additional privileges might need to be granted, as appropriate for the object.

A user can also be allowed to create objects in someone else's schema. To allow that, the CREATE privilege
on the schema needs to be granted. Note that by default, everyone has CREATE and USAGE privileges on
the schema public. This allows all users that are able to connect to a given database to create objects
in its public schema. Some usage patterns call for revoking that privilege:

REVOKE CREATE ON SCHEMA public FROM PUBLIC;

(The first “public” is the schema, the second “public” means “every user”. In the first sense it is an
identifier, in the second sense it is a key word, hence the different capitalization; recall the guidelines
from Section 4.1.1.)

5.9.5. The System Catalog Schema
In addition to public and user-created schemas, each database contains a pg_catalog schema, which
contains the system tables and all the built-in data types, functions, and operators. pg_catalog is always
effectively part of the search path. If it is not named explicitly in the path then it is implicitly searched
before searching the path's schemas. This ensures that built-in names will always be findable. However,
you can explicitly place pg_catalog at the end of your search path if you prefer to have user-defined
names override built-in names.

Since system table names begin with pg_, it is best to avoid such names to ensure that you won't suffer
a conflict if some future version defines a system table named the same as your table. (With the default
search path, an unqualified reference to your table name would then be resolved as the system table
instead.) System tables will continue to follow the convention of having names beginning with pg_, so
that they will not conflict with unqualified user-table names so long as users avoid the pg_ prefix.

5.9.6. Usage Patterns
Schemas can be used to organize your data in many ways. A secure schema usage pattern prevents
untrusted users from changing the behavior of other users' queries. When a database does not use a

68

Data Definition

secure schema usage pattern, users wishing to securely query that database would take protective action
at the beginning of each session. Specifically, they would begin each session by setting search_path to
the empty string or otherwise removing non-superuser-writable schemas from search_path. There are
a few usage patterns easily supported by the default configuration:

• Constrain ordinary users to user-private schemas. To implement this, issue REVOKE CREATE ON
SCHEMA public FROM PUBLIC, and create a schema for each user with the same name as that user.
Recall that the default search path starts with $user, which resolves to the user name. Therefore,
if each user has a separate schema, they access their own schemas by default. After adopting this
pattern in a database where untrusted users had already logged in, consider auditing the public
schema for objects named like objects in schema pg_catalog. This pattern is a secure schema
usage pattern unless an untrusted user is the database owner or holds the CREATEROLE privilege, in
which case no secure schema usage pattern exists.

• Remove the public schema from the default search path, by modifying postgresql.conf or by
issuing ALTER ROLE ALL SET search_path = "$user". Everyone retains the ability to create
objects in the public schema, but only qualified names will choose those objects. While qualified
table references are fine, calls to functions in the public schema will be unsafe or unreliable. If
you create functions or extensions in the public schema, use the first pattern instead. Otherwise,
like the first pattern, this is secure unless an untrusted user is the database owner or holds the
CREATEROLE privilege.

• Keep the default. All users access the public schema implicitly. This simulates the situation where
schemas are not available at all, giving a smooth transition from the non-schema-aware world.
However, this is never a secure pattern. It is acceptable only when the database has a single user
or a few mutually-trusting users.

For any pattern, to install shared applications (tables to be used by everyone, additional functions
provided by third parties, etc.), put them into separate schemas. Remember to grant appropriate
privileges to allow the other users to access them. Users can then refer to these additional objects by
qualifying the names with a schema name, or they can put the additional schemas into their search path,
as they choose.

5.9.7. Portability
In the SQL standard, the notion of objects in the same schema being owned by different users does not
exist. Moreover, some implementations do not allow you to create schemas that have a different name
than their owner. In fact, the concepts of schema and user are nearly equivalent in a database system
that implements only the basic schema support specified in the standard. Therefore, many users consider
qualified names to really consist of user_name.table_name. This is how Postgres Pro will effectively
behave if you create a per-user schema for every user.

Also, there is no concept of a public schema in the SQL standard. For maximum conformance to the
standard, you should not use the public schema.

Of course, some SQL database systems might not implement schemas at all, or provide namespace
support by allowing (possibly limited) cross-database access. If you need to work with those systems,
then maximum portability would be achieved by not using schemas at all.

5.10. Inheritance
Postgres Pro implements table inheritance, which can be a useful tool for database designers. (SQL:1999
and later define a type inheritance feature, which differs in many respects from the features described
here.)

Let's start with an example: suppose we are trying to build a data model for cities. Each state has many
cities, but only one capital. We want to be able to quickly retrieve the capital city for any particular state.
This can be done by creating two tables, one for state capitals and one for cities that are not capitals.
However, what happens when we want to ask for data about a city, regardless of whether it is a capital

69

Data Definition

or not? The inheritance feature can help to resolve this problem. We define the capitals table so that
it inherits from cities:

CREATE TABLE cities (
 name text,
 population float,
 elevation int -- in feet
);

CREATE TABLE capitals (
 state char(2)
) INHERITS (cities);

In this case, the capitals table inherits all the columns of its parent table, cities. State capitals also
have an extra column, state, that shows their state.

In Postgres Pro, a table can inherit from zero or more other tables, and a query can reference either all
rows of a table or all rows of a table plus all of its descendant tables. The latter behavior is the default.
For example, the following query finds the names of all cities, including state capitals, that are located
at an elevation over 500 feet:

SELECT name, elevation
 FROM cities
 WHERE elevation > 500;

Given the sample data from the Postgres Pro tutorial (see Section 2.1), this returns:

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953
 Madison | 845

On the other hand, the following query finds all the cities that are not state capitals and are situated
at an elevation over 500 feet:

SELECT name, elevation
 FROM ONLY cities
 WHERE elevation > 500;

 name | elevation
-----------+-----------
 Las Vegas | 2174
 Mariposa | 1953

Here the ONLY keyword indicates that the query should apply only to cities, and not any tables below
cities in the inheritance hierarchy. Many of the commands that we have already discussed — SELECT,
UPDATE and DELETE — support the ONLY keyword.

You can also write the table name with a trailing * to explicitly specify that descendant tables are
included:

SELECT name, elevation
 FROM cities*
 WHERE elevation > 500;

Writing * is not necessary, since this behavior is always the default. However, this syntax is still supported
for compatibility with older releases where the default could be changed.

In some cases you might wish to know which table a particular row originated from. There is a system
column called tableoid in each table which can tell you the originating table:

SELECT c.tableoid, c.name, c.elevation

70

Data Definition

FROM cities c
WHERE c.elevation > 500;

which returns:

 tableoid | name | elevation
----------+-----------+-----------
 139793 | Las Vegas | 2174
 139793 | Mariposa | 1953
 139798 | Madison | 845

(If you try to reproduce this example, you will probably get different numeric OIDs.) By doing a join with
pg_class you can see the actual table names:

SELECT p.relname, c.name, c.elevation
FROM cities c, pg_class p
WHERE c.elevation > 500 AND c.tableoid = p.oid;

which returns:

 relname | name | elevation
----------+-----------+-----------
 cities | Las Vegas | 2174
 cities | Mariposa | 1953
 capitals | Madison | 845

Another way to get the same effect is to use the regclass alias type, which will print the table OID
symbolically:

SELECT c.tableoid::regclass, c.name, c.elevation
FROM cities c
WHERE c.elevation > 500;

Inheritance does not automatically propagate data from INSERT or COPY commands to other tables in the
inheritance hierarchy. In our example, the following INSERT statement will fail:

INSERT INTO cities (name, population, elevation, state)
VALUES ('Albany', NULL, NULL, 'NY');

We might hope that the data would somehow be routed to the capitals table, but this does not happen:
INSERT always inserts into exactly the table specified. In some cases it is possible to redirect the insertion
using a rule (see Chapter 38). However that does not help for the above case because the cities table
does not contain the column state, and so the command will be rejected before the rule can be applied.

All check constraints and not-null constraints on a parent table are automatically inherited by its
children, unless explicitly specified otherwise with NO INHERIT clauses. Other types of constraints
(unique, primary key, and foreign key constraints) are not inherited.

A table can inherit from more than one parent table, in which case it has the union of the columns defined
by the parent tables. Any columns declared in the child table's definition are added to these. If the same
column name appears in multiple parent tables, or in both a parent table and the child's definition, then
these columns are “merged” so that there is only one such column in the child table. To be merged,
columns must have the same data types, else an error is raised. Inheritable check constraints and not-
null constraints are merged in a similar fashion. Thus, for example, a merged column will be marked not-
null if any one of the column definitions it came from is marked not-null. Check constraints are merged
if they have the same name, and the merge will fail if their conditions are different.

Table inheritance is typically established when the child table is created, using the INHERITS clause
of the CREATE TABLE statement. Alternatively, a table which is already defined in a compatible way
can have a new parent relationship added, using the INHERIT variant of ALTER TABLE. To do this the
new child table must already include columns with the same names and types as the columns of the
parent. It must also include check constraints with the same names and check expressions as those of
the parent. Similarly an inheritance link can be removed from a child using the NO INHERIT variant

71

Data Definition

of ALTER TABLE. Dynamically adding and removing inheritance links like this can be useful when the
inheritance relationship is being used for table partitioning (see Section 5.11).

One convenient way to create a compatible table that will later be made a new child is to use the LIKE
clause in CREATE TABLE. This creates a new table with the same columns as the source table. If there are
any CHECK constraints defined on the source table, the INCLUDING CONSTRAINTS option to LIKE should
be specified, as the new child must have constraints matching the parent to be considered compatible.

A parent table cannot be dropped while any of its children remain. Neither can columns or check
constraints of child tables be dropped or altered if they are inherited from any parent tables. If you wish
to remove a table and all of its descendants, one easy way is to drop the parent table with the CASCADE
option (see Section 5.14).

ALTER TABLE will propagate any changes in column data definitions and check constraints down the
inheritance hierarchy. Again, dropping columns that are depended on by other tables is only possible
when using the CASCADE option. ALTER TABLE follows the same rules for duplicate column merging and
rejection that apply during CREATE TABLE.

Inherited queries perform access permission checks on the parent table only. Thus, for example, granting
UPDATE permission on the cities table implies permission to update rows in the capitals table as well,
when they are accessed through cities. This preserves the appearance that the data is (also) in the
parent table. But the capitals table could not be updated directly without an additional grant. In a
similar way, the parent table's row security policies (see Section 5.8) are applied to rows coming from
child tables during an inherited query. A child table's policies, if any, are applied only when it is the table
explicitly named in the query; and in that case, any policies attached to its parent(s) are ignored.

Foreign tables (see Section 5.12) can also be part of inheritance hierarchies, either as parent or child
tables, just as regular tables can be. If a foreign table is part of an inheritance hierarchy then any
operations not supported by the foreign table are not supported on the whole hierarchy either.

5.10.1. Caveats
Note that not all SQL commands are able to work on inheritance hierarchies. Commands that are used
for data querying, data modification, or schema modification (e.g., SELECT, UPDATE, DELETE, most variants
of ALTER TABLE, but not INSERT or ALTER TABLE ... RENAME) typically default to including child tables
and support the ONLY notation to exclude them. Commands that do database maintenance and tuning
(e.g., REINDEX, VACUUM) typically only work on individual, physical tables and do not support recursing
over inheritance hierarchies. The respective behavior of each individual command is documented in its
reference page (SQL Commands).

A serious limitation of the inheritance feature is that indexes (including unique constraints) and foreign
key constraints only apply to single tables, not to their inheritance children. This is true on both the
referencing and referenced sides of a foreign key constraint. Thus, in the terms of the above example:

• If we declared cities.name to be UNIQUE or a PRIMARY KEY, this would not stop the capitals
table from having rows with names duplicating rows in cities. And those duplicate rows would
by default show up in queries from cities. In fact, by default capitals would have no unique
constraint at all, and so could contain multiple rows with the same name. You could add a unique
constraint to capitals, but this would not prevent duplication compared to cities.

• Similarly, if we were to specify that cities.name REFERENCES some other table, this constraint
would not automatically propagate to capitals. In this case you could work around it by manually
adding the same REFERENCES constraint to capitals.

• Specifying that another table's column REFERENCES cities(name) would allow the other table to
contain city names, but not capital names. There is no good workaround for this case.

Some functionality not implemented for inheritance hierarchies is implemented for declarative
partitioning. Considerable care is needed in deciding whether partitioning with legacy inheritance is
useful for your application.

72

Data Definition

5.11. Table Partitioning
Postgres Pro supports basic table partitioning. This section describes why and how to implement
partitioning as part of your database design.

5.11.1. Overview
Partitioning refers to splitting what is logically one large table into smaller physical pieces. Partitioning
can provide several benefits:
• Query performance can be improved dramatically in certain situations, particularly when most

of the heavily accessed rows of the table are in a single partition or a small number of partitions.
Partitioning effectively substitutes for the upper tree levels of indexes, making it more likely that
the heavily-used parts of the indexes fit in memory.

• When queries or updates access a large percentage of a single partition, performance can be
improved by using a sequential scan of that partition instead of using an index, which would
require random-access reads scattered across the whole table.

• Bulk loads and deletes can be accomplished by adding or removing partitions, if the usage pattern
is accounted for in the partitioning design. Dropping an individual partition using DROP TABLE, or
doing ALTER TABLE DETACH PARTITION, is far faster than a bulk operation. These commands also
entirely avoid the VACUUM overhead caused by a bulk DELETE.

• Seldom-used data can be migrated to cheaper and slower storage media.
These benefits will normally be worthwhile only when a table would otherwise be very large. The exact
point at which a table will benefit from partitioning depends on the application, although a rule of thumb
is that the size of the table should exceed the physical memory of the database server.

Postgres Pro offers built-in support for the following forms of partitioning:
Range Partitioning

The table is partitioned into “ranges” defined by a key column or set of columns, with no overlap
between the ranges of values assigned to different partitions. For example, one might partition by
date ranges, or by ranges of identifiers for particular business objects. Each range's bounds are
understood as being inclusive at the lower end and exclusive at the upper end. For example, if one
partition's range is from 1 to 10, and the next one's range is from 10 to 20, then value 10 belongs
to the second partition not the first.

List Partitioning
The table is partitioned by explicitly listing which key value(s) appear in each partition.

Hash Partitioning
The table is partitioned by specifying a modulus and a remainder for each partition. Each partition
will hold the rows for which the hash value of the partition key divided by the specified modulus will
produce the specified remainder.

If your application needs to use other forms of partitioning not listed above, alternative methods such
as inheritance and UNION ALL views can be used instead. Such methods offer flexibility but do not have
some of the performance benefits of built-in declarative partitioning.

5.11.2. Declarative Partitioning
Postgres Pro allows you to declare that a table is divided into partitions. The table that is divided is
referred to as a partitioned table. The declaration includes the partitioning method as described above,
plus a list of columns or expressions to be used as the partition key.

The partitioned table itself is a “virtual” table having no storage of its own. Instead, the storage belongs
to partitions, which are otherwise-ordinary tables associated with the partitioned table. Each partition
stores a subset of the data as defined by its partition bounds. All rows inserted into a partitioned table

73

Data Definition

will be routed to the appropriate one of the partitions based on the values of the partition key column(s).
Updating the partition key of a row will cause it to be moved into a different partition if it no longer
satisfies the partition bounds of its original partition.

Partitions may themselves be defined as partitioned tables, resulting in sub-partitioning. Although all
partitions must have the same columns as their partitioned parent, partitions may have their own
indexes, constraints and default values, distinct from those of other partitions. See CREATE TABLE for
more details on creating partitioned tables and partitions.

It is not possible to turn a regular table into a partitioned table or vice versa. However, it is possible to add
an existing regular or partitioned table as a partition of a partitioned table, or remove a partition from
a partitioned table turning it into a standalone table; this can simplify and speed up many maintenance
processes. See ALTER TABLE to learn more about the ATTACH PARTITION and DETACH PARTITION sub-
commands.

Partitions can also be foreign tables, although considerable care is needed because it is then the user's
responsibility that the contents of the foreign table satisfy the partitioning rule. There are some other
restrictions as well. See CREATE FOREIGN TABLE for more information.

5.11.2.1. Example
Suppose we are constructing a database for a large ice cream company. The company measures peak
temperatures every day as well as ice cream sales in each region. Conceptually, we want a table like:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

We know that most queries will access just the last week's, month's or quarter's data, since the main use
of this table will be to prepare online reports for management. To reduce the amount of old data that
needs to be stored, we decide to keep only the most recent 3 years worth of data. At the beginning of
each month we will remove the oldest month's data. In this situation we can use partitioning to help us
meet all of our different requirements for the measurements table.

To use declarative partitioning in this case, use the following steps:
1. Create the measurement table as a partitioned table by specifying the PARTITION BY clause, which

includes the partitioning method (RANGE in this case) and the list of column(s) to use as the partition
key.

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

2. Create partitions. Each partition's definition must specify bounds that correspond to the partitioning
method and partition key of the parent. Note that specifying bounds such that the new partition's
values would overlap with those in one or more existing partitions will cause an error.

Partitions thus created are in every way normal Postgres Pro tables (or, possibly, foreign tables). It is
possible to specify a tablespace and storage parameters for each partition separately.

For our example, each partition should hold one month's worth of data, to match the requirement of
deleting one month's data at a time. So the commands might look like:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01');

74

Data Definition

CREATE TABLE measurement_y2006m03 PARTITION OF measurement
 FOR VALUES FROM ('2006-03-01') TO ('2006-04-01');

...
CREATE TABLE measurement_y2007m11 PARTITION OF measurement
 FOR VALUES FROM ('2007-11-01') TO ('2007-12-01');

CREATE TABLE measurement_y2007m12 PARTITION OF measurement
 FOR VALUES FROM ('2007-12-01') TO ('2008-01-01')
 TABLESPACE fasttablespace;

CREATE TABLE measurement_y2008m01 PARTITION OF measurement
 FOR VALUES FROM ('2008-01-01') TO ('2008-02-01')
 WITH (parallel_workers = 4)
 TABLESPACE fasttablespace;

(Recall that adjacent partitions can share a bound value, since range upper bounds are treated as
exclusive bounds.)

If you wish to implement sub-partitioning, again specify the PARTITION BY clause in the commands
used to create individual partitions, for example:

CREATE TABLE measurement_y2006m02 PARTITION OF measurement
 FOR VALUES FROM ('2006-02-01') TO ('2006-03-01')
 PARTITION BY RANGE (peaktemp);

After creating partitions of measurement_y2006m02, any data inserted into measurement that is
mapped to measurement_y2006m02 (or data that is directly inserted into measurement_y2006m02,
which is allowed provided its partition constraint is satisfied) will be further redirected to one of its
partitions based on the peaktemp column. The partition key specified may overlap with the parent's
partition key, although care should be taken when specifying the bounds of a sub-partition such that
the set of data it accepts constitutes a subset of what the partition's own bounds allow; the system
does not try to check whether that's really the case.

Inserting data into the parent table that does not map to one of the existing partitions will cause an
error; an appropriate partition must be added manually.

It is not necessary to manually create table constraints describing the partition boundary conditions
for partitions. Such constraints will be created automatically.

3. Create an index on the key column(s), as well as any other indexes you might want, on the partitioned
table. (The key index is not strictly necessary, but in most scenarios it is helpful.) This automatically
creates a matching index on each partition, and any partitions you create or attach later will also have
such an index. An index or unique constraint declared on a partitioned table is “virtual” in the same
way that the partitioned table is: the actual data is in child indexes on the individual partition tables.

CREATE INDEX ON measurement (logdate);
4. Ensure that the enable_partition_pruning configuration parameter is not disabled in

postgresql.conf. If it is, queries will not be optimized as desired.

In the above example we would be creating a new partition each month, so it might be wise to write a
script that generates the required DDL automatically.

5.11.2.2. Partition Maintenance
Normally the set of partitions established when initially defining the table is not intended to remain
static. It is common to want to remove partitions holding old data and periodically add new partitions for
new data. One of the most important advantages of partitioning is precisely that it allows this otherwise
painful task to be executed nearly instantaneously by manipulating the partition structure, rather than
physically moving large amounts of data around.

The simplest option for removing old data is to drop the partition that is no longer necessary:

75

Data Definition

DROP TABLE measurement_y2006m02;

This can very quickly delete millions of records because it doesn't have to individually delete every
record. Note however that the above command requires taking an ACCESS EXCLUSIVE lock on the parent
table.

Another option that is often preferable is to remove the partition from the partitioned table but retain
access to it as a table in its own right:
ALTER TABLE measurement DETACH PARTITION measurement_y2006m02;

This allows further operations to be performed on the data before it is dropped. For example, this is
often a useful time to back up the data using COPY, pg_dump, or similar tools. It might also be a useful
time to aggregate data into smaller formats, perform other data manipulations, or run reports.

Similarly we can add a new partition to handle new data. We can create an empty partition in the
partitioned table just as the original partitions were created above:
CREATE TABLE measurement_y2008m02 PARTITION OF measurement
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01')
 TABLESPACE fasttablespace;

As an alternative, it is sometimes more convenient to create the new table outside the partition structure,
and make it a proper partition later. This allows new data to be loaded, checked, and transformed prior
to it appearing in the partitioned table. The CREATE TABLE ... LIKE option is helpful to avoid tediously
repeating the parent table's definition:
CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS)
 TABLESPACE fasttablespace;

ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');

\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work

ALTER TABLE measurement ATTACH PARTITION measurement_y2008m02
 FOR VALUES FROM ('2008-02-01') TO ('2008-03-01');

The ATTACH PARTITION command requires taking a SHARE UPDATE EXCLUSIVE lock on the partitioned
table.

Before running the ATTACH PARTITION command, it is recommended to create a CHECK constraint on
the table to be attached that matches the expected partition constraint, as illustrated above. That way,
the system will be able to skip the scan which is otherwise needed to validate the implicit partition
constraint. Without the CHECK constraint, the table will be scanned to validate the partition constraint
while holding an ACCESS EXCLUSIVE lock on that partition. It is recommended to drop the now-redundant
CHECK constraint after the ATTACH PARTITION is complete. If the table being attached is itself a partitioned
table, then each of its sub-partitions will be recursively locked and scanned until either a suitable CHECK
constraint is encountered or the leaf partitions are reached.

Similarly, if the partitioned table has a DEFAULT partition, it is recommended to create a CHECK constraint
which excludes the to-be-attached partition's constraint. If this is not done then the DEFAULT partition will
be scanned to verify that it contains no records which should be located in the partition being attached.
This operation will be performed whilst holding an ACCESS EXCLUSIVE lock on the DEFAULT partition. If
the DEFAULT partition is itself a partitioned table, then each of its partitions will be recursively checked
in the same way as the table being attached, as mentioned above.

As explained above, it is possible to create indexes on partitioned tables so that they are applied
automatically to the entire hierarchy. This is very convenient, as not only will the existing partitions
become indexed, but also any partitions that are created in the future will. One limitation is that it's not

76

Data Definition

possible to use the CONCURRENTLY qualifier when creating such a partitioned index. To avoid long lock
times, it is possible to use CREATE INDEX ON ONLY the partitioned table; such an index is marked invalid,
and the partitions do not get the index applied automatically. The indexes on partitions can be created
individually using CONCURRENTLY, and then attached to the index on the parent using ALTER INDEX ..
ATTACH PARTITION. Once indexes for all partitions are attached to the parent index, the parent index
is marked valid automatically. Example:

CREATE INDEX measurement_usls_idx ON ONLY measurement (unitsales);

CREATE INDEX measurement_usls_200602_idx
 ON measurement_y2006m02 (unitsales);
ALTER INDEX measurement_usls_idx
 ATTACH PARTITION measurement_usls_200602_idx;
...

This technique can be used with UNIQUE and PRIMARY KEY constraints too; the indexes are created
implicitly when the constraint is created. Example:

ALTER TABLE ONLY measurement ADD UNIQUE (city_id, logdate);

ALTER TABLE measurement_y2006m02 ADD UNIQUE (city_id, logdate);
ALTER INDEX measurement_city_id_logdate_key
 ATTACH PARTITION measurement_y2006m02_city_id_logdate_key;
...

5.11.2.3. Limitations
The following limitations apply to partitioned tables:
• Unique constraints (and hence primary keys) on partitioned tables must include all the partition

key columns. This limitation exists because the individual indexes making up the constraint can
only directly enforce uniqueness within their own partitions; therefore, the partition structure itself
must guarantee that there are not duplicates in different partitions.

• There is no way to create an exclusion constraint spanning the whole partitioned table. It is only
possible to put such a constraint on each leaf partition individually. Again, this limitation stems
from not being able to enforce cross-partition restrictions.

• BEFORE ROW triggers on INSERT cannot change which partition is the final destination for a new row.
• Mixing temporary and permanent relations in the same partition tree is not allowed. Hence, if the

partitioned table is permanent, so must be its partitions and likewise if the partitioned table is
temporary. When using temporary relations, all members of the partition tree have to be from the
same session.

Individual partitions are linked to their partitioned table using inheritance behind-the-scenes. However,
it is not possible to use all of the generic features of inheritance with declaratively partitioned tables
or their partitions, as discussed below. Notably, a partition cannot have any parents other than the
partitioned table it is a partition of, nor can a table inherit from both a partitioned table and a regular
table. That means partitioned tables and their partitions never share an inheritance hierarchy with
regular tables.

Since a partition hierarchy consisting of the partitioned table and its partitions is still an inheritance
hierarchy, tableoid and all the normal rules of inheritance apply as described in Section 5.10, with a
few exceptions:
• Partitions cannot have columns that are not present in the parent. It is not possible to specify

columns when creating partitions with CREATE TABLE, nor is it possible to add columns to partitions
after-the-fact using ALTER TABLE. Tables may be added as a partition with ALTER TABLE ...
ATTACH PARTITION only if their columns exactly match the parent.

• Both CHECK and NOT NULL constraints of a partitioned table are always inherited by all its partitions.
CHECK constraints that are marked NO INHERIT are not allowed to be created on partitioned tables.

77

Data Definition

You cannot drop a NOT NULL constraint on a partition's column if the same constraint is present in
the parent table.

• Using ONLY to add or drop a constraint on only the partitioned table is supported as long as there
are no partitions. Once partitions exist, using ONLY will result in an error. Instead, constraints on
the partitions themselves can be added and (if they are not present in the parent table) dropped.

• As a partitioned table does not have any data itself, attempts to use TRUNCATE ONLY on a partitioned
table will always return an error.

5.11.3. Partitioning Using Inheritance
While the built-in declarative partitioning is suitable for most common use cases, there are some
circumstances where a more flexible approach may be useful. Partitioning can be implemented using
table inheritance, which allows for several features not supported by declarative partitioning, such as:

• For declarative partitioning, partitions must have exactly the same set of columns as the
partitioned table, whereas with table inheritance, child tables may have extra columns not present
in the parent.

• Table inheritance allows for multiple inheritance.

• Declarative partitioning only supports range, list and hash partitioning, whereas table inheritance
allows data to be divided in a manner of the user's choosing. (Note, however, that if constraint
exclusion is unable to prune child tables effectively, query performance might be poor.)

• Some operations require a stronger lock when using declarative partitioning than when using table
inheritance. For example, removing a partition from a partitioned table requires taking an ACCESS
EXCLUSIVE lock on the parent table, whereas a SHARE UPDATE EXCLUSIVE lock is enough in the case
of regular inheritance.

5.11.3.1. Example
This example builds a partitioning structure equivalent to the declarative partitioning example above.
Use the following steps:

1. Create the “master” table, from which all of the “child” tables will inherit. This table will contain no
data. Do not define any check constraints on this table, unless you intend them to be applied equally
to all child tables. There is no point in defining any indexes or unique constraints on it, either. For
our example, the master table is the measurement table as originally defined:

CREATE TABLE measurement (
 city_id int not null,
 logdate date not null,
 peaktemp int,
 unitsales int
);

2. Create several “child” tables that each inherit from the master table. Normally, these tables will not
add any columns to the set inherited from the master. Just as with declarative partitioning, these
tables are in every way normal Postgres Pro tables (or foreign tables).

CREATE TABLE measurement_y2006m02 () INHERITS (measurement);
CREATE TABLE measurement_y2006m03 () INHERITS (measurement);
...
CREATE TABLE measurement_y2007m11 () INHERITS (measurement);
CREATE TABLE measurement_y2007m12 () INHERITS (measurement);
CREATE TABLE measurement_y2008m01 () INHERITS (measurement);

3. Add non-overlapping table constraints to the child tables to define the allowed key values in each.

Typical examples would be:

CHECK (x = 1)

78

Data Definition

CHECK (county IN ('Oxfordshire', 'Buckinghamshire', 'Warwickshire'))
CHECK (outletID >= 100 AND outletID < 200)

Ensure that the constraints guarantee that there is no overlap between the key values permitted in
different child tables. A common mistake is to set up range constraints like:

CHECK (outletID BETWEEN 100 AND 200)
CHECK (outletID BETWEEN 200 AND 300)

This is wrong since it is not clear which child table the key value 200 belongs in. Instead, ranges
should be defined in this style:

CREATE TABLE measurement_y2006m02 (
 CHECK (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2006m03 (
 CHECK (logdate >= DATE '2006-03-01' AND logdate < DATE '2006-04-01')
) INHERITS (measurement);

...
CREATE TABLE measurement_y2007m11 (
 CHECK (logdate >= DATE '2007-11-01' AND logdate < DATE '2007-12-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2007m12 (
 CHECK (logdate >= DATE '2007-12-01' AND logdate < DATE '2008-01-01')
) INHERITS (measurement);

CREATE TABLE measurement_y2008m01 (
 CHECK (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
) INHERITS (measurement);

4. For each child table, create an index on the key column(s), as well as any other indexes you might
want.

CREATE INDEX measurement_y2006m02_logdate ON measurement_y2006m02 (logdate);
CREATE INDEX measurement_y2006m03_logdate ON measurement_y2006m03 (logdate);
CREATE INDEX measurement_y2007m11_logdate ON measurement_y2007m11 (logdate);
CREATE INDEX measurement_y2007m12_logdate ON measurement_y2007m12 (logdate);
CREATE INDEX measurement_y2008m01_logdate ON measurement_y2008m01 (logdate);

5. We want our application to be able to say INSERT INTO measurement ... and have the data be
redirected into the appropriate child table. We can arrange that by attaching a suitable trigger
function to the master table. If data will be added only to the latest child, we can use a very simple
trigger function:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

After creating the function, we create a trigger which calls the trigger function:

CREATE TRIGGER insert_measurement_trigger
 BEFORE INSERT ON measurement
 FOR EACH ROW EXECUTE FUNCTION measurement_insert_trigger();

We must redefine the trigger function each month so that it always inserts into the current child table.
The trigger definition does not need to be updated, however.

79

Data Definition

We might want to insert data and have the server automatically locate the child table into which the
row should be added. We could do this with a more complex trigger function, for example:

CREATE OR REPLACE FUNCTION measurement_insert_trigger()
RETURNS TRIGGER AS $$
BEGIN
 IF (NEW.logdate >= DATE '2006-02-01' AND
 NEW.logdate < DATE '2006-03-01') THEN
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
 ELSIF (NEW.logdate >= DATE '2006-03-01' AND
 NEW.logdate < DATE '2006-04-01') THEN
 INSERT INTO measurement_y2006m03 VALUES (NEW.*);
 ...
 ELSIF (NEW.logdate >= DATE '2008-01-01' AND
 NEW.logdate < DATE '2008-02-01') THEN
 INSERT INTO measurement_y2008m01 VALUES (NEW.*);
 ELSE
 RAISE EXCEPTION 'Date out of range. Fix the measurement_insert_trigger()
 function!';
 END IF;
 RETURN NULL;
END;
$$
LANGUAGE plpgsql;

The trigger definition is the same as before. Note that each IF test must exactly match the CHECK
constraint for its child table.

While this function is more complex than the single-month case, it doesn't need to be updated as
often, since branches can be added in advance of being needed.

Note
In practice, it might be best to check the newest child first, if most inserts go into that child. For
simplicity, we have shown the trigger's tests in the same order as in other parts of this example.

A different approach to redirecting inserts into the appropriate child table is to set up rules, instead
of a trigger, on the master table. For example:

CREATE RULE measurement_insert_y2006m02 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2006-02-01' AND logdate < DATE '2006-03-01')
DO INSTEAD
 INSERT INTO measurement_y2006m02 VALUES (NEW.*);
...
CREATE RULE measurement_insert_y2008m01 AS
ON INSERT TO measurement WHERE
 (logdate >= DATE '2008-01-01' AND logdate < DATE '2008-02-01')
DO INSTEAD

80

Data Definition

 INSERT INTO measurement_y2008m01 VALUES (NEW.*);

A rule has significantly more overhead than a trigger, but the overhead is paid once per query rather
than once per row, so this method might be advantageous for bulk-insert situations. In most cases,
however, the trigger method will offer better performance.

Be aware that COPY ignores rules. If you want to use COPY to insert data, you'll need to copy into
the correct child table rather than directly into the master. COPY does fire triggers, so you can use
it normally if you use the trigger approach.

Another disadvantage of the rule approach is that there is no simple way to force an error if the set
of rules doesn't cover the insertion date; the data will silently go into the master table instead.

6. Ensure that the constraint_exclusion configuration parameter is not disabled in postgresql.conf;
otherwise child tables may be accessed unnecessarily.

As we can see, a complex table hierarchy could require a substantial amount of DDL. In the above
example we would be creating a new child table each month, so it might be wise to write a script that
generates the required DDL automatically.

5.11.3.2. Maintenance for Inheritance Partitioning
To remove old data quickly, simply drop the child table that is no longer necessary:

DROP TABLE measurement_y2006m02;

To remove the child table from the inheritance hierarchy table but retain access to it as a table in its
own right:

ALTER TABLE measurement_y2006m02 NO INHERIT measurement;

To add a new child table to handle new data, create an empty child table just as the original children
were created above:

CREATE TABLE measurement_y2008m02 (
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01')
) INHERITS (measurement);

Alternatively, one may want to create and populate the new child table before adding it to the table
hierarchy. This could allow data to be loaded, checked, and transformed before being made visible to
queries on the parent table.

CREATE TABLE measurement_y2008m02
 (LIKE measurement INCLUDING DEFAULTS INCLUDING CONSTRAINTS);
ALTER TABLE measurement_y2008m02 ADD CONSTRAINT y2008m02
 CHECK (logdate >= DATE '2008-02-01' AND logdate < DATE '2008-03-01');
\copy measurement_y2008m02 from 'measurement_y2008m02'
-- possibly some other data preparation work
ALTER TABLE measurement_y2008m02 INHERIT measurement;

5.11.3.3. Caveats
The following caveats apply to partitioning implemented using inheritance:

• There is no automatic way to verify that all of the CHECK constraints are mutually exclusive. It is
safer to create code that generates child tables and creates and/or modifies associated objects than
to write each by hand.

• Indexes and foreign key constraints apply to single tables and not to their inheritance children,
hence they have some caveats to be aware of.

• The schemes shown here assume that the values of a row's key column(s) never change, or at
least do not change enough to require it to move to another partition. An UPDATE that attempts to
do that will fail because of the CHECK constraints. If you need to handle such cases, you can put

81

Data Definition

suitable update triggers on the child tables, but it makes management of the structure much more
complicated.

• If you are using manual VACUUM or ANALYZE commands, don't forget that you need to run them on
each child table individually. A command like:

ANALYZE measurement;

will only process the master table.

• INSERT statements with ON CONFLICT clauses are unlikely to work as expected, as the ON CONFLICT
action is only taken in case of unique violations on the specified target relation, not its child
relations.

• Triggers or rules will be needed to route rows to the desired child table, unless the application is
explicitly aware of the partitioning scheme. Triggers may be complicated to write, and will be much
slower than the tuple routing performed internally by declarative partitioning.

5.11.4. Partition Pruning
Partition pruning is a query optimization technique that improves performance for declaratively
partitioned tables. As an example:

SET enable_partition_pruning = on; -- the default
SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';

Without partition pruning, the above query would scan each of the partitions of the measurement table.
With partition pruning enabled, the planner will examine the definition of each partition and prove that
the partition need not be scanned because it could not contain any rows meeting the query's WHERE
clause. When the planner can prove this, it excludes (prunes) the partition from the query plan.

By using the EXPLAIN command and the enable_partition_pruning configuration parameter, it's possible
to show the difference between a plan for which partitions have been pruned and one for which they
have not. A typical unoptimized plan for this type of table setup is:

SET enable_partition_pruning = off;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN

 Aggregate (cost=188.76..188.77 rows=1 width=8)
 -> Append (cost=0.00..181.05 rows=3085 width=0)
 -> Seq Scan on measurement_y2006m02 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2006m03 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
...
 -> Seq Scan on measurement_y2007m11 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2007m12 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)
 Filter: (logdate >= '2008-01-01'::date)

Some or all of the partitions might use index scans instead of full-table sequential scans, but the point
here is that there is no need to scan the older partitions at all to answer this query. When we enable
partition pruning, we get a significantly cheaper plan that will deliver the same answer:

SET enable_partition_pruning = on;
EXPLAIN SELECT count(*) FROM measurement WHERE logdate >= DATE '2008-01-01';
 QUERY PLAN

 Aggregate (cost=37.75..37.76 rows=1 width=8)
 -> Seq Scan on measurement_y2008m01 (cost=0.00..33.12 rows=617 width=0)

82

Data Definition

 Filter: (logdate >= '2008-01-01'::date)

Note that partition pruning is driven only by the constraints defined implicitly by the partition keys, not
by the presence of indexes. Therefore it isn't necessary to define indexes on the key columns. Whether
an index needs to be created for a given partition depends on whether you expect that queries that scan
the partition will generally scan a large part of the partition or just a small part. An index will be helpful
in the latter case but not the former.

Partition pruning can be performed not only during the planning of a given query, but also during its
execution. This is useful as it can allow more partitions to be pruned when clauses contain expressions
whose values are not known at query planning time, for example, parameters defined in a PREPARE
statement, using a value obtained from a subquery, or using a parameterized value on the inner side of
a nested loop join. Partition pruning during execution can be performed at any of the following times:
• During initialization of the query plan. Partition pruning can be performed here for parameter

values which are known during the initialization phase of execution. Partitions which are pruned
during this stage will not show up in the query's EXPLAIN or EXPLAIN ANALYZE. It is possible to
determine the number of partitions which were removed during this phase by observing the
“Subplans Removed” property in the EXPLAIN output.

• During actual execution of the query plan. Partition pruning may also be performed here to remove
partitions using values which are only known during actual query execution. This includes values
from subqueries and values from execution-time parameters such as those from parameterized
nested loop joins. Since the value of these parameters may change many times during the
execution of the query, partition pruning is performed whenever one of the execution parameters
being used by partition pruning changes. Determining if partitions were pruned during this
phase requires careful inspection of the loops property in the EXPLAIN ANALYZE output. Subplans
corresponding to different partitions may have different values for it depending on how many times
each of them was pruned during execution. Some may be shown as (never executed) if they were
pruned every time.

Partition pruning can be disabled using the enable_partition_pruning setting.

Note
Execution-time partition pruning currently only occurs for the Append and MergeAppend node
types. It is not yet implemented for the ModifyTable node type, but that is likely to be changed
in a future release of Postgres Pro.

5.11.5. Partitioning and Constraint Exclusion
Constraint exclusion is a query optimization technique similar to partition pruning. While it is primarily
used for partitioning implemented using the legacy inheritance method, it can be used for other
purposes, including with declarative partitioning.

Constraint exclusion works in a very similar way to partition pruning, except that it uses each table's
CHECK constraints — which gives it its name — whereas partition pruning uses the table's partition
bounds, which exist only in the case of declarative partitioning. Another difference is that constraint
exclusion is only applied at plan time; there is no attempt to remove partitions at execution time.

The fact that constraint exclusion uses CHECK constraints, which makes it slow compared to partition
pruning, can sometimes be used as an advantage: because constraints can be defined even on
declaratively-partitioned tables, in addition to their internal partition bounds, constraint exclusion may
be able to elide additional partitions from the query plan.

The default (and recommended) setting of constraint_exclusion is neither on nor off, but an intermediate
setting called partition, which causes the technique to be applied only to queries that are likely to
be working on inheritance partitioned tables. The on setting causes the planner to examine CHECK
constraints in all queries, even simple ones that are unlikely to benefit.

83

Data Definition

The following caveats apply to constraint exclusion:
• Constraint exclusion is only applied during query planning, unlike partition pruning, which can also

be applied during query execution.
• Constraint exclusion only works when the query's WHERE clause contains constants (or externally

supplied parameters). For example, a comparison against a non-immutable function such as
CURRENT_TIMESTAMP cannot be optimized, since the planner cannot know which child table the
function's value might fall into at run time.

• Keep the partitioning constraints simple, else the planner may not be able to prove that child tables
might not need to be visited. Use simple equality conditions for list partitioning, or simple range
tests for range partitioning, as illustrated in the preceding examples. A good rule of thumb is that
partitioning constraints should contain only comparisons of the partitioning column(s) to constants
using B-tree-indexable operators, because only B-tree-indexable column(s) are allowed in the
partition key.

• All constraints on all children of the parent table are examined during constraint exclusion, so
large numbers of children are likely to increase query planning time considerably. So the legacy
inheritance based partitioning will work well with up to perhaps a hundred child tables; don't try to
use many thousands of children.

5.11.6. Best Practices for Declarative Partitioning
The choice of how to partition a table should be made carefully, as the performance of query planning
and execution can be negatively affected by poor design.

One of the most critical design decisions will be the column or columns by which you partition your data.
Often the best choice will be to partition by the column or set of columns which most commonly appear in
WHERE clauses of queries being executed on the partitioned table. WHERE clauses that are compatible with
the partition bound constraints can be used to prune unneeded partitions. However, you may be forced
into making other decisions by requirements for the PRIMARY KEY or a UNIQUE constraint. Removal of
unwanted data is also a factor to consider when planning your partitioning strategy. An entire partition
can be detached fairly quickly, so it may be beneficial to design the partition strategy in such a way that
all data to be removed at once is located in a single partition.

Choosing the target number of partitions that the table should be divided into is also a critical decision
to make. Not having enough partitions may mean that indexes remain too large and that data locality
remains poor which could result in low cache hit ratios. However, dividing the table into too many
partitions can also cause issues. Too many partitions can mean longer query planning times and higher
memory consumption during both query planning and execution, as further described below. When
choosing how to partition your table, it's also important to consider what changes may occur in the
future. For example, if you choose to have one partition per customer and you currently have a small
number of large customers, consider the implications if in several years you instead find yourself with a
large number of small customers. In this case, it may be better to choose to partition by HASH and choose
a reasonable number of partitions rather than trying to partition by LIST and hoping that the number of
customers does not increase beyond what it is practical to partition the data by.

Sub-partitioning can be useful to further divide partitions that are expected to become larger than other
partitions. Another option is to use range partitioning with multiple columns in the partition key. Either
of these can easily lead to excessive numbers of partitions, so restraint is advisable.

It is important to consider the overhead of partitioning during query planning and execution. The
query planner is generally able to handle partition hierarchies with up to a few thousand partitions
fairly well, provided that typical queries allow the query planner to prune all but a small number
of partitions. Planning times become longer and memory consumption becomes higher when more
partitions remain after the planner performs partition pruning. This is particularly true for the UPDATE
and DELETE commands. Another reason to be concerned about having a large number of partitions is that
the server's memory consumption may grow significantly over time, especially if many sessions touch
large numbers of partitions. That's because each partition requires its metadata to be loaded into the
local memory of each session that touches it.

84

Data Definition

With data warehouse type workloads, it can make sense to use a larger number of partitions than with
an OLTP type workload. Generally, in data warehouses, query planning time is less of a concern as the
majority of processing time is spent during query execution. With either of these two types of workload, it
is important to make the right decisions early, as re-partitioning large quantities of data can be painfully
slow. Simulations of the intended workload are often beneficial for optimizing the partitioning strategy.
Never just assume that more partitions are better than fewer partitions, nor vice-versa.

5.12. Foreign Data
Postgres Pro implements portions of the SQL/MED specification, allowing you to access data that resides
outside Postgres Pro using regular SQL queries. Such data is referred to as foreign data. (Note that this
usage is not to be confused with foreign keys, which are a type of constraint within the database.)

Foreign data is accessed with help from a foreign data wrapper. A foreign data wrapper is a library
that can communicate with an external data source, hiding the details of connecting to the data source
and obtaining data from it. There are some foreign data wrappers available as contrib modules; see
Appendix F. Other kinds of foreign data wrappers might be found as third party products. If none of the
existing foreign data wrappers suit your needs, you can write your own; see Chapter 52.

To access foreign data, you need to create a foreign server object, which defines how to connect to
a particular external data source according to the set of options used by its supporting foreign data
wrapper. Then you need to create one or more foreign tables, which define the structure of the remote
data. A foreign table can be used in queries just like a normal table, but a foreign table has no storage in
the Postgres Pro server. Whenever it is used, Postgres Pro asks the foreign data wrapper to fetch data
from the external source, or transmit data to the external source in the case of update commands.

Accessing remote data may require authenticating to the external data source. This information can be
provided by a user mapping, which can provide additional data such as user names and passwords based
on the current Postgres Pro role.

For additional information, see CREATE FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE, and IMPORT FOREIGN SCHEMA.

5.13. Other Database Objects
Tables are the central objects in a relational database structure, because they hold your data. But they
are not the only objects that exist in a database. Many other kinds of objects can be created to make the
use and management of the data more efficient or convenient. They are not discussed in this chapter,
but we give you a list here so that you are aware of what is possible:

• Views
• Functions, procedures, and operators
• Data types and domains
• Triggers and rewrite rules
Detailed information on these topics appears in Part V.

5.14. Dependency Tracking
When you create complex database structures involving many tables with foreign key constraints, views,
triggers, functions, etc. you implicitly create a net of dependencies between the objects. For instance, a
table with a foreign key constraint depends on the table it references.

To ensure the integrity of the entire database structure, Postgres Pro makes sure that you cannot
drop objects that other objects still depend on. For example, attempting to drop the products table we
considered in Section 5.4.5, with the orders table depending on it, would result in an error message
like this:
DROP TABLE products;

85

Data Definition

ERROR: cannot drop table products because other objects depend on it
DETAIL: constraint orders_product_no_fkey on table orders depends on table products
HINT: Use DROP ... CASCADE to drop the dependent objects too.

The error message contains a useful hint: if you do not want to bother deleting all the dependent objects
individually, you can run:

DROP TABLE products CASCADE;

and all the dependent objects will be removed, as will any objects that depend on them, recursively. In
this case, it doesn't remove the orders table, it only removes the foreign key constraint. It stops there
because nothing depends on the foreign key constraint. (If you want to check what DROP ... CASCADE
will do, run DROP without CASCADE and read the DETAIL output.)

Almost all DROP commands in Postgres Pro support specifying CASCADE. Of course, the nature of the
possible dependencies varies with the type of the object. You can also write RESTRICT instead of CASCADE
to get the default behavior, which is to prevent dropping objects that any other objects depend on.

Note
According to the SQL standard, specifying either RESTRICT or CASCADE is required in a DROP
command. No database system actually enforces that rule, but whether the default behavior is
RESTRICT or CASCADE varies across systems.

If a DROP command lists multiple objects, CASCADE is only required when there are dependencies outside
the specified group. For example, when saying DROP TABLE tab1, tab2 the existence of a foreign key
referencing tab1 from tab2 would not mean that CASCADE is needed to succeed.

For user-defined functions, Postgres Pro tracks dependencies associated with a function's externally-
visible properties, such as its argument and result types, but not dependencies that could only be known
by examining the function body. As an example, consider this situation:

CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow',
 'green', 'blue', 'purple');

CREATE TABLE my_colors (color rainbow, note text);

CREATE FUNCTION get_color_note (rainbow) RETURNS text AS
 'SELECT note FROM my_colors WHERE color = $1'
 LANGUAGE SQL;

(See Section 35.5 for an explanation of SQL-language functions.) Postgres Pro will be aware that the
get_color_note function depends on the rainbow type: dropping the type would force dropping the
function, because its argument type would no longer be defined. But Postgres Pro will not consider
get_color_note to depend on the my_colors table, and so will not drop the function if the table is
dropped. While there are disadvantages to this approach, there are also benefits. The function is still
valid in some sense if the table is missing, though executing it would cause an error; creating a new
table of the same name would allow the function to work again.

86

Chapter 6. Data Manipulation
The previous chapter discussed how to create tables and other structures to hold your data. Now it is
time to fill the tables with data. This chapter covers how to insert, update, and delete table data. The
chapter after this will finally explain how to extract your long-lost data from the database.

6.1. Inserting Data
When a table is created, it contains no data. The first thing to do before a database can be of much use
is to insert data. Data is conceptually inserted one row at a time. Of course you can also insert more
than one row, but there is no way to insert less than one row. Even if you know only some column values,
a complete row must be created.

To create a new row, use the INSERT command. The command requires the table name and column
values. For example, consider the products table from Chapter 5:

CREATE TABLE products (
 product_no integer,
 name text,
 price numeric
);

An example command to insert a row would be:

INSERT INTO products VALUES (1, 'Cheese', 9.99);

The data values are listed in the order in which the columns appear in the table, separated by commas.
Usually, the data values will be literals (constants), but scalar expressions are also allowed.

The above syntax has the drawback that you need to know the order of the columns in the table. To
avoid this you can also list the columns explicitly. For example, both of the following commands have
the same effect as the one above:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', 9.99);
INSERT INTO products (name, price, product_no) VALUES ('Cheese', 9.99, 1);

Many users consider it good practice to always list the column names.

If you don't have values for all the columns, you can omit some of them. In that case, the columns will
be filled with their default values. For example:

INSERT INTO products (product_no, name) VALUES (1, 'Cheese');
INSERT INTO products VALUES (1, 'Cheese');

The second form is a Postgres Pro extension. It fills the columns from the left with as many values as
are given, and the rest will be defaulted.

For clarity, you can also request default values explicitly, for individual columns or for the entire row:

INSERT INTO products (product_no, name, price) VALUES (1, 'Cheese', DEFAULT);
INSERT INTO products DEFAULT VALUES;

You can insert multiple rows in a single command:

INSERT INTO products (product_no, name, price) VALUES
 (1, 'Cheese', 9.99),
 (2, 'Bread', 1.99),
 (3, 'Milk', 2.99);

It is also possible to insert the result of a query (which might be no rows, one row, or many rows):

INSERT INTO products (product_no, name, price)
 SELECT product_no, name, price FROM new_products
 WHERE release_date = 'today';

87

Data Manipulation

This provides the full power of the SQL query mechanism (Chapter 7) for computing the rows to be
inserted.

Tip
When inserting a lot of data at the same time, consider using the COPY command. It is not as
flexible as the INSERT command, but is more efficient. Refer to Section 14.4 for more information
on improving bulk loading performance.

6.2. Updating Data
The modification of data that is already in the database is referred to as updating. You can update
individual rows, all the rows in a table, or a subset of all rows. Each column can be updated separately;
the other columns are not affected.

To update existing rows, use the UPDATE command. This requires three pieces of information:
1. The name of the table and column to update
2. The new value of the column
3. Which row(s) to update

Recall from Chapter 5 that SQL does not, in general, provide a unique identifier for rows. Therefore it is
not always possible to directly specify which row to update. Instead, you specify which conditions a row
must meet in order to be updated. Only if you have a primary key in the table (independent of whether
you declared it or not) can you reliably address individual rows by choosing a condition that matches the
primary key. Graphical database access tools rely on this fact to allow you to update rows individually.

For example, this command updates all products that have a price of 5 to have a price of 10:

UPDATE products SET price = 10 WHERE price = 5;

This might cause zero, one, or many rows to be updated. It is not an error to attempt an update that
does not match any rows.

Let's look at that command in detail. First is the key word UPDATE followed by the table name. As usual,
the table name can be schema-qualified, otherwise it is looked up in the path. Next is the key word SET
followed by the column name, an equal sign, and the new column value. The new column value can be
any scalar expression, not just a constant. For example, if you want to raise the price of all products
by 10% you could use:

UPDATE products SET price = price * 1.10;

As you see, the expression for the new value can refer to the existing value(s) in the row. We also left
out the WHERE clause. If it is omitted, it means that all rows in the table are updated. If it is present, only
those rows that match the WHERE condition are updated. Note that the equals sign in the SET clause is an
assignment while the one in the WHERE clause is a comparison, but this does not create any ambiguity.
Of course, the WHERE condition does not have to be an equality test. Many other operators are available
(see Chapter 9). But the expression needs to evaluate to a Boolean result.

You can update more than one column in an UPDATE command by listing more than one assignment in
the SET clause. For example:

UPDATE mytable SET a = 5, b = 3, c = 1 WHERE a > 0;

6.3. Deleting Data
So far we have explained how to add data to tables and how to change data. What remains is to discuss
how to remove data that is no longer needed. Just as adding data is only possible in whole rows, you can
only remove entire rows from a table. In the previous section we explained that SQL does not provide
a way to directly address individual rows. Therefore, removing rows can only be done by specifying

88

Data Manipulation

conditions that the rows to be removed have to match. If you have a primary key in the table then you
can specify the exact row. But you can also remove groups of rows matching a condition, or you can
remove all rows in the table at once.

You use the DELETE command to remove rows; the syntax is very similar to the UPDATE command. For
instance, to remove all rows from the products table that have a price of 10, use:

DELETE FROM products WHERE price = 10;

If you simply write:

DELETE FROM products;

then all rows in the table will be deleted! Caveat programmer.

6.4. Returning Data from Modified Rows
Sometimes it is useful to obtain data from modified rows while they are being manipulated. The
INSERT, UPDATE, and DELETE commands all have an optional RETURNING clause that supports this. Use
of RETURNING avoids performing an extra database query to collect the data, and is especially valuable
when it would otherwise be difficult to identify the modified rows reliably.

The allowed contents of a RETURNING clause are the same as a SELECT command's output list (see
Section 7.3). It can contain column names of the command's target table, or value expressions using
those columns. A common shorthand is RETURNING *, which selects all columns of the target table in
order.

In an INSERT, the data available to RETURNING is the row as it was inserted. This is not so useful in trivial
inserts, since it would just repeat the data provided by the client. But it can be very handy when relying
on computed default values. For example, when using a serial column to provide unique identifiers,
RETURNING can return the ID assigned to a new row:

CREATE TABLE users (firstname text, lastname text, id serial primary key);

INSERT INTO users (firstname, lastname) VALUES ('Joe', 'Cool') RETURNING id;

The RETURNING clause is also very useful with INSERT ... SELECT.

In an UPDATE, the data available to RETURNING is the new content of the modified row. For example:

UPDATE products SET price = price * 1.10
 WHERE price <= 99.99
 RETURNING name, price AS new_price;

In a DELETE, the data available to RETURNING is the content of the deleted row. For example:

DELETE FROM products
 WHERE obsoletion_date = 'today'
 RETURNING *;

If there are triggers (Chapter 36) on the target table, the data available to RETURNING is the row as
modified by the triggers. Thus, inspecting columns computed by triggers is another common use-case
for RETURNING.

89

Chapter 7. Queries
The previous chapters explained how to create tables, how to fill them with data, and how to manipulate
that data. Now we finally discuss how to retrieve the data from the database.

7.1. Overview
The process of retrieving or the command to retrieve data from a database is called a query. In SQL the
SELECT command is used to specify queries. The general syntax of the SELECT command is

[WITH with_queries] SELECT select_list FROM table_expression [sort_specification]

The following sections describe the details of the select list, the table expression, and the sort
specification. WITH queries are treated last since they are an advanced feature.

A simple kind of query has the form:

SELECT * FROM table1;

Assuming that there is a table called table1, this command would retrieve all rows and all user-defined
columns from table1. (The method of retrieval depends on the client application. For example, the psql
program will display an ASCII-art table on the screen, while client libraries will offer functions to extract
individual values from the query result.) The select list specification * means all columns that the table
expression happens to provide. A select list can also select a subset of the available columns or make
calculations using the columns. For example, if table1 has columns named a, b, and c (and perhaps
others) you can make the following query:

SELECT a, b + c FROM table1;

(assuming that b and c are of a numerical data type). See Section 7.3 for more details.

FROM table1 is a simple kind of table expression: it reads just one table. In general, table expressions can
be complex constructs of base tables, joins, and subqueries. But you can also omit the table expression
entirely and use the SELECT command as a calculator:

SELECT 3 * 4;

This is more useful if the expressions in the select list return varying results. For example, you could
call a function this way:

SELECT random();

7.2. Table Expressions
A table expression computes a table. The table expression contains a FROM clause that is optionally
followed by WHERE, GROUP BY, and HAVING clauses. Trivial table expressions simply refer to a table on
disk, a so-called base table, but more complex expressions can be used to modify or combine base tables
in various ways.

The optional WHERE, GROUP BY, and HAVING clauses in the table expression specify a pipeline of successive
transformations performed on the table derived in the FROM clause. All these transformations produce
a virtual table that provides the rows that are passed to the select list to compute the output rows of
the query.

7.2.1. The FROM Clause
The FROM clause derives a table from one or more other tables given in a comma-separated table
reference list.

FROM table_reference [, table_reference [, ...]]

A table reference can be a table name (possibly schema-qualified), or a derived table such as a subquery,
a JOIN construct, or complex combinations of these. If more than one table reference is listed in the FROM

90

Queries

clause, the tables are cross-joined (that is, the Cartesian product of their rows is formed; see below).
The result of the FROM list is an intermediate virtual table that can then be subject to transformations by
the WHERE, GROUP BY, and HAVING clauses and is finally the result of the overall table expression.

When a table reference names a table that is the parent of a table inheritance hierarchy, the table
reference produces rows of not only that table but all of its descendant tables, unless the key word ONLY
precedes the table name. However, the reference produces only the columns that appear in the named
table — any columns added in subtables are ignored.

Instead of writing ONLY before the table name, you can write * after the table name to explicitly
specify that descendant tables are included. There is no real reason to use this syntax any more,
because searching descendant tables is now always the default behavior. However, it is supported for
compatibility with older releases.

7.2.1.1. Joined Tables
A joined table is a table derived from two other (real or derived) tables according to the rules of the
particular join type. Inner, outer, and cross-joins are available. The general syntax of a joined table is

T1 join_type T2 [join_condition]

Joins of all types can be chained together, or nested: either or both T1 and T2 can be joined tables.
Parentheses can be used around JOIN clauses to control the join order. In the absence of parentheses,
JOIN clauses nest left-to-right.

Join Types

Cross join

T1 CROSS JOIN T2

For every possible combination of rows from T1 and T2 (i.e., a Cartesian product), the joined table
will contain a row consisting of all columns in T1 followed by all columns in T2. If the tables have N
and M rows respectively, the joined table will have N * M rows.

FROM T1 CROSS JOIN T2 is equivalent to FROM T1 INNER JOIN T2 ON TRUE (see below). It is also
equivalent to FROM T1, T2.

Note
This latter equivalence does not hold exactly when more than two tables appear, because JOIN
binds more tightly than comma. For example FROM T1 CROSS JOIN T2 INNER JOIN T3 ON
condition is not the same as FROM T1, T2 INNER JOIN T3 ON condition because the
condition can reference T1 in the first case but not the second.

Qualified joins

T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 ON boolean_expression
T1 { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2 USING (join column list)
T1 NATURAL { [INNER] | { LEFT | RIGHT | FULL } [OUTER] } JOIN T2

The words INNER and OUTER are optional in all forms. INNER is the default; LEFT, RIGHT, and FULL
imply an outer join.

The join condition is specified in the ON or USING clause, or implicitly by the word NATURAL. The join
condition determines which rows from the two source tables are considered to “match”, as explained
in detail below.

The possible types of qualified join are:

91

Queries

INNER JOIN

For each row R1 of T1, the joined table has a row for each row in T2 that satisfies the join condition
with R1.

LEFT OUTER JOIN
First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Thus, the joined table
always has at least one row for each row in T1.

RIGHT OUTER JOIN
First, an inner join is performed. Then, for each row in T2 that does not satisfy the join condition
with any row in T1, a joined row is added with null values in columns of T1. This is the converse
of a left join: the result table will always have a row for each row in T2.

FULL OUTER JOIN

First, an inner join is performed. Then, for each row in T1 that does not satisfy the join condition
with any row in T2, a joined row is added with null values in columns of T2. Also, for each row
of T2 that does not satisfy the join condition with any row in T1, a joined row with null values
in the columns of T1 is added.

The ON clause is the most general kind of join condition: it takes a Boolean value expression of the
same kind as is used in a WHERE clause. A pair of rows from T1 and T2 match if the ON expression
evaluates to true.

The USING clause is a shorthand that allows you to take advantage of the specific situation where
both sides of the join use the same name for the joining column(s). It takes a comma-separated list of
the shared column names and forms a join condition that includes an equality comparison for each
one. For example, joining T1 and T2 with USING (a, b) produces the join condition ON T1.a = T2.a
AND T1.b = T2.b.

Furthermore, the output of JOIN USING suppresses redundant columns: there is no need to print both
of the matched columns, since they must have equal values. While JOIN ON produces all columns
from T1 followed by all columns from T2, JOIN USING produces one output column for each of the
listed column pairs (in the listed order), followed by any remaining columns from T1, followed by
any remaining columns from T2.

Finally, NATURAL is a shorthand form of USING: it forms a USING list consisting of all column names
that appear in both input tables. As with USING, these columns appear only once in the output table.
If there are no common column names, NATURAL JOIN behaves like JOIN ... ON TRUE, producing
a cross-product join.

Note
USING is reasonably safe from column changes in the joined relations since only the listed
columns are combined. NATURAL is considerably more risky since any schema changes to either
relation that cause a new matching column name to be present will cause the join to combine
that new column as well.

To put this together, assume we have tables t1:
 num | name
-----+------
 1 | a
 2 | b
 3 | c

and t2:

92

Queries

 num | value
-----+-------
 1 | xxx
 3 | yyy
 5 | zzz

then we get the following results for the various joins:

=> SELECT * FROM t1 CROSS JOIN t2;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 1 | a | 3 | yyy
 1 | a | 5 | zzz
 2 | b | 1 | xxx
 2 | b | 3 | yyy
 2 | b | 5 | zzz
 3 | c | 1 | xxx
 3 | c | 3 | yyy
 3 | c | 5 | zzz
(9 rows)

=> SELECT * FROM t1 INNER JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
(2 rows)

=> SELECT * FROM t1 INNER JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 NATURAL INNER JOIN t2;
 num | name | value
-----+------+-------
 1 | a | xxx
 3 | c | yyy
(2 rows)

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
(3 rows)

=> SELECT * FROM t1 LEFT JOIN t2 USING (num);
 num | name | value
-----+------+-------
 1 | a | xxx
 2 | b |
 3 | c | yyy
(3 rows)

93

Queries

=> SELECT * FROM t1 RIGHT JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 3 | c | 3 | yyy
 | | 5 | zzz
(3 rows)

=> SELECT * FROM t1 FULL JOIN t2 ON t1.num = t2.num;
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | 3 | yyy
 | | 5 | zzz
(4 rows)

The join condition specified with ON can also contain conditions that do not relate directly to the join.
This can prove useful for some queries but needs to be thought out carefully. For example:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num AND t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
 2 | b | |
 3 | c | |
(3 rows)

Notice that placing the restriction in the WHERE clause produces a different result:

=> SELECT * FROM t1 LEFT JOIN t2 ON t1.num = t2.num WHERE t2.value = 'xxx';
 num | name | num | value
-----+------+-----+-------
 1 | a | 1 | xxx
(1 row)

This is because a restriction placed in the ON clause is processed before the join, while a restriction
placed in the WHERE clause is processed after the join. That does not matter with inner joins, but it matters
a lot with outer joins.

7.2.1.2. Table and Column Aliases
A temporary name can be given to tables and complex table references to be used for references to the
derived table in the rest of the query. This is called a table alias.

To create a table alias, write

FROM table_reference AS alias

or

FROM table_reference alias

The AS key word is optional noise. alias can be any identifier.

A typical application of table aliases is to assign short identifiers to long table names to keep the join
clauses readable. For example:

SELECT * FROM some_very_long_table_name s JOIN another_fairly_long_name a ON s.id =
 a.num;

The alias becomes the new name of the table reference so far as the current query is concerned — it is
not allowed to refer to the table by the original name elsewhere in the query. Thus, this is not valid:

94

Queries

SELECT * FROM my_table AS m WHERE my_table.a > 5; -- wrong

Table aliases are mainly for notational convenience, but it is necessary to use them when joining a table
to itself, e.g.:

SELECT * FROM people AS mother JOIN people AS child ON mother.id = child.mother_id;

Additionally, an alias is required if the table reference is a subquery (see Section 7.2.1.3).

Parentheses are used to resolve ambiguities. In the following example, the first statement assigns the
alias b to the second instance of my_table, but the second statement assigns the alias to the result of
the join:

SELECT * FROM my_table AS a CROSS JOIN my_table AS b ...
SELECT * FROM (my_table AS a CROSS JOIN my_table) AS b ...

Another form of table aliasing gives temporary names to the columns of the table, as well as the table
itself:

FROM table_reference [AS] alias (column1 [, column2 [, ...]])

If fewer column aliases are specified than the actual table has columns, the remaining columns are not
renamed. This syntax is especially useful for self-joins or subqueries.

When an alias is applied to the output of a JOIN clause, the alias hides the original name(s) within the
JOIN. For example:

SELECT a.* FROM my_table AS a JOIN your_table AS b ON ...

is valid SQL, but:

SELECT a.* FROM (my_table AS a JOIN your_table AS b ON ...) AS c

is not valid; the table alias a is not visible outside the alias c.

7.2.1.3. Subqueries
Subqueries specifying a derived table must be enclosed in parentheses and must be assigned a table
alias name (as in Section 7.2.1.2). For example:

FROM (SELECT * FROM table1) AS alias_name

This example is equivalent to FROM table1 AS alias_name. More interesting cases, which cannot be
reduced to a plain join, arise when the subquery involves grouping or aggregation.

A subquery can also be a VALUES list:

FROM (VALUES ('anne', 'smith'), ('bob', 'jones'), ('joe', 'blow'))
 AS names(first, last)

Again, a table alias is required. Assigning alias names to the columns of the VALUES list is optional, but
is good practice. For more information see Section 7.7.

7.2.1.4. Table Functions
Table functions are functions that produce a set of rows, made up of either base data types (scalar types)
or composite data types (table rows). They are used like a table, view, or subquery in the FROM clause of
a query. Columns returned by table functions can be included in SELECT, JOIN, or WHERE clauses in the
same manner as columns of a table, view, or subquery.

Table functions may also be combined using the ROWS FROM syntax, with the results returned in parallel
columns; the number of result rows in this case is that of the largest function result, with smaller results
padded with null values to match.

function_call [WITH ORDINALITY] [[AS] table_alias [(column_alias [, ...])]]

95

Queries

ROWS FROM(function_call [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
 [, ...])]]

If the WITH ORDINALITY clause is specified, an additional column of type bigint will be added to the
function result columns. This column numbers the rows of the function result set, starting from 1. (This
is a generalization of the SQL-standard syntax for UNNEST ... WITH ORDINALITY.) By default, the ordinal
column is called ordinality, but a different column name can be assigned to it using an AS clause.

The special table function UNNEST may be called with any number of array parameters, and it returns
a corresponding number of columns, as if UNNEST (Section 9.19) had been called on each parameter
separately and combined using the ROWS FROM construct.

UNNEST(array_expression [, ...]) [WITH ORDINALITY] [[AS] table_alias [(column_alias
 [, ...])]]

If no table_alias is specified, the function name is used as the table name; in the case of a ROWS FROM()
construct, the first function's name is used.

If column aliases are not supplied, then for a function returning a base data type, the column name is
also the same as the function name. For a function returning a composite type, the result columns get
the names of the individual attributes of the type.

Some examples:
CREATE TABLE foo (fooid int, foosubid int, fooname text);

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

SELECT * FROM foo
 WHERE foosubid IN (
 SELECT foosubid
 FROM getfoo(foo.fooid) z
 WHERE z.fooid = foo.fooid
);

CREATE VIEW vw_getfoo AS SELECT * FROM getfoo(1);

SELECT * FROM vw_getfoo;

In some cases it is useful to define table functions that can return different column sets depending on
how they are invoked. To support this, the table function can be declared as returning the pseudo-type
record with no OUT parameters. When such a function is used in a query, the expected row structure
must be specified in the query itself, so that the system can know how to parse and plan the query. This
syntax looks like:

function_call [AS] alias (column_definition [, ...])
function_call AS [alias] (column_definition [, ...])
ROWS FROM(... function_call AS (column_definition [, ...]) [, ...])

When not using the ROWS FROM() syntax, the column_definition list replaces the column alias list
that could otherwise be attached to the FROM item; the names in the column definitions serve as
column aliases. When using the ROWS FROM() syntax, a column_definition list can be attached to each
member function separately; or if there is only one member function and no WITH ORDINALITY clause, a
column_definition list can be written in place of a column alias list following ROWS FROM().

Consider this example:
SELECT *

96

Queries

 FROM dblink('dbname=mydb', 'SELECT proname, prosrc FROM pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

The dblink function (part of the dblink module) executes a remote query. It is declared to return record
since it might be used for any kind of query. The actual column set must be specified in the calling query
so that the parser knows, for example, what * should expand to.

This example uses ROWS FROM:

SELECT *
FROM ROWS FROM
 (
 json_to_recordset('[{"a":40,"b":"foo"},{"a":"100","b":"bar"}]')
 AS (a INTEGER, b TEXT),
 generate_series(1, 3)
) AS x (p, q, s)
ORDER BY p;

 p | q | s
-----+-----+---
 40 | foo | 1
 100 | bar | 2
 | | 3

It joins two functions into a single FROM target. json_to_recordset() is instructed to return two
columns, the first integer and the second text. The result of generate_series() is used directly. The
ORDER BY clause sorts the column values as integers.

7.2.1.5. LATERAL Subqueries
Subqueries appearing in FROM can be preceded by the key word LATERAL. This allows them to reference
columns provided by preceding FROM items. (Without LATERAL, each subquery is evaluated independently
and so cannot cross-reference any other FROM item.)

Table functions appearing in FROM can also be preceded by the key word LATERAL, but for functions the
key word is optional; the function's arguments can contain references to columns provided by preceding
FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row of the
FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items providing the
columns, the LATERAL item is evaluated using that row or row set's values of the columns. The resulting
row(s) are joined as usual with the rows they were computed from. This is repeated for each row or set
of rows from the column source table(s).

A trivial example of LATERAL is

SELECT * FROM foo, LATERAL (SELECT * FROM bar WHERE bar.id = foo.bar_id) ss;

This is not especially useful since it has exactly the same result as the more conventional

SELECT * FROM foo, bar WHERE bar.id = foo.bar_id;

LATERAL is primarily useful when the cross-referenced column is necessary for computing the row(s)
to be joined. A common application is providing an argument value for a set-returning function. For
example, supposing that vertices(polygon) returns the set of vertices of a polygon, we could identify
close-together vertices of polygons stored in a table with:

SELECT p1.id, p2.id, v1, v2
FROM polygons p1, polygons p2,

97

Queries

 LATERAL vertices(p1.poly) v1,
 LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

This query could also be written

SELECT p1.id, p2.id, v1, v2
FROM polygons p1 CROSS JOIN LATERAL vertices(p1.poly) v1,
 polygons p2 CROSS JOIN LATERAL vertices(p2.poly) v2
WHERE (v1 <-> v2) < 10 AND p1.id != p2.id;

or in several other equivalent formulations. (As already mentioned, the LATERAL key word is unnecessary
in this example, but we use it for clarity.)

It is often particularly handy to LEFT JOIN to a LATERAL subquery, so that source rows will appear in the
result even if the LATERAL subquery produces no rows for them. For example, if get_product_names()
returns the names of products made by a manufacturer, but some manufacturers in our table currently
produce no products, we could find out which ones those are like this:

SELECT m.name
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true
WHERE pname IS NULL;

7.2.2. The WHERE Clause
The syntax of the WHERE clause is

WHERE search_condition

where search_condition is any value expression (see Section 4.2) that returns a value of type boolean.

After the processing of the FROM clause is done, each row of the derived virtual table is checked against
the search condition. If the result of the condition is true, the row is kept in the output table, otherwise
(i.e., if the result is false or null) it is discarded. The search condition typically references at least one
column of the table generated in the FROM clause; this is not required, but otherwise the WHERE clause
will be fairly useless.

Note
The join condition of an inner join can be written either in the WHERE clause or in the JOIN clause.
For example, these table expressions are equivalent:

FROM a, b WHERE a.id = b.id AND b.val > 5

and:

FROM a INNER JOIN b ON (a.id = b.id) WHERE b.val > 5

or perhaps even:

FROM a NATURAL JOIN b WHERE b.val > 5

Which one of these you use is mainly a matter of style. The JOIN syntax in the FROM clause is
probably not as portable to other SQL database management systems, even though it is in the SQL
standard. For outer joins there is no choice: they must be done in the FROM clause. The ON or USING
clause of an outer join is not equivalent to a WHERE condition, because it results in the addition of
rows (for unmatched input rows) as well as the removal of rows in the final result.

Here are some examples of WHERE clauses:

SELECT ... FROM fdt WHERE c1 > 5

SELECT ... FROM fdt WHERE c1 IN (1, 2, 3)

98

Queries

SELECT ... FROM fdt WHERE c1 IN (SELECT c1 FROM t2)

SELECT ... FROM fdt WHERE c1 IN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10)

SELECT ... FROM fdt WHERE c1 BETWEEN (SELECT c3 FROM t2 WHERE c2 = fdt.c1 + 10) AND 100

SELECT ... FROM fdt WHERE EXISTS (SELECT c1 FROM t2 WHERE c2 > fdt.c1)

fdt is the table derived in the FROM clause. Rows that do not meet the search condition of the WHERE
clause are eliminated from fdt. Notice the use of scalar subqueries as value expressions. Just like any
other query, the subqueries can employ complex table expressions. Notice also how fdt is referenced in
the subqueries. Qualifying c1 as fdt.c1 is only necessary if c1 is also the name of a column in the derived
input table of the subquery. But qualifying the column name adds clarity even when it is not needed.
This example shows how the column naming scope of an outer query extends into its inner queries.

7.2.3. The GROUP BY and HAVING Clauses
After passing the WHERE filter, the derived input table might be subject to grouping, using the GROUP BY
clause, and elimination of group rows using the HAVING clause.

SELECT select_list
 FROM ...
 [WHERE ...]
 GROUP BY grouping_column_reference [, grouping_column_reference]...

The GROUP BY clause is used to group together those rows in a table that have the same values in all
the columns listed. The order in which the columns are listed does not matter. The effect is to combine
each set of rows having common values into one group row that represents all rows in the group. This
is done to eliminate redundancy in the output and/or compute aggregates that apply to these groups.
For instance:
=> SELECT * FROM test1;
 x | y
---+---
 a | 3
 c | 2
 b | 5
 a | 1
(4 rows)

=> SELECT x FROM test1 GROUP BY x;
 x

 a
 b
 c
(3 rows)

In the second query, we could not have written SELECT * FROM test1 GROUP BY x, because there is no
single value for the column y that could be associated with each group. The grouped-by columns can be
referenced in the select list since they have a single value in each group.

In general, if a table is grouped, columns that are not listed in GROUP BY cannot be referenced except in
aggregate expressions. An example with aggregate expressions is:
=> SELECT x, sum(y) FROM test1 GROUP BY x;
 x | sum
---+-----
 a | 4
 b | 5

99

Queries

 c | 2
(3 rows)

Here sum is an aggregate function that computes a single value over the entire group. More information
about the available aggregate functions can be found in Section 9.21.

Tip
Grouping without aggregate expressions effectively calculates the set of distinct values in a
column. This can also be achieved using the DISTINCT clause (see Section 7.3.3).

Here is another example: it calculates the total sales for each product (rather than the total sales of
all products):

SELECT product_id, p.name, (sum(s.units) * p.price) AS sales
 FROM products p LEFT JOIN sales s USING (product_id)
 GROUP BY product_id, p.name, p.price;

In this example, the columns product_id, p.name, and p.price must be in the GROUP BY clause since
they are referenced in the query select list (but see below). The column s.units does not have to be in
the GROUP BY list since it is only used in an aggregate expression (sum(...)), which represents the sales
of a product. For each product, the query returns a summary row about all sales of the product.

If the products table is set up so that, say, product_id is the primary key, then it would be enough to
group by product_id in the above example, since name and price would be functionally dependent on
the product ID, and so there would be no ambiguity about which name and price value to return for
each product ID group.

In strict SQL, GROUP BY can only group by columns of the source table but Postgres Pro extends this
to also allow GROUP BY to group by columns in the select list. Grouping by value expressions instead of
simple column names is also allowed.

If a table has been grouped using GROUP BY, but only certain groups are of interest, the HAVING clause
can be used, much like a WHERE clause, to eliminate groups from the result. The syntax is:

SELECT select_list FROM ... [WHERE ...] GROUP BY ... HAVING boolean_expression

Expressions in the HAVING clause can refer both to grouped expressions and to ungrouped expressions
(which necessarily involve an aggregate function).

Example:

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING sum(y) > 3;
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

=> SELECT x, sum(y) FROM test1 GROUP BY x HAVING x < 'c';
 x | sum
---+-----
 a | 4
 b | 5
(2 rows)

Again, a more realistic example:

SELECT product_id, p.name, (sum(s.units) * (p.price - p.cost)) AS profit

100

Queries

 FROM products p LEFT JOIN sales s USING (product_id)
 WHERE s.date > CURRENT_DATE - INTERVAL '4 weeks'
 GROUP BY product_id, p.name, p.price, p.cost
 HAVING sum(p.price * s.units) > 5000;

In the example above, the WHERE clause is selecting rows by a column that is not grouped (the expression
is only true for sales during the last four weeks), while the HAVING clause restricts the output to groups
with total gross sales over 5000. Note that the aggregate expressions do not necessarily need to be the
same in all parts of the query.

If a query contains aggregate function calls, but no GROUP BY clause, grouping still occurs: the result is
a single group row (or perhaps no rows at all, if the single row is then eliminated by HAVING). The same
is true if it contains a HAVING clause, even without any aggregate function calls or GROUP BY clause.

7.2.4. GROUPING SETS, CUBE, and ROLLUP
More complex grouping operations than those described above are possible using the concept of
grouping sets. The data selected by the FROM and WHERE clauses is grouped separately by each specified
grouping set, aggregates computed for each group just as for simple GROUP BY clauses, and then the
results returned. For example:

=> SELECT * FROM items_sold;
 brand | size | sales
-------+------+-------
 Foo | L | 10
 Foo | M | 20
 Bar | M | 15
 Bar | L | 5
(4 rows)

=> SELECT brand, size, sum(sales) FROM items_sold GROUP BY GROUPING SETS ((brand),
 (size), ());
 brand | size | sum
-------+------+-----
 Foo | | 30
 Bar | | 20
 | L | 15
 | M | 35
 | | 50
(5 rows)

Each sublist of GROUPING SETS may specify zero or more columns or expressions and is interpreted the
same way as though it were directly in the GROUP BY clause. An empty grouping set means that all rows
are aggregated down to a single group (which is output even if no input rows were present), as described
above for the case of aggregate functions with no GROUP BY clause.

References to the grouping columns or expressions are replaced by null values in result rows for
grouping sets in which those columns do not appear. To distinguish which grouping a particular output
row resulted from, see Table 9.59.

A shorthand notation is provided for specifying two common types of grouping set. A clause of the form

ROLLUP (e1, e2, e3, ...)

represents the given list of expressions and all prefixes of the list including the empty list; thus it is
equivalent to

GROUPING SETS (
 (e1, e2, e3, ...),
 ...
 (e1, e2),

101

Queries

 (e1),
 ()
)

This is commonly used for analysis over hierarchical data; e.g., total salary by department, division, and
company-wide total.

A clause of the form

CUBE (e1, e2, ...)

represents the given list and all of its possible subsets (i.e., the power set). Thus

CUBE (a, b, c)

is equivalent to

GROUPING SETS (
 (a, b, c),
 (a, b),
 (a, c),
 (a),
 (b, c),
 (b),
 (c),
 ()
)

The individual elements of a CUBE or ROLLUP clause may be either individual expressions, or sublists of
elements in parentheses. In the latter case, the sublists are treated as single units for the purposes of
generating the individual grouping sets. For example:

CUBE ((a, b), (c, d))

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b),
 (c, d),
 ()
)

and

ROLLUP (a, (b, c), d)

is equivalent to

GROUPING SETS (
 (a, b, c, d),
 (a, b, c),
 (a),
 ()
)

The CUBE and ROLLUP constructs can be used either directly in the GROUP BY clause, or nested inside a
GROUPING SETS clause. If one GROUPING SETS clause is nested inside another, the effect is the same as
if all the elements of the inner clause had been written directly in the outer clause.

If multiple grouping items are specified in a single GROUP BY clause, then the final list of grouping sets
is the cross product of the individual items. For example:

GROUP BY a, CUBE (b, c), GROUPING SETS ((d), (e))

is equivalent to

102

Queries

GROUP BY GROUPING SETS (
 (a, b, c, d), (a, b, c, e),
 (a, b, d), (a, b, e),
 (a, c, d), (a, c, e),
 (a, d), (a, e)
)

Note
The construct (a, b) is normally recognized in expressions as a row constructor. Within the GROUP
BY clause, this does not apply at the top levels of expressions, and (a, b) is parsed as a list of
expressions as described above. If for some reason you need a row constructor in a grouping
expression, use ROW(a, b).

7.2.5. Window Function Processing
If the query contains any window functions (see Section 3.5, Section 9.22 and Section 4.2.8), these
functions are evaluated after any grouping, aggregation, and HAVING filtering is performed. That is, if
the query uses any aggregates, GROUP BY, or HAVING, then the rows seen by the window functions are
the group rows instead of the original table rows from FROM/WHERE.

When multiple window functions are used, all the window functions having syntactically equivalent
PARTITION BY and ORDER BY clauses in their window definitions are guaranteed to be evaluated in a
single pass over the data. Therefore they will see the same sort ordering, even if the ORDER BY does not
uniquely determine an ordering. However, no guarantees are made about the evaluation of functions
having different PARTITION BY or ORDER BY specifications. (In such cases a sort step is typically required
between the passes of window function evaluations, and the sort is not guaranteed to preserve ordering
of rows that its ORDER BY sees as equivalent.)

Currently, window functions always require presorted data, and so the query output will be ordered
according to one or another of the window functions' PARTITION BY/ORDER BY clauses. It is not
recommended to rely on this, however. Use an explicit top-level ORDER BY clause if you want to be sure
the results are sorted in a particular way.

7.3. Select Lists
As shown in the previous section, the table expression in the SELECT command constructs an
intermediate virtual table by possibly combining tables, views, eliminating rows, grouping, etc. This
table is finally passed on to processing by the select list. The select list determines which columns of
the intermediate table are actually output.

7.3.1. Select-List Items
The simplest kind of select list is * which emits all columns that the table expression produces. Otherwise,
a select list is a comma-separated list of value expressions (as defined in Section 4.2). For instance, it
could be a list of column names:

SELECT a, b, c FROM ...

The columns names a, b, and c are either the actual names of the columns of tables referenced in the
FROM clause, or the aliases given to them as explained in Section 7.2.1.2. The name space available in
the select list is the same as in the WHERE clause, unless grouping is used, in which case it is the same
as in the HAVING clause.

If more than one table has a column of the same name, the table name must also be given, as in:

SELECT tbl1.a, tbl2.a, tbl1.b FROM ...

When working with multiple tables, it can also be useful to ask for all the columns of a particular table:

103

Queries

SELECT tbl1.*, tbl2.a FROM ...

See Section 8.16.5 for more about the table_name.* notation.

If an arbitrary value expression is used in the select list, it conceptually adds a new virtual column to
the returned table. The value expression is evaluated once for each result row, with the row's values
substituted for any column references. But the expressions in the select list do not have to reference
any columns in the table expression of the FROM clause; they can be constant arithmetic expressions,
for instance.

7.3.2. Column Labels
The entries in the select list can be assigned names for subsequent processing, such as for use in an
ORDER BY clause or for display by the client application. For example:

SELECT a AS value, b + c AS sum FROM ...

If no output column name is specified using AS, the system assigns a default column name. For simple
column references, this is the name of the referenced column. For function calls, this is the name of the
function. For complex expressions, the system will generate a generic name.

The AS keyword is optional, but only if the new column name does not match any Postgres Pro keyword
(see Appendix C). To avoid an accidental match to a keyword, you can double-quote the column name.
For example, VALUE is a keyword, so this does not work:

SELECT a value, b + c AS sum FROM ...

but this does:

SELECT a "value", b + c AS sum FROM ...

For protection against possible future keyword additions, it is recommended that you always either write
AS or double-quote the output column name.

Note
The naming of output columns here is different from that done in the FROM clause (see
Section 7.2.1.2). It is possible to rename the same column twice, but the name assigned in the
select list is the one that will be passed on.

7.3.3. DISTINCT
After the select list has been processed, the result table can optionally be subject to the elimination of
duplicate rows. The DISTINCT key word is written directly after SELECT to specify this:

SELECT DISTINCT select_list ...

(Instead of DISTINCT the key word ALL can be used to specify the default behavior of retaining all rows.)

Obviously, two rows are considered distinct if they differ in at least one column value. Null values are
considered equal in this comparison.

Alternatively, an arbitrary expression can determine what rows are to be considered distinct:

SELECT DISTINCT ON (expression [, expression ...]) select_list ...

Here expression is an arbitrary value expression that is evaluated for all rows. A set of rows for which
all the expressions are equal are considered duplicates, and only the first row of the set is kept in the
output. Note that the “first row” of a set is unpredictable unless the query is sorted on enough columns
to guarantee a unique ordering of the rows arriving at the DISTINCT filter. (DISTINCT ON processing
occurs after ORDER BY sorting.)

104

Queries

The DISTINCT ON clause is not part of the SQL standard and is sometimes considered bad style because
of the potentially indeterminate nature of its results. With judicious use of GROUP BY and subqueries in
FROM, this construct can be avoided, but it is often the most convenient alternative.

7.4. Combining Queries
The results of two queries can be combined using the set operations union, intersection, and difference.
The syntax is
query1 UNION [ALL] query2
query1 INTERSECT [ALL] query2
query1 EXCEPT [ALL] query2

where query1 and query2 are queries that can use any of the features discussed up to this point.

UNION effectively appends the result of query2 to the result of query1 (although there is no guarantee
that this is the order in which the rows are actually returned). Furthermore, it eliminates duplicate rows
from its result, in the same way as DISTINCT, unless UNION ALL is used.

INTERSECT returns all rows that are both in the result of query1 and in the result of query2. Duplicate
rows are eliminated unless INTERSECT ALL is used.

EXCEPT returns all rows that are in the result of query1 but not in the result of query2. (This is sometimes
called the difference between two queries.) Again, duplicates are eliminated unless EXCEPT ALL is used.

In order to calculate the union, intersection, or difference of two queries, the two queries must be “union
compatible”, which means that they return the same number of columns and the corresponding columns
have compatible data types, as described in Section 10.5.

Set operations can be combined, for example
query1 UNION query2 EXCEPT query3

which is equivalent to
(query1 UNION query2) EXCEPT query3

As shown here, you can use parentheses to control the order of evaluation. Without parentheses, UNION
and EXCEPT associate left-to-right, but INTERSECT binds more tightly than those two operators. Thus
query1 UNION query2 INTERSECT query3

means
query1 UNION (query2 INTERSECT query3)

You can also surround an individual query with parentheses. This is important if the query needs to
use any of the clauses discussed in following sections, such as LIMIT. Without parentheses, you'll get a
syntax error, or else the clause will be understood as applying to the output of the set operation rather
than one of its inputs. For example,
SELECT a FROM b UNION SELECT x FROM y LIMIT 10

is accepted, but it means
(SELECT a FROM b UNION SELECT x FROM y) LIMIT 10

not
SELECT a FROM b UNION (SELECT x FROM y LIMIT 10)

7.5. Sorting Rows
After a query has produced an output table (after the select list has been processed) it can optionally be
sorted. If sorting is not chosen, the rows will be returned in an unspecified order. The actual order in
that case will depend on the scan and join plan types and the order on disk, but it must not be relied on.
A particular output ordering can only be guaranteed if the sort step is explicitly chosen.

105

Queries

The ORDER BY clause specifies the sort order:

SELECT select_list
 FROM table_expression
 ORDER BY sort_expression1 [ASC | DESC] [NULLS { FIRST | LAST }]
 [, sort_expression2 [ASC | DESC] [NULLS { FIRST | LAST }] ...]

The sort expression(s) can be any expression that would be valid in the query's select list. An example is:

SELECT a, b FROM table1 ORDER BY a + b, c;

When more than one expression is specified, the later values are used to sort rows that are equal
according to the earlier values. Each expression can be followed by an optional ASC or DESC keyword
to set the sort direction to ascending or descending. ASC order is the default. Ascending order puts
smaller values first, where “smaller” is defined in terms of the < operator. Similarly, descending order
is determined with the > operator. 1

The NULLS FIRST and NULLS LAST options can be used to determine whether nulls appear before or after
non-null values in the sort ordering. By default, null values sort as if larger than any non-null value; that
is, NULLS FIRST is the default for DESC order, and NULLS LAST otherwise.

Note that the ordering options are considered independently for each sort column. For example ORDER
BY x, y DESC means ORDER BY x ASC, y DESC, which is not the same as ORDER BY x DESC, y DESC.

A sort_expression can also be the column label or number of an output column, as in:

SELECT a + b AS sum, c FROM table1 ORDER BY sum;
SELECT a, max(b) FROM table1 GROUP BY a ORDER BY 1;

both of which sort by the first output column. Note that an output column name has to stand alone, that
is, it cannot be used in an expression — for example, this is not correct:

SELECT a + b AS sum, c FROM table1 ORDER BY sum + c; -- wrong

This restriction is made to reduce ambiguity. There is still ambiguity if an ORDER BY item is a simple
name that could match either an output column name or a column from the table expression. The output
column is used in such cases. This would only cause confusion if you use AS to rename an output column
to match some other table column's name.

ORDER BY can be applied to the result of a UNION, INTERSECT, or EXCEPT combination, but in this case it
is only permitted to sort by output column names or numbers, not by expressions.

7.6. LIMIT and OFFSET
LIMIT and OFFSET allow you to retrieve just a portion of the rows that are generated by the rest of the
query:

SELECT select_list
 FROM table_expression
 [ORDER BY ...]
 [LIMIT { number | ALL }] [OFFSET number]

If a limit count is given, no more than that many rows will be returned (but possibly fewer, if the query
itself yields fewer rows). LIMIT ALL is the same as omitting the LIMIT clause, as is LIMIT with a NULL
argument.

OFFSET says to skip that many rows before beginning to return rows. OFFSET 0 is the same as omitting
the OFFSET clause, as is OFFSET with a NULL argument.

If both OFFSET and LIMIT appear, then OFFSET rows are skipped before starting to count the LIMIT rows
that are returned.

1 Actually, Postgres Pro uses the default B-tree operator class for the expression's data type to determine the sort ordering for ASC and DESC. Conventionally, data
types will be set up so that the < and > operators correspond to this sort ordering, but a user-defined data type's designer could choose to do something different.

106

Queries

When using LIMIT, it is important to use an ORDER BY clause that constrains the result rows into a unique
order. Otherwise you will get an unpredictable subset of the query's rows. You might be asking for the
tenth through twentieth rows, but tenth through twentieth in what ordering? The ordering is unknown,
unless you specified ORDER BY.

The query optimizer takes LIMIT into account when generating query plans, so you are very likely to get
different plans (yielding different row orders) depending on what you give for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

The rows skipped by an OFFSET clause still have to be computed inside the server; therefore a large
OFFSET might be inefficient.

7.7. VALUES Lists
VALUES provides a way to generate a “constant table” that can be used in a query without having to
actually create and populate a table on-disk. The syntax is

VALUES (expression [, ...]) [, ...]

Each parenthesized list of expressions generates a row in the table. The lists must all have the same
number of elements (i.e., the number of columns in the table), and corresponding entries in each list must
have compatible data types. The actual data type assigned to each column of the result is determined
using the same rules as for UNION (see Section 10.5).

As an example:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

By default, Postgres Pro assigns the names column1, column2, etc. to the columns of a VALUES table. The
column names are not specified by the SQL standard and different database systems do it differently, so
it's usually better to override the default names with a table alias list, like this:

=> SELECT * FROM (VALUES (1, 'one'), (2, 'two'), (3, 'three')) AS t (num,letter);
 num | letter
-----+--------
 1 | one
 2 | two
 3 | three
(3 rows)

Syntactically, VALUES followed by expression lists is treated as equivalent to:

SELECT select_list FROM table_expression

and can appear anywhere a SELECT can. For example, you can use it as part of a UNION, or attach a
sort_specification (ORDER BY, LIMIT, and/or OFFSET) to it. VALUES is most commonly used as the data
source in an INSERT command, and next most commonly as a subquery.

For more information see VALUES.

7.8. WITH Queries (Common Table Expressions)

107

Queries

WITH provides a way to write auxiliary statements for use in a larger query. These statements, which
are often referred to as Common Table Expressions or CTEs, can be thought of as defining temporary
tables that exist just for one query. Each auxiliary statement in a WITH clause can be a SELECT, INSERT,
UPDATE, or DELETE; and the WITH clause itself is attached to a primary statement that can also be a
SELECT, INSERT, UPDATE, or DELETE.

7.8.1. SELECT in WITH
The basic value of SELECT in WITH is to break down complicated queries into simpler parts. An example is:

WITH regional_sales AS (
 SELECT region, SUM(amount) AS total_sales
 FROM orders
 GROUP BY region
), top_regions AS (
 SELECT region
 FROM regional_sales
 WHERE total_sales > (SELECT SUM(total_sales)/10 FROM regional_sales)
)
SELECT region,
 product,
 SUM(quantity) AS product_units,
 SUM(amount) AS product_sales
FROM orders
WHERE region IN (SELECT region FROM top_regions)
GROUP BY region, product;

which displays per-product sales totals in only the top sales regions. The WITH clause defines two auxiliary
statements named regional_sales and top_regions, where the output of regional_sales is used in
top_regions and the output of top_regions is used in the primary SELECT query. This example could
have been written without WITH, but we'd have needed two levels of nested sub-SELECTs. It's a bit easier
to follow this way.

The optional RECURSIVE modifier changes WITH from a mere syntactic convenience into a feature that
accomplishes things not otherwise possible in standard SQL. Using RECURSIVE, a WITH query can refer
to its own output. A very simple example is this query to sum the integers from 1 through 100:

WITH RECURSIVE t(n) AS (
 VALUES (1)
 UNION ALL
 SELECT n+1 FROM t WHERE n < 100
)
SELECT sum(n) FROM t;

The general form of a recursive WITH query is always a non-recursive term, then UNION (or UNION ALL),
then a recursive term, where only the recursive term can contain a reference to the query's own output.
Such a query is executed as follows:

Recursive Query Evaluation

1. Evaluate the non-recursive term. For UNION (but not UNION ALL), discard duplicate rows. Include all
remaining rows in the result of the recursive query, and also place them in a temporary working table.

2. So long as the working table is not empty, repeat these steps:

a. Evaluate the recursive term, substituting the current contents of the working table for the
recursive self-reference. For UNION (but not UNION ALL), discard duplicate rows and rows that
duplicate any previous result row. Include all remaining rows in the result of the recursive query,
and also place them in a temporary intermediate table.

b. Replace the contents of the working table with the contents of the intermediate table, then empty
the intermediate table.

108

Queries

Note
Strictly speaking, this process is iteration not recursion, but RECURSIVE is the terminology chosen
by the SQL standards committee.

In the example above, the working table has just a single row in each step, and it takes on the values
from 1 through 100 in successive steps. In the 100th step, there is no output because of the WHERE clause,
and so the query terminates.

Recursive queries are typically used to deal with hierarchical or tree-structured data. A useful example
is this query to find all the direct and indirect sub-parts of a product, given only a table that shows
immediate inclusions:
WITH RECURSIVE included_parts(sub_part, part, quantity) AS (
 SELECT sub_part, part, quantity FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part, p.quantity
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
SELECT sub_part, SUM(quantity) as total_quantity
FROM included_parts
GROUP BY sub_part

When working with recursive queries it is important to be sure that the recursive part of the query will
eventually return no tuples, or else the query will loop indefinitely. Sometimes, using UNION instead of
UNION ALL can accomplish this by discarding rows that duplicate previous output rows. However, often
a cycle does not involve output rows that are completely duplicate: it may be necessary to check just
one or a few fields to see if the same point has been reached before. The standard method for handling
such situations is to compute an array of the already-visited values. For example, consider the following
query that searches a table graph using a link field:
WITH RECURSIVE search_graph(id, link, data, depth) AS (
 SELECT g.id, g.link, g.data, 1
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1
 FROM graph g, search_graph sg
 WHERE g.id = sg.link
)
SELECT * FROM search_graph;

This query will loop if the link relationships contain cycles. Because we require a “depth” output, just
changing UNION ALL to UNION would not eliminate the looping. Instead we need to recognize whether
we have reached the same row again while following a particular path of links. We add two columns
path and cycle to the loop-prone query:
WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[g.id],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || g.id,
 g.id = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)

109

Queries

SELECT * FROM search_graph;

Aside from preventing cycles, the array value is often useful in its own right as representing the “path”
taken to reach any particular row.

In the general case where more than one field needs to be checked to recognize a cycle, use an array
of rows. For example, if we needed to compare fields f1 and f2:

WITH RECURSIVE search_graph(id, link, data, depth, path, cycle) AS (
 SELECT g.id, g.link, g.data, 1,
 ARRAY[ROW(g.f1, g.f2)],
 false
 FROM graph g
 UNION ALL
 SELECT g.id, g.link, g.data, sg.depth + 1,
 path || ROW(g.f1, g.f2),
 ROW(g.f1, g.f2) = ANY(path)
 FROM graph g, search_graph sg
 WHERE g.id = sg.link AND NOT cycle
)
SELECT * FROM search_graph;

Tip
Omit the ROW() syntax in the common case where only one field needs to be checked to recognize a
cycle. This allows a simple array rather than a composite-type array to be used, gaining efficiency.

Tip
The recursive query evaluation algorithm produces its output in breadth-first search order. You
can display the results in depth-first search order by making the outer query ORDER BY a “path”
column constructed in this way.

A helpful trick for testing queries when you are not certain if they might loop is to place a LIMIT in the
parent query. For example, this query would loop forever without the LIMIT:

WITH RECURSIVE t(n) AS (
 SELECT 1
 UNION ALL
 SELECT n+1 FROM t
)
SELECT n FROM t LIMIT 100;

This works because Postgres Pro's implementation evaluates only as many rows of a WITH query as are
actually fetched by the parent query. Using this trick in production is not recommended, because other
systems might work differently. Also, it usually won't work if you make the outer query sort the recursive
query's results or join them to some other table, because in such cases the outer query will usually try
to fetch all of the WITH query's output anyway.

A useful property of WITH queries is that they are normally evaluated only once per execution of the
parent query, even if they are referred to more than once by the parent query or sibling WITH queries.
Thus, expensive calculations that are needed in multiple places can be placed within a WITH query
to avoid redundant work. Another possible application is to prevent unwanted multiple evaluations of
functions with side-effects. However, the other side of this coin is that the optimizer is not able to push
restrictions from the parent query down into a multiply-referenced WITH query, since that might affect all
uses of the WITH query's output when it should affect only one. The multiply-referenced WITH query will
be evaluated as written, without suppression of rows that the parent query might discard afterwards.

110

Queries

(But, as mentioned above, evaluation might stop early if the reference(s) to the query demand only a
limited number of rows.)

However, if a WITH query is non-recursive and side-effect-free (that is, it is a SELECT containing no volatile
functions) then it can be folded into the parent query, allowing joint optimization of the two query levels.
By default, this happens if the parent query references the WITH query just once, but not if it references
the WITH query more than once. You can override that decision by specifying MATERIALIZED to force
separate calculation of the WITH query, or by specifying NOT MATERIALIZED to force it to be merged into
the parent query. The latter choice risks duplicate computation of the WITH query, but it can still give a
net savings if each usage of the WITH query needs only a small part of the WITH query's full output.

A simple example of these rules is

WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w WHERE key = 123;

This WITH query will be folded, producing the same execution plan as

SELECT * FROM big_table WHERE key = 123;

In particular, if there's an index on key, it will probably be used to fetch just the rows having key =
123. On the other hand, in

WITH w AS (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

the WITH query will be materialized, producing a temporary copy of big_table that is then joined with
itself — without benefit of any index. This query will be executed much more efficiently if written as

WITH w AS NOT MATERIALIZED (
 SELECT * FROM big_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.key = w2.ref
WHERE w2.key = 123;

so that the parent query's restrictions can be applied directly to scans of big_table.

An example where NOT MATERIALIZED could be undesirable is

WITH w AS (
 SELECT key, very_expensive_function(val) as f FROM some_table
)
SELECT * FROM w AS w1 JOIN w AS w2 ON w1.f = w2.f;

Here, materialization of the WITH query ensures that very_expensive_function is evaluated only once
per table row, not twice.

The examples above only show WITH being used with SELECT, but it can be attached in the same way to
INSERT, UPDATE, or DELETE. In each case it effectively provides temporary table(s) that can be referred
to in the main command.

7.8.2. Data-Modifying Statements in WITH
You can use data-modifying statements (INSERT, UPDATE, or DELETE) in WITH. This allows you to perform
several different operations in the same query. An example is:

WITH moved_rows AS (
 DELETE FROM products
 WHERE

111

Queries

 "date" >= '2010-10-01' AND
 "date" < '2010-11-01'
 RETURNING *
)
INSERT INTO products_log
SELECT * FROM moved_rows;

This query effectively moves rows from products to products_log. The DELETE in WITH deletes the
specified rows from products, returning their contents by means of its RETURNING clause; and then the
primary query reads that output and inserts it into products_log.

A fine point of the above example is that the WITH clause is attached to the INSERT, not the sub-SELECT
within the INSERT. This is necessary because data-modifying statements are only allowed in WITH clauses
that are attached to the top-level statement. However, normal WITH visibility rules apply, so it is possible
to refer to the WITH statement's output from the sub-SELECT.

Data-modifying statements in WITH usually have RETURNING clauses (see Section 6.4), as shown in the
example above. It is the output of the RETURNING clause, not the target table of the data-modifying
statement, that forms the temporary table that can be referred to by the rest of the query. If a data-
modifying statement in WITH lacks a RETURNING clause, then it forms no temporary table and cannot be
referred to in the rest of the query. Such a statement will be executed nonetheless. A not-particularly-
useful example is:

WITH t AS (
 DELETE FROM foo
)
DELETE FROM bar;

This example would remove all rows from tables foo and bar. The number of affected rows reported to
the client would only include rows removed from bar.

Recursive self-references in data-modifying statements are not allowed. In some cases it is possible to
work around this limitation by referring to the output of a recursive WITH, for example:

WITH RECURSIVE included_parts(sub_part, part) AS (
 SELECT sub_part, part FROM parts WHERE part = 'our_product'
 UNION ALL
 SELECT p.sub_part, p.part
 FROM included_parts pr, parts p
 WHERE p.part = pr.sub_part
)
DELETE FROM parts
 WHERE part IN (SELECT part FROM included_parts);

This query would remove all direct and indirect subparts of a product.

Data-modifying statements in WITH are executed exactly once, and always to completion, independently
of whether the primary query reads all (or indeed any) of their output. Notice that this is different from
the rule for SELECT in WITH: as stated in the previous section, execution of a SELECT is carried only as
far as the primary query demands its output.

The sub-statements in WITH are executed concurrently with each other and with the main query.
Therefore, when using data-modifying statements in WITH, the order in which the specified updates
actually happen is unpredictable. All the statements are executed with the same snapshot (see
Chapter 13), so they cannot “see” one another's effects on the target tables. This alleviates the effects
of the unpredictability of the actual order of row updates, and means that RETURNING data is the only
way to communicate changes between different WITH sub-statements and the main query. An example
of this is that in

WITH t AS (
 UPDATE products SET price = price * 1.05

112

Queries

 RETURNING *
)
SELECT * FROM products;

the outer SELECT would return the original prices before the action of the UPDATE, while in

WITH t AS (
 UPDATE products SET price = price * 1.05
 RETURNING *
)
SELECT * FROM t;

the outer SELECT would return the updated data.

Trying to update the same row twice in a single statement is not supported. Only one of the modifications
takes place, but it is not easy (and sometimes not possible) to reliably predict which one. This also
applies to deleting a row that was already updated in the same statement: only the update is performed.
Therefore you should generally avoid trying to modify a single row twice in a single statement. In
particular avoid writing WITH sub-statements that could affect the same rows changed by the main
statement or a sibling sub-statement. The effects of such a statement will not be predictable.

At present, any table used as the target of a data-modifying statement in WITH must not have a conditional
rule, nor an ALSO rule, nor an INSTEAD rule that expands to multiple statements.

113

Chapter 8. Data Types
Postgres Pro has a rich set of native data types available to users. Users can add new types to Postgres
Pro using the CREATE TYPE command.

Table 8.1 shows all the built-in general-purpose data types. Most of the alternative names listed in the
“Aliases” column are the names used internally by Postgres Pro for historical reasons. In addition, some
internally used or deprecated types are available, but are not listed here.

Table 8.1. Data Types

Name Aliases Description
bigint int8 signed eight-byte integer
bigserial serial8 autoincrementing eight-byte integer
bit [(n)] fixed-length bit string
bit varying [(n)] varbit [(n)] variable-length bit string
boolean bool logical Boolean (true/false)
box rectangular box on a plane
bytea binary data (“byte array”)
character [(n)] char [(n)] fixed-length character string
character varying [(n)] varchar [(n)] variable-length character string
cidr IPv4 or IPv6 network address
circle circle on a plane
date calendar date (year, month, day)
double precision float8 double precision floating-point number

(8 bytes)
inet IPv4 or IPv6 host address
integer int, int4 signed four-byte integer
interval [fields] [(p)] time span
json textual JSON data
jsonb binary JSON data, decomposed
line infinite line on a plane
lseg line segment on a plane
macaddr MAC (Media Access Control) address
macaddr8 MAC (Media Access Control) address (

EUI-64 format)
money currency amount
numeric [(p, s)] decimal [(p,

s)]

exact numeric of selectable precision

path geometric path on a plane
pg_lsn Postgres Pro Log Sequence Number
pg_snapshot user-level transaction ID snapshot
point geometric point on a plane
polygon closed geometric path on a plane
real float4 single precision floating-point number (

4 bytes)

114

Data Types

Name Aliases Description
smallint int2 signed two-byte integer
smallserial serial2 autoincrementing two-byte integer
serial serial4 autoincrementing four-byte integer
text variable-length character string
time [(p)] [without time
zone]

 time of day (no time zone)

time [(p)] with time zone timetz time of day, including time zone
timestamp [(p)] [without time
zone]

 date and time (no time zone)

timestamp [(p)] with time zone timestamptz date and time, including time zone
tsquery text search query
tsvector text search document
txid_snapshot user-level transaction ID snapshot (

deprecated; see pg_snapshot)
uuid universally unique identifier
xml XML data

Compatibility
The following types (or spellings thereof) are specified by SQL: bigint, bit, bit varying, boolean,
char, character varying, character, varchar, date, double precision, integer, interval,
numeric, decimal, real, smallint, time (with or without time zone), timestamp (with or without
time zone), xml.

Each data type has an external representation determined by its input and output functions. Many of the
built-in types have obvious external formats. However, several types are either unique to Postgres Pro,
such as geometric paths, or have several possible formats, such as the date and time types. Some of the
input and output functions are not invertible, i.e., the result of an output function might lose accuracy
when compared to the original input.

8.1. Numeric Types
Numeric types consist of two-, four-, and eight-byte integers, four- and eight-byte floating-point numbers,
and selectable-precision decimals. Table 8.2 lists the available types.

Table 8.2. Numeric Types

Name Storage Size Description Range
smallint 2 bytes small-range integer -32768 to +32767
integer 4 bytes typical choice for integer -2147483648 to

+2147483647
bigint 8 bytes large-range integer -9223372036854775808 to

+9223372036854775807
decimal variable user-specified precision,

 exact
up to 131072 digits before
the decimal point; up to
16383 digits after the
decimal point

numeric variable user-specified precision,
 exact

up to 131072 digits before
the decimal point; up to

115

Data Types

Name Storage Size Description Range
16383 digits after the
decimal point

real 4 bytes variable-precision, inexact 6 decimal digits precision
double precision 8 bytes variable-precision, inexact 15 decimal digits precision
smallserial 2 bytes small autoincrementing

integer
1 to 32767

serial 4 bytes autoincrementing integer 1 to 2147483647
bigserial 8 bytes large autoincrementing

integer
1 to 9223372036854775807

The syntax of constants for the numeric types is described in Section 4.1.2. The numeric types have a
full set of corresponding arithmetic operators and functions. Refer to Chapter 9 for more information.
The following sections describe the types in detail.

8.1.1. Integer Types
The types smallint, integer, and bigint store whole numbers, that is, numbers without fractional
components, of various ranges. Attempts to store values outside of the allowed range will result in an
error.

The type integer is the common choice, as it offers the best balance between range, storage size, and
performance. The smallint type is generally only used if disk space is at a premium. The bigint type
is designed to be used when the range of the integer type is insufficient.

SQL only specifies the integer types integer (or int), smallint, and bigint. The type names int2,
int4, and int8 are extensions, which are also used by some other SQL database systems.

8.1.2. Arbitrary Precision Numbers
The type numeric can store numbers with a very large number of digits. It is especially recommended
for storing monetary amounts and other quantities where exactness is required. Calculations with
numeric values yield exact results where possible, e.g., addition, subtraction, multiplication. However,
calculations on numeric values are very slow compared to the integer types, or to the floating-point types
described in the next section.

We use the following terms below: The precision of a numeric is the total count of significant digits in
the whole number, that is, the number of digits to both sides of the decimal point. The scale of a numeric
is the count of decimal digits in the fractional part, to the right of the decimal point. So the number
23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the maximum precision and the maximum scale of a numeric column can be configured. To declare
a column of type numeric use the syntax:

NUMERIC(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively:

NUMERIC(precision)

selects a scale of 0. Specifying:

NUMERIC

without any precision or scale creates a column in which numeric values of any precision and scale can
be stored, up to the implementation limit on precision. A column of this kind will not coerce input values
to any particular scale, whereas numeric columns with a declared scale will coerce input values to that
scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. We find this a
bit useless. If you're concerned about portability, always specify the precision and scale explicitly.)

116

Data Types

Note
The maximum allowed precision when explicitly specified in the type declaration is 1000; NUMERIC
without a specified precision is subject to the limits described in Table 8.2.

If the scale of a value to be stored is greater than the declared scale of the column, the system will
round the value to the specified number of fractional digits. Then, if the number of digits to the left of
the decimal point exceeds the declared precision minus the declared scale, an error is raised.

Numeric values are physically stored without any extra leading or trailing zeroes. Thus, the declared
precision and scale of a column are maximums, not fixed allocations. (In this sense the numeric type is
more akin to varchar(n) than to char(n).) The actual storage requirement is two bytes for each group
of four decimal digits, plus three to eight bytes overhead.

In addition to ordinary numeric values, the numeric type allows the special value NaN, meaning “not-
a-number”. Any operation on NaN yields another NaN. When writing this value as a constant in an SQL
command, you must put quotes around it, for example UPDATE table SET x = 'NaN'. On input, the
string NaN is recognized in a case-insensitive manner.

Note
In most implementations of the “not-a-number” concept, NaN is not considered equal to any other
numeric value (including NaN). In order to allow numeric values to be sorted and used in tree-
based indexes, Postgres Pro treats NaN values as equal, and greater than all non-NaN values.

The types decimal and numeric are equivalent. Both types are part of the SQL standard.

When rounding values, the numeric type rounds ties away from zero, while (on most machines) the real
and double precision types round ties to the nearest even number. For example:
SELECT x,
 round(x::numeric) AS num_round,
 round(x::double precision) AS dbl_round
FROM generate_series(-3.5, 3.5, 1) as x;
 x | num_round | dbl_round
------+-----------+-----------
 -3.5 | -4 | -4
 -2.5 | -3 | -2
 -1.5 | -2 | -2
 -0.5 | -1 | -0
 0.5 | 1 | 0
 1.5 | 2 | 2
 2.5 | 3 | 2
 3.5 | 4 | 4
(8 rows)

8.1.3. Floating-Point Types
The data types real and double precision are inexact, variable-precision numeric types. On all
currently supported platforms, these types are implementations of IEEE Standard 754 for Binary
Floating-Point Arithmetic (single and double precision, respectively), to the extent that the underlying
processor, operating system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as
approximations, so that storing and retrieving a value might show slight discrepancies. Managing these
errors and how they propagate through calculations is the subject of an entire branch of mathematics
and computer science and will not be discussed here, except for the following points:

117

Data Types

• If you require exact storage and calculations (such as for monetary amounts), use the numeric type
instead.

• If you want to do complicated calculations with these types for anything important, especially
if you rely on certain behavior in boundary cases (infinity, underflow), you should evaluate the
implementation carefully.

• Comparing two floating-point values for equality might not always work as expected.

On all currently supported platforms, the real type has a range of around 1E-37 to 1E+37 with a
precision of at least 6 decimal digits. The double precision type has a range of around 1E-307 to 1E
+308 with a precision of at least 15 digits. Values that are too large or too small will cause an error.
Rounding might take place if the precision of an input number is too high. Numbers too close to zero
that are not representable as distinct from zero will cause an underflow error.

By default, floating point values are output in text form in their shortest precise decimal representation;
the decimal value produced is closer to the true stored binary value than to any other value representable
in the same binary precision. (However, the output value is currently never exactly midway between two
representable values, in order to avoid a widespread bug where input routines do not properly respect
the round-to-nearest-even rule.) This value will use at most 17 significant decimal digits for float8
values, and at most 9 digits for float4 values.

Note
This shortest-precise output format is much faster to generate than the historical rounded format.

For compatibility with output generated by older versions of Postgres Pro, and to allow the output
precision to be reduced, the extra_float_digits parameter can be used to select rounded decimal output
instead. Setting a value of 0 restores the previous default of rounding the value to 6 (for float4) or 15
(for float8) significant decimal digits. Setting a negative value reduces the number of digits further;
for example -2 would round output to 4 or 13 digits respectively.

Any value of extra_float_digits greater than 0 selects the shortest-precise format.

Note
Applications that wanted precise values have historically had to set extra_float_digits to 3 to obtain
them. For maximum compatibility between versions, they should continue to do so.

In addition to ordinary numeric values, the floating-point types have several special values:
Infinity
-Infinity
NaN

These represent the IEEE 754 special values “infinity”, “negative infinity”, and “not-a-number”,
respectively. When writing these values as constants in an SQL command, you must put quotes around
them, for example UPDATE table SET x = '-Infinity'. On input, these strings are recognized in a
case-insensitive manner.

Note
IEEE754 specifies that NaN should not compare equal to any other floating-point value (including
NaN). In order to allow floating-point values to be sorted and used in tree-based indexes, Postgres
Pro treats NaN values as equal, and greater than all non-NaN values.

Postgres Pro also supports the SQL-standard notations float and float(p) for specifying inexact
numeric types. Here, p specifies the minimum acceptable precision in binary digits. Postgres Pro

118

Data Types

accepts float(1) to float(24) as selecting the real type, while float(25) to float(53) select double
precision. Values of p outside the allowed range draw an error. float with no precision specified is
taken to mean double precision.

8.1.4. Serial Types

Note
This section describes a Postgres Pro-specific way to create an autoincrementing column. Another
way is to use the SQL-standard identity column feature, described at CREATE TABLE.

The data types smallserial, serial and bigserial are not true types, but merely a notational
convenience for creating unique identifier columns (similar to the AUTO_INCREMENT property supported
by some other databases). In the current implementation, specifying:
CREATE TABLE tablename (
 colname SERIAL
);

is equivalent to specifying:
CREATE SEQUENCE tablename_colname_seq AS integer;
CREATE TABLE tablename (
 colname integer NOT NULL DEFAULT nextval('tablename_colname_seq')
);
ALTER SEQUENCE tablename_colname_seq OWNED BY tablename.colname;

Thus, we have created an integer column and arranged for its default values to be assigned from a
sequence generator. A NOT NULL constraint is applied to ensure that a null value cannot be inserted.
(In most cases you would also want to attach a UNIQUE or PRIMARY KEY constraint to prevent duplicate
values from being inserted by accident, but this is not automatic.) Lastly, the sequence is marked as
“owned by” the column, so that it will be dropped if the column or table is dropped.

Note
Because smallserial, serial and bigserial are implemented using sequences, there may be
"holes" or gaps in the sequence of values which appears in the column, even if no rows are ever
deleted. A value allocated from the sequence is still "used up" even if a row containing that value
is never successfully inserted into the table column. This may happen, for example, if the inserting
transaction rolls back. See nextval() in Section 9.17 for details.

To insert the next value of the sequence into the serial column, specify that the serial column should
be assigned its default value. This can be done either by excluding the column from the list of columns
in the INSERT statement, or through the use of the DEFAULT key word.

The type names serial and serial4 are equivalent: both create integer columns. The type names
bigserial and serial8 work the same way, except that they create a bigint column. bigserial should
be used if you anticipate the use of more than 231 identifiers over the lifetime of the table. The type
names smallserial and serial2 also work the same way, except that they create a smallint column.

The sequence created for a serial column is automatically dropped when the owning column is dropped.
You can drop the sequence without dropping the column, but this will force removal of the column default
expression.

8.2. Monetary Types
The money type stores a currency amount with a fixed fractional precision; see Table 8.3. The fractional
precision is determined by the database's lc_monetary setting. The range shown in the table assumes

119

Data Types

there are two fractional digits. Input is accepted in a variety of formats, including integer and floating-
point literals, as well as typical currency formatting, such as '$1,000.00'. Output is generally in the
latter form but depends on the locale.

Table 8.3. Monetary Types

Name Storage Size Description Range
money 8 bytes currency amount -92233720368547758.08 to

+92233720368547758.07

Since the output of this data type is locale-sensitive, it might not work to load money data into a database
that has a different setting of lc_monetary. To avoid problems, before restoring a dump into a new
database make sure lc_monetary has the same or equivalent value as in the database that was dumped.

Values of the numeric, int, and bigint data types can be cast to money. Conversion from the real and
double precision data types can be done by casting to numeric first, for example:

SELECT '12.34'::float8::numeric::money;

However, this is not recommended. Floating point numbers should not be used to handle money due to
the potential for rounding errors.

A money value can be cast to numeric without loss of precision. Conversion to other types could
potentially lose precision, and must also be done in two stages:

SELECT '52093.89'::money::numeric::float8;

Division of a money value by an integer value is performed with truncation of the fractional part towards
zero. To get a rounded result, divide by a floating-point value, or cast the money value to numeric before
dividing and back to money afterwards. (The latter is preferable to avoid risking precision loss.) When a
money value is divided by another money value, the result is double precision (i.e., a pure number, not
money); the currency units cancel each other out in the division.

8.3. Character Types
Table 8.4. Character Types

Name Description
character varying(n), varchar(n) variable-length with limit
character(n), char(n) fixed-length, blank padded
text variable unlimited length

Table 8.4 shows the general-purpose character types available in Postgres Pro.

SQL defines two primary character types: character varying(n) and character(n), where n is a
positive integer. Both of these types can store strings up to n characters (not bytes) in length. An attempt
to store a longer string into a column of these types will result in an error, unless the excess characters
are all spaces, in which case the string will be truncated to the maximum length. (This somewhat bizarre
exception is required by the SQL standard.) If the string to be stored is shorter than the declared length,
values of type character will be space-padded; values of type character varying will simply store the
shorter string.

If one explicitly casts a value to character varying(n) or character(n), then an over-length value will
be truncated to n characters without raising an error. (This too is required by the SQL standard.)

The notations varchar(n) and char(n) are aliases for character varying(n) and character(n),
respectively. character without length specifier is equivalent to character(1). If character varying is
used without length specifier, the type accepts strings of any size. The latter is a Postgres Pro extension.

120

Data Types

In addition, Postgres Pro provides the text type, which stores strings of any length. Although the type
text is not in the SQL standard, several other SQL database management systems have it as well.

Values of type character are physically padded with spaces to the specified width n, and are stored and
displayed that way. However, trailing spaces are treated as semantically insignificant and disregarded
when comparing two values of type character. In collations where whitespace is significant, this
behavior can produce unexpected results; for example SELECT 'a '::CHAR(2) collate "C" < E'a
\n'::CHAR(2) returns true, even though C locale would consider a space to be greater than a newline.
Trailing spaces are removed when converting a character value to one of the other string types. Note
that trailing spaces are semantically significant in character varying and text values, and when using
pattern matching, that is LIKE and regular expressions.

The characters that can be stored in any of these data types are determined by the database character
set, which is selected when the database is created. Regardless of the specific character set, the
character with code zero (sometimes called NUL) cannot be stored. For more information refer to
Section 22.3.

The storage requirement for a short string (up to 126 bytes) is 1 byte plus the actual string, which
includes the space padding in the case of character. Longer strings have 4 bytes of overhead instead of
1. Long strings are compressed by the system automatically, so the physical requirement on disk might
be less. Very long values are also stored in background tables so that they do not interfere with rapid
access to shorter column values. In any case, the longest possible character string that can be stored is
about 1 GB. (The maximum value that will be allowed for n in the data type declaration is less than that. It
wouldn't be useful to change this because with multibyte character encodings the number of characters
and bytes can be quite different. If you desire to store long strings with no specific upper limit, use text
or character varying without a length specifier, rather than making up an arbitrary length limit.)

Tip
There is no performance difference among these three types, apart from increased storage space
when using the blank-padded type, and a few extra CPU cycles to check the length when storing
into a length-constrained column. While character(n) has performance advantages in some other
database systems, there is no such advantage in Postgres Pro; in fact character(n) is usually the
slowest of the three because of its additional storage costs. In most situations text or character
varying should be used instead.

Refer to Section 4.1.2.1 for information about the syntax of string literals, and to Chapter 9 for
information about available operators and functions.

Example 8.1. Using the Character Types

CREATE TABLE test1 (a character(4));
INSERT INTO test1 VALUES ('ok');
SELECT a, char_length(a) FROM test1; -- 1

 a | char_length
------+-------------
 ok | 2

CREATE TABLE test2 (b varchar(5));
INSERT INTO test2 VALUES ('ok');
INSERT INTO test2 VALUES ('good ');
INSERT INTO test2 VALUES ('too long');
ERROR: value too long for type character varying(5)
INSERT INTO test2 VALUES ('too long'::varchar(5)); -- explicit truncation
SELECT b, char_length(b) FROM test2;

121

Data Types

 b | char_length
-------+-------------
 ok | 2
 good | 5
 too l | 5

1 The char_length function is discussed in Section 9.4.

There are two other fixed-length character types in Postgres Pro, shown in Table 8.5. The name type
exists only for the storage of identifiers in the internal system catalogs and is not intended for use by the
general user. Its length is currently defined as 64 bytes (63 usable characters plus terminator) but should
be referenced using the constant NAMEDATALEN in C source code. The length is set at compile time (and
is therefore adjustable for special uses); the default maximum length might change in a future release.
The type "char" (note the quotes) is different from char(1) in that it only uses one byte of storage. It is
internally used in the system catalogs as a simplistic enumeration type.

Table 8.5. Special Character Types

Name Storage Size Description
"char" 1 byte single-byte internal type
name 64 bytes internal type for object names

8.4. Binary Data Types
The bytea data type allows storage of binary strings; see Table 8.6.

Table 8.6. Binary Data Types

Name Storage Size Description
bytea 1 or 4 bytes plus the actual binary string variable-length binary string

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from character strings
in two ways. First, binary strings specifically allow storing octets of value zero and other “non-printable”
octets (usually, octets outside the decimal range 32 to 126). Character strings disallow zero octets, and
also disallow any other octet values and sequences of octet values that are invalid according to the
database's selected character set encoding. Second, operations on binary strings process the actual
bytes, whereas the processing of character strings depends on locale settings. In short, binary strings
are appropriate for storing data that the programmer thinks of as “raw bytes”, whereas character strings
are appropriate for storing text.

The bytea type supports two formats for input and output: “hex” format and PostgreSQL's historical
“escape” format. Both of these are always accepted on input. The output format depends on the
configuration parameter bytea_output; the default is hex. (Note that the hex format was introduced in
PostgreSQL 9.0; earlier versions and some tools don't understand it.)

The SQL standard defines a different binary string type, called BLOB or BINARY LARGE OBJECT. The input
format is different from bytea, but the provided functions and operators are mostly the same.

8.4.1. bytea Hex Format
The “hex” format encodes binary data as 2 hexadecimal digits per byte, most significant nibble first.
The entire string is preceded by the sequence \x (to distinguish it from the escape format). In some
contexts, the initial backslash may need to be escaped by doubling it (see Section 4.1.2.1). For input,
the hexadecimal digits can be either upper or lower case, and whitespace is permitted between digit
pairs (but not within a digit pair nor in the starting \x sequence). The hex format is compatible with a
wide range of external applications and protocols, and it tends to be faster to convert than the escape
format, so its use is preferred.

122

Data Types

Example:
SELECT '\xDEADBEEF';

8.4.2. bytea Escape Format
The “escape” format is the traditional Postgres Pro format for the bytea type. It takes the approach of
representing a binary string as a sequence of ASCII characters, while converting those bytes that cannot
be represented as an ASCII character into special escape sequences. If, from the point of view of the
application, representing bytes as characters makes sense, then this representation can be convenient.
But in practice it is usually confusing because it fuzzes up the distinction between binary strings and
character strings, and also the particular escape mechanism that was chosen is somewhat unwieldy.
Therefore, this format should probably be avoided for most new applications.

When entering bytea values in escape format, octets of certain values must be escaped, while all octet
values can be escaped. In general, to escape an octet, convert it into its three-digit octal value and
precede it by a backslash. Backslash itself (octet decimal value 92) can alternatively be represented
by double backslashes. Table 8.7 shows the characters that must be escaped, and gives the alternative
escape sequences where applicable.

Table 8.7. bytea Literal Escaped Octets

Decimal Octet
Value

Description Escaped Input
Representation

Example Hex
Representation

0 zero octet '\000' '\000'::bytea \x00

39 single quote '''' or '\047' ''''::bytea \x27

92 backslash '\\' or '\134' '\\'::bytea \x5c

0 to 31 and 127 to
255

“non-printable”
octets

'\xxx' (octal
value)

'\001'::bytea \x01

The requirement to escape non-printable octets varies depending on locale settings. In some instances
you can get away with leaving them unescaped.

The reason that single quotes must be doubled, as shown in Table 8.7, is that this is true for any string
literal in a SQL command. The generic string-literal parser consumes the outermost single quotes and
reduces any pair of single quotes to one data character. What the bytea input function sees is just
one single quote, which it treats as a plain data character. However, the bytea input function treats
backslashes as special, and the other behaviors shown in Table 8.7 are implemented by that function.

In some contexts, backslashes must be doubled compared to what is shown above, because the generic
string-literal parser will also reduce pairs of backslashes to one data character; see Section 4.1.2.1.

Bytea octets are output in hex format by default. If you change bytea_output to escape, “non-printable”
octets are converted to their equivalent three-digit octal value and preceded by one backslash. Most
“printable” octets are output by their standard representation in the client character set, e.g.:
SET bytea_output = 'escape';

SELECT 'abc \153\154\155 \052\251\124'::bytea;
 bytea

 abc klm *\251T

The octet with decimal value 92 (backslash) is doubled in the output. Details are in Table 8.8.

Table 8.8. bytea Output Escaped Octets

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

92 backslash \\ '\134'::bytea \\

123

Data Types

Decimal Octet
Value

Description Escaped Output
Representation

Example Output Result

0 to 31 and 127 to
255

“non-printable”
octets

\xxx (octal value) '\001'::bytea \001

32 to 126 “printable” octets client character
set representation

'\176'::bytea ~

Depending on the front end to Postgres Pro you use, you might have additional work to do in terms
of escaping and unescaping bytea strings. For example, you might also have to escape line feeds and
carriage returns if your interface automatically translates these.

8.5. Date/Time Types
Postgres Pro supports the full set of SQL date and time types, shown in Table 8.9. The operations available
on these data types are described in Section 9.9. Dates are counted according to the Gregorian calendar,
even in years before that calendar was introduced (see Section B.6 for more information).

Table 8.9. Date/Time Types

Name Storage Size Description Low Value High Value Resolution
timestamp
[(p)]
[without
time zone]

8 bytes both date and
time (no time
zone)

4713 BC 294276 AD 1 microsecond

timestamp [(
p)] with
time zone

8 bytes both date and
time, with time
zone

4713 BC 294276 AD 1 microsecond

date 4 bytes date (no time of
day)

4713 BC 5874897 AD 1 day

time [(p)]
[without
time zone]

8 bytes time of day (no
date)

00:00:00 24:00:00 1 microsecond

time [(p)]
with time
zone

12 bytes time of day (no
date), with time
zone

00:00:00+1559 24:00:00-1559 1 microsecond

interval [
fields] [(
p)]

16 bytes time interval -178000000
years

178000000
years

1 microsecond

Note
The SQL standard requires that writing just timestamp be equivalent to timestamp without time
zone, and Postgres Pro honors that behavior. timestamptz is accepted as an abbreviation for
timestamp with time zone; this is a Postgres Pro extension.

time, timestamp, and interval accept an optional precision value p which specifies the number of
fractional digits retained in the seconds field. By default, there is no explicit bound on precision. The
allowed range of p is from 0 to 6.

The interval type has an additional option, which is to restrict the set of stored fields by writing one
of these phrases:

YEAR
MONTH

124

Data Types

DAY
HOUR
MINUTE
SECOND
YEAR TO MONTH
DAY TO HOUR
DAY TO MINUTE
DAY TO SECOND
HOUR TO MINUTE
HOUR TO SECOND
MINUTE TO SECOND

Note that if both fields and p are specified, the fields must include SECOND, since the precision applies
only to the seconds.

The type time with time zone is defined by the SQL standard, but the definition exhibits properties
which lead to questionable usefulness. In most cases, a combination of date, time, timestamp without
time zone, and timestamp with time zone should provide a complete range of date/time functionality
required by any application.

8.5.1. Date/Time Input
Date and time input is accepted in almost any reasonable format, including ISO 8601, SQL-compatible,
traditional POSTGRES, and others. For some formats, ordering of day, month, and year in date input is
ambiguous and there is support for specifying the expected ordering of these fields. Set the DateStyle
parameter to MDY to select month-day-year interpretation, DMY to select day-month-year interpretation,
or YMD to select year-month-day interpretation.

Postgres Pro is more flexible in handling date/time input than the SQL standard requires. See Appendix B
for the exact parsing rules of date/time input and for the recognized text fields including months, days
of the week, and time zones.

Remember that any date or time literal input needs to be enclosed in single quotes, like text strings.
Refer to Section 4.1.2.7 for more information. SQL requires the following syntax

type [(p)] 'value'

where p is an optional precision specification giving the number of fractional digits in the seconds field.
Precision can be specified for time, timestamp, and interval types, and can range from 0 to 6. If no
precision is specified in a constant specification, it defaults to the precision of the literal value (but not
more than 6 digits).

8.5.1.1. Dates
Table 8.10 shows some possible inputs for the date type.

Table 8.10. Date Input

Example Description
1999-01-08 ISO 8601; January 8 in any mode (recommended format)
January 8, 1999 unambiguous in any datestyle input mode
1/8/1999 January 8 in MDY mode; August 1 in DMY mode
1/18/1999 January 18 in MDY mode; rejected in other modes
01/02/03 January 2, 2003 in MDY mode; February 1, 2003 in DMY mode;

February 3, 2001 in YMD mode
1999-Jan-08 January 8 in any mode
Jan-08-1999 January 8 in any mode
08-Jan-1999 January 8 in any mode

125

Data Types

Example Description
99-Jan-08 January 8 in YMD mode, else error
08-Jan-99 January 8, except error in YMD mode
Jan-08-99 January 8, except error in YMD mode
19990108 ISO 8601; January 8, 1999 in any mode
990108 ISO 8601; January 8, 1999 in any mode
1999.008 year and day of year
J2451187 Julian date
January 8, 99 BC year 99 BC

8.5.1.2. Times
The time-of-day types are time [(p)] without time zone and time [(p)] with time zone. time
alone is equivalent to time without time zone.

Valid input for these types consists of a time of day followed by an optional time zone. (See Table 8.11
and Table 8.12.) If a time zone is specified in the input for time without time zone, it is silently ignored.
You can also specify a date but it will be ignored, except when you use a time zone name that involves
a daylight-savings rule, such as America/New_York. In this case specifying the date is required in order
to determine whether standard or daylight-savings time applies. The appropriate time zone offset is
recorded in the time with time zone value.

Table 8.11. Time Input

Example Description
04:05:06.789 ISO 8601
04:05:06 ISO 8601
04:05 ISO 8601
040506 ISO 8601
04:05 AM same as 04:05; AM does not affect value
04:05 PM same as 16:05; input hour must be <=

12
04:05:06.789-8 ISO 8601, with time zone as UTC offset
04:05:06-08:00 ISO 8601, with time zone as UTC offset
04:05-08:00 ISO 8601, with time zone as UTC offset
040506-08 ISO 8601, with time zone as UTC offset
040506+0730 ISO 8601, with fractional-hour time

zone as UTC offset
040506+07:30:00 UTC offset specified to seconds (not

allowed in ISO 8601)
04:05:06 PST time zone specified by abbreviation
2003-04-12 04:05:06 America/New_York time zone specified by full name

Table 8.12. Time Zone Input

Example Description
PST Abbreviation (for Pacific Standard Time)
America/New_York Full time zone name
PST8PDT POSIX-style time zone specification

126

Data Types

Example Description
-8:00:00 UTC offset for PST
-8:00 UTC offset for PST (ISO 8601 extended format)
-800 UTC offset for PST (ISO 8601 basic format)
-8 UTC offset for PST (ISO 8601 basic format)
zulu Military abbreviation for UTC
z Short form of zulu (also in ISO 8601)

Refer to Section 8.5.3 for more information on how to specify time zones.

8.5.1.3. Time Stamps
Valid input for the time stamp types consists of the concatenation of a date and a time, followed by an
optional time zone, followed by an optional AD or BC. (Alternatively, AD/BC can appear before the time
zone, but this is not the preferred ordering.) Thus:

1999-01-08 04:05:06

and:

1999-01-08 04:05:06 -8:00

are valid values, which follow the ISO 8601 standard. In addition, the common format:

January 8 04:05:06 1999 PST

is supported.

The SQL standard differentiates timestamp without time zone and timestamp with time zone literals
by the presence of a “+” or “-” symbol and time zone offset after the time. Hence, according to the
standard,

TIMESTAMP '2004-10-19 10:23:54'

is a timestamp without time zone, while

TIMESTAMP '2004-10-19 10:23:54+02'

is a timestamp with time zone. Postgres Pro never examines the content of a literal string before
determining its type, and therefore will treat both of the above as timestamp without time zone. To
ensure that a literal is treated as timestamp with time zone, give it the correct explicit type:

TIMESTAMP WITH TIME ZONE '2004-10-19 10:23:54+02'

In a literal that has been determined to be timestamp without time zone, Postgres Pro will silently
ignore any time zone indication. That is, the resulting value is derived from the date/time fields in the
input value, and is not adjusted for time zone.

For timestamp with time zone, the internally stored value is always in UTC (Universal Coordinated
Time, traditionally known as Greenwich Mean Time, GMT). An input value that has an explicit time zone
specified is converted to UTC using the appropriate offset for that time zone. If no time zone is stated in
the input string, then it is assumed to be in the time zone indicated by the system's TimeZone parameter,
and is converted to UTC using the offset for the timezone zone.

When a timestamp with time zone value is output, it is always converted from UTC to the current
timezone zone, and displayed as local time in that zone. To see the time in another time zone, either
change timezone or use the AT TIME ZONE construct (see Section 9.9.3).

Conversions between timestamp without time zone and timestamp with time zone normally assume
that the timestamp without time zone value should be taken or given as timezone local time. A different
time zone can be specified for the conversion using AT TIME ZONE.

127

Data Types

8.5.1.4. Special Values
Postgres Pro supports several special date/time input values for convenience, as shown in Table 8.13.
The values infinity and -infinity are specially represented inside the system and will be displayed
unchanged; but the others are simply notational shorthands that will be converted to ordinary date/time
values when read. (In particular, now and related strings are converted to a specific time value as soon
as they are read.) All of these values need to be enclosed in single quotes when used as constants in
SQL commands.

Table 8.13. Special Date/Time Inputs

Input String Valid Types Description
epoch date, timestamp 1970-01-01 00:00:00+00 (Unix

system time zero)
infinity date, timestamp later than all other time stamps
-infinity date, timestamp earlier than all other time

stamps
now date, time, timestamp current transaction's start time
today date, timestamp midnight (00:00) today
tomorrow date, timestamp midnight (00:00) tomorrow
yesterday date, timestamp midnight (00:00) yesterday
allballs time 00:00:00.00 UTC

The following SQL-compatible functions can also be used to obtain the current time value
for the corresponding data type: CURRENT_DATE, CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME,
LOCALTIMESTAMP. (See Section 9.9.4.) Note that these are SQL functions and are not recognized in data
input strings.

Caution
While the input strings now, today, tomorrow, and yesterday are fine to use in interactive
SQL commands, they can have surprising behavior when the command is saved to be executed
later, for example in prepared statements, views, and function definitions. The string can be
converted to a specific time value that continues to be used long after it becomes stale. Use one
of the SQL functions instead in such contexts. For example, CURRENT_DATE + 1 is safer than
'tomorrow'::date.

8.5.2. Date/Time Output
The output format of the date/time types can be set to one of the four styles ISO 8601, SQL (Ingres),
traditional POSTGRES (Unix date format), or German. The default is the ISO format. (The SQL standard
requires the use of the ISO 8601 format. The name of the “SQL” output format is a historical accident.)
Table 8.14 shows examples of each output style. The output of the date and time types is generally only
the date or time part in accordance with the given examples. However, the POSTGRES style outputs
date-only values in ISO format.

Table 8.14. Date/Time Output Styles

Style Specification Description Example
ISO ISO 8601, SQL standard 1997-12-17 07:37:16-08

SQL traditional style 12/17/1997 07:37:16.00 PST

Postgres original style Wed Dec 17 07:37:16 1997 PST

128

Data Types

Style Specification Description Example
German regional style 17.12.1997 07:37:16.00 PST

Note
ISO 8601 specifies the use of uppercase letter T to separate the date and time. Postgres Pro accepts
that format on input, but on output it uses a space rather than T, as shown above. This is for
readability and for consistency with RFC 3339 as well as some other database systems.

In the SQL and POSTGRES styles, day appears before month if DMY field ordering has been specified,
otherwise month appears before day. (See Section 8.5.1 for how this setting also affects interpretation
of input values.) Table 8.15 shows examples.

Table 8.15. Date Order Conventions

datestyle Setting Input Ordering Example Output
SQL, DMY day/month/year 17/12/1997 15:37:16.00 CET

SQL, MDY month/day/year 12/17/1997 07:37:16.00 PST

Postgres, DMY day/month/year Wed 17 Dec 07:37:16 1997 PST

In the ISO style, the time zone is always shown as a signed numeric offset from UTC, with positive sign
used for zones east of Greenwich. The offset will be shown as hh (hours only) if it is an integral number
of hours, else as hh:mm if it is an integral number of minutes, else as hh:mm:ss. (The third case is not
possible with any modern time zone standard, but it can appear when working with timestamps that
predate the adoption of standardized time zones.) In the other date styles, the time zone is shown as an
alphabetic abbreviation if one is in common use in the current zone. Otherwise it appears as a signed
numeric offset in ISO 8601 basic format (hh or hhmm).

The date/time style can be selected by the user using the SET datestyle command, the DateStyle
parameter in the postgresql.conf configuration file, or the PGDATESTYLE environment variable on the
server or client.

The formatting function to_char (see Section 9.8) is also available as a more flexible way to format date/
time output.

8.5.3. Time Zones
Time zones, and time-zone conventions, are influenced by political decisions, not just earth geometry.
Time zones around the world became somewhat standardized during the 1900s, but continue to be prone
to arbitrary changes, particularly with respect to daylight-savings rules. Postgres Pro uses the widely-
used IANA (Olson) time zone database for information about historical time zone rules. For times in the
future, the assumption is that the latest known rules for a given time zone will continue to be observed
indefinitely far into the future.

Postgres Pro endeavors to be compatible with the SQL standard definitions for typical usage. However,
the SQL standard has an odd mix of date and time types and capabilities. Two obvious problems are:

• Although the date type cannot have an associated time zone, the time type can. Time zones in the
real world have little meaning unless associated with a date as well as a time, since the offset can
vary through the year with daylight-saving time boundaries.

• The default time zone is specified as a constant numeric offset from UTC. It is therefore impossible
to adapt to daylight-saving time when doing date/time arithmetic across DST boundaries.

To address these difficulties, we recommend using date/time types that contain both date and time when
using time zones. We do not recommend using the type time with time zone (though it is supported by

129

Data Types

Postgres Pro for legacy applications and for compliance with the SQL standard). Postgres Pro assumes
your local time zone for any type containing only date or time.

All timezone-aware dates and times are stored internally in UTC. They are converted to local time in the
zone specified by the TimeZone configuration parameter before being displayed to the client.

Postgres Pro allows you to specify time zones in three different forms:
• A full time zone name, for example America/New_York. The recognized time zone names are listed

in the pg_timezone_names view (see Section 49.92). Postgres Pro uses the widely-used IANA time
zone data for this purpose, so the same time zone names are also recognized by other software.

• A time zone abbreviation, for example PST. Such a specification merely defines a particular offset
from UTC, in contrast to full time zone names which can imply a set of daylight savings transition
rules as well. The recognized abbreviations are listed in the pg_timezone_abbrevs view (see
Section 49.91). You cannot set the configuration parameters TimeZone or log_timezone to a time
zone abbreviation, but you can use abbreviations in date/time input values and with the AT TIME
ZONE operator.

• In addition to the timezone names and abbreviations, Postgres Pro will accept POSIX-style time
zone specifications, as described in Section B.5. This option is not normally preferable to using a
named time zone, but it may be necessary if no suitable IANA time zone entry is available.

In short, this is the difference between abbreviations and full names: abbreviations represent a specific
offset from UTC, whereas many of the full names imply a local daylight-savings time rule, and so have
two possible UTC offsets. As an example, 2014-06-04 12:00 America/New_York represents noon local
time in New York, which for this particular date was Eastern Daylight Time (UTC-4). So 2014-06-04
12:00 EDT specifies that same time instant. But 2014-06-04 12:00 EST specifies noon Eastern Standard
Time (UTC-5), regardless of whether daylight savings was nominally in effect on that date.

To complicate matters, some jurisdictions have used the same timezone abbreviation to mean different
UTC offsets at different times; for example, in Moscow MSK has meant UTC+3 in some years and UTC
+4 in others. Postgres Pro interprets such abbreviations according to whatever they meant (or had most
recently meant) on the specified date; but, as with the EST example above, this is not necessarily the
same as local civil time on that date.

In all cases, timezone names and abbreviations are recognized case-insensitively. (This is a change from
PostgreSQL versions prior to 8.2, which were case-sensitive in some contexts but not others.)

Neither timezone names nor abbreviations are hard-wired into the server; they are obtained from
configuration files stored under .../share/timezone/ and .../share/timezonesets/ of the installation
directory (see Section B.4).

The TimeZone configuration parameter can be set in the file postgresql.conf, or in any of the other
standard ways described in Chapter 18. There are also some special ways to set it:
• The SQL command SET TIME ZONE sets the time zone for the session. This is an alternative spelling

of SET TIMEZONE TO with a more SQL-spec-compatible syntax.
• The PGTZ environment variable is used by libpq clients to send a SET TIME ZONE command to the

server upon connection.

8.5.4. Interval Input
interval values can be written using the following verbose syntax:
[@] quantity unit [quantity unit...] [direction]

where quantity is a number (possibly signed); unit is microsecond, millisecond, second, minute,
hour, day, week, month, year, decade, century, millennium, or abbreviations or plurals of these units;
direction can be ago or empty. The at sign (@) is optional noise. The amounts of the different units are
implicitly added with appropriate sign accounting. ago negates all the fields. This syntax is also used for
interval output, if IntervalStyle is set to postgres_verbose.

130

Data Types

Quantities of days, hours, minutes, and seconds can be specified without explicit unit markings. For
example, '1 12:59:10' is read the same as '1 day 12 hours 59 min 10 sec'. Also, a combination of
years and months can be specified with a dash; for example '200-10' is read the same as '200 years
10 months'. (These shorter forms are in fact the only ones allowed by the SQL standard, and are used
for output when IntervalStyle is set to sql_standard.)

Interval values can also be written as ISO 8601 time intervals, using either the “format with designators”
of the standard's section 4.4.3.2 or the “alternative format” of section 4.4.3.3. The format with
designators looks like this:

P quantity unit [quantity unit ...] [T [quantity unit ...]]

The string must start with a P, and may include a T that introduces the time-of-day units. The available
unit abbreviations are given in Table 8.16. Units may be omitted, and may be specified in any order,
but units smaller than a day must appear after T. In particular, the meaning of M depends on whether
it is before or after T.

Table 8.16. ISO 8601 Interval Unit Abbreviations

Abbreviation Meaning
Y Years
M Months (in the date part)
W Weeks
D Days
H Hours
M Minutes (in the time part)
S Seconds

In the alternative format:

P [years-months-days] [T hours:minutes:seconds]

the string must begin with P, and a T separates the date and time parts of the interval. The values are
given as numbers similar to ISO 8601 dates.

When writing an interval constant with a fields specification, or when assigning a string to an interval
column that was defined with a fields specification, the interpretation of unmarked quantities depends
on the fields. For example INTERVAL '1' YEAR is read as 1 year, whereas INTERVAL '1' means 1
second. Also, field values “to the right” of the least significant field allowed by the fields specification
are silently discarded. For example, writing INTERVAL '1 day 2:03:04' HOUR TO MINUTE results in
dropping the seconds field, but not the day field.

According to the SQL standard all fields of an interval value must have the same sign, so a leading
negative sign applies to all fields; for example the negative sign in the interval literal '-1 2:03:04'
applies to both the days and hour/minute/second parts. Postgres Pro allows the fields to have different
signs, and traditionally treats each field in the textual representation as independently signed, so that the
hour/minute/second part is considered positive in this example. If IntervalStyle is set to sql_standard
then a leading sign is considered to apply to all fields (but only if no additional signs appear). Otherwise
the traditional Postgres Pro interpretation is used. To avoid ambiguity, it's recommended to attach an
explicit sign to each field if any field is negative.

Field values can have fractional parts: for example, '1.5 weeks' or '01:02:03.45'. However, because
interval internally stores only three integer units (months, days, microseconds), fractional units must
be spilled to smaller units. Fractional parts of units greater than months are truncated to be an integer
number of months, e.g. '1.5 years' becomes '1 year 6 mons'. Fractional parts of weeks and days
are computed to be an integer number of days and microseconds, assuming 30 days per month and 24
hours per day, e.g., '1.75 months' becomes 1 mon 22 days 12:00:00. Only seconds will ever be shown
as fractional on output.

131

Data Types

Table 8.17 shows some examples of valid interval input.

Table 8.17. Interval Input

Example Description
1-2 SQL standard format: 1 year 2 months
3 4:05:06 SQL standard format: 3 days 4 hours 5 minutes 6

seconds
1 year 2 months 3 days 4 hours 5 minutes 6
seconds

Traditional Postgres format: 1 year 2 months 3
days 4 hours 5 minutes 6 seconds

P1Y2M3DT4H5M6S ISO 8601 “format with designators”: same
meaning as above

P0001-02-03T04:05:06 ISO 8601 “alternative format”: same meaning as
above

Internally interval values are stored as months, days, and microseconds. This is done because the
number of days in a month varies, and a day can have 23 or 25 hours if a daylight savings time adjustment
is involved. The months and days fields are integers while the microseconds field can store fractional
seconds. Because intervals are usually created from constant strings or timestamp subtraction, this
storage method works well in most cases, but can cause unexpected results:
SELECT EXTRACT(hours from '80 minutes'::interval);
 date_part

 1

SELECT EXTRACT(days from '80 hours'::interval);
 date_part

 0

Functions justify_days and justify_hours are available for adjusting days and hours that overflow
their normal ranges.

8.5.5. Interval Output
The output format of the interval type can be set to one of the four styles sql_standard, postgres,
postgres_verbose, or iso_8601, using the command SET intervalstyle. The default is the postgres
format. Table 8.18 shows examples of each output style.

The sql_standard style produces output that conforms to the SQL standard's specification for interval
literal strings, if the interval value meets the standard's restrictions (either year-month only or day-time
only, with no mixing of positive and negative components). Otherwise the output looks like a standard
year-month literal string followed by a day-time literal string, with explicit signs added to disambiguate
mixed-sign intervals.

The output of the postgres style matches the output of PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to ISO.

The output of the postgres_verbose style matches the output of PostgreSQL releases prior to 8.4 when
the DateStyle parameter was set to non-ISO output.

The output of the iso_8601 style matches the “format with designators” described in section 4.4.3.2 of
the ISO 8601 standard.

Table 8.18. Interval Output Style Examples

Style Specification Year-Month Interval Day-Time Interval Mixed Interval
sql_standard 1-2 3 4:05:06 -1-2 +3 -4:05:06

132

Data Types

Style Specification Year-Month Interval Day-Time Interval Mixed Interval
postgres 1 year 2 mons 3 days 04:05:06 -1 year -2 mons +3 days

-04:05:06
postgres_verbose @ 1 year 2 mons @ 3 days 4 hours 5 mins

6 secs
@ 1 year 2 mons -3 days
4 hours 5 mins 6 secs
ago

iso_8601 P1Y2M P3DT4H5M6S P-1Y-2M3DT-4H-5M-6S

8.6. Boolean Type
Postgres Pro provides the standard SQL type boolean; see Table 8.19. The boolean type can have several
states: “true”, “false”, and a third state, “unknown”, which is represented by the SQL null value.

Table 8.19. Boolean Data Type

Name Storage Size Description
boolean 1 byte state of true or false

Boolean constants can be represented in SQL queries by the SQL key words TRUE, FALSE, and NULL.

The datatype input function for type boolean accepts these string representations for the “true” state:

true
yes
on
1

and these representations for the “false” state:

false
no
off
0

Unique prefixes of these strings are also accepted, for example t or n. Leading or trailing whitespace
is ignored, and case does not matter.

The datatype output function for type boolean always emits either t or f, as shown in Example 8.2.

Example 8.2. Using the boolean Type

CREATE TABLE test1 (a boolean, b text);
INSERT INTO test1 VALUES (TRUE, 'sic est');
INSERT INTO test1 VALUES (FALSE, 'non est');
SELECT * FROM test1;
 a | b
---+---------
 t | sic est
 f | non est

SELECT * FROM test1 WHERE a;
 a | b
---+---------
 t | sic est

The key words TRUE and FALSE are the preferred (SQL-compliant) method for writing Boolean constants
in SQL queries. But you can also use the string representations by following the generic string-literal
constant syntax described in Section 4.1.2.7, for example 'yes'::boolean.

133

Data Types

Note that the parser automatically understands that TRUE and FALSE are of type boolean, but this is not
so for NULL because that can have any type. So in some contexts you might have to cast NULL to boolean
explicitly, for example NULL::boolean. Conversely, the cast can be omitted from a string-literal Boolean
value in contexts where the parser can deduce that the literal must be of type boolean.

8.7. Enumerated Types
Enumerated (enum) types are data types that comprise a static, ordered set of values. They are
equivalent to the enum types supported in a number of programming languages. An example of an enum
type might be the days of the week, or a set of status values for a piece of data.

8.7.1. Declaration of Enumerated Types
Enum types are created using the CREATE TYPE command, for example:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');

Once created, the enum type can be used in table and function definitions much like any other type:

CREATE TYPE mood AS ENUM ('sad', 'ok', 'happy');
CREATE TABLE person (
 name text,
 current_mood mood
);
INSERT INTO person VALUES ('Moe', 'happy');
SELECT * FROM person WHERE current_mood = 'happy';
 name | current_mood
------+--------------
 Moe | happy
(1 row)

8.7.2. Ordering
The ordering of the values in an enum type is the order in which the values were listed when the type was
created. All standard comparison operators and related aggregate functions are supported for enums.
For example:

INSERT INTO person VALUES ('Larry', 'sad');
INSERT INTO person VALUES ('Curly', 'ok');
SELECT * FROM person WHERE current_mood > 'sad';
 name | current_mood
-------+--------------
 Moe | happy
 Curly | ok
(2 rows)

SELECT * FROM person WHERE current_mood > 'sad' ORDER BY current_mood;
 name | current_mood
-------+--------------
 Curly | ok
 Moe | happy
(2 rows)

SELECT name
FROM person
WHERE current_mood = (SELECT MIN(current_mood) FROM person);
 name

 Larry
(1 row)

134

Data Types

8.7.3. Type Safety
Each enumerated data type is separate and cannot be compared with other enumerated types. See this
example:
CREATE TYPE happiness AS ENUM ('happy', 'very happy', 'ecstatic');
CREATE TABLE holidays (
 num_weeks integer,
 happiness happiness
);
INSERT INTO holidays(num_weeks,happiness) VALUES (4, 'happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (6, 'very happy');
INSERT INTO holidays(num_weeks,happiness) VALUES (8, 'ecstatic');
INSERT INTO holidays(num_weeks,happiness) VALUES (2, 'sad');
ERROR: invalid input value for enum happiness: "sad"
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood = holidays.happiness;
ERROR: operator does not exist: mood = happiness

If you really need to do something like that, you can either write a custom operator or add explicit casts
to your query:
SELECT person.name, holidays.num_weeks FROM person, holidays
 WHERE person.current_mood::text = holidays.happiness::text;
 name | num_weeks
------+-----------
 Moe | 4
(1 row)

8.7.4. Implementation Details
Enum labels are case sensitive, so 'happy' is not the same as 'HAPPY'. White space in the labels is
significant too.

Although enum types are primarily intended for static sets of values, there is support for adding new
values to an existing enum type, and for renaming values (see ALTER TYPE). Existing values cannot be
removed from an enum type, nor can the sort ordering of such values be changed, short of dropping
and re-creating the enum type.

An enum value occupies four bytes on disk. The length of an enum value's textual label is limited by the
NAMEDATALEN setting compiled into Postgres Pro; in standard builds this means at most 63 bytes.

The translations from internal enum values to textual labels are kept in the system catalog pg_enum.
Querying this catalog directly can be useful.

8.8. Geometric Types
Geometric data types represent two-dimensional spatial objects. Table 8.20 shows the geometric types
available in Postgres Pro.

Table 8.20. Geometric Types

Name Storage Size Description Representation
point 16 bytes Point on a plane (x,y)
line 32 bytes Infinite line {A,B,C}
lseg 32 bytes Finite line segment ((x1,y1),(x2,y2))
box 32 bytes Rectangular box ((x1,y1),(x2,y2))
path 16+16n bytes Closed path (similar to polygon) ((x1,y1),...)

135

Data Types

Name Storage Size Description Representation
path 16+16n bytes Open path [(x1,y1),...]
polygon 40+16n bytes Polygon (similar to closed path) ((x1,y1),...)
circle 24 bytes Circle <(x,y),r> (center

point and radius)

A rich set of functions and operators is available to perform various geometric operations such as scaling,
translation, rotation, and determining intersections. They are explained in Section 9.11.

8.8.1. Points
Points are the fundamental two-dimensional building block for geometric types. Values of type point
are specified using either of the following syntaxes:

(x , y)
 x , y

where x and y are the respective coordinates, as floating-point numbers.

Points are output using the first syntax.

8.8.2. Lines
Lines are represented by the linear equation Ax + By + C = 0, where A and B are not both zero. Values
of type line are input and output in the following form:

{ A, B, C }

Alternatively, any of the following forms can be used for input:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are two different points on the line.

8.8.3. Line Segments
Line segments are represented by pairs of points that are the endpoints of the segment. Values of type
lseg are specified using any of the following syntaxes:

[(x1 , y1) , (x2 , y2)]
((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are the end points of the line segment.

Line segments are output using the first syntax.

8.8.4. Boxes
Boxes are represented by pairs of points that are opposite corners of the box. Values of type box are
specified using any of the following syntaxes:

((x1 , y1) , (x2 , y2))
 (x1 , y1) , (x2 , y2)
 x1 , y1 , x2 , y2

where (x1,y1) and (x2,y2) are any two opposite corners of the box.

Boxes are output using the second syntax.

136

Data Types

Any two opposite corners can be supplied on input, but the values will be reordered as needed to store
the upper right and lower left corners, in that order.

8.8.5. Paths
Paths are represented by lists of connected points. Paths can be open, where the first and last points in
the list are considered not connected, or closed, where the first and last points are considered connected.

Values of type path are specified using any of the following syntaxes:

[(x1 , y1) , ... , (xn , yn)]
((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the path. Square brackets ([])
indicate an open path, while parentheses (()) indicate a closed path. When the outermost parentheses
are omitted, as in the third through fifth syntaxes, a closed path is assumed.

Paths are output using the first or second syntax, as appropriate.

8.8.6. Polygons
Polygons are represented by lists of points (the vertexes of the polygon). Polygons are very similar to
closed paths, but are stored differently and have their own set of support routines.

Values of type polygon are specified using any of the following syntaxes:

((x1 , y1) , ... , (xn , yn))
 (x1 , y1) , ... , (xn , yn)
 (x1 , y1 , ... , xn , yn)
 x1 , y1 , ... , xn , yn

where the points are the end points of the line segments comprising the boundary of the polygon.

Polygons are output using the first syntax.

8.8.7. Circles
Circles are represented by a center point and radius. Values of type circle are specified using any of
the following syntaxes:

< (x , y) , r >
((x , y) , r)
 (x , y) , r
 x , y , r

where (x,y) is the center point and r is the radius of the circle.

Circles are output using the first syntax.

8.9. Network Address Types
Postgres Pro offers data types to store IPv4, IPv6, and MAC addresses, as shown in Table 8.21. It is
better to use these types instead of plain text types to store network addresses, because these types
offer input error checking and specialized operators and functions (see Section 9.12).

Table 8.21. Network Address Types

Name Storage Size Description
cidr 7 or 19 bytes IPv4 and IPv6 networks

137

Data Types

Name Storage Size Description
inet 7 or 19 bytes IPv4 and IPv6 hosts and networks
macaddr 6 bytes MAC addresses
macaddr8 8 bytes MAC addresses (EUI-64 format)

When sorting inet or cidr data types, IPv4 addresses will always sort before IPv6 addresses, including
IPv4 addresses encapsulated or mapped to IPv6 addresses, such as ::10.2.3.4 or ::ffff:10.4.3.2.

8.9.1. inet
The inet type holds an IPv4 or IPv6 host address, and optionally its subnet, all in one field. The subnet
is represented by the number of network address bits present in the host address (the “netmask”). If
the netmask is 32 and the address is IPv4, then the value does not indicate a subnet, only a single host.
In IPv6, the address length is 128 bits, so 128 bits specify a unique host address. Note that if you want
to accept only networks, you should use the cidr type rather than inet.

The input format for this type is address/y where address is an IPv4 or IPv6 address and y is the number
of bits in the netmask. If the /y portion is omitted, the netmask is taken to be 32 for IPv4 or 128 for
IPv6, so the value represents just a single host. On display, the /y portion is suppressed if the netmask
specifies a single host.

8.9.2. cidr
The cidr type holds an IPv4 or IPv6 network specification. Input and output formats follow Classless
Internet Domain Routing conventions. The format for specifying networks is address/y where address
is the network's lowest address represented as an IPv4 or IPv6 address, and y is the number of bits in the
netmask. If y is omitted, it is calculated using assumptions from the older classful network numbering
system, except it will be at least large enough to include all of the octets written in the input. It is an
error to specify a network address that has bits set to the right of the specified netmask.

Table 8.22 shows some examples.

Table 8.22. cidr Type Input Examples

cidr Input cidr Output abbrev(cidr)

192.168.100.128/25 192.168.100.128/25 192.168.100.128/25
192.168/24 192.168.0.0/24 192.168.0/24
192.168/25 192.168.0.0/25 192.168.0.0/25
192.168.1 192.168.1.0/24 192.168.1/24
192.168 192.168.0.0/24 192.168.0/24
128.1 128.1.0.0/16 128.1/16
128 128.0.0.0/16 128.0/16
128.1.2 128.1.2.0/24 128.1.2/24
10.1.2 10.1.2.0/24 10.1.2/24
10.1 10.1.0.0/16 10.1/16
10 10.0.0.0/8 10/8
10.1.2.3/32 10.1.2.3/32 10.1.2.3/32
2001:4f8:3:ba::/64 2001:4f8:3:ba::/64 2001:4f8:3:ba/64
2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

2001:4f8:3:ba:
2e0:81ff:fe22:d1f1/128

::ffff:1.2.3.0/120 ::ffff:1.2.3.0/120 ::ffff:1.2.3/120

138

Data Types

cidr Input cidr Output abbrev(cidr)

::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128 ::ffff:1.2.3.0/128

8.9.3. inet vs. cidr
The essential difference between inet and cidr data types is that inet accepts values with nonzero
bits to the right of the netmask, whereas cidr does not. For example, 192.168.0.1/24 is valid for inet
but not for cidr.

Tip
If you do not like the output format for inet or cidr values, try the functions host, text, and
abbrev.

8.9.4. macaddr
The macaddr type stores MAC addresses, known for example from Ethernet card hardware addresses
(although MAC addresses are used for other purposes as well). Input is accepted in the following formats:

'08:00:2b:01:02:03'
'08-00-2b-01-02-03'
'08002b:010203'
'08002b-010203'
'0800.2b01.0203'
'0800-2b01-0203'
'08002b010203'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f. Output is always in the first of the forms shown.

IEEE Std 802-2001 specifies the second shown form (with hyphens) as the canonical form for
MAC addresses, and specifies the first form (with colons) as the bit-reversed notation, so that
08-00-2b-01-02-03 = 01:00:4D:08:04:0C. This convention is widely ignored nowadays, and it is relevant
only for obsolete network protocols (such as Token Ring). Postgres Pro makes no provisions for bit
reversal, and all accepted formats use the canonical LSB order.

The remaining five input formats are not part of any standard.

8.9.5. macaddr8
The macaddr8 type stores MAC addresses in EUI-64 format, known for example from Ethernet card
hardware addresses (although MAC addresses are used for other purposes as well). This type can accept
both 6 and 8 byte length MAC addresses and stores them in 8 byte length format. MAC addresses given
in 6 byte format will be stored in 8 byte length format with the 4th and 5th bytes set to FF and FE,
respectively. Note that IPv6 uses a modified EUI-64 format where the 7th bit should be set to one after
the conversion from EUI-48. The function macaddr8_set7bit is provided to make this change. Generally
speaking, any input which is comprised of pairs of hex digits (on byte boundaries), optionally separated
consistently by one of ':', '-' or '.', is accepted. The number of hex digits must be either 16 (8 bytes)
or 12 (6 bytes). Leading and trailing whitespace is ignored. The following are examples of input formats
that are accepted:

'08:00:2b:01:02:03:04:05'
'08-00-2b-01-02-03-04-05'
'08002b:0102030405'
'08002b-0102030405'
'0800.2b01.0203.0405'
'0800-2b01-0203-0405'

139

Data Types

'08002b01:02030405'
'08002b0102030405'

These examples all specify the same address. Upper and lower case is accepted for the digits a through
f. Output is always in the first of the forms shown.

The last six input formats shown above are not part of any standard.

To convert a traditional 48 bit MAC address in EUI-48 format to modified EUI-64 format to be included
as the host portion of an IPv6 address, use macaddr8_set7bit as shown:

SELECT macaddr8_set7bit('08:00:2b:01:02:03');

 macaddr8_set7bit

 0a:00:2b:ff:fe:01:02:03
(1 row)

8.10. Bit String Types
Bit strings are strings of 1's and 0's. They can be used to store or visualize bit masks. There are two SQL
bit types: bit(n) and bit varying(n), where n is a positive integer.

bit type data must match the length n exactly; it is an error to attempt to store shorter or longer bit
strings. bit varying data is of variable length up to the maximum length n; longer strings will be
rejected. Writing bit without a length is equivalent to bit(1), while bit varying without a length
specification means unlimited length.

Note
If one explicitly casts a bit-string value to bit(n), it will be truncated or zero-padded on the right
to be exactly n bits, without raising an error. Similarly, if one explicitly casts a bit-string value to
bit varying(n), it will be truncated on the right if it is more than n bits.

Refer to Section 4.1.2.5 for information about the syntax of bit string constants. Bit-logical operators
and string manipulation functions are available; see Section 9.6.

Example 8.3. Using the Bit String Types

CREATE TABLE test (a BIT(3), b BIT VARYING(5));
INSERT INTO test VALUES (B'101', B'00');
INSERT INTO test VALUES (B'10', B'101');

ERROR: bit string length 2 does not match type bit(3)

INSERT INTO test VALUES (B'10'::bit(3), B'101');
SELECT * FROM test;

 a | b
-----+-----
 101 | 00
 100 | 101

A bit string value requires 1 byte for each group of 8 bits, plus 5 or 8 bytes overhead depending on the
length of the string (but long values may be compressed or moved out-of-line, as explained in Section 8.3
for character strings).

140

Data Types

8.11. Text Search Types
Postgres Pro provides two data types that are designed to support full text search, which is the activity of
searching through a collection of natural-language documents to locate those that best match a query.
The tsvector type represents a document in a form optimized for text search; the tsquery type similarly
represents a text query. Chapter 12 provides a detailed explanation of this facility, and Section 9.13
summarizes the related functions and operators.

8.11.1. tsvector
A tsvector value is a sorted list of distinct lexemes, which are words that have been normalized to
merge different variants of the same word (see Chapter 12 for details). Sorting and duplicate-elimination
are done automatically during input, as shown in this example:

SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 tsvector
--
 'a' 'and' 'ate' 'cat' 'fat' 'mat' 'on' 'rat' 'sat'

To represent lexemes containing whitespace or punctuation, surround them with quotes:

SELECT $$the lexeme ' ' contains spaces$$::tsvector;
 tsvector

 ' ' 'contains' 'lexeme' 'spaces' 'the'

(We use dollar-quoted string literals in this example and the next one to avoid the confusion of having
to double quote marks within the literals.) Embedded quotes and backslashes must be doubled:

SELECT $$the lexeme 'Joe''s' contains a quote$$::tsvector;
 tsvector
--
 'Joe''s' 'a' 'contains' 'lexeme' 'quote' 'the'

Optionally, integer positions can be attached to lexemes:

SELECT 'a:1 fat:2 cat:3 sat:4 on:5 a:6 mat:7 and:8 ate:9 a:10 fat:11 rat:12'::tsvector;
 tsvector

 'a':1,6,10 'and':8 'ate':9 'cat':3 'fat':2,11 'mat':7 'on':5 'rat':12 'sat':4

A position normally indicates the source word's location in the document. Positional information can be
used for proximity ranking. Position values can range from 1 to 16383; larger numbers are silently set
to 16383. Duplicate positions for the same lexeme are discarded.

Lexemes that have positions can further be labeled with a weight, which can be A, B, C, or D. D is the
default and hence is not shown on output:

SELECT 'a:1A fat:2B,4C cat:5D'::tsvector;
 tsvector

 'a':1A 'cat':5 'fat':2B,4C

Weights are typically used to reflect document structure, for example by marking title words differently
from body words. Text search ranking functions can assign different priorities to the different weight
markers.

It is important to understand that the tsvector type itself does not perform any word normalization; it
assumes the words it is given are normalized appropriately for the application. For example,

SELECT 'The Fat Rats'::tsvector;
 tsvector

 'Fat' 'Rats' 'The'

141

Data Types

For most English-text-searching applications the above words would be considered non-normalized, but
tsvector doesn't care. Raw document text should usually be passed through to_tsvector to normalize
the words appropriately for searching:

SELECT to_tsvector('english', 'The Fat Rats');
 to_tsvector

 'fat':2 'rat':3

Again, see Chapter 12 for more detail.

8.11.2. tsquery
A tsquery value stores lexemes that are to be searched for, and can combine them using the Boolean
operators & (AND), | (OR), and ! (NOT), as well as the phrase search operator <-> (FOLLOWED BY).
There is also a variant <N> of the FOLLOWED BY operator, where N is an integer constant that specifies
the distance between the two lexemes being searched for. <-> is equivalent to <1>.

Parentheses can be used to enforce grouping of these operators. In the absence of parentheses, ! (NOT)
binds most tightly, <-> (FOLLOWED BY) next most tightly, then & (AND), with | (OR) binding the least
tightly.

Here are some examples:

SELECT 'fat & rat'::tsquery;
 tsquery

 'fat' & 'rat'

SELECT 'fat & (rat | cat)'::tsquery;
 tsquery

 'fat' & ('rat' | 'cat')

SELECT 'fat & rat & ! cat'::tsquery;
 tsquery

 'fat' & 'rat' & !'cat'

Optionally, lexemes in a tsquery can be labeled with one or more weight letters, which restricts them
to match only tsvector lexemes with one of those weights:

SELECT 'fat:ab & cat'::tsquery;
 tsquery

 'fat':AB & 'cat'

Also, lexemes in a tsquery can be labeled with * to specify prefix matching:

SELECT 'super:*'::tsquery;
 tsquery

 'super':*

This query will match any word in a tsvector that begins with “super”.

Quoting rules for lexemes are the same as described previously for lexemes in tsvector; and, as with
tsvector, any required normalization of words must be done before converting to the tsquery type. The
to_tsquery function is convenient for performing such normalization:

SELECT to_tsquery('Fat:ab & Cats');
 to_tsquery

142

Data Types

 'fat':AB & 'cat'

Note that to_tsquery will process prefixes in the same way as other words, which means this comparison
returns true:

SELECT to_tsvector('postgraduate') @@ to_tsquery('postgres:*');
 ?column?

 t

because postgres gets stemmed to postgr:

SELECT to_tsvector('postgraduate'), to_tsquery('postgres:*');
 to_tsvector | to_tsquery
---------------+------------
 'postgradu':1 | 'postgr':*

which will match the stemmed form of postgraduate.

8.12. UUID Type
The data type uuid stores Universally Unique Identifiers (UUID) as defined by RFC 4122, ISO/IEC
9834-8:2005, and related standards. (Some systems refer to this data type as a globally unique identifier,
or GUID, instead.) This identifier is a 128-bit quantity that is generated by an algorithm chosen to make
it very unlikely that the same identifier will be generated by anyone else in the known universe using
the same algorithm. Therefore, for distributed systems, these identifiers provide a better uniqueness
guarantee than sequence generators, which are only unique within a single database.

A UUID is written as a sequence of lower-case hexadecimal digits, in several groups separated by
hyphens, specifically a group of 8 digits followed by three groups of 4 digits followed by a group of 12
digits, for a total of 32 digits representing the 128 bits. An example of a UUID in this standard form is:

a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11

Postgres Pro also accepts the following alternative forms for input: use of upper-case digits, the standard
format surrounded by braces, omitting some or all hyphens, adding a hyphen after any group of four
digits. Examples are:

A0EEBC99-9C0B-4EF8-BB6D-6BB9BD380A11
{a0eebc99-9c0b-4ef8-bb6d-6bb9bd380a11}
a0eebc999c0b4ef8bb6d6bb9bd380a11
a0ee-bc99-9c0b-4ef8-bb6d-6bb9-bd38-0a11
{a0eebc99-9c0b4ef8-bb6d6bb9-bd380a11}

Output is always in the standard form.

See Section 9.14 for how to generate a UUID in PostgreSQL.

8.13. XML Type
The xml data type can be used to store XML data. Its advantage over storing XML data in a text field
is that it checks the input values for well-formedness, and there are support functions to perform type-
safe operations on it; see Section 9.15. Use of this data type requires the installation to have been built
with configure --with-libxml.

The xml type can store well-formed “documents”, as defined by the XML standard, as well as “content”
fragments, which are defined by reference to the more permissive “document node” of the XQuery and
XPath data model. Roughly, this means that content fragments can have more than one top-level element
or character node. The expression xmlvalue IS DOCUMENT can be used to evaluate whether a particular
xml value is a full document or only a content fragment.

Limits and compatibility notes for the xml data type can be found in Section D.3.

143

https://www.w3.org/TR/2010/REC-xpath-datamodel-20101214/#DocumentNode

Data Types

8.13.1. Creating XML Values
To produce a value of type xml from character data, use the function xmlparse:

XMLPARSE ({ DOCUMENT | CONTENT } value)

Examples:

XMLPARSE (DOCUMENT '<?xml version="1.0"?><book><title>Manual</title><chapter>...</
chapter></book>')
XMLPARSE (CONTENT 'abc<foo>bar</foo><bar>foo</bar>')

While this is the only way to convert character strings into XML values according to the SQL standard,
the Postgres Pro-specific syntaxes:

xml '<foo>bar</foo>'
'<foo>bar</foo>'::xml

can also be used.

The xml type does not validate input values against a document type declaration (DTD), even when the
input value specifies a DTD. There is also currently no built-in support for validating against other XML
schema languages such as XML Schema.

The inverse operation, producing a character string value from xml, uses the function xmlserialize:

XMLSERIALIZE ({ DOCUMENT | CONTENT } value AS type)

type can be character, character varying, or text (or an alias for one of those). Again, according to
the SQL standard, this is the only way to convert between type xml and character types, but Postgres
Pro also allows you to simply cast the value.

When a character string value is cast to or from type xml without going through XMLPARSE or
XMLSERIALIZE, respectively, the choice of DOCUMENT versus CONTENT is determined by the “XML option”
session configuration parameter, which can be set using the standard command:

SET XML OPTION { DOCUMENT | CONTENT };

or the more Postgres Pro-like syntax

SET xmloption TO { DOCUMENT | CONTENT };

The default is CONTENT, so all forms of XML data are allowed.

8.13.2. Encoding Handling
Care must be taken when dealing with multiple character encodings on the client, server, and in the XML
data passed through them. When using the text mode to pass queries to the server and query results
to the client (which is the normal mode), Postgres Pro converts all character data passed between the
client and the server and vice versa to the character encoding of the respective end; see Section 22.3.
This includes string representations of XML values, such as in the above examples. This would ordinarily
mean that encoding declarations contained in XML data can become invalid as the character data is
converted to other encodings while traveling between client and server, because the embedded encoding
declaration is not changed. To cope with this behavior, encoding declarations contained in character
strings presented for input to the xml type are ignored, and content is assumed to be in the current
server encoding. Consequently, for correct processing, character strings of XML data must be sent
from the client in the current client encoding. It is the responsibility of the client to either convert
documents to the current client encoding before sending them to the server, or to adjust the client
encoding appropriately. On output, values of type xml will not have an encoding declaration, and clients
should assume all data is in the current client encoding.

When using binary mode to pass query parameters to the server and query results back to the client, no
encoding conversion is performed, so the situation is different. In this case, an encoding declaration in
the XML data will be observed, and if it is absent, the data will be assumed to be in UTF-8 (as required
by the XML standard; note that Postgres Pro does not support UTF-16). On output, data will have an

144

Data Types

encoding declaration specifying the client encoding, unless the client encoding is UTF-8, in which case
it will be omitted.

Needless to say, processing XML data with Postgres Pro will be less error-prone and more efficient if the
XML data encoding, client encoding, and server encoding are the same. Since XML data is internally
processed in UTF-8, computations will be most efficient if the server encoding is also UTF-8.

Caution
Some XML-related functions may not work at all on non-ASCII data when the server encoding is
not UTF-8. This is known to be an issue for xmltable() and xpath() in particular.

8.13.3. Accessing XML Values
The xml data type is unusual in that it does not provide any comparison operators. This is because
there is no well-defined and universally useful comparison algorithm for XML data. One consequence of
this is that you cannot retrieve rows by comparing an xml column against a search value. XML values
should therefore typically be accompanied by a separate key field such as an ID. An alternative solution
for comparing XML values is to convert them to character strings first, but note that character string
comparison has little to do with a useful XML comparison method.

Since there are no comparison operators for the xml data type, it is not possible to create an index directly
on a column of this type. If speedy searches in XML data are desired, possible workarounds include
casting the expression to a character string type and indexing that, or indexing an XPath expression. Of
course, the actual query would have to be adjusted to search by the indexed expression.

The text-search functionality in Postgres Pro can also be used to speed up full-document searches of XML
data. The necessary preprocessing support is, however, not yet available in the Postgres Pro distribution.

8.14. JSON Types
JSON data types are for storing JSON (JavaScript Object Notation) data, as specified in RFC 7159. Such
data can also be stored as text, but the JSON data types have the advantage of enforcing that each
stored value is valid according to the JSON rules. There are also assorted JSON-specific functions and
operators available for data stored in these data types; see Section 9.16.

Postgres Pro offers two types for storing JSON data: json and jsonb. To implement efficient query
mechanisms for these data types, Postgres Pro also provides the jsonpath data type described in
Section 8.14.6.

The json and jsonb data types accept almost identical sets of values as input. The major practical
difference is one of efficiency. The json data type stores an exact copy of the input text, which processing
functions must reparse on each execution; while jsonb data is stored in a decomposed binary format that
makes it slightly slower to input due to added conversion overhead, but significantly faster to process,
since no reparsing is needed. jsonb also supports indexing, which can be a significant advantage.

Because the json type stores an exact copy of the input text, it will preserve semantically-insignificant
white space between tokens, as well as the order of keys within JSON objects. Also, if a JSON object
within the value contains the same key more than once, all the key/value pairs are kept. (The processing
functions consider the last value as the operative one.) By contrast, jsonb does not preserve white space,
does not preserve the order of object keys, and does not keep duplicate object keys. If duplicate keys
are specified in the input, only the last value is kept.

In general, most applications should prefer to store JSON data as jsonb, unless there are quite
specialized needs, such as legacy assumptions about ordering of object keys.

RFC 7159 specifies that JSON strings should be encoded in UTF8. It is therefore not possible for the
JSON types to conform rigidly to the JSON specification unless the database encoding is UTF8. Attempts

145

https://tools.ietf.org/html/rfc7159

Data Types

to directly include characters that cannot be represented in the database encoding will fail; conversely,
characters that can be represented in the database encoding but not in UTF8 will be allowed.

RFC 7159 permits JSON strings to contain Unicode escape sequences denoted by \uXXXX. In the input
function for the json type, Unicode escapes are allowed regardless of the database encoding, and are
checked only for syntactic correctness (that is, that four hex digits follow \u). However, the input function
for jsonb is stricter: it disallows Unicode escapes for characters that cannot be represented in the
database encoding. The jsonb type also rejects \u0000 (because that cannot be represented in Postgres
Pro's text type), and it insists that any use of Unicode surrogate pairs to designate characters outside
the Unicode Basic Multilingual Plane be correct. Valid Unicode escapes are converted to the equivalent
single character for storage; this includes folding surrogate pairs into a single character.

Note
Many of the JSON processing functions described in Section 9.16 will convert Unicode escapes
to regular characters, and will therefore throw the same types of errors just described even
if their input is of type json not jsonb. The fact that the json input function does not make
these checks may be considered a historical artifact, although it does allow for simple storage
(without processing) of JSON Unicode escapes in a database encoding that does not support the
represented characters.

When converting textual JSON input into jsonb, the primitive types described by RFC 7159 are
effectively mapped onto native Postgres Pro types, as shown in Table 8.23. Therefore, there are some
minor additional constraints on what constitutes valid jsonb data that do not apply to the json type, nor
to JSON in the abstract, corresponding to limits on what can be represented by the underlying data type.
Notably, jsonb will reject numbers that are outside the range of the Postgres Pro numeric data type,
while json will not. Such implementation-defined restrictions are permitted by RFC 7159. However,
in practice such problems are far more likely to occur in other implementations, as it is common to
represent JSON's number primitive type as IEEE 754 double precision floating point (which RFC 7159
explicitly anticipates and allows for). When using JSON as an interchange format with such systems,
the danger of losing numeric precision compared to data originally stored by Postgres Pro should be
considered.

Conversely, as noted in the table there are some minor restrictions on the input format of JSON primitive
types that do not apply to the corresponding Postgres Pro types.

Table 8.23. JSON Primitive Types and Corresponding Postgres Pro Types

JSON primitive type Postgres Pro type Notes
string text \u0000 is disallowed, as are Unicode escapes

representing characters not available in the
database encoding

number numeric NaN and infinity values are disallowed
boolean boolean Only lowercase true and false spellings are

accepted
null (none) SQL NULL is a different concept

8.14.1. JSON Input and Output Syntax
The input/output syntax for the JSON data types is as specified in RFC 7159.

The following are all valid json (or jsonb) expressions:

-- Simple scalar/primitive value
-- Primitive values can be numbers, quoted strings, true, false, or null
SELECT '5'::json;

146

Data Types

-- Array of zero or more elements (elements need not be of same type)
SELECT '[1, 2, "foo", null]'::json;

-- Object containing pairs of keys and values
-- Note that object keys must always be quoted strings
SELECT '{"bar": "baz", "balance": 7.77, "active": false}'::json;

-- Arrays and objects can be nested arbitrarily
SELECT '{"foo": [true, "bar"], "tags": {"a": 1, "b": null}}'::json;

As previously stated, when a JSON value is input and then printed without any additional processing,
json outputs the same text that was input, while jsonb does not preserve semantically-insignificant
details such as whitespace. For example, note the differences here:
SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::json;
 json

 {"bar": "baz", "balance": 7.77, "active":false}
(1 row)

SELECT '{"bar": "baz", "balance": 7.77, "active":false}'::jsonb;
 jsonb
--
 {"bar": "baz", "active": false, "balance": 7.77}
(1 row)

One semantically-insignificant detail worth noting is that in jsonb, numbers will be printed according
to the behavior of the underlying numeric type. In practice this means that numbers entered with E
notation will be printed without it, for example:
SELECT '{"reading": 1.230e-5}'::json, '{"reading": 1.230e-5}'::jsonb;
 json | jsonb
-----------------------+-------------------------
 {"reading": 1.230e-5} | {"reading": 0.00001230}
(1 row)

However, jsonb will preserve trailing fractional zeroes, as seen in this example, even though those are
semantically insignificant for purposes such as equality checks.

For the list of built-in functions and operators available for constructing and processing JSON values,
see Section 9.16.

8.14.2. Designing JSON Documents
Representing data as JSON can be considerably more flexible than the traditional relational data
model, which is compelling in environments where requirements are fluid. It is quite possible for both
approaches to co-exist and complement each other within the same application. However, even for
applications where maximal flexibility is desired, it is still recommended that JSON documents have a
somewhat fixed structure. The structure is typically unenforced (though enforcing some business rules
declaratively is possible), but having a predictable structure makes it easier to write queries that usefully
summarize a set of “documents” (datums) in a table.

JSON data is subject to the same concurrency-control considerations as any other data type when stored
in a table. Although storing large documents is practicable, keep in mind that any update acquires a
row-level lock on the whole row. Consider limiting JSON documents to a manageable size in order to
decrease lock contention among updating transactions. Ideally, JSON documents should each represent
an atomic datum that business rules dictate cannot reasonably be further subdivided into smaller datums
that could be modified independently.

8.14.3. jsonb Containment and Existence

147

Data Types

Testing containment is an important capability of jsonb. There is no parallel set of facilities for the
json type. Containment tests whether one jsonb document has contained within it another one. These
examples return true except as noted:

-- Simple scalar/primitive values contain only the identical value:
SELECT '"foo"'::jsonb @> '"foo"'::jsonb;

-- The array on the right side is contained within the one on the left:
SELECT '[1, 2, 3]'::jsonb @> '[1, 3]'::jsonb;

-- Order of array elements is not significant, so this is also true:
SELECT '[1, 2, 3]'::jsonb @> '[3, 1]'::jsonb;

-- Duplicate array elements don't matter either:
SELECT '[1, 2, 3]'::jsonb @> '[1, 2, 2]'::jsonb;

-- The object with a single pair on the right side is contained
-- within the object on the left side:
SELECT '{"product": "PostgreSQL", "version": 9.4, "jsonb": true}'::jsonb @>
 '{"version": 9.4}'::jsonb;

-- The array on the right side is not considered contained within the
-- array on the left, even though a similar array is nested within it:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[1, 3]'::jsonb; -- yields false

-- But with a layer of nesting, it is contained:
SELECT '[1, 2, [1, 3]]'::jsonb @> '[[1, 3]]'::jsonb;

-- Similarly, containment is not reported here:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"bar": "baz"}'::jsonb; -- yields false

-- A top-level key and an empty object is contained:
SELECT '{"foo": {"bar": "baz"}}'::jsonb @> '{"foo": {}}'::jsonb;

The general principle is that the contained object must match the containing object as to structure and
data contents, possibly after discarding some non-matching array elements or object key/value pairs
from the containing object. But remember that the order of array elements is not significant when doing
a containment match, and duplicate array elements are effectively considered only once.

As a special exception to the general principle that the structures must match, an array may contain
a primitive value:

-- This array contains the primitive string value:
SELECT '["foo", "bar"]'::jsonb @> '"bar"'::jsonb;

-- This exception is not reciprocal -- non-containment is reported here:
SELECT '"bar"'::jsonb @> '["bar"]'::jsonb; -- yields false

jsonb also has an existence operator, which is a variation on the theme of containment: it tests whether
a string (given as a text value) appears as an object key or array element at the top level of the jsonb
value. These examples return true except as noted:

-- String exists as array element:
SELECT '["foo", "bar", "baz"]'::jsonb ? 'bar';

-- String exists as object key:
SELECT '{"foo": "bar"}'::jsonb ? 'foo';

-- Object values are not considered:

148

Data Types

SELECT '{"foo": "bar"}'::jsonb ? 'bar'; -- yields false

-- As with containment, existence must match at the top level:
SELECT '{"foo": {"bar": "baz"}}'::jsonb ? 'bar'; -- yields false

-- A string is considered to exist if it matches a primitive JSON string:
SELECT '"foo"'::jsonb ? 'foo';

JSON objects are better suited than arrays for testing containment or existence when there are many
keys or elements involved, because unlike arrays they are internally optimized for searching, and do not
need to be searched linearly.

Tip
Because JSON containment is nested, an appropriate query can skip explicit selection of sub-
objects. As an example, suppose that we have a doc column containing objects at the top level,
with most objects containing tags fields that contain arrays of sub-objects. This query finds entries
in which sub-objects containing both "term":"paris" and "term":"food" appear, while ignoring
any such keys outside the tags array:

SELECT doc->'site_name' FROM websites
 WHERE doc @> '{"tags":[{"term":"paris"}, {"term":"food"}]}';

One could accomplish the same thing with, say,

SELECT doc->'site_name' FROM websites
 WHERE doc->'tags' @> '[{"term":"paris"}, {"term":"food"}]';

but that approach is less flexible, and often less efficient as well.

On the other hand, the JSON existence operator is not nested: it will only look for the specified
key or array element at top level of the JSON value.

The various containment and existence operators, along with all other JSON operators and functions
are documented in Section 9.16.

8.14.4. jsonb Indexing
GIN indexes can be used to efficiently search for keys or key/value pairs occurring within a large number
of jsonb documents (datums). Two GIN “operator classes” are provided, offering different performance
and flexibility trade-offs.

The default GIN operator class for jsonb supports queries with top-level key-exists operators ?, ?&
and ?| operators and path/value-exists operator @>. (For details of the semantics that these operators
implement, see Table 9.45.) An example of creating an index with this operator class is:

CREATE INDEX idxgin ON api USING GIN (jdoc);

The non-default GIN operator class jsonb_path_ops supports indexing the @> operator only. An example
of creating an index with this operator class is:

CREATE INDEX idxginp ON api USING GIN (jdoc jsonb_path_ops);

Consider the example of a table that stores JSON documents retrieved from a third-party web service,
with a documented schema definition. A typical document is:

{
 "guid": "9c36adc1-7fb5-4d5b-83b4-90356a46061a",
 "name": "Angela Barton",
 "is_active": true,
 "company": "Magnafone",
 "address": "178 Howard Place, Gulf, Washington, 702",

149

Data Types

 "registered": "2009-11-07T08:53:22 +08:00",
 "latitude": 19.793713,
 "longitude": 86.513373,
 "tags": [
 "enim",
 "aliquip",
 "qui"
]
}

We store these documents in a table named api, in a jsonb column named jdoc. If a GIN index is created
on this column, queries like the following can make use of the index:
-- Find documents in which the key "company" has value "Magnafone"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"company": "Magnafone"}';

However, the index could not be used for queries like the following, because though the operator ? is
indexable, it is not applied directly to the indexed column jdoc:
-- Find documents in which the key "tags" contains key or array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc -> 'tags' ? 'qui';

Still, with appropriate use of expression indexes, the above query can use an index. If querying for
particular items within the "tags" key is common, defining an index like this may be worthwhile:
CREATE INDEX idxgintags ON api USING GIN ((jdoc -> 'tags'));

Now, the WHERE clause jdoc -> 'tags' ? 'qui' will be recognized as an application of the indexable
operator ? to the indexed expression jdoc -> 'tags'. (More information on expression indexes can
be found in Section 11.7.)

Also, GIN index supports @@ and @? operators, which perform jsonpath matching.
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @@ '$.tags[*] == "qui"';

SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @? '$.tags[*] ? (@ == "qui")';

GIN index extracts statements of following form out of jsonpath: accessors_chain = const. Accessors
chain may consist of .key, [*], and [index] accessors. jsonb_ops additionally supports .* and .**
accessors.

Another approach to querying is to exploit containment, for example:
-- Find documents in which the key "tags" contains array element "qui"
SELECT jdoc->'guid', jdoc->'name' FROM api WHERE jdoc @> '{"tags": ["qui"]}';

A simple GIN index on the jdoc column can support this query. But note that such an index will store
copies of every key and value in the jdoc column, whereas the expression index of the previous example
stores only data found under the tags key. While the simple-index approach is far more flexible (since
it supports queries about any key), targeted expression indexes are likely to be smaller and faster to
search than a simple index.

Although the jsonb_path_ops operator class supports only queries with the @>, @@ and @? operators,
it has notable performance advantages over the default operator class jsonb_ops. A jsonb_path_ops
index is usually much smaller than a jsonb_ops index over the same data, and the specificity of searches
is better, particularly when queries contain keys that appear frequently in the data. Therefore search
operations typically perform better than with the default operator class.

The technical difference between a jsonb_ops and a jsonb_path_ops GIN index is that the former
creates independent index items for each key and value in the data, while the latter creates index items
only for each value in the data. 1 Basically, each jsonb_path_ops index item is a hash of the value and
the key(s) leading to it; for example to index {"foo": {"bar": "baz"}}, a single index item would
be created incorporating all three of foo, bar, and baz into the hash value. Thus a containment query

1 For this purpose, the term “value” includes array elements, though JSON terminology sometimes considers array elements distinct from values within objects.

150

Data Types

looking for this structure would result in an extremely specific index search; but there is no way at all
to find out whether foo appears as a key. On the other hand, a jsonb_ops index would create three
index items representing foo, bar, and baz separately; then to do the containment query, it would look
for rows containing all three of these items. While GIN indexes can perform such an AND search fairly
efficiently, it will still be less specific and slower than the equivalent jsonb_path_ops search, especially
if there are a very large number of rows containing any single one of the three index items.

A disadvantage of the jsonb_path_ops approach is that it produces no index entries for JSON structures
not containing any values, such as {"a": {}}. If a search for documents containing such a structure is
requested, it will require a full-index scan, which is quite slow. jsonb_path_ops is therefore ill-suited
for applications that often perform such searches.

jsonb also supports btree and hash indexes. These are usually useful only if it's important to check
equality of complete JSON documents. The btree ordering for jsonb datums is seldom of great interest,
but for completeness it is:

Object > Array > Boolean > Number > String > Null

Object with n pairs > object with n - 1 pairs

Array with n elements > array with n - 1 elements

Objects with equal numbers of pairs are compared in the order:

key-1, value-1, key-2 ...

Note that object keys are compared in their storage order; in particular, since shorter keys are stored
before longer keys, this can lead to results that might be unintuitive, such as:

{ "aa": 1, "c": 1} > {"b": 1, "d": 1}

Similarly, arrays with equal numbers of elements are compared in the order:

element-1, element-2 ...

Primitive JSON values are compared using the same comparison rules as for the underlying Postgres
Pro data type. Strings are compared using the default database collation.

8.14.5. Transforms
Additional extensions are available that implement transforms for the jsonb type for different procedural
languages.

The extensions for PL/Perl are called jsonb_plperl and jsonb_plperlu. If you use them, jsonb values
are mapped to Perl arrays, hashes, and scalars, as appropriate.

The extensions for PL/Python are called jsonb_plpythonu, jsonb_plpython2u, and jsonb_plpython3u
(see Section 43.1 for the PL/Python naming convention). If you use them, jsonb values are mapped to
Python dictionaries, lists, and scalars, as appropriate.

Of these extensions, jsonb_plperl is considered “trusted”, that is, it can be installed by non-superusers
who have CREATE privilege on the current database. The rest require superuser privilege to install.

8.14.6. jsonpath Type
The jsonpath type implements support for the SQL/JSON path language in Postgres Pro to efficiently
query JSON data. It provides a binary representation of the parsed SQL/JSON path expression that
specifies the items to be retrieved by the path engine from the JSON data for further processing with
the SQL/JSON query functions.

The semantics of SQL/JSON path predicates and operators generally follow SQL. At the same time,
to provide a natural way of working with JSON data, SQL/JSON path syntax uses some JavaScript
conventions:

151

Data Types

• Dot (.) is used for member access.
• Square brackets ([]) are used for array access.
• SQL/JSON arrays are 0-relative, unlike regular SQL arrays that start from 1.
An SQL/JSON path expression is typically written in an SQL query as an SQL character string literal, so
it must be enclosed in single quotes, and any single quotes desired within the value must be doubled (see
Section 4.1.2.1). Some forms of path expressions require string literals within them. These embedded
string literals follow JavaScript/ECMAScript conventions: they must be surrounded by double quotes,
and backslash escapes may be used within them to represent otherwise-hard-to-type characters. In
particular, the way to write a double quote within an embedded string literal is \", and to write a
backslash itself, you must write \\. Other special backslash sequences include those recognized in JSON
strings: \b, \f, \n, \r, \t, \v for various ASCII control characters, and \uNNNN for a Unicode character
identified by its 4-hex-digit code point. The backslash syntax also includes two cases not allowed by
JSON: \xNN for a character code written with only two hex digits, and \u{N...} for a character code
written with 1 to 6 hex digits.

A path expression consists of a sequence of path elements, which can be any of the following:
• Path literals of JSON primitive types: Unicode text, numeric, true, false, or null.
• Path variables listed in Table 8.24.
• Accessor operators listed in Table 8.25.
• jsonpath operators and methods listed in Section 9.16.2.2.
• Parentheses, which can be used to provide filter expressions or define the order of path evaluation.

For details on using jsonpath expressions with SQL/JSON query functions, see Section 9.16.2.

Table 8.24. jsonpath Variables

Variable Description
$ A variable representing the JSON value being queried (the context

item).
$varname A named variable. Its value can be set by the parameter vars of

several JSON processing functions; see Table 9.47 for details.
@ A variable representing the result of path evaluation in filter

expressions.

Table 8.25. jsonpath Accessors

Accessor Operator Description
.key

."$varname"

Member accessor that returns an object member with the specified
key. If the key name matches some named variable starting with $
or does not meet the JavaScript rules for an identifier, it must be
enclosed in double quotes to make it a string literal.

.* Wildcard member accessor that returns the values of all members
located at the top level of the current object.

.** Recursive wildcard member accessor that processes all levels
of the JSON hierarchy of the current object and returns all the
member values, regardless of their nesting level. This is a Postgres
Pro extension of the SQL/JSON standard.

.**{level}

.**{start_level to end_
level }

Like .**, but selects only the specified levels of the JSON
hierarchy. Nesting levels are specified as integers. Level zero
corresponds to the current object. To access the lowest nesting
level, you can use the last keyword. This is a Postgres Pro
extension of the SQL/JSON standard.

152

Data Types

Accessor Operator Description
[subscript, ...] Array element accessor. subscript can be given in two forms:

index or start_index to end_index . The first form returns
a single array element by its index. The second form returns an
array slice by the range of indexes, including the elements that
correspond to the provided start_index and end_index .

The specified index can be an integer, as well as an expression
returning a single numeric value, which is automatically cast to
integer. Index zero corresponds to the first array element. You can
also use the last keyword to denote the last array element, which
is useful for handling arrays of unknown length.

[*] Wildcard array element accessor that returns all array elements.

8.15. Arrays
Postgres Pro allows columns of a table to be defined as variable-length multidimensional arrays. Arrays of
any built-in or user-defined base type, enum type, composite type, range type, or domain can be created.

8.15.1. Declaration of Array Types
To illustrate the use of array types, we create this table:

CREATE TABLE sal_emp (
 name text,
 pay_by_quarter integer[],
 schedule text[][]
);

As shown, an array data type is named by appending square brackets ([]) to the data type name of
the array elements. The above command will create a table named sal_emp with a column of type text
(name), a one-dimensional array of type integer (pay_by_quarter), which represents the employee's
salary by quarter, and a two-dimensional array of text (schedule), which represents the employee's
weekly schedule.

The syntax for CREATE TABLE allows the exact size of arrays to be specified, for example:

CREATE TABLE tictactoe (
 squares integer[3][3]
);

However, the current implementation ignores any supplied array size limits, i.e., the behavior is the
same as for arrays of unspecified length.

The current implementation does not enforce the declared number of dimensions either. Arrays of
a particular element type are all considered to be of the same type, regardless of size or number
of dimensions. So, declaring the array size or number of dimensions in CREATE TABLE is simply
documentation; it does not affect run-time behavior.

An alternative syntax, which conforms to the SQL standard by using the keyword ARRAY, can be used for
one-dimensional arrays. pay_by_quarter could have been defined as:

 pay_by_quarter integer ARRAY[4],

Or, if no array size is to be specified:

 pay_by_quarter integer ARRAY,

As before, however, Postgres Pro does not enforce the size restriction in any case.

8.15.2. Array Value Input

153

Data Types

To write an array value as a literal constant, enclose the element values within curly braces and separate
them by commas. (If you know C, this is not unlike the C syntax for initializing structures.) You can put
double quotes around any element value, and must do so if it contains commas or curly braces. (More
details appear below.) Thus, the general format of an array constant is the following:

'{ val1 delim val2 delim ... }'

where delim is the delimiter character for the type, as recorded in its pg_type entry. Among the standard
data types provided in the Postgres Pro distribution, all use a comma (,), except for type box which uses
a semicolon (;). Each val is either a constant of the array element type, or a subarray. An example of
an array constant is:

'{{1,2,3},{4,5,6},{7,8,9}}'

This constant is a two-dimensional, 3-by-3 array consisting of three subarrays of integers.

To set an element of an array constant to NULL, write NULL for the element value. (Any upper- or lower-
case variant of NULL will do.) If you want an actual string value “NULL”, you must put double quotes
around it.

(These kinds of array constants are actually only a special case of the generic type constants discussed
in Section 4.1.2.7. The constant is initially treated as a string and passed to the array input conversion
routine. An explicit type specification might be necessary.)

Now we can show some INSERT statements:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"training", "presentation"}}');

INSERT INTO sal_emp
 VALUES ('Carol',
 '{20000, 25000, 25000, 25000}',
 '{{"breakfast", "consulting"}, {"meeting", "lunch"}}');

The result of the previous two inserts looks like this:

SELECT * FROM sal_emp;
 name | pay_by_quarter | schedule
-------+---------------------------+---
 Bill | {10000,10000,10000,10000} | {{meeting,lunch},{training,presentation}}
 Carol | {20000,25000,25000,25000} | {{breakfast,consulting},{meeting,lunch}}
(2 rows)

Multidimensional arrays must have matching extents for each dimension. A mismatch causes an error,
for example:

INSERT INTO sal_emp
 VALUES ('Bill',
 '{10000, 10000, 10000, 10000}',
 '{{"meeting", "lunch"}, {"meeting"}}');
ERROR: multidimensional arrays must have array expressions with matching dimensions

The ARRAY constructor syntax can also be used:

INSERT INTO sal_emp
 VALUES ('Bill',
 ARRAY[10000, 10000, 10000, 10000],
 ARRAY[['meeting', 'lunch'], ['training', 'presentation']]);

INSERT INTO sal_emp

154

Data Types

 VALUES ('Carol',
 ARRAY[20000, 25000, 25000, 25000],
 ARRAY[['breakfast', 'consulting'], ['meeting', 'lunch']]);

Notice that the array elements are ordinary SQL constants or expressions; for instance, string literals
are single quoted, instead of double quoted as they would be in an array literal. The ARRAY constructor
syntax is discussed in more detail in Section 4.2.12.

8.15.3. Accessing Arrays
Now, we can run some queries on the table. First, we show how to access a single element of an array.
This query retrieves the names of the employees whose pay changed in the second quarter:

SELECT name FROM sal_emp WHERE pay_by_quarter[1] <> pay_by_quarter[2];

 name

 Carol
(1 row)

The array subscript numbers are written within square brackets. By default Postgres Pro uses a one-
based numbering convention for arrays, that is, an array of n elements starts with array[1] and ends
with array[n].

This query retrieves the third quarter pay of all employees:

SELECT pay_by_quarter[3] FROM sal_emp;

 pay_by_quarter

 10000
 25000
(2 rows)

We can also access arbitrary rectangular slices of an array, or subarrays. An array slice is denoted by
writing lower-bound:upper-bound for one or more array dimensions. For example, this query retrieves
the first item on Bill's schedule for the first two days of the week:

SELECT schedule[1:2][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

If any dimension is written as a slice, i.e., contains a colon, then all dimensions are treated as slices. Any
dimension that has only a single number (no colon) is treated as being from 1 to the number specified.
For example, [2] is treated as [1:2], as in this example:

SELECT schedule[1:2][2] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting,lunch},{training,presentation}}
(1 row)

To avoid confusion with the non-slice case, it's best to use slice syntax for all dimensions, e.g., [1:2]
[1:1], not [2][1:1].

It is possible to omit the lower-bound and/or upper-bound of a slice specifier; the missing bound is
replaced by the lower or upper limit of the array's subscripts. For example:

SELECT schedule[:2][2:] FROM sal_emp WHERE name = 'Bill';

155

Data Types

 schedule

 {{lunch},{presentation}}
(1 row)

SELECT schedule[:][1:1] FROM sal_emp WHERE name = 'Bill';

 schedule

 {{meeting},{training}}
(1 row)

An array subscript expression will return null if either the array itself or any of the subscript expressions
are null. Also, null is returned if a subscript is outside the array bounds (this case does not raise an error).
For example, if schedule currently has the dimensions [1:3][1:2] then referencing schedule[3][3]
yields NULL. Similarly, an array reference with the wrong number of subscripts yields a null rather than
an error.

An array slice expression likewise yields null if the array itself or any of the subscript expressions are
null. However, in other cases such as selecting an array slice that is completely outside the current array
bounds, a slice expression yields an empty (zero-dimensional) array instead of null. (This does not match
non-slice behavior and is done for historical reasons.) If the requested slice partially overlaps the array
bounds, then it is silently reduced to just the overlapping region instead of returning null.

The current dimensions of any array value can be retrieved with the array_dims function:

SELECT array_dims(schedule) FROM sal_emp WHERE name = 'Carol';

 array_dims

 [1:2][1:2]
(1 row)

array_dims produces a text result, which is convenient for people to read but perhaps inconvenient
for programs. Dimensions can also be retrieved with array_upper and array_lower, which return the
upper and lower bound of a specified array dimension, respectively:

SELECT array_upper(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_upper

 2
(1 row)

array_length will return the length of a specified array dimension:

SELECT array_length(schedule, 1) FROM sal_emp WHERE name = 'Carol';

 array_length

 2
(1 row)

cardinality returns the total number of elements in an array across all dimensions. It is effectively the
number of rows a call to unnest would yield:

SELECT cardinality(schedule) FROM sal_emp WHERE name = 'Carol';

 cardinality

 4

156

Data Types

(1 row)

8.15.4. Modifying Arrays
An array value can be replaced completely:

UPDATE sal_emp SET pay_by_quarter = '{25000,25000,27000,27000}'
 WHERE name = 'Carol';

or using the ARRAY expression syntax:

UPDATE sal_emp SET pay_by_quarter = ARRAY[25000,25000,27000,27000]
 WHERE name = 'Carol';

An array can also be updated at a single element:

UPDATE sal_emp SET pay_by_quarter[4] = 15000
 WHERE name = 'Bill';

or updated in a slice:

UPDATE sal_emp SET pay_by_quarter[1:2] = '{27000,27000}'
 WHERE name = 'Carol';

The slice syntaxes with omitted lower-bound and/or upper-bound can be used too, but only when
updating an array value that is not NULL or zero-dimensional (otherwise, there is no existing subscript
limit to substitute).

A stored array value can be enlarged by assigning to elements not already present. Any positions between
those previously present and the newly assigned elements will be filled with nulls. For example, if array
myarray currently has 4 elements, it will have six elements after an update that assigns to myarray[6];
myarray[5] will contain null. Currently, enlargement in this fashion is only allowed for one-dimensional
arrays, not multidimensional arrays.

Subscripted assignment allows creation of arrays that do not use one-based subscripts. For example one
might assign to myarray[-2:7] to create an array with subscript values from -2 to 7.

New array values can also be constructed using the concatenation operator, ||:

SELECT ARRAY[1,2] || ARRAY[3,4];
 ?column?

 {1,2,3,4}
(1 row)

SELECT ARRAY[5,6] || ARRAY[[1,2],[3,4]];
 ?column?

 {{5,6},{1,2},{3,4}}
(1 row)

The concatenation operator allows a single element to be pushed onto the beginning or end of a one-
dimensional array. It also accepts two N-dimensional arrays, or an N-dimensional and an N+1-dimensional
array.

When a single element is pushed onto either the beginning or end of a one-dimensional array, the result
is an array with the same lower bound subscript as the array operand. For example:

SELECT array_dims(1 || '[0:1]={2,3}'::int[]);
 array_dims

 [0:2]
(1 row)

157

Data Types

SELECT array_dims(ARRAY[1,2] || 3);
 array_dims

 [1:3]
(1 row)

When two arrays with an equal number of dimensions are concatenated, the result retains the lower
bound subscript of the left-hand operand's outer dimension. The result is an array comprising every
element of the left-hand operand followed by every element of the right-hand operand. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[3,4,5]);
 array_dims

 [1:5]
(1 row)

SELECT array_dims(ARRAY[[1,2],[3,4]] || ARRAY[[5,6],[7,8],[9,0]]);
 array_dims

 [1:5][1:2]
(1 row)

When an N-dimensional array is pushed onto the beginning or end of an N+1-dimensional array, the result
is analogous to the element-array case above. Each N-dimensional sub-array is essentially an element of
the N+1-dimensional array's outer dimension. For example:

SELECT array_dims(ARRAY[1,2] || ARRAY[[3,4],[5,6]]);
 array_dims

 [1:3][1:2]
(1 row)

An array can also be constructed by using the functions array_prepend, array_append, or array_cat.
The first two only support one-dimensional arrays, but array_cat supports multidimensional arrays.
Some examples:

SELECT array_prepend(1, ARRAY[2,3]);
 array_prepend

 {1,2,3}
(1 row)

SELECT array_append(ARRAY[1,2], 3);
 array_append

 {1,2,3}
(1 row)

SELECT array_cat(ARRAY[1,2], ARRAY[3,4]);
 array_cat

 {1,2,3,4}
(1 row)

SELECT array_cat(ARRAY[[1,2],[3,4]], ARRAY[5,6]);
 array_cat

 {{1,2},{3,4},{5,6}}
(1 row)

158

Data Types

SELECT array_cat(ARRAY[5,6], ARRAY[[1,2],[3,4]]);
 array_cat

 {{5,6},{1,2},{3,4}}

In simple cases, the concatenation operator discussed above is preferred over direct use of these
functions. However, because the concatenation operator is overloaded to serve all three cases, there are
situations where use of one of the functions is helpful to avoid ambiguity. For example consider:

SELECT ARRAY[1, 2] || '{3, 4}'; -- the untyped literal is taken as an array
 ?column?

 {1,2,3,4}

SELECT ARRAY[1, 2] || '7'; -- so is this one
ERROR: malformed array literal: "7"

SELECT ARRAY[1, 2] || NULL; -- so is an undecorated NULL
 ?column?

 {1,2}
(1 row)

SELECT array_append(ARRAY[1, 2], NULL); -- this might have been meant
 array_append

 {1,2,NULL}

In the examples above, the parser sees an integer array on one side of the concatenation operator,
and a constant of undetermined type on the other. The heuristic it uses to resolve the constant's type
is to assume it's of the same type as the operator's other input — in this case, integer array. So
the concatenation operator is presumed to represent array_cat, not array_append. When that's the
wrong choice, it could be fixed by casting the constant to the array's element type; but explicit use of
array_append might be a preferable solution.

8.15.5. Searching in Arrays
To search for a value in an array, each value must be checked. This can be done manually, if you know
the size of the array. For example:

SELECT * FROM sal_emp WHERE pay_by_quarter[1] = 10000 OR
 pay_by_quarter[2] = 10000 OR
 pay_by_quarter[3] = 10000 OR
 pay_by_quarter[4] = 10000;

However, this quickly becomes tedious for large arrays, and is not helpful if the size of the array is
unknown. An alternative method is described in Section 9.24. The above query could be replaced by:

SELECT * FROM sal_emp WHERE 10000 = ANY (pay_by_quarter);

In addition, you can find rows where the array has all values equal to 10000 with:

SELECT * FROM sal_emp WHERE 10000 = ALL (pay_by_quarter);

Alternatively, the generate_subscripts function can be used. For example:

SELECT * FROM
 (SELECT pay_by_quarter,
 generate_subscripts(pay_by_quarter, 1) AS s
 FROM sal_emp) AS foo
 WHERE pay_by_quarter[s] = 10000;

This function is described in Table 9.62.

159

Data Types

You can also search an array using the && operator, which checks whether the left operand overlaps with
the right operand. For instance:

SELECT * FROM sal_emp WHERE pay_by_quarter && ARRAY[10000];

This and other array operators are further described in Section 9.19. It can be accelerated by an
appropriate index, as described in Section 11.2.

You can also search for specific values in an array using the array_position and array_positions
functions. The former returns the subscript of the first occurrence of a value in an array; the latter
returns an array with the subscripts of all occurrences of the value in the array. For example:

SELECT array_position(ARRAY['sun','mon','tue','wed','thu','fri','sat'], 'mon');
 array_position

 2
(1 row)

SELECT array_positions(ARRAY[1, 4, 3, 1, 3, 4, 2, 1], 1);
 array_positions

 {1,4,8}
(1 row)

Tip
Arrays are not sets; searching for specific array elements can be a sign of database misdesign.
Consider using a separate table with a row for each item that would be an array element. This will
be easier to search, and is likely to scale better for a large number of elements.

8.15.6. Array Input and Output Syntax
The external text representation of an array value consists of items that are interpreted according to
the I/O conversion rules for the array's element type, plus decoration that indicates the array structure.
The decoration consists of curly braces ({ and }) around the array value plus delimiter characters
between adjacent items. The delimiter character is usually a comma (,) but can be something else: it
is determined by the typdelim setting for the array's element type. Among the standard data types
provided in the Postgres Pro distribution, all use a comma, except for type box, which uses a semicolon
(;). In a multidimensional array, each dimension (row, plane, cube, etc.) gets its own level of curly braces,
and delimiters must be written between adjacent curly-braced entities of the same level.

The array output routine will put double quotes around element values if they are empty strings, contain
curly braces, delimiter characters, double quotes, backslashes, or white space, or match the word NULL.
Double quotes and backslashes embedded in element values will be backslash-escaped. For numeric
data types it is safe to assume that double quotes will never appear, but for textual data types one should
be prepared to cope with either the presence or absence of quotes.

By default, the lower bound index value of an array's dimensions is set to one. To represent arrays
with other lower bounds, the array subscript ranges can be specified explicitly before writing the array
contents. This decoration consists of square brackets ([]) around each array dimension's lower and
upper bounds, with a colon (:) delimiter character in between. The array dimension decoration is
followed by an equal sign (=). For example:

SELECT f1[1][-2][3] AS e1, f1[1][-1][5] AS e2
 FROM (SELECT '[1:1][-2:-1][3:5]={{{1,2,3},{4,5,6}}}'::int[] AS f1) AS ss;

 e1 | e2
----+----
 1 | 6

160

Data Types

(1 row)

The array output routine will include explicit dimensions in its result only when there are one or more
lower bounds different from one.

If the value written for an element is NULL (in any case variant), the element is taken to be NULL.
The presence of any quotes or backslashes disables this and allows the literal string value “NULL”
to be entered. Also, for backward compatibility with pre-8.2 versions of PostgreSQL, the array_nulls
configuration parameter can be turned off to suppress recognition of NULL as a NULL.

As shown previously, when writing an array value you can use double quotes around any individual
array element. You must do so if the element value would otherwise confuse the array-value parser.
For example, elements containing curly braces, commas (or the data type's delimiter character), double
quotes, backslashes, or leading or trailing whitespace must be double-quoted. Empty strings and strings
matching the word NULL must be quoted, too. To put a double quote or backslash in a quoted array
element value, precede it with a backslash. Alternatively, you can avoid quotes and use backslash-
escaping to protect all data characters that would otherwise be taken as array syntax.

You can add whitespace before a left brace or after a right brace. You can also add whitespace before or
after any individual item string. In all of these cases the whitespace will be ignored. However, whitespace
within double-quoted elements, or surrounded on both sides by non-whitespace characters of an element,
is not ignored.

Tip
The ARRAY constructor syntax (see Section 4.2.12) is often easier to work with than the array-
literal syntax when writing array values in SQL commands. In ARRAY, individual element values
are written the same way they would be written when not members of an array.

8.16. Composite Types
A composite type represents the structure of a row or record; it is essentially just a list of field names
and their data types. Postgres Pro allows composite types to be used in many of the same ways that
simple types can be used. For example, a column of a table can be declared to be of a composite type.

8.16.1. Declaration of Composite Types
Here are two simple examples of defining composite types:
CREATE TYPE complex AS (
 r double precision,
 i double precision
);

CREATE TYPE inventory_item AS (
 name text,
 supplier_id integer,
 price numeric
);

The syntax is comparable to CREATE TABLE, except that only field names and types can be specified;
no constraints (such as NOT NULL) can presently be included. Note that the AS keyword is essential;
without it, the system will think a different kind of CREATE TYPE command is meant, and you will get
odd syntax errors.

Having defined the types, we can use them to create tables:
CREATE TABLE on_hand (
 item inventory_item,
 count integer

161

Data Types

);

INSERT INTO on_hand VALUES (ROW('fuzzy dice', 42, 1.99), 1000);

or functions:
CREATE FUNCTION price_extension(inventory_item, integer) RETURNS numeric
AS 'SELECT $1.price * $2' LANGUAGE SQL;

SELECT price_extension(item, 10) FROM on_hand;

Whenever you create a table, a composite type is also automatically created, with the same name as the
table, to represent the table's row type. For example, had we said:
CREATE TABLE inventory_item (
 name text,
 supplier_id integer REFERENCES suppliers,
 price numeric CHECK (price > 0)
);

then the same inventory_item composite type shown above would come into being as a byproduct, and
could be used just as above. Note however an important restriction of the current implementation: since
no constraints are associated with a composite type, the constraints shown in the table definition do not
apply to values of the composite type outside the table. (To work around this, create a domain over the
composite type, and apply the desired constraints as CHECK constraints of the domain.)

8.16.2. Constructing Composite Values
To write a composite value as a literal constant, enclose the field values within parentheses and separate
them by commas. You can put double quotes around any field value, and must do so if it contains commas
or parentheses. (More details appear below.) Thus, the general format of a composite constant is the
following:
'(val1 , val2 , ...)'

An example is:
'("fuzzy dice",42,1.99)'

which would be a valid value of the inventory_item type defined above. To make a field be NULL, write
no characters at all in its position in the list. For example, this constant specifies a NULL third field:
'("fuzzy dice",42,)'

If you want an empty string rather than NULL, write double quotes:
'("",42,)'

Here the first field is a non-NULL empty string, the third is NULL.

(These constants are actually only a special case of the generic type constants discussed in
Section 4.1.2.7. The constant is initially treated as a string and passed to the composite-type input
conversion routine. An explicit type specification might be necessary to tell which type to convert the
constant to.)

The ROW expression syntax can also be used to construct composite values. In most cases this is
considerably simpler to use than the string-literal syntax since you don't have to worry about multiple
layers of quoting. We already used this method above:
ROW('fuzzy dice', 42, 1.99)
ROW('', 42, NULL)

The ROW keyword is actually optional as long as you have more than one field in the expression, so
these can be simplified to:
('fuzzy dice', 42, 1.99)
('', 42, NULL)

162

Data Types

The ROW expression syntax is discussed in more detail in Section 4.2.13.

8.16.3. Accessing Composite Types
To access a field of a composite column, one writes a dot and the field name, much like selecting a field
from a table name. In fact, it's so much like selecting from a table name that you often have to use
parentheses to keep from confusing the parser. For example, you might try to select some subfields from
our on_hand example table with something like:
SELECT item.name FROM on_hand WHERE item.price > 9.99;

This will not work since the name item is taken to be a table name, not a column name of on_hand, per
SQL syntax rules. You must write it like this:
SELECT (item).name FROM on_hand WHERE (item).price > 9.99;

or if you need to use the table name as well (for instance in a multitable query), like this:
SELECT (on_hand.item).name FROM on_hand WHERE (on_hand.item).price > 9.99;

Now the parenthesized object is correctly interpreted as a reference to the item column, and then the
subfield can be selected from it.

Similar syntactic issues apply whenever you select a field from a composite value. For instance, to select
just one field from the result of a function that returns a composite value, you'd need to write something
like:
SELECT (my_func(...)).field FROM ...

Without the extra parentheses, this will generate a syntax error.

The special field name * means “all fields”, as further explained in Section 8.16.5.

8.16.4. Modifying Composite Types
Here are some examples of the proper syntax for inserting and updating composite columns. First,
inserting or updating a whole column:
INSERT INTO mytab (complex_col) VALUES((1.1,2.2));

UPDATE mytab SET complex_col = ROW(1.1,2.2) WHERE ...;

The first example omits ROW, the second uses it; we could have done it either way.

We can update an individual subfield of a composite column:
UPDATE mytab SET complex_col.r = (complex_col).r + 1 WHERE ...;

Notice here that we don't need to (and indeed cannot) put parentheses around the column name
appearing just after SET, but we do need parentheses when referencing the same column in the
expression to the right of the equal sign.

And we can specify subfields as targets for INSERT, too:
INSERT INTO mytab (complex_col.r, complex_col.i) VALUES(1.1, 2.2);

Had we not supplied values for all the subfields of the column, the remaining subfields would have been
filled with null values.

8.16.5. Using Composite Types in Queries
There are various special syntax rules and behaviors associated with composite types in queries. These
rules provide useful shortcuts, but can be confusing if you don't know the logic behind them.

In Postgres Pro, a reference to a table name (or alias) in a query is effectively a reference to the composite
value of the table's current row. For example, if we had a table inventory_item as shown above, we
could write:

163

Data Types

SELECT c FROM inventory_item c;

This query produces a single composite-valued column, so we might get output like:

 c

 ("fuzzy dice",42,1.99)
(1 row)

Note however that simple names are matched to column names before table names, so this example
works only because there is no column named c in the query's tables.

The ordinary qualified-column-name syntax table_name.column_name can be understood as applying
field selection to the composite value of the table's current row. (For efficiency reasons, it's not actually
implemented that way.)

When we write

SELECT c.* FROM inventory_item c;

then, according to the SQL standard, we should get the contents of the table expanded into separate
columns:

 name | supplier_id | price
------------+-------------+-------
 fuzzy dice | 42 | 1.99
(1 row)

as if the query were

SELECT c.name, c.supplier_id, c.price FROM inventory_item c;

Postgres Pro will apply this expansion behavior to any composite-valued expression, although as shown
above, you need to write parentheses around the value that .* is applied to whenever it's not a simple
table name. For example, if myfunc() is a function returning a composite type with columns a, b, and
c, then these two queries have the same result:

SELECT (myfunc(x)).* FROM some_table;
SELECT (myfunc(x)).a, (myfunc(x)).b, (myfunc(x)).c FROM some_table;

Tip
Postgres Pro handles column expansion by actually transforming the first form into the second.
So, in this example, myfunc() would get invoked three times per row with either syntax. If it's an
expensive function you may wish to avoid that, which you can do with a query like:

SELECT m.* FROM some_table, LATERAL myfunc(x) AS m;

Placing the function in a LATERAL FROM item keeps it from being invoked more than once per row.
m.* is still expanded into m.a, m.b, m.c, but now those variables are just references to the output
of the FROM item. (The LATERAL keyword is optional here, but we show it to clarify that the function
is getting x from some_table.)

The composite_value.* syntax results in column expansion of this kind when it appears at the top level
of a SELECT output list, a RETURNING list in INSERT/UPDATE/DELETE, a VALUES clause, or a row constructor.
In all other contexts (including when nested inside one of those constructs), attaching .* to a composite
value does not change the value, since it means “all columns” and so the same composite value is
produced again. For example, if somefunc() accepts a composite-valued argument, these queries are
the same:

SELECT somefunc(c.*) FROM inventory_item c;
SELECT somefunc(c) FROM inventory_item c;

164

Data Types

In both cases, the current row of inventory_item is passed to the function as a single composite-valued
argument. Even though .* does nothing in such cases, using it is good style, since it makes clear that a
composite value is intended. In particular, the parser will consider c in c.* to refer to a table name or
alias, not to a column name, so that there is no ambiguity; whereas without .*, it is not clear whether
c means a table name or a column name, and in fact the column-name interpretation will be preferred
if there is a column named c.

Another example demonstrating these concepts is that all these queries mean the same thing:

SELECT * FROM inventory_item c ORDER BY c;
SELECT * FROM inventory_item c ORDER BY c.*;
SELECT * FROM inventory_item c ORDER BY ROW(c.*);

All of these ORDER BY clauses specify the row's composite value, resulting in sorting the rows according
to the rules described in Section 9.24.6. However, if inventory_item contained a column named c, the
first case would be different from the others, as it would mean to sort by that column only. Given the
column names previously shown, these queries are also equivalent to those above:

SELECT * FROM inventory_item c ORDER BY ROW(c.name, c.supplier_id, c.price);
SELECT * FROM inventory_item c ORDER BY (c.name, c.supplier_id, c.price);

(The last case uses a row constructor with the key word ROW omitted.)

Another special syntactical behavior associated with composite values is that we can use functional
notation for extracting a field of a composite value. The simple way to explain this is that the notations
field(table) and table.field are interchangeable. For example, these queries are equivalent:

SELECT c.name FROM inventory_item c WHERE c.price > 1000;
SELECT name(c) FROM inventory_item c WHERE price(c) > 1000;

Moreover, if we have a function that accepts a single argument of a composite type, we can call it with
either notation. These queries are all equivalent:

SELECT somefunc(c) FROM inventory_item c;
SELECT somefunc(c.*) FROM inventory_item c;
SELECT c.somefunc FROM inventory_item c;

This equivalence between functional notation and field notation makes it possible to use functions on
composite types to implement “computed fields”. An application using the last query above wouldn't
need to be directly aware that somefunc isn't a real column of the table.

Tip
Because of this behavior, it's unwise to give a function that takes a single composite-type argument
the same name as any of the fields of that composite type. If there is ambiguity, the field-name
interpretation will be chosen if field-name syntax is used, while the function will be chosen if
function-call syntax is used. However, PostgreSQL versions before 11 always chose the field-name
interpretation, unless the syntax of the call required it to be a function call. One way to force
the function interpretation in older versions is to schema-qualify the function name, that is, write
schema.func(compositevalue).

8.16.6. Composite Type Input and Output Syntax
The external text representation of a composite value consists of items that are interpreted according
to the I/O conversion rules for the individual field types, plus decoration that indicates the composite
structure. The decoration consists of parentheses ((and)) around the whole value, plus commas (,)
between adjacent items. Whitespace outside the parentheses is ignored, but within the parentheses
it is considered part of the field value, and might or might not be significant depending on the input
conversion rules for the field data type. For example, in:

'(42)'

165

Data Types

the whitespace will be ignored if the field type is integer, but not if it is text.

As shown previously, when writing a composite value you can write double quotes around any individual
field value. You must do so if the field value would otherwise confuse the composite-value parser. In
particular, fields containing parentheses, commas, double quotes, or backslashes must be double-quoted.
To put a double quote or backslash in a quoted composite field value, precede it with a backslash. (Also,
a pair of double quotes within a double-quoted field value is taken to represent a double quote character,
analogously to the rules for single quotes in SQL literal strings.) Alternatively, you can avoid quoting and
use backslash-escaping to protect all data characters that would otherwise be taken as composite syntax.

A completely empty field value (no characters at all between the commas or parentheses) represents a
NULL. To write a value that is an empty string rather than NULL, write "".

The composite output routine will put double quotes around field values if they are empty strings or
contain parentheses, commas, double quotes, backslashes, or white space. (Doing so for white space
is not essential, but aids legibility.) Double quotes and backslashes embedded in field values will be
doubled.

Note
Remember that what you write in an SQL command will first be interpreted as a string literal, and
then as a composite. This doubles the number of backslashes you need (assuming escape string
syntax is used). For example, to insert a text field containing a double quote and a backslash in
a composite value, you'd need to write:

INSERT ... VALUES ('("\"\\")');

The string-literal processor removes one level of backslashes, so that what arrives at the
composite-value parser looks like ("\"\\"). In turn, the string fed to the text data type's input
routine becomes "\. (If we were working with a data type whose input routine also treated
backslashes specially, bytea for example, we might need as many as eight backslashes in the
command to get one backslash into the stored composite field.) Dollar quoting (see Section 4.1.2.4)
can be used to avoid the need to double backslashes.

Tip
The ROW constructor syntax is usually easier to work with than the composite-literal syntax when
writing composite values in SQL commands. In ROW, individual field values are written the same
way they would be written when not members of a composite.

8.17. Range Types
Range types are data types representing a range of values of some element type (called the range's
subtype). For instance, ranges of timestamp might be used to represent the ranges of time that a meeting
room is reserved. In this case the data type is tsrange (short for “timestamp range”), and timestamp is
the subtype. The subtype must have a total order so that it is well-defined whether element values are
within, before, or after a range of values.

Range types are useful because they represent many element values in a single range value, and because
concepts such as overlapping ranges can be expressed clearly. The use of time and date ranges for
scheduling purposes is the clearest example; but price ranges, measurement ranges from an instrument,
and so forth can also be useful.

8.17.1. Built-in Range Types
Postgres Pro comes with the following built-in range types:

166

Data Types

• int4range — Range of integer
• int8range — Range of bigint
• numrange — Range of numeric
• tsrange — Range of timestamp without time zone
• tstzrange — Range of timestamp with time zone
• daterange — Range of date
In addition, you can define your own range types; see CREATE TYPE for more information.

8.17.2. Examples
CREATE TABLE reservation (room int, during tsrange);
INSERT INTO reservation VALUES
 (1108, '[2010-01-01 14:30, 2010-01-01 15:30)');

-- Containment
SELECT int4range(10, 20) @> 3;

-- Overlaps
SELECT numrange(11.1, 22.2) && numrange(20.0, 30.0);

-- Extract the upper bound
SELECT upper(int8range(15, 25));

-- Compute the intersection
SELECT int4range(10, 20) * int4range(15, 25);

-- Is the range empty?
SELECT isempty(numrange(1, 5));

See Table 9.53 and Table 9.54 for complete lists of operators and functions on range types.

8.17.3. Inclusive and Exclusive Bounds
Every non-empty range has two bounds, the lower bound and the upper bound. All points between these
values are included in the range. An inclusive bound means that the boundary point itself is included in
the range as well, while an exclusive bound means that the boundary point is not included in the range.

In the text form of a range, an inclusive lower bound is represented by “[” while an exclusive lower
bound is represented by “(”. Likewise, an inclusive upper bound is represented by “]”, while an exclusive
upper bound is represented by “)”. (See Section 8.17.5 for more details.)

The functions lower_inc and upper_inc test the inclusivity of the lower and upper bounds of a range
value, respectively.

8.17.4. Infinite (Unbounded) Ranges
The lower bound of a range can be omitted, meaning that all values less than the upper bound are
included in the range, e.g., (,3]. Likewise, if the upper bound of the range is omitted, then all values
greater than the lower bound are included in the range. If both lower and upper bounds are omitted, all
values of the element type are considered to be in the range. Specifying a missing bound as inclusive
is automatically converted to exclusive, e.g., [,] is converted to (,). You can think of these missing
values as +/-infinity, but they are special range type values and are considered to be beyond any range
element type's +/-infinity values.

Element types that have the notion of “infinity” can use them as explicit bound values. For example,
with timestamp ranges, [today,infinity) excludes the special timestamp value infinity, while
[today,infinity] include it, as does [today,) and [today,].

167

Data Types

The functions lower_inf and upper_inf test for infinite lower and upper bounds of a range, respectively.

8.17.5. Range Input/Output
The input for a range value must follow one of the following patterns:
(lower-bound,upper-bound)
(lower-bound,upper-bound]
[lower-bound,upper-bound)
[lower-bound,upper-bound]
empty

The parentheses or brackets indicate whether the lower and upper bounds are exclusive or inclusive, as
described previously. Notice that the final pattern is empty, which represents an empty range (a range
that contains no points).

The lower-bound may be either a string that is valid input for the subtype, or empty to indicate no lower
bound. Likewise, upper-bound may be either a string that is valid input for the subtype, or empty to
indicate no upper bound.

Each bound value can be quoted using " (double quote) characters. This is necessary if the bound value
contains parentheses, brackets, commas, double quotes, or backslashes, since these characters would
otherwise be taken as part of the range syntax. To put a double quote or backslash in a quoted bound
value, precede it with a backslash. (Also, a pair of double quotes within a double-quoted bound value
is taken to represent a double quote character, analogously to the rules for single quotes in SQL literal
strings.) Alternatively, you can avoid quoting and use backslash-escaping to protect all data characters
that would otherwise be taken as range syntax. Also, to write a bound value that is an empty string,
write "", since writing nothing means an infinite bound.

Whitespace is allowed before and after the range value, but any whitespace between the parentheses or
brackets is taken as part of the lower or upper bound value. (Depending on the element type, it might
or might not be significant.)

Note
These rules are very similar to those for writing field values in composite-type literals. See
Section 8.16.6 for additional commentary.

Examples:
-- includes 3, does not include 7, and does include all points in between
SELECT '[3,7)'::int4range;

-- does not include either 3 or 7, but includes all points in between
SELECT '(3,7)'::int4range;

-- includes only the single point 4
SELECT '[4,4]'::int4range;

-- includes no points (and will be normalized to 'empty')
SELECT '[4,4)'::int4range;

8.17.6. Constructing Ranges
Each range type has a constructor function with the same name as the range type. Using the constructor
function is frequently more convenient than writing a range literal constant, since it avoids the need
for extra quoting of the bound values. The constructor function accepts two or three arguments. The
two-argument form constructs a range in standard form (lower bound inclusive, upper bound exclusive),
while the three-argument form constructs a range with bounds of the form specified by the third
argument. The third argument must be one of the strings “()”, “(]”, “[)”, or “[]”. For example:

168

Data Types

-- The full form is: lower bound, upper bound, and text argument indicating
-- inclusivity/exclusivity of bounds.
SELECT numrange(1.0, 14.0, '(]');

-- If the third argument is omitted, '[)' is assumed.
SELECT numrange(1.0, 14.0);

-- Although '(]' is specified here, on display the value will be converted to
-- canonical form, since int8range is a discrete range type (see below).
SELECT int8range(1, 14, '(]');

-- Using NULL for either bound causes the range to be unbounded on that side.
SELECT numrange(NULL, 2.2);

8.17.7. Discrete Range Types
A discrete range is one whose element type has a well-defined “step”, such as integer or date. In these
types two elements can be said to be adjacent, when there are no valid values between them. This
contrasts with continuous ranges, where it's always (or almost always) possible to identify other element
values between two given values. For example, a range over the numeric type is continuous, as is a range
over timestamp. (Even though timestamp has limited precision, and so could theoretically be treated as
discrete, it's better to consider it continuous since the step size is normally not of interest.)

Another way to think about a discrete range type is that there is a clear idea of a “next” or “previous”
value for each element value. Knowing that, it is possible to convert between inclusive and exclusive
representations of a range's bounds, by choosing the next or previous element value instead of the one
originally given. For example, in an integer range type [4,8] and (3,9) denote the same set of values;
but this would not be so for a range over numeric.

A discrete range type should have a canonicalization function that is aware of the desired step size
for the element type. The canonicalization function is charged with converting equivalent values of the
range type to have identical representations, in particular consistently inclusive or exclusive bounds. If
a canonicalization function is not specified, then ranges with different formatting will always be treated
as unequal, even though they might represent the same set of values in reality.

The built-in range types int4range, int8range, and daterange all use a canonical form that includes
the lower bound and excludes the upper bound; that is, [). User-defined range types can use other
conventions, however.

8.17.8. Defining New Range Types
Users can define their own range types. The most common reason to do this is to use ranges over
subtypes not provided among the built-in range types. For example, to define a new range type of subtype
float8:

CREATE TYPE floatrange AS RANGE (
 subtype = float8,
 subtype_diff = float8mi
);

SELECT '[1.234, 5.678]'::floatrange;

Because float8 has no meaningful “step”, we do not define a canonicalization function in this example.

Defining your own range type also allows you to specify a different subtype B-tree operator class or
collation to use, so as to change the sort ordering that determines which values fall into a given range.

If the subtype is considered to have discrete rather than continuous values, the CREATE TYPE command
should specify a canonical function. The canonicalization function takes an input range value, and must
return an equivalent range value that may have different bounds and formatting. The canonical output

169

Data Types

for two ranges that represent the same set of values, for example the integer ranges [1, 7] and [1, 8),
must be identical. It doesn't matter which representation you choose to be the canonical one, so long
as two equivalent values with different formattings are always mapped to the same value with the same
formatting. In addition to adjusting the inclusive/exclusive bounds format, a canonicalization function
might round off boundary values, in case the desired step size is larger than what the subtype is capable
of storing. For instance, a range type over timestamp could be defined to have a step size of an hour,
in which case the canonicalization function would need to round off bounds that weren't a multiple of
an hour, or perhaps throw an error instead.

In addition, any range type that is meant to be used with GiST or SP-GiST indexes should define a subtype
difference, or subtype_diff, function. (The index will still work without subtype_diff, but it is likely to
be considerably less efficient than if a difference function is provided.) The subtype difference function
takes two input values of the subtype, and returns their difference (i.e., X minus Y) represented as a
float8 value. In our example above, the function float8mi that underlies the regular float8 minus
operator can be used; but for any other subtype, some type conversion would be necessary. Some creative
thought about how to represent differences as numbers might be needed, too. To the greatest extent
possible, the subtype_diff function should agree with the sort ordering implied by the selected operator
class and collation; that is, its result should be positive whenever its first argument is greater than its
second according to the sort ordering.

A less-oversimplified example of a subtype_diff function is:

CREATE FUNCTION time_subtype_diff(x time, y time) RETURNS float8 AS
'SELECT EXTRACT(EPOCH FROM (x - y))' LANGUAGE sql STRICT IMMUTABLE;

CREATE TYPE timerange AS RANGE (
 subtype = time,
 subtype_diff = time_subtype_diff
);

SELECT '[11:10, 23:00]'::timerange;

See CREATE TYPE for more information about creating range types.

8.17.9. Indexing
GiST and SP-GiST indexes can be created for table columns of range types. For instance, to create a
GiST index:

CREATE INDEX reservation_idx ON reservation USING GIST (during);

A GiST or SP-GiST index can accelerate queries involving these range operators: =, &&, <@, @>, <<, >>,
-|-, &<, and &> (see Table 9.53 for more information).

In addition, B-tree and hash indexes can be created for table columns of range types. For these index
types, basically the only useful range operation is equality. There is a B-tree sort ordering defined for
range values, with corresponding < and > operators, but the ordering is rather arbitrary and not usually
useful in the real world. Range types' B-tree and hash support is primarily meant to allow sorting and
hashing internally in queries, rather than creation of actual indexes.

8.17.10. Constraints on Ranges
While UNIQUE is a natural constraint for scalar values, it is usually unsuitable for range types. Instead,
an exclusion constraint is often more appropriate (see CREATE TABLE ... CONSTRAINT ... EXCLUDE).
Exclusion constraints allow the specification of constraints such as “non-overlapping” on a range type.
For example:

CREATE TABLE reservation (
 during tsrange,
 EXCLUDE USING GIST (during WITH &&)
);

170

Data Types

That constraint will prevent any overlapping values from existing in the table at the same time:

INSERT INTO reservation VALUES
 ('[2010-01-01 11:30, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO reservation VALUES
 ('[2010-01-01 14:45, 2010-01-01 15:45)');
ERROR: conflicting key value violates exclusion constraint "reservation_during_excl"
DETAIL: Key (during)=(["2010-01-01 14:45:00","2010-01-01 15:45:00")) conflicts
with existing key (during)=(["2010-01-01 11:30:00","2010-01-01 15:00:00")).

You can use the btree_gist extension to define exclusion constraints on plain scalar data types, which
can then be combined with range exclusions for maximum flexibility. For example, after btree_gist is
installed, the following constraint will reject overlapping ranges only if the meeting room numbers are
equal:

CREATE EXTENSION btree_gist;
CREATE TABLE room_reservation (
 room text,
 during tsrange,
 EXCLUDE USING GIST (room WITH =, during WITH &&)
);

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:00, 2010-01-01 15:00)');
INSERT 0 1

INSERT INTO room_reservation VALUES
 ('123A', '[2010-01-01 14:30, 2010-01-01 15:30)');
ERROR: conflicting key value violates exclusion constraint
 "room_reservation_room_during_excl"
DETAIL: Key (room, during)=(123A, ["2010-01-01 14:30:00","2010-01-01 15:30:00"))
 conflicts
with existing key (room, during)=(123A, ["2010-01-01 14:00:00","2010-01-01 15:00:00")).

INSERT INTO room_reservation VALUES
 ('123B', '[2010-01-01 14:30, 2010-01-01 15:30)');
INSERT 0 1

8.18. Domain Types
A domain is a user-defined data type that is based on another underlying type. Optionally, it can have
constraints that restrict its valid values to a subset of what the underlying type would allow. Otherwise
it behaves like the underlying type — for example, any operator or function that can be applied to the
underlying type will work on the domain type. The underlying type can be any built-in or user-defined
base type, enum type, array type, composite type, range type, or another domain.

For example, we could create a domain over integers that accepts only positive integers:

CREATE DOMAIN posint AS integer CHECK (VALUE > 0);
CREATE TABLE mytable (id posint);
INSERT INTO mytable VALUES(1); -- works
INSERT INTO mytable VALUES(-1); -- fails

When an operator or function of the underlying type is applied to a domain value, the domain is
automatically down-cast to the underlying type. Thus, for example, the result of mytable.id - 1 is
considered to be of type integer not posint. We could write (mytable.id - 1)::posint to cast the
result back to posint, causing the domain's constraints to be rechecked. In this case, that would result
in an error if the expression had been applied to an id value of 1. Assigning a value of the underlying

171

Data Types

type to a field or variable of the domain type is allowed without writing an explicit cast, but the domain's
constraints will be checked.

For additional information see CREATE DOMAIN.

8.19. Object Identifier Types
Object identifiers (OIDs) are used internally by Postgres Pro as primary keys for various system tables.
Type oid represents an object identifier. There are also several alias types for oid named regsomething.
Table 8.26 shows an overview.

The oid type is currently implemented as an unsigned four-byte integer. Therefore, it is not large enough
to provide database-wide uniqueness in large databases, or even in large individual tables.

The oid type itself has few operations beyond comparison. It can be cast to integer, however, and
then manipulated using the standard integer operators. (Beware of possible signed-versus-unsigned
confusion if you do this.)

The OID alias types have no operations of their own except for specialized input and output routines.
These routines are able to accept and display symbolic names for system objects, rather than the raw
numeric value that type oid would use. The alias types allow simplified lookup of OID values for objects.
For example, to examine the pg_attribute rows related to a table mytable, one could write:
SELECT * FROM pg_attribute WHERE attrelid = 'mytable'::regclass;

rather than:
SELECT * FROM pg_attribute
 WHERE attrelid = (SELECT oid FROM pg_class WHERE relname = 'mytable');

While that doesn't look all that bad by itself, it's still oversimplified. A far more complicated sub-select
would be needed to select the right OID if there are multiple tables named mytable in different schemas.
The regclass input converter handles the table lookup according to the schema path setting, and so it
does the “right thing” automatically. Similarly, casting a table's OID to regclass is handy for symbolic
display of a numeric OID.

Table 8.26. Object Identifier Types

Name References Description Value Example
oid any numeric object identifier 564182

regclass pg_class relation name pg_type

regcollation pg_collation collation name "POSIX"

regconfig pg_ts_config text search
configuration

english

regdictionary pg_ts_dict text search dictionary simple

regnamespace pg_namespace namespace name pg_catalog

regoper pg_operator operator name +

regoperator pg_operator operator with argument
types

*(integer,integer)
or -(NONE,integer)

regproc pg_proc function name sum

regprocedure pg_proc function with argument
types

sum(int4)

regrole pg_authid role name smithee

regtype pg_type data type name integer

All of the OID alias types for objects grouped by namespace accept schema-qualified names, and will
display schema-qualified names on output if the object would not be found in the current search path

172

Data Types

without being qualified. The regproc and regoper alias types will only accept input names that are
unique (not overloaded), so they are of limited use; for most uses regprocedure or regoperator are more
appropriate. For regoperator, unary operators are identified by writing NONE for the unused operand.

An additional property of most of the OID alias types is the creation of dependencies. If a constant
of one of these types appears in a stored expression (such as a column default expression or view),
it creates a dependency on the referenced object. For example, if a column has a default expression
nextval('my_seq'::regclass), Postgres Pro understands that the default expression depends on the
sequence my_seq; the system will not let the sequence be dropped without first removing the default
expression. regrole is the only exception for the property. Constants of this type are not allowed in
such expressions.

Note
The OID alias types do not completely follow transaction isolation rules. The planner also treats
them as simple constants, which may result in sub-optimal planning.

Another identifier type used by the system is xid, or transaction (abbreviated xact) identifier. This is the
data type of the system columns xmin and xmax. Transaction identifiers are 32-bit quantities. In some
contexts, a 64-bit variant xid8 is used. Unlike xid values, xid8 values increase strictly monotonically
and cannot be reused in the lifetime of a database cluster.

A third identifier type used by the system is cid, or command identifier. This is the data type of the
system columns cmin and cmax. Command identifiers are also 32-bit quantities.

A final identifier type used by the system is tid, or tuple identifier (row identifier). This is the data type
of the system column ctid. A tuple ID is a pair (block number, tuple index within block) that identifies
the physical location of the row within its table.

(The system columns are further explained in Section 5.5.)

8.20. pg_lsn Type
The pg_lsn data type can be used to store LSN (Log Sequence Number) data which is a pointer to a
location in the WAL. This type is a representation of XLogRecPtr and an internal system type of Postgres
Pro.

Internally, an LSN is a 64-bit integer, representing a byte position in the write-ahead log stream. It
is printed as two hexadecimal numbers of up to 8 digits each, separated by a slash; for example, 16/
B374D848. The pg_lsn type supports the standard comparison operators, like = and >. Two LSNs can
be subtracted using the - operator; the result is the number of bytes separating those write-ahead log
locations.

8.21. Pseudo-Types
The Postgres Pro type system contains a number of special-purpose entries that are collectively called
pseudo-types. A pseudo-type cannot be used as a column data type, but it can be used to declare a
function's argument or result type. Each of the available pseudo-types is useful in situations where a
function's behavior does not correspond to simply taking or returning a value of a specific SQL data
type. Table 8.27 lists the existing pseudo-types.

Table 8.27. Pseudo-Types

Name Description
any Indicates that a function accepts any input data type.
anyelement Indicates that a function accepts any data type (see

Section 35.2.5).

173

Data Types

Name Description
anyarray Indicates that a function accepts any array data type (see

Section 35.2.5).
anynonarray Indicates that a function accepts any non-array data type (see

Section 35.2.5).
anyenum Indicates that a function accepts any enum data type (see

Section 35.2.5 and Section 8.7).
anyrange Indicates that a function accepts any range data type (see

Section 35.2.5 and Section 8.17).
anycompatible Indicates that a function accepts any data type, with automatic

promotion of multiple arguments to a common data type (see
Section 35.2.5).

anycompatiblearray Indicates that a function accepts any array data type, with
automatic promotion of multiple arguments to a common data type
(see Section 35.2.5).

anycompatiblenonarray Indicates that a function accepts any non-array data type, with
automatic promotion of multiple arguments to a common data type
(see Section 35.2.5).

anycompatiblerange Indicates that a function accepts any range data type, with
automatic promotion of multiple arguments to a common data type
(see Section 35.2.5 and Section 8.17).

cstring Indicates that a function accepts or returns a null-terminated C
string.

internal Indicates that a function accepts or returns a server-internal data
type.

language_handler A procedural language call handler is declared to return language_
handler .

fdw_handler A foreign-data wrapper handler is declared to return fdw_
handler .

table_am_handler A table access method handler is declared to return table_am_
handler .

index_am_handler An index access method handler is declared to return index_am_
handler .

tsm_handler A tablesample method handler is declared to return tsm_handler .
record Identifies a function taking or returning an unspecified row type.
trigger A trigger function is declared to return trigger.
event_trigger An event trigger function is declared to return event_trigger.
pg_ddl_command Identifies a representation of DDL commands that is available to

event triggers.
void Indicates that a function returns no value.
unknown Identifies a not-yet-resolved type, e.g., of an undecorated string

literal.

Functions coded in C (whether built-in or dynamically loaded) can be declared to accept or return any
of these pseudo-types. It is up to the function author to ensure that the function will behave safely when
a pseudo-type is used as an argument type.

Functions coded in procedural languages can use pseudo-types only as allowed by their implementation
languages. At present most procedural languages forbid use of a pseudo-type as an argument type, and
allow only void and record as a result type (plus trigger or event_trigger when the function is used

174

Data Types

as a trigger or event trigger). Some also support polymorphic functions using the polymorphic pseudo-
types, which are shown above and discussed in detail in Section 35.2.5.

The internal pseudo-type is used to declare functions that are meant only to be called internally by the
database system, and not by direct invocation in an SQL query. If a function has at least one internal-
type argument then it cannot be called from SQL. To preserve the type safety of this restriction it is
important to follow this coding rule: do not create any function that is declared to return internal unless
it has at least one internal argument.

175

Chapter 9. Functions and Operators
Postgres Pro provides a large number of functions and operators for the built-in data types. This chapter
describes most of them, although additional special-purpose functions appear in relevant sections of
the manual. Users can also define their own functions and operators, as described in Part V. The psql
commands \df and \do can be used to list all available functions and operators, respectively.

The notation used throughout this chapter to describe the argument and result data types of a function
or operator is like this:

repeat (text, integer) → text

which says that the function repeat takes one text and one integer argument and returns a result of
type text. The right arrow is also used to indicate the result of an example, thus:

repeat('Pg', 4) → PgPgPgPg

If you are concerned about portability then note that most of the functions and operators described
in this chapter, with the exception of the most trivial arithmetic and comparison operators and some
explicitly marked functions, are not specified by the SQL standard. Some of this extended functionality is
present in other SQL database management systems, and in many cases this functionality is compatible
and consistent between the various implementations.

9.1. Logical Operators
The usual logical operators are available:

boolean AND boolean → boolean
boolean OR boolean → boolean
NOT boolean → boolean

SQL uses a three-valued logic system with true, false, and null, which represents “unknown”. Observe
the following truth tables:

a b a AND b a OR b
TRUE TRUE TRUE TRUE
TRUE FALSE FALSE TRUE
TRUE NULL NULL TRUE
FALSE FALSE FALSE FALSE
FALSE NULL FALSE NULL
NULL NULL NULL NULL

a NOT a
TRUE FALSE
FALSE TRUE
NULL NULL

The operators AND and OR are commutative, that is, you can switch the left and right operands without
affecting the result. (However, it is not guaranteed that the left operand is evaluated before the right
operand. See Section 4.2.14 for more information about the order of evaluation of subexpressions.)

9.2. Comparison Functions and Operators
The usual comparison operators are available, as shown in Table 9.1.

176

Functions and Operators

Table 9.1. Comparison Operators

Operator Description

datatype < datatype → boolean Less than

datatype > datatype → boolean Greater than

datatype <= datatype → boolean Less than or equal to

datatype >= datatype → boolean Greater than or equal to

datatype = datatype → boolean Equal

datatype <> datatype → boolean Not equal

datatype != datatype → boolean Not equal

Note
<> is the standard SQL notation for “not equal”. != is an alias, which is converted to <> at a very
early stage of parsing. Hence, it is not possible to implement != and <> operators that do different
things.

These comparison operators are available for all built-in data types that have a natural ordering,
including numeric, string, and date/time types. In addition, arrays, composite types, and ranges can be
compared if their component data types are comparable.

It is usually possible to compare values of related data types as well; for example integer > bigint will
work. Some cases of this sort are implemented directly by “cross-type” comparison operators, but if no
such operator is available, the parser will coerce the less-general type to the more-general type and
apply the latter's comparison operator.

As shown above, all comparison operators are binary operators that return values of type boolean. Thus,
expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a Boolean value
with 3). Use the BETWEEN predicates shown below to perform range tests.

There are also some comparison predicates, as shown in Table 9.2. These behave much like operators,
but have special syntax mandated by the SQL standard.

Table 9.2. Comparison Predicates

Predicate
Description
Example(s)

datatype BETWEEN datatype AND datatype → boolean
Between (inclusive of the range endpoints).
2 BETWEEN 1 AND 3 → t
2 BETWEEN 3 AND 1 → f

datatype NOT BETWEEN datatype AND datatype → boolean
Not between (the negation of BETWEEN).
2 NOT BETWEEN 1 AND 3 → f

datatype BETWEEN SYMMETRIC datatype AND datatype → boolean
Between, after sorting the two endpoint values.
2 BETWEEN SYMMETRIC 3 AND 1 → t

datatype NOT BETWEEN SYMMETRIC datatype AND datatype → boolean
Not between, after sorting the two endpoint values.
2 NOT BETWEEN SYMMETRIC 3 AND 1 → f

177

Functions and Operators

Predicate
Description
Example(s)

datatype IS DISTINCT FROM datatype → boolean
Not equal, treating null as a comparable value.
1 IS DISTINCT FROM NULL → t (rather than NULL)
NULL IS DISTINCT FROM NULL → f (rather than NULL)

datatype IS NOT DISTINCT FROM datatype → boolean
Equal, treating null as a comparable value.
1 IS NOT DISTINCT FROM NULL → f (rather than NULL)
NULL IS NOT DISTINCT FROM NULL → t (rather than NULL)

datatype IS NULL → boolean
Test whether value is null.
1.5 IS NULL → f

datatype IS NOT NULL → boolean
Test whether value is not null.
'null' IS NOT NULL → t

datatype ISNULL → boolean
Test whether value is null (nonstandard syntax).

datatype NOTNULL → boolean
Test whether value is not null (nonstandard syntax).

boolean IS TRUE → boolean
Test whether boolean expression yields true.
true IS TRUE → t
NULL::boolean IS TRUE → f (rather than NULL)

boolean IS NOT TRUE → boolean
Test whether boolean expression yields false or unknown.
true IS NOT TRUE → f
NULL::boolean IS NOT TRUE → t (rather than NULL)

boolean IS FALSE → boolean
Test whether boolean expression yields false.
true IS FALSE → f
NULL::boolean IS FALSE → f (rather than NULL)

boolean IS NOT FALSE → boolean
Test whether boolean expression yields true or unknown.
true IS NOT FALSE → t
NULL::boolean IS NOT FALSE → t (rather than NULL)

boolean IS UNKNOWN → boolean
Test whether boolean expression yields unknown.
true IS UNKNOWN → f
NULL::boolean IS UNKNOWN → t (rather than NULL)

boolean IS NOT UNKNOWN → boolean
Test whether boolean expression yields true or false.
true IS NOT UNKNOWN → t
NULL::boolean IS NOT UNKNOWN → f (rather than NULL)

178

Functions and Operators

The BETWEEN predicate simplifies range tests:
a BETWEEN x AND y

is equivalent to
a >= x AND a <= y

Notice that BETWEEN treats the endpoint values as included in the range. BETWEEN SYMMETRIC is like
BETWEEN except there is no requirement that the argument to the left of AND be less than or equal to the
argument on the right. If it is not, those two arguments are automatically swapped, so that a nonempty
range is always implied.

The various variants of BETWEEN are implemented in terms of the ordinary comparison operators, and
therefore will work for any data type(s) that can be compared.

Note
The use of AND in the BETWEEN syntax creates an ambiguity with the use of AND as a logical operator.
To resolve this, only a limited set of expression types are allowed as the second argument of a
BETWEEN clause. If you need to write a more complex sub-expression in BETWEEN, write parentheses
around the sub-expression.

Ordinary comparison operators yield null (signifying “unknown”), not true or false, when either input
is null. For example, 7 = NULL yields null, as does 7 <> NULL. When this behavior is not suitable, use
the IS [NOT] DISTINCT FROM predicates:
a IS DISTINCT FROM b
a IS NOT DISTINCT FROM b

For non-null inputs, IS DISTINCT FROM is the same as the <> operator. However, if both inputs are null it
returns false, and if only one input is null it returns true. Similarly, IS NOT DISTINCT FROM is identical to
= for non-null inputs, but it returns true when both inputs are null, and false when only one input is null.
Thus, these predicates effectively act as though null were a normal data value, rather than “unknown”.

To check whether a value is or is not null, use the predicates:
expression IS NULL
expression IS NOT NULL

or the equivalent, but nonstandard, predicates:
expression ISNULL
expression NOTNULL

Do not write expression = NULL because NULL is not “equal to” NULL. (The null value represents an
unknown value, and it is not known whether two unknown values are equal.)

Tip
Some applications might expect that expression = NULL returns true if expression evaluates to
the null value. It is highly recommended that these applications be modified to comply with the
SQL standard. However, if that cannot be done the transform_null_equals configuration variable
is available. If it is enabled, Postgres Pro will convert x = NULL clauses to x IS NULL.

If the expression is row-valued, then IS NULL is true when the row expression itself is null or when all
the row's fields are null, while IS NOT NULL is true when the row expression itself is non-null and all
the row's fields are non-null. Because of this behavior, IS NULL and IS NOT NULL do not always return
inverse results for row-valued expressions; in particular, a row-valued expression that contains both null
and non-null fields will return false for both tests. In some cases, it may be preferable to write row IS
DISTINCT FROM NULL or row IS NOT DISTINCT FROM NULL, which will simply check whether the overall
row value is null without any additional tests on the row fields.

179

Functions and Operators

Boolean values can also be tested using the predicates
boolean_expression IS TRUE
boolean_expression IS NOT TRUE
boolean_expression IS FALSE
boolean_expression IS NOT FALSE
boolean_expression IS UNKNOWN
boolean_expression IS NOT UNKNOWN

These will always return true or false, never a null value, even when the operand is null. A null input is
treated as the logical value “unknown”. Notice that IS UNKNOWN and IS NOT UNKNOWN are effectively the
same as IS NULL and IS NOT NULL, respectively, except that the input expression must be of Boolean type.

Some comparison-related functions are also available, as shown in Table 9.3.

Table 9.3. Comparison Functions

Function
Description
Example(s)

num_nonnulls (VARIADIC "any") → integer
Returns the number of non-null arguments.
num_nonnulls(1, NULL, 2) → 2

num_nulls (VARIADIC "any") → integer
Returns the number of null arguments.
num_nulls(1, NULL, 2) → 1

9.3. Mathematical Functions and Operators
Mathematical operators are provided for many Postgres Pro types. For types without standard
mathematical conventions (e.g., date/time types) we describe the actual behavior in subsequent sections.

Table 9.4 shows the mathematical operators that are available for the standard numeric types. Unless
otherwise noted, operators shown as accepting numeric_type are available for all the types smallint,
integer, bigint, numeric, real, and double precision. Operators shown as accepting integral_type
are available for the types smallint, integer, and bigint. Except where noted, each form of an operator
returns the same data type as its argument(s). Calls involving multiple argument data types, such as
integer + numeric, are resolved by using the type appearing later in these lists.

Table 9.4. Mathematical Operators

Operator
Description
Example(s)

numeric_type + numeric_type → numeric_type
Addition
2 + 3 → 5

+ numeric_type → numeric_type
Unary plus (no operation)
+ 3.5 → 3.5

numeric_type - numeric_type → numeric_type
Subtraction
2 - 3 → -1

- numeric_type → numeric_type
Negation
- (-4) → 4

180

Functions and Operators

Operator
Description
Example(s)

numeric_type * numeric_type → numeric_type
Multiplication
2 * 3 → 6

numeric_type / numeric_type → numeric_type
Division (for integral types, division truncates the result towards zero)
5.0 / 2 → 2.5000000000000000
5 / 2 → 2
(-5) / 2 → -2

numeric_type % numeric_type → numeric_type
Modulo (remainder); available for smallint, integer, bigint, and numeric
5 % 4 → 1

numeric ^ numeric → numeric
double precision ^ double precision → double precision

Exponentiation
2 ^ 3 → 8
Unlike typical mathematical practice, multiple uses of ^ will associate left to right by default:
2 ^ 3 ^ 3 → 512
2 ^ (3 ^ 3) → 134217728

|/ double precision → double precision
Square root
|/ 25.0 → 5

||/ double precision → double precision
Cube root
||/ 64.0 → 4

bigint ! → numeric
Factorial (deprecated, use factorial() instead)
5 ! → 120

!! bigint → numeric
Factorial as a prefix operator (deprecated, use factorial() instead)
!! 5 → 120

@ numeric_type → numeric_type
Absolute value
@ -5.0 → 5

integral_type & integral_type → integral_type
Bitwise AND
91 & 15 → 11

integral_type | integral_type → integral_type
Bitwise OR
32 | 3 → 35

integral_type # integral_type → integral_type
Bitwise exclusive OR
17 # 5 → 20

181

Functions and Operators

Operator
Description
Example(s)

~ integral_type → integral_type
Bitwise NOT
~1 → -2

integral_type << integer → integral_type
Bitwise shift left
1 << 4 → 16

integral_type >> integer → integral_type
Bitwise shift right
8 >> 2 → 2

Table 9.5 shows the available mathematical functions. Many of these functions are provided in multiple
forms with different argument types. Except where noted, any given form of a function returns the
same data type as its argument(s); cross-type cases are resolved in the same way as explained above
for operators. The functions working with double precision data are mostly implemented on top of
the host system's C library; accuracy and behavior in boundary cases can therefore vary depending on
the host system.

Table 9.5. Mathematical Functions

Function
Description
Example(s)

abs (numeric_type) → numeric_type
Absolute value
abs(-17.4) → 17.4

cbrt (double precision) → double precision
Cube root
cbrt(64.0) → 4

ceil (numeric) → numeric
ceil (double precision) → double precision

Nearest integer greater than or equal to argument
ceil(42.2) → 43
ceil(-42.8) → -42

ceiling (numeric) → numeric
ceiling (double precision) → double precision

Nearest integer greater than or equal to argument (same as ceil)
ceiling(95.3) → 96

degrees (double precision) → double precision
Converts radians to degrees
degrees(0.5) → 28.64788975654116

div (y numeric, x numeric) → numeric
Integer quotient of y/x (truncates towards zero)
div(9,4) → 2

exp (numeric) → numeric
exp (double precision) → double precision

Exponential (e raised to the given power)

182

Functions and Operators

Function
Description
Example(s)
exp(1.0) → 2.7182818284590452

factorial (bigint) → numeric
Factorial
factorial(5) → 120

floor (numeric) → numeric
floor (double precision) → double precision

Nearest integer less than or equal to argument
floor(42.8) → 42
floor(-42.8) → -43

gcd (numeric_type , numeric_type) → numeric_type
Greatest common divisor (the largest positive number that divides both inputs with no
remainder); returns 0 if both inputs are zero; available for integer, bigint, and numeric
gcd(1071, 462) → 21

lcm (numeric_type , numeric_type) → numeric_type
Least common multiple (the smallest strictly positive number that is an integral multiple of
both inputs); returns 0 if either input is zero; available for integer, bigint, and numeric
lcm(1071, 462) → 23562

ln (numeric) → numeric
ln (double precision) → double precision

Natural logarithm
ln(2.0) → 0.6931471805599453

log (numeric) → numeric
log (double precision) → double precision

Base 10 logarithm
log(100) → 2

log10 (numeric) → numeric
log10 (double precision) → double precision

Base 10 logarithm (same as log)
log10(1000) → 3

log (b numeric, x numeric) → numeric
Logarithm of x to base b
log(2.0, 64.0) → 6.0000000000

min_scale (numeric) → integer
Minimum scale (number of fractional decimal digits) needed to represent the supplied value
precisely
min_scale(8.4100) → 2

mod (y numeric_type , x numeric_type) → numeric_type
Remainder of y/x; available for smallint, integer, bigint, and numeric
mod(9,4) → 1

pi () → double precision
Approximate value of π
pi() → 3.141592653589793

183

Functions and Operators

Function
Description
Example(s)

power (a numeric, b numeric) → numeric
power (a double precision, b double precision) → double precision

a raised to the power of b
power(9, 3) → 729

radians (double precision) → double precision
Converts degrees to radians
radians(45.0) → 0.7853981633974483

round (numeric) → numeric
round (double precision) → double precision

Rounds to nearest integer. For numeric, ties are broken by rounding away from zero. For
double precision, the tie-breaking behavior is platform dependent, but “round to nearest
even” is the most common rule.
round(42.4) → 42

round (v numeric, s integer) → numeric
Rounds v to s decimal places. Ties are broken by rounding away from zero.
round(42.4382, 2) → 42.44

scale (numeric) → integer
Scale of the argument (the number of decimal digits in the fractional part)
scale(8.4100) → 4

sign (numeric) → numeric
sign (double precision) → double precision

Sign of the argument (-1, 0, or +1)
sign(-8.4) → -1

sqrt (numeric) → numeric
sqrt (double precision) → double precision

Square root
sqrt(2) → 1.4142135623730951

trim_scale (numeric) → numeric
Reduces the value's scale (number of fractional decimal digits) by removing trailing zeroes
trim_scale(8.4100) → 8.41

trunc (numeric) → numeric
trunc (double precision) → double precision

Truncates to integer (towards zero)
trunc(42.8) → 42
trunc(-42.8) → -42

trunc (v numeric, s integer) → numeric
Truncates v to s decimal places
trunc(42.4382, 2) → 42.43

width_bucket (operand numeric, low numeric, high numeric, count integer) → integer
width_bucket (operand double precision, low double precision, high double precision,

 count integer) → integer

184

Functions and Operators

Function
Description
Example(s)
Returns the number of the bucket in which operand falls in a histogram having count equal-
width buckets spanning the range low to high. Returns 0 or count+1 for an input outside that
range.
width_bucket(5.35, 0.024, 10.06, 5) → 3

width_bucket (operand anyelement, thresholds anyarray) → integer
Returns the number of the bucket in which operand falls given an array listing the lower
bounds of the buckets. Returns 0 for an input less than the first lower bound. operand and the
array elements can be of any type having standard comparison operators. The thresholds
array must be sorted, smallest first, or unexpected results will be obtained.
width_bucket(now(), array['yesterday', 'today',

'tomorrow']::timestamptz[]) → 2

Table 9.6 shows functions for generating random numbers.

Table 9.6. Random Functions

Function
Description
Example(s)

random () → double precision
Returns a random value in the range 0.0 <= x < 1.0
random() → 0.897124072839091

setseed (double precision) → void
Sets the seed for subsequent random() calls; argument must be between -1.0 and 1.0,
 inclusive
setseed(0.12345)

The random() function uses a simple linear congruential algorithm. It is fast but not suitable for
cryptographic applications; see the pgcrypto module for a more secure alternative. If setseed() is called,
the series of results of subsequent random() calls in the current session can be repeated by re-issuing
setseed() with the same argument.

Table 9.7 shows the available trigonometric functions. Each of these functions comes in two variants,
one that measures angles in radians and one that measures angles in degrees.

Table 9.7. Trigonometric Functions

Function
Description
Example(s)

acos (double precision) → double precision
Inverse cosine, result in radians
acos(1) → 0

acosd (double precision) → double precision
Inverse cosine, result in degrees
acosd(0.5) → 60

asin (double precision) → double precision
Inverse sine, result in radians
asin(1) → 1.5707963267948966

asind (double precision) → double precision
Inverse sine, result in degrees

185

Functions and Operators

Function
Description
Example(s)
asind(0.5) → 30

atan (double precision) → double precision
Inverse tangent, result in radians
atan(1) → 0.7853981633974483

atand (double precision) → double precision
Inverse tangent, result in degrees
atand(1) → 45

atan2 (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in radians
atan2(1,0) → 1.5707963267948966

atan2d (y double precision, x double precision) → double precision
Inverse tangent of y/x, result in degrees
atan2d(1,0) → 90

cos (double precision) → double precision
Cosine, argument in radians
cos(0) → 1

cosd (double precision) → double precision
Cosine, argument in degrees
cosd(60) → 0.5

cot (double precision) → double precision
Cotangent, argument in radians
cot(0.5) → 1.830487721712452

cotd (double precision) → double precision
Cotangent, argument in degrees
cotd(45) → 1

sin (double precision) → double precision
Sine, argument in radians
sin(1) → 0.8414709848078965

sind (double precision) → double precision
Sine, argument in degrees
sind(30) → 0.5

tan (double precision) → double precision
Tangent, argument in radians
tan(1) → 1.5574077246549023

tand (double precision) → double precision
Tangent, argument in degrees
tand(45) → 1

186

Functions and Operators

Note
Another way to work with angles measured in degrees is to use the unit transformation functions
radians() and degrees() shown earlier. However, using the degree-based trigonometric
functions is preferred, as that way avoids round-off error for special cases such as sind(30).

Table 9.8 shows the available hyperbolic functions.

Table 9.8. Hyperbolic Functions

Function
Description
Example(s)

sinh (double precision) → double precision
Hyperbolic sine
sinh(1) → 1.1752011936438014

cosh (double precision) → double precision
Hyperbolic cosine
cosh(0) → 1

tanh (double precision) → double precision
Hyperbolic tangent
tanh(1) → 0.7615941559557649

asinh (double precision) → double precision
Inverse hyperbolic sine
asinh(1) → 0.881373587019543

acosh (double precision) → double precision
Inverse hyperbolic cosine
acosh(1) → 0

atanh (double precision) → double precision
Inverse hyperbolic tangent
atanh(0.5) → 0.5493061443340548

9.4. String Functions and Operators
This section describes functions and operators for examining and manipulating string values. Strings in
this context include values of the types character, character varying, and text. Except where noted,
these functions and operators are declared to accept and return type text. They will interchangeably
accept character varying arguments. Values of type character will be converted to text before the
function or operator is applied, resulting in stripping any trailing spaces in the character value.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.9. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.10).

Note
Before PostgreSQL 8.3, these functions would silently accept values of several non-string data
types as well, due to the presence of implicit coercions from those data types to text. Those
coercions have been removed because they frequently caused surprising behaviors. However, the
string concatenation operator (||) still accepts non-string input, so long as at least one input is

187

Functions and Operators

of a string type, as shown in Table 9.9. For other cases, insert an explicit coercion to text if you
need to duplicate the previous behavior.

Table 9.9. SQL String Functions and Operators

Function/Operator
Description
Example(s)

text || text → text
Concatenates the two strings.
'Post' || 'greSQL' → PostgreSQL

text || anynonarray → text
anynonarray || text → text

Converts the non-string input to text, then concatenates the two strings. (The non-string input
cannot be of an array type, because that would create ambiguity with the array || operators.
If you want to concatenate an array's text equivalent, cast it to text explicitly.)
'Value: ' || 42 → Value: 42

text IS [NOT] [form] NORMALIZED → boolean
Checks whether the string is in the specified Unicode normalization form. The optional form
key word specifies the form: NFC (the default), NFD, NFKC, or NFKD. This expression can only
be used when the server encoding is UTF8. Note that checking for normalization using this
expression is often faster than normalizing possibly already normalized strings.
U&'\0061\0308bc' IS NFD NORMALIZED → t

bit_length (text) → integer
Returns number of bits in the string (8 times the octet_length).
bit_length('jose') → 32

char_length (text) → integer
character_length (text) → integer

Returns number of characters in the string.
char_length('josé') → 4

lower (text) → text
Converts the string to all lower case, according to the rules of the database's locale.
lower('TOM') → tom

normalize (text [, form]) → text
Converts the string to the specified Unicode normalization form. The optional form key word
specifies the form: NFC (the default), NFD, NFKC, or NFKD. This function can only be used when
the server encoding is UTF8.
normalize(U&'\0061\0308bc', NFC) → U&'\00E4bc'

octet_length (text) → integer
Returns number of bytes in the string.
octet_length('josé') → 5 (if server encoding is UTF8)

octet_length (character) → integer
Returns number of bytes in the string. Since this version of the function accepts type
character directly, it will not strip trailing spaces.
octet_length('abc '::character(4)) → 4

overlay (string text PLACING newsubstring text FROM start integer [FOR count integer]) →
text

188

Functions and Operators

Function/Operator
Description
Example(s)
Replaces the substring of string that starts at the start'th character and extends for count
characters with newsubstring. If count is omitted, it defaults to the length of newsubstring.
overlay('Txxxxas' placing 'hom' from 2 for 4) → Thomas

position (substring text IN string text) → integer
Returns first starting index of the specified substring within string, or zero if it's not
present.
position('om' in 'Thomas') → 3

substring (string text [FROM start integer] [FOR count integer]) → text
Extracts the substring of string starting at the start'th character if that is specified, and
stopping after count characters if that is specified. Provide at least one of start and count.
substring('Thomas' from 2 for 3) → hom
substring('Thomas' from 3) → omas
substring('Thomas' for 2) → Th

substring (string text FROM pattern text) → text
Extracts the first substring matching POSIX regular expression; see Section 9.7.3.
substring('Thomas' from '...$') → mas

substring (string text FROM pattern text FOR escape text) → text
Extracts the first substring matching SQL regular expression; see Section 9.7.2.
substring('Thomas' from '%#"o_a#"_' for '#') → oma

trim ([LEADING | TRAILING | BOTH] [characters text] FROM string text) → text
Removes the longest string containing only characters in characters (a space by default)
from the start, end, or both ends (BOTH is the default) of string.
trim(both 'xyz' from 'yxTomxx') → Tom

trim ([LEADING | TRAILING | BOTH] [FROM] string text [, characters text]) → text
This is a non-standard syntax for trim() .
trim(both from 'yxTomxx', 'xyz') → Tom

upper (text) → text
Converts the string to all upper case, according to the rules of the database's locale.
upper('tom') → TOM

Additional string manipulation functions are available and are listed in Table 9.10. Some of them are
used internally to implement the SQL-standard string functions listed in Table 9.9.

Table 9.10. Other String Functions

Function
Description
Example(s)

ascii (text) → integer
Returns the numeric code of the first character of the argument. In UTF8 encoding, returns
the Unicode code point of the character. In other multibyte encodings, the argument must be
an ASCII character.
ascii('x') → 120

btrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the start and end of string.

189

Functions and Operators

Function
Description
Example(s)
btrim('xyxtrimyyx', 'xyz') → trim

chr (integer) → text
Returns the character with the given code. In UTF8 encoding the argument is treated as a
Unicode code point. In other multibyte encodings the argument must designate an ASCII
character. chr(0) is disallowed because text data types cannot store that character.
chr(65) → A

concat (val1 "any" [, val2 "any" [, ...]]) → text
Concatenates the text representations of all the arguments. NULL arguments are ignored.
concat('abcde', 2, NULL, 22) → abcde222

concat_ws (sep text, val1 "any" [, val2 "any" [, ...]]) → text
Concatenates all but the first argument, with separators. The first argument is used as the
separator string, and should not be NULL. Other NULL arguments are ignored.
concat_ws(',', 'abcde', 2, NULL, 22) → abcde,2,22

format (formatstr text [, formatarg "any" [, ...]]) → text
Formats arguments according to a format string; see Section 9.4.1. This function is similar to
the C function sprintf.
format('Hello %s, %1$s', 'World') → Hello World, World

initcap (text) → text
Converts the first letter of each word to upper case and the rest to lower case. Words are
sequences of alphanumeric characters separated by non-alphanumeric characters.
initcap('hi THOMAS') → Hi Thomas

left (string text, n integer) → text
Returns first n characters in the string, or when n is negative, returns all but last |n|
characters.
left('abcde', 2) → ab

length (text) → integer
Returns the number of characters in the string.
length('jose') → 4

lpad (string text, length integer [, fill text]) → text
Extends the string to length length by prepending the characters fill (a space by default).
If the string is already longer than length then it is truncated (on the right).
lpad('hi', 5, 'xy') → xyxhi

ltrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the start of string.
ltrim('zzzytest', 'xyz') → test

md5 (text) → text
Computes the MD5 hash of the argument, with the result written in hexadecimal.
md5('abc') → 900150983cd24fb0d6963f7d28e17f72

parse_ident (qualified_identifier text [, strict_mode boolean DEFAULT true]) → text[]
Splits qualified_identifier into an array of identifiers, removing any quoting of individual
identifiers. By default, extra characters after the last identifier are considered an error; but
if the second parameter is false, then such extra characters are ignored. (This behavior is

190

Functions and Operators

Function
Description
Example(s)
useful for parsing names for objects like functions.) Note that this function does not truncate
over-length identifiers. If you want truncation you can cast the result to name[].
parse_ident('"SomeSchema".someTable') → {SomeSchema,sometable}

pg_client_encoding () → name
Returns current client encoding name.
pg_client_encoding() → UTF8

quote_ident (text) → text
Returns the given string suitably quoted to be used as an identifier in an SQL statement
string. Quotes are added only if necessary (i.e., if the string contains non-identifier characters
or would be case-folded). Embedded quotes are properly doubled. See also Example 40.1.
quote_ident('Foo bar') → "Foo bar"

quote_literal (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string. Embedded single-quotes and backslashes are properly doubled. Note that quote_
literal returns null on null input; if the argument might be null, quote_nullable is often
more suitable. See also Example 40.1.
quote_literal(E'O\'Reilly') → 'O''Reilly'

quote_literal (anyelement) → text
Converts the given value to text and then quotes it as a literal. Embedded single-quotes and
backslashes are properly doubled.
quote_literal(42.5) → '42.5'

quote_nullable (text) → text
Returns the given string suitably quoted to be used as a string literal in an SQL statement
string; or, if the argument is null, returns NULL. Embedded single-quotes and backslashes are
properly doubled. See also Example 40.1.
quote_nullable(NULL) → NULL

quote_nullable (anyelement) → text
Converts the given value to text and then quotes it as a literal; or, if the argument is null,
 returns NULL. Embedded single-quotes and backslashes are properly doubled.
quote_nullable(42.5) → '42.5'

regexp_match (string text, pattern text [, flags text]) → text[]
Returns captured substrings resulting from the first match of a POSIX regular expression to
the string; see Section 9.7.3.
regexp_match('foobarbequebaz', '(bar)(beque)') → {bar,beque}

regexp_matches (string text, pattern text [, flags text]) → setof text[]
Returns captured substrings resulting from the first match of a POSIX regular expression to
the string, or multiple matches if the g flag is used; see Section 9.7.3.
regexp_matches('foobarbequebaz', 'ba.', 'g') →

 {bar}
 {baz}

regexp_replace (string text, pattern text, replacement text [, flags text]) → text
Replaces substrings resulting from the first match of a POSIX regular expression, or multiple
substring matches if the g flag is used; see Section 9.7.3.
regexp_replace('Thomas', '.[mN]a.', 'M') → ThM

regexp_split_to_array (string text, pattern text [, flags text]) → text[]

191

Functions and Operators

Function
Description
Example(s)
Splits string using a POSIX regular expression as the delimiter; see Section 9.7.3.
regexp_split_to_array('hello world', '\s+') → {hello,world}

regexp_split_to_table (string text, pattern text [, flags text]) → setof text
Splits string using a POSIX regular expression as the delimiter; see Section 9.7.3.
regexp_split_to_table('hello world', '\s+') →

 hello
 world

repeat (string text, number integer) → text
Repeats string the specified number of times.
repeat('Pg', 4) → PgPgPgPg

replace (string text, from text, to text) → text
Replaces all occurrences in string of substring from with substring to.
replace('abcdefabcdef', 'cd', 'XX') → abXXefabXXef

reverse (text) → text
Reverses the order of the characters in the string.
reverse('abcde') → edcba

right (string text, n integer) → text
Returns last n characters in the string, or when n is negative, returns all but first |n|
characters.
right('abcde', 2) → de

rpad (string text, length integer [, fill text]) → text
Extends the string to length length by appending the characters fill (a space by default).
If the string is already longer than length then it is truncated.
rpad('hi', 5, 'xy') → hixyx

rtrim (string text [, characters text]) → text
Removes the longest string containing only characters in characters (a space by default)
from the end of string.
rtrim('testxxzx', 'xyz') → test

split_part (string text, delimiter text, n integer) → text
Splits string at occurrences of delimiter and returns the n'th field (counting from one).
split_part('abc~@~def~@~ghi', '~@~', 2) → def

strpos (string text, substring text) → integer
Returns first starting index of the specified substring within string, or zero if it's not
present. (Same as position(substring in string), but note the reversed argument
order.)
strpos('high', 'ig') → 2

substr (string text, start integer [, count integer]) → text
Extracts the substring of string starting at the start'th character, and extending for count
characters if that is specified. (Same as substring(string from start for count).)
substr('alphabet', 3) → phabet
substr('alphabet', 3, 2) → ph

starts_with (string text, prefix text) → boolean
Returns true if string starts with prefix.

192

Functions and Operators

Function
Description
Example(s)
starts_with('alphabet', 'alph') → t

to_ascii (string text) → text
to_ascii (string text, encoding name) → text
to_ascii (string text, encoding integer) → text

Converts string to ASCII from another encoding, which may be identified by name or
number. If encoding is omitted the database encoding is assumed (which in practice is the
only useful case). The conversion consists primarily of dropping accents. Conversion is only
supported from LATIN1, LATIN2, LATIN9, and WIN1250 encodings. (See the unaccent module
for another, more flexible solution.)
to_ascii('Karél') → Karel

to_hex (integer) → text
to_hex (bigint) → text

Converts the number to its equivalent hexadecimal representation.
to_hex(2147483647) → 7fffffff

translate (string text, from text, to text) → text
Replaces each character in string that matches a character in the from set with the
corresponding character in the to set. If from is longer than to, occurrences of the extra
characters in from are deleted.
translate('12345', '143', 'ax') → a2x5

The concat, concat_ws and format functions are variadic, so it is possible to pass the values to be
concatenated or formatted as an array marked with the VARIADIC keyword (see Section 35.5.5). The
array's elements are treated as if they were separate ordinary arguments to the function. If the variadic
array argument is NULL, concat and concat_ws return NULL, but format treats a NULL as a zero-
element array.

See also the aggregate function string_agg in Section 9.21, and the functions for converting between
strings and the bytea type in Table 9.13.

9.4.1. format
The function format produces output formatted according to a format string, in a style similar to the
C function sprintf.

format(formatstr text [, formatarg "any" [, ...]])

formatstr is a format string that specifies how the result should be formatted. Text in the format
string is copied directly to the result, except where format specifiers are used. Format specifiers act
as placeholders in the string, defining how subsequent function arguments should be formatted and
inserted into the result. Each formatarg argument is converted to text according to the usual output
rules for its data type, and then formatted and inserted into the result string according to the format
specifier(s).

Format specifiers are introduced by a % character and have the form

%[position][flags][width]type

where the component fields are:

position (optional)

A string of the form n$ where n is the index of the argument to print. Index 1 means the first argument
after formatstr. If the position is omitted, the default is to use the next argument in sequence.

193

Functions and Operators

flags (optional)

Additional options controlling how the format specifier's output is formatted. Currently the only
supported flag is a minus sign (-) which will cause the format specifier's output to be left-justified.
This has no effect unless the width field is also specified.

width (optional)

Specifies the minimum number of characters to use to display the format specifier's output. The
output is padded on the left or right (depending on the - flag) with spaces as needed to fill the width.
A too-small width does not cause truncation of the output, but is simply ignored. The width may
be specified using any of the following: a positive integer; an asterisk (*) to use the next function
argument as the width; or a string of the form *n$ to use the nth function argument as the width.

If the width comes from a function argument, that argument is consumed before the argument that
is used for the format specifier's value. If the width argument is negative, the result is left aligned
(as if the - flag had been specified) within a field of length abs(width).

type (required)

The type of format conversion to use to produce the format specifier's output. The following types
are supported:

• s formats the argument value as a simple string. A null value is treated as an empty string.

• I treats the argument value as an SQL identifier, double-quoting it if necessary. It is an error for
the value to be null (equivalent to quote_ident).

• L quotes the argument value as an SQL literal. A null value is displayed as the string NULL,
without quotes (equivalent to quote_nullable).

In addition to the format specifiers described above, the special sequence %% may be used to output a
literal % character.

Here are some examples of the basic format conversions:

SELECT format('Hello %s', 'World');
Result: Hello World

SELECT format('Testing %s, %s, %s, %%', 'one', 'two', 'three');
Result: Testing one, two, three, %

SELECT format('INSERT INTO %I VALUES(%L)', 'Foo bar', E'O\'Reilly');
Result: INSERT INTO "Foo bar" VALUES('O''Reilly')

SELECT format('INSERT INTO %I VALUES(%L)', 'locations', 'C:\Program Files');
Result: INSERT INTO locations VALUES('C:\Program Files')

Here are examples using width fields and the - flag:

SELECT format('|%10s|', 'foo');
Result: | foo|

SELECT format('|%-10s|', 'foo');
Result: |foo |

SELECT format('|%*s|', 10, 'foo');
Result: | foo|

SELECT format('|%*s|', -10, 'foo');
Result: |foo |

194

Functions and Operators

SELECT format('|%-*s|', 10, 'foo');
Result: |foo |

SELECT format('|%-*s|', -10, 'foo');
Result: |foo |

These examples show use of position fields:

SELECT format('Testing %3$s, %2$s, %1$s', 'one', 'two', 'three');
Result: Testing three, two, one

SELECT format('|%*2$s|', 'foo', 10, 'bar');
Result: | bar|

SELECT format('|%1$*2$s|', 'foo', 10, 'bar');
Result: | foo|

Unlike the standard C function sprintf, Postgres Pro's format function allows format specifiers with
and without position fields to be mixed in the same format string. A format specifier without a position
field always uses the next argument after the last argument consumed. In addition, the format function
does not require all function arguments to be used in the format string. For example:

SELECT format('Testing %3$s, %2$s, %s', 'one', 'two', 'three');
Result: Testing three, two, three

The %I and %L format specifiers are particularly useful for safely constructing dynamic SQL statements.
See Example 40.1.

9.5. Binary String Functions and Operators
This section describes functions and operators for examining and manipulating binary strings, that is
values of type bytea. Many of these are equivalent, in purpose and syntax, to the text-string functions
described in the previous section.

SQL defines some string functions that use key words, rather than commas, to separate arguments.
Details are in Table 9.11. Postgres Pro also provides versions of these functions that use the regular
function invocation syntax (see Table 9.12).

Table 9.11. SQL Binary String Functions and Operators

Function/Operator
Description
Example(s)

bytea || bytea → bytea
Concatenates the two binary strings.
'\x123456'::bytea || '\x789a00bcde'::bytea → \x123456789a00bcde

bit_length (bytea) → integer
Returns number of bits in the binary string (8 times the octet_length).
bit_length('\x123456'::bytea) → 24

octet_length (bytea) → integer
Returns number of bytes in the binary string.
octet_length('\x123456'::bytea) → 3

overlay (bytes bytea PLACING newsubstring bytea FROM start integer [FOR count integer]) →
bytea
Replaces the substring of bytes that starts at the start'th byte and extends for count bytes
with newsubstring. If count is omitted, it defaults to the length of newsubstring.

195

Functions and Operators

Function/Operator
Description
Example(s)
overlay('\x1234567890'::bytea placing '\002\003'::bytea from 2 for 3) →
\x12020390

position (substring bytea IN bytes bytea) → integer
Returns first starting index of the specified substring within bytes, or zero if it's not present.
position('\x5678'::bytea in '\x1234567890'::bytea) → 3

substring (bytes bytea [FROM start integer] [FOR count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte if that is specified, and stopping
after count bytes if that is specified. Provide at least one of start and count.
substring('\x1234567890'::bytea from 3 for 2) → \x5678

trim ([BOTH] bytesremoved bytea FROM bytes bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start
and end of bytes.
trim('\x9012'::bytea from '\x1234567890'::bytea) → \x345678

trim ([BOTH] [FROM] bytes bytea, bytesremoved bytea) → bytea
This is a non-standard syntax for trim() .
trim(both from '\x1234567890'::bytea, '\x9012'::bytea) → \x345678

Additional binary string manipulation functions are available and are listed in Table 9.12. Some of them
are used internally to implement the SQL-standard string functions listed in Table 9.11.

Table 9.12. Other Binary String Functions

Function
Description
Example(s)

btrim (bytes bytea, bytesremoved bytea) → bytea
Removes the longest string containing only bytes appearing in bytesremoved from the start
and end of bytes.
btrim('\x1234567890'::bytea, '\x9012'::bytea) → \x345678

get_bit (bytes bytea, n bigint) → integer
Extracts n'th bit from binary string.
get_bit('\x1234567890'::bytea, 30) → 1

get_byte (bytes bytea, n integer) → integer
Extracts n'th byte from binary string.
get_byte('\x1234567890'::bytea, 4) → 144

length (bytea) → integer
Returns the number of bytes in the binary string.
length('\x1234567890'::bytea) → 5

length (bytes bytea, encoding name) → integer
Returns the number of characters in the binary string, assuming that it is text in the given
encoding.
length('jose'::bytea, 'UTF8') → 4

md5 (bytea) → text
Computes the MD5 hash of the binary string, with the result written in hexadecimal.
md5('Th\000omas'::bytea) → 8ab2d3c9689aaf18b4958c334c82d8b1

196

Functions and Operators

Function
Description
Example(s)

set_bit (bytes bytea, n bigint, newvalue integer) → bytea
Sets n'th bit in binary string to newvalue.
set_bit('\x1234567890'::bytea, 30, 0) → \x1234563890

set_byte (bytes bytea, n integer, newvalue integer) → bytea
Sets n'th byte in binary string to newvalue.
set_byte('\x1234567890'::bytea, 4, 64) → \x1234567840

sha224 (bytea) → bytea
Computes the SHA-224 hash of the binary string.
sha224('abc'::bytea) → \x23097d223405d8228642a477bda2
55b32aadbce4bda0b3f7e36c9da7

sha256 (bytea) → bytea
Computes the SHA-256 hash of the binary string.
sha256('abc'::bytea) → \xba7816bf8f01cfea414140de5dae2223
b00361a396177a9cb410ff61f20015ad

sha384 (bytea) → bytea
Computes the SHA-384 hash of the binary string.
sha384('abc'::bytea) → \xcb00753f45a35e8bb5a03d699ac65007
272c32ab0eded1631a8b605a43ff5bed8086072ba1e7cc2358baeca134c825a7

sha512 (bytea) → bytea
Computes the SHA-512 hash of the binary string.
sha512('abc'::bytea) → \xddaf35a193617abacc417349ae204131
12e6fa4e89a97ea20a9eeee64b55d39a2192992a274fc1a836ba3c23a3feebbd
454d4423643ce80e2a9ac94fa54ca49f

substr (bytes bytea, start integer [, count integer]) → bytea
Extracts the substring of bytes starting at the start'th byte, and extending for count bytes if
that is specified. (Same as substring(bytes from start for count).)
substr('\x1234567890'::bytea, 3, 2) → \x5678

Functions get_byte and set_byte number the first byte of a binary string as byte 0. Functions get_bit
and set_bit number bits from the right within each byte; for example bit 0 is the least significant bit of
the first byte, and bit 15 is the most significant bit of the second byte.

For historical reasons, the function md5 returns a hex-encoded value of type text whereas the SHA-2
functions return type bytea. Use the functions encode and decode to convert between the two.
For example write encode(sha256('abc'), 'hex') to get a hex-encoded text representation, or
decode(md5('abc'), 'hex') to get a bytea value.

Functions for converting strings between different character sets (encodings), and for representing
arbitrary binary data in textual form, are shown in Table 9.13. For these functions, an argument or result
of type text is expressed in the database's default encoding, while arguments or results of type bytea
are in an encoding named by another argument.

Table 9.13. Text/Binary String Conversion Functions

Function
Description
Example(s)

convert (bytes bytea, src_encoding name, dest_encoding name) → bytea

197

Functions and Operators

Function
Description
Example(s)
Converts a binary string representing text in encoding src_encoding to a binary string in
encoding dest_encoding (see Section 22.3.4 for available conversions).
convert('text_in_utf8', 'UTF8', 'LATIN1') → \x746578745f696e5f75746638

convert_from (bytes bytea, src_encoding name) → text
Converts a binary string representing text in encoding src_encoding to text in the
database encoding (see Section 22.3.4 for available conversions).
convert_from('text_in_utf8', 'UTF8') → text_in_utf8

convert_to (string text, dest_encoding name) → bytea
Converts a text string (in the database encoding) to a binary string encoded in encoding
dest_encoding (see Section 22.3.4 for available conversions).
convert_to('some_text', 'UTF8') → \x736f6d655f74657874

encode (bytes bytea, format text) → text
Encodes binary data into a textual representation; supported format values are: base64,
 escape, hex.
encode('123\000\001', 'base64') → MTIzAAE=

decode (string text, format text) → bytea
Decodes binary data from a textual representation; supported format values are the same as
for encode.
decode('MTIzAAE=', 'base64') → \x3132330001

The encode and decode functions support the following textual formats:

base64

The base64 format is that of RFC 2045 Section 6.8. As per the RFC, encoded lines are broken at 76
characters. However instead of the MIME CRLF end-of-line marker, only a newline is used for end-
of-line. The decode function ignores carriage-return, newline, space, and tab characters. Otherwise,
an error is raised when decode is supplied invalid base64 data — including when trailing padding
is incorrect.

escape

The escape format converts zero bytes and bytes with the high bit set into octal escape sequences
(\nnn), and it doubles backslashes. Other byte values are represented literally. The decode function
will raise an error if a backslash is not followed by either a second backslash or three octal digits;
it accepts other byte values unchanged.

hex

The hex format represents each 4 bits of data as one hexadecimal digit, 0 through f, writing the
higher-order digit of each byte first. The encode function outputs the a-f hex digits in lower case.
Because the smallest unit of data is 8 bits, there are always an even number of characters returned
by encode. The decode function accepts the a-f characters in either upper or lower case. An error is
raised when decode is given invalid hex data — including when given an odd number of characters.

See also the aggregate function string_agg in Section 9.21 and the large object functions in
Section 32.4.

9.6. Bit String Functions and Operators
This section describes functions and operators for examining and manipulating bit strings, that is values
of the types bit and bit varying. (While only type bit is mentioned in these tables, values of type

198

https://tools.ietf.org/html/rfc2045#section-6.8

Functions and Operators

bit varying can be used interchangeably.) Bit strings support the usual comparison operators shown
in Table 9.1, as well as the operators shown in Table 9.14.

Table 9.14. Bit String Operators

Operator
Description
Example(s)

bit || bit → bit
Concatenation
B'10001' || B'011' → 10001011

bit & bit → bit
Bitwise AND (inputs must be of equal length)
B'10001' & B'01101' → 00001

bit | bit → bit
Bitwise OR (inputs must be of equal length)
B'10001' | B'01101' → 11101

bit # bit → bit
Bitwise exclusive OR (inputs must be of equal length)
B'10001' # B'01101' → 11100

~ bit → bit
Bitwise NOT
~ B'10001' → 01110

bit << integer → bit
Bitwise shift left (string length is preserved)
B'10001' << 3 → 01000

bit >> integer → bit
Bitwise shift right (string length is preserved)
B'10001' >> 2 → 00100

Some of the functions available for binary strings are also available for bit strings, as shown in Table 9.15.

Table 9.15. Bit String Functions

Function
Description
Example(s)

bit_length (bit) → integer
Returns number of bits in the bit string.
bit_length(B'10111') → 5

length (bit) → integer
Returns number of bits in the bit string.
length(B'10111') → 5

octet_length (bit) → integer
Returns number of bytes in the bit string.
octet_length(B'1011111011') → 2

overlay (bits bit PLACING newsubstring bit FROM start integer [FOR count integer]) → bit
Replaces the substring of bits that starts at the start'th bit and extends for count bits with
newsubstring. If count is omitted, it defaults to the length of newsubstring.

199

Functions and Operators

Function
Description
Example(s)
overlay(B'01010101010101010' placing B'11111' from 2 for 3) →
0111110101010101010

position (substring bit IN bits bit) → integer
Returns first starting index of the specified substring within bits, or zero if it's not present.
position(B'010' in B'000001101011') → 8

substring (bits bit [FROM start integer] [FOR count integer]) → bit
Extracts the substring of bits starting at the start'th bit if that is specified, and stopping
after count bits if that is specified. Provide at least one of start and count.
substring(B'110010111111' from 3 for 2) → 00

get_bit (bits bit, n integer) → integer
Extracts n'th bit from bit string; the first (leftmost) bit is bit 0.
get_bit(B'101010101010101010', 6) → 1

set_bit (bits bit, n integer, newvalue integer) → bit
Sets n'th bit in bit string to newvalue; the first (leftmost) bit is bit 0.
set_bit(B'101010101010101010', 6, 0) → 101010001010101010

In addition, it is possible to cast integral values to and from type bit. Casting an integer to bit(n) copies
the rightmost n bits. Casting an integer to a bit string width wider than the integer itself will sign-extend
on the left. Some examples:

44::bit(10) 0000101100
44::bit(3) 100
cast(-44 as bit(12)) 111111010100
'1110'::bit(4)::integer 14

Note that casting to just “bit” means casting to bit(1), and so will deliver only the least significant bit
of the integer.

9.7. Pattern Matching
There are three separate approaches to pattern matching provided by Postgres Pro: the traditional SQL
LIKE operator, the more recent SIMILAR TO operator (added in SQL:1999), and POSIX-style regular
expressions. Aside from the basic “does this string match this pattern?” operators, functions are available
to extract or replace matching substrings and to split a string at matching locations.

Tip
If you have pattern matching needs that go beyond this, consider writing a user-defined function
in Perl or Tcl.

Caution
While most regular-expression searches can be executed very quickly, regular expressions can
be contrived that take arbitrary amounts of time and memory to process. Be wary of accepting
regular-expression search patterns from hostile sources. If you must do so, it is advisable to impose
a statement timeout.

Searches using SIMILAR TO patterns have the same security hazards, since SIMILAR TO provides
many of the same capabilities as POSIX-style regular expressions.

200

Functions and Operators

LIKE searches, being much simpler than the other two options, are safer to use with possibly-
hostile pattern sources.

The pattern matching operators of all three kinds do not support nondeterministic collations. If required,
apply a different collation to the expression to work around this limitation.

9.7.1. LIKE
string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

The LIKE expression returns true if the string matches the supplied pattern. (As expected, the NOT LIKE
expression returns false if LIKE returns true, and vice versa. An equivalent expression is NOT (string
LIKE pattern).)

If pattern does not contain percent signs or underscores, then the pattern only represents the string
itself; in that case LIKE acts like the equals operator. An underscore (_) in pattern stands for (matches)
any single character; a percent sign (%) matches any sequence of zero or more characters.

Some examples:
'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matching always covers the entire string. Therefore, if it's desired to match a sequence
anywhere within a string, the pattern must start and end with a percent sign.

To match a literal underscore or percent sign without matching other characters, the respective
character in pattern must be preceded by the escape character. The default escape character is the
backslash but a different one can be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note
If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

It's also possible to select no escape character by writing ESCAPE ''. This effectively disables the escape
mechanism, which makes it impossible to turn off the special meaning of underscore and percent signs
in the pattern.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this
regard is therefore slightly nonstandard.

The key word ILIKE can be used instead of LIKE to make the match case-insensitive according to the
active locale. This is not in the SQL standard but is a Postgres Pro extension.

The operator ~~ is equivalent to LIKE, and ~~* corresponds to ILIKE. There are also !~~ and !~~*
operators that represent NOT LIKE and NOT ILIKE, respectively. All of these operators are Postgres
Pro-specific. You may see these operator names in EXPLAIN output and similar places, since the parser
actually translates LIKE et al. to these operators.

The phrases LIKE, ILIKE, NOT LIKE, and NOT ILIKE are generally treated as operators in Postgres Pro
syntax; for example they can be used in expression operator ANY (subquery) constructs, although an
ESCAPE clause cannot be included there. In some obscure cases it may be necessary to use the underlying
operator names instead.

201

Functions and Operators

Also see the prefix operator ̂ @ and corresponding starts_with function, which are useful in cases where
simply matching the beginning of a string is needed.

9.7.2. SIMILAR TO Regular Expressions
string SIMILAR TO pattern [ESCAPE escape-character]
string NOT SIMILAR TO pattern [ESCAPE escape-character]

The SIMILAR TO operator returns true or false depending on whether its pattern matches the given
string. It is similar to LIKE, except that it interprets the pattern using the SQL standard's definition of
a regular expression. SQL regular expressions are a curious cross between LIKE notation and common
(POSIX) regular expression notation.

Like LIKE, the SIMILAR TO operator succeeds only if its pattern matches the entire string; this is unlike
common regular expression behavior where the pattern can match any part of the string. Also like
LIKE, SIMILAR TO uses _ and % as wildcard characters denoting any single character and any string,
respectively (these are comparable to . and .* in POSIX regular expressions).

In addition to these facilities borrowed from LIKE, SIMILAR TO supports these pattern-matching
metacharacters borrowed from POSIX regular expressions:
• | denotes alternation (either of two alternatives).
• * denotes repetition of the previous item zero or more times.
• + denotes repetition of the previous item one or more times.
• ? denotes repetition of the previous item zero or one time.
• {m} denotes repetition of the previous item exactly m times.
• {m,} denotes repetition of the previous item m or more times.
• {m,n} denotes repetition of the previous item at least m and not more than n times.
• Parentheses () can be used to group items into a single logical item.
• A bracket expression [...] specifies a character class, just as in POSIX regular expressions.

Notice that the period (.) is not a metacharacter for SIMILAR TO.

As with LIKE, a backslash disables the special meaning of any of these metacharacters. A different escape
character can be specified with ESCAPE, or the escape capability can be disabled by writing ESCAPE ''.

According to the SQL standard, omitting ESCAPE means there is no escape character (rather than
defaulting to a backslash), and a zero-length ESCAPE value is disallowed. PostgreSQL's behavior in this
regard is therefore slightly nonstandard.

Another nonstandard extension is that following the escape character with a letter or digit provides
access to the escape sequences defined for POSIX regular expressions; see Table 9.20, Table 9.21, and
Table 9.22 below.

Some examples:

'abc' SIMILAR TO 'abc' true
'abc' SIMILAR TO 'a' false
'abc' SIMILAR TO '%(b|d)%' true
'abc' SIMILAR TO '(b|c)%' false
'-abc-' SIMILAR TO '%\mabc\M%' true
'xabcy' SIMILAR TO '%\mabc\M%' false

The substring function with three parameters provides extraction of a substring that matches an SQL
regular expression pattern. The function can be written according to SQL99 syntax:

substring(string from pattern for escape-character)

202

Functions and Operators

or as a plain three-argument function:
substring(string, pattern, escape-character)

As with SIMILAR TO, the specified pattern must match the entire data string, or else the function fails and
returns null. To indicate the part of the pattern for which the matching data sub-string is of interest, the
pattern should contain two occurrences of the escape character followed by a double quote ("). The text
matching the portion of the pattern between these separators is returned when the match is successful.

The escape-double-quote separators actually divide substring's pattern into three independent regular
expressions; for example, a vertical bar (|) in any of the three sections affects only that section. Also, the
first and third of these regular expressions are defined to match the smallest possible amount of text,
not the largest, when there is any ambiguity about how much of the data string matches which pattern.
(In POSIX parlance, the first and third regular expressions are forced to be non-greedy.)

As an extension to the SQL standard, Postgres Pro allows there to be just one escape-double-quote
separator, in which case the third regular expression is taken as empty; or no separators, in which case
the first and third regular expressions are taken as empty.

Some examples, with #" delimiting the return string:
substring('foobar' from '%#"o_b#"%' for '#') oob
substring('foobar' from '#"o_b#"%' for '#') NULL

9.7.3. POSIX Regular Expressions
Table 9.16 lists the available operators for pattern matching using POSIX regular expressions.

Table 9.16. Regular Expression Match Operators

Operator
Description
Example(s)

text ~ text → boolean
String matches regular expression, case sensitively
'thomas' ~ 't.*ma' → t

text ~* text → boolean
String matches regular expression, case insensitively
'thomas' ~* 'T.*ma' → t

text !~ text → boolean
String does not match regular expression, case sensitively
'thomas' !~ 't.*max' → t

text !~* text → boolean
String does not match regular expression, case insensitively
'thomas' !~* 'T.*ma' → f

POSIX regular expressions provide a more powerful means for pattern matching than the LIKE and
SIMILAR TO operators. Many Unix tools such as egrep, sed, or awk use a pattern matching language
that is similar to the one described here.

A regular expression is a character sequence that is an abbreviated definition of a set of strings (a regular
set). A string is said to match a regular expression if it is a member of the regular set described by the
regular expression. As with LIKE, pattern characters match string characters exactly unless they are
special characters in the regular expression language — but regular expressions use different special
characters than LIKE does. Unlike LIKE patterns, a regular expression is allowed to match anywhere
within a string, unless the regular expression is explicitly anchored to the beginning or end of the string.

Some examples:

203

Functions and Operators

'abcd' ~ 'bc' true
'abcd' ~ 'a.c' true — dot matches any character
'abcd' ~ 'a.*d' true — * repeats the preceding pattern item
'abcd' ~ '(b|x)' true — | means OR, parentheses group
'abcd' ~ '^a' true — ^ anchors to start of string
'abcd' ~ '^(b|c)' false — would match except for anchoring

The POSIX pattern language is described in much greater detail below.

The substring function with two parameters, substring(string from pattern), provides extraction
of a substring that matches a POSIX regular expression pattern. It returns null if there is no match,
otherwise the first portion of the text that matched the pattern. But if the pattern contains any
parentheses, the portion of the text that matched the first parenthesized subexpression (the one whose
left parenthesis comes first) is returned. You can put parentheses around the whole expression if you
want to use parentheses within it without triggering this exception. If you need parentheses in the
pattern before the subexpression you want to extract, see the non-capturing parentheses described
below.

Some examples:

substring('foobar' from 'o.b') oob
substring('foobar' from 'o(.)b') o

The regexp_replace function provides substitution of new text for substrings that match POSIX regular
expression patterns. It has the syntax regexp_replace(source, pattern, replacement [, flags]). The
source string is returned unchanged if there is no match to the pattern. If there is a match, the source
string is returned with the replacement string substituted for the matching substring. The replacement
string can contain \n, where n is 1 through 9, to indicate that the source substring matching the n'th
parenthesized subexpression of the pattern should be inserted, and it can contain \& to indicate that the
substring matching the entire pattern should be inserted. Write \\ if you need to put a literal backslash
in the replacement text. The flags parameter is an optional text string containing zero or more single-
letter flags that change the function's behavior. Flag i specifies case-insensitive matching, while flag g
specifies replacement of each matching substring rather than only the first one. Supported flags (though
not g) are described in Table 9.24.

Some examples:

regexp_replace('foobarbaz', 'b..', 'X')
 fooXbaz
regexp_replace('foobarbaz', 'b..', 'X', 'g')
 fooXX
regexp_replace('foobarbaz', 'b(..)', 'X\1Y', 'g')
 fooXarYXazY

The regexp_match function returns a text array of captured substring(s) resulting from the first match of
a POSIX regular expression pattern to a string. It has the syntax regexp_match(string, pattern [, flags
]). If there is no match, the result is NULL. If a match is found, and the pattern contains no parenthesized
subexpressions, then the result is a single-element text array containing the substring matching the
whole pattern. If a match is found, and the pattern contains parenthesized subexpressions, then the
result is a text array whose n'th element is the substring matching the n'th parenthesized subexpression
of the pattern (not counting “non-capturing” parentheses; see below for details). The flags parameter
is an optional text string containing zero or more single-letter flags that change the function's behavior.
Supported flags are described in Table 9.24.

Some examples:

SELECT regexp_match('foobarbequebaz', 'bar.*que');
 regexp_match

 {barbeque}

204

Functions and Operators

(1 row)

SELECT regexp_match('foobarbequebaz', '(bar)(beque)');
 regexp_match

 {bar,beque}
(1 row)

In the common case where you just want the whole matching substring or NULL for no match, write
something like

SELECT (regexp_match('foobarbequebaz', 'bar.*que'))[1];
 regexp_match

 barbeque
(1 row)

The regexp_matches function returns a set of text arrays of captured substring(s) resulting from
matching a POSIX regular expression pattern to a string. It has the same syntax as regexp_match. This
function returns no rows if there is no match, one row if there is a match and the g flag is not given, or
N rows if there are N matches and the g flag is given. Each returned row is a text array containing the
whole matched substring or the substrings matching parenthesized subexpressions of the pattern, just
as described above for regexp_match. regexp_matches accepts all the flags shown in Table 9.24, plus
the g flag which commands it to return all matches, not just the first one.

Some examples:

SELECT regexp_matches('foo', 'not there');
 regexp_matches

(0 rows)

SELECT regexp_matches('foobarbequebazilbarfbonk', '(b[^b]+)(b[^b]+)', 'g');
 regexp_matches

 {bar,beque}
 {bazil,barf}
(2 rows)

Tip
In most cases regexp_matches() should be used with the g flag, since if you only want the first
match, it's easier and more efficient to use regexp_match(). However, regexp_match() only exists
in Postgres Pro version 10 and up. When working in older versions, a common trick is to place a
regexp_matches() call in a sub-select, for example:

SELECT col1, (SELECT regexp_matches(col2, '(bar)(beque)')) FROM tab;

This produces a text array if there's a match, or NULL if not, the same as regexp_match() would do.
Without the sub-select, this query would produce no output at all for table rows without a match,
which is typically not the desired behavior.

The regexp_split_to_table function splits a string using a POSIX regular expression pattern as a
delimiter. It has the syntax regexp_split_to_table(string, pattern [, flags]). If there is no match to
the pattern, the function returns the string. If there is at least one match, for each match it returns
the text from the end of the last match (or the beginning of the string) to the beginning of the match.
When there are no more matches, it returns the text from the end of the last match to the end of the
string. The flags parameter is an optional text string containing zero or more single-letter flags that
change the function's behavior. regexp_split_to_table supports the flags described in Table 9.24.

205

Functions and Operators

The regexp_split_to_array function behaves the same as regexp_split_to_table, except
that regexp_split_to_array returns its result as an array of text. It has the syntax
regexp_split_to_array(string, pattern [, flags]). The parameters are the same as for
regexp_split_to_table.

Some examples:

SELECT foo FROM regexp_split_to_table('the quick brown fox jumps over the lazy dog',
 '\s+') AS foo;
 foo

 the
 quick
 brown
 fox
 jumps
 over
 the
 lazy
 dog
(9 rows)

SELECT regexp_split_to_array('the quick brown fox jumps over the lazy dog', '\s+');
 regexp_split_to_array

 {the,quick,brown,fox,jumps,over,the,lazy,dog}
(1 row)

SELECT foo FROM regexp_split_to_table('the quick brown fox', '\s*') AS foo;
 foo

 t
 h
 e
 q
 u
 i
 c
 k
 b
 r
 o
 w
 n
 f
 o
 x
(16 rows)

As the last example demonstrates, the regexp split functions ignore zero-length matches that occur at the
start or end of the string or immediately after a previous match. This is contrary to the strict definition
of regexp matching that is implemented by regexp_match and regexp_matches, but is usually the most
convenient behavior in practice. Other software systems such as Perl use similar definitions.

9.7.3.1. Regular Expression Details
Postgres Pro's regular expressions are implemented using a software package written by Henry Spencer.
Much of the description of regular expressions below is copied verbatim from his manual.

206

Functions and Operators

Regular expressions (REs), as defined in POSIX 1003.2, come in two forms: extended REs or EREs
(roughly those of egrep), and basic REs or BREs (roughly those of ed). Postgres Pro supports both forms,
and also implements some extensions that are not in the POSIX standard, but have become widely used
due to their availability in programming languages such as Perl and Tcl. REs using these non-POSIX
extensions are called advanced REs or AREs in this documentation. AREs are almost an exact superset
of EREs, but BREs have several notational incompatibilities (as well as being much more limited). We
first describe the ARE and ERE forms, noting features that apply only to AREs, and then describe how
BREs differ.

Note
Postgres Pro always initially presumes that a regular expression follows the ARE rules. However,
the more limited ERE or BRE rules can be chosen by prepending an embedded option to the RE
pattern, as described in Section 9.7.3.4. This can be useful for compatibility with applications that
expect exactly the POSIX 1003.2 rules.

A regular expression is defined as one or more branches, separated by |. It matches anything that
matches one of the branches.

A branch is zero or more quantified atoms or constraints, concatenated. It matches a match for the first,
followed by a match for the second, etc; an empty branch matches the empty string.

A quantified atom is an atom possibly followed by a single quantifier. Without a quantifier, it matches a
match for the atom. With a quantifier, it can match some number of matches of the atom. An atom can
be any of the possibilities shown in Table 9.17. The possible quantifiers and their meanings are shown
in Table 9.18.

A constraint matches an empty string, but matches only when specific conditions are met. A constraint
can be used where an atom could be used, except it cannot be followed by a quantifier. The simple
constraints are shown in Table 9.19; some more constraints are described later.

Table 9.17. Regular Expression Atoms

Atom Description
(re) (where re is any regular expression) matches a

match for re, with the match noted for possible
reporting

(?: re) as above, but the match is not noted for reporting
(a “non-capturing” set of parentheses) (AREs
only)

. matches any single character
[chars] a bracket expression, matching any one of the

chars (see Section 9.7.3.2 for more detail)
\k (where k is a non-alphanumeric character)

matches that character taken as an ordinary
character, e.g., \\ matches a backslash character

\c where c is alphanumeric (possibly followed by
other characters) is an escape, see Section 9.7.3.3
(AREs only; in EREs and BREs, this matches c)

{ when followed by a character other than a digit,
matches the left-brace character {; when followed
by a digit, it is the beginning of a bound (see
below)

x where x is a single character with no other
significance, matches that character

207

Functions and Operators

An RE cannot end with a backslash (\).

Note
If you have standard_conforming_strings turned off, any backslashes you write in literal string
constants will need to be doubled. See Section 4.1.2.1 for more information.

Table 9.18. Regular Expression Quantifiers

Quantifier Matches
* a sequence of 0 or more matches of the atom
+ a sequence of 1 or more matches of the atom
? a sequence of 0 or 1 matches of the atom
{m} a sequence of exactly m matches of the atom
{m,} a sequence of m or more matches of the atom
{m, n} a sequence of m through n (inclusive) matches of

the atom; m cannot exceed n
*? non-greedy version of *
+? non-greedy version of +
?? non-greedy version of ?
{m}? non-greedy version of {m}
{m,}? non-greedy version of {m,}
{m, n}? non-greedy version of {m, n}

The forms using {...} are known as bounds. The numbers m and n within a bound are unsigned decimal
integers with permissible values from 0 to 255 inclusive.

Non-greedy quantifiers (available in AREs only) match the same possibilities as their corresponding
normal (greedy) counterparts, but prefer the smallest number rather than the largest number of
matches. See Section 9.7.3.5 for more detail.

Note
A quantifier cannot immediately follow another quantifier, e.g., ** is invalid. A quantifier cannot
begin an expression or subexpression or follow ^ or |.

Table 9.19. Regular Expression Constraints

Constraint Description
^ matches at the beginning of the string
$ matches at the end of the string
(?= re) positive lookahead matches at any point where a

substring matching re begins (AREs only)
(?! re) negative lookahead matches at any point where

no substring matching re begins (AREs only)
(?<= re) positive lookbehind matches at any point where a

substring matching re ends (AREs only)
(?<! re) negative lookbehind matches at any point where

no substring matching re ends (AREs only)

208

Functions and Operators

Lookahead and lookbehind constraints cannot contain back references (see Section 9.7.3.3), and all
parentheses within them are considered non-capturing.

9.7.3.2. Bracket Expressions
A bracket expression is a list of characters enclosed in []. It normally matches any single character
from the list (but see below). If the list begins with ^, it matches any single character not from the
rest of the list. If two characters in the list are separated by -, this is shorthand for the full range of
characters between those two (inclusive) in the collating sequence, e.g., [0-9] in ASCII matches any
decimal digit. It is illegal for two ranges to share an endpoint, e.g., a-c-e. Ranges are very collating-
sequence-dependent, so portable programs should avoid relying on them.

To include a literal] in the list, make it the first character (after ^, if that is used). To include a literal -,
make it the first or last character, or the second endpoint of a range. To use a literal - as the first endpoint
of a range, enclose it in [. and .] to make it a collating element (see below). With the exception of these
characters, some combinations using [(see next paragraphs), and escapes (AREs only), all other special
characters lose their special significance within a bracket expression. In particular, \ is not special when
following ERE or BRE rules, though it is special (as introducing an escape) in AREs.

Within a bracket expression, a collating element (a character, a multiple-character sequence that collates
as if it were a single character, or a collating-sequence name for either) enclosed in [. and .] stands
for the sequence of characters of that collating element. The sequence is treated as a single element of
the bracket expression's list. This allows a bracket expression containing a multiple-character collating
element to match more than one character, e.g., if the collating sequence includes a ch collating element,
then the RE [[.ch.]]*c matches the first five characters of chchcc.

Note
Postgres Pro currently does not support multi-character collating elements. This information
describes possible future behavior.

Within a bracket expression, a collating element enclosed in [= and =] is an equivalence class, standing
for the sequences of characters of all collating elements equivalent to that one, including itself. (If there
are no other equivalent collating elements, the treatment is as if the enclosing delimiters were [. and
.].) For example, if o and ^ are the members of an equivalence class, then [[=o=]], [[=^=]], and [o^]
are all synonymous. An equivalence class cannot be an endpoint of a range.

Within a bracket expression, the name of a character class enclosed in [: and :] stands for the list of all
characters belonging to that class. A character class cannot be used as an endpoint of a range. The POSIX
standard defines these character class names: alnum (letters and numeric digits), alpha (letters), blank
(space and tab), cntrl (control characters), digit (numeric digits), graph (printable characters except
space), lower (lower-case letters), print (printable characters including space), punct (punctuation),
space (any white space), upper (upper-case letters), and xdigit (hexadecimal digits). The behavior of
these standard character classes is generally consistent across platforms for characters in the 7-bit
ASCII set. Whether a given non-ASCII character is considered to belong to one of these classes depends
on the collation that is used for the regular-expression function or operator (see Section 22.2), or by
default on the database's LC_CTYPE locale setting (see Section 22.1). The classification of non-ASCII
characters can vary across platforms even in similarly-named locales. (But the C locale never considers
any non-ASCII characters to belong to any of these classes.) In addition to these standard character
classes, Postgres Pro defines the ascii character class, which contains exactly the 7-bit ASCII set.

There are two special cases of bracket expressions: the bracket expressions [[:<:]] and [[:>:]]
are constraints, matching empty strings at the beginning and end of a word respectively. A word is
defined as a sequence of word characters that is neither preceded nor followed by word characters. A
word character is an alnum character (as defined by the POSIX character class described above) or an
underscore. This is an extension, compatible with but not specified by POSIX 1003.2, and should be used
with caution in software intended to be portable to other systems. The constraint escapes described
below are usually preferable; they are no more standard, but are easier to type.

209

Functions and Operators

9.7.3.3. Regular Expression Escapes
Escapes are special sequences beginning with \ followed by an alphanumeric character. Escapes come
in several varieties: character entry, class shorthands, constraint escapes, and back references. A \
followed by an alphanumeric character but not constituting a valid escape is illegal in AREs. In EREs,
there are no escapes: outside a bracket expression, a \ followed by an alphanumeric character merely
stands for that character as an ordinary character, and inside a bracket expression, \ is an ordinary
character. (The latter is the one actual incompatibility between EREs and AREs.)

Character-entry escapes exist to make it easier to specify non-printing and other inconvenient characters
in REs. They are shown in Table 9.20.

Class-shorthand escapes provide shorthands for certain commonly-used character classes. They are
shown in Table 9.21.

A constraint escape is a constraint, matching the empty string if specific conditions are met, written as
an escape. They are shown in Table 9.22.

A back reference (\n) matches the same string matched by the previous parenthesized subexpression
specified by the number n (see Table 9.23). For example, ([bc])\1 matches bb or cc but not bc or cb.
The subexpression must entirely precede the back reference in the RE. Subexpressions are numbered
in the order of their leading parentheses. Non-capturing parentheses do not define subexpressions.

Table 9.20. Regular Expression Character-Entry Escapes

Escape Description
\a alert (bell) character, as in C
\b backspace, as in C
\B synonym for backslash (\) to help reduce the need

for backslash doubling
\cX (where X is any character) the character whose

low-order 5 bits are the same as those of X, and
whose other bits are all zero

\e the character whose collating-sequence name is
ESC, or failing that, the character with octal value
033

\f form feed, as in C
\n newline, as in C
\r carriage return, as in C
\t horizontal tab, as in C
\uwxyz (where wxyz is exactly four hexadecimal digits)

the character whose hexadecimal value is 0xwxyz
\Ustuvwxyz (where stuvwxyz is exactly eight hexadecimal

digits) the character whose hexadecimal value is
0xstuvwxyz

\v vertical tab, as in C
\xhhh (where hhh is any sequence of hexadecimal

digits) the character whose hexadecimal value is
0xhhh (a single character no matter how many
hexadecimal digits are used)

\0 the character whose value is 0 (the null byte)
\xy (where xy is exactly two octal digits, and is not a

back reference) the character whose octal value is
0xy

210

Functions and Operators

Escape Description
\xyz (where xyz is exactly three octal digits, and is not

a back reference) the character whose octal value
is 0xyz

Hexadecimal digits are 0-9, a-f, and A-F. Octal digits are 0-7.

Numeric character-entry escapes specifying values outside the ASCII range (0–127) have meanings
dependent on the database encoding. When the encoding is UTF-8, escape values are equivalent to
Unicode code points, for example \u1234 means the character U+1234. For other multibyte encodings,
character-entry escapes usually just specify the concatenation of the byte values for the character. If
the escape value does not correspond to any legal character in the database encoding, no error will be
raised, but it will never match any data.

The character-entry escapes are always taken as ordinary characters. For example, \135 is] in ASCII,
but \135 does not terminate a bracket expression.

Table 9.21. Regular Expression Class-Shorthand Escapes

Escape Description
\d [[:digit:]]

\s [[:space:]]

\w [[:alnum:]_] (note underscore is included)
\D [^[:digit:]]

\S [^[:space:]]

\W [^[:alnum:]_] (note underscore is included)

Within bracket expressions, \d, \s, and \w lose their outer brackets, and \D, \S, and \W are illegal.
(So, for example, [a-c\d] is equivalent to [a-c[:digit:]]. Also, [a-c\D], which is equivalent to [a-
c^[:digit:]], is illegal.)

Table 9.22. Regular Expression Constraint Escapes

Escape Description
\A matches only at the beginning of the string (see

Section 9.7.3.5 for how this differs from ^)
\m matches only at the beginning of a word
\M matches only at the end of a word
\y matches only at the beginning or end of a word
\Y matches only at a point that is not the beginning

or end of a word
\Z matches only at the end of the string (see

Section 9.7.3.5 for how this differs from $)

A word is defined as in the specification of [[:<:]] and [[:>:]] above. Constraint escapes are illegal
within bracket expressions.

Table 9.23. Regular Expression Back References

Escape Description
\m (where m is a nonzero digit) a back reference to

the m'th subexpression
\mnn (where m is a nonzero digit, and nn is some

more digits, and the decimal value mnn is not

211

Functions and Operators

Escape Description
greater than the number of closing capturing
parentheses seen so far) a back reference to the
mnn'th subexpression

Note
There is an inherent ambiguity between octal character-entry escapes and back references, which
is resolved by the following heuristics, as hinted at above. A leading zero always indicates an octal
escape. A single non-zero digit, not followed by another digit, is always taken as a back reference.
A multi-digit sequence not starting with a zero is taken as a back reference if it comes after a
suitable subexpression (i.e., the number is in the legal range for a back reference), and otherwise
is taken as octal.

9.7.3.4. Regular Expression Metasyntax
In addition to the main syntax described above, there are some special forms and miscellaneous syntactic
facilities available.

An RE can begin with one of two special director prefixes. If an RE begins with ***:, the rest of the RE
is taken as an ARE. (This normally has no effect in Postgres Pro, since REs are assumed to be AREs;
but it does have an effect if ERE or BRE mode had been specified by the flags parameter to a regex
function.) If an RE begins with ***=, the rest of the RE is taken to be a literal string, with all characters
considered ordinary characters.

An ARE can begin with embedded options: a sequence (?xyz) (where xyz is one or more alphabetic
characters) specifies options affecting the rest of the RE. These options override any previously
determined options — in particular, they can override the case-sensitivity behavior implied by a regex
operator, or the flags parameter to a regex function. The available option letters are shown in Table 9.24.
Note that these same option letters are used in the flags parameters of regex functions.

Table 9.24. ARE Embedded-Option Letters

Option Description
b rest of RE is a BRE
c case-sensitive matching (overrides operator type)
e rest of RE is an ERE
i case-insensitive matching (see Section 9.7.3.5) (

overrides operator type)
m historical synonym for n
n newline-sensitive matching (see Section 9.7.3.5)
p partial newline-sensitive matching (see

Section 9.7.3.5)
q rest of RE is a literal (“quoted”) string, all

ordinary characters
s non-newline-sensitive matching (default)
t tight syntax (default; see below)
w inverse partial newline-sensitive (“weird”)

matching (see Section 9.7.3.5)
x expanded syntax (see below)

Embedded options take effect at the) terminating the sequence. They can appear only at the start of
an ARE (after the ***: director if any).

212

Functions and Operators

In addition to the usual (tight) RE syntax, in which all characters are significant, there is an expanded
syntax, available by specifying the embedded x option. In the expanded syntax, white-space characters
in the RE are ignored, as are all characters between a # and the following newline (or the end of the RE).
This permits paragraphing and commenting a complex RE. There are three exceptions to that basic rule:
• a white-space character or # preceded by \ is retained
• white space or # within a bracket expression is retained
• white space and comments cannot appear within multi-character symbols, such as (?:
For this purpose, white-space characters are blank, tab, newline, and any character that belongs to the
space character class.

Finally, in an ARE, outside bracket expressions, the sequence (?#ttt) (where ttt is any text not
containing a)) is a comment, completely ignored. Again, this is not allowed between the characters of
multi-character symbols, like (?:. Such comments are more a historical artifact than a useful facility,
and their use is deprecated; use the expanded syntax instead.

None of these metasyntax extensions is available if an initial ***= director has specified that the user's
input be treated as a literal string rather than as an RE.

9.7.3.5. Regular Expression Matching Rules
In the event that an RE could match more than one substring of a given string, the RE matches the
one starting earliest in the string. If the RE could match more than one substring starting at that point,
either the longest possible match or the shortest possible match will be taken, depending on whether
the RE is greedy or non-greedy.

Whether an RE is greedy or not is determined by the following rules:
• Most atoms, and all constraints, have no greediness attribute (because they cannot match variable

amounts of text anyway).
• Adding parentheses around an RE does not change its greediness.
• A quantified atom with a fixed-repetition quantifier ({m} or {m}?) has the same greediness (possibly

none) as the atom itself.
• A quantified atom with other normal quantifiers (including {m,n} with m equal to n) is greedy

(prefers longest match).
• A quantified atom with a non-greedy quantifier (including {m,n}? with m equal to n) is non-greedy

(prefers shortest match).
• A branch — that is, an RE that has no top-level | operator — has the same greediness as the first

quantified atom in it that has a greediness attribute.
• An RE consisting of two or more branches connected by the | operator is always greedy.

The above rules associate greediness attributes not only with individual quantified atoms, but with
branches and entire REs that contain quantified atoms. What that means is that the matching is done
in such a way that the branch, or whole RE, matches the longest or shortest possible substring as a
whole. Once the length of the entire match is determined, the part of it that matches any particular
subexpression is determined on the basis of the greediness attribute of that subexpression, with
subexpressions starting earlier in the RE taking priority over ones starting later.

An example of what this means:
SELECT SUBSTRING('XY1234Z', 'Y*([0-9]{1,3})');
Result: 123
SELECT SUBSTRING('XY1234Z', 'Y*?([0-9]{1,3})');
Result: 1

In the first case, the RE as a whole is greedy because Y* is greedy. It can match beginning at the Y, and
it matches the longest possible string starting there, i.e., Y123. The output is the parenthesized part of
that, or 123. In the second case, the RE as a whole is non-greedy because Y*? is non-greedy. It can match

213

Functions and Operators

beginning at the Y, and it matches the shortest possible string starting there, i.e., Y1. The subexpression
[0-9]{1,3} is greedy but it cannot change the decision as to the overall match length; so it is forced
to match just 1.

In short, when an RE contains both greedy and non-greedy subexpressions, the total match length is
either as long as possible or as short as possible, according to the attribute assigned to the whole RE.
The attributes assigned to the subexpressions only affect how much of that match they are allowed to
“eat” relative to each other.

The quantifiers {1,1} and {1,1}? can be used to force greediness or non-greediness, respectively, on a
subexpression or a whole RE. This is useful when you need the whole RE to have a greediness attribute
different from what's deduced from its elements. As an example, suppose that we are trying to separate
a string containing some digits into the digits and the parts before and after them. We might try to do
that like this:
SELECT regexp_match('abc01234xyz', '(.*)(\d+)(.*)');
Result: {abc0123,4,xyz}

That didn't work: the first .* is greedy so it “eats” as much as it can, leaving the \d+ to match at the last
possible place, the last digit. We might try to fix that by making it non-greedy:
SELECT regexp_match('abc01234xyz', '(.*?)(\d+)(.*)');
Result: {abc,0,""}

That didn't work either, because now the RE as a whole is non-greedy and so it ends the overall match
as soon as possible. We can get what we want by forcing the RE as a whole to be greedy:
SELECT regexp_match('abc01234xyz', '(?:(.*?)(\d+)(.*)){1,1}');
Result: {abc,01234,xyz}

Controlling the RE's overall greediness separately from its components' greediness allows great
flexibility in handling variable-length patterns.

When deciding what is a longer or shorter match, match lengths are measured in characters, not
collating elements. An empty string is considered longer than no match at all. For example: bb*
matches the three middle characters of abbbc; (week|wee)(night|knights) matches all ten characters
of weeknights; when (.*).* is matched against abc the parenthesized subexpression matches all
three characters; and when (a*)* is matched against bc both the whole RE and the parenthesized
subexpression match an empty string.

If case-independent matching is specified, the effect is much as if all case distinctions had vanished from
the alphabet. When an alphabetic that exists in multiple cases appears as an ordinary character outside
a bracket expression, it is effectively transformed into a bracket expression containing both cases, e.g.,
x becomes [xX]. When it appears inside a bracket expression, all case counterparts of it are added to
the bracket expression, e.g., [x] becomes [xX] and [^x] becomes [^xX].

If newline-sensitive matching is specified, . and bracket expressions using ̂ will never match the newline
character (so that matches will never cross newlines unless the RE explicitly arranges it) and ^ and $
will match the empty string after and before a newline respectively, in addition to matching at beginning
and end of string respectively. But the ARE escapes \A and \Z continue to match beginning or end of
string only.

If partial newline-sensitive matching is specified, this affects . and bracket expressions as with newline-
sensitive matching, but not ^ and $.

If inverse partial newline-sensitive matching is specified, this affects ^ and $ as with newline-sensitive
matching, but not . and bracket expressions. This isn't very useful but is provided for symmetry.

9.7.3.6. Limits and Compatibility
No particular limit is imposed on the length of REs in this implementation. However, programs intended
to be highly portable should not employ REs longer than 256 bytes, as a POSIX-compliant implementation
can refuse to accept such REs.

214

Functions and Operators

The only feature of AREs that is actually incompatible with POSIX EREs is that \ does not lose its
special significance inside bracket expressions. All other ARE features use syntax which is illegal or has
undefined or unspecified effects in POSIX EREs; the *** syntax of directors likewise is outside the POSIX
syntax for both BREs and EREs.

Many of the ARE extensions are borrowed from Perl, but some have been changed to clean them
up, and a few Perl extensions are not present. Incompatibilities of note include \b, \B, the lack of
special treatment for a trailing newline, the addition of complemented bracket expressions to the
things affected by newline-sensitive matching, the restrictions on parentheses and back references in
lookahead/lookbehind constraints, and the longest/shortest-match (rather than first-match) matching
semantics.

Two significant incompatibilities exist between AREs and the ERE syntax recognized by pre-7.4 releases
of PostgreSQL:
• In AREs, \ followed by an alphanumeric character is either an escape or an error, while in previous

releases, it was just another way of writing the alphanumeric. This should not be much of a
problem because there was no reason to write such a sequence in earlier releases.

• In AREs, \ remains a special character within [], so a literal \ within a bracket expression must be
written \\.

9.7.3.7. Basic Regular Expressions
BREs differ from EREs in several respects. In BREs, |, +, and ? are ordinary characters and there
is no equivalent for their functionality. The delimiters for bounds are \{ and \}, with { and } by
themselves ordinary characters. The parentheses for nested subexpressions are \(and \), with (and)
by themselves ordinary characters. ^ is an ordinary character except at the beginning of the RE or the
beginning of a parenthesized subexpression, $ is an ordinary character except at the end of the RE or
the end of a parenthesized subexpression, and * is an ordinary character if it appears at the beginning
of the RE or the beginning of a parenthesized subexpression (after a possible leading ^). Finally, single-
digit back references are available, and \< and \> are synonyms for [[:<:]] and [[:>:]] respectively;
no other escapes are available in BREs.

9.7.3.8. Differences from XQuery (LIKE_REGEX)
Since SQL:2008, the SQL standard includes a LIKE_REGEX operator that performs pattern matching
according to the XQuery regular expression standard. Postgres Pro does not yet implement this operator,
but you can get very similar behavior using the regexp_match() function, since XQuery regular
expressions are quite close to the ARE syntax described above.

Notable differences between the existing POSIX-based regular-expression feature and XQuery regular
expressions include:
• XQuery character class subtraction is not supported. An example of this feature is using the

following to match only English consonants: [a-z-[aeiou]].
• XQuery character class shorthands \c, \C, \i, and \I are not supported.
• XQuery character class elements using \p{UnicodeProperty} or the inverse \P{UnicodeProperty}

are not supported.
• POSIX interprets character classes such as \w (see Table 9.21) according to the prevailing locale

(which you can control by attaching a COLLATE clause to the operator or function). XQuery specifies
these classes by reference to Unicode character properties, so equivalent behavior is obtained only
with a locale that follows the Unicode rules.

• The SQL standard (not XQuery itself) attempts to cater for more variants of “newline” than POSIX
does. The newline-sensitive matching options described above consider only ASCII NL (\n) to be a
newline, but SQL would have us treat CR (\r), CRLF (\r\n) (a Windows-style newline), and some
Unicode-only characters like LINE SEPARATOR (U+2028) as newlines as well. Notably, . and \s
should count \r\n as one character not two according to SQL.

• Of the character-entry escapes described in Table 9.20, XQuery supports only \n, \r, and \t.

215

Functions and Operators

• XQuery does not support the [:name:] syntax for character classes within bracket expressions.
• XQuery does not have lookahead or lookbehind constraints, nor any of the constraint escapes

described in Table 9.22.
• The metasyntax forms described in Section 9.7.3.4 do not exist in XQuery.
• The regular expression flag letters defined by XQuery are related to but not the same as the option

letters for POSIX (Table 9.24). While the i and q options behave the same, others do not:
• XQuery's s (allow dot to match newline) and m (allow ^ and $ to match at newlines) flags provide

access to the same behaviors as POSIX's n, p and w flags, but they do not match the behavior
of POSIX's s and m flags. Note in particular that dot-matches-newline is the default behavior in
POSIX but not XQuery.

• XQuery's x (ignore whitespace in pattern) flag is noticeably different from POSIX's expanded-
mode flag. POSIX's x flag also allows # to begin a comment in the pattern, and POSIX will not
ignore a whitespace character after a backslash.

9.8. Data Type Formatting Functions
The Postgres Pro formatting functions provide a powerful set of tools for converting various data types
(date/time, integer, floating point, numeric) to formatted strings and for converting from formatted
strings to specific data types. Table 9.25 lists them. These functions all follow a common calling
convention: the first argument is the value to be formatted and the second argument is a template that
defines the output or input format.

Table 9.25. Formatting Functions

Function
Description
Example(s)

to_char (timestamp, text) → text
to_char (timestamp with time zone, text) → text

Converts time stamp to string according to the given format.
to_char(timestamp '2002-04-20 17:31:12.66', 'HH12:MI:SS') → 05:31:12

to_char (interval, text) → text
Converts interval to string according to the given format.
to_char(interval '15h 2m 12s', 'HH24:MI:SS') → 15:02:12

to_char (numeric_type , text) → text
Converts number to string according to the given format; available for integer, bigint,
 numeric, real, double precision.
to_char(125, '999') → 125
to_char(125.8::real, '999D9') → 125.8
to_char(-125.8, '999D99S') → 125.80-

to_date (text, text) → date
Converts string to date according to the given format.
to_date('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05

to_number (text, text) → numeric
Converts string to numeric according to the given format.
to_number('12,454.8-', '99G999D9S') → -12454.8

to_timestamp (text, text) → timestamp with time zone
Converts string to time stamp according to the given format. (See also to_timestamp(
double precision) in Table 9.32.)
to_timestamp('05 Dec 2000', 'DD Mon YYYY') → 2000-12-05 00:00:00-05

216

Functions and Operators

Tip
to_timestamp and to_date exist to handle input formats that cannot be converted by simple
casting. For most standard date/time formats, simply casting the source string to the required
data type works, and is much easier. Similarly, to_number is unnecessary for standard numeric
representations.

In a to_char output template string, there are certain patterns that are recognized and replaced with
appropriately-formatted data based on the given value. Any text that is not a template pattern is simply
copied verbatim. Similarly, in an input template string (for the other functions), template patterns
identify the values to be supplied by the input data string. If there are characters in the template string
that are not template patterns, the corresponding characters in the input data string are simply skipped
over (whether or not they are equal to the template string characters).

Table 9.26 shows the template patterns available for formatting date and time values.

Table 9.26. Template Patterns for Date/Time Formatting

Pattern Description
HH hour of day (01–12)
HH12 hour of day (01–12)
HH24 hour of day (00–23)
MI minute (00–59)
SS second (00–59)
MS millisecond (000–999)
US microsecond (000000–999999)
FF1 tenth of second (0–9)
FF2 hundredth of second (00–99)
FF3 millisecond (000–999)
FF4 tenth of a millisecond (0000–9999)
FF5 hundredth of a millisecond (00000–99999)
FF6 microsecond (000000–999999)
SSSS, SSSSS seconds past midnight (0–86399)
AM, am, PM or pm meridiem indicator (without periods)
A.M., a.m., P.M. or p.m. meridiem indicator (with periods)
Y,YYY year (4 or more digits) with comma
YYYY year (4 or more digits)
YYY last 3 digits of year
YY last 2 digits of year
Y last digit of year
IYYY ISO 8601 week-numbering year (4 or more digits)
IYY last 3 digits of ISO 8601 week-numbering year
IY last 2 digits of ISO 8601 week-numbering year
I last digit of ISO 8601 week-numbering year
BC, bc, AD or ad era indicator (without periods)
B.C., b.c., A.D. or a.d. era indicator (with periods)

217

Functions and Operators

Pattern Description
MONTH full upper case month name (blank-padded to 9

chars)
Month full capitalized month name (blank-padded to 9

chars)
month full lower case month name (blank-padded to 9

chars)
MON abbreviated upper case month name (3 chars in

English, localized lengths vary)
Mon abbreviated capitalized month name (3 chars in

English, localized lengths vary)
mon abbreviated lower case month name (3 chars in

English, localized lengths vary)
MM month number (01–12)
DAY full upper case day name (blank-padded to 9

chars)
Day full capitalized day name (blank-padded to 9

chars)
day full lower case day name (blank-padded to 9

chars)
DY abbreviated upper case day name (3 chars in

English, localized lengths vary)
Dy abbreviated capitalized day name (3 chars in

English, localized lengths vary)
dy abbreviated lower case day name (3 chars in

English, localized lengths vary)
DDD day of year (001–366)
IDDD day of ISO 8601 week-numbering year (001–371;

day 1 of the year is Monday of the first ISO week)
DD day of month (01–31)
D day of the week, Sunday (1) to Saturday (7)
ID ISO 8601 day of the week, Monday (1) to Sunday (

7)
W week of month (1–5) (the first week starts on the

first day of the month)
WW week number of year (1–53) (the first week starts

on the first day of the year)
IW week number of ISO 8601 week-numbering year (

01–53; the first Thursday of the year is in week 1)
CC century (2 digits) (the twenty-first century starts

on 2001-01-01)
J Julian Date (integer days since November 24,

 4714 BC at local midnight; see Section B.7)
Q quarter
RM month in upper case Roman numerals (I–XII;

I=January)

218

Functions and Operators

Pattern Description
rm month in lower case Roman numerals (i–xii;

i=January)
TZ upper case time-zone abbreviation (only

supported in to_char)
tz lower case time-zone abbreviation (only supported

in to_char)
TZH time-zone hours
TZM time-zone minutes
OF time-zone offset from UTC (only supported in to_

char)

Modifiers can be applied to any template pattern to alter its behavior. For example, FMMonth is the Month
pattern with the FM modifier. Table 9.27 shows the modifier patterns for date/time formatting.

Table 9.27. Template Pattern Modifiers for Date/Time Formatting

Modifier Description Example
FM prefix fill mode (suppress leading

zeroes and padding blanks)
FMMonth

TH suffix upper case ordinal number suffix DDTH, e.g., 12TH
th suffix lower case ordinal number suffix DDth, e.g., 12th
FX prefix fixed format global option (see

usage notes)
FX Month DD Day

TM prefix translation mode (use localized
day and month names based on
lc_time)

TMMonth

SP suffix spell mode (not implemented) DDSP

Usage notes for date/time formatting:

• FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output
of a pattern be fixed-width. In Postgres Pro, FM modifies only the next specification, while in Oracle
FM affects all subsequent specifications, and repeated FM modifiers toggle fill mode on and off.

• TM suppresses trailing blanks whether or not FM is specified.

• to_timestamp and to_date ignore letter case in the input; so for example MON, Mon, and mon all
accept the same strings. When using the TM modifier, case-folding is done according to the rules of
the function's input collation (see Section 22.2).

• to_timestamp and to_date skip multiple blank spaces at the beginning of the input
string and around date and time values unless the FX option is used. For example,
to_timestamp(' 2000 JUN', 'YYYY MON') and to_timestamp('2000 - JUN', 'YYYY-MON')
work, but to_timestamp('2000 JUN', 'FXYYYY MON') returns an error because to_timestamp
expects only a single space. FX must be specified as the first item in the template.

• A separator (a space or non-letter/non-digit character) in the template string of to_timestamp and
to_date matches any single separator in the input string or is skipped, unless the FX option is used.
For example, to_timestamp('2000JUN', 'YYYY///MON') and to_timestamp('2000/JUN', 'YYYY
MON') work, but to_timestamp('2000//JUN', 'YYYY/MON') returns an error because the number
of separators in the input string exceeds the number of separators in the template.

If FX is specified, a separator in the template string matches exactly one character in the input
string. But note that the input string character is not required to be the same as the separator

219

Functions and Operators

from the template string. For example, to_timestamp('2000/JUN', 'FXYYYY MON') works, but
to_timestamp('2000/JUN', 'FXYYYY MON') returns an error because the second space in the
template string consumes the letter J from the input string.

• A TZH template pattern can match a signed number. Without the FX option, minus signs may be
ambiguous, and could be interpreted as a separator. This ambiguity is resolved as follows: If the
number of separators before TZH in the template string is less than the number of separators before
the minus sign in the input string, the minus sign is interpreted as part of TZH. Otherwise, the
minus sign is considered to be a separator between values. For example, to_timestamp('2000
-10', 'YYYY TZH') matches -10 to TZH, but to_timestamp('2000 -10', 'YYYY TZH') matches
10 to TZH.

• Ordinary text is allowed in to_char templates and will be output literally. You can put a substring
in double quotes to force it to be interpreted as literal text even if it contains template patterns. For
example, in '"Hello Year "YYYY', the YYYY will be replaced by the year data, but the single Y in
Year will not be. In to_date, to_number, and to_timestamp, literal text and double-quoted strings
result in skipping the number of characters contained in the string; for example "XX" skips two
input characters (whether or not they are XX).

Tip
Prior to Postgres Pro 12, it was possible to skip arbitrary text in the input string using
non-letter or non-digit characters. For example, to_timestamp('2000y6m1d', 'yyyy-
MM-DD') used to work. Now you can only use letter characters for this purpose. For
example, to_timestamp('2000y6m1d', 'yyyytMMtDDt') and to_timestamp('2000y6m1d',
'yyyy"y"MM"m"DD"d"') skip y, m, and d.

• If you want to have a double quote in the output you must precede it with a backslash, for example
'\"YYYY Month\"'. Backslashes are not otherwise special outside of double-quoted strings. Within
a double-quoted string, a backslash causes the next character to be taken literally, whatever it is
(but this has no special effect unless the next character is a double quote or another backslash).

• In to_timestamp and to_date, if the year format specification is less than four digits, e.g., YYY, and
the supplied year is less than four digits, the year will be adjusted to be nearest to the year 2020,
e.g., 95 becomes 1995.

• In to_timestamp and to_date, negative years are treated as signifying BC. If you write both a
negative year and an explicit BC field, you get AD again. An input of year zero is treated as 1 BC.

• In to_timestamp and to_date, the YYYY conversion has a restriction when processing years with
more than 4 digits. You must use some non-digit character or template after YYYY, otherwise the
year is always interpreted as 4 digits. For example (with the year 20000): to_date('200001131',
'YYYYMMDD') will be interpreted as a 4-digit year; instead use a non-digit separator after the year,
like to_date('20000-1131', 'YYYY-MMDD') or to_date('20000Nov31', 'YYYYMonDD').

• In to_timestamp and to_date, the CC (century) field is accepted but ignored if there is a YYY, YYYY
or Y,YYY field. If CC is used with YY or Y then the result is computed as that year in the specified
century. If the century is specified but the year is not, the first year of the century is assumed.

• In to_timestamp and to_date, weekday names or numbers (DAY, D, and related field types) are
accepted but are ignored for purposes of computing the result. The same is true for quarter (Q)
fields.

• In to_timestamp and to_date, an ISO 8601 week-numbering date (as distinct from a Gregorian
date) can be specified in one of two ways:
• Year, week number, and weekday: for example to_date('2006-42-4', 'IYYY-IW-ID') returns

the date 2006-10-19. If you omit the weekday it is assumed to be 1 (Monday).
• Year and day of year: for example to_date('2006-291', 'IYYY-IDDD') also returns

2006-10-19.

220

Functions and Operators

Attempting to enter a date using a mixture of ISO 8601 week-numbering fields and Gregorian date
fields is nonsensical, and will cause an error. In the context of an ISO 8601 week-numbering year,
the concept of a “month” or “day of month” has no meaning. In the context of a Gregorian year, the
ISO week has no meaning.

Caution
While to_date will reject a mixture of Gregorian and ISO week-numbering date fields,
to_char will not, since output format specifications like YYYY-MM-DD (IYYY-IDDD) can be
useful. But avoid writing something like IYYY-MM-DD; that would yield surprising results near
the start of the year. (See Section 9.9.1 for more information.)

• In to_timestamp, millisecond (MS) or microsecond (US) fields are used as the seconds digits after
the decimal point. For example to_timestamp('12.3', 'SS.MS') is not 3 milliseconds, but 300,
because the conversion treats it as 12 + 0.3 seconds. So, for the format SS.MS, the input values
12.3, 12.30, and 12.300 specify the same number of milliseconds. To get three milliseconds, one
must write 12.003, which the conversion treats as 12 + 0.003 = 12.003 seconds.

Here is a more complex example: to_timestamp('15:12:02.020.001230', 'HH24:MI:SS.MS.US')
is 15 hours, 12 minutes, and 2 seconds + 20 milliseconds + 1230 microseconds = 2.021230
seconds.

• to_char(..., 'ID')'s day of the week numbering matches the extract(isodow from ...)
function, but to_char(..., 'D')'s does not match extract(dow from ...)'s day numbering.

• to_char(interval) formats HH and HH12 as shown on a 12-hour clock, for example zero hours
and 36 hours both output as 12, while HH24 outputs the full hour value, which can exceed 23 in an
interval value.

Table 9.28 shows the template patterns available for formatting numeric values.

Table 9.28. Template Patterns for Numeric Formatting

Pattern Description
9 digit position (can be dropped if insignificant)
0 digit position (will not be dropped, even if

insignificant)
. (period) decimal point
, (comma) group (thousands) separator
PR negative value in angle brackets
S sign anchored to number (uses locale)
L currency symbol (uses locale)
D decimal point (uses locale)
G group separator (uses locale)
MI minus sign in specified position (if number < 0)
PL plus sign in specified position (if number > 0)
SG plus/minus sign in specified position
RN Roman numeral (input between 1 and 3999)
TH or th ordinal number suffix
V shift specified number of digits (see notes)
EEEE exponent for scientific notation

221

Functions and Operators

Usage notes for numeric formatting:
• 0 specifies a digit position that will always be printed, even if it contains a leading/trailing zero. 9

also specifies a digit position, but if it is a leading zero then it will be replaced by a space, while if
it is a trailing zero and fill mode is specified then it will be deleted. (For to_number(), these two
pattern characters are equivalent.)

• The pattern characters S, L, D, and G represent the sign, currency symbol, decimal point, and
thousands separator characters defined by the current locale (see lc_monetary and lc_numeric).
The pattern characters period and comma represent those exact characters, with the meanings of
decimal point and thousands separator, regardless of locale.

• If no explicit provision is made for a sign in to_char()'s pattern, one column will be reserved for
the sign, and it will be anchored to (appear just left of) the number. If S appears just left of some
9's, it will likewise be anchored to the number.

• A sign formatted using SG, PL, or MI is not anchored to the number; for example, to_char(-12,
'MI9999') produces '- 12' but to_char(-12, 'S9999') produces ' -12'. (The Oracle
implementation does not allow the use of MI before 9, but rather requires that 9 precede MI.)

• TH does not convert values less than zero and does not convert fractional numbers.
• PL, SG, and TH are Postgres Pro extensions.
• In to_number, if non-data template patterns such as L or TH are used, the corresponding number of

input characters are skipped, whether or not they match the template pattern, unless they are data
characters (that is, digits, sign, decimal point, or comma). For example, TH would skip two non-data
characters.

• V with to_char multiplies the input values by 10^n, where n is the number of digits following V. V
with to_number divides in a similar manner. to_char and to_number do not support the use of V
combined with a decimal point (e.g., 99.9V99 is not allowed).

• EEEE (scientific notation) cannot be used in combination with any of the other formatting patterns
or modifiers other than digit and decimal point patterns, and must be at the end of the format
string (e.g., 9.99EEEE is a valid pattern).

Certain modifiers can be applied to any template pattern to alter its behavior. For example, FM99.99 is
the 99.99 pattern with the FM modifier. Table 9.29 shows the modifier patterns for numeric formatting.

Table 9.29. Template Pattern Modifiers for Numeric Formatting

Modifier Description Example
FM prefix fill mode (suppress trailing

zeroes and padding blanks)
FM99.99

TH suffix upper case ordinal number suffix 999TH

th suffix lower case ordinal number suffix 999th

Table 9.30 shows some examples of the use of the to_char function.

Table 9.30. to_char Examples

Expression Result
to_char(current_timestamp, 'Day,
 DD HH12:MI:SS')

'Tuesday , 06 05:39:18'

to_char(current_timestamp, 'FMDay,
 FMDD HH12:MI:SS')

'Tuesday, 6 05:39:18'

to_char(-0.1, '99.99') ' -.10'

to_char(-0.1, 'FM9.99') '-.1'

to_char(-0.1, 'FM90.99') '-0.1'

to_char(0.1, '0.9') ' 0.1'

222

Functions and Operators

Expression Result
to_char(12, '9990999.9') ' 0012.0'

to_char(12, 'FM9990999.9') '0012.'

to_char(485, '999') ' 485'

to_char(-485, '999') '-485'

to_char(485, '9 9 9') ' 4 8 5'

to_char(1485, '9,999') ' 1,485'

to_char(1485, '9G999') ' 1 485'

to_char(148.5, '999.999') ' 148.500'

to_char(148.5, 'FM999.999') '148.5'

to_char(148.5, 'FM999.990') '148.500'

to_char(148.5, '999D999') ' 148,500'

to_char(3148.5, '9G999D999') ' 3 148,500'

to_char(-485, '999S') '485-'

to_char(-485, '999MI') '485-'

to_char(485, '999MI') '485 '

to_char(485, 'FM999MI') '485'

to_char(485, 'PL999') '+485'

to_char(485, 'SG999') '+485'

to_char(-485, 'SG999') '-485'

to_char(-485, '9SG99') '4-85'

to_char(-485, '999PR') '<485>'

to_char(485, 'L999') 'DM 485'

to_char(485, 'RN') ' CDLXXXV'

to_char(485, 'FMRN') 'CDLXXXV'

to_char(5.2, 'FMRN') 'V'

to_char(482, '999th') ' 482nd'

to_char(485, '"Good number:"999') 'Good number: 485'

to_char(485.8,
'"Pre:"999" Post:" .999')

'Pre: 485 Post: .800'

to_char(12, '99V999') ' 12000'

to_char(12.4, '99V999') ' 12400'

to_char(12.45, '99V9') ' 125'

to_char(0.0004859, '9.99EEEE') ' 4.86e-04'

9.9. Date/Time Functions and Operators
Table 9.32 shows the available functions for date/time value processing, with details appearing in the
following subsections. Table 9.31 illustrates the behaviors of the basic arithmetic operators (+, *, etc.).
For formatting functions, refer to Section 9.8. You should be familiar with the background information
on date/time data types from Section 8.5.

In addition, the usual comparison operators shown in Table 9.1 are available for the date/time types.
Dates and timestamps (with or without time zone) are all comparable, while times (with or without time
zone) and intervals can only be compared to other values of the same data type. When comparing a

223

Functions and Operators

timestamp without time zone to a timestamp with time zone, the former value is assumed to be given in
the time zone specified by the TimeZone configuration parameter, and is rotated to UTC for comparison
to the latter value (which is already in UTC internally). Similarly, a date value is assumed to represent
midnight in the TimeZone zone when comparing it to a timestamp.

All the functions and operators described below that take time or timestamp inputs actually come in
two variants: one that takes time with time zone or timestamp with time zone, and one that takes
time without time zone or timestamp without time zone. For brevity, these variants are not shown
separately. Also, the + and * operators come in commutative pairs (for example both date + integer and
integer + date); we show only one of each such pair.

Table 9.31. Date/Time Operators

Operator
Description
Example(s)

date + integer → date
Add a number of days to a date
date '2001-09-28' + 7 → 2001-10-05

date + interval → timestamp
Add an interval to a date
date '2001-09-28' + interval '1 hour' → 2001-09-28 01:00:00

date + time → timestamp
Add a time-of-day to a date
date '2001-09-28' + time '03:00' → 2001-09-28 03:00:00

interval + interval → interval
Add intervals
interval '1 day' + interval '1 hour' → 1 day 01:00:00

timestamp + interval → timestamp
Add an interval to a timestamp
timestamp '2001-09-28 01:00' + interval '23 hours' → 2001-09-29 00:00:00

time + interval → time
Add an interval to a time
time '01:00' + interval '3 hours' → 04:00:00

- interval → interval
Negate an interval
- interval '23 hours' → -23:00:00

date - date → integer
Subtract dates, producing the number of days elapsed
date '2001-10-01' - date '2001-09-28' → 3

date - integer → date
Subtract a number of days from a date
date '2001-10-01' - 7 → 2001-09-24

date - interval → timestamp
Subtract an interval from a date
date '2001-09-28' - interval '1 hour' → 2001-09-27 23:00:00

time - time → interval
Subtract times
time '05:00' - time '03:00' → 02:00:00

224

Functions and Operators

Operator
Description
Example(s)

time - interval → time
Subtract an interval from a time
time '05:00' - interval '2 hours' → 03:00:00

timestamp - interval → timestamp
Subtract an interval from a timestamp
timestamp '2001-09-28 23:00' - interval '23 hours' → 2001-09-28 00:00:00

interval - interval → interval
Subtract intervals
interval '1 day' - interval '1 hour' → 1 day -01:00:00

timestamp - timestamp → interval
Subtract timestamps (converting 24-hour intervals into days, similarly to justify_hours())
timestamp '2001-09-29 03:00' - timestamp '2001-07-27 12:00' → 63 days 15:00:00

interval * double precision → interval
Multiply an interval by a scalar
interval '1 second' * 900 → 00:15:00
interval '1 day' * 21 → 21 days
interval '1 hour' * 3.5 → 03:30:00

interval / double precision → interval
Divide an interval by a scalar
interval '1 hour' / 1.5 → 00:40:00

Table 9.32. Date/Time Functions

Function
Description
Example(s)

age (timestamp, timestamp) → interval
Subtract arguments, producing a “symbolic” result that uses years and months, rather than
just days
age(timestamp '2001-04-10', timestamp '1957-06-13') → 43 years 9 mons 27 days

age (timestamp) → interval
Subtract argument from current_date (at midnight)
age(timestamp '1957-06-13') → 62 years 6 mons 10 days

clock_timestamp () → timestamp with time zone
Current date and time (changes during statement execution); see Section 9.9.4
clock_timestamp() → 2019-12-23 14:39:53.662522-05

current_date → date
Current date; see Section 9.9.4
current_date → 2019-12-23

current_time → time with time zone
Current time of day; see Section 9.9.4
current_time → 14:39:53.662522-05

current_time (integer) → time with time zone
Current time of day, with limited precision; see Section 9.9.4

225

Functions and Operators

Function
Description
Example(s)
current_time(2) → 14:39:53.66-05

current_timestamp → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.4
current_timestamp → 2019-12-23 14:39:53.662522-05

current_timestamp (integer) → timestamp with time zone
Current date and time (start of current transaction), with limited precision; see Section 9.9.4
current_timestamp(0) → 2019-12-23 14:39:53-05

date_part (text, timestamp) → double precision
Get timestamp subfield (equivalent to extract); see Section 9.9.1
date_part('hour', timestamp '2001-02-16 20:38:40') → 20

date_part (text, interval) → double precision
Get interval subfield (equivalent to extract); see Section 9.9.1
date_part('month', interval '2 years 3 months') → 3

date_trunc (text, timestamp) → timestamp
Truncate to specified precision; see Section 9.9.2
date_trunc('hour', timestamp '2001-02-16 20:38:40') → 2001-02-16 20:00:00

date_trunc (text, timestamp with time zone, text) → timestamp with time zone
Truncate to specified precision in the specified time zone; see Section 9.9.2
date_trunc('day', timestamptz '2001-02-16 20:38:40+00', 'Australia/Sydney')

→ 2001-02-16 13:00:00+00

date_trunc (text, interval) → interval
Truncate to specified precision; see Section 9.9.2
date_trunc('hour', interval '2 days 3 hours 40 minutes') → 2 days 03:00:00

extract (field from timestamp) → double precision
Get timestamp subfield; see Section 9.9.1
extract(hour from timestamp '2001-02-16 20:38:40') → 20

extract (field from interval) → double precision
Get interval subfield; see Section 9.9.1
extract(month from interval '2 years 3 months') → 3

isfinite (date) → boolean
Test for finite date (not +/-infinity)
isfinite(date '2001-02-16') → true

isfinite (timestamp) → boolean
Test for finite timestamp (not +/-infinity)
isfinite(timestamp 'infinity') → false

isfinite (interval) → boolean
Test for finite interval (currently always true)
isfinite(interval '4 hours') → true

justify_days (interval) → interval
Adjust interval so 30-day time periods are represented as months
justify_days(interval '35 days') → 1 mon 5 days

justify_hours (interval) → interval

226

Functions and Operators

Function
Description
Example(s)
Adjust interval so 24-hour time periods are represented as days
justify_hours(interval '27 hours') → 1 day 03:00:00

justify_interval (interval) → interval
Adjust interval using justify_days and justify_hours , with additional sign adjustments
justify_interval(interval '1 mon -1 hour') → 29 days 23:00:00

localtime → time
Current time of day; see Section 9.9.4
localtime → 14:39:53.662522

localtime (integer) → time
Current time of day, with limited precision; see Section 9.9.4
localtime(0) → 14:39:53

localtimestamp → timestamp
Current date and time (start of current transaction); see Section 9.9.4
localtimestamp → 2019-12-23 14:39:53.662522

localtimestamp (integer) → timestamp
Current date and time (start of current transaction), with limited precision; see Section 9.9.4
localtimestamp(2) → 2019-12-23 14:39:53.66

make_date (year int, month int, day int) → date
Create date from year, month and day fields
make_date(2013, 7, 15) → 2013-07-15

make_interval ([years int [, months int [, weeks int [, days int [, hours int [, mins int [, secs
double precision]]]]]]]) → interval
Create interval from years, months, weeks, days, hours, minutes and seconds fields, each of
which can default to zero
make_interval(days => 10) → 10 days

make_time (hour int, min int, sec double precision) → time
Create time from hour, minute and seconds fields
make_time(8, 15, 23.5) → 08:15:23.5

make_timestamp (year int, month int, day int, hour int, min int, sec double precision) →
timestamp
Create timestamp from year, month, day, hour, minute and seconds fields
make_timestamp(2013, 7, 15, 8, 15, 23.5) → 2013-07-15 08:15:23.5

make_timestamptz (year int, month int, day int, hour int, min int, sec double precision [,
 timezone text]) → timestamp with time zone
Create timestamp with time zone from year, month, day, hour, minute and seconds fields; if
timezone is not specified, the current time zone is used
make_timestamptz(2013, 7, 15, 8, 15, 23.5) → 2013-07-15 08:15:23.5+01

now () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.4
now() → 2019-12-23 14:39:53.662522-05

statement_timestamp () → timestamp with time zone
Current date and time (start of current statement); see Section 9.9.4
statement_timestamp() → 2019-12-23 14:39:53.662522-05

227

Functions and Operators

Function
Description
Example(s)

timeofday () → text
Current date and time (like clock_timestamp , but as a text string); see Section 9.9.4
timeofday() → Mon Dec 23 14:39:53.662522 2019 EST

transaction_timestamp () → timestamp with time zone
Current date and time (start of current transaction); see Section 9.9.4
transaction_timestamp() → 2019-12-23 14:39:53.662522-05

to_timestamp (double precision) → timestamp with time zone
Convert Unix epoch (seconds since 1970-01-01 00:00:00+00) to timestamp with time zone
to_timestamp(1284352323) → 2010-09-13 04:32:03+00

In addition to these functions, the SQL OVERLAPS operator is supported:

(start1, end1) OVERLAPS (start2, end2)
(start1, length1) OVERLAPS (start2, length2)

This expression yields true when two time periods (defined by their endpoints) overlap, false when they
do not overlap. The endpoints can be specified as pairs of dates, times, or time stamps; or as a date,
time, or time stamp followed by an interval. When a pair of values is provided, either the start or the end
can be written first; OVERLAPS automatically takes the earlier value of the pair as the start. Each time
period is considered to represent the half-open interval start <= time < end, unless start and end are
equal in which case it represents that single time instant. This means for instance that two time periods
with only an endpoint in common do not overlap.

SELECT (DATE '2001-02-16', DATE '2001-12-21') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: true
SELECT (DATE '2001-02-16', INTERVAL '100 days') OVERLAPS
 (DATE '2001-10-30', DATE '2002-10-30');
Result: false
SELECT (DATE '2001-10-29', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: false
SELECT (DATE '2001-10-30', DATE '2001-10-30') OVERLAPS
 (DATE '2001-10-30', DATE '2001-10-31');
Result: true

When adding an interval value to (or subtracting an interval value from) a timestamp with time zone
value, the days component advances or decrements the date of the timestamp with time zone by the
indicated number of days, keeping the time of day the same. Across daylight saving time changes (when
the session time zone is set to a time zone that recognizes DST), this means interval '1 day' does not
necessarily equal interval '24 hours'. For example, with the session time zone set to America/Denver:

SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '1 day';
Result: 2005-04-03 12:00:00-06
SELECT timestamp with time zone '2005-04-02 12:00:00-07' + interval '24 hours';
Result: 2005-04-03 13:00:00-06

This happens because an hour was skipped due to a change in daylight saving time at 2005-04-03
02:00:00 in time zone America/Denver.

Note there can be ambiguity in the months field returned by age because different months have different
numbers of days. Postgres Pro's approach uses the month from the earlier of the two dates when
calculating partial months. For example, age('2004-06-01', '2004-04-30') uses April to yield 1 mon
1 day, while using May would yield 1 mon 2 days because May has 31 days, while April has only 30.

228

Functions and Operators

Subtraction of dates and timestamps can also be complex. One conceptually simple way to perform
subtraction is to convert each value to a number of seconds using EXTRACT(EPOCH FROM ...), then
subtract the results; this produces the number of seconds between the two values. This will adjust for
the number of days in each month, timezone changes, and daylight saving time adjustments. Subtraction
of date or timestamp values with the “-” operator returns the number of days (24-hours) and hours/
minutes/seconds between the values, making the same adjustments. The age function returns years,
months, days, and hours/minutes/seconds, performing field-by-field subtraction and then adjusting for
negative field values. The following queries illustrate the differences in these approaches. The sample
results were produced with timezone = 'US/Eastern'; there is a daylight saving time change between
the two dates used:

SELECT EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00');
Result: 10537200
SELECT (EXTRACT(EPOCH FROM timestamptz '2013-07-01 12:00:00') -
 EXTRACT(EPOCH FROM timestamptz '2013-03-01 12:00:00'))
 / 60 / 60 / 24;
Result: 121.958333333333
SELECT timestamptz '2013-07-01 12:00:00' - timestamptz '2013-03-01 12:00:00';
Result: 121 days 23:00:00
SELECT age(timestamptz '2013-07-01 12:00:00', timestamptz '2013-03-01 12:00:00');
Result: 4 mons

9.9.1. EXTRACT, date_part
EXTRACT(field FROM source)

The extract function retrieves subfields such as year or hour from date/time values. source must be a
value expression of type timestamp, time, or interval. (Expressions of type date are cast to timestamp
and can therefore be used as well.) field is an identifier or string that selects what field to extract
from the source value. The extract function returns values of type double precision. The following
are valid field names:
century

The century

SELECT EXTRACT(CENTURY FROM TIMESTAMP '2000-12-16 12:21:13');
Result: 20
SELECT EXTRACT(CENTURY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 21

The first century starts at 0001-01-01 00:00:00 AD, although they did not know it at the time. This
definition applies to all Gregorian calendar countries. There is no century number 0, you go from
-1 century to 1 century. If you disagree with this, please write your complaint to: Pope, Cathedral
Saint-Peter of Roma, Vatican.

day

For timestamp values, the day (of the month) field (1–31) ; for interval values, the number of days

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT EXTRACT(DAY FROM INTERVAL '40 days 1 minute');
Result: 40

decade

The year field divided by 10

SELECT EXTRACT(DECADE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 200

229

Functions and Operators

dow

The day of the week as Sunday (0) to Saturday (6)

SELECT EXTRACT(DOW FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 5

Note that extract's day of the week numbering differs from that of the to_char(..., 'D') function.

doy

The day of the year (1–365/366)

SELECT EXTRACT(DOY FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 47

epoch

For timestamp with time zone values, the number of seconds since 1970-01-01 00:00:00 UTC
(negative for timestamps before that); for date and timestamp values, the nominal number of seconds
since 1970-01-01 00:00:00, without regard to timezone or daylight-savings rules; for interval
values, the total number of seconds in the interval

SELECT EXTRACT(EPOCH FROM TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40.12-08');
Result: 982384720.12

SELECT EXTRACT(EPOCH FROM TIMESTAMP '2001-02-16 20:38:40.12');
Result: 982355920.12

SELECT EXTRACT(EPOCH FROM INTERVAL '5 days 3 hours');
Result: 442800

You can convert an epoch value back to a timestamp with time zone with to_timestamp:

SELECT to_timestamp(982384720.12);
Result: 2001-02-17 04:38:40.12+00

Beware that applying to_timestamp to an epoch extracted from a date or timestamp value could
produce a misleading result: the result will effectively assume that the original value had been given
in UTC, which might not be the case.

hour

The hour field (0–23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 20

isodow

The day of the week as Monday (1) to Sunday (7)

SELECT EXTRACT(ISODOW FROM TIMESTAMP '2001-02-18 20:38:40');
Result: 7

This is identical to dow except for Sunday. This matches the ISO 8601 day of the week numbering.

isoyear

The ISO 8601 week-numbering year that the date falls in (not applicable to intervals)

SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-01');
Result: 2005
SELECT EXTRACT(ISOYEAR FROM DATE '2006-01-02');
Result: 2006

Each ISO 8601 week-numbering year begins with the Monday of the week containing the 4th of
January, so in early January or late December the ISO year may be different from the Gregorian year.
See the week field for more information.

230

Functions and Operators

This field is not available in PostgreSQL releases prior to 8.3.

julian

The Julian Date corresponding to the date or timestamp (not applicable to intervals). Timestamps
that are not local midnight result in a fractional value. See Section B.7 for more information.

SELECT EXTRACT(JULIAN FROM DATE '2006-01-01');
Result: 2453737
SELECT EXTRACT(JULIAN FROM TIMESTAMP '2006-01-01 12:00');
Result: 2453737.5

microseconds

The seconds field, including fractional parts, multiplied by 1 000 000; note that this includes full
seconds

SELECT EXTRACT(MICROSECONDS FROM TIME '17:12:28.5');
Result: 28500000

millennium

The millennium

SELECT EXTRACT(MILLENNIUM FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 3

Years in the 1900s are in the second millennium. The third millennium started January 1, 2001.

milliseconds

The seconds field, including fractional parts, multiplied by 1000. Note that this includes full seconds.

SELECT EXTRACT(MILLISECONDS FROM TIME '17:12:28.5');
Result: 28500

minute

The minutes field (0–59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 38

month

For timestamp values, the number of the month within the year (1–12) ; for interval values, the
number of months, modulo 12 (0–11)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 3 months');
Result: 3

SELECT EXTRACT(MONTH FROM INTERVAL '2 years 13 months');
Result: 1

quarter

The quarter of the year (1–4) that the date is in

SELECT EXTRACT(QUARTER FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 1

second

The seconds field, including any fractional seconds

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40');

231

Functions and Operators

Result: 40

SELECT EXTRACT(SECOND FROM TIME '17:12:28.5');
Result: 28.5

timezone

The time zone offset from UTC, measured in seconds. Positive values correspond to time zones east
of UTC, negative values to zones west of UTC. (Technically, Postgres Pro does not use UTC because
leap seconds are not handled.)

timezone_hour

The hour component of the time zone offset

timezone_minute

The minute component of the time zone offset

week

The number of the ISO 8601 week-numbering week of the year. By definition, ISO weeks start on
Mondays and the first week of a year contains January 4 of that year. In other words, the first Thursday
of a year is in week 1 of that year.

In the ISO week-numbering system, it is possible for early-January dates to be part of the 52nd or
53rd week of the previous year, and for late-December dates to be part of the first week of the next
year. For example, 2005-01-01 is part of the 53rd week of year 2004, and 2006-01-01 is part of the
52nd week of year 2005, while 2012-12-31 is part of the first week of 2013. It's recommended to use
the isoyear field together with week to get consistent results.

SELECT EXTRACT(WEEK FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 7

year

The year field. Keep in mind there is no 0 AD, so subtracting BC years from AD years should be done
with care.

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40');
Result: 2001

Note
When the input value is +/-Infinity, extract returns +/-Infinity for monotonically-increasing fields
(epoch, julian, year, isoyear, decade, century, and millennium). For other fields, NULL is
returned. Postgres Pro versions before 9.6 returned zero for all cases of infinite input.

The extract function is primarily intended for computational processing. For formatting date/time
values for display, see Section 9.8.

The date_part function is modeled on the traditional Ingres equivalent to the SQL-standard function
extract:
date_part('field', source)

Note that here the field parameter needs to be a string value, not a name. The valid field names for
date_part are the same as for extract.

SELECT date_part('day', TIMESTAMP '2001-02-16 20:38:40');
Result: 16

SELECT date_part('hour', INTERVAL '4 hours 3 minutes');

232

Functions and Operators

Result: 4

9.9.2. date_trunc
The function date_trunc is conceptually similar to the trunc function for numbers.

date_trunc(field, source [, time_zone])

source is a value expression of type timestamp, timestamp with time zone, or interval. (Values of
type date and time are cast automatically to timestamp or interval, respectively.) field selects to
which precision to truncate the input value. The return value is likewise of type timestamp, timestamp
with time zone, or interval, and it has all fields that are less significant than the selected one set to
zero (or one, for day and month).

Valid values for field are:
microseconds
milliseconds
second
minute
hour
day
week
month
quarter
year
decade
century
millennium

When the input value is of type timestamp with time zone, the truncation is performed with respect
to a particular time zone; for example, truncation to day produces a value that is midnight in that zone.
By default, truncation is done with respect to the current TimeZone setting, but the optional time_zone
argument can be provided to specify a different time zone. The time zone name can be specified in any
of the ways described in Section 8.5.3.

A time zone cannot be specified when processing timestamp without time zone or interval inputs.
These are always taken at face value.

Examples (assuming the local time zone is America/New_York):
SELECT date_trunc('hour', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-02-16 20:00:00

SELECT date_trunc('year', TIMESTAMP '2001-02-16 20:38:40');
Result: 2001-01-01 00:00:00

SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00');
Result: 2001-02-16 00:00:00-05

SELECT date_trunc('day', TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40+00', 'Australia/
Sydney');
Result: 2001-02-16 08:00:00-05

SELECT date_trunc('hour', INTERVAL '3 days 02:47:33');
Result: 3 days 02:00:00

9.9.3. AT TIME ZONE
The AT TIME ZONE operator converts time stamp without time zone to/from time stamp with time zone,
and time with time zone values to different time zones. Table 9.33 shows its variants.

233

Functions and Operators

Table 9.33. AT TIME ZONE Variants

Operator
Description
Example(s)

timestamp without time zone AT TIME ZONE zone → timestamp with time zone
Converts given time stamp without time zone to time stamp with time zone, assuming the
given value is in the named time zone.
timestamp '2001-02-16 20:38:40' at time zone 'America/Denver' → 2001-02-17
03:38:40+00

timestamp with time zone AT TIME ZONE zone → timestamp without time zone
Converts given time stamp with time zone to time stamp without time zone, as the time would
appear in that zone.
timestamp with time zone '2001-02-16 20:38:40-05' at time zone 'America/Denver'

→ 2001-02-16 18:38:40

time with time zone AT TIME ZONE zone → time with time zone
Converts given time with time zone to a new time zone. Since no date is supplied, this uses
the currently active UTC offset for the named destination zone.
time with time zone '05:34:17-05' at time zone 'UTC' → 10:34:17+00

In these expressions, the desired time zone zone can be specified either as a text value (e.g., 'America/
Los_Angeles') or as an interval (e.g., INTERVAL '-08:00'). In the text case, a time zone name can be
specified in any of the ways described in Section 8.5.3. The interval case is only useful for zones that
have fixed offsets from UTC, so it is not very common in practice.

Examples (assuming the current TimeZone setting is America/Los_Angeles):
SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 19:38:40-08

SELECT TIMESTAMP WITH TIME ZONE '2001-02-16 20:38:40-05' AT TIME ZONE 'America/Denver';
Result: 2001-02-16 18:38:40

SELECT TIMESTAMP '2001-02-16 20:38:40' AT TIME ZONE 'Asia/Tokyo' AT TIME ZONE 'America/
Chicago';
Result: 2001-02-16 05:38:40

The first example adds a time zone to a value that lacks it, and displays the value using the current
TimeZone setting. The second example shifts the time stamp with time zone value to the specified time
zone, and returns the value without a time zone. This allows storage and display of values different from
the current TimeZone setting. The third example converts Tokyo time to Chicago time.

The function timezone(zone, timestamp) is equivalent to the SQL-conforming construct timestamp AT
TIME ZONE zone.

9.9.4. Current Date/Time
Postgres Pro provides a number of functions that return values related to the current date and time.
These SQL-standard functions all return values based on the start time of the current transaction:
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP
CURRENT_TIME(precision)
CURRENT_TIMESTAMP(precision)
LOCALTIME
LOCALTIMESTAMP
LOCALTIME(precision)
LOCALTIMESTAMP(precision)

234

Functions and Operators

CURRENT_TIME and CURRENT_TIMESTAMP deliver values with time zone; LOCALTIME and LOCALTIMESTAMP
deliver values without time zone.

CURRENT_TIME, CURRENT_TIMESTAMP, LOCALTIME, and LOCALTIMESTAMP can optionally take a precision
parameter, which causes the result to be rounded to that many fractional digits in the seconds field.
Without a precision parameter, the result is given to the full available precision.

Some examples:

SELECT CURRENT_TIME;
Result: 14:39:53.662522-05

SELECT CURRENT_DATE;
Result: 2019-12-23

SELECT CURRENT_TIMESTAMP;
Result: 2019-12-23 14:39:53.662522-05

SELECT CURRENT_TIMESTAMP(2);
Result: 2019-12-23 14:39:53.66-05

SELECT LOCALTIMESTAMP;
Result: 2019-12-23 14:39:53.662522

Since these functions return the start time of the current transaction, their values do not change during
the transaction. This is considered a feature: the intent is to allow a single transaction to have a consistent
notion of the “current” time, so that multiple modifications within the same transaction bear the same
time stamp.

Note
Other database systems might advance these values more frequently.

Postgres Pro also provides functions that return the start time of the current statement, as well as the
actual current time at the instant the function is called. The complete list of non-SQL-standard time
functions is:

transaction_timestamp()
statement_timestamp()
clock_timestamp()
timeofday()
now()

transaction_timestamp() is equivalent to CURRENT_TIMESTAMP, but is named to clearly reflect what
it returns. statement_timestamp() returns the start time of the current statement (more specifically,
the time of receipt of the latest command message from the client). statement_timestamp() and
transaction_timestamp() return the same value during the first command of a transaction, but
might differ during subsequent commands. clock_timestamp() returns the actual current time, and
therefore its value changes even within a single SQL command. timeofday() is a historical Postgres
Pro function. Like clock_timestamp(), it returns the actual current time, but as a formatted text string
rather than a timestamp with time zone value. now() is a traditional Postgres Pro equivalent to
transaction_timestamp().

All the date/time data types also accept the special literal value now to specify the current date and time
(again, interpreted as the transaction start time). Thus, the following three all return the same result:

SELECT CURRENT_TIMESTAMP;
SELECT now();
SELECT TIMESTAMP 'now'; -- but see tip below

235

Functions and Operators

Tip
Do not use the third form when specifying a value to be evaluated later, for example in a DEFAULT
clause for a table column. The system will convert now to a timestamp as soon as the constant is
parsed, so that when the default value is needed, the time of the table creation would be used!
The first two forms will not be evaluated until the default value is used, because they are function
calls. Thus they will give the desired behavior of defaulting to the time of row insertion. (See also
Section 8.5.1.4.)

9.9.5. Delaying Execution
The following functions are available to delay execution of the server process:
pg_sleep (double precision)
pg_sleep_for (interval)
pg_sleep_until (timestamp with time zone)

pg_sleep makes the current session's process sleep until the given number of seconds have elapsed.
Fractional-second delays can be specified. pg_sleep_for is a convenience function to allow the sleep
time to be specified as an interval. pg_sleep_until is a convenience function for when a specific wake-
up time is desired. For example:
SELECT pg_sleep(1.5);
SELECT pg_sleep_for('5 minutes');
SELECT pg_sleep_until('tomorrow 03:00');

Note
The effective resolution of the sleep interval is platform-specific; 0.01 seconds is a common value.
The sleep delay will be at least as long as specified. It might be longer depending on factors such
as server load. In particular, pg_sleep_until is not guaranteed to wake up exactly at the specified
time, but it will not wake up any earlier.

Warning
Make sure that your session does not hold more locks than necessary when calling pg_sleep or
its variants. Otherwise other sessions might have to wait for your sleeping process, slowing down
the entire system.

9.10. Enum Support Functions
For enum types (described in Section 8.7), there are several functions that allow cleaner programming
without hard-coding particular values of an enum type. These are listed in Table 9.34. The examples
assume an enum type created as:
CREATE TYPE rainbow AS ENUM ('red', 'orange', 'yellow', 'green', 'blue', 'purple');

Table 9.34. Enum Support Functions

Function
Description
Example(s)

enum_first (anyenum) → anyenum
Returns the first value of the input enum type.
enum_first(null::rainbow) → red

236

Functions and Operators

Function
Description
Example(s)

enum_last (anyenum) → anyenum
Returns the last value of the input enum type.
enum_last(null::rainbow) → purple

enum_range (anyenum) → anyarray
Returns all values of the input enum type in an ordered array.
enum_range(null::rainbow) → {red,orange,yellow,green,blue,purple}

enum_range (anyenum, anyenum) → anyarray
Returns the range between the two given enum values, as an ordered array. The values must
be from the same enum type. If the first parameter is null, the result will start with the first
value of the enum type. If the second parameter is null, the result will end with the last value
of the enum type.
enum_range('orange'::rainbow, 'green'::rainbow) → {orange,yellow,green}
enum_range(NULL, 'green'::rainbow) → {red,orange,yellow,green}
enum_range('orange'::rainbow, NULL) → {orange,yellow,green,blue,purple}

Notice that except for the two-argument form of enum_range, these functions disregard the specific value
passed to them; they care only about its declared data type. Either null or a specific value of the type
can be passed, with the same result. It is more common to apply these functions to a table column or
function argument than to a hardwired type name as used in the examples.

9.11. Geometric Functions and Operators
The geometric types point, box, lseg, line, path, polygon, and circle have a large set of native support
functions and operators, shown in Table 9.35, Table 9.36, and Table 9.37.

Table 9.35. Geometric Operators

Operator
Description
Example(s)

geometric_type + point → geometric_type
Adds the coordinates of the second point to those of each point of the first argument, thus
performing translation. Available for point, box, path, circle.
box '(1,1),(0,0)' + point '(2,0)' → (3,1),(2,0)

path + path → path
Concatenates two open paths (returns NULL if either path is closed).
path '[(0,0),(1,1)]' + path '[(2,2),(3,3),(4,4)]' → [(0,0),(1,
1),(2,2),(3,3),(4,4)]

geometric_type - point → geometric_type
Subtracts the coordinates of the second point from those of each point of the first argument,
 thus performing translation. Available for point, box, path, circle.
box '(1,1),(0,0)' - point '(2,0)' → (-1,1),(-2,0)

geometric_type * point → geometric_type
Multiplies each point of the first argument by the second point (treating a point as being a
complex number represented by real and imaginary parts, and performing standard complex
multiplication). If one interprets the second point as a vector, this is equivalent to scaling
the object's size and distance from the origin by the length of the vector, and rotating it
counterclockwise around the origin by the vector's angle from the x axis. Available for point,
 box,a path, circle.

237

Functions and Operators

Operator
Description
Example(s)
path '((0,0),(1,0),(1,1))' * point '(3.0,0)' → ((0,0),(3,0),(
3,3))

path '((0,0),(1,0),(1,1))' * point(cosd(45), sind(45)) → ((0,
0),(0.7071067811865475,0.7071067811865475),(0,1.414213562373095))

geometric_type / point → geometric_type
Divides each point of the first argument by the second point (treating a point as being a
complex number represented by real and imaginary parts, and performing standard complex
division). If one interprets the second point as a vector, this is equivalent to scaling the
object's size and distance from the origin down by the length of the vector, and rotating it
clockwise around the origin by the vector's angle from the x axis. Available for point, box,a
path, circle.
path '((0,0),(1,0),(1,1))' / point '(2.0,0)' → ((0,0),(0.5,0),
(0.5,0.5))

path '((0,0),(1,0),(1,1))' / point(cosd(45), sind(45)) → ((0,
0),(0.7071067811865476,-0.7071067811865476),(1.4142135623730951,0))

@-@ geometric_type → double precision
Computes the total length. Available for lseg, path.
@-@ path '[(0,0),(1,0),(1,1)]' → 2

@@ geometric_type → point
Computes the center point. Available for box, lseg, polygon, circle.
@@ box '(2,2),(0,0)' → (1,1)

geometric_type → integer
Returns the number of points. Available for path, polygon.
path '((1,0),(0,1),(-1,0))' → 3

geometric_type # geometric_type → point
Computes the point of intersection, or NULL if there is none. Available for lseg, line.
lseg '[(0,0),(1,1)]' # lseg '[(1,0),(0,1)]' → (0.5,0.5)

box # box → box
Computes the intersection of two boxes, or NULL if there is none.
box '(2,2),(-1,-1)' # box '(1,1),(-2,-2)' → (1,1),(-1,-1)

geometric_type ## geometric_type → point
Computes the closest point to the first object on the second object. Available for these pairs of
types: (point, box), (point, lseg), (point, line), (lseg, box), (lseg, lseg), (line, lseg).
point '(0,0)' ## lseg '[(2,0),(0,2)]' → (1,1)

geometric_type <-> geometric_type → double precision
Computes the distance between the objects. Available for all geometric types except polygon,
 for all combinations of point with another geometric type, and for these additional pairs of
types: (box, lseg), (lseg, line), (polygon, circle) (and the commutator cases).
circle '<(0,0),1>' <-> circle '<(5,0),1>' → 3

geometric_type @> geometric_type → boolean
Does first object contain second? Available for these pairs of types: (box, point), (box, box), (
path, point), (polygon, point), (polygon, polygon), (circle, point), (circle, circle).
circle '<(0,0),2>' @> point '(1,1)' → t

geometric_type <@ geometric_type → boolean

238

Functions and Operators

Operator
Description
Example(s)
Is first object contained in or on second? Available for these pairs of types: (point, box), (
point, lseg), (point, line), (point, path), (point, polygon), (point, circle), (box, box), (
lseg, box), (lseg, line), (polygon, polygon), (circle, circle).
point '(1,1)' <@ circle '<(0,0),2>' → t

geometric_type && geometric_type → boolean
Do these objects overlap? (One point in common makes this true.) Available for box, polygon,
 circle.
box '(1,1),(0,0)' && box '(2,2),(0,0)' → t

geometric_type << geometric_type → boolean
Is first object strictly left of second? Available for point, box, polygon, circle.
circle '<(0,0),1>' << circle '<(5,0),1>' → t

geometric_type >> geometric_type → boolean
Is first object strictly right of second? Available for point, box, polygon, circle.
circle '<(5,0),1>' >> circle '<(0,0),1>' → t

geometric_type &< geometric_type → boolean
Does first object not extend to the right of second? Available for box, polygon, circle.
box '(1,1),(0,0)' &< box '(2,2),(0,0)' → t

geometric_type &> geometric_type → boolean
Does first object not extend to the left of second? Available for box, polygon, circle.
box '(3,3),(0,0)' &> box '(2,2),(0,0)' → t

geometric_type <<| geometric_type → boolean
Is first object strictly below second? Available for box, polygon, circle.
box '(3,3),(0,0)' <<| box '(5,5),(3,4)' → t

geometric_type |>> geometric_type → boolean
Is first object strictly above second? Available for box, polygon, circle.
box '(5,5),(3,4)' |>> box '(3,3),(0,0)' → t

geometric_type &<| geometric_type → boolean
Does first object not extend above second? Available for box, polygon, circle.
box '(1,1),(0,0)' &<| box '(2,2),(0,0)' → t

geometric_type |&> geometric_type → boolean
Does first object not extend below second? Available for box, polygon, circle.
box '(3,3),(0,0)' |&> box '(2,2),(0,0)' → t

box <^ box → boolean
Is first object below second (allows edges to touch)?
box '((1,1),(0,0))' <^ box '((2,2),(1,1))' → t

point <^ point → boolean
Is first object strictly below second? (This operator is misnamed; it should be <<|.)
point '(1,0)' <^ point '(1,1)' → t

box >^ box → boolean
Is first object above second (allows edges to touch)?
box '((2,2),(1,1))' >^ box '((1,1),(0,0))' → t

point >^ point → boolean

239

Functions and Operators

Operator
Description
Example(s)
Is first object strictly above second? (This operator is misnamed; it should be |>>.)
point '(1,1)' >^ point '(1,0)' → t

geometric_type ?# geometric_type → boolean
Do these objects intersect? Available for these pairs of types: (box, box), (lseg, box), (lseg,
 lseg), (lseg, line), (line, box), (line, line), (path, path).
lseg '[(-1,0),(1,0)]' ?# box '(2,2),(-2,-2)' → t

?- line → boolean
?- lseg → boolean

Is line horizontal?
?- lseg '[(-1,0),(1,0)]' → t

point ?- point → boolean
Are points horizontally aligned (that is, have same y coordinate)?
point '(1,0)' ?- point '(0,0)' → t

?| line → boolean
?| lseg → boolean

Is line vertical?
?| lseg '[(-1,0),(1,0)]' → f

point ?| point → boolean
Are points vertically aligned (that is, have same x coordinate)?
point '(0,1)' ?| point '(0,0)' → t

line ?-| line → boolean
lseg ?-| lseg → boolean

Are lines perpendicular?
lseg '[(0,0),(0,1)]' ?-| lseg '[(0,0),(1,0)]' → t

line ?|| line → boolean
lseg ?|| lseg → boolean

Are lines parallel?
lseg '[(-1,0),(1,0)]' ?|| lseg '[(-1,2),(1,2)]' → t

geometric_type ~= geometric_type → boolean
Are these objects the same? Available for point, box, polygon, circle.
polygon '((0,0),(1,1))' ~= polygon '((1,1),(0,0))' → t

a“Rotating” a box with these operators only moves its corner points: the box is still considered to have sides parallel to the axes. Hence the box's size is not
preserved, as a true rotation would do.

Caution
Note that the “same as” operator, ~=, represents the usual notion of equality for the point, box,
polygon, and circle types. Some of the geometric types also have an = operator, but = compares
for equal areas only. The other scalar comparison operators (<= and so on), where available for
these types, likewise compare areas.

240

Functions and Operators

Note
Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called ~ and @.
These names are still available, but are deprecated and will eventually be removed.

Table 9.36. Geometric Functions

Function
Description
Example(s)

area (geometric_type) → double precision
Computes area. Available for box, path, circle. A path input must be closed, else NULL is
returned. Also, if the path is self-intersecting, the result may be meaningless.
area(box '(2,2),(0,0)') → 4

center (geometric_type) → point
Computes center point. Available for box, circle.
center(box '(1,2),(0,0)') → (0.5,1)

diagonal (box) → lseg
Extracts box's diagonal as a line segment (same as lseg(box)).
diagonal(box '(1,2),(0,0)') → [(1,2),(0,0)]

diameter (circle) → double precision
Computes diameter of circle.
diameter(circle '<(0,0),2>') → 4

height (box) → double precision
Computes vertical size of box.
height(box '(1,2),(0,0)') → 2

isclosed (path) → boolean
Is path closed?
isclosed(path '((0,0),(1,1),(2,0))') → t

isopen (path) → boolean
Is path open?
isopen(path '[(0,0),(1,1),(2,0)]') → t

length (geometric_type) → double precision
Computes the total length. Available for lseg, path.
length(path '((-1,0),(1,0))') → 4

npoints (geometric_type) → integer
Returns the number of points. Available for path, polygon.
npoints(path '[(0,0),(1,1),(2,0)]') → 3

pclose (path) → path
Converts path to closed form.
pclose(path '[(0,0),(1,1),(2,0)]') → ((0,0),(1,1),(2,0))

popen (path) → path
Converts path to open form.
popen(path '((0,0),(1,1),(2,0))') → [(0,0),(1,1),(2,0)]

radius (circle) → double precision
Computes radius of circle.

241

Functions and Operators

Function
Description
Example(s)
radius(circle '<(0,0),2>') → 2

slope (point, point) → double precision
Computes slope of a line drawn through the two points.
slope(point '(0,0)', point '(2,1)') → 0.5

width (box) → double precision
Computes horizontal size of box.
width(box '(1,2),(0,0)') → 1

Table 9.37. Geometric Type Conversion Functions

Function
Description
Example(s)

box (circle) → box
Computes box inscribed within the circle.
box(circle '<(0,0),2>') → (1.414213562373095,1.414213562373095),(
-1.414213562373095,-1.414213562373095)

box (point) → box
Converts point to empty box.
box(point '(1,0)') → (1,0),(1,0)

box (point, point) → box
Converts any two corner points to box.
box(point '(0,1)', point '(1,0)') → (1,1),(0,0)

box (polygon) → box
Computes bounding box of polygon.
box(polygon '((0,0),(1,1),(2,0))') → (2,1),(0,0)

bound_box (box, box) → box
Computes bounding box of two boxes.
bound_box(box '(1,1),(0,0)', box '(4,4),(3,3)') → (4,4),(0,0)

circle (box) → circle
Computes smallest circle enclosing box.
circle(box '(1,1),(0,0)') → <(0.5,0.5),0.7071067811865476>

circle (point, double precision) → circle
Constructs circle from center and radius.
circle(point '(0,0)', 2.0) → <(0,0),2>

circle (polygon) → circle
Converts polygon to circle. The circle's center is the mean of the positions of the polygon's
points, and the radius is the average distance of the polygon's points from that center.
circle(polygon '((0,0),(1,3),(2,0))') → <(1,1),1.6094757082487299>

line (point, point) → line
Converts two points to the line through them.
line(point '(-1,0)', point '(1,0)') → {0,-1,0}

lseg (box) → lseg
Extracts box's diagonal as a line segment.

242

Functions and Operators

Function
Description
Example(s)
lseg(box '(1,0),(-1,0)') → [(1,0),(-1,0)]

lseg (point, point) → lseg
Constructs line segment from two endpoints.
lseg(point '(-1,0)', point '(1,0)') → [(-1,0),(1,0)]

path (polygon) → path
Converts polygon to a closed path with the same list of points.
path(polygon '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

point (double precision, double precision) → point
Constructs point from its coordinates.
point(23.4, -44.5) → (23.4,-44.5)

point (box) → point
Computes center of box.
point(box '(1,0),(-1,0)') → (0,0)

point (circle) → point
Computes center of circle.
point(circle '<(0,0),2>') → (0,0)

point (lseg) → point
Computes center of line segment.
point(lseg '[(-1,0),(1,0)]') → (0,0)

point (polygon) → point
Computes center of polygon (the mean of the positions of the polygon's points).
point(polygon '((0,0),(1,1),(2,0))') → (1,0.3333333333333333)

polygon (box) → polygon
Converts box to a 4-point polygon.
polygon(box '(1,1),(0,0)') → ((0,0),(0,1),(1,1),(1,0))

polygon (circle) → polygon
Converts circle to a 12-point polygon.
polygon(circle '<(0,0),2>') → ((-2,0),(-1.7320508075688774,
0.9999999999999999),(-1.0000000000000002,1.7320508075688772),(
-1.2246063538223773e-16,2),(0.9999999999999996,1.7320508075688774),
(1.732050807568877,1.0000000000000007),(2,2.4492127076447545e-16),
(1.7320508075688776,-0.9999999999999994),(1.0000000000000009,
-1.7320508075688767),(3.673819061467132e-16,-2),(-0.9999999999999987,
-1.732050807568878),(-1.7320508075688767,-1.0000000000000009))

polygon (integer, circle) → polygon
Converts circle to an n-point polygon.
polygon(4, circle '<(3,0),1>') → ((2,0),(3,1),(4,
1.2246063538223773e-16),(3,-1))

polygon (path) → polygon
Converts closed path to a polygon with the same list of points.
polygon(path '((0,0),(1,1),(2,0))') → ((0,0),(1,1),(2,0))

It is possible to access the two component numbers of a point as though the point were an array with
indexes 0 and 1. For example, if t.p is a point column then SELECT p[0] FROM t retrieves the X

243

Functions and Operators

coordinate and UPDATE t SET p[1] = ... changes the Y coordinate. In the same way, a value of type
box or lseg can be treated as an array of two point values.

9.12. Network Address Functions and Operators
The IP network address types, cidr and inet, support the usual comparison operators shown in Table 9.1
as well as the specialized operators and functions shown in Table 9.38 and Table 9.39.

Any cidr value can be cast to inet implicitly; therefore, the operators and functions shown below as
operating on inet also work on cidr values. (Where there are separate functions for inet and cidr,
it is because the behavior should be different for the two cases.) Also, it is permitted to cast an inet
value to cidr. When this is done, any bits to the right of the netmask are silently zeroed to create a
valid cidr value.

Table 9.38. IP Address Operators

Operator
Description
Example(s)

inet << inet → boolean
Is subnet strictly contained by subnet? This operator, and the next four, test for subnet
inclusion. They consider only the network parts of the two addresses (ignoring any bits to the
right of the netmasks) and determine whether one network is identical to or a subnet of the
other.
inet '192.168.1.5' << inet '192.168.1/24' → t
inet '192.168.0.5' << inet '192.168.1/24' → f
inet '192.168.1/24' << inet '192.168.1/24' → f

inet <<= inet → boolean
Is subnet contained by or equal to subnet?
inet '192.168.1/24' <<= inet '192.168.1/24' → t

inet >> inet → boolean
Does subnet strictly contain subnet?
inet '192.168.1/24' >> inet '192.168.1.5' → t

inet >>= inet → boolean
Does subnet contain or equal subnet?
inet '192.168.1/24' >>= inet '192.168.1/24' → t

inet && inet → boolean
Does either subnet contain or equal the other?
inet '192.168.1/24' && inet '192.168.1.80/28' → t
inet '192.168.1/24' && inet '192.168.2.0/28' → f

~ inet → inet
Computes bitwise NOT.
~ inet '192.168.1.6' → 63.87.254.249

inet & inet → inet
Computes bitwise AND.
inet '192.168.1.6' & inet '0.0.0.255' → 0.0.0.6

inet | inet → inet
Computes bitwise OR.
inet '192.168.1.6' | inet '0.0.0.255' → 192.168.1.255

inet + bigint → inet

244

Functions and Operators

Operator
Description
Example(s)
Adds an offset to an address.
inet '192.168.1.6' + 25 → 192.168.1.31

bigint + inet → inet
Adds an offset to an address.
200 + inet '::ffff:fff0:1' → ::ffff:255.240.0.201

inet - bigint → inet
Subtracts an offset from an address.
inet '192.168.1.43' - 36 → 192.168.1.7

inet - inet → bigint
Computes the difference of two addresses.
inet '192.168.1.43' - inet '192.168.1.19' → 24
inet '::1' - inet '::ffff:1' → -4294901760

Table 9.39. IP Address Functions

Function
Description
Example(s)

abbrev (inet) → text
Creates an abbreviated display format as text. (The result is the same as the inet output
function produces; it is “abbreviated” only in comparison to the result of an explicit cast to
text, which for historical reasons will never suppress the netmask part.)
abbrev(inet '10.1.0.0/32') → 10.1.0.0

abbrev (cidr) → text
Creates an abbreviated display format as text. (The abbreviation consists of dropping all-zero
octets to the right of the netmask; more examples are in Table 8.22.)
abbrev(cidr '10.1.0.0/16') → 10.1/16

broadcast (inet) → inet
Computes the broadcast address for the address's network.
broadcast(inet '192.168.1.5/24') → 192.168.1.255/24

family (inet) → integer
Returns the address's family: 4 for IPv4, 6 for IPv6.
family(inet '::1') → 6

host (inet) → text
Returns the IP address as text, ignoring the netmask.
host(inet '192.168.1.0/24') → 192.168.1.0

hostmask (inet) → inet
Computes the host mask for the address's network.
hostmask(inet '192.168.23.20/30') → 0.0.0.3

inet_merge (inet, inet) → cidr
Computes the smallest network that includes both of the given networks.
inet_merge(inet '192.168.1.5/24', inet '192.168.2.5/24') → 192.168.0.0/22

inet_same_family (inet, inet) → boolean
Tests whether the addresses belong to the same IP family.
inet_same_family(inet '192.168.1.5/24', inet '::1') → f

245

Functions and Operators

Function
Description
Example(s)

masklen (inet) → integer
Returns the netmask length in bits.
masklen(inet '192.168.1.5/24') → 24

netmask (inet) → inet
Computes the network mask for the address's network.
netmask(inet '192.168.1.5/24') → 255.255.255.0

network (inet) → cidr
Returns the network part of the address, zeroing out whatever is to the right of the netmask.
(This is equivalent to casting the value to cidr.)
network(inet '192.168.1.5/24') → 192.168.1.0/24

set_masklen (inet, integer) → inet
Sets the netmask length for an inet value. The address part does not change.
set_masklen(inet '192.168.1.5/24', 16) → 192.168.1.5/16

set_masklen (cidr, integer) → cidr
Sets the netmask length for a cidr value. Address bits to the right of the new netmask are set
to zero.
set_masklen(cidr '192.168.1.0/24', 16) → 192.168.0.0/16

text (inet) → text
Returns the unabbreviated IP address and netmask length as text. (This has the same result
as an explicit cast to text.)
text(inet '192.168.1.5') → 192.168.1.5/32

Tip
The abbrev, host, and text functions are primarily intended to offer alternative display formats
for IP addresses.

The MAC address types, macaddr and macaddr8, support the usual comparison operators shown in
Table 9.1 as well as the specialized functions shown in Table 9.40. In addition, they support the bitwise
logical operators ~, & and | (NOT, AND and OR), just as shown above for IP addresses.

Table 9.40. MAC Address Functions

Function
Description
Example(s)

trunc (macaddr) → macaddr
Sets the last 3 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).
trunc(macaddr '12:34:56:78:90:ab') → 12:34:56:00:00:00

trunc (macaddr8) → macaddr8
Sets the last 5 bytes of the address to zero. The remaining prefix can be associated with a
particular manufacturer (using data not included in PostgreSQL).
trunc(macaddr8 '12:34:56:78:90:ab:cd:ef') → 12:34:56:00:00:00:00:00

macaddr8_set7bit (macaddr8) → macaddr8
Sets the 7th bit of the address to one, creating what is known as modified EUI-64, for
inclusion in an IPv6 address.

246

Functions and Operators

Function
Description
Example(s)
macaddr8_set7bit(macaddr8 '00:34:56:ab:cd:ef') → 02:34:56:ff:fe:ab:cd:ef

9.13. Text Search Functions and Operators
Table 9.41, Table 9.42 and Table 9.43 summarize the functions and operators that are provided for full
text searching. See Chapter 12 for a detailed explanation of Postgres Pro's text search facility.

Table 9.41. Text Search Operators

Operator
Description
Example(s)

tsvector @@ tsquery → boolean
tsquery @@ tsvector → boolean

Does tsvector match tsquery? (The arguments can be given in either order.)
to_tsvector('fat cats ate rats') @@ to_tsquery('cat & rat') → t

text @@ tsquery → boolean
Does text string, after implicit invocation of to_tsvector() , match tsquery?
'fat cats ate rats' @@ to_tsquery('cat & rat') → t

tsvector @@@ tsquery → boolean
tsquery @@@ tsvector → boolean

This is a deprecated synonym for @@.
to_tsvector('fat cats ate rats') @@@ to_tsquery('cat & rat') → t

tsvector || tsvector → tsvector
Concatenates two tsvectors. If both inputs contain lexeme positions, the second input's
positions are adjusted accordingly.
'a:1 b:2'::tsvector || 'c:1 d:2 b:3'::tsvector → 'a':1 'b':2,5 'c':3 'd':4

tsquery && tsquery → tsquery
ANDs two tsquerys together, producing a query that matches documents that match both
input queries.
'fat | rat'::tsquery && 'cat'::tsquery → ('fat' | 'rat') & 'cat'

tsquery || tsquery → tsquery
ORs two tsquerys together, producing a query that matches documents that match either
input query.
'fat | rat'::tsquery || 'cat'::tsquery → 'fat' | 'rat' | 'cat'

!! tsquery → tsquery
Negates a tsquery, producing a query that matches documents that do not match the input
query.
!! 'cat'::tsquery → !'cat'

tsquery <-> tsquery → tsquery
Constructs a phrase query, which matches if the two input queries match at successive
lexemes.
to_tsquery('fat') <-> to_tsquery('rat') → 'fat' <-> 'rat'

tsquery @> tsquery → boolean
Does first tsquery contain the second? (This considers only whether all the lexemes
appearing in one query appear in the other, ignoring the combining operators.)

247

Functions and Operators

Operator
Description
Example(s)
'cat'::tsquery @> 'cat & rat'::tsquery → f

tsquery <@ tsquery → boolean
Is first tsquery contained in the second? (This considers only whether all the lexemes
appearing in one query appear in the other, ignoring the combining operators.)
'cat'::tsquery <@ 'cat & rat'::tsquery → t
'cat'::tsquery <@ '!cat & rat'::tsquery → t

In addition to these specialized operators, the usual comparison operators shown in Table 9.1 are
available for types tsvector and tsquery. These are not very useful for text searching but allow, for
example, unique indexes to be built on columns of these types.

Table 9.42. Text Search Functions

Function
Description
Example(s)

array_to_tsvector (text[]) → tsvector
Converts an array of lexemes to a tsvector. The given strings are used as-is without further
processing.
array_to_tsvector('{fat,cat,rat}'::text[]) → 'cat' 'fat' 'rat'

get_current_ts_config () → regconfig
Returns the OID of the current default text search configuration (as set by default_text_
search_config).
get_current_ts_config() → english

length (tsvector) → integer
Returns the number of lexemes in the tsvector.
length('fat:2,4 cat:3 rat:5A'::tsvector) → 3

numnode (tsquery) → integer
Returns the number of lexemes plus operators in the tsquery.
numnode('(fat & rat) | cat'::tsquery) → 5

plainto_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default
configuration. Any punctuation in the string is ignored (it does not determine query
operators). The resulting query matches documents containing all non-stopwords in the text.
plainto_tsquery('english', 'The Fat Rats') → 'fat' & 'rat'

phraseto_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default
configuration. Any punctuation in the string is ignored (it does not determine query
operators). The resulting query matches phrases containing all non-stopwords in the text.
phraseto_tsquery('english', 'The Fat Rats') → 'fat' <-> 'rat'
phraseto_tsquery('english', 'The Cat and Rats') → 'cat' <2> 'rat'

websearch_to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default
configuration. Quoted word sequences are converted to phrase tests. The word “or” is
understood as producing an OR operator, and a dash produces a NOT operator; other
punctuation is ignored. This approximates the behavior of some common web search tools.

248

Functions and Operators

Function
Description
Example(s)
websearch_to_tsquery('english', '"fat rat" or cat dog') → 'fat' <-> 'rat' |
'cat' & 'dog'

querytree (tsquery) → text
Produces a representation of the indexable portion of a tsquery. A result that is empty or just
T indicates a non-indexable query.
querytree('foo & ! bar'::tsquery) → 'foo'

setweight (vector tsvector, weight "char") → tsvector
Assigns the specified weight to each element of the vector.
setweight('fat:2,4 cat:3 rat:5B'::tsvector, 'A') → 'cat':3A 'fat':2A,4A
'rat':5A

setweight (vector tsvector, weight "char", lexemes text[]) → tsvector
Assigns the specified weight to elements of the vector that are listed in lexemes.
setweight('fat:2,4 cat:3 rat:5,6B'::tsvector, 'A', '{cat,rat}') → 'cat':3A
'fat':2,4 'rat':5A,6A

strip (tsvector) → tsvector
Removes positions and weights from the tsvector.
strip('fat:2,4 cat:3 rat:5A'::tsvector) → 'cat' 'fat' 'rat'

to_tsquery ([config regconfig,] query text) → tsquery
Converts text to a tsquery, normalizing words according to the specified or default
configuration. The words must be combined by valid tsquery operators.
to_tsquery('english', 'The & Fat & Rats') → 'fat' & 'rat'

to_tsvector ([config regconfig,] document text) → tsvector
Converts text to a tsvector, normalizing words according to the specified or default
configuration. Position information is included in the result.
to_tsvector('english', 'The Fat Rats') → 'fat':2 'rat':3

to_tsvector ([config regconfig,] document json) → tsvector
to_tsvector ([config regconfig,] document jsonb) → tsvector

Converts each string value in the JSON document to a tsvector, normalizing words
according to the specified or default configuration. The results are then concatenated in
document order to produce the output. Position information is generated as though one
stopword exists between each pair of string values. (Beware that “document order” of the
fields of a JSON object is implementation-dependent when the input is jsonb; observe the
difference in the examples.)
to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::json) → 'dog':5
'fat':2 'rat':3

to_tsvector('english', '{"aa": "The Fat Rats", "b": "dog"}'::jsonb) →
'dog':1 'fat':4 'rat':5

json_to_tsvector ([config regconfig,] document json, filter jsonb) → tsvector
jsonb_to_tsvector ([config regconfig,] document jsonb, filter jsonb) → tsvector

Selects each item in the JSON document that is requested by the filter and converts each
one to a tsvector, normalizing words according to the specified or default configuration. The
results are then concatenated in document order to produce the output. Position information
is generated as though one stopword exists between each pair of selected items. (Beware that
“document order” of the fields of a JSON object is implementation-dependent when the input
is jsonb.) The filter must be a jsonb array containing zero or more of these keywords:
"string" (to include all string values), "numeric" (to include all numeric values), "boolean"

249

Functions and Operators

Function
Description
Example(s)
(to include all boolean values), "key" (to include all keys), or "all" (to include all the above).
As a special case, the filter can also be a simple JSON value that is one of these keywords.
json_to_tsvector('english', '{"a": "The Fat Rats", "b": 123}'::json,

'["string", "numeric"]') → '123':5 'fat':2 'rat':3
json_to_tsvector('english', '{"cat": "The Fat Rats", "dog": 123}'::json,

'"all"') → '123':9 'cat':1 'dog':7 'fat':4 'rat':5

ts_delete (vector tsvector, lexeme text) → tsvector
Removes any occurrence of the given lexeme from the vector.
ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, 'fat') → 'cat':3 'rat':5A

ts_delete (vector tsvector, lexemes text[]) → tsvector
Removes any occurrences of the lexemes in lexemes from the vector.
ts_delete('fat:2,4 cat:3 rat:5A'::tsvector, ARRAY['fat','rat']) → 'cat':3

ts_filter (vector tsvector, weights "char"[]) → tsvector
Selects only elements with the given weights from the vector.
ts_filter('fat:2,4 cat:3b,7c rat:5A'::tsvector, '{a,b}') → 'cat':3B
'rat':5A

ts_headline ([config regconfig,] document text, query tsquery [, options text]) → text
Displays, in an abbreviated form, the match(es) for the query in the document, which must be
raw text not a tsvector. Words in the document are normalized according to the specified
or default configuration before matching to the query. Use of this function is discussed in
Section 12.3.4, which also describes the available options.
ts_headline('The fat cat ate the rat.', 'cat') → The fat cat ate the
rat.

ts_headline ([config regconfig,] document json, query tsquery [, options text]) → text
ts_headline ([config regconfig,] document jsonb, query tsquery [, options text]) → text

Displays, in an abbreviated form, match(es) for the query that occur in string values within
the JSON document. See Section 12.3.4 for more details.
ts_headline('{"cat":"raining cats and dogs"}'::jsonb, 'cat') → {"cat":
"raining cats and dogs"}

ts_rank ([weights real[],] vector tsvector, query tsquery [, normalization integer]) →
real
Computes a score showing how well the vector matches the query. See Section 12.3.3 for
details.
ts_rank(to_tsvector('raining cats and dogs'), 'cat') → 0.06079271

ts_rank_cd ([weights real[],] vector tsvector, query tsquery [, normalization integer])
→ real
Computes a score showing how well the vector matches the query, using a cover density
algorithm. See Section 12.3.3 for details.
ts_rank_cd(to_tsvector('raining cats and dogs'), 'cat') → 0.1

ts_rewrite (query tsquery, target tsquery, substitute tsquery) → tsquery
Replaces occurrences of target with substitute within the query. See Section 12.4.2.1 for
details.
ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'foo|bar'::tsquery) → 'b' & (
'foo' | 'bar')

ts_rewrite (query tsquery, select text) → tsquery

250

Functions and Operators

Function
Description
Example(s)
Replaces portions of the query according to target(s) and substitute(s) obtained by executing
a SELECT command. See Section 12.4.2.1 for details.
SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases') → 'b' & (
'foo' | 'bar')

tsquery_phrase (query1 tsquery, query2 tsquery) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 at successive
lexemes (same as <-> operator).
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat')) → 'fat' <-> 'cat'

tsquery_phrase (query1 tsquery, query2 tsquery, distance integer) → tsquery
Constructs a phrase query that searches for matches of query1 and query2 that occur exactly
distance lexemes apart.
tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10) → 'fat' <10>
'cat'

tsvector_to_array (tsvector) → text[]
Converts a tsvector to an array of lexemes.
tsvector_to_array('fat:2,4 cat:3 rat:5A'::tsvector) → {cat,fat,rat}

unnest (tsvector) → setof record (lexeme text, positions smallint[], weights text)
Expands a tsvector into a set of rows, one per lexeme.
select * from unnest('cat:3 fat:2,4 rat:5A'::tsvector) →

 lexeme | positions | weights
--------+-----------+---------
 cat | {3} | {D}
 fat | {2,4} | {D,D}
 rat | {5} | {A}

Note
All the text search functions that accept an optional regconfig argument will use the configuration
specified by default_text_search_config when that argument is omitted.

The functions in Table 9.43 are listed separately because they are not usually used in everyday text
searching operations. They are primarily helpful for development and debugging of new text search
configurations.

Table 9.43. Text Search Debugging Functions

Function
Description
Example(s)

ts_debug ([config regconfig,] document text) → setof record (alias text, description
text, token text, dictionaries regdictionary[], dictionary regdictionary, lexemes
text[])
Extracts and normalizes tokens from the document according to the specified or default text
search configuration, and returns information about how each token was processed. See
Section 12.8.1 for details.
ts_debug('english', 'The Brightest supernovaes') → (asciiword,"Word, all
ASCII",The,{english_stem},english_stem,{}) ...

ts_lexize (dict regdictionary, token text) → text[]

251

Functions and Operators

Function
Description
Example(s)
Returns an array of replacement lexemes if the input token is known to the dictionary, or an
empty array if the token is known to the dictionary but it is a stop word, or NULL if it is not a
known word. See Section 12.8.3 for details.
ts_lexize('english_stem', 'stars') → {star}

ts_parse (parser_name text, document text) → setof record (tokid integer, token text)
Extracts tokens from the document using the named parser. See Section 12.8.2 for details.
ts_parse('default', 'foo - bar') → (1,foo) ...

ts_parse (parser_oid oid, document text) → setof record (tokid integer, token text)
Extracts tokens from the document using a parser specified by OID. See Section 12.8.2 for
details.
ts_parse(3722, 'foo - bar') → (1,foo) ...

ts_token_type (parser_name text) → setof record (tokid integer, alias text,
 description text)
Returns a table that describes each type of token the named parser can recognize. See
Section 12.8.2 for details.
ts_token_type('default') → (1,asciiword,"Word, all ASCII") ...

ts_token_type (parser_oid oid) → setof record (tokid integer, alias text, description
text)
Returns a table that describes each type of token a parser specified by OID can recognize.
See Section 12.8.2 for details.
ts_token_type(3722) → (1,asciiword,"Word, all ASCII") ...

ts_stat (sqlquery text [, weights text]) → setof record (word text, ndoc integer, nentry
integer)
Executes the sqlquery, which must return a single tsvector column, and returns statistics
about each distinct lexeme contained in the data. See Section 12.4.4 for details.
ts_stat('SELECT vector FROM apod') → (foo,10,15) ...

9.14. UUID Functions
PostgreSQL includes one function to generate a UUID:

gen_random_uuid () → uuid

This function returns a version 4 (random) UUID. This is the most commonly used type of UUID and is
appropriate for most applications.

The uuid-ossp module provides additional functions that implement other standard algorithms for
generating UUIDs.

PostgreSQL also provides the usual comparison operators shown in Table 9.1 for UUIDs.

9.15. XML Functions
The functions and function-like expressions described in this section operate on values of type xml.
See Section 8.13 for information about the xml type. The function-like expressions xmlparse and
xmlserialize for converting to and from type xml are documented there, not in this section.

Use of most of these functions requires Postgres Pro to have been built with configure --with-libxml.

252

Functions and Operators

9.15.1. Producing XML Content
A set of functions and function-like expressions is available for producing XML content from SQL data.
As such, they are particularly suitable for formatting query results into XML documents for processing
in client applications.

9.15.1.1. xmlcomment
xmlcomment (text) → xml

The function xmlcomment creates an XML value containing an XML comment with the specified text as
content. The text cannot contain “--” or end with a “-”, otherwise the resulting construct would not be
a valid XML comment. If the argument is null, the result is null.

Example:
SELECT xmlcomment('hello');

 xmlcomment

 <!--hello-->

9.15.1.2. xmlconcat
xmlconcat (xml [, ...]) → xml

The function xmlconcat concatenates a list of individual XML values to create a single value containing
an XML content fragment. Null values are omitted; the result is only null if there are no nonnull
arguments.

Example:
SELECT xmlconcat('<abc/>', '<bar>foo</bar>');

 xmlconcat

 <abc/><bar>foo</bar>

XML declarations, if present, are combined as follows. If all argument values have the same XML version
declaration, that version is used in the result, else no version is used. If all argument values have the
standalone declaration value “yes”, then that value is used in the result. If all argument values have a
standalone declaration value and at least one is “no”, then that is used in the result. Else the result will
have no standalone declaration. If the result is determined to require a standalone declaration but no
version declaration, a version declaration with version 1.0 will be used because XML requires an XML
declaration to contain a version declaration. Encoding declarations are ignored and removed in all cases.

Example:
SELECT xmlconcat('<?xml version="1.1"?><foo/>', '<?xml version="1.1" standalone="no"?
><bar/>');

 xmlconcat

 <?xml version="1.1"?><foo/><bar/>

9.15.1.3. xmlelement
xmlelement (NAME name [, XMLATTRIBUTES (attvalue [AS attname] [, ...])]

 [, content [, ...]]) → xml

The xmlelement expression produces an XML element with the given name, attributes, and content.
The name and attname items shown in the syntax are simple identifiers, not values. The attvalue and
content items are expressions, which can yield any PostgreSQL data type. The argument(s) within

253

Functions and Operators

XMLATTRIBUTES generate attributes of the XML element; the content value(s) are concatenated to form
its content.

Examples:

SELECT xmlelement(name foo);

 xmlelement

 <foo/>

SELECT xmlelement(name foo, xmlattributes('xyz' as bar));

 xmlelement

 <foo bar="xyz"/>

SELECT xmlelement(name foo, xmlattributes(current_date as bar), 'cont', 'ent');

 xmlelement

 <foo bar="2007-01-26">content</foo>

Element and attribute names that are not valid XML names are escaped by replacing the offending
characters by the sequence _xHHHH_, where HHHH is the character's Unicode codepoint in hexadecimal
notation. For example:

SELECT xmlelement(name "foo$bar", xmlattributes('xyz' as "a&b"));

 xmlelement

 <foo_x0024_bar a_x0026_b="xyz"/>

An explicit attribute name need not be specified if the attribute value is a column reference, in which
case the column's name will be used as the attribute name by default. In other cases, the attribute must
be given an explicit name. So this example is valid:

CREATE TABLE test (a xml, b xml);
SELECT xmlelement(name test, xmlattributes(a, b)) FROM test;

But these are not:

SELECT xmlelement(name test, xmlattributes('constant'), a, b) FROM test;
SELECT xmlelement(name test, xmlattributes(func(a, b))) FROM test;

Element content, if specified, will be formatted according to its data type. If the content is itself of type
xml, complex XML documents can be constructed. For example:

SELECT xmlelement(name foo, xmlattributes('xyz' as bar),
 xmlelement(name abc),
 xmlcomment('test'),
 xmlelement(name xyz));

 xmlelement
--
 <foo bar="xyz"><abc/><!--test--><xyz/></foo>

Content of other types will be formatted into valid XML character data. This means in particular that the
characters <, >, and & will be converted to entities. Binary data (data type bytea) will be represented
in base64 or hex encoding, depending on the setting of the configuration parameter xmlbinary. The
particular behavior for individual data types is expected to evolve in order to align the Postgres Pro
mappings with those specified in SQL:2006 and later, as discussed in Section D.3.1.3.

254

Functions and Operators

9.15.1.4. xmlforest
xmlforest (content [AS name] [, ...]) → xml

The xmlforest expression produces an XML forest (sequence) of elements using the given names and
content. As for xmlelement, each name must be a simple identifier, while the content expressions can
have any data type.

Examples:
SELECT xmlforest('abc' AS foo, 123 AS bar);

 xmlforest

 <foo>abc</foo><bar>123</bar>

SELECT xmlforest(table_name, column_name)
FROM information_schema.columns
WHERE table_schema = 'pg_catalog';

 xmlforest

 <table_name>pg_authid</table_name><column_name>rolname</column_name>
 <table_name>pg_authid</table_name><column_name>rolsuper</column_name>
 ...

As seen in the second example, the element name can be omitted if the content value is a column
reference, in which case the column name is used by default. Otherwise, a name must be specified.

Element names that are not valid XML names are escaped as shown for xmlelement above. Similarly,
content data is escaped to make valid XML content, unless it is already of type xml.

Note that XML forests are not valid XML documents if they consist of more than one element, so it might
be useful to wrap xmlforest expressions in xmlelement.

9.15.1.5. xmlpi
xmlpi (NAME name [, content]) → xml

The xmlpi expression creates an XML processing instruction. As for xmlelement, the name must be a
simple identifier, while the content expression can have any data type. The content, if present, must
not contain the character sequence ?>.

Example:
SELECT xmlpi(name php, 'echo "hello world";');

 xmlpi

 <?php echo "hello world";?>

9.15.1.6. xmlroot
xmlroot (xml, VERSION {text|NO VALUE} [, STANDALONE {YES|NO|NO VALUE}]) → xml

The xmlroot expression alters the properties of the root node of an XML value. If a version is specified,
it replaces the value in the root node's version declaration; if a standalone setting is specified, it replaces
the value in the root node's standalone declaration.

SELECT xmlroot(xmlparse(document '<?xml version="1.1"?><content>abc</content>'),
 version '1.0', standalone yes);

255

Functions and Operators

 xmlroot
--
 <?xml version="1.0" standalone="yes"?>
 <content>abc</content>

9.15.1.7. xmlagg
xmlagg (xml) → xml

The function xmlagg is, unlike the other functions described here, an aggregate function. It concatenates
the input values to the aggregate function call, much like xmlconcat does, except that concatenation
occurs across rows rather than across expressions in a single row. See Section 9.21 for additional
information about aggregate functions.

Example:
CREATE TABLE test (y int, x xml);
INSERT INTO test VALUES (1, '<foo>abc</foo>');
INSERT INTO test VALUES (2, '<bar/>');
SELECT xmlagg(x) FROM test;
 xmlagg

 <foo>abc</foo><bar/>

To determine the order of the concatenation, an ORDER BY clause may be added to the aggregate call
as described in Section 4.2.7. For example:
SELECT xmlagg(x ORDER BY y DESC) FROM test;
 xmlagg

 <bar/><foo>abc</foo>

The following non-standard approach used to be recommended in previous versions, and may still be
useful in specific cases:
SELECT xmlagg(x) FROM (SELECT * FROM test ORDER BY y DESC) AS tab;
 xmlagg

 <bar/><foo>abc</foo>

9.15.2. XML Predicates
The expressions described in this section check properties of xml values.

9.15.2.1. IS DOCUMENT
xml IS DOCUMENT → boolean

The expression IS DOCUMENT returns true if the argument XML value is a proper XML document, false
if it is not (that is, it is a content fragment), or null if the argument is null. See Section 8.13 about the
difference between documents and content fragments.

9.15.2.2. IS NOT DOCUMENT
xml IS NOT DOCUMENT → boolean

The expression IS NOT DOCUMENT returns false if the argument XML value is a proper XML document,
true if it is not (that is, it is a content fragment), or null if the argument is null.

9.15.2.3. XMLEXISTS
XMLEXISTS (text PASSING [BY {REF|VALUE}] xml [BY {REF|VALUE}]) → boolean

The function xmlexists evaluates an XPath 1.0 expression (the first argument), with the passed XML
value as its context item. The function returns false if the result of that evaluation yields an empty node-

256

Functions and Operators

set, true if it yields any other value. The function returns null if any argument is null. A nonnull value
passed as the context item must be an XML document, not a content fragment or any non-XML value.

Example:
SELECT xmlexists('//town[text() = ''Toronto'']' PASSING BY VALUE
 '<towns><town>Toronto</town><town>Ottawa</town></towns>');

 xmlexists

 t
(1 row)

The BY REF and BY VALUE clauses are accepted in Postgres Pro, but are ignored, as discussed in
Section D.3.2.

In the SQL standard, the xmlexists function evaluates an expression in the XML Query language, but
Postgres Pro allows only an XPath 1.0 expression, as discussed in Section D.3.1.

9.15.2.4. xml_is_well_formed
xml_is_well_formed (text) → boolean
xml_is_well_formed_document (text) → boolean
xml_is_well_formed_content (text) → boolean

These functions check whether a text string represents well-formed XML, returning a
Boolean result. xml_is_well_formed_document checks for a well-formed document, while
xml_is_well_formed_content checks for well-formed content. xml_is_well_formed does the former if
the xmloption configuration parameter is set to DOCUMENT, or the latter if it is set to CONTENT. This means
that xml_is_well_formed is useful for seeing whether a simple cast to type xml will succeed, whereas the
other two functions are useful for seeing whether the corresponding variants of XMLPARSE will succeed.

Examples:
SET xmloption TO DOCUMENT;
SELECT xml_is_well_formed('<>');
 xml_is_well_formed

 f
(1 row)

SELECT xml_is_well_formed('<abc/>');
 xml_is_well_formed

 t
(1 row)

SET xmloption TO CONTENT;
SELECT xml_is_well_formed('abc');
 xml_is_well_formed

 t
(1 row)

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</pg:foo>');
 xml_is_well_formed_document

 t
(1 row)

257

Functions and Operators

SELECT xml_is_well_formed_document('<pg:foo xmlns:pg="http://postgresql.org/
stuff">bar</my:foo>');
 xml_is_well_formed_document

 f
(1 row)

The last example shows that the checks include whether namespaces are correctly matched.

9.15.3. Processing XML
To process values of data type xml, Postgres Pro offers the functions xpath and xpath_exists, which
evaluate XPath 1.0 expressions, and the XMLTABLE table function.

9.15.3.1. xpath
xpath (xpath text, xml xml [, nsarray text[]]) → xml[]

The function xpath evaluates the XPath 1.0 expression xpath (given as text) against the XML value xml.
It returns an array of XML values corresponding to the node-set produced by the XPath expression. If
the XPath expression returns a scalar value rather than a node-set, a single-element array is returned.

The second argument must be a well formed XML document. In particular, it must have a single root
node element.

The optional third argument of the function is an array of namespace mappings. This array should be
a two-dimensional text array with the length of the second axis being equal to 2 (i.e., it should be an
array of arrays, each of which consists of exactly 2 elements). The first element of each array entry is
the namespace name (alias), the second the namespace URI. It is not required that aliases provided in
this array be the same as those being used in the XML document itself (in other words, both in the XML
document and in the xpath function context, aliases are local).

Example:

SELECT xpath('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath

 {test}
(1 row)

To deal with default (anonymous) namespaces, do something like this:

SELECT xpath('//mydefns:b/text()', 'test',
 ARRAY[ARRAY['mydefns', 'http://example.com']]);

 xpath

 {test}
(1 row)

9.15.3.2. xpath_exists
xpath_exists (xpath text, xml xml [, nsarray text[]]) → boolean

The function xpath_exists is a specialized form of the xpath function. Instead of returning the individual
XML values that satisfy the XPath 1.0 expression, this function returns a Boolean indicating whether the
query was satisfied or not (specifically, whether it produced any value other than an empty node-set).
This function is equivalent to the XMLEXISTS predicate, except that it also offers support for a namespace
mapping argument.

258

Functions and Operators

Example:
SELECT xpath_exists('/my:a/text()', '<my:a xmlns:my="http://example.com">test</my:a>',
 ARRAY[ARRAY['my', 'http://example.com']]);

 xpath_exists

 t
(1 row)

9.15.3.3. xmltable
XMLTABLE (
 [XMLNAMESPACES (namespace_uri AS namespace_name [, ...]),]
 row_expression PASSING [BY {REF|VALUE}] document_expression [BY {REF|VALUE}]
 COLUMNS name { type [PATH column_expression] [DEFAULT default_expression] [NOT NULL
 | NULL]
 | FOR ORDINALITY }
 [, ...]

) → setof record

The xmltable expression produces a table based on an XML value, an XPath filter to extract rows, and
a set of column definitions. Although it syntactically resembles a function, it can only appear as a table
in a query's FROM clause.

The optional XMLNAMESPACES clause gives a comma-separated list of namespace definitions, where each
namespace_uri is a text expression and each namespace_name is a simple identifier. It specifies the XML
namespaces used in the document and their aliases. A default namespace specification is not currently
supported.

The required row_expression argument is an XPath 1.0 expression (given as text) that is evaluated,
passing the XML value document_expression as its context item, to obtain a set of XML nodes.
These nodes are what xmltable transforms into output rows. No rows will be produced if the
document_expression is null, nor if the row_expression produces an empty node-set or any value other
than a node-set.

document_expression provides the context item for the row_expression. It must be a well-formed XML
document; fragments/forests are not accepted. The BY REF and BY VALUE clauses are accepted but
ignored, as discussed in Section D.3.2.

In the SQL standard, the xmltable function evaluates expressions in the XML Query language, but
Postgres Pro allows only XPath 1.0 expressions, as discussed in Section D.3.1.

The required COLUMNS clause specifies the column(s) that will be produced in the output table. See the
syntax summary above for the format. A name is required for each column, as is a data type (unless
FOR ORDINALITY is specified, in which case type integer is implicit). The path, default and nullability
clauses are optional.

A column marked FOR ORDINALITY will be populated with row numbers, starting with 1, in the order
of nodes retrieved from the row_expression's result node-set. At most one column may be marked FOR
ORDINALITY.

Note
XPath 1.0 does not specify an order for nodes in a node-set, so code that relies on a particular
order of the results will be implementation-dependent. Details can be found in Section D.3.1.2.

The column_expression for a column is an XPath 1.0 expression that is evaluated for each row, with the
current node from the row_expression result as its context item, to find the value of the column. If no
column_expression is given, then the column name is used as an implicit path.

259

Functions and Operators

If a column's XPath expression returns a non-XML value (which is limited to string, boolean, or double
in XPath 1.0) and the column has a Postgres Pro type other than xml, the column will be set as if by
assigning the value's string representation to the Postgres Pro type. (If the value is a boolean, its string
representation is taken to be 1 or 0 if the output column's type category is numeric, otherwise true
or false.)

If a column's XPath expression returns a non-empty set of XML nodes and the column's Postgres Pro type
is xml, the column will be assigned the expression result exactly, if it is of document or content form. 1

A non-XML result assigned to an xml output column produces content, a single text node with the string
value of the result. An XML result assigned to a column of any other type may not have more than one
node, or an error is raised. If there is exactly one node, the column will be set as if by assigning the
node's string value (as defined for the XPath 1.0 string function) to the Postgres Pro type.

The string value of an XML element is the concatenation, in document order, of all text nodes contained
in that element and its descendants. The string value of an element with no descendant text nodes is
an empty string (not NULL). Any xsi:nil attributes are ignored. Note that the whitespace-only text()
node between two non-text elements is preserved, and that leading whitespace on a text() node is not
flattened. The XPath 1.0 string function may be consulted for the rules defining the string value of other
XML node types and non-XML values.

The conversion rules presented here are not exactly those of the SQL standard, as discussed in
Section D.3.1.3.

If the path expression returns an empty node-set (typically, when it does not match) for a given row,
the column will be set to NULL, unless a default_expression is specified; then the value resulting from
evaluating that expression is used.

A default_expression, rather than being evaluated immediately when xmltable is called, is evaluated
each time a default is needed for the column. If the expression qualifies as stable or immutable, the
repeat evaluation may be skipped. This means that you can usefully use volatile functions like nextval
in default_expression.

Columns may be marked NOT NULL. If the column_expression for a NOT NULL column does not match
anything and there is no DEFAULT or the default_expression also evaluates to null, an error is reported.

Examples:
CREATE TABLE xmldata AS SELECT
xml $$
<ROWS>
 <ROW id="1">
 <COUNTRY_ID>AU</COUNTRY_ID>
 <COUNTRY_NAME>Australia</COUNTRY_NAME>
 </ROW>
 <ROW id="5">
 <COUNTRY_ID>JP</COUNTRY_ID>
 <COUNTRY_NAME>Japan</COUNTRY_NAME>
 <PREMIER_NAME>Shinzo Abe</PREMIER_NAME>
 <SIZE unit="sq_mi">145935</SIZE>
 </ROW>
 <ROW id="6">
 <COUNTRY_ID>SG</COUNTRY_ID>
 <COUNTRY_NAME>Singapore</COUNTRY_NAME>
 <SIZE unit="sq_km">697</SIZE>
 </ROW>
</ROWS>

1 A result containing more than one element node at the top level, or non-whitespace text outside of an element, is an example of content form. An XPath result can
be of neither form, for example if it returns an attribute node selected from the element that contains it. Such a result will be put into content form with each such
disallowed node replaced by its string value, as defined for the XPath 1.0 string function.

260

Functions and Operators

$$ AS data;

SELECT xmltable.*
 FROM xmldata,
 XMLTABLE('//ROWS/ROW'
 PASSING data
 COLUMNS id int PATH '@id',
 ordinality FOR ORDINALITY,
 "COUNTRY_NAME" text,
 country_id text PATH 'COUNTRY_ID',
 size_sq_km float PATH 'SIZE[@unit = "sq_km"]',
 size_other text PATH
 'concat(SIZE[@unit!="sq_km"], " ", SIZE[@unit!="sq_km"]/
@unit)',
 premier_name text PATH 'PREMIER_NAME' DEFAULT 'not specified');

 id | ordinality | COUNTRY_NAME | country_id | size_sq_km | size_other | premier_name

----+------------+--------------+------------+------------+--------------
+---------------
 1 | 1 | Australia | AU | | | not
 specified
 5 | 2 | Japan | JP | | 145935 sq_mi | Shinzo Abe
 6 | 3 | Singapore | SG | 697 | | not
 specified

The following example shows concatenation of multiple text() nodes, usage of the column name as XPath
filter, and the treatment of whitespace, XML comments and processing instructions:
CREATE TABLE xmlelements AS SELECT
xml $$
 <root>
 <element> Hello<!-- xyxxz -->2a2<?aaaaa?> <!--x--> bbb<x>xxx</x>CC </element>
 </root>
$$ AS data;

SELECT xmltable.*
 FROM xmlelements, XMLTABLE('/root' PASSING data COLUMNS element text);
 element

 Hello2a2 bbbxxxCC

The following example illustrates how the XMLNAMESPACES clause can be used to specify a list of
namespaces used in the XML document as well as in the XPath expressions:
WITH xmldata(data) AS (VALUES ('
<example xmlns="http://example.com/myns" xmlns:B="http://example.com/b">
 <item foo="1" B:bar="2"/>
 <item foo="3" B:bar="4"/>
 <item foo="4" B:bar="5"/>
</example>'::xml)
)
SELECT xmltable.*
 FROM XMLTABLE(XMLNAMESPACES('http://example.com/myns' AS x,
 'http://example.com/b' AS "B"),
 '/x:example/x:item'
 PASSING (SELECT data FROM xmldata)
 COLUMNS foo int PATH '@foo',
 bar int PATH '@B:bar');
 foo | bar

261

Functions and Operators

-----+-----
 1 | 2
 3 | 4
 4 | 5
(3 rows)

9.15.4. Mapping Tables to XML
The following functions map the contents of relational tables to XML values. They can be thought of as
XML export functionality:
table_to_xml (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xml (cursor refcursor, count integer, nulls boolean,

 tableforest boolean, targetns text) → xml

table_to_xml maps the content of the named table, passed as parameter table. The regclass type
accepts strings identifying tables using the usual notation, including optional schema qualifications and
double quotes. query_to_xml executes the query whose text is passed as parameter query and maps
the result set. cursor_to_xml fetches the indicated number of rows from the cursor specified by the
parameter cursor. This variant is recommended if large tables have to be mapped, because the result
value is built up in memory by each function.

If tableforest is false, then the resulting XML document looks like this:
<tablename>
 <row>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
 </row>

 <row>
 ...
 </row>

 ...
</tablename>

If tableforest is true, the result is an XML content fragment that looks like this:
<tablename>
 <columnname1>data</columnname1>
 <columnname2>data</columnname2>
</tablename>

<tablename>
 ...
</tablename>

...

If no table name is available, that is, when mapping a query or a cursor, the string table is used in the
first format, row in the second format.

The choice between these formats is up to the user. The first format is a proper XML document, which
will be important in many applications. The second format tends to be more useful in the cursor_to_xml
function if the result values are to be reassembled into one document later on. The functions for
producing XML content discussed above, in particular xmlelement, can be used to alter the results to
taste.

262

Functions and Operators

The data values are mapped in the same way as described for the function xmlelement above.

The parameter nulls determines whether null values should be included in the output. If true, null
values in columns are represented as:
<columnname xsi:nil="true"/>

where xsi is the XML namespace prefix for XML Schema Instance. An appropriate namespace
declaration will be added to the result value. If false, columns containing null values are simply omitted
from the output.

The parameter targetns specifies the desired XML namespace of the result. If no particular namespace
is wanted, an empty string should be passed.

The following functions return XML Schema documents describing the mappings performed by the
corresponding functions above:
table_to_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml
cursor_to_xmlschema (cursor refcursor, nulls boolean,

 tableforest boolean, targetns text) → xml

It is essential that the same parameters are passed in order to obtain matching XML data mappings and
XML Schema documents.

The following functions produce XML data mappings and the corresponding XML Schema in one
document (or forest), linked together. They can be useful where self-contained and self-describing results
are wanted:
table_to_xml_and_xmlschema (table regclass, nulls boolean,

 tableforest boolean, targetns text) → xml
query_to_xml_and_xmlschema (query text, nulls boolean,

 tableforest boolean, targetns text) → xml

In addition, the following functions are available to produce analogous mappings of entire schemas or
the entire current database:
schema_to_xml (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml
schema_to_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml
schema_to_xml_and_xmlschema (schema name, nulls boolean,

 tableforest boolean, targetns text) → xml

database_to_xml (nulls boolean,

 tableforest boolean, targetns text) → xml
database_to_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml
database_to_xml_and_xmlschema (nulls boolean,

 tableforest boolean, targetns text) → xml

These functions ignore tables that are not readable by the current user. The database-wide functions
additionally ignore schemas that the current user does not have USAGE (lookup) privilege for.

Note that these potentially produce a lot of data, which needs to be built up in memory. When requesting
content mappings of large schemas or databases, it might be worthwhile to consider mapping the tables
separately instead, possibly even through a cursor.

The result of a schema content mapping looks like this:

263

Functions and Operators

<schemaname>

table1-mapping

table2-mapping

...

</schemaname>

where the format of a table mapping depends on the tableforest parameter as explained above.

The result of a database content mapping looks like this:
<dbname>

<schema1name>
 ...
</schema1name>

<schema2name>
 ...
</schema2name>

...

</dbname>

where the schema mapping is as above.

As an example of using the output produced by these functions, Example 9.1 shows an XSLT stylesheet
that converts the output of table_to_xml_and_xmlschema to an HTML document containing a tabular
rendition of the table data. In a similar manner, the results from these functions can be converted into
other XML-based formats.

Example 9.1. XSLT Stylesheet for Converting SQL/XML Output to HTML

<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns="http://www.w3.org/1999/xhtml"
>

 <xsl:output method="xml"
 doctype-system="http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd"
 doctype-public="-//W3C/DTD XHTML 1.0 Strict//EN"
 indent="yes"/>

 <xsl:template match="/*">
 <xsl:variable name="schema" select="//xsd:schema"/>
 <xsl:variable name="tabletypename"
 select="$schema/xsd:element[@name=name(current())]/@type"/>
 <xsl:variable name="rowtypename"
 select="$schema/xsd:complexType[@name=$tabletypename]/xsd:sequence/
xsd:element[@name='row']/@type"/>

 <html>
 <head>
 <title><xsl:value-of select="name(current())"/></title>
 </head>

264

Functions and Operators

 <body>
 <table>
 <tr>
 <xsl:for-each select="$schema/xsd:complexType[@name=$rowtypename]/
xsd:sequence/xsd:element/@name">
 <th><xsl:value-of select="."/></th>
 </xsl:for-each>
 </tr>

 <xsl:for-each select="row">
 <tr>
 <xsl:for-each select="*">
 <td><xsl:value-of select="."/></td>
 </xsl:for-each>
 </tr>
 </xsl:for-each>
 </table>
 </body>
 </html>
 </xsl:template>

</xsl:stylesheet>

9.16. JSON Functions and Operators
This section describes:
• functions and operators for processing and creating JSON data
• the SQL/JSON path language

To learn more about the SQL/JSON standard, see sqltr-19075-6. For details on JSON types supported
in Postgres Pro, see Section 8.14.

9.16.1. Processing and Creating JSON Data
Table 9.44 shows the operators that are available for use with JSON data types (see Section 8.14). In
addition, the usual comparison operators shown in Table 9.1 are available for jsonb, though not for json.
The comparison operators follow the ordering rules for B-tree operations outlined in Section 8.14.4.

Table 9.44. json and jsonb Operators

Operator
Description
Example(s)

json -> integer → json
jsonb -> integer → jsonb

Extracts n'th element of JSON array (array elements are indexed from zero, but negative
integers count from the end).
'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> 2 → {"c":"baz"}
'[{"a":"foo"},{"b":"bar"},{"c":"baz"}]'::json -> -3 → {"a":"foo"}

json -> text → json
jsonb -> text → jsonb

Extracts JSON object field with the given key.
'{"a": {"b":"foo"}}'::json -> 'a' → {"b":"foo"}

json ->> integer → text
jsonb ->> integer → text

265

Functions and Operators

Operator
Description
Example(s)
Extracts n'th element of JSON array, as text.
'[1,2,3]'::json ->> 2 → 3

json ->> text → text
jsonb ->> text → text

Extracts JSON object field with the given key, as text.
'{"a":1,"b":2}'::json ->> 'b' → 2

json #> text[] → json
jsonb #> text[] → jsonb

Extracts JSON sub-object at the specified path, where path elements can be either field keys
or array indexes.
'{"a": {"b": ["foo","bar"]}}'::json #> '{a,b,1}' → "bar"

json #>> text[] → text
jsonb #>> text[] → text

Extracts JSON sub-object at the specified path as text.
'{"a": {"b": ["foo","bar"]}}'::json #>> '{a,b,1}' → bar

Note
The field/element/path extraction operators return NULL, rather than failing, if the JSON input
does not have the right structure to match the request; for example if no such key or array element
exists.

Some further operators exist only for jsonb, as shown in Table 9.45. Section 8.14.4 describes how these
operators can be used to effectively search indexed jsonb data.

Table 9.45. Additional jsonb Operators

Operator
Description
Example(s)

jsonb @> jsonb → boolean
Does the first JSON value contain the second? (See Section 8.14.3 for details about
containment.)
'{"a":1, "b":2}'::jsonb @> '{"b":2}'::jsonb → t

jsonb <@ jsonb → boolean
Is the first JSON value contained in the second?
'{"b":2}'::jsonb <@ '{"a":1, "b":2}'::jsonb → t

jsonb ? text → boolean
Does the text string exist as a top-level key or array element within the JSON value?
'{"a":1, "b":2}'::jsonb ? 'b' → t
'["a", "b", "c"]'::jsonb ? 'b' → t

jsonb ?| text[] → boolean
Do any of the strings in the text array exist as top-level keys or array elements?
'{"a":1, "b":2, "c":3}'::jsonb ?| array['b', 'd'] → t

jsonb ?& text[] → boolean
Do all of the strings in the text array exist as top-level keys or array elements?

266

Functions and Operators

Operator
Description
Example(s)
'["a", "b", "c"]'::jsonb ?& array['a', 'b'] → t

jsonb || jsonb → jsonb
Concatenates two jsonb values. Concatenating two arrays generates an array containing
all the elements of each input. Concatenating two objects generates an object containing
the union of their keys, taking the second object's value when there are duplicate keys. All
other cases are treated by converting a non-array input into a single-element array, and then
proceeding as for two arrays. Does not operate recursively: only the top-level array or object
structure is merged.
'["a", "b"]'::jsonb || '["a", "d"]'::jsonb → ["a", "b", "a", "d"]
'{"a": "b"}'::jsonb || '{"c": "d"}'::jsonb → {"a": "b", "c": "d"}
'[1, 2]'::jsonb || '3'::jsonb → [1, 2, 3]
'{"a": "b"}'::jsonb || '42'::jsonb → [{"a": "b"}, 42]
To append an array to another array as a single entry, wrap it in an additional layer of array,
 for example:
'[1, 2]'::jsonb || jsonb_build_array('[3, 4]'::jsonb) → [1, 2, [3, 4]]

jsonb - text → jsonb
Deletes a key (and its value) from a JSON object, or matching string value(s) from a JSON
array.
'{"a": "b", "c": "d"}'::jsonb - 'a' → {"c": "d"}
'["a", "b", "c", "b"]'::jsonb - 'b' → ["a", "c"]

jsonb - text[] → jsonb
Deletes all matching keys or array elements from the left operand.
'{"a": "b", "c": "d"}'::jsonb - '{a,c}'::text[] → {}

jsonb - integer → jsonb
Deletes the array element with specified index (negative integers count from the end).
Throws an error if JSON value is not an array.
'["a", "b"]'::jsonb - 1 → ["a"]

jsonb #- text[] → jsonb
Deletes the field or array element at the specified path, where path elements can be either
field keys or array indexes.
'["a", {"b":1}]'::jsonb #- '{1,b}' → ["a", {}]

jsonb @? jsonpath → boolean
Does JSON path return any item for the specified JSON value?
'{"a":[1,2,3,4,5]}'::jsonb @? '$.a[*] ? (@ > 2)' → t

jsonb @@ jsonpath → boolean
Returns the result of a JSON path predicate check for the specified JSON value. Only the first
item of the result is taken into account. If the result is not Boolean, then NULL is returned.
'{"a":[1,2,3,4,5]}'::jsonb @@ '$.a[*] > 2' → t

Note
The jsonpath operators @? and @@ suppress the following errors: missing object field or
array element, unexpected JSON item type, datetime and numeric errors. The jsonpath-related
functions described below can also be told to suppress these types of errors. This behavior might
be helpful when searching JSON document collections of varying structure.

267

Functions and Operators

Table 9.46 shows the functions that are available for constructing json and jsonb values.

Table 9.46. JSON Creation Functions

Function
Description
Example(s)

to_json (anyelement) → json
to_jsonb (anyelement) → jsonb

Converts any SQL value to json or jsonb. Arrays and composites are converted recursively to
arrays and objects (multidimensional arrays become arrays of arrays in JSON). Otherwise, if
there is a cast from the SQL data type to json, the cast function will be used to perform the
conversion;a otherwise, a scalar JSON value is produced. For any scalar other than a number,
 a Boolean, or a null value, the text representation will be used, with escaping as necessary to
make it a valid JSON string value.
to_json('Fred said "Hi."'::text) → "Fred said \"Hi.\""
to_jsonb(row(42, 'Fred said "Hi."'::text)) → {"f1": 42, "f2": "Fred said
\"Hi.\""}

array_to_json (anyarray [, boolean]) → json
Converts a SQL array to a JSON array. The behavior is the same as to_json except that line
feeds will be added between top-level array elements if the optional boolean parameter is
true.
array_to_json('{{1,5},{99,100}}'::int[]) → [[1,5],[99,100]]

row_to_json (record [, boolean]) → json
Converts a SQL composite value to a JSON object. The behavior is the same as to_json
except that line feeds will be added between top-level elements if the optional boolean
parameter is true.
row_to_json(row(1,'foo')) → {"f1":1,"f2":"foo"}

json_build_array (VARIADIC "any") → json
jsonb_build_array (VARIADIC "any") → jsonb

Builds a possibly-heterogeneously-typed JSON array out of a variadic argument list. Each
argument is converted as per to_json or to_jsonb .
json_build_array(1, 2, 'foo', 4, 5) → [1, 2, "foo", 4, 5]

json_build_object (VARIADIC "any") → json
jsonb_build_object (VARIADIC "any") → jsonb

Builds a JSON object out of a variadic argument list. By convention, the argument list consists
of alternating keys and values. Key arguments are coerced to text; value arguments are
converted as per to_json or to_jsonb .
json_build_object('foo', 1, 2, row(3,'bar')) → {"foo" : 1, "2" :
{"f1":3,"f2":"bar"}}

json_object (text[]) → json
jsonb_object (text[]) → jsonb

Builds a JSON object out of a text array. The array must have either exactly one dimension
with an even number of members, in which case they are taken as alternating key/value pairs,
 or two dimensions such that each inner array has exactly two elements, which are taken as a
key/value pair. All values are converted to JSON strings.
json_object('{a, 1, b, "def", c, 3.5}') → {"a" : "1", "b" : "def",
"c" : "3.5"}

json_object('{{a, 1}, {b, "def"}, {c, 3.5}}') → {"a" : "1", "b" : "def",
 "c" : "3.5"}

json_object (keys text[], values text[]) → json

268

Functions and Operators

Function
Description
Example(s)

jsonb_object (keys text[], values text[]) → jsonb
This form of json_object takes keys and values pairwise from separate text arrays.
Otherwise it is identical to the one-argument form.
json_object('{a,b}', '{1,2}') → {"a": "1", "b": "2"}

a For example, the hstore extension has a cast from hstore to json, so that hstore values converted via the JSON creation functions will be represented as JSON
objects, not as primitive string values.

Table 9.47 shows the functions that are available for processing json and jsonb values.

Table 9.47. JSON Processing Functions

Function
Description
Example(s)

json_array_elements (json) → setof json
jsonb_array_elements (jsonb) → setof jsonb

Expands the top-level JSON array into a set of JSON values.
select * from json_array_elements('[1,true, [2,false]]') →

 value

 1
 true
 [2,false]

json_array_elements_text (json) → setof text
jsonb_array_elements_text (jsonb) → setof text

Expands the top-level JSON array into a set of text values.
select * from json_array_elements_text('["foo", "bar"]') →

 value

 foo
 bar

json_array_length (json) → integer
jsonb_array_length (jsonb) → integer

Returns the number of elements in the top-level JSON array.
json_array_length('[1,2,3,{"f1":1,"f2":[5,6]},4]') → 5

json_each (json) → setof record (key text, value json)
jsonb_each (jsonb) → setof record (key text, value jsonb)

Expands the top-level JSON object into a set of key/value pairs.
select * from json_each('{"a":"foo", "b":"bar"}') →

 key | value
-----+-------
 a | "foo"
 b | "bar"

json_each_text (json) → setof record (key text, value text)
jsonb_each_text (jsonb) → setof record (key text, value text)

Expands the top-level JSON object into a set of key/value pairs. The returned values will be of
type text.
select * from json_each_text('{"a":"foo", "b":"bar"}') →

269

Functions and Operators

Function
Description
Example(s)
 key | value
-----+-------
 a | foo
 b | bar

json_extract_path (from_json json, VARIADIC path_elems text[]) → json
jsonb_extract_path (from_json jsonb, VARIADIC path_elems text[]) → jsonb

Extracts JSON sub-object at the specified path. (This is functionally equivalent to the #>
operator, but writing the path out as a variadic list can be more convenient in some cases.)
json_extract_path('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}', 'f4',

'f6') → "foo"

json_extract_path_text (from_json json, VARIADIC path_elems text[]) → text
jsonb_extract_path_text (from_json jsonb, VARIADIC path_elems text[]) → text

Extracts JSON sub-object at the specified path as text. (This is functionally equivalent to the
#>> operator.)
json_extract_path_text('{"f2":{"f3":1},"f4":{"f5":99,"f6":"foo"}}',

'f4', 'f6') → foo

json_object_keys (json) → setof text
jsonb_object_keys (jsonb) → setof text

Returns the set of keys in the top-level JSON object.
select * from json_object_keys('{"f1":"abc","f2":{"f3":"a", "f4":"b"}}') →

 json_object_keys

 f1
 f2

json_populate_record (base anyelement, from_json json) → anyelement
jsonb_populate_record (base anyelement, from_json jsonb) → anyelement

Expands the top-level JSON object to a row having the composite type of the base argument.
The JSON object is scanned for fields whose names match column names of the output row
type, and their values are inserted into those columns of the output. (Fields that do not
correspond to any output column name are ignored.) In typical use, the value of base is just
NULL, which means that any output columns that do not match any object field will be filled
with nulls. However, if base isn't NULL then the values it contains will be used for unmatched
columns.
To convert a JSON value to the SQL type of an output column, the following rules are applied
in sequence:
• A JSON null value is converted to a SQL null in all cases.
• If the output column is of type json or jsonb, the JSON value is just reproduced exactly.
• If the output column is a composite (row) type, and the JSON value is a JSON object,

 the fields of the object are converted to columns of the output row type by recursive
application of these rules.

• Likewise, if the output column is an array type and the JSON value is a JSON array, the
elements of the JSON array are converted to elements of the output array by recursive
application of these rules.

• Otherwise, if the JSON value is a string, the contents of the string are fed to the input
conversion function for the column's data type.

• Otherwise, the ordinary text representation of the JSON value is fed to the input
conversion function for the column's data type.

270

Functions and Operators

Function
Description
Example(s)
While the example below uses a constant JSON value, typical use would be to reference a
json or jsonb column laterally from another table in the query's FROM clause. Writing json_
populate_record in the FROM clause is good practice, since all of the extracted columns are
available for use without duplicate function calls.
create type subrowtype as (d int, e text); create type myrowtype as (a int,
b text[], c subrowtype);
select * from json_populate_record(null::myrowtype, '{"a": 1, "b": ["2",

"a b"], "c": {"d": 4, "e": "a b c"}, "x": "foo"}') →

 a | b | c
---+-----------+-------------
 1 | {2,"a b"} | (4,"a b c")

json_populate_recordset (base anyelement, from_json json) → setof anyelement
jsonb_populate_recordset (base anyelement, from_json jsonb) → setof anyelement

Expands the top-level JSON array of objects to a set of rows having the composite type of
the base argument. Each element of the JSON array is processed as described above for
json[b]_populate_record .
create type twoints as (a int, b int);
select * from json_populate_recordset(null::twoints, '[{"a":1,"b":2},

{"a":3,"b":4}]') →

 a | b
---+---
 1 | 2
 3 | 4

json_to_record (json) → record
jsonb_to_record (jsonb) → record

Expands the top-level JSON object to a row having the composite type defined by an AS
clause. (As with all functions returning record, the calling query must explicitly define the
structure of the record with an AS clause.) The output record is filled from fields of the JSON
object, in the same way as described above for json[b]_populate_record . Since there is
no input record value, unmatched columns are always filled with nulls.
create type myrowtype as (a int, b text);
select * from json_to_record('{"a":1,"b":[1,2,3],"c":[1,2,3],
"e":"bar","r": {"a": 123, "b": "a b c"}}') as x(a int, b text, c int[],

d text, r myrowtype) →

 a | b | c | d | r
---+---------+---------+---+---------------
 1 | [1,2,3] | {1,2,3} | | (123,"a b c")

json_to_recordset (json) → setof record
jsonb_to_recordset (jsonb) → setof record

Expands the top-level JSON array of objects to a set of rows having the composite type
defined by an AS clause. (As with all functions returning record, the calling query must
explicitly define the structure of the record with an AS clause.) Each element of the JSON
array is processed as described above for json[b]_populate_record .
select * from json_to_recordset('[{"a":1,"b":"foo"}, {"a":"2",

"c":"bar"}]') as x(a int, b text) →

 a | b
---+-----
 1 | foo

271

Functions and Operators

Function
Description
Example(s)
 2 |

jsonb_set (target jsonb, path text[], new_value jsonb [, create_if_missing boolean]) →
jsonb
Returns target with the item designated by path replaced by new_value , or with new_
value added if create_if_missing is true (which is the default) and the item designated
by path does not exist. All earlier steps in the path must exist, or the target is returned
unchanged. As with the path oriented operators, negative integers that appear in the path
count from the end of JSON arrays. If the last path step is an array index that is out of range,
 and create_if_missing is true, the new value is added at the beginning of the array if the
index is negative, or at the end of the array if it is positive.
jsonb_set('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', '[2,3,4]',

false) → [{"f1": [2, 3, 4], "f2": null}, 2, null, 3]
jsonb_set('[{"f1":1,"f2":null},2]', '{0,f3}', '[2,3,4]') → [{"f1": 1,
"f2": null, "f3": [2, 3, 4]}, 2]

jsonb_set_lax (target jsonb, path text[], new_value jsonb [, create_if_missing boolean
[, null_value_treatment text]]) → jsonb
If new_value is not NULL, behaves identically to jsonb_set . Otherwise behaves according
to the value of null_value_treatment which must be one of 'raise_exception' , 'use_
json_null' , 'delete_key' , or 'return_target' . The default is 'use_json_null' .
jsonb_set_lax('[{"f1":1,"f2":null},2,null,3]', '{0,f1}', null) →
[{"f1":null,"f2":null},2,null,3]
jsonb_set_lax('[{"f1":99,"f2":null},2]', '{0,f3}', null, true,

'return_target') → [{"f1": 99, "f2": null}, 2]

jsonb_insert (target jsonb, path text[], new_value jsonb [, insert_after boolean]) →
jsonb
Returns target with new_value inserted. If the item designated by the path is an array
element, new_value will be inserted before that item if insert_after is false (which is the
default), or after it if insert_after is true. If the item designated by the path is an object
field, new_value will be inserted only if the object does not already contain that key. All
earlier steps in the path must exist, or the target is returned unchanged. As with the path
oriented operators, negative integers that appear in the path count from the end of JSON
arrays. If the last path step is an array index that is out of range, the new value is added at
the beginning of the array if the index is negative, or at the end of the array if it is positive.
jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"') → {"a": [0,
"new_value", 1, 2]}

jsonb_insert('{"a": [0,1,2]}', '{a, 1}', '"new_value"', true) → {"a":
[0, 1, "new_value", 2]}

json_strip_nulls (json) → json
jsonb_strip_nulls (jsonb) → jsonb

Deletes all object fields that have null values from the given JSON value, recursively. Null
values that are not object fields are untouched.
json_strip_nulls('[{"f1":1, "f2":null}, 2, null, 3]') → [{"f1":1},2,
null,3]

jsonb_path_exists (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean
Checks whether the JSON path returns any item for the specified JSON value. If the vars
argument is specified, it must be a JSON object, and its fields provide named values to be

272

Functions and Operators

Function
Description
Example(s)
substituted into the jsonpath expression. If the silent argument is specified and is true, the
function suppresses the same errors as the @? and @@ operators do.
jsonb_path_exists('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @ <=

$max)', '{"min":2, "max":4}') → t

jsonb_path_match (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) → boolean
Returns the result of a JSON path predicate check for the specified JSON value. Only the first
item of the result is taken into account. If the result is not Boolean, then NULL is returned. The
optional vars and silent arguments act the same as for jsonb_path_exists .
jsonb_path_match('{"a":[1,2,3,4,5]}', 'exists($.a[*] ? (@ >= $min &&

@ <= $max))', '{"min":2, "max":4}') → t

jsonb_path_query (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) → setof
jsonb
Returns all JSON items returned by the JSON path for the specified JSON value. The optional
vars and silent arguments act the same as for jsonb_path_exists .
select * from jsonb_path_query('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >=

$min && @ <= $max)', '{"min":2, "max":4}') →

 jsonb_path_query

 2
 3
 4

jsonb_path_query_array (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
jsonb
Returns all JSON items returned by the JSON path for the specified JSON value, as a JSON
array. The optional vars and silent arguments act the same as for jsonb_path_exists .
jsonb_path_query_array('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @

<= $max)', '{"min":2, "max":4}') → [2, 3, 4]

jsonb_path_query_first (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
jsonb
Returns the first JSON item returned by the JSON path for the specified JSON value. Returns
NULL if there are no results. The optional vars and silent arguments act the same as for
jsonb_path_exists .
jsonb_path_query_first('{"a":[1,2,3,4,5]}', '$.a[*] ? (@ >= $min && @

<= $max)', '{"min":2, "max":4}') → 2

jsonb_path_exists_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean

jsonb_path_match_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
boolean

jsonb_path_query_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean]]) →
setof jsonb

jsonb_path_query_array_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean
]]) → jsonb

jsonb_path_query_first_tz (target jsonb, path jsonpath [, vars jsonb [, silent boolean
]]) → jsonb
These functions act like their counterparts described above without the _tz suffix, except
that these functions support comparisons of date/time values that require timezone-aware
conversions. The example below requires interpretation of the date-only value 2015-08-02 as
a timestamp with time zone, so the result depends on the current TimeZone setting. Due to

273

Functions and Operators

Function
Description
Example(s)
this dependency, these functions are marked as stable, which means these functions cannot
be used in indexes. Their counterparts are immutable, and so can be used in indexes; but they
will throw errors if asked to make such comparisons.
jsonb_path_exists_tz('["2015-08-01 12:00:00 -05"]', '$[*] ? (@.datetime(

) < "2015-08-02".datetime())') → t

jsonb_pretty (jsonb) → text
Converts the given JSON value to pretty-printed, indented text.
jsonb_pretty('[{"f1":1,"f2":null}, 2]') →

[
 {
 "f1": 1,
 "f2": null
 },
 2
]

json_typeof (json) → text
jsonb_typeof (jsonb) → text

Returns the type of the top-level JSON value as a text string. Possible types are object,
 array, string, number, boolean, and null. (The null result should not be confused with a
SQL NULL; see the examples.)
json_typeof('-123.4') → number
json_typeof('null'::json) → null
json_typeof(NULL::json) IS NULL → t

See also Section 9.21 for the aggregate function json_agg which aggregates record values as JSON,
the aggregate function json_object_agg which aggregates pairs of values into a JSON object, and their
jsonb equivalents, jsonb_agg and jsonb_object_agg.

9.16.2. The SQL/JSON Path Language
SQL/JSON path expressions specify the items to be retrieved from the JSON data, similar to XPath
expressions used for SQL access to XML. In Postgres Pro, path expressions are implemented as the
jsonpath data type and can use any elements described in Section 8.14.6.

JSON query functions and operators pass the provided path expression to the path engine for evaluation.
If the expression matches the queried JSON data, the corresponding JSON item, or set of items, is
returned. Path expressions are written in the SQL/JSON path language and can include arithmetic
expressions and functions.

A path expression consists of a sequence of elements allowed by the jsonpath data type. The path
expression is normally evaluated from left to right, but you can use parentheses to change the order of
operations. If the evaluation is successful, a sequence of JSON items is produced, and the evaluation
result is returned to the JSON query function that completes the specified computation.

To refer to the JSON value being queried (the context item), use the $ variable in the path expression. It
can be followed by one or more accessor operators, which go down the JSON structure level by level to
retrieve sub-items of the context item. Each operator that follows deals with the result of the previous
evaluation step.

For example, suppose you have some JSON data from a GPS tracker that you would like to parse, such as:

{

274

Functions and Operators

 "track": {
 "segments": [
 {
 "location": [47.763, 13.4034],
 "start time": "2018-10-14 10:05:14",
 "HR": 73
 },
 {
 "location": [47.706, 13.2635],
 "start time": "2018-10-14 10:39:21",
 "HR": 135
 }
]
 }
}

To retrieve the available track segments, you need to use the .key accessor operator to descend through
surrounding JSON objects:

$.track.segments

To retrieve the contents of an array, you typically use the [*] operator. For example, the following path
will return the location coordinates for all the available track segments:

$.track.segments[*].location

To return the coordinates of the first segment only, you can specify the corresponding subscript in the
[] accessor operator. Recall that JSON array indexes are 0-relative:

$.track.segments[0].location

The result of each path evaluation step can be processed by one or more jsonpath operators and methods
listed in Section 9.16.2.2. Each method name must be preceded by a dot. For example, you can get the
size of an array:

$.track.segments.size()

More examples of using jsonpath operators and methods within path expressions appear below in
Section 9.16.2.2.

When defining a path, you can also use one or more filter expressions that work similarly to the WHERE
clause in SQL. A filter expression begins with a question mark and provides a condition in parentheses:

? (condition)

Filter expressions must be written just after the path evaluation step to which they should apply. The
result of that step is filtered to include only those items that satisfy the provided condition. SQL/JSON
defines three-valued logic, so the condition can be true, false, or unknown. The unknown value plays the
same role as SQL NULL and can be tested for with the is unknown predicate. Further path evaluation
steps use only those items for which the filter expression returned true.

The functions and operators that can be used in filter expressions are listed in Table 9.49. Within a filter
expression, the @ variable denotes the value being filtered (i.e., one result of the preceding path step).
You can write accessor operators after @ to retrieve component items.

For example, suppose you would like to retrieve all heart rate values higher than 130. You can achieve
this using the following expression:

$.track.segments[*].HR ? (@ > 130)

To get the start times of segments with such values, you have to filter out irrelevant segments before
returning the start times, so the filter expression is applied to the previous step, and the path used in
the condition is different:

275

Functions and Operators

$.track.segments[*] ? (@.HR > 130)."start time"

You can use several filter expressions in sequence, if required. For example, the following expression
selects start times of all segments that contain locations with relevant coordinates and high heart rate
values:
$.track.segments[*] ? (@.location[1] < 13.4) ? (@.HR > 130)."start time"

Using filter expressions at different nesting levels is also allowed. The following example first filters all
segments by location, and then returns high heart rate values for these segments, if available:
$.track.segments[*] ? (@.location[1] < 13.4).HR ? (@ > 130)

You can also nest filter expressions within each other:
$.track ? (exists(@.segments[*] ? (@.HR > 130))).segments.size()

This expression returns the size of the track if it contains any segments with high heart rate values, or
an empty sequence otherwise.

Postgres Pro's implementation of the SQL/JSON path language has the following deviations from the
SQL/JSON standard:

• A path expression can be a Boolean predicate, although the SQL/JSON standard allows predicates
only in filters. This is necessary for implementation of the @@ operator. For example, the following
jsonpath expression is valid in Postgres Pro:
$.track.segments[*].HR < 70

• There are minor differences in the interpretation of regular expression patterns used in like_regex
filters, as described in Section 9.16.2.3.

9.16.2.1. Strict and Lax Modes
When you query JSON data, the path expression may not match the actual JSON data structure. An
attempt to access a non-existent member of an object or element of an array results in a structural error.
SQL/JSON path expressions have two modes of handling structural errors:

• lax (default) — the path engine implicitly adapts the queried data to the specified path. Any
remaining structural errors are suppressed and converted to empty SQL/JSON sequences.

• strict — if a structural error occurs, an error is raised.
The lax mode facilitates matching of a JSON document structure and path expression if the JSON data
does not conform to the expected schema. If an operand does not match the requirements of a particular
operation, it can be automatically wrapped as an SQL/JSON array or unwrapped by converting its
elements into an SQL/JSON sequence before performing this operation. Besides, comparison operators
automatically unwrap their operands in the lax mode, so you can compare SQL/JSON arrays out-of-the-
box. An array of size 1 is considered equal to its sole element. Automatic unwrapping is not performed
only when:
• The path expression contains type() or size() methods that return the type and the number of

elements in the array, respectively.
• The queried JSON data contain nested arrays. In this case, only the outermost array is unwrapped,

while all the inner arrays remain unchanged. Thus, implicit unwrapping can only go one level down
within each path evaluation step.

For example, when querying the GPS data listed above, you can abstract from the fact that it stores an
array of segments when using the lax mode:
lax $.track.segments.location

In the strict mode, the specified path must exactly match the structure of the queried JSON document
to return an SQL/JSON item, so using this path expression will cause an error. To get the same result as
in the lax mode, you have to explicitly unwrap the segments array:

276

Functions and Operators

strict $.track.segments[*].location

The .** accessor can lead to surprising results when using the lax mode. For instance, the following
query selects every HR value twice:

lax $.**.HR

This happens because the .** accessor selects both the segments array and each of its elements, while
the .HR accessor automatically unwraps arrays when using the lax mode. To avoid surprising results, we
recommend using the .** accessor only in the strict mode. The following query selects each HR value
just once:

strict $.**.HR

9.16.2.2. SQL/JSON Path Operators and Methods
Table 9.48 shows the operators and methods available in jsonpath. Note that while the unary operators
and methods can be applied to multiple values resulting from a preceding path step, the binary operators
(addition etc.) can only be applied to single values.

Table 9.48. jsonpath Operators and Methods

Operator/Method
Description
Example(s)

number + number → number
Addition
jsonb_path_query('[2]', '$[0] + 3') → 5

+ number → number
Unary plus (no operation); unlike addition, this can iterate over multiple values
jsonb_path_query_array('{"x": [2,3,4]}', '+ $.x') → [2, 3, 4]

number - number → number
Subtraction
jsonb_path_query('[2]', '7 - $[0]') → 5

- number → number
Negation; unlike subtraction, this can iterate over multiple values
jsonb_path_query_array('{"x": [2,3,4]}', '- $.x') → [-2, -3, -4]

number * number → number
Multiplication
jsonb_path_query('[4]', '2 * $[0]') → 8

number / number → number
Division
jsonb_path_query('[8.5]', '$[0] / 2') → 4.2500000000000000

number % number → number
Modulo (remainder)
jsonb_path_query('[32]', '$[0] % 10') → 2

value . type() → string
Type of the JSON item (see json_typeof)
jsonb_path_query_array('[1, "2", {}]', '$[*].type()') → ["number",
"string", "object"]

value . size() → number
Size of the JSON item (number of array elements, or 1 if not an array)

277

Functions and Operators

Operator/Method
Description
Example(s)
jsonb_path_query('{"m": [11, 15]}', '$.m.size()') → 2

value . double() → number
Approximate floating-point number converted from a JSON number or string
jsonb_path_query('{"len": "1.9"}', '$.len.double() * 2') → 3.8

number . ceiling() → number
Nearest integer greater than or equal to the given number
jsonb_path_query('{"h": 1.3}', '$.h.ceiling()') → 2

number . floor() → number
Nearest integer less than or equal to the given number
jsonb_path_query('{"h": 1.7}', '$.h.floor()') → 1

number . abs() → number
Absolute value of the given number
jsonb_path_query('{"z": -0.3}', '$.z.abs()') → 0.3

string . datetime() → datetime_type (see note)
Date/time value converted from a string
jsonb_path_query('["2015-8-1", "2015-08-12"]', '$[*] ? (@.datetime() <

"2015-08-2".datetime())') → "2015-8-1"

string . datetime(template) → datetime_type (see note)
Date/time value converted from a string using the specified to_timestamp template
jsonb_path_query_array('["12:30", "18:40"]', '$[*].datetime("HH24:MI")')

→ ["12:30:00", "18:40:00"]

object . keyvalue() → array
The object's key-value pairs, represented as an array of objects containing three fields: "key",
 "value", and "id"; "id" is a unique identifier of the object the key-value pair belongs to
jsonb_path_query_array('{"x": "20", "y": 32}', '$.keyvalue()') → [{"id":
0, "key": "x", "value": "20"}, {"id": 0, "key": "y", "value": 32}]

Note
The result type of the datetime() and datetime(template) methods can be date, timetz, time,
timestamptz, or timestamp. Both methods determine their result type dynamically.

The datetime() method sequentially tries to match its input string to the ISO formats for date,
timetz, time, timestamptz, and timestamp. It stops on the first matching format and emits the
corresponding data type.

The datetime(template) method determines the result type according to the fields used in the
provided template string.

The datetime() and datetime(template) methods use the same parsing rules as the
to_timestamp SQL function does (see Section 9.8), with three exceptions. First, these methods
don't allow unmatched template patterns. Second, only the following separators are allowed in
the template string: minus sign, period, solidus (slash), comma, apostrophe, semicolon, colon and
space. Third, separators in the template string must exactly match the input string.

If different date/time types need to be compared, an implicit cast is applied. A date value can be
cast to timestamp or timestamptz, timestamp can be cast to timestamptz, and time to timetz.

278

Functions and Operators

However, all but the first of these conversions depend on the current TimeZone setting, and thus
can only be performed within timezone-aware jsonpath functions.

Table 9.49 shows the available filter expression elements.

Table 9.49. jsonpath Filter Expression Elements

Predicate/Value
Description
Example(s)

value == value → boolean
Equality comparison (this, and the other comparison operators, work on all JSON scalar
values)
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == 1)') → [1, 1]
jsonb_path_query_array('[1, "a", 1, 3]', '$[*] ? (@ == "a")') → ["a"]

value != value → boolean
value <> value → boolean

Non-equality comparison
jsonb_path_query_array('[1, 2, 1, 3]', '$[*] ? (@ != 1)') → [2, 3]
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <> "b")') → ["a",
"c"]

value < value → boolean
Less-than comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ < 2)') → [1]

value <= value → boolean
Less-than-or-equal-to comparison
jsonb_path_query_array('["a", "b", "c"]', '$[*] ? (@ <= "b")') → ["a",
"b"]

value > value → boolean
Greater-than comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ > 2)') → [3]

value >= value → boolean
Greater-than-or-equal-to comparison
jsonb_path_query_array('[1, 2, 3]', '$[*] ? (@ >= 2)') → [2, 3]

true → boolean
JSON constant true
jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris",

"parent": true}]', '$[*] ? (@.parent == true)') → {"name": "Chris", "parent":
true}

false → boolean
JSON constant false
jsonb_path_query('[{"name": "John", "parent": false}, {"name": "Chris",

"parent": true}]', '$[*] ? (@.parent == false)') → {"name": "John", "parent":
false}

null → value
JSON constant null (note that, unlike in SQL, comparison to null works normally)
jsonb_path_query('[{"name": "Mary", "job": null}, {"name": "Michael",

"job": "driver"}]', '$[*] ? (@.job == null) .name') → "Mary"

279

Functions and Operators

Predicate/Value
Description
Example(s)

boolean && boolean → boolean
Boolean AND
jsonb_path_query('[1, 3, 7]', '$[*] ? (@ > 1 && @ < 5)') → 3

boolean || boolean → boolean
Boolean OR
jsonb_path_query('[1, 3, 7]', '$[*] ? (@ < 1 || @ > 5)') → 7

! boolean → boolean
Boolean NOT
jsonb_path_query('[1, 3, 7]', '$[*] ? (!(@ < 5))') → 7

boolean is unknown → boolean
Tests whether a Boolean condition is unknown.
jsonb_path_query('[-1, 2, 7, "foo"]', '$[*] ? ((@ > 0) is unknown)') →
"foo"

string like_regex string [flag string] → boolean
Tests whether the first operand matches the regular expression given by the second operand,
 optionally with modifications described by a string of flag characters (see Section 9.16.2.3).
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c")') → ["abc", "abdacb"]
jsonb_path_query_array('["abc", "abd", "aBdC", "abdacb", "babc"]',

'$[*] ? (@ like_regex "^ab.*c" flag "i")') → ["abc", "aBdC", "abdacb"]

string starts with string → boolean
Tests whether the second operand is an initial substring of the first operand.
jsonb_path_query('["John Smith", "Mary Stone", "Bob Johnson"]', '$[*] ? (

@ starts with "John")') → "John Smith"

exists (path_expression) → boolean
Tests whether a path expression matches at least one SQL/JSON item. Returns unknown if the
path expression would result in an error; the second example uses this to avoid a no-such-key
error in strict mode.
jsonb_path_query('{"x": [1, 2], "y": [2, 4]}', 'strict $.* ? (exists (

@ ? (@[*] > 2)))') → [2, 4]
jsonb_path_query_array('{"value": 41}', 'strict $? (exists (

@.name)) .name') → []

9.16.2.3. SQL/JSON Regular Expressions
SQL/JSON path expressions allow matching text to a regular expression with the like_regex filter. For
example, the following SQL/JSON path query would case-insensitively match all strings in an array that
start with an English vowel:

$[*] ? (@ like_regex "^[aeiou]" flag "i")

The optional flag string may include one or more of the characters i for case-insensitive match, m to
allow ^ and $ to match at newlines, s to allow . to match a newline, and q to quote the whole pattern
(reducing the behavior to a simple substring match).

The SQL/JSON standard borrows its definition for regular expressions from the LIKE_REGEX operator,
which in turn uses the XQuery standard. Postgres Pro does not currently support the LIKE_REGEX
operator. Therefore, the like_regex filter is implemented using the POSIX regular expression engine
described in Section 9.7.3. This leads to various minor discrepancies from standard SQL/JSON behavior,

280

Functions and Operators

which are cataloged in Section 9.7.3.8. Note, however, that the flag-letter incompatibilities described
there do not apply to SQL/JSON, as it translates the XQuery flag letters to match what the POSIX engine
expects.

Keep in mind that the pattern argument of like_regex is a JSON path string literal, written according
to the rules given in Section 8.14.6. This means in particular that any backslashes you want to use in
the regular expression must be doubled. For example, to match string values of the root document that
contain only digits:
$.* ? (@ like_regex "^\\d+$")

9.17. Sequence Manipulation Functions
This section describes functions for operating on sequence objects, also called sequence generators
or just sequences. Sequence objects are special single-row tables created with CREATE SEQUENCE.
Sequence objects are commonly used to generate unique identifiers for rows of a table. The sequence
functions, listed in Table 9.50, provide simple, multiuser-safe methods for obtaining successive sequence
values from sequence objects.

Table 9.50. Sequence Functions

Function
Description

nextval (regclass) → bigint
Advances the sequence object to its next value and returns that value. This is done
atomically: even if multiple sessions execute nextval concurrently, each will safely receive
a distinct sequence value. If the sequence object has been created with default parameters,
 successive nextval calls will return successive values beginning with 1. Other behaviors can
be obtained by using appropriate parameters in the CREATE SEQUENCE command.
This function requires USAGE or UPDATE privilege on the sequence.

setval (regclass, bigint [, boolean]) → bigint
Sets the sequence object's current value, and optionally its is_called flag. The two-
parameter form sets the sequence's last_value field to the specified value and sets its
is_called field to true, meaning that the next nextval will advance the sequence before
returning a value. The value that will be reported by currval is also set to the specified
value. In the three-parameter form, is_called can be set to either true or false. true
has the same effect as the two-parameter form. If it is set to false, the next nextval will
return exactly the specified value, and sequence advancement commences with the following
nextval. Furthermore, the value reported by currval is not changed in this case. For
example,

SELECT setval('myseq', 42); Next nextval will return 43
SELECT setval('myseq', 42, true); Same as above
SELECT setval('myseq', 42, false); Next nextval will return 42

The result returned by setval is just the value of its second argument.
This function requires UPDATE privilege on the sequence.

currval (regclass) → bigint
Returns the value most recently obtained by nextval for this sequence in the current session.
(An error is reported if nextval has never been called for this sequence in this session.)
Because this is returning a session-local value, it gives a predictable answer whether or not
other sessions have executed nextval since the current session did.
This function requires USAGE or SELECT privilege on the sequence.

lastval () → bigint
Returns the value most recently returned by nextval in the current session. This function
is identical to currval, except that instead of taking the sequence name as an argument it
refers to whichever sequence nextval was most recently applied to in the current session. It
is an error to call lastval if nextval has not yet been called in the current session.

281

Functions and Operators

Function
Description
This function requires USAGE or SELECT privilege on the last used sequence.

Caution
To avoid blocking concurrent transactions that obtain numbers from the same sequence, the value
obtained by nextval is not reclaimed for re-use if the calling transaction later aborts. This means
that transaction aborts or database crashes can result in gaps in the sequence of assigned values.
That can happen without a transaction abort, too. For example an INSERT with an ON CONFLICT
clause will compute the to-be-inserted tuple, including doing any required nextval calls, before
detecting any conflict that would cause it to follow the ON CONFLICT rule instead. Thus, Postgres
Pro sequence objects cannot be used to obtain “gapless” sequences.

Likewise, sequence state changes made by setval are immediately visible to other transactions,
and are not undone if the calling transaction rolls back.

If the database cluster crashes before committing a transaction containing a nextval or setval
call, the sequence state change might not have made its way to persistent storage, so that it is
uncertain whether the sequence will have its original or updated state after the cluster restarts.
This is harmless for usage of the sequence within the database, since other effects of uncommitted
transactions will not be visible either. However, if you wish to use a sequence value for persistent
outside-the-database purposes, make sure that the nextval call has been committed before doing
so.

The sequence to be operated on by a sequence function is specified by a regclass argument, which is
simply the OID of the sequence in the pg_class system catalog. You do not have to look up the OID by
hand, however, since the regclass data type's input converter will do the work for you. Just write the
sequence name enclosed in single quotes so that it looks like a literal constant. For compatibility with
the handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the sequence name. Thus:
nextval('foo') operates on sequence foo
nextval('FOO') operates on sequence foo
nextval('"Foo"') operates on sequence Foo

The sequence name can be schema-qualified if necessary:
nextval('myschema.foo') operates on myschema.foo
nextval('"myschema".foo') same as above
nextval('foo') searches search path for foo

See Section 8.19 for more information about regclass.

Note
Before PostgreSQL 8.1, the arguments of the sequence functions were of type text, not regclass,
and the above-described conversion from a text string to an OID value would happen at run time
during each call. For backward compatibility, this facility still exists, but internally it is now handled
as an implicit coercion from text to regclass before the function is invoked.

When you write the argument of a sequence function as an unadorned literal string, it becomes
a constant of type regclass. Since this is really just an OID, it will track the originally identified
sequence despite later renaming, schema reassignment, etc. This “early binding” behavior is
usually desirable for sequence references in column defaults and views. But sometimes you might
want “late binding” where the sequence reference is resolved at run time. To get late-binding
behavior, force the constant to be stored as a text constant instead of regclass:
nextval('foo'::text) foo is looked up at runtime

282

Functions and Operators

Note that late binding was the only behavior supported in PostgreSQL releases before 8.1, so you
might need to do this to preserve the semantics of old applications.

Of course, the argument of a sequence function can be an expression as well as a constant. If it is
a text expression then the implicit coercion will result in a run-time lookup.

9.18. Conditional Expressions
This section describes the SQL-compliant conditional expressions available in Postgres Pro.

Tip
If your needs go beyond the capabilities of these conditional expressions, you might want to
consider writing a server-side function in a more expressive programming language.

Note
Although COALESCE, GREATEST, and LEAST are syntactically similar to functions, they are not
ordinary functions, and thus cannot be used with explicit VARIADIC array arguments.

9.18.1. CASE
The SQL CASE expression is a generic conditional expression, similar to if/else statements in other
programming languages:
CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. Each condition is an expression that returns
a boolean result. If the condition's result is true, the value of the CASE expression is the result that
follows the condition, and the remainder of the CASE expression is not processed. If the condition's result
is not true, any subsequent WHEN clauses are examined in the same manner. If no WHEN condition yields
true, the value of the CASE expression is the result of the ELSE clause. If the ELSE clause is omitted and
no condition is true, the result is null.

An example:
SELECT * FROM test;

 a

 1
 2
 3

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case

283

Functions and Operators

---+-------
 1 | one
 2 | two
 3 | other

The data types of all the result expressions must be convertible to a single output type. See Section 10.5
for more details.

There is a “simple” form of CASE expression that is a variant of the general form above:
CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The first expression is computed, then compared to each of the value expressions in the WHEN clauses
until one is found that is equal to it. If no match is found, the result of the ELSE clause (or a null value)
is returned. This is similar to the switch statement in C.

The example above can be written using the simple CASE syntax:
SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
 FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other

A CASE expression does not evaluate any subexpressions that are not needed to determine the result.
For example, this is a possible way of avoiding a division-by-zero failure:
SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

Note
As described in Section 4.2.14, there are various situations in which subexpressions of an
expression are evaluated at different times, so that the principle that “CASE evaluates only
necessary subexpressions” is not ironclad. For example a constant 1/0 subexpression will usually
result in a division-by-zero failure at planning time, even if it's within a CASE arm that would never
be entered at run time.

9.18.2. COALESCE
COALESCE(value [, ...])

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all
arguments are null. It is often used to substitute a default value for null values when data is retrieved
for display, for example:
SELECT COALESCE(description, short_description, '(none)') ...

This returns description if it is not null, otherwise short_description if it is not null, otherwise (none).

The arguments must all be convertible to a common data type, which will be the type of the result (see
Section 10.5 for details).

284

Functions and Operators

Like a CASE expression, COALESCE only evaluates the arguments that are needed to determine the result;
that is, arguments to the right of the first non-null argument are not evaluated. This SQL-standard
function provides capabilities similar to NVL and IFNULL, which are used in some other database systems.

9.18.3. NULLIF
NULLIF(value1, value2)

The NULLIF function returns a null value if value1 equals value2; otherwise it returns value1. This can
be used to perform the inverse operation of the COALESCE example given above:
SELECT NULLIF(value, '(none)') ...

In this example, if value is (none), null is returned, otherwise the value of value is returned.

The two arguments must be of comparable types. To be specific, they are compared exactly as if you had
written value1 = value2, so there must be a suitable = operator available.

The result has the same type as the first argument — but there is a subtlety. What is actually returned is
the first argument of the implied = operator, and in some cases that will have been promoted to match
the second argument's type. For example, NULLIF(1, 2.2) yields numeric, because there is no integer
= numeric operator, only numeric = numeric.

9.18.4. GREATEST and LEAST
GREATEST(value [, ...])

LEAST(value [, ...])

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of
expressions. The expressions must all be convertible to a common data type, which will be the type of
the result (see Section 10.5 for details). NULL values in the list are ignored. The result will be NULL
only if all the expressions evaluate to NULL.

Note that GREATEST and LEAST are not in the SQL standard, but are a common extension. Some other
databases make them return NULL if any argument is NULL, rather than only when all are NULL.

9.19. Array Functions and Operators
Table 9.51 shows the specialized operators available for array types. In addition to those, the usual
comparison operators shown in Table 9.1 are available for arrays. The comparison operators compare
the array contents element-by-element, using the default B-tree comparison function for the element
data type, and sort based on the first difference. In multidimensional arrays the elements are visited
in row-major order (last subscript varies most rapidly). If the contents of two arrays are equal but the
dimensionality is different, the first difference in the dimensionality information determines the sort
order. (This is a change from versions of PostgreSQL prior to 8.2: older versions would claim that two
arrays with the same contents were equal, even if the number of dimensions or subscript ranges were
different.)

Table 9.51. Array Operators

Operator
Description
Example(s)

anyarray @> anyarray → boolean
Does the first array contain the second, that is, does each element appearing in the second
array equal some element of the first array? (Duplicates are not treated specially, thus
ARRAY[1] and ARRAY[1,1] are each considered to contain the other.)
ARRAY[1,4,3] @> ARRAY[3,1,3] → t

anyarray <@ anyarray → boolean
Is the first array contained by the second?
ARRAY[2,2,7] <@ ARRAY[1,7,4,2,6] → t

285

Functions and Operators

Operator
Description
Example(s)

anyarray && anyarray → boolean
Do the arrays overlap, that is, have any elements in common?
ARRAY[1,4,3] && ARRAY[2,1] → t

anyarray || anyarray → anyarray
Concatenates the two arrays. Concatenating a null or empty array is a no-op; otherwise the
arrays must have the same number of dimensions (as illustrated by the first example) or differ
in number of dimensions by one (as illustrated by the second).
ARRAY[1,2,3] || ARRAY[4,5,6,7] → {1,2,3,4,5,6,7}
ARRAY[1,2,3] || ARRAY[[4,5,6],[7,8,9]] → {{1,2,3},{4,5,6},{7,8,
9}}

anyelement || anyarray → anyarray
Concatenates an element onto the front of an array (which must be empty or one-
dimensional).
3 || ARRAY[4,5,6] → {3,4,5,6}

anyarray || anyelement → anyarray
Concatenates an element onto the end of an array (which must be empty or one-dimensional).
ARRAY[4,5,6] || 7 → {4,5,6,7}

See Section 8.15 for more details about array operator behavior. See Section 11.2 for more details about
which operators support indexed operations.

Table 9.52 shows the functions available for use with array types. See Section 8.15 for more information
and examples of the use of these functions.

Table 9.52. Array Functions

Function
Description
Example(s)

array_append (anyarray, anyelement) → anyarray
Appends an element to the end of an array (same as the anyarray || anyelement operator).
array_append(ARRAY[1,2], 3) → {1,2,3}

array_cat (anyarray, anyarray) → anyarray
Concatenates two arrays (same as the anyarray || anyarray operator).
array_cat(ARRAY[1,2,3], ARRAY[4,5]) → {1,2,3,4,5}

array_dims (anyarray) → text
Returns a text representation of the array's dimensions.
array_dims(ARRAY[[1,2,3], [4,5,6]]) → [1:2][1:3]

array_fill (anyelement, integer[] [, integer[]]) → anyarray
Returns an array filled with copies of the given value, having dimensions of the lengths
specified by the second argument. The optional third argument supplies lower-bound values
for each dimension (which default to all 1).
array_fill(11, ARRAY[2,3]) → {{11,11,11},{11,11,11}}
array_fill(7, ARRAY[3], ARRAY[2]) → [2:4]={7,7,7}

array_length (anyarray, integer) → integer
Returns the length of the requested array dimension.
array_length(array[1,2,3], 1) → 3

286

Functions and Operators

Function
Description
Example(s)

array_lower (anyarray, integer) → integer
Returns the lower bound of the requested array dimension.
array_lower('[0:2]={1,2,3}'::integer[], 1) → 0

array_ndims (anyarray) → integer
Returns the number of dimensions of the array.
array_ndims(ARRAY[[1,2,3], [4,5,6]]) → 2

array_position (anyarray, anyelement [, integer]) → integer
Returns the subscript of the first occurrence of the second argument in the array, or NULL if
it's not present. If the third argument is given, the search begins at that subscript. The array
must be one-dimensional. Comparisons are done using IS NOT DISTINCT FROM semantics, so
it is possible to search for NULL.
array_position(ARRAY['sun', 'mon', 'tue', 'wed', 'thu', 'fri', 'sat'],

'mon') → 2

array_positions (anyarray, anyelement) → integer[]
Returns an array of the subscripts of all occurrences of the second argument in the array
given as first argument. The array must be one-dimensional. Comparisons are done using IS
NOT DISTINCT FROM semantics, so it is possible to search for NULL. NULL is returned only if the
array is NULL; if the value is not found in the array, an empty array is returned.
array_positions(ARRAY['A','A','B','A'], 'A') → {1,2,4}

array_prepend (anyelement, anyarray) → anyarray
Prepends an element to the beginning of an array (same as the anyelement || anyarray
operator).
array_prepend(1, ARRAY[2,3]) → {1,2,3}

array_remove (anyarray, anyelement) → anyarray
Removes all elements equal to the given value from the array. The array must be one-
dimensional. Comparisons are done using IS NOT DISTINCT FROM semantics, so it is possible
to remove NULLs.
array_remove(ARRAY[1,2,3,2], 2) → {1,3}

array_replace (anyarray, anyelement, anyelement) → anyarray
Replaces each array element equal to the second argument with the third argument.
array_replace(ARRAY[1,2,5,4], 5, 3) → {1,2,3,4}

array_to_string (array anyarray, delimiter text [, null_string text]) → text
Converts each array element to its text representation, and concatenates those separated by
the delimiter string. If null_string is given and is not NULL, then NULL array entries are
represented by that string; otherwise, they are omitted.
array_to_string(ARRAY[1, 2, 3, NULL, 5], ',', '*') → 1,2,3,*,5

array_upper (anyarray, integer) → integer
Returns the upper bound of the requested array dimension.
array_upper(ARRAY[1,8,3,7], 1) → 4

cardinality (anyarray) → integer
Returns the total number of elements in the array, or 0 if the array is empty.
cardinality(ARRAY[[1,2],[3,4]]) → 4

string_to_array (string text, delimiter text [, null_string text]) → text[]
Splits the string at occurrences of delimiter and forms the remaining data into a text
array. If delimiter is NULL, each character in the string will become a separate element

287

Functions and Operators

Function
Description
Example(s)
in the array. If delimiter is an empty string, then the string is treated as a single field. If
null_string is supplied and is not NULL, fields matching that string are converted to NULL
entries.
string_to_array('xx~~yy~~zz', '~~', 'yy') → {xx,NULL,zz}

unnest (anyarray) → setof anyelement
Expands an array into a set of rows. The array's elements are read out in storage order.
unnest(ARRAY[1,2]) →

 1
 2

unnest(ARRAY[['foo','bar'],['baz','quux']]) →

 foo
 bar
 baz
 quux

unnest (anyarray, anyarray [, ...]) → setof anyelement, anyelement [, ...]
Expands multiple arrays (possibly of different data types) into a set of rows. If the arrays
are not all the same length then the shorter ones are padded with NULLs. This form is only
allowed in a query's FROM clause; see Section 7.2.1.4.
select * from unnest(ARRAY[1,2], ARRAY['foo','bar','baz']) as x(a,b) →

 a | b
---+-----
 1 | foo
 2 | bar
 | baz

Note
There are two differences in the behavior of string_to_array from pre-9.1 versions of
PostgreSQL. First, it will return an empty (zero-element) array rather than NULL when the input
string is of zero length. Second, if the delimiter string is NULL, the function splits the input into
individual characters, rather than returning NULL as before.

See also Section 9.21 about the aggregate function array_agg for use with arrays.

9.20. Range Functions and Operators
See Section 8.17 for an overview of range types.

Table 9.53 shows the specialized operators available for range types. In addition to those, the usual
comparison operators shown in Table 9.1 are available for range types. The comparison operators order
first by the range lower bounds, and only if those are equal do they compare the upper bounds. This does
not usually result in a useful overall ordering, but the operators are provided to allow unique indexes
to be constructed on ranges.

Table 9.53. Range Operators

Operator
Description
Example(s)

anyrange @> anyrange → boolean

288

Functions and Operators

Operator
Description
Example(s)
Does the first range contain the second?
int4range(2,4) @> int4range(2,3) → t

anyrange @> anyelement → boolean
Does the range contain the element?
'[2011-01-01,2011-03-01)'::tsrange @> '2011-01-10'::timestamp → t

anyrange <@ anyrange → boolean
Is the first range contained by the second?
int4range(2,4) <@ int4range(1,7) → t

anyelement <@ anyrange → boolean
Is the element contained in the range?
42 <@ int4range(1,7) → f

anyrange && anyrange → boolean
Do the ranges overlap, that is, have any elements in common?
int8range(3,7) && int8range(4,12) → t

anyrange << anyrange → boolean
Is the first range strictly left of the second?
int8range(1,10) << int8range(100,110) → t

anyrange >> anyrange → boolean
Is the first range strictly right of the second?
int8range(50,60) >> int8range(20,30) → t

anyrange &< anyrange → boolean
Does the first range not extend to the right of the second?
int8range(1,20) &< int8range(18,20) → t

anyrange &> anyrange → boolean
Does the first range not extend to the left of the second?
int8range(7,20) &> int8range(5,10) → t

anyrange -|- anyrange → boolean
Are the ranges adjacent?
numrange(1.1,2.2) -|- numrange(2.2,3.3) → t

anyrange + anyrange → anyrange
Computes the union of the ranges. The ranges must overlap or be adjacent, so that the union
is a single range (but see range_merge()).
numrange(5,15) + numrange(10,20) → [5,20)

anyrange * anyrange → anyrange
Computes the intersection of the ranges.
int8range(5,15) * int8range(10,20) → [10,15)

anyrange - anyrange → anyrange
Computes the difference of the ranges. The second range must not be contained in the first in
such a way that the difference would not be a single range.
int8range(5,15) - int8range(10,20) → [5,10)

The left-of/right-of/adjacent operators always return false when an empty range is involved; that is, an
empty range is not considered to be either before or after any other range.

289

Functions and Operators

Table 9.54 shows the functions available for use with range types.

Table 9.54. Range Functions

Function
Description
Example(s)

lower (anyrange) → anyelement
Extracts the lower bound of the range (NULL if the range is empty or the lower bound is
infinite).
lower(numrange(1.1,2.2)) → 1.1

upper (anyrange) → anyelement
Extracts the upper bound of the range (NULL if the range is empty or the upper bound is
infinite).
upper(numrange(1.1,2.2)) → 2.2

isempty (anyrange) → boolean
Is the range empty?
isempty(numrange(1.1,2.2)) → f

lower_inc (anyrange) → boolean
Is the range's lower bound inclusive?
lower_inc(numrange(1.1,2.2)) → t

upper_inc (anyrange) → boolean
Is the range's upper bound inclusive?
upper_inc(numrange(1.1,2.2)) → f

lower_inf (anyrange) → boolean
Is the range's lower bound infinite?
lower_inf('(,)'::daterange) → t

upper_inf (anyrange) → boolean
Is the range's upper bound infinite?
upper_inf('(,)'::daterange) → t

range_merge (anyrange, anyrange) → anyrange
Computes the smallest range that includes both of the given ranges.
range_merge('[1,2)'::int4range, '[3,4)'::int4range) → [1,4)

The lower_inc, upper_inc, lower_inf, and upper_inf functions all return false for an empty range.

9.21. Aggregate Functions
Aggregate functions compute a single result from a set of input values. The built-in general-purpose
aggregate functions are listed in Table 9.55 while statistical aggregates are in Table 9.56. The built-
in within-group ordered-set aggregate functions are listed in Table 9.57 while the built-in within-group
hypothetical-set ones are in Table 9.58. Grouping operations, which are closely related to aggregate
functions, are listed in Table 9.59. The special syntax considerations for aggregate functions are
explained in Section 4.2.7. Consult Section 2.7 for additional introductory information.

Aggregate functions that support Partial Mode are eligible to participate in various optimizations, such
as parallel aggregation.

Table 9.55. General-Purpose Aggregate Functions

Function
Description

Partial
Mode

array_agg (anynonarray) → anyarray No

290

Functions and Operators

Function
Description

Partial
Mode

Collects all the input values, including nulls, into an array.

array_agg (anyarray) → anyarray
Concatenates all the input arrays into an array of one higher dimension. (The inputs
must all have the same dimensionality, and cannot be empty or null.)

No

avg (smallint) → numeric
avg (integer) → numeric
avg (bigint) → numeric
avg (numeric) → numeric
avg (real) → double precision
avg (double precision) → double precision
avg (interval) → interval

Computes the average (arithmetic mean) of all the non-null input values.

Yes

bit_and (smallint) → smallint
bit_and (integer) → integer
bit_and (bigint) → bigint
bit_and (bit) → bit

Computes the bitwise AND of all non-null input values.

Yes

bit_or (smallint) → smallint
bit_or (integer) → integer
bit_or (bigint) → bigint
bit_or (bit) → bit

Computes the bitwise OR of all non-null input values.

Yes

bool_and (boolean) → boolean
Returns true if all non-null input values are true, otherwise false.

Yes

bool_or (boolean) → boolean
Returns true if any non-null input value is true, otherwise false.

Yes

count (*) → bigint
Computes the number of input rows.

Yes

count ("any") → bigint
Computes the number of input rows in which the input value is not null.

Yes

every (boolean) → boolean
This is the SQL standard's equivalent to bool_and .

Yes

json_agg (anyelement) → json
jsonb_agg (anyelement) → jsonb

Collects all the input values, including nulls, into a JSON array. Values are converted
to JSON as per to_json or to_jsonb .

No

json_object_agg (key "any", value "any") → json
jsonb_object_agg (key "any", value "any") → jsonb

Collects all the key/value pairs into a JSON object. Key arguments are coerced to
text; value arguments are converted as per to_json or to_jsonb . Values can be
null, but not keys.

No

max (see text) → same as input type Yes

291

Functions and Operators

Function
Description

Partial
Mode

Computes the maximum of the non-null input values. Available for any numeric,
 string, date/time, or enum type, as well as inet, interval, money, oid, pg_lsn ,
 tid, and arrays of any of these types.

min (see text) → same as input type
Computes the minimum of the non-null input values. Available for any numeric,
 string, date/time, or enum type, as well as inet, interval, money, oid, pg_lsn ,
 tid, and arrays of any of these types.

Yes

string_agg (value text, delimiter text) → text
string_agg (value bytea, delimiter bytea) → bytea

Concatenates the non-null input values into a string. Each value after the first is
preceded by the corresponding delimiter (if it's not null).

No

sum (smallint) → bigint
sum (integer) → bigint
sum (bigint) → numeric
sum (numeric) → numeric
sum (real) → real
sum (double precision) → double precision
sum (interval) → interval
sum (money) → money

Computes the sum of the non-null input values.

Yes

xmlagg (xml) → xml
Concatenates the non-null XML input values (see Section 9.15.1.7).

No

It should be noted that except for count, these functions return a null value when no rows are selected. In
particular, sum of no rows returns null, not zero as one might expect, and array_agg returns null rather
than an empty array when there are no input rows. The coalesce function can be used to substitute
zero or an empty array for null when necessary.

The aggregate functions array_agg, json_agg, jsonb_agg, json_object_agg, jsonb_object_agg,
string_agg, and xmlagg, as well as similar user-defined aggregate functions, produce meaningfully
different result values depending on the order of the input values. This ordering is unspecified by default,
but can be controlled by writing an ORDER BY clause within the aggregate call, as shown in Section 4.2.7.
Alternatively, supplying the input values from a sorted subquery will usually work. For example:

SELECT xmlagg(x) FROM (SELECT x FROM test ORDER BY y DESC) AS tab;

Beware that this approach can fail if the outer query level contains additional processing, such as a join,
because that might cause the subquery's output to be reordered before the aggregate is computed.

Note
The boolean aggregates bool_and and bool_or correspond to the standard SQL aggregates every
and any or some. PostgreSQL supports every, but not any or some, because there is an ambiguity
built into the standard syntax:

SELECT b1 = ANY((SELECT b2 FROM t2 ...)) FROM t1 ...;

Here ANY can be considered either as introducing a subquery, or as being an aggregate function,
if the subquery returns one row with a Boolean value. Thus the standard name cannot be given
to these aggregates.

292

Functions and Operators

Note
Users accustomed to working with other SQL database management systems might be
disappointed by the performance of the count aggregate when it is applied to the entire table.
A query like:

SELECT count(*) FROM sometable;

will require effort proportional to the size of the table: Postgres Pro will need to scan either the
entire table or the entirety of an index that includes all rows in the table.

Table 9.56 shows aggregate functions typically used in statistical analysis. (These are separated out
merely to avoid cluttering the listing of more-commonly-used aggregates.) Functions shown as accepting
numeric_type are available for all the types smallint, integer, bigint, numeric, real, and double
precision. Where the description mentions N, it means the number of input rows for which all the input
expressions are non-null. In all cases, null is returned if the computation is meaningless, for example
when N is zero.

Table 9.56. Aggregate Functions for Statistics

Function
Description

Partial
Mode

corr (Y double precision, X double precision) → double precision
Computes the correlation coefficient.

Yes

covar_pop (Y double precision, X double precision) → double precision
Computes the population covariance.

Yes

covar_samp (Y double precision, X double precision) → double precision
Computes the sample covariance.

Yes

regr_avgx (Y double precision, X double precision) → double precision
Computes the average of the independent variable, sum(X)/N.

Yes

regr_avgy (Y double precision, X double precision) → double precision
Computes the average of the dependent variable, sum(Y)/N.

Yes

regr_count (Y double precision, X double precision) → bigint
Computes the number of rows in which both inputs are non-null.

Yes

regr_intercept (Y double precision, X double precision) → double precision
Computes the y-intercept of the least-squares-fit linear equation determined by the (
X, Y) pairs.

Yes

regr_r2 (Y double precision, X double precision) → double precision
Computes the square of the correlation coefficient.

Yes

regr_slope (Y double precision, X double precision) → double precision
Computes the slope of the least-squares-fit linear equation determined by the (X, Y)
pairs.

Yes

regr_sxx (Y double precision, X double precision) → double precision
Computes the “sum of squares” of the independent variable, sum(X^2) - sum(
X)^2/N.

Yes

regr_sxy (Y double precision, X double precision) → double precision
Computes the “sum of products” of independent times dependent variables, sum(
X*Y) - sum(X) * sum(Y)/N.

Yes

regr_syy (Y double precision, X double precision) → double precision Yes

293

Functions and Operators

Function
Description

Partial
Mode

Computes the “sum of squares” of the dependent variable, sum(Y^2) - sum(
Y)^2/N.

stddev (numeric_type) → double precision for real or double precision, otherwise
numeric
This is a historical alias for stddev_samp .

Yes

stddev_pop (numeric_type) → double precision for real or double precision,
 otherwise numeric
Computes the population standard deviation of the input values.

Yes

stddev_samp (numeric_type) → double precision for real or double precision,
 otherwise numeric
Computes the sample standard deviation of the input values.

Yes

variance (numeric_type) → double precision for real or double precision,
 otherwise numeric
This is a historical alias for var_samp .

Yes

var_pop (numeric_type) → double precision for real or double precision,
 otherwise numeric
Computes the population variance of the input values (square of the population
standard deviation).

Yes

var_samp (numeric_type) → double precision for real or double precision,
 otherwise numeric
Computes the sample variance of the input values (square of the sample standard
deviation).

Yes

Table 9.57 shows some aggregate functions that use the ordered-set aggregate syntax. These functions
are sometimes referred to as “inverse distribution” functions. Their aggregated input is introduced by
ORDER BY, and they may also take a direct argument that is not aggregated, but is computed only once. All
these functions ignore null values in their aggregated input. For those that take a fraction parameter,
the fraction value must be between 0 and 1; an error is thrown if not. However, a null fraction value
simply produces a null result.

Table 9.57. Ordered-Set Aggregate Functions

Function
Description

Partial
Mode

mode () WITHIN GROUP (ORDER BY anyelement) → anyelement
Computes the mode, the most frequent value of the aggregated argument (
arbitrarily choosing the first one if there are multiple equally-frequent values). The
aggregated argument must be of a sortable type.

No

percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY double
precision) → double precision

percentile_cont (fraction double precision) WITHIN GROUP (ORDER BY interval) →
interval
Computes the continuous percentile, a value corresponding to the specified
fraction within the ordered set of aggregated argument values. This will
interpolate between adjacent input items if needed.

No

percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY double
precision) → double precision[]

percentile_cont (fractions double precision[]) WITHIN GROUP (ORDER BY interval
) → interval[]

No

294

Functions and Operators

Function
Description

Partial
Mode

Computes multiple continuous percentiles. The result is an array of the same
dimensions as the fractions parameter, with each non-null element replaced by the
(possibly interpolated) value corresponding to that percentile.

percentile_disc (fraction double precision) WITHIN GROUP (ORDER BY anyelement)
→ anyelement
Computes the discrete percentile, the first value within the ordered set of
aggregated argument values whose position in the ordering equals or exceeds the
specified fraction. The aggregated argument must be of a sortable type.

No

percentile_disc (fractions double precision[]) WITHIN GROUP (ORDER BY
anyelement) → anyarray
Computes multiple discrete percentiles. The result is an array of the same
dimensions as the fractions parameter, with each non-null element replaced by the
input value corresponding to that percentile. The aggregated argument must be of a
sortable type.

No

Each of the “hypothetical-set” aggregates listed in Table 9.58 is associated with a window function of the
same name defined in Section 9.22. In each case, the aggregate's result is the value that the associated
window function would have returned for the “hypothetical” row constructed from args, if such a row
had been added to the sorted group of rows represented by the sorted_args. For each of these functions,
the list of direct arguments given in args must match the number and types of the aggregated arguments
given in sorted_args. Unlike most built-in aggregates, these aggregates are not strict, that is they do not
drop input rows containing nulls. Null values sort according to the rule specified in the ORDER BY clause.

Table 9.58. Hypothetical-Set Aggregate Functions

Function
Description

Partial
Mode

rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, with gaps; that is, the row number of the
first row in its peer group.

No

dense_rank (args) WITHIN GROUP (ORDER BY sorted_args) → bigint
Computes the rank of the hypothetical row, without gaps; this function effectively
counts peer groups.

No

percent_rank (args) WITHIN GROUP (ORDER BY sorted_args) → double precision
Computes the relative rank of the hypothetical row, that is (rank - 1) / (total rows -
1). The value thus ranges from 0 to 1 inclusive.

No

cume_dist (args) WITHIN GROUP (ORDER BY sorted_args) → double precision
Computes the cumulative distribution, that is (number of rows preceding or peers
with hypothetical row) / (total rows). The value thus ranges from 1/N to 1.

No

Table 9.59. Grouping Operations

Function
Description

GROUPING (group_by_expression(s)) → integer
Returns a bit mask indicating which GROUP BY expressions are not included in the current
grouping set. Bits are assigned with the rightmost argument corresponding to the least-
significant bit; each bit is 0 if the corresponding expression is included in the grouping
criteria of the grouping set generating the current result row, and 1 if it is not included.

The grouping operations shown in Table 9.59 are used in conjunction with grouping sets (see
Section 7.2.4) to distinguish result rows. The arguments to the GROUPING function are not actually

295

Functions and Operators

evaluated, but they must exactly match expressions given in the GROUP BY clause of the associated query
level. For example:
=> SELECT * FROM items_sold;
 make | model | sales
-------+-------+-------
 Foo | GT | 10
 Foo | Tour | 20
 Bar | City | 15
 Bar | Sport | 5
(4 rows)

=> SELECT make, model, GROUPING(make,model), sum(sales) FROM items_sold GROUP BY
 ROLLUP(make,model);
 make | model | grouping | sum
-------+-------+----------+-----
 Foo | GT | 0 | 10
 Foo | Tour | 0 | 20
 Bar | City | 0 | 15
 Bar | Sport | 0 | 5
 Foo | | 1 | 30
 Bar | | 1 | 20
 | | 3 | 50
(7 rows)

Here, the grouping value 0 in the first four rows shows that those have been grouped normally, over both
the grouping columns. The value 1 indicates that model was not grouped by in the next-to-last two rows,
and the value 3 indicates that neither make nor model was grouped by in the last row (which therefore
is an aggregate over all the input rows).

9.22. Window Functions
Window functions provide the ability to perform calculations across sets of rows that are related to the
current query row. See Section 3.5 for an introduction to this feature, and Section 4.2.8 for syntax details.

The built-in window functions are listed in Table 9.60. Note that these functions must be invoked using
window function syntax, i.e., an OVER clause is required.

In addition to these functions, any built-in or user-defined ordinary aggregate (i.e., not ordered-set or
hypothetical-set aggregates) can be used as a window function; see Section 9.21 for a list of the built-
in aggregates. Aggregate functions act as window functions only when an OVER clause follows the call;
otherwise they act as plain aggregates and return a single row for the entire set.

Table 9.60. General-Purpose Window Functions

Function
Description

row_number () → bigint
Returns the number of the current row within its partition, counting from 1.

rank () → bigint
Returns the rank of the current row, with gaps; that is, the row_number of the first row in its
peer group.

dense_rank () → bigint
Returns the rank of the current row, without gaps; this function effectively counts peer
groups.

percent_rank () → double precision
Returns the relative rank of the current row, that is (rank - 1) / (total partition rows - 1). The
value thus ranges from 0 to 1 inclusive.

296

Functions and Operators

Function
Description

cume_dist () → double precision
Returns the cumulative distribution, that is (number of partition rows preceding or peers with
current row) / (total partition rows). The value thus ranges from 1/N to 1.

ntile (num_buckets integer) → integer
Returns an integer ranging from 1 to the argument value, dividing the partition as equally as
possible.

lag (value anyelement [, offset integer [, default anyelement]]) → anyelement
Returns value evaluated at the row that is offset rows before the current row within the
partition; if there is no such row, instead returns default (which must be of the same type as
value). Both offset and default are evaluated with respect to the current row. If omitted,
 offset defaults to 1 and default to NULL.

lead (value anyelement [, offset integer [, default anyelement]]) → anyelement
Returns value evaluated at the row that is offset rows after the current row within the
partition; if there is no such row, instead returns default (which must be of the same type as
value). Both offset and default are evaluated with respect to the current row. If omitted,
 offset defaults to 1 and default to NULL.

first_value (value anyelement) → anyelement
Returns value evaluated at the row that is the first row of the window frame.

last_value (value anyelement) → anyelement
Returns value evaluated at the row that is the last row of the window frame.

nth_value (value anyelement, n integer) → anyelement
Returns value evaluated at the row that is the n'th row of the window frame (counting from
1); returns NULL if there is no such row.

All of the functions listed in Table 9.60 depend on the sort ordering specified by the ORDER BY clause
of the associated window definition. Rows that are not distinct when considering only the ORDER BY
columns are said to be peers. The four ranking functions (including cume_dist) are defined so that they
give the same answer for all rows of a peer group.

Note that first_value, last_value, and nth_value consider only the rows within the “window frame”,
which by default contains the rows from the start of the partition through the last peer of the current
row. This is likely to give unhelpful results for last_value and sometimes also nth_value. You can
redefine the frame by adding a suitable frame specification (RANGE, ROWS or GROUPS) to the OVER clause.
See Section 4.2.8 for more information about frame specifications.

When an aggregate function is used as a window function, it aggregates over the rows within the current
row's window frame. An aggregate used with ORDER BY and the default window frame definition produces
a “running sum” type of behavior, which may or may not be what's wanted. To obtain aggregation over the
whole partition, omit ORDER BY or use ROWS BETWEEN UNBOUNDED PRECEDING AND UNBOUNDED FOLLOWING.
Other frame specifications can be used to obtain other effects.

Note
The SQL standard defines a RESPECT NULLS or IGNORE NULLS option for lead, lag, first_value,
last_value, and nth_value. This is not implemented in Postgres Pro: the behavior is always the
same as the standard's default, namely RESPECT NULLS. Likewise, the standard's FROM FIRST or
FROM LAST option for nth_value is not implemented: only the default FROM FIRST behavior is
supported. (You can achieve the result of FROM LAST by reversing the ORDER BY ordering.)

297

Functions and Operators

9.23. Subquery Expressions
This section describes the SQL-compliant subquery expressions available in Postgres Pro. All of the
expression forms documented in this section return Boolean (true/false) results.

9.23.1. EXISTS
EXISTS (subquery)

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to
determine whether it returns any rows. If it returns at least one row, the result of EXISTS is “true”; if
the subquery returns no rows, the result of EXISTS is “false”.

The subquery can refer to variables from the surrounding query, which will act as constants during any
one evaluation of the subquery.

The subquery will generally only be executed long enough to determine whether at least one row is
returned, not all the way to completion. It is unwise to write a subquery that has side effects (such as
calling sequence functions); whether the side effects occur might be unpredictable.

Since the result depends only on whether any rows are returned, and not on the contents of those rows,
the output list of the subquery is normally unimportant. A common coding convention is to write all
EXISTS tests in the form EXISTS(SELECT 1 WHERE ...). There are exceptions to this rule however, such
as subqueries that use INTERSECT.

This simple example is like an inner join on col2, but it produces at most one output row for each tab1
row, even if there are several matching tab2 rows:

SELECT col1
FROM tab1
WHERE EXISTS (SELECT 1 FROM tab2 WHERE col2 = tab1.col2);

9.23.2. IN
expression IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of IN is “true” if
any equal subquery row is found. The result is “false” if no equal row is found (including the case where
the subquery returns no rows).

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand row yields null, the result of the IN construct will be null, not false. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor IN (subquery)

The left-hand side of this form of IN is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result. The result of IN is “true” if any equal subquery row is found. The result is “false” if no
equal row is found (including the case where the subquery returns no rows).

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are
unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one null,
then the result of IN is null.

298

Functions and Operators

9.23.3. NOT IN
expression NOT IN (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result. The result of NOT IN is “true”
if only unequal subquery rows are found (including the case where the subquery returns no rows). The
result is “false” if any equal row is found.

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand row yields null, the result of the NOT IN construct will be null, not true. This is in accordance
with SQL's normal rules for Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor NOT IN (subquery)

The left-hand side of this form of NOT IN is a row constructor, as described in Section 4.2.13. The
right-hand side is a parenthesized subquery, which must return exactly as many columns as there are
expressions in the left-hand row. The left-hand expressions are evaluated and compared row-wise to
each row of the subquery result. The result of NOT IN is “true” if only unequal subquery rows are found
(including the case where the subquery returns no rows). The result is “false” if any equal row is found.

As usual, null values in the rows are combined per the normal rules of SQL Boolean expressions. Two
rows are considered equal if all their corresponding members are non-null and equal; the rows are
unequal if any corresponding members are non-null and unequal; otherwise the result of that row
comparison is unknown (null). If all the per-row results are either unequal or null, with at least one null,
then the result of NOT IN is null.

9.23.4. ANY/SOME
expression operator ANY (subquery)
expression operator SOME (subquery)

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is
“false” if no true result is found (including the case where the subquery returns no rows).

SOME is a synonym for ANY. IN is equivalent to = ANY.

Note that if there are no successes and at least one right-hand row yields null for the operator's result,
the result of the ANY construct will be null, not false. This is in accordance with SQL's normal rules for
Boolean combinations of null values.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ANY (subquery)
row_constructor operator SOME (subquery)

The left-hand side of this form of ANY is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ANY is “true” if the comparison returns true for
any subquery row. The result is “false” if the comparison returns false for every subquery row (including
the case where the subquery returns no rows). The result is NULL if no comparison with a subquery row
returns true, and at least one comparison returns NULL.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

9.23.5. ALL
expression operator ALL (subquery)

299

Functions and Operators

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand
expression is evaluated and compared to each row of the subquery result using the given operator,
which must yield a Boolean result. The result of ALL is “true” if all rows yield true (including the case
where the subquery returns no rows). The result is “false” if any false result is found. The result is NULL
if no comparison with a subquery row returns false, and at least one comparison returns NULL.

NOT IN is equivalent to <> ALL.

As with EXISTS, it's unwise to assume that the subquery will be evaluated completely.

row_constructor operator ALL (subquery)

The left-hand side of this form of ALL is a row constructor, as described in Section 4.2.13. The right-hand
side is a parenthesized subquery, which must return exactly as many columns as there are expressions
in the left-hand row. The left-hand expressions are evaluated and compared row-wise to each row of the
subquery result, using the given operator. The result of ALL is “true” if the comparison returns true for
all subquery rows (including the case where the subquery returns no rows). The result is “false” if the
comparison returns false for any subquery row. The result is NULL if no comparison with a subquery
row returns false, and at least one comparison returns NULL.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

9.23.6. Single-Row Comparison
row_constructor operator (subquery)

The left-hand side is a row constructor, as described in Section 4.2.13. The right-hand side is a
parenthesized subquery, which must return exactly as many columns as there are expressions in the
left-hand row. Furthermore, the subquery cannot return more than one row. (If it returns zero rows, the
result is taken to be null.) The left-hand side is evaluated and compared row-wise to the single subquery
result row.

See Section 9.24.5 for details about the meaning of a row constructor comparison.

9.24. Row and Array Comparisons
This section describes several specialized constructs for making multiple comparisons between groups
of values. These forms are syntactically related to the subquery forms of the previous section, but do
not involve subqueries. The forms involving array subexpressions are Postgres Pro extensions; the rest
are SQL-compliant. All of the expression forms documented in this section return Boolean (true/false)
results.

9.24.1. IN
expression IN (value [, ...])

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is equal to any of the right-hand expressions. This is a shorthand notation for

expression = value1
OR
expression = value2
OR
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least
one right-hand expression yields null, the result of the IN construct will be null, not false. This is in
accordance with SQL's normal rules for Boolean combinations of null values.

9.24.2. NOT IN
expression NOT IN (value [, ...])

300

Functions and Operators

The right-hand side is a parenthesized list of scalar expressions. The result is “true” if the left-hand
expression's result is unequal to all of the right-hand expressions. This is a shorthand notation for

expression <> value1
AND
expression <> value2
AND
...

Note that if the left-hand expression yields null, or if there are no equal right-hand values and at least one
right-hand expression yields null, the result of the NOT IN construct will be null, not true as one might
naively expect. This is in accordance with SQL's normal rules for Boolean combinations of null values.

Tip
x NOT IN y is equivalent to NOT (x IN y) in all cases. However, null values are much more likely
to trip up the novice when working with NOT IN than when working with IN. It is best to express
your condition positively if possible.

9.24.3. ANY/SOME (array)
expression operator ANY (array expression)
expression operator SOME (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ANY is “true” if any true result is obtained. The result is “false”
if no true result is found (including the case where the array has zero elements).

If the array expression yields a null array, the result of ANY will be null. If the left-hand expression yields
null, the result of ANY is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no true comparison result
is obtained, the result of ANY will be null, not false (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

SOME is a synonym for ANY.

9.24.4. ALL (array)
expression operator ALL (array expression)

The right-hand side is a parenthesized expression, which must yield an array value. The left-hand
expression is evaluated and compared to each element of the array using the given operator, which
must yield a Boolean result. The result of ALL is “true” if all comparisons yield true (including the case
where the array has zero elements). The result is “false” if any false result is found.

If the array expression yields a null array, the result of ALL will be null. If the left-hand expression yields
null, the result of ALL is ordinarily null (though a non-strict comparison operator could possibly yield a
different result). Also, if the right-hand array contains any null elements and no false comparison result
is obtained, the result of ALL will be null, not true (again, assuming a strict comparison operator). This
is in accordance with SQL's normal rules for Boolean combinations of null values.

9.24.5. Row Constructor Comparison
row_constructor operator row_constructor

Each side is a row constructor, as described in Section 4.2.13. The two row values must have the same
number of fields. Each side is evaluated and they are compared row-wise. Row constructor comparisons

301

Functions and Operators

are allowed when the operator is =, <>, <, <=, > or >=. Every row element must be of a type which has
a default B-tree operator class or the attempted comparison may generate an error.

Note
Errors related to the number or types of elements might not occur if the comparison is resolved
using earlier columns.

The = and <> cases work slightly differently from the others. Two rows are considered equal if all their
corresponding members are non-null and equal; the rows are unequal if any corresponding members
are non-null and unequal; otherwise the result of the row comparison is unknown (null).

For the <, <=, > and >= cases, the row elements are compared left-to-right, stopping as soon as an unequal
or null pair of elements is found. If either of this pair of elements is null, the result of the row comparison
is unknown (null); otherwise comparison of this pair of elements determines the result. For example,
ROW(1,2,NULL) < ROW(1,3,0) yields true, not null, because the third pair of elements are not considered.

Note
Prior to PostgreSQL 8.2, the <, <=, > and >= cases were not handled per SQL specification. A
comparison like ROW(a,b) < ROW(c,d) was implemented as a < c AND b < d whereas the correct
behavior is equivalent to a < c OR (a = c AND b < d).

row_constructor IS DISTINCT FROM row_constructor

This construct is similar to a <> row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will either be true or false, never null.

row_constructor IS NOT DISTINCT FROM row_constructor

This construct is similar to a = row comparison, but it does not yield null for null inputs. Instead, any
null value is considered unequal to (distinct from) any non-null value, and any two nulls are considered
equal (not distinct). Thus the result will always be either true or false, never null.

9.24.6. Composite Type Comparison
record operator record

The SQL specification requires row-wise comparison to return NULL if the result depends on comparing
two NULL values or a NULL and a non-NULL. Postgres Pro does this only when comparing the results of
two row constructors (as in Section 9.24.5) or comparing a row constructor to the output of a subquery
(as in Section 9.23). In other contexts where two composite-type values are compared, two NULL field
values are considered equal, and a NULL is considered larger than a non-NULL. This is necessary in
order to have consistent sorting and indexing behavior for composite types.

Each side is evaluated and they are compared row-wise. Composite type comparisons are allowed when
the operator is =, <>, <, <=, > or >=, or has semantics similar to one of these. (To be specific, an operator
can be a row comparison operator if it is a member of a B-tree operator class, or is the negator of the
= member of a B-tree operator class.) The default behavior of the above operators is the same as for IS
[NOT] DISTINCT FROM for row constructors (see Section 9.24.5).

To support matching of rows which include elements without a default B-tree operator class, the
following operators are defined for composite type comparison: *=, *<>, *<, *<=, *>, and *>=. These
operators compare the internal binary representation of the two rows. Two rows might have a different
binary representation even though comparisons of the two rows with the equality operator is true. The

302

Functions and Operators

ordering of rows under these comparison operators is deterministic but not otherwise meaningful. These
operators are used internally for materialized views and might be useful for other specialized purposes
such as replication and B-Tree deduplication (see Section 59.4.2). They are not intended to be generally
useful for writing queries, though.

9.25. Set Returning Functions
This section describes functions that possibly return more than one row. The most widely used functions
in this class are series generating functions, as detailed in Table 9.61 and Table 9.62. Other, more
specialized set-returning functions are described elsewhere in this manual. See Section 7.2.1.4 for ways
to combine multiple set-returning functions.

Table 9.61. Series Generating Functions

Function
Description

generate_series (start integer, stop integer [, step integer]) → setof integer
generate_series (start bigint, stop bigint [, step bigint]) → setof bigint
generate_series (start numeric, stop numeric [, step numeric]) → setof numeric

Generates a series of values from start to stop, with a step size of step. step defaults to 1.

generate_series (start timestamp, stop timestamp, step interval) → setof timestamp
generate_series (start timestamp with time zone, stop timestamp with time zone, step

interval) → setof timestamp with time zone
Generates a series of values from start to stop, with a step size of step.

When step is positive, zero rows are returned if start is greater than stop. Conversely, when step is
negative, zero rows are returned if start is less than stop. Zero rows are also returned if any input is
NULL. It is an error for step to be zero. Some examples follow:

SELECT * FROM generate_series(2,4);
 generate_series

 2
 3
 4
(3 rows)

SELECT * FROM generate_series(5,1,-2);
 generate_series

 5
 3
 1
(3 rows)

SELECT * FROM generate_series(4,3);
 generate_series

(0 rows)

SELECT generate_series(1.1, 4, 1.3);
 generate_series

 1.1
 2.4
 3.7

303

Functions and Operators

(3 rows)

-- this example relies on the date-plus-integer operator:
SELECT current_date + s.a AS dates FROM generate_series(0,14,7) AS s(a);
 dates

 2004-02-05
 2004-02-12
 2004-02-19
(3 rows)

SELECT * FROM generate_series('2008-03-01 00:00'::timestamp,
 '2008-03-04 12:00', '10 hours');
 generate_series

 2008-03-01 00:00:00
 2008-03-01 10:00:00
 2008-03-01 20:00:00
 2008-03-02 06:00:00
 2008-03-02 16:00:00
 2008-03-03 02:00:00
 2008-03-03 12:00:00
 2008-03-03 22:00:00
 2008-03-04 08:00:00
(9 rows)

Table 9.62. Subscript Generating Functions

Function
Description

generate_subscripts (array anyarray, dim integer) → setof integer
Generates a series comprising the valid subscripts of the dim'th dimension of the given array.

generate_subscripts (array anyarray, dim integer, reverse boolean) → setof integer
Generates a series comprising the valid subscripts of the dim'th dimension of the given array.
When reverse is true, returns the series in reverse order.

generate_subscripts is a convenience function that generates the set of valid subscripts for the
specified dimension of the given array. Zero rows are returned for arrays that do not have the requested
dimension, or if any input is NULL. Some examples follow:

-- basic usage:
SELECT generate_subscripts('{NULL,1,NULL,2}'::int[], 1) AS s;
 s

 1
 2
 3
 4
(4 rows)

-- presenting an array, the subscript and the subscripted
-- value requires a subquery:
SELECT * FROM arrays;
 a

 {-1,-2}
 {100,200,300}

304

Functions and Operators

(2 rows)

SELECT a AS array, s AS subscript, a[s] AS value
FROM (SELECT generate_subscripts(a, 1) AS s, a FROM arrays) foo;
 array | subscript | value
---------------+-----------+-------
 {-1,-2} | 1 | -1
 {-1,-2} | 2 | -2
 {100,200,300} | 1 | 100
 {100,200,300} | 2 | 200
 {100,200,300} | 3 | 300
(5 rows)

-- unnest a 2D array:
CREATE OR REPLACE FUNCTION unnest2(anyarray)
RETURNS SETOF anyelement AS $$
select $1[i][j]
 from generate_subscripts($1,1) g1(i),
 generate_subscripts($1,2) g2(j);
$$ LANGUAGE sql IMMUTABLE;
CREATE FUNCTION
SELECT * FROM unnest2(ARRAY[[1,2],[3,4]]);
 unnest2

 1
 2
 3
 4
(4 rows)

When a function in the FROM clause is suffixed by WITH ORDINALITY, a bigint column is appended to
the function's output column(s), which starts from 1 and increments by 1 for each row of the function's
output. This is most useful in the case of set returning functions such as unnest().

-- set returning function WITH ORDINALITY:
SELECT * FROM pg_ls_dir('.') WITH ORDINALITY AS t(ls,n);
 ls | n
-----------------+----
 pg_serial | 1
 pg_twophase | 2
 postmaster.opts | 3
 pg_notify | 4
 postgresql.conf | 5
 pg_tblspc | 6
 logfile | 7
 base | 8
 postmaster.pid | 9
 pg_ident.conf | 10
 global | 11
 pg_xact | 12
 pg_snapshots | 13
 pg_multixact | 14
 PG_VERSION | 15
 pg_wal | 16
 pg_hba.conf | 17
 pg_stat_tmp | 18
 pg_subtrans | 19
(19 rows)

305

Functions and Operators

9.26. System Information Functions and Operators
Table 9.63 shows several functions that extract session and system information.

In addition to the functions listed in this section, there are a number of functions related to the statistics
system that also provide system information. See Section 26.2.2 for more information.

Table 9.63. Session Information Functions

Function
Description

current_catalog → name
current_database () → name

Returns the name of the current database. (Databases are called “catalogs” in the SQL
standard, so current_catalog is the standard's spelling.)

current_query () → text
Returns the text of the currently executing query, as submitted by the client (which might
contain more than one statement).

current_role → name
This is equivalent to current_user .

current_schema → name
current_schema () → name

Returns the name of the schema that is first in the search path (or a null value if the search
path is empty). This is the schema that will be used for any tables or other named objects that
are created without specifying a target schema.

current_schemas (include_implicit boolean) → name[]
Returns an array of the names of all schemas presently in the effective search path, in their
priority order. (Items in the current search_path setting that do not correspond to existing,
 searchable schemas are omitted.) If the Boolean argument is true, then implicitly-searched
system schemas such as pg_catalog are included in the result.

current_user → name
Returns the user name of the current execution context.

inet_client_addr () → inet
Returns the IP address of the current client, or NULL if the current connection is via a Unix-
domain socket.

inet_client_port () → integer
Returns the IP port number of the current client, or NULL if the current connection is via a
Unix-domain socket.

inet_server_addr () → inet
Returns the IP address on which the server accepted the current connection, or NULL if the
current connection is via a Unix-domain socket.

inet_server_port () → integer
Returns the IP port number on which the server accepted the current connection, or NULL if
the current connection is via a Unix-domain socket.

pg_backend_pid () → integer
Returns the process ID of the server process attached to the current session.

pg_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring a lock, or an empty array if there is no such server
process or it is not blocked.

306

Functions and Operators

Function
Description
One server process blocks another if it either holds a lock that conflicts with the blocked
process's lock request (hard block), or is waiting for a lock that would conflict with the
blocked process's lock request and is ahead of it in the wait queue (soft block). When using
parallel queries the result always lists client-visible process IDs (that is, pg_backend_pid
results) even if the actual lock is held or awaited by a child worker process. As a result of
that, there may be duplicated PIDs in the result. Also note that when a prepared transaction
holds a conflicting lock, it will be represented by a zero process ID.
Frequent calls to this function could have some impact on database performance, because it
needs exclusive access to the lock manager's shared state for a short time.

pg_conf_load_time () → timestamp with time zone
Returns the time when the server configuration files were last loaded. If the current session
was alive at the time, this will be the time when the session itself re-read the configuration
files (so the reading will vary a little in different sessions). Otherwise it is the time when the
postmaster process re-read the configuration files.

pg_current_logfile ([text]) → text
Returns the path name of the log file currently in use by the logging collector. The path
includes the log_directory directory and the individual log file name. The result is NULL if
the logging collector is disabled. When multiple log files exist, each in a different format,
 pg_current_logfile without an argument returns the path of the file having the first
format found in the ordered list: stderr, csvlog. NULL is returned if no log file has any of
these formats. To request information about a specific log file format, supply either csvlog or
stderr as the value of the optional parameter. The result is NULL if the log format requested
is not configured in log_destination. The result reflects the contents of the current_
logfiles file.

pg_my_temp_schema () → oid
Returns the OID of the current session's temporary schema, or zero if it has none (because it
has not created any temporary tables).

pg_is_other_temp_schema (oid) → boolean
Returns true if the given OID is the OID of another session's temporary schema. (This can be
useful, for example, to exclude other sessions' temporary tables from a catalog display.)

pg_jit_available () → boolean
Returns true if a JIT compiler extension is available (see Chapter 30) and the jit configuration
parameter is set to on.

pg_listening_channels () → setof text
Returns the set of names of asynchronous notification channels that the current session is
listening to.

pg_notification_queue_usage () → double precision
Returns the fraction (0–1) of the asynchronous notification queue's maximum size that is
currently occupied by notifications that are waiting to be processed. See LISTEN and NOTIFY
for more information.

pg_postmaster_start_time () → timestamp with time zone
Returns the time when the server started.

pg_safe_snapshot_blocking_pids (integer) → integer[]
Returns an array of the process ID(s) of the sessions that are blocking the server process with
the specified process ID from acquiring a safe snapshot, or an empty array if there is no such
server process or it is not blocked.
A session running a SERIALIZABLE transaction blocks a SERIALIZABLE READ ONLY
DEFERRABLE transaction from acquiring a snapshot until the latter determines that it is safe to

307

Functions and Operators

Function
Description
avoid taking any predicate locks. See Section 13.2.3 for more information about serializable
and deferrable transactions.
Frequent calls to this function could have some impact on database performance, because it
needs access to the predicate lock manager's shared state for a short time.

pg_trigger_depth () → integer
Returns the current nesting level of Postgres Pro triggers (0 if not called, directly or
indirectly, from inside a trigger).

session_user → name
Returns the session user's name.

user → name
This is equivalent to current_user .

version () → text
Returns a string describing the PostgreSQL server's version. You can also get this information
from server_version, or for a machine-readable version use server_version_num. Software
developers should use server_version_num (available since 8.2) or PQserverVersion
instead of parsing the text version.

pgpro_version () → text
Returns a string describing the Postgres Pro server's version.

pgpro_edition () → text
Returns a string describing Postgres Pro edition i.e. standard or enterprise.

pgpro_build () → text
Returns the commit ID of Postgres Pro source files.

Note
current_catalog, current_role, current_schema, current_user, session_user, and user have
special syntactic status in SQL: they must be called without trailing parentheses. In Postgres Pro,
parentheses can optionally be used with current_schema, but not with the others.

The session_user is normally the user who initiated the current database connection; but superusers
can change this setting with SET SESSION AUTHORIZATION. The current_user is the user identifier
that is applicable for permission checking. Normally it is equal to the session user, but it can be changed
with SET ROLE. It also changes during the execution of functions with the attribute SECURITY DEFINER.
In Unix parlance, the session user is the “real user” and the current user is the “effective user”.
current_role and user are synonyms for current_user. (The SQL standard draws a distinction between
current_role and current_user, but Postgres Pro does not, since it unifies users and roles into a single
kind of entity.)

Table 9.64 lists functions that allow querying object access privileges programmatically. (See Section 5.7
for more information about privileges.) In these functions, the user whose privileges are being inquired
about can be specified by name or by OID (pg_authid.oid), or if the name is given as public then the
privileges of the PUBLIC pseudo-role are checked. Also, the user argument can be omitted entirely, in
which case the current_user is assumed. The object that is being inquired about can be specified either
by name or by OID, too. When specifying by name, a schema name can be included if relevant. The
access privilege of interest is specified by a text string, which must evaluate to one of the appropriate
privilege keywords for the object's type (e.g., SELECT). Optionally, WITH GRANT OPTION can be added
to a privilege type to test whether the privilege is held with grant option. Also, multiple privilege types
can be listed separated by commas, in which case the result will be true if any of the listed privileges
is held. (Case of the privilege string is not significant, and extra whitespace is allowed between but not
within privilege names.) Some examples:

308

Functions and Operators

SELECT has_table_privilege('myschema.mytable', 'select');
SELECT has_table_privilege('joe', 'mytable', 'INSERT, SELECT WITH GRANT OPTION');

Table 9.64. Access Privilege Inquiry Functions

Function
Description

has_any_column_privilege ([user name or oid,] table text or oid, privilege text) →
boolean
Does user have privilege for any column of table? This succeeds either if the privilege is held
for the whole table, or if there is a column-level grant of the privilege for at least one column.
Allowable privilege types are SELECT, INSERT, UPDATE, and REFERENCES.

has_column_privilege ([user name or oid,] table text or oid, column text or smallint,
 privilege text) → boolean
Does user have privilege for the specified table column? This succeeds either if the privilege
is held for the whole table, or if there is a column-level grant of the privilege for the column.
The column can be specified by name or by attribute number (pg_attribute .attnum).
Allowable privilege types are SELECT, INSERT, UPDATE, and REFERENCES.

has_database_privilege ([user name or oid,] database text or oid, privilege text) →
boolean
Does user have privilege for database? Allowable privilege types are CREATE, CONNECT,
 TEMPORARY, and TEMP (which is equivalent to TEMPORARY).

has_foreign_data_wrapper_privilege ([user name or oid,] fdw text or oid, privilege text
) → boolean
Does user have privilege for foreign-data wrapper? The only allowable privilege type is USAGE.

has_function_privilege ([user name or oid,] function text or oid, privilege text) →
boolean
Does user have privilege for function? The only allowable privilege type is EXECUTE.
When specifying a function by name rather than by OID, the allowed input is the same as for
the regprocedure data type (see Section 8.19). An example is:

SELECT has_function_privilege('joeuser', 'myfunc(int, text)', 'execute');

has_language_privilege ([user name or oid,] language text or oid, privilege text) →
boolean
Does user have privilege for language? The only allowable privilege type is USAGE.

has_schema_privilege ([user name or oid,] schema text or oid, privilege text) → boolean
Does user have privilege for schema? Allowable privilege types are CREATE and USAGE.

has_sequence_privilege ([user name or oid,] sequence text or oid, privilege text) →
boolean
Does user have privilege for sequence? Allowable privilege types are USAGE, SELECT, and
UPDATE.

has_server_privilege ([user name or oid,] server text or oid, privilege text) → boolean
Does user have privilege for foreign server? The only allowable privilege type is USAGE.

has_table_privilege ([user name or oid,] table text or oid, privilege text) → boolean
Does user have privilege for table? Allowable privilege types are SELECT, INSERT, UPDATE,
 DELETE, TRUNCATE, REFERENCES, and TRIGGER.

has_tablespace_privilege ([user name or oid,] tablespace text or oid, privilege text) →
boolean
Does user have privilege for tablespace? The only allowable privilege type is CREATE.

has_type_privilege ([user name or oid,] type text or oid, privilege text) → boolean

309

Functions and Operators

Function
Description
Does user have privilege for data type? The only allowable privilege type is USAGE. When
specifying a type by name rather than by OID, the allowed input is the same as for the
regtype data type (see Section 8.19).

pg_has_role ([user name or oid,] role text or oid, privilege text) → boolean
Does user have privilege for role? Allowable privilege types are MEMBER and USAGE. MEMBER
denotes direct or indirect membership in the role (that is, the right to do SET ROLE), while
USAGE denotes whether the privileges of the role are immediately available without doing SET
ROLE. This function does not allow the special case of setting user to public, because the
PUBLIC pseudo-role can never be a member of real roles.

row_security_active (table text or oid) → boolean
Is row-level security active for the specified table in the context of the current user and
current environment?

Table 9.65 shows the operators available for the aclitem type, which is the catalog representation of
access privileges. See Section 5.7 for information about how to read access privilege values.

Table 9.65. aclitem Operators

Operator
Description
Example(s)

aclitem = aclitem → boolean
Are aclitems equal? (Notice that type aclitem lacks the usual set of comparison operators; it
has only equality. In turn, aclitem arrays can only be compared for equality.)
'calvin=r*w/hobbes'::aclitem = 'calvin=r*w*/hobbes'::aclitem → f

aclitem[] @> aclitem → boolean
Does array contain the specified privileges? (This is true if there is an array entry that
matches the aclitem's grantee and grantor, and has at least the specified set of privileges.)
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] @> 'calvin=r*/

hobbes'::aclitem → t

aclitem[] ~ aclitem → boolean
This is a deprecated alias for @>.
'{calvin=r*w/hobbes,hobbes=r*w*/postgres}'::aclitem[] ~ 'calvin=r*/

hobbes'::aclitem → t

Table 9.66 shows some additional functions to manage the aclitem type.

Table 9.66. aclitem Functions

Function
Description

acldefault (type "char", ownerId oid) → aclitem[]
Constructs an aclitem array holding the default access privileges for an object of type type
belonging to the role with OID ownerId. This represents the access privileges that will be
assumed when an object's ACL entry is null. (The default access privileges are described in
Section 5.7.) The type parameter must be one of 'c' for COLUMN, 'r' for TABLE and table-like
objects, 's' for SEQUENCE, 'd' for DATABASE, 'f' for FUNCTION or PROCEDURE, 'l' for LANGUAGE, 'L'
for LARGE OBJECT, 'n' for SCHEMA, 't' for TABLESPACE, 'F' for FOREIGN DATA WRAPPER, 'S' for
FOREIGN SERVER, or 'T' for TYPE or DOMAIN.

aclexplode (aclitem[]) → setof record (grantor oid, grantee oid, privilege_type text, is_
grantable boolean)

310

Functions and Operators

Function
Description
Returns the aclitem array as a set of rows. If the grantee is the pseudo-role PUBLIC, it is
represented by zero in the grantee column. Each granted privilege is represented as SELECT,
 INSERT, etc. Note that each privilege is broken out as a separate row, so only one keyword
appears in the privilege_type column.

makeaclitem (grantee oid, grantor oid, privileges text, is_grantable boolean) → aclitem
Constructs an aclitem with the given properties.

Table 9.67 shows functions that determine whether a certain object is visible in the current schema
search path. For example, a table is said to be visible if its containing schema is in the search path and
no table of the same name appears earlier in the search path. This is equivalent to the statement that
the table can be referenced by name without explicit schema qualification. Thus, to list the names of
all visible tables:

SELECT relname FROM pg_class WHERE pg_table_is_visible(oid);

For functions and operators, an object in the search path is said to be visible if there is no object of the
same name and argument data type(s) earlier in the path. For operator classes and families, both the
name and the associated index access method are considered.

Table 9.67. Schema Visibility Inquiry Functions

Function
Description

pg_collation_is_visible (collation oid) → boolean
Is collation visible in search path?

pg_conversion_is_visible (conversion oid) → boolean
Is conversion visible in search path?

pg_function_is_visible (function oid) → boolean
Is function visible in search path? (This also works for procedures and aggregates.)

pg_opclass_is_visible (opclass oid) → boolean
Is operator class visible in search path?

pg_operator_is_visible (operator oid) → boolean
Is operator visible in search path?

pg_opfamily_is_visible (opclass oid) → boolean
Is operator family visible in search path?

pg_statistics_obj_is_visible (stat oid) → boolean
Is statistics object visible in search path?

pg_table_is_visible (table oid) → boolean
Is table visible in search path? (This works for all types of relations, including views,
 materialized views, indexes, sequences and foreign tables.)

pg_ts_config_is_visible (config oid) → boolean
Is text search configuration visible in search path?

pg_ts_dict_is_visible (dict oid) → boolean
Is text search dictionary visible in search path?

pg_ts_parser_is_visible (parser oid) → boolean
Is text search parser visible in search path?

pg_ts_template_is_visible (template oid) → boolean
Is text search template visible in search path?

311

Functions and Operators

Function
Description

pg_type_is_visible (type oid) → boolean
Is type (or domain) visible in search path?

All these functions require object OIDs to identify the object to be checked. If you want to test an object
by name, it is convenient to use the OID alias types (regclass, regtype, regprocedure, regoperator,
regconfig, or regdictionary), for example:

SELECT pg_type_is_visible('myschema.widget'::regtype);

Note that it would not make much sense to test a non-schema-qualified type name in this way — if the
name can be recognized at all, it must be visible.

Table 9.68 lists functions that extract information from the system catalogs.

Table 9.68. System Catalog Information Functions

Function
Description

format_type (type oid, typemod integer) → text
Returns the SQL name for a data type that is identified by its type OID and possibly a type
modifier. Pass NULL for the type modifier if no specific modifier is known.

pg_get_constraintdef (constraint oid [, pretty boolean]) → text
Reconstructs the creating command for a constraint. (This is a decompiled reconstruction,
 not the original text of the command.)

pg_get_expr (expr pg_node_tree , relation oid [, pretty boolean]) → text
Decompiles the internal form of an expression stored in the system catalogs, such as the
default value for a column. If the expression might contain Vars, specify the OID of the
relation they refer to as the second parameter; if no Vars are expected, passing zero is
sufficient.

pg_get_functiondef (func oid) → text
Reconstructs the creating command for a function or procedure. (This is a decompiled
reconstruction, not the original text of the command.) The result is a complete CREATE OR
REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE statement.

pg_get_function_arguments (func oid) → text
Reconstructs the argument list of a function or procedure, in the form it would need to
appear in within CREATE FUNCTION (including default values).

pg_get_function_identity_arguments (func oid) → text
Reconstructs the argument list necessary to identify a function or procedure, in the form it
would need to appear in within commands such as ALTER FUNCTION. This form omits default
values.

pg_get_function_result (func oid) → text
Reconstructs the RETURNS clause of a function, in the form it would need to appear in within
CREATE FUNCTION. Returns NULL for a procedure.

pg_get_indexdef (index oid [, column integer, pretty boolean]) → text
Reconstructs the creating command for an index. (This is a decompiled reconstruction, not
the original text of the command.) If column is supplied and is not zero, only the definition of
that column is reconstructed.

pg_get_keywords () → setof record (word text, catcode "char", catdesc text)
Returns a set of records describing the SQL keywords recognized by the server. The word
column contains the keyword. The catcode column contains a category code: U for an
unreserved keyword, C for a keyword that can be a column name, T for a keyword that can

312

Functions and Operators

Function
Description
be a type or function name, or R for a fully reserved keyword. The catdesc column contains a
possibly-localized string describing the category.

pg_get_ruledef (rule oid [, pretty boolean]) → text
Reconstructs the creating command for a rule. (This is a decompiled reconstruction, not the
original text of the command.)

pg_get_serial_sequence (table text, column text) → text
Returns the name of the sequence associated with a column, or NULL if no sequence is
associated with the column. If the column is an identity column, the associated sequence
is the sequence internally created for that column. For columns created using one of the
serial types (serial, smallserial, bigserial), it is the sequence created for that serial
column definition. In the latter case, the association can be modified or removed with ALTER
SEQUENCE OWNED BY. (This function probably should have been called pg_get_owned_
sequence ; its current name reflects the fact that it has historically been used with serial-
type columns.) The first parameter is a table name with optional schema, and the second
parameter is a column name. Because the first parameter potentially contains both schema
and table names, it is parsed per usual SQL rules, meaning it is lower-cased by default.
The second parameter, being just a column name, is treated literally and so has its case
preserved. The result is suitably formatted for passing to the sequence functions (see
Section 9.17).
A typical use is in reading the current value of the sequence for an identity or serial column,
 for example:

SELECT currval(pg_get_serial_sequence('sometable', 'id'));

pg_get_statisticsobjdef (statobj oid) → text
Reconstructs the creating command for an extended statistics object. (This is a decompiled
reconstruction, not the original text of the command.)

pg_get_triggerdef (trigger oid [, pretty boolean]) → text
Reconstructs the creating command for a trigger. (This is a decompiled reconstruction, not
the original text of the command.)

pg_get_userbyid (role oid) → name
Returns a role's name given its OID.

pg_get_viewdef (view oid [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a
decompiled reconstruction, not the original text of the command.)

pg_get_viewdef (view oid, wrap_column integer) → text
Reconstructs the underlying SELECT command for a view or materialized view. (This is a
decompiled reconstruction, not the original text of the command.) In this form of the function,
pretty-printing is always enabled, and long lines are wrapped to try to keep them shorter than
the specified number of columns.

pg_get_viewdef (view text [, pretty boolean]) → text
Reconstructs the underlying SELECT command for a view or materialized view, working from
a textual name for the view rather than its OID. (This is deprecated; use the OID variant
instead.)

pg_index_column_has_property (index regclass, column integer, property text) →
boolean
Tests whether an index column has the named property. Common index column properties
are listed in Table 9.69. (Note that extension access methods can define additional property
names for their indexes.) NULL is returned if the property name is not known or does not
apply to the particular object, or if the OID or column number does not identify a valid object.

313

Functions and Operators

Function
Description

pg_index_has_property (index regclass, property text) → boolean
Tests whether an index has the named property. Common index properties are listed in
Table 9.70. (Note that extension access methods can define additional property names for
their indexes.) NULL is returned if the property name is not known or does not apply to the
particular object, or if the OID does not identify a valid object.

pg_indexam_has_property (am oid, property text) → boolean
Tests whether an index access method has the named property. Access method properties are
listed in Table 9.71. NULL is returned if the property name is not known or does not apply to
the particular object, or if the OID does not identify a valid object.

pg_options_to_table (options_array text[]) → setof record (option_name text,
 option_value text)
Returns the set of storage options represented by a value from pg_class .reloptions or pg_
attribute .attoptions.

pg_tablespace_databases (tablespace oid) → setof oid
Returns the set of OIDs of databases that have objects stored in the specified tablespace.
If this function returns any rows, the tablespace is not empty and cannot be dropped. To
identify the specific objects populating the tablespace, you will need to connect to the
database(s) identified by pg_tablespace_databases and query their pg_class catalogs.

pg_tablespace_location (tablespace oid) → text
Returns the file system path that this tablespace is located in.

pg_typeof ("any") → regtype
Returns the OID of the data type of the value that is passed to it. This can be helpful for
troubleshooting or dynamically constructing SQL queries. The function is declared as
returning regtype, which is an OID alias type (see Section 8.19); this means that it is the
same as an OID for comparison purposes but displays as a type name.
For example:

SELECT pg_typeof(33);
 pg_typeof

 integer

SELECT typlen FROM pg_type WHERE oid = pg_typeof(33);
 typlen

 4

COLLATION FOR ("any") → text
Returns the name of the collation of the value that is passed to it. The value is quoted and
schema-qualified if necessary. If no collation was derived for the argument expression, then
NULL is returned. If the argument is not of a collatable data type, then an error is raised.
For example:

SELECT collation for (description) FROM pg_description LIMIT 1;
 pg_collation_for

 "default"

SELECT collation for ('foo' COLLATE "de_DE");
 pg_collation_for

 "de_DE"

314

Functions and Operators

Function
Description

to_regclass (text) → regclass
Translates a textual relation name to its OID. A similar result is obtained by casting the
string to type regclass (see Section 8.19); however, this function will return NULL rather
than throwing an error if the name is not found. Also unlike the cast, this does not accept a
numeric OID as input.

to_regcollation (text) → regcollation
Translates a textual collation name to its OID. A similar result is obtained by casting the
string to type regcollation (see Section 8.19); however, this function will return NULL rather
than throwing an error if the name is not found. Also unlike the cast, this does not accept a
numeric OID as input.

to_regnamespace (text) → regnamespace
Translates a textual schema name to its OID. A similar result is obtained by casting the
string to type regnamespace (see Section 8.19); however, this function will return NULL rather
than throwing an error if the name is not found. Also unlike the cast, this does not accept a
numeric OID as input.

to_regoper (text) → regoper
Translates a textual operator name to its OID. A similar result is obtained by casting the
string to type regoper (see Section 8.19); however, this function will return NULL rather than
throwing an error if the name is not found or is ambiguous. Also unlike the cast, this does not
accept a numeric OID as input.

to_regoperator (text) → regoperator
Translates a textual operator name (with parameter types) to its OID. A similar result is
obtained by casting the string to type regoperator (see Section 8.19); however, this function
will return NULL rather than throwing an error if the name is not found. Also unlike the cast,
 this does not accept a numeric OID as input.

to_regproc (text) → regproc
Translates a textual function or procedure name to its OID. A similar result is obtained by
casting the string to type regproc (see Section 8.19); however, this function will return NULL
rather than throwing an error if the name is not found or is ambiguous. Also unlike the cast,
 this does not accept a numeric OID as input.

to_regprocedure (text) → regprocedure
Translates a textual function or procedure name (with argument types) to its OID. A similar
result is obtained by casting the string to type regprocedure (see Section 8.19); however, this
function will return NULL rather than throwing an error if the name is not found. Also unlike
the cast, this does not accept a numeric OID as input.

to_regrole (text) → regrole
Translates a textual role name to its OID. A similar result is obtained by casting the string to
type regrole (see Section 8.19); however, this function will return NULL rather than throwing
an error if the name is not found. Also unlike the cast, this does not accept a numeric OID as
input.

to_regtype (text) → regtype
Translates a textual type name to its OID. A similar result is obtained by casting the string to
type regtype (see Section 8.19); however, this function will return NULL rather than throwing
an error if the name is not found. Also unlike the cast, this does not accept a numeric OID as
input.

Most of the functions that reconstruct (decompile) database objects have an optional pretty flag, which
if true causes the result to be “pretty-printed”. Pretty-printing suppresses unnecessary parentheses and
adds whitespace for legibility. The pretty-printed format is more readable, but the default format is more
likely to be interpreted the same way by future versions of Postgres Pro; so avoid using pretty-printed

315

Functions and Operators

output for dump purposes. Passing false for the pretty parameter yields the same result as omitting
the parameter.

Table 9.69. Index Column Properties

Name Description
asc Does the column sort in ascending order on a

forward scan?
desc Does the column sort in descending order on a

forward scan?
nulls_first Does the column sort with nulls first on a forward

scan?
nulls_last Does the column sort with nulls last on a forward

scan?
orderable Does the column possess any defined sort

ordering?
distance_orderable Can the column be scanned in order by a

“distance” operator, for example ORDER BY col
<-> constant ?

returnable Can the column value be returned by an index-
only scan?

search_array Does the column natively support col = ANY(
array) searches?

search_nulls Does the column support IS NULL and IS NOT
NULL searches?

Table 9.70. Index Properties

Name Description
clusterable Can the index be used in a CLUSTER command?
index_scan Does the index support plain (non-bitmap) scans?
bitmap_scan Does the index support bitmap scans?
backward_scan Can the scan direction be changed in mid-scan (

to support FETCH BACKWARD on a cursor without
needing materialization)?

Table 9.71. Index Access Method Properties

Name Description
can_order Does the access method support ASC, DESC and

related keywords in CREATE INDEX?
can_unique Does the access method support unique indexes?
can_multi_col Does the access method support indexes with

multiple columns?
can_exclude Does the access method support exclusion

constraints?
can_include Does the access method support the INCLUDE

clause of CREATE INDEX?

Table 9.72 lists functions related to database object identification and addressing.

316

Functions and Operators

Table 9.72. Object Information and Addressing Functions

Function
Description

pg_describe_object (classid oid, objid oid, objsubid integer) → text
Returns a textual description of a database object identified by catalog OID, object OID,
 and sub-object ID (such as a column number within a table; the sub-object ID is zero when
referring to a whole object). This description is intended to be human-readable, and might
be translated, depending on server configuration. This is especially useful to determine the
identity of an object referenced in the pg_depend catalog.

pg_identify_object (classid oid, objid oid, objsubid integer) → record (type text, schema
text, name text, identity text)
Returns a row containing enough information to uniquely identify the database object
specified by catalog OID, object OID and sub-object ID. This information is intended to be
machine-readable, and is never translated. type identifies the type of database object; schema
is the schema name that the object belongs in, or NULL for object types that do not belong to
schemas; name is the name of the object, quoted if necessary, if the name (along with schema
name, if pertinent) is sufficient to uniquely identify the object, otherwise NULL; identity
is the complete object identity, with the precise format depending on object type, and each
name within the format being schema-qualified and quoted as necessary.

pg_identify_object_as_address (classid oid, objid oid, objsubid integer) → record (
 type text, object_names text[], object_args text[])
Returns a row containing enough information to uniquely identify the database object
specified by catalog OID, object OID and sub-object ID. The returned information is
independent of the current server, that is, it could be used to identify an identically named
object in another server. type identifies the type of database object; object_names and
object_args are text arrays that together form a reference to the object. These three values
can be passed to pg_get_object_address to obtain the internal address of the object.

pg_get_object_address (type text, object_names text[], object_args text[]) → record (
 classid oid, objid oid, objsubid integer)
Returns a row containing enough information to uniquely identify the database object
specified by a type code and object name and argument arrays. The returned values are the
ones that would be used in system catalogs such as pg_depend ; they can be passed to other
system functions such as pg_describe_object or pg_identify_object . classid is the
OID of the system catalog containing the object; objid is the OID of the object itself, and
objsubid is the sub-object ID, or zero if none. This function is the inverse of pg_identify_
object_as_address .

The functions shown in Table 9.73 extract comments previously stored with the COMMENT command.
A null value is returned if no comment could be found for the specified parameters.

Table 9.73. Comment Information Functions

Function
Description

col_description (table oid, column integer) → text
Returns the comment for a table column, which is specified by the OID of its table and its
column number. (obj_description cannot be used for table columns, since columns do not
have OIDs of their own.)

obj_description (object oid, catalog name) → text
Returns the comment for a database object specified by its OID and the name of the
containing system catalog. For example, obj_description(123456, 'pg_class') would
retrieve the comment for the table with OID 123456.

obj_description (object oid) → text

317

Functions and Operators

Function
Description
Returns the comment for a database object specified by its OID alone. This is deprecated
since there is no guarantee that OIDs are unique across different system catalogs; therefore,
 the wrong comment might be returned.

shobj_description (object oid, catalog name) → text
Returns the comment for a shared database object specified by its OID and the name of
the containing system catalog. This is just like obj_description except that it is used for
retrieving comments on shared objects (that is, databases, roles, and tablespaces). Some
system catalogs are global to all databases within each cluster, and the descriptions for
objects in them are stored globally as well.

The functions shown in Table 9.74 provide server transaction information in an exportable form. The
main use of these functions is to determine which transactions were committed between two snapshots.

Table 9.74. Transaction ID and Snapshot Information Functions

Function
Description

pg_current_xact_id () → xid8
Returns the current transaction's ID. It will assign a new one if the current transaction does
not have one already (because it has not performed any database updates).

pg_current_xact_id_if_assigned () → xid8
Returns the current transaction's ID, or NULL if no ID is assigned yet. (It's best to use this
variant if the transaction might otherwise be read-only, to avoid unnecessary consumption of
an XID.)

pg_xact_status (xid8) → text
Reports the commit status of a recent transaction. The result is one of in progress,
 committed, or aborted, provided that the transaction is recent enough that the system
retains the commit status of that transaction. If it is old enough that no references to the
transaction survive in the system and the commit status information has been discarded,
 the result is NULL. Applications might use this function, for example, to determine whether
their transaction committed or aborted after the application and database server become
disconnected while a COMMIT is in progress. Note that prepared transactions are reported
as in progress; applications must check pg_prepared_xacts if they need to determine
whether a transaction ID belongs to a prepared transaction.

pg_current_snapshot () → pg_snapshot
Returns a current snapshot, a data structure showing which transaction IDs are now in-
progress.

pg_snapshot_xip (pg_snapshot) → setof xid8
Returns the set of in-progress transaction IDs contained in a snapshot.

pg_snapshot_xmax (pg_snapshot) → xid8
Returns the xmax of a snapshot.

pg_snapshot_xmin (pg_snapshot) → xid8
Returns the xmin of a snapshot.

pg_visible_in_snapshot (xid8, pg_snapshot) → boolean
Is the given transaction ID visible according to this snapshot (that is, was it completed
before the snapshot was taken)? Note that this function will not give the correct answer for a
subtransaction ID.

The internal transaction ID type xid is 32 bits wide and wraps around every 4 billion transactions.
However, the functions shown in Table 9.74 use a 64-bit type xid8 that does not wrap around during the

318

Functions and Operators

life of an installation, and can be converted to xid by casting if required. The data type pg_snapshot
stores information about transaction ID visibility at a particular moment in time. Its components are
described in Table 9.75. pg_snapshot's textual representation is xmin:xmax:xip_list. For example
10:20:10,14,15 means xmin=10, xmax=20, xip_list=10, 14, 15.

Table 9.75. Snapshot Components

Name Description
xmin Lowest transaction ID that was still active.

All transaction IDs less than xmin are either
committed and visible, or rolled back and dead.

xmax One past the highest completed transaction ID. All
transaction IDs greater than or equal to xmax had
not yet completed as of the time of the snapshot,
 and thus are invisible.

xip_list Transactions in progress at the time of the
snapshot. A transaction ID that is xmin <= X <
xmax and not in this list was already completed
at the time of the snapshot, and thus is either
visible or dead according to its commit status.
This list does not include the transaction IDs of
subtransactions.

In releases of PostgreSQL before 13 there was no xid8 type, so variants of these functions were
provided that used bigint to represent a 64-bit XID, with a correspondingly distinct snapshot data type
txid_snapshot. These older functions have txid in their names. They are still supported for backward
compatibility, but may be removed from a future release. See Table 9.76.

Table 9.76. Deprecated Transaction ID and Snapshot Information Functions

Function
Description

txid_current () → bigint
See pg_current_xact_id() .

txid_current_if_assigned () → bigint
See pg_current_xact_id_if_assigned() .

txid_current_snapshot () → txid_snapshot
See pg_current_snapshot() .

txid_snapshot_xip (txid_snapshot) → setof bigint
See pg_snapshot_xip() .

txid_snapshot_xmax (txid_snapshot) → bigint
See pg_snapshot_xmax() .

txid_snapshot_xmin (txid_snapshot) → bigint
See pg_snapshot_xmin() .

txid_visible_in_snapshot (bigint, txid_snapshot) → boolean
See pg_visible_in_snapshot() .

txid_status (bigint) → text
See pg_xact_status() .

The functions shown in Table 9.77 provide information about when past transactions were committed.
They only provide useful data when the track_commit_timestamp configuration option is enabled, and
only for transactions that were committed after it was enabled.

319

Functions and Operators

Table 9.77. Committed Transaction Information Functions

Function
Description

pg_xact_commit_timestamp (xid) → timestamp with time zone
Returns the commit timestamp of a transaction.

pg_last_committed_xact () → record (xid xid, timestamp timestamp with time zone)
Returns the transaction ID and commit timestamp of the latest committed transaction.

The functions shown in Table 9.78 print information initialized during initdb, such as the catalog
version. They also show information about write-ahead logging and checkpoint processing. This
information is cluster-wide, not specific to any one database. These functions provide most of the same
information, from the same source, as the pg_controldata application.

Table 9.78. Control Data Functions

Function
Description

pg_control_checkpoint () → record
Returns information about current checkpoint state, as shown in Table 9.79.

pg_control_system () → record
Returns information about current control file state, as shown in Table 9.80.

pg_control_init () → record
Returns information about cluster initialization state, as shown in Table 9.81.

pg_control_recovery () → record
Returns information about recovery state, as shown in Table 9.82.

Table 9.79. pg_control_checkpoint Output Columns

Column Name Data Type
checkpoint_lsn pg_lsn

redo_lsn pg_lsn

redo_wal_file text

timeline_id integer

prev_timeline_id integer

full_page_writes boolean

next_xid text

next_oid oid

next_multixact_id xid

next_multi_offset xid

oldest_xid xid

oldest_xid_dbid oid

oldest_active_xid xid

oldest_multi_xid xid

oldest_multi_dbid oid

oldest_commit_ts_xid xid

newest_commit_ts_xid xid

320

Functions and Operators

Column Name Data Type
checkpoint_time timestamp with time zone

Table 9.80. pg_control_system Output Columns

Column Name Data Type
pg_control_version integer

catalog_version_no integer

system_identifier bigint

pg_control_last_modified timestamp with time zone

pg_control_edition text

Table 9.81. pg_control_init Output Columns

Column Name Data Type
max_data_alignment integer

database_block_size integer

blocks_per_segment integer

wal_block_size integer

bytes_per_wal_segment integer

max_identifier_length integer

max_index_columns integer

max_toast_chunk_size integer

large_object_chunk_size integer

float8_pass_by_value boolean

data_page_checksum_version integer

icu_version text

Note
icu_version is NULL if Postgres Pro is built without ICU.

Table 9.82. pg_control_recovery Output Columns

Column Name Data Type
min_recovery_end_lsn pg_lsn

min_recovery_end_timeline integer

backup_start_lsn pg_lsn

backup_end_lsn pg_lsn

end_of_backup_record_required boolean

9.27. System Administration Functions
The functions described in this section are used to control and monitor a Postgres Pro installation.

9.27.1. Configuration Settings Functions
Table 9.83 shows the functions available to query and alter run-time configuration parameters.

321

Functions and Operators

Table 9.83. Configuration Settings Functions

Function
Description
Example(s)

current_setting (setting_name text [, missing_ok boolean]) → text
Returns the current value of the setting setting_name . If there is no such setting, current_
setting throws an error unless missing_ok is supplied and is true (in which case NULL is
returned). This function corresponds to the SQL command SHOW.
current_setting('datestyle') → ISO, MDY

set_config (setting_name text, new_value text, is_local boolean) → text
Sets the parameter setting_name to new_value , and returns that value. If is_local is
true, the new value will only apply during the current transaction. If you want the new value
to apply for the rest of the current session, use false instead. This function corresponds to
the SQL command SET.
set_config('log_statement_stats', 'off', false) → off

9.27.2. Server Signaling Functions
The functions shown in Table 9.84 send control signals to other server processes. Use of these functions
is restricted to superusers by default but access may be granted to others using GRANT, with noted
exceptions.

Each of these functions returns true if successful and false otherwise.

Table 9.84. Server Signaling Functions

Function
Description

pg_cancel_backend (pid integer) → boolean
Cancels the current query of the session whose backend process has the specified process
ID. This is also allowed if the calling role is a member of the role whose backend is being
canceled or the calling role has been granted pg_signal_backend , however only
superusers can cancel superuser backends.

pg_reload_conf () → boolean
Causes all processes of the PostgreSQL server to reload their configuration files. (This is
initiated by sending a SIGHUP signal to the postmaster process, which in turn sends SIGHUP
to each of its children.)

pg_rotate_logfile () → boolean
Signals the log-file manager to switch to a new output file immediately. This works only when
the built-in log collector is running, since otherwise there is no log-file manager subprocess.

pg_terminate_backend (pid integer) → boolean
Terminates the session whose backend process has the specified process ID. This is also
allowed if the calling role is a member of the role whose backend is being terminated or the
calling role has been granted pg_signal_backend , however only superusers can terminate
superuser backends.

pg_cancel_backend and pg_terminate_backend send signals (SIGINT or SIGTERM respectively) to
backend processes identified by process ID. The process ID of an active backend can be found from the
pid column of the pg_stat_activity view, or by listing the postgres processes on the server (using ps
on Unix or the Task Manager on Windows). The role of an active backend can be found from the usename
column of the pg_stat_activity view.

9.27.3. Backup Control Functions

322

Functions and Operators

The functions shown in Table 9.85 assist in making on-line backups. These functions cannot be
executed during recovery (except non-exclusive pg_start_backup, non-exclusive pg_stop_backup,
pg_is_in_backup, pg_backup_start_time and pg_wal_lsn_diff).

For details about proper usage of these functions, see Section 24.3.

Table 9.85. Backup Control Functions

Function
Description

pg_create_restore_point (name text) → pg_lsn
Creates a named marker record in the write-ahead log that can later be used as a recovery
target, and returns the corresponding write-ahead log location. The given name can then be
used with recovery_target_name to specify the point up to which recovery will proceed. Avoid
creating multiple restore points with the same name, since recovery will stop at the first one
whose name matches the recovery target.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_current_wal_flush_lsn () → pg_lsn
Returns the current write-ahead log flush location (see notes below).

pg_current_wal_insert_lsn () → pg_lsn
Returns the current write-ahead log insert location (see notes below).

pg_current_wal_lsn () → pg_lsn
Returns the current write-ahead log write location (see notes below).

pg_start_backup (label text [, fast boolean [, exclusive boolean]]) → pg_lsn
Prepares the server to begin an on-line backup. The only required parameter is an arbitrary
user-defined label for the backup. (Typically this would be the name under which the backup
dump file will be stored.) If the optional second parameter is given as true, it specifies
executing pg_start_backup as quickly as possible. This forces an immediate checkpoint
which will cause a spike in I/O operations, slowing any concurrently executing queries. The
optional third parameter specifies whether to perform an exclusive or non-exclusive backup (
default is exclusive).
When used in exclusive mode, this function writes a backup label file (backup_label) and,
 if there are any links in the pg_tblspc/ directory, a tablespace map file (tablespace_map)
into the database cluster's data directory, then performs a checkpoint, and then returns the
backup's starting write-ahead log location. (The user can ignore this result value, but it is
provided in case it is useful.) When used in non-exclusive mode, the contents of these files are
instead returned by the pg_stop_backup function, and should be copied to the backup area
by the user.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stop_backup (exclusive boolean [, wait_for_archive boolean]) → setof record (lsn
pg_lsn , labelfile text, spcmapfile text)
Finishes performing an exclusive or non-exclusive on-line backup. The exclusive parameter
must match the previous pg_start_backup call. In an exclusive backup, pg_stop_backup
removes the backup label file and, if it exists, the tablespace map file created by pg_start_
backup . In a non-exclusive backup, the desired contents of these files are returned as part
of the result of the function, and should be written to files in the backup area (not in the data
directory).
There is an optional second parameter of type boolean. If false, the function will return
immediately after the backup is completed, without waiting for WAL to be archived. This
behavior is only useful with backup software that independently monitors WAL archiving.
Otherwise, WAL required to make the backup consistent might be missing and make the
backup useless. By default or when this parameter is true, pg_stop_backup will wait for
WAL to be archived when archiving is enabled. (On a standby, this means that it will wait only

323

Functions and Operators

Function
Description
when archive_mode = always. If write activity on the primary is low, it may be useful to run
pg_switch_wal on the primary in order to trigger an immediate segment switch.)
When executed on a primary, this function also creates a backup history file in the write-
ahead log archive area. The history file includes the label given to pg_start_backup ,
 the starting and ending write-ahead log locations for the backup, and the starting and
ending times of the backup. After recording the ending location, the current write-ahead log
insertion point is automatically advanced to the next write-ahead log file, so that the ending
write-ahead log file can be archived immediately to complete the backup.
The result of the function is a single record. The lsn column holds the backup's ending
write-ahead log location (which again can be ignored). The second and third columns are
NULL when ending an exclusive backup; after a non-exclusive backup they hold the desired
contents of the label and tablespace map files.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stop_backup () → pg_lsn
Finishes performing an exclusive on-line backup. This simplified version is equivalent to pg_
stop_backup(true, true) , except that it only returns the pg_lsn result.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_is_in_backup () → boolean
Returns true if an on-line exclusive backup is in progress.

pg_backup_start_time () → timestamp with time zone
Returns the start time of the current on-line exclusive backup if one is in progress, otherwise
NULL.

pg_switch_wal () → pg_lsn
Forces the server to switch to a new write-ahead log file, which allows the current file to be
archived (assuming you are using continuous archiving). The result is the ending write-ahead
log location plus 1 within the just-completed write-ahead log file. If there has been no write-
ahead log activity since the last write-ahead log switch, pg_switch_wal does nothing and
returns the start location of the write-ahead log file currently in use.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_walfile_name (lsn pg_lsn) → text
Converts a write-ahead log location to the name of the WAL file holding that location.

pg_walfile_name_offset (lsn pg_lsn) → record (file_name text, file_offset integer)
Converts a write-ahead log location to a WAL file name and byte offset within that file.

pg_wal_lsn_diff (lsn1 pg_lsn , lsn2 pg_lsn) → numeric
Calculates the difference in bytes (lsn1 - lsn2) between two write-ahead log locations. This
can be used with pg_stat_replication or some of the functions shown in Table 9.85 to get
the replication lag.

pg_current_wal_lsn displays the current write-ahead log write location in the same format used
by the above functions. Similarly, pg_current_wal_insert_lsn displays the current write-ahead log
insertion location and pg_current_wal_flush_lsn displays the current write-ahead log flush location.
The insertion location is the “logical” end of the write-ahead log at any instant, while the write location
is the end of what has actually been written out from the server's internal buffers, and the flush
location is the last location known to be written to durable storage. The write location is the end of
what can be examined from outside the server, and is usually what you want if you are interested in
archiving partially-complete write-ahead log files. The insertion and flush locations are made available
primarily for server debugging purposes. These are all read-only operations and do not require superuser
permissions.

324

Functions and Operators

You can use pg_walfile_name_offset to extract the corresponding write-ahead log file name and byte
offset from a pg_lsn value. For example:
postgres=# SELECT * FROM pg_walfile_name_offset(pg_stop_backup());
 file_name | file_offset
--------------------------+-------------
 00000001000000000000000D | 4039624
(1 row)

Similarly, pg_walfile_name extracts just the write-ahead log file name. When the given write-ahead
log location is exactly at a write-ahead log file boundary, both these functions return the name of
the preceding write-ahead log file. This is usually the desired behavior for managing write-ahead log
archiving behavior, since the preceding file is the last one that currently needs to be archived.

9.27.4. Recovery Control Functions
The functions shown in Table 9.86 provide information about the current status of a standby server.
These functions may be executed both during recovery and in normal running.

Table 9.86. Recovery Information Functions

Function
Description

pg_is_in_recovery () → boolean
Returns true if recovery is still in progress.

pg_last_wal_receive_lsn () → pg_lsn
Returns the last write-ahead log location that has been received and synced to disk
by streaming replication. While streaming replication is in progress this will increase
monotonically. If recovery has completed then this will remain static at the location of the last
WAL record received and synced to disk during recovery. If streaming replication is disabled,
 or if it has not yet started, the function returns NULL.

pg_last_wal_replay_lsn () → pg_lsn
Returns the last write-ahead log location that has been replayed during recovery. If recovery
is still in progress this will increase monotonically. If recovery has completed then this will
remain static at the location of the last WAL record applied during recovery. When the server
has been started normally without recovery, the function returns NULL.

pg_last_xact_replay_timestamp () → timestamp with time zone
Returns the time stamp of the last transaction replayed during recovery. This is the time at
which the commit or abort WAL record for that transaction was generated on the primary. If
no transactions have been replayed during recovery, the function returns NULL. Otherwise, if
recovery is still in progress this will increase monotonically. If recovery has completed then
this will remain static at the time of the last transaction applied during recovery. When the
server has been started normally without recovery, the function returns NULL.

The functions shown in Table 9.87 control the progress of recovery. These functions may be executed
only during recovery.

Table 9.87. Recovery Control Functions

Function
Description

pg_is_wal_replay_paused () → boolean
Returns true if recovery is paused.

pg_promote (wait boolean DEFAULT true, wait_seconds integer DEFAULT 60) → boolean
Promotes a standby server to primary status. With wait set to true (the default), the function
waits until promotion is completed or wait_seconds seconds have passed, and returns true
if promotion is successful and false otherwise. If wait is set to false, the function returns
true immediately after sending a SIGUSR1 signal to the postmaster to trigger promotion.

325

Functions and Operators

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_pause () → void
Pauses recovery. While recovery is paused, no further database changes are applied. If hot
standby is active, all new queries will see the same consistent snapshot of the database, and
no further query conflicts will be generated until recovery is resumed.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_resume () → void
Restarts recovery if it was paused.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_wal_replay_pause and pg_wal_replay_resume cannot be executed while a promotion is ongoing. If
a promotion is triggered while recovery is paused, the paused state ends and promotion continues.

If streaming replication is disabled, the paused state may continue indefinitely without a problem. If
streaming replication is in progress then WAL records will continue to be received, which will eventually
fill available disk space, depending upon the duration of the pause, the rate of WAL generation and
available disk space.

9.27.5. Snapshot Synchronization Functions
Postgres Pro allows database sessions to synchronize their snapshots. A snapshot determines which data
is visible to the transaction that is using the snapshot. Synchronized snapshots are necessary when two
or more sessions need to see identical content in the database. If two sessions just start their transactions
independently, there is always a possibility that some third transaction commits between the executions
of the two START TRANSACTION commands, so that one session sees the effects of that transaction and
the other does not.

To solve this problem, Postgres Pro allows a transaction to export the snapshot it is using. As long
as the exporting transaction remains open, other transactions can import its snapshot, and thereby
be guaranteed that they see exactly the same view of the database that the first transaction sees.
But note that any database changes made by any one of these transactions remain invisible to the
other transactions, as is usual for changes made by uncommitted transactions. So the transactions are
synchronized with respect to pre-existing data, but act normally for changes they make themselves.

Snapshots are exported with the pg_export_snapshot function, shown in Table 9.88, and imported with
the SET TRANSACTION command.

Table 9.88. Snapshot Synchronization Functions

Function
Description

pg_export_snapshot () → text
Saves the transaction's current snapshot and returns a text string identifying the snapshot.
This string must be passed (outside the database) to clients that want to import the snapshot.
The snapshot is available for import only until the end of the transaction that exported it.
A transaction can export more than one snapshot, if needed. Note that doing so is only
useful in READ COMMITTED transactions, since in REPEATABLE READ and higher isolation
levels, transactions use the same snapshot throughout their lifetime. Once a transaction has
exported any snapshots, it cannot be prepared with PREPARE TRANSACTION.

9.27.6. Replication Management Functions
The functions shown in Table 9.89 are for controlling and interacting with replication features. See
Section 25.2.5, Section 25.2.6, and Chapter 47 for information about the underlying features. Use

326

Functions and Operators

of functions for replication origin is restricted to superusers. Use of functions for replication slots is
restricted to superusers and users having REPLICATION privilege.

Many of these functions have equivalent commands in the replication protocol; see Section 50.4.

The functions described in Section 9.27.3, Section 9.27.4, and Section 9.27.5 are also relevant for
replication.

Table 9.89. Replication Management Functions

Function
Description

pg_create_physical_replication_slot (slot_name name [, immediately_reserve boolean,
 temporary boolean]) → record (slot_name name, lsn pg_lsn)
Creates a new physical replication slot named slot_name . The optional second parameter,
when true, specifies that the LSN for this replication slot be reserved immediately; otherwise
the LSN is reserved on first connection from a streaming replication client. Streaming
changes from a physical slot is only possible with the streaming-replication protocol —
see Section 50.4. The optional third parameter, temporary, when set to true, specifies that
the slot should not be permanently stored to disk and is only meant for use by the current
session. Temporary slots are also released upon any error. This function corresponds to the
replication protocol command CREATE_REPLICATION_SLOT ... PHYSICAL .

pg_drop_replication_slot (slot_name name) → void
Drops the physical or logical replication slot named slot_name . Same as replication protocol
command DROP_REPLICATION_SLOT . For logical slots, this must be called while connected to
the same database the slot was created on.

pg_create_logical_replication_slot (slot_name name, plugin name [, temporary boolean
]) → record (slot_name name, lsn pg_lsn)
Creates a new logical (decoding) replication slot named slot_name using the output plugin
plugin. The optional third parameter, temporary, when set to true, specifies that the slot
should not be permanently stored to disk and is only meant for use by the current session.
Temporary slots are also released upon any error. A call to this function has the same effect
as the replication protocol command CREATE_REPLICATION_SLOT ... LOGICAL .

pg_copy_physical_replication_slot (src_slot_name name, dst_slot_name name [,
 temporary boolean]) → record (slot_name name, lsn pg_lsn)
Copies an existing physical replication slot named src_slot_name to a physical replication
slot named dst_slot_name . The copied physical slot starts to reserve WAL from the same
LSN as the source slot. temporary is optional. If temporary is omitted, the same value as the
source slot is used.

pg_copy_logical_replication_slot (src_slot_name name, dst_slot_name name [,
 temporary boolean [, plugin name]]) → record (slot_name name, lsn pg_lsn)
Copies an existing logical replication slot named src_slot_name to a logical replication slot
named dst_slot_name , optionally changing the output plugin and persistence. The copied
logical slot starts from the same LSN as the source logical slot. Both temporary and plugin
are optional; if they are omitted, the values of the source slot are used.

pg_logical_slot_get_changes (slot_name name, upto_lsn pg_lsn , upto_nchanges
integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data text)
Returns changes in the slot slot_name , starting from the point from which changes have
been consumed last. If upto_lsn and upto_nchanges are NULL, logical decoding will
continue until end of WAL. If upto_lsn is non-NULL, decoding will include only those
transactions which commit prior to the specified LSN. If upto_nchanges is non-NULL,
 decoding will stop when the number of rows produced by decoding exceeds the specified
value. Note, however, that the actual number of rows returned may be larger, since this limit
is only checked after adding the rows produced when decoding each new transaction commit.

327

Functions and Operators

Function
Description

pg_logical_slot_peek_changes (slot_name name, upto_lsn pg_lsn , upto_nchanges
integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid, data text)
Behaves just like the pg_logical_slot_get_changes() function, except that changes
are not consumed; that is, they will be returned again on future calls.

pg_logical_slot_get_binary_changes (slot_name name, upto_lsn pg_lsn , upto_
nchanges integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid,
 data bytea)
Behaves just like the pg_logical_slot_get_changes() function, except that changes
are returned as bytea.

pg_logical_slot_peek_binary_changes (slot_name name, upto_lsn pg_lsn , upto_
nchanges integer, VARIADIC options text[]) → setof record (lsn pg_lsn , xid xid,
 data bytea)
Behaves just like the pg_logical_slot_peek_changes() function, except that changes
are returned as bytea.

pg_replication_slot_advance (slot_name name, upto_lsn pg_lsn) → record (slot_name
name, end_lsn pg_lsn)
Advances the current confirmed position of a replication slot named slot_name . The slot will
not be moved backwards, and it will not be moved beyond the current insert location. Returns
the name of the slot and the actual position that it was advanced to. The updated slot position
information is written out at the next checkpoint if any advancing is done. So in the event of a
crash, the slot may return to an earlier position.

pg_replication_origin_create (node_name text) → oid
Creates a replication origin with the given external name, and returns the internal ID
assigned to it.

pg_replication_origin_drop (node_name text) → void
Deletes a previously-created replication origin, including any associated replay progress.

pg_replication_origin_oid (node_name text) → oid
Looks up a replication origin by name and returns the internal ID. If no such replication
origin is found, NULL is returned.

pg_replication_origin_session_setup (node_name text) → void
Marks the current session as replaying from the given origin, allowing replay progress to be
tracked. Can only be used if no origin is currently selected. Use pg_replication_origin_
session_reset to undo.

pg_replication_origin_session_reset () → void
Cancels the effects of pg_replication_origin_session_setup() .

pg_replication_origin_session_is_setup () → boolean
Returns true if a replication origin has been selected in the current session.

pg_replication_origin_session_progress (flush boolean) → pg_lsn
Returns the replay location for the replication origin selected in the current session. The
parameter flush determines whether the corresponding local transaction will be guaranteed
to have been flushed to disk or not.

pg_replication_origin_xact_setup (origin_lsn pg_lsn , origin_timestamp timestamp
with time zone) → void
Marks the current transaction as replaying a transaction that has committed at the given
LSN and timestamp. Can only be called when a replication origin has been selected using pg_
replication_origin_session_setup .

pg_replication_origin_xact_reset () → void

328

Functions and Operators

Function
Description
Cancels the effects of pg_replication_origin_xact_setup() .

pg_replication_origin_advance (node_name text, lsn pg_lsn) → void
Sets replication progress for the given node to the given location. This is primarily useful
for setting up the initial location, or setting a new location after configuration changes and
similar. Be aware that careless use of this function can lead to inconsistently replicated data.

pg_replication_origin_progress (node_name text, flush boolean) → pg_lsn
Returns the replay location for the given replication origin. The parameter flush determines
whether the corresponding local transaction will be guaranteed to have been flushed to disk
or not.

pg_logical_emit_message (transactional boolean, prefix text, content text) → pg_lsn
pg_logical_emit_message (transactional boolean, prefix text, content bytea) → pg_lsn

Emits a logical decoding message. This can be used to pass generic messages to logical
decoding plugins through WAL. The transactional parameter specifies if the message
should be part of the current transaction, or if it should be written immediately and decoded
as soon as the logical decoder reads the record. The prefix parameter is a textual prefix that
can be used by logical decoding plugins to easily recognize messages that are interesting for
them. The content parameter is the content of the message, given either in text or binary
form.

9.27.7. Database Object Management Functions
The functions shown in Table 9.90 calculate the disk space usage of database objects, or assist in
presentation of usage results. All these functions return sizes measured in bytes. If an OID that does not
represent an existing object is passed to one of these functions, NULL is returned.

Table 9.90. Database Object Size Functions

Function
Description

pg_column_size ("any") → integer
Shows the number of bytes used to store any individual data value. If applied directly to a
table column value, this reflects any compression that was done.

pg_database_size (name) → bigint
pg_database_size (oid) → bigint

Computes the total disk space used by the database with the specified name or OID. To use
this function, you must have CONNECT privilege on the specified database (which is granted by
default) or be a member of the pg_read_all_stats role.

pg_indexes_size (regclass) → bigint
Computes the total disk space used by indexes attached to the specified table.

pg_relation_size (relation regclass [, fork text]) → bigint
Computes the disk space used by one “fork” of the specified relation. (Note that for most
purposes it is more convenient to use the higher-level functions pg_total_relation_size
or pg_table_size , which sum the sizes of all forks.) With one argument, this returns the
size of the main data fork of the relation. The second argument can be provided to specify
which fork to examine:
• main returns the size of the main data fork of the relation.
• fsm returns the size of the Free Space Map (see Section 65.3) associated with the relation.
• vm returns the size of the Visibility Map (see Section 65.4) associated with the relation.
• init returns the size of the initialization fork, if any, associated with the relation.

pg_size_bytes (text) → bigint

329

Functions and Operators

Function
Description
Converts a size in human-readable format (as returned by pg_size_pretty) into bytes.

pg_size_pretty (bigint) → text
pg_size_pretty (numeric) → text

Converts a size in bytes into a more easily human-readable format with size units (bytes, kB,
 MB, GB or TB as appropriate). Note that the units are powers of 2 rather than powers of 10,
 so 1kB is 1024 bytes, 1MB is 10242 = 1048576 bytes, and so on.

pg_table_size (regclass) → bigint
Computes the disk space used by the specified table, excluding indexes (but including its
TOAST table if any, free space map, and visibility map).

pg_tablespace_size (name) → bigint
pg_tablespace_size (oid) → bigint

Computes the total disk space used in the tablespace with the specified name or OID. To use
this function, you must have CREATE privilege on the specified tablespace or be a member of
the pg_read_all_stats role, unless it is the default tablespace for the current database.

pg_total_relation_size (regclass) → bigint
Computes the total disk space used by the specified table, including all indexes and TOAST
data. The result is equivalent to pg_table_size + pg_indexes_size .

The functions above that operate on tables or indexes accept a regclass argument, which is simply
the OID of the table or index in the pg_class system catalog. You do not have to look up the OID by
hand, however, since the regclass data type's input converter will do the work for you. Just write the
table name enclosed in single quotes so that it looks like a literal constant. For compatibility with the
handling of ordinary SQL names, the string will be converted to lower case unless it contains double
quotes around the table name.

The functions shown in Table 9.91 assist in identifying the specific disk files associated with database
objects.

Table 9.91. Database Object Location Functions

Function
Description

pg_relation_filenode (relation regclass) → oid
Returns the “filenode” number currently assigned to the specified relation. The filenode
is the base component of the file name(s) used for the relation (see Section 65.1 for more
information). For most relations the result is the same as pg_class .relfilenode, but for
certain system catalogs relfilenode is zero and this function must be used to get the correct
value. The function returns NULL if passed a relation that does not have storage, such as a
view.

pg_relation_filepath (relation regclass) → text
Returns the entire file path name (relative to the database cluster's data directory, PGDATA) of
the relation.

pg_filenode_relation (tablespace oid, filenode oid) → regclass
Returns a relation's OID given the tablespace OID and filenode it is stored under. This is
essentially the inverse mapping of pg_relation_filepath . For a relation in the database's
default tablespace, the tablespace can be specified as zero. Returns NULL if no relation in the
current database is associated with the given values.

Table 9.92 lists functions used to manage collations.

330

Functions and Operators

Table 9.92. Collation Management Functions

Function
Description

pg_collation_actual_version (oid) → text
Returns the actual version of the collation object as it is currently installed in the operating
system. If this is different from the value in pg_collation .collversion, then objects
depending on the collation might need to be rebuilt. See also ALTER COLLATION.

pg_import_system_collations (schema regnamespace) → integer
Adds collations to the system catalog pg_collation based on all the locales it finds in the
operating system. This is what initdb uses; see Section 22.2.2 for more details. If additional
locales are installed into the operating system later on, this function can be run again to add
collations for the new locales. Locales that match existing entries in pg_collation will be
skipped. (But collation objects based on locales that are no longer present in the operating
system are not removed by this function.) The schema parameter would typically be pg_
catalog , but that is not a requirement; the collations could be installed into some other
schema as well. The function returns the number of new collation objects it created. Use of
this function is restricted to superusers.

Table 9.93 lists functions that provide information about the structure of partitioned tables.

Table 9.93. Partitioning Information Functions

Function
Description

pg_partition_tree (regclass) → setof record (relid regclass, parentrelid regclass,
 isleaf boolean, level integer)
Lists the tables or indexes in the partition tree of the given partitioned table or partitioned
index, with one row for each partition. Information provided includes the OID of the partition,
 the OID of its immediate parent, a boolean value telling if the partition is a leaf, and an
integer telling its level in the hierarchy. The level value is 0 for the input table or index, 1 for
its immediate child partitions, 2 for their partitions, and so on. Returns no rows if the relation
does not exist or is not a partition or partitioned table.

pg_partition_ancestors (regclass) → setof regclass
Lists the ancestor relations of the given partition, including the relation itself. Returns no
rows if the relation does not exist or is not a partition or partitioned table.

pg_partition_root (regclass) → regclass
Returns the top-most parent of the partition tree to which the given relation belongs. Returns
NULL if the relation does not exist or is not a partition or partitioned table.

For example, to check the total size of the data contained in a partitioned table measurement, one could
use the following query:
SELECT pg_size_pretty(sum(pg_relation_size(relid))) AS total_size
 FROM pg_partition_tree('measurement');

9.27.8. Index Maintenance Functions
Table 9.94 shows the functions available for index maintenance tasks. (Note that these maintenance
tasks are normally done automatically by autovacuum; use of these functions is only required in special
cases.) These functions cannot be executed during recovery. Use of these functions is restricted to
superusers and the owner of the given index.

Table 9.94. Index Maintenance Functions

Function
Description

brin_summarize_new_values (index regclass) → integer

331

Functions and Operators

Function
Description
Scans the specified BRIN index to find page ranges in the base table that are not currently
summarized by the index; for any such range it creates a new summary index tuple by
scanning those table pages. Returns the number of new page range summaries that were
inserted into the index.

brin_summarize_range (index regclass, blockNumber bigint) → integer
Summarizes the page range covering the given block, if not already summarized. This is like
brin_summarize_new_values except that it only processes the page range that covers the
given table block number.

brin_desummarize_range (index regclass, blockNumber bigint) → void
Removes the BRIN index tuple that summarizes the page range covering the given table
block, if there is one.

gin_clean_pending_list (index regclass) → bigint
Cleans up the “pending” list of the specified GIN index by moving entries in it, in bulk, to
the main GIN data structure. Returns the number of pages removed from the pending list. If
the argument is a GIN index built with the fastupdate option disabled, no cleanup happens
and the result is zero, because the index doesn't have a pending list. See Section 62.4.1 and
Section 62.5 for details about the pending list and fastupdate option.

9.27.9. Generic File Access Functions
The functions shown in Table 9.95 provide native access to files on the machine hosting the server. Only
files within the database cluster directory and the log_directory can be accessed, unless the user is
a superuser or is granted the role pg_read_server_files. Use a relative path for files in the cluster
directory, and a path matching the log_directory configuration setting for log files.

Note that granting users the EXECUTE privilege on pg_read_file(), or related functions, allows them
the ability to read any file on the server that the database server process can read; these functions
bypass all in-database privilege checks. This means that, for example, a user with such access is able to
read the contents of the pg_authid table where authentication information is stored, as well as read any
table data in the database. Therefore, granting access to these functions should be carefully considered.

Some of these functions take an optional missing_ok parameter, which specifies the behavior when the
file or directory does not exist. If true, the function returns NULL or an empty result set, as appropriate.
If false, an error is raised. The default is false.

Table 9.95. Generic File Access Functions

Function
Description

pg_ls_dir (dirname text [, missing_ok boolean, include_dot_dirs boolean]) → setof
text
Returns the names of all files (and directories and other special files) in the specified
directory. The include_dot_dirs parameter indicates whether “.” and “..” are to be
included in the result set; the default is to exclude them. Including them can be useful when
missing_ok is true, to distinguish an empty directory from a non-existent directory.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_ls_logdir () → setof record (name text, size bigint, modification timestamp with time
zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the
server's log directory. Filenames beginning with a dot, directories, and other special files are
excluded.

332

Functions and Operators

Function
Description
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_waldir () → setof record (name text, size bigint, modification timestamp with time
zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
write-ahead log (WAL) directory. Filenames beginning with a dot, directories, and other
special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_archive_statusdir () → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the server's
WAL archive status directory (pg_wal/archive_status). Filenames beginning with a dot,
 directories, and other special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_ls_tmpdir ([tablespace oid]) → setof record (name text, size bigint, modification
timestamp with time zone)
Returns the name, size, and last modification time (mtime) of each ordinary file in the
temporary file directory for the specified tablespace. If tablespace is not provided, the pg_
default tablespace is examined. Filenames beginning with a dot, directories, and other
special files are excluded.
This function is restricted to superusers and members of the pg_monitor role by default, but
other users can be granted EXECUTE to run the function.

pg_read_file (filename text [, offset bigint, length bigint [, missing_ok boolean]]) →
text
Returns all or part of a text file, starting at the given byte offset, returning at most length
bytes (less if the end of file is reached first). If offset is negative, it is relative to the end of
the file. If offset and length are omitted, the entire file is returned. The bytes read from the
file are interpreted as a string in the database's encoding; an error is thrown if they are not
valid in that encoding.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_read_binary_file (filename text [, offset bigint, length bigint [, missing_ok boolean
]]) → bytea
Returns all or part of a file. This function is identical to pg_read_file except that it can
read arbitrary binary data, returning the result as bytea not text; accordingly, no encoding
checks are performed.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.
In combination with the convert_from function, this function can be used to read a text file
in a specified encoding and convert to the database's encoding:

SELECT convert_from(pg_read_binary_file('file_in_utf8.txt'), 'UTF8');

pg_stat_file (filename text [, missing_ok boolean]) → record (size bigint, access
timestamp with time zone, modification timestamp with time zone, change timestamp
with time zone, creation timestamp with time zone, isdir boolean)
Returns a record containing the file's size, last access time stamp, last modification time
stamp, last file status change time stamp (Unix platforms only), file creation time stamp (
Windows only), and a flag indicating if it is a directory.

333

Functions and Operators

Function
Description
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

9.27.10. Advisory Lock Functions
The functions shown in Table 9.96 manage advisory locks. For details about proper use of these functions,
see Section 13.3.5.

All these functions are intended to be used to lock application-defined resources, which can be identified
either by a single 64-bit key value or two 32-bit key values (note that these two key spaces do not
overlap). If another session already holds a conflicting lock on the same resource identifier, the functions
will either wait until the resource becomes available, or return a false result, as appropriate for the
function. Locks can be either shared or exclusive: a shared lock does not conflict with other shared locks
on the same resource, only with exclusive locks. Locks can be taken at session level (so that they are
held until released or the session ends) or at transaction level (so that they are held until the current
transaction ends; there is no provision for manual release). Multiple session-level lock requests stack,
so that if the same resource identifier is locked three times there must then be three unlock requests
to release the resource in advance of session end.

Table 9.96. Advisory Lock Functions

Function
Description

pg_advisory_lock (key bigint) → void
pg_advisory_lock (key1 integer, key2 integer) → void

Obtains an exclusive session-level advisory lock, waiting if necessary.

pg_advisory_lock_shared (key bigint) → void
pg_advisory_lock_shared (key1 integer, key2 integer) → void

Obtains a shared session-level advisory lock, waiting if necessary.

pg_advisory_unlock (key bigint) → boolean
pg_advisory_unlock (key1 integer, key2 integer) → boolean

Releases a previously-acquired exclusive session-level advisory lock. Returns true if the lock
is successfully released. If the lock was not held, false is returned, and in addition, an SQL
warning will be reported by the server.

pg_advisory_unlock_all () → void
Releases all session-level advisory locks held by the current session. (This function is
implicitly invoked at session end, even if the client disconnects ungracefully.)

pg_advisory_unlock_shared (key bigint) → boolean
pg_advisory_unlock_shared (key1 integer, key2 integer) → boolean

Releases a previously-acquired shared session-level advisory lock. Returns true if the lock
is successfully released. If the lock was not held, false is returned, and in addition, an SQL
warning will be reported by the server.

pg_advisory_xact_lock (key bigint) → void
pg_advisory_xact_lock (key1 integer, key2 integer) → void

Obtains an exclusive transaction-level advisory lock, waiting if necessary.

pg_advisory_xact_lock_shared (key bigint) → void
pg_advisory_xact_lock_shared (key1 integer, key2 integer) → void

Obtains a shared transaction-level advisory lock, waiting if necessary.

pg_try_advisory_lock (key bigint) → boolean
pg_try_advisory_lock (key1 integer, key2 integer) → boolean

334

Functions and Operators

Function
Description
Obtains an exclusive session-level advisory lock if available. This will either obtain the lock
immediately and return true, or return false without waiting if the lock cannot be acquired
immediately.

pg_try_advisory_lock_shared (key bigint) → boolean
pg_try_advisory_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared session-level advisory lock if available. This will either obtain the lock
immediately and return true, or return false without waiting if the lock cannot be acquired
immediately.

pg_try_advisory_xact_lock (key bigint) → boolean
pg_try_advisory_xact_lock (key1 integer, key2 integer) → boolean

Obtains an exclusive transaction-level advisory lock if available. This will either obtain the
lock immediately and return true, or return false without waiting if the lock cannot be
acquired immediately.

pg_try_advisory_xact_lock_shared (key bigint) → boolean
pg_try_advisory_xact_lock_shared (key1 integer, key2 integer) → boolean

Obtains a shared transaction-level advisory lock if available. This will either obtain the lock
immediately and return true, or return false without waiting if the lock cannot be acquired
immediately.

9.27.11. Debugging Functions
The function shown in Table 9.97 can assist you in low-level activities, such as debugging or exploring
corrupted Postgres Pro databases.

Table 9.97. Snapshot Synchronization Functions

Name Return Type Description
pg_snapshot_any() void Sets the current transaction to

ignore MVCC rules and see all
versions of data.

Use pg_snapshot_any with care. Run it in a transaction with isolation level REPEATABLE READ or higher,
otherwise the specific snapshot will be replaced by a new one by the next query. Only superusers can
run this function.

Note
If you created the database cluster using the server version that did not provide this function,
execute the command:

CREATE FUNCTION pg_snapshot_any() RETURNS void AS 'pg_snapshot_any' LANGUAGE
 internal;

9.28. Trigger Functions
While many uses of triggers involve user-written trigger functions, PostgreSQL provides a few built-in
trigger functions that can be used directly in user-defined triggers. These are summarized in Table 9.98.
(Additional built-in trigger functions exist, which implement foreign key constraints and deferred index
constraints. Those are not documented here since users need not use them directly.)

For more information about creating triggers, see CREATE TRIGGER.

335

Functions and Operators

Table 9.98. Built-In Trigger Functions

Function
Description
Example Usage

suppress_redundant_updates_trigger () → trigger
Suppresses do-nothing update operations. See below for details.
CREATE TRIGGER ... suppress_redundant_updates_trigger()

tsvector_update_trigger () → trigger
Automatically updates a tsvector column from associated plain-text document column(
s). The text search configuration to use is specified by name as a trigger argument. See
Section 12.4.3 for details.
CREATE TRIGGER ... tsvector_update_trigger(tsvcol, 'pg_catalog.swedish',
title, body)

tsvector_update_trigger_column () → trigger
Automatically updates a tsvector column from associated plain-text document column(
s). The text search configuration to use is taken from a regconfig column of the table. See
Section 12.4.3 for details.
CREATE TRIGGER ... tsvector_update_trigger_column(tsvcol, tsconfigcol,
title, body)

The suppress_redundant_updates_trigger function, when applied as a row-level BEFORE UPDATE
trigger, will prevent any update that does not actually change the data in the row from taking place. This
overrides the normal behavior which always performs a physical row update regardless of whether or
not the data has changed. (This normal behavior makes updates run faster, since no checking is required,
and is also useful in certain cases.)

Ideally, you should avoid running updates that don't actually change the data in the record. Redundant
updates can cost considerable unnecessary time, especially if there are lots of indexes to alter, and space
in dead rows that will eventually have to be vacuumed. However, detecting such situations in client
code is not always easy, or even possible, and writing expressions to detect them can be error-prone. An
alternative is to use suppress_redundant_updates_trigger, which will skip updates that don't change
the data. You should use this with care, however. The trigger takes a small but non-trivial time for each
record, so if most of the records affected by updates do actually change, use of this trigger will make
updates run slower on average.

The suppress_redundant_updates_trigger function can be added to a table like this:
CREATE TRIGGER z_min_update
BEFORE UPDATE ON tablename
FOR EACH ROW EXECUTE FUNCTION suppress_redundant_updates_trigger();

In most cases, you need to fire this trigger last for each row, so that it does not override other triggers
that might wish to alter the row. Bearing in mind that triggers fire in name order, you would therefore
choose a trigger name that comes after the name of any other trigger you might have on the table.
(Hence the “z” prefix in the example.)

9.29. Event Trigger Functions
Postgres Pro provides these helper functions to retrieve information from event triggers.

For more information about event triggers, see Chapter 37.

9.29.1. Capturing Changes at Command End
pg_event_trigger_ddl_commands () → setof record

pg_event_trigger_ddl_commands returns a list of DDL commands executed by each user action, when
invoked in a function attached to a ddl_command_end event trigger. If called in any other context, an

336

Functions and Operators

error is raised. pg_event_trigger_ddl_commands returns one row for each base command executed;
some commands that are a single SQL sentence may return more than one row. This function returns
the following columns:

Name Type Description
classid oid OID of catalog the object belongs

in
objid oid OID of the object itself
objsubid integer Sub-object ID (e.g., attribute

number for a column)
command_tag text Command tag
object_type text Type of the object
schema_name text Name of the schema the object

belongs in, if any; otherwise
NULL. No quoting is applied.

object_identity text Text rendering of the object
identity, schema-qualified. Each
identifier included in the identity
is quoted if necessary.

in_extension boolean True if the command is part of
an extension script

command pg_ddl_command A complete representation of the
command, in internal format.
This cannot be output directly,
 but it can be passed to other
functions to obtain different
pieces of information about the
command.

9.29.2. Processing Objects Dropped by a DDL Command
pg_event_trigger_dropped_objects () → setof record

pg_event_trigger_dropped_objects returns a list of all objects dropped by the command in whose
sql_drop event it is called. If called in any other context, an error is raised. This function returns the
following columns:

Name Type Description
classid oid OID of catalog the object

belonged in
objid oid OID of the object itself
objsubid integer Sub-object ID (e.g., attribute

number for a column)
original boolean True if this was one of the root

object(s) of the deletion
normal boolean True if there was a normal

dependency relationship in the
dependency graph leading to this
object

is_temporary boolean True if this was a temporary
object

object_type text Type of the object

337

Functions and Operators

Name Type Description
schema_name text Name of the schema the object

belonged in, if any; otherwise
NULL. No quoting is applied.

object_name text Name of the object, if the
combination of schema and
name can be used as a unique
identifier for the object;
otherwise NULL. No quoting
is applied, and name is never
schema-qualified.

object_identity text Text rendering of the object
identity, schema-qualified. Each
identifier included in the identity
is quoted if necessary.

address_names text[] An array that, together with
object_type and address_
args , can be used by the
pg_get_object_address
function to recreate the object
address in a remote server
containing an identically named
object of the same kind.

address_args text[] Complement for address_names

The pg_event_trigger_dropped_objects function can be used in an event trigger like this:
CREATE FUNCTION test_event_trigger_for_drops()
 RETURNS event_trigger LANGUAGE plpgsql AS $$
DECLARE
 obj record;
BEGIN
 FOR obj IN SELECT * FROM pg_event_trigger_dropped_objects()
 LOOP
 RAISE NOTICE '% dropped object: % %.% %',
 tg_tag,
 obj.object_type,
 obj.schema_name,
 obj.object_name,
 obj.object_identity;
 END LOOP;
END;
$$;
CREATE EVENT TRIGGER test_event_trigger_for_drops
 ON sql_drop
 EXECUTE FUNCTION test_event_trigger_for_drops();

9.29.3. Handling a Table Rewrite Event
The functions shown in Table 9.99 provide information about a table for which a table_rewrite event
has just been called. If called in any other context, an error is raised.

Table 9.99. Table Rewrite Information Functions

Function
Description

pg_event_trigger_table_rewrite_oid () → oid

338

Functions and Operators

Function
Description
Returns the OID of the table about to be rewritten.

pg_event_trigger_table_rewrite_reason () → integer
Returns a code explaining the reason(s) for rewriting. The exact meaning of the codes is
release dependent.

These functions can be used in an event trigger like this:

CREATE FUNCTION test_event_trigger_table_rewrite_oid()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$
BEGIN
 RAISE NOTICE 'rewriting table % for reason %',
 pg_event_trigger_table_rewrite_oid()::regclass,
 pg_event_trigger_table_rewrite_reason();
END;
$$;

CREATE EVENT TRIGGER test_table_rewrite_oid
 ON table_rewrite
 EXECUTE FUNCTION test_event_trigger_table_rewrite_oid();

9.30. Statistics Information Functions
Postgres Pro provides a function to inspect complex statistics defined using the CREATE STATISTICS
command.

9.30.1. Inspecting MCV Lists
pg_mcv_list_items (pg_mcv_list) → setof record

pg_mcv_list_items returns a set of records describing all items stored in a multi-column MCV list. It
returns the following columns:

Name Type Description
index integer index of the item in the MCV list
values text[] values stored in the MCV item
nulls boolean[] flags identifying NULL values
frequency double precision frequency of this MCV item
base_frequency double precision base frequency of this MCV item

The pg_mcv_list_items function can be used like this:

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts';

Values of the pg_mcv_list type can be obtained only from the pg_statistic_ext_data.stxdmcv column.

339

Chapter 10. Type Conversion
SQL statements can, intentionally or not, require the mixing of different data types in the same
expression. Postgres Pro has extensive facilities for evaluating mixed-type expressions.

In many cases a user does not need to understand the details of the type conversion mechanism.
However, implicit conversions done by Postgres Pro can affect the results of a query. When necessary,
these results can be tailored by using explicit type conversion.

This chapter introduces the Postgres Pro type conversion mechanisms and conventions. Refer to the
relevant sections in Chapter 8 and Chapter 9 for more information on specific data types and allowed
functions and operators.

10.1. Overview
SQL is a strongly typed language. That is, every data item has an associated data type which determines
its behavior and allowed usage. Postgres Pro has an extensible type system that is more general and
flexible than other SQL implementations. Hence, most type conversion behavior in Postgres Pro is
governed by general rules rather than by ad hoc heuristics. This allows the use of mixed-type expressions
even with user-defined types.

The Postgres Pro scanner/parser divides lexical elements into five fundamental categories: integers,
non-integer numbers, strings, identifiers, and key words. Constants of most non-numeric types are first
classified as strings. The SQL language definition allows specifying type names with strings, and this
mechanism can be used in Postgres Pro to start the parser down the correct path. For example, the query:
SELECT text 'Origin' AS "label", point '(0,0)' AS "value";

 label | value
--------+-------
 Origin | (0,0)
(1 row)

has two literal constants, of type text and point. If a type is not specified for a string literal, then the
placeholder type unknown is assigned initially, to be resolved in later stages as described below.

There are four fundamental SQL constructs requiring distinct type conversion rules in the Postgres Pro
parser:
Function calls

Much of the Postgres Pro type system is built around a rich set of functions. Functions can have one
or more arguments. Since Postgres Pro permits function overloading, the function name alone does
not uniquely identify the function to be called; the parser must select the right function based on
the data types of the supplied arguments.

Operators
Postgres Pro allows expressions with prefix and postfix unary (one-argument) operators, as well as
binary (two-argument) operators. Like functions, operators can be overloaded, so the same problem
of selecting the right operator exists.

Value Storage
SQL INSERT and UPDATE statements place the results of expressions into a table. The expressions in
the statement must be matched up with, and perhaps converted to, the types of the target columns.

UNION, CASE, and related constructs
Since all query results from a unionized SELECT statement must appear in a single set of columns,
the types of the results of each SELECT clause must be matched up and converted to a uniform set.
Similarly, the result expressions of a CASE construct must be converted to a common type so that
the CASE expression as a whole has a known output type. Some other constructs, such as ARRAY[]

340

Type Conversion

and the GREATEST and LEAST functions, likewise require determination of a common type for several
subexpressions.

The system catalogs store information about which conversions, or casts, exist between which data types,
and how to perform those conversions. Additional casts can be added by the user with the CREATE CAST
command. (This is usually done in conjunction with defining new data types. The set of casts between
built-in types has been carefully crafted and is best not altered.)

An additional heuristic provided by the parser allows improved determination of the proper casting
behavior among groups of types that have implicit casts. Data types are divided into several basic type
categories, including boolean, numeric, string, bitstring, datetime, timespan, geometric, network,
and user-defined. (For a list see Table 49.63; but note it is also possible to create custom type categories.)
Within each category there can be one or more preferred types, which are preferred when there is
a choice of possible types. With careful selection of preferred types and available implicit casts, it is
possible to ensure that ambiguous expressions (those with multiple candidate parsing solutions) can be
resolved in a useful way.

All type conversion rules are designed with several principles in mind:
• Implicit conversions should never have surprising or unpredictable outcomes.
• There should be no extra overhead in the parser or executor if a query does not need implicit type

conversion. That is, if a query is well-formed and the types already match, then the query should
execute without spending extra time in the parser and without introducing unnecessary implicit
conversion calls in the query.

• Additionally, if a query usually requires an implicit conversion for a function, and if then the user
defines a new function with the correct argument types, the parser should use this new function
and no longer do implicit conversion to use the old function.

10.2. Operators
The specific operator that is referenced by an operator expression is determined using the following
procedure. Note that this procedure is indirectly affected by the precedence of the operators involved,
since that will determine which sub-expressions are taken to be the inputs of which operators. See
Section 4.1.6 for more information.

Operator Type Resolution
1. Select the operators to be considered from the pg_operator system catalog. If a non-schema-

qualified operator name was used (the usual case), the operators considered are those with the
matching name and argument count that are visible in the current search path (see Section 5.9.3).
If a qualified operator name was given, only operators in the specified schema are considered.

• (Optional) If the search path finds multiple operators with identical argument types, only the
one appearing earliest in the path is considered. Operators with different argument types are
considered on an equal footing regardless of search path position.

2. Check for an operator accepting exactly the input argument types. If one exists (there can be only
one exact match in the set of operators considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified name 1 (not typical), any operator found in a schema that permits
untrusted users to create objects. In such situations, cast arguments to force an exact match.

a. (Optional) If one argument of a binary operator invocation is of the unknown type, then assume it
is the same type as the other argument for this check. Invocations involving two unknown inputs,
or a unary operator with an unknown input, will never find a match at this step.

b. (Optional) If one argument of a binary operator invocation is of the unknown type and the other
is of a domain type, next check to see if there is an operator accepting exactly the domain's base
type on both sides; if so, use it.

1 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create objects is not a
secure schema usage pattern.

341

Type Conversion

3. Look for the best match.

a. Discard candidate operators for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambiguous-
operator resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next
step.

e. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same type
category, select that category; otherwise fail because the correct choice cannot be deduced
without more clues. Now discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category, discard candidates that
accept non-preferred types for that argument. Keep all candidates if none survive these tests. If
only one candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have the
same type, assume that the unknown arguments are also of that type, and check which candidates
can accept that type at the unknown-argument positions. If exactly one candidate passes this
test, use it. Otherwise, fail.

Some examples follow.

Example 10.1. Square Root Operator Type Resolution

There is only one square root operator (prefix |/) defined in the standard catalog, and it takes an
argument of type double precision. The scanner assigns an initial type of integer to the argument
in this query expression:

SELECT |/ 40 AS "square root of 40";
 square root of 40

 6.324555320336759
(1 row)

So the parser does a type conversion on the operand and the query is equivalent to:

SELECT |/ CAST(40 AS double precision) AS "square root of 40";

Example 10.2. String Concatenation Operator Type Resolution

A string-like syntax is used for working with string types and for working with complex extension types.
Strings with unspecified type are matched with likely operator candidates.

An example with one unspecified argument:

SELECT text 'abc' || 'def' AS "text and unknown";

 text and unknown

 abcdef

342

Type Conversion

(1 row)

In this case the parser looks to see if there is an operator taking text for both arguments. Since there
is, it assumes that the second argument should be interpreted as type text.

Here is a concatenation of two values of unspecified types:

SELECT 'abc' || 'def' AS "unspecified";

 unspecified

 abcdef
(1 row)

In this case there is no initial hint for which type to use, since no types are specified in the query. So,
the parser looks for all candidate operators and finds that there are candidates accepting both string-
category and bit-string-category inputs. Since string category is preferred when available, that category
is selected, and then the preferred type for strings, text, is used as the specific type to resolve the
unknown-type literals as.

Example 10.3. Absolute-Value and Negation Operator Type Resolution

The Postgres Pro operator catalog has several entries for the prefix operator @, all of which implement
absolute-value operations for various numeric data types. One of these entries is for type float8, which
is the preferred type in the numeric category. Therefore, Postgres Pro will use that entry when faced
with an unknown input:

SELECT @ '-4.5' AS "abs";
 abs

 4.5
(1 row)

Here the system has implicitly resolved the unknown-type literal as type float8 before applying the
chosen operator. We can verify that float8 and not some other type was used:

SELECT @ '-4.5e500' AS "abs";

ERROR: "-4.5e500" is out of range for type double precision

On the other hand, the prefix operator ~ (bitwise negation) is defined only for integer data types, not for
float8. So, if we try a similar case with ~, we get:

SELECT ~ '20' AS "negation";

ERROR: operator is not unique: ~ "unknown"
HINT: Could not choose a best candidate operator. You might need to add
explicit type casts.

This happens because the system cannot decide which of the several possible ~ operators should be
preferred. We can help it out with an explicit cast:

SELECT ~ CAST('20' AS int8) AS "negation";

 negation

 -21
(1 row)

Example 10.4. Array Inclusion Operator Type Resolution

Here is another example of resolving an operator with one known and one unknown input:

SELECT array[1,2] <@ '{1,2,3}' as "is subset";

343

Type Conversion

 is subset

 t
(1 row)

The Postgres Pro operator catalog has several entries for the infix operator <@, but the only two that
could possibly accept an integer array on the left-hand side are array inclusion (anyarray <@ anyarray)
and range inclusion (anyelement <@ anyrange). Since none of these polymorphic pseudo-types (see
Section 8.21) are considered preferred, the parser cannot resolve the ambiguity on that basis. However,
Step 3.f tells it to assume that the unknown-type literal is of the same type as the other input, that is,
integer array. Now only one of the two operators can match, so array inclusion is selected. (Had range
inclusion been selected, we would have gotten an error, because the string does not have the right format
to be a range literal.)

Example 10.5. Custom Operator on a Domain Type

Users sometimes try to declare operators applying just to a domain type. This is possible but is not
nearly as useful as it might seem, because the operator resolution rules are designed to select operators
applying to the domain's base type. As an example consider

CREATE DOMAIN mytext AS text CHECK(...);
CREATE FUNCTION mytext_eq_text (mytext, text) RETURNS boolean AS ...;
CREATE OPERATOR = (procedure=mytext_eq_text, leftarg=mytext, rightarg=text);
CREATE TABLE mytable (val mytext);

SELECT * FROM mytable WHERE val = 'foo';

This query will not use the custom operator. The parser will first see if there is a mytext = mytext operator
(Step 2.a), which there is not; then it will consider the domain's base type text, and see if there is a text
= text operator (Step 2.b), which there is; so it resolves the unknown-type literal as text and uses the
text = text operator. The only way to get the custom operator to be used is to explicitly cast the literal:

SELECT * FROM mytable WHERE val = text 'foo';

so that the mytext = text operator is found immediately according to the exact-match rule. If the best-
match rules are reached, they actively discriminate against operators on domain types. If they did not,
such an operator would create too many ambiguous-operator failures, because the casting rules always
consider a domain as castable to or from its base type, and so the domain operator would be considered
usable in all the same cases as a similarly-named operator on the base type.

10.3. Functions
The specific function that is referenced by a function call is determined using the following procedure.

Function Type Resolution

1. Select the functions to be considered from the pg_proc system catalog. If a non-schema-qualified
function name was used, the functions considered are those with the matching name and argument
count that are visible in the current search path (see Section 5.9.3). If a qualified function name was
given, only functions in the specified schema are considered.

a. (Optional) If the search path finds multiple functions of identical argument types, only the
one appearing earliest in the path is considered. Functions of different argument types are
considered on an equal footing regardless of search path position.

b. (Optional) If a function is declared with a VARIADIC array parameter, and the call does not use
the VARIADIC keyword, then the function is treated as if the array parameter were replaced by
one or more occurrences of its element type, as needed to match the call. After such expansion
the function might have effective argument types identical to some non-variadic function. In that
case the function appearing earlier in the search path is used, or if the two functions are in the
same schema, the non-variadic one is preferred.

344

Type Conversion

This creates a security hazard when calling, via qualified name 2, a variadic function found in
a schema that permits untrusted users to create objects. A malicious user can take control and
execute arbitrary SQL functions as though you executed them. Substitute a call bearing the
VARIADIC keyword, which bypasses this hazard. Calls populating VARIADIC "any" parameters
often have no equivalent formulation containing the VARIADIC keyword. To issue those calls
safely, the function's schema must permit only trusted users to create objects.

c. (Optional) Functions that have default values for parameters are considered to match any call
that omits zero or more of the defaultable parameter positions. If more than one such function
matches a call, the one appearing earliest in the search path is used. If there are two or more
such functions in the same schema with identical parameter types in the non-defaulted positions
(which is possible if they have different sets of defaultable parameters), the system will not be
able to determine which to prefer, and so an “ambiguous function call” error will result if no
better match to the call can be found.

This creates an availability hazard when calling, via qualified name2, any function found in a
schema that permits untrusted users to create objects. A malicious user can create a function
with the name of an existing function, replicating that function's parameters and appending
novel parameters having default values. This precludes new calls to the original function. To
forestall this hazard, place functions in schemas that permit only trusted users to create objects.

2. Check for a function accepting exactly the input argument types. If one exists (there can be only one
exact match in the set of functions considered), use it. Lack of an exact match creates a security
hazard when calling, via qualified name2, a function found in a schema that permits untrusted
users to create objects. In such situations, cast arguments to force an exact match. (Cases involving
unknown will never find a match at this step.)

3. If no exact match is found, see if the function call appears to be a special type conversion request.
This happens if the function call has just one argument and the function name is the same as the
(internal) name of some data type. Furthermore, the function argument must be either an unknown-
type literal, or a type that is binary-coercible to the named data type, or a type that could be converted
to the named data type by applying that type's I/O functions (that is, the conversion is either to or
from one of the standard string types). When these conditions are met, the function call is treated
as a form of CAST specification. 3

4. Look for the best match.

a. Discard candidate functions for which the input types do not match and cannot be converted
(using an implicit conversion) to match. unknown literals are assumed to be convertible to
anything for this purpose. If only one candidate remains, use it; else continue to the next step.

b. If any input argument is of a domain type, treat it as being of the domain's base type for all
subsequent steps. This ensures that domains act like their base types for purposes of ambiguous-
function resolution.

c. Run through all candidates and keep those with the most exact matches on input types. Keep
all candidates if none have exact matches. If only one candidate remains, use it; else continue
to the next step.

d. Run through all candidates and keep those that accept preferred types (of the input data type's
type category) at the most positions where type conversion will be required. Keep all candidates
if none accept preferred types. If only one candidate remains, use it; else continue to the next
step.

e. If any input arguments are unknown, check the type categories accepted at those argument
positions by the remaining candidates. At each position, select the string category if any
candidate accepts that category. (This bias towards string is appropriate since an unknown-
type literal looks like a string.) Otherwise, if all the remaining candidates accept the same type

2 The hazard does not arise with a non-schema-qualified name, because a search path containing schemas that permit untrusted users to create objects is not a
secure schema usage pattern.
3 The reason for this step is to support function-style cast specifications in cases where there is not an actual cast function. If there is a cast function, it is conventionally
named after its output type, and so there is no need to have a special case. See CREATE CAST for additional commentary.

345

Type Conversion

category, select that category; otherwise fail because the correct choice cannot be deduced
without more clues. Now discard candidates that do not accept the selected type category.
Furthermore, if any candidate accepts a preferred type in that category, discard candidates that
accept non-preferred types for that argument. Keep all candidates if none survive these tests. If
only one candidate remains, use it; else continue to the next step.

f. If there are both unknown and known-type arguments, and all the known-type arguments have the
same type, assume that the unknown arguments are also of that type, and check which candidates
can accept that type at the unknown-argument positions. If exactly one candidate passes this
test, use it. Otherwise, fail.

Note that the “best match” rules are identical for operator and function type resolution. Some examples
follow.

Example 10.6. Rounding Function Argument Type Resolution

There is only one round function that takes two arguments; it takes a first argument of type numeric and
a second argument of type integer. So the following query automatically converts the first argument
of type integer to numeric:

SELECT round(4, 4);

 round

 4.0000
(1 row)

That query is actually transformed by the parser to:

SELECT round(CAST (4 AS numeric), 4);

Since numeric constants with decimal points are initially assigned the type numeric, the following query
will require no type conversion and therefore might be slightly more efficient:

SELECT round(4.0, 4);

Example 10.7. Variadic Function Resolution

CREATE FUNCTION public.variadic_example(VARIADIC numeric[]) RETURNS int
 LANGUAGE sql AS 'SELECT 1';
CREATE FUNCTION

This function accepts, but does not require, the VARIADIC keyword. It tolerates both integer and numeric
arguments:

SELECT public.variadic_example(0),
 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 1 | 1 | 1
(1 row)

However, the first and second calls will prefer more-specific functions, if available:

CREATE FUNCTION public.variadic_example(numeric) RETURNS int
 LANGUAGE sql AS 'SELECT 2';
CREATE FUNCTION

CREATE FUNCTION public.variadic_example(int) RETURNS int
 LANGUAGE sql AS 'SELECT 3';
CREATE FUNCTION

SELECT public.variadic_example(0),

346

Type Conversion

 public.variadic_example(0.0),
 public.variadic_example(VARIADIC array[0.0]);
 variadic_example | variadic_example | variadic_example
------------------+------------------+------------------
 3 | 2 | 1
(1 row)

Given the default configuration and only the first function existing, the first and second calls are insecure.
Any user could intercept them by creating the second or third function. By matching the argument type
exactly and using the VARIADIC keyword, the third call is secure.

Example 10.8. Substring Function Type Resolution

There are several substr functions, one of which takes types text and integer. If called with a string
constant of unspecified type, the system chooses the candidate function that accepts an argument of the
preferred category string (namely of type text).

SELECT substr('1234', 3);

 substr

 34
(1 row)

If the string is declared to be of type varchar, as might be the case if it comes from a table, then the
parser will try to convert it to become text:

SELECT substr(varchar '1234', 3);

 substr

 34
(1 row)

This is transformed by the parser to effectively become:

SELECT substr(CAST (varchar '1234' AS text), 3);

Note
The parser learns from the pg_cast catalog that text and varchar are binary-compatible, meaning
that one can be passed to a function that accepts the other without doing any physical conversion.
Therefore, no type conversion call is really inserted in this case.

And, if the function is called with an argument of type integer, the parser will try to convert that to text:

SELECT substr(1234, 3);
ERROR: function substr(integer, integer) does not exist
HINT: No function matches the given name and argument types. You might need
to add explicit type casts.

This does not work because integer does not have an implicit cast to text. An explicit cast will work,
however:

SELECT substr(CAST (1234 AS text), 3);

 substr

 34
(1 row)

347

Type Conversion

10.4. Value Storage
Values to be inserted into a table are converted to the destination column's data type according to the
following steps.

Value Storage Type Conversion

1. Check for an exact match with the target.
2. Otherwise, try to convert the expression to the target type. This is possible if an assignment cast

between the two types is registered in the pg_cast catalog (see CREATE CAST). Alternatively, if
the expression is an unknown-type literal, the contents of the literal string will be fed to the input
conversion routine for the target type.

3. Check to see if there is a sizing cast for the target type. A sizing cast is a cast from that type
to itself. If one is found in the pg_cast catalog, apply it to the expression before storing into the
destination column. The implementation function for such a cast always takes an extra parameter
of type integer, which receives the destination column's atttypmod value (typically its declared
length, although the interpretation of atttypmod varies for different data types), and it may take
a third boolean parameter that says whether the cast is explicit or implicit. The cast function is
responsible for applying any length-dependent semantics such as size checking or truncation.

Example 10.9. character Storage Type Conversion

For a target column declared as character(20) the following statement shows that the stored value
is sized correctly:

CREATE TABLE vv (v character(20));
INSERT INTO vv SELECT 'abc' || 'def';
SELECT v, octet_length(v) FROM vv;

 v | octet_length
----------------------+--------------
 abcdef | 20
(1 row)

What has really happened here is that the two unknown literals are resolved to text by default, allowing
the || operator to be resolved as text concatenation. Then the text result of the operator is converted
to bpchar (“blank-padded char”, the internal name of the character data type) to match the target
column type. (Since the conversion from text to bpchar is binary-coercible, this conversion does not
insert any real function call.) Finally, the sizing function bpchar(bpchar, integer, boolean) is found in
the system catalog and applied to the operator's result and the stored column length. This type-specific
function performs the required length check and addition of padding spaces.

10.5. UNION, CASE, and Related Constructs
SQL UNION constructs must match up possibly dissimilar types to become a single result set. The
resolution algorithm is applied separately to each output column of a union query. The INTERSECT and
EXCEPT constructs resolve dissimilar types in the same way as UNION. Some other constructs, including
CASE, ARRAY, VALUES, and the GREATEST and LEAST functions, use the identical algorithm to match up
their component expressions and select a result data type.

Type Resolution for UNION, CASE, and Related Constructs

1. If all inputs are of the same type, and it is not unknown, resolve as that type.
2. If any input is of a domain type, treat it as being of the domain's base type for all subsequent steps. 4

3. If all inputs are of type unknown, resolve as type text (the preferred type of the string category).
Otherwise, unknown inputs are ignored for the purposes of the remaining rules.

4 Somewhat like the treatment of domain inputs for operators and functions, this behavior allows a domain type to be preserved through a UNION or similar construct,
so long as the user is careful to ensure that all inputs are implicitly or explicitly of that exact type. Otherwise the domain's base type will be used.

348

Type Conversion

4. If the non-unknown inputs are not all of the same type category, fail.
5. Select the first non-unknown input type as the candidate type, then consider each other non-unknown

input type, left to right. 5 If the candidate type can be implicitly converted to the other type, but not
vice-versa, select the other type as the new candidate type. Then continue considering the remaining
inputs. If, at any stage of this process, a preferred type is selected, stop considering additional inputs.

6. Convert all inputs to the final candidate type. Fail if there is not an implicit conversion from a given
input type to the candidate type.

Some examples follow.

Example 10.10. Type Resolution with Underspecified Types in a Union

SELECT text 'a' AS "text" UNION SELECT 'b';

 text

 a
 b
(2 rows)

Here, the unknown-type literal 'b' will be resolved to type text.

Example 10.11. Type Resolution in a Simple Union

SELECT 1.2 AS "numeric" UNION SELECT 1;

 numeric

 1
 1.2
(2 rows)

The literal 1.2 is of type numeric, and the integer value 1 can be cast implicitly to numeric, so that
type is used.

Example 10.12. Type Resolution in a Transposed Union

SELECT 1 AS "real" UNION SELECT CAST('2.2' AS REAL);

 real

 1
 2.2
(2 rows)

Here, since type real cannot be implicitly cast to integer, but integer can be implicitly cast to real,
the union result type is resolved as real.

Example 10.13. Type Resolution in a Nested Union

SELECT NULL UNION SELECT NULL UNION SELECT 1;

ERROR: UNION types text and integer cannot be matched

This failure occurs because Postgres Pro treats multiple UNIONs as a nest of pairwise operations; that
is, this input is the same as
(SELECT NULL UNION SELECT NULL) UNION SELECT 1;

The inner UNION is resolved as emitting type text, according to the rules given above. Then the outer
UNION has inputs of types text and integer, leading to the observed error. The problem can be fixed by
ensuring that the leftmost UNION has at least one input of the desired result type.

5 For historical reasons, CASE treats its ELSE clause (if any) as the “first” input, with the THEN clauses(s) considered after that. In all other cases, “left to right” means
the order in which the expressions appear in the query text.

349

Type Conversion

INTERSECT and EXCEPT operations are likewise resolved pairwise. However, the other constructs
described in this section consider all of their inputs in one resolution step.

10.6. SELECT Output Columns
The rules given in the preceding sections will result in assignment of non-unknown data types to all
expressions in a SQL query, except for unspecified-type literals that appear as simple output columns
of a SELECT command. For example, in

SELECT 'Hello World';

there is nothing to identify what type the string literal should be taken as. In this situation Postgres Pro
will fall back to resolving the literal's type as text.

When the SELECT is one arm of a UNION (or INTERSECT or EXCEPT) construct, or when it appears within
INSERT ... SELECT, this rule is not applied since rules given in preceding sections take precedence.
The type of an unspecified-type literal can be taken from the other UNION arm in the first case, or from
the destination column in the second case.

RETURNING lists are treated the same as SELECT output lists for this purpose.

Note
Prior to Postgres Pro 10, this rule did not exist, and unspecified-type literals in a SELECT output
list were left as type unknown. That had assorted bad consequences, so it's been changed.

350

Chapter 11. Indexes
Indexes are a common way to enhance database performance. An index allows the database server to
find and retrieve specific rows much faster than it could do without an index. But indexes also add
overhead to the database system as a whole, so they should be used sensibly.

11.1. Introduction
Suppose we have a table similar to this:

CREATE TABLE test1 (
 id integer,
 content varchar
);

and the application issues many queries of the form:

SELECT content FROM test1 WHERE id = constant;

With no advance preparation, the system would have to scan the entire test1 table, row by row, to find all
matching entries. If there are many rows in test1 and only a few rows (perhaps zero or one) that would
be returned by such a query, this is clearly an inefficient method. But if the system has been instructed
to maintain an index on the id column, it can use a more efficient method for locating matching rows.
For instance, it might only have to walk a few levels deep into a search tree.

A similar approach is used in most non-fiction books: terms and concepts that are frequently looked up
by readers are collected in an alphabetic index at the end of the book. The interested reader can scan the
index relatively quickly and flip to the appropriate page(s), rather than having to read the entire book
to find the material of interest. Just as it is the task of the author to anticipate the items that readers are
likely to look up, it is the task of the database programmer to foresee which indexes will be useful.

The following command can be used to create an index on the id column, as discussed:

CREATE INDEX test1_id_index ON test1 (id);

The name test1_id_index can be chosen freely, but you should pick something that enables you to
remember later what the index was for.

To remove an index, use the DROP INDEX command. Indexes can be added to and removed from tables
at any time.

Once an index is created, no further intervention is required: the system will update the index when the
table is modified, and it will use the index in queries when it thinks doing so would be more efficient than
a sequential table scan. But you might have to run the ANALYZE command regularly to update statistics
to allow the query planner to make educated decisions. See Chapter 14 for information about how to
find out whether an index is used and when and why the planner might choose not to use an index.

Indexes can also benefit UPDATE and DELETE commands with search conditions. Indexes can moreover
be used in join searches. Thus, an index defined on a column that is part of a join condition can also
significantly speed up queries with joins.

Creating an index on a large table can take a long time. By default, Postgres Pro allows reads (SELECT
statements) to occur on the table in parallel with index creation, but writes (INSERT, UPDATE, DELETE)
are blocked until the index build is finished. In production environments this is often unacceptable. It
is possible to allow writes to occur in parallel with index creation, but there are several caveats to be
aware of — for more information see Building Indexes Concurrently.

After an index is created, the system has to keep it synchronized with the table. This adds overhead
to data manipulation operations. Therefore indexes that are seldom or never used in queries should be
removed.

351

Indexes

11.2. Index Types
Postgres Pro provides several index types: B-tree, Hash, GiST, SP-GiST, GIN and BRIN. Each index type
uses a different algorithm that is best suited to different types of queries. By default, the CREATE INDEX
command creates B-tree indexes, which fit the most common situations.

B-trees can handle equality and range queries on data that can be sorted into some ordering. In
particular, the Postgres Pro query planner will consider using a B-tree index whenever an indexed column
is involved in a comparison using one of these operators:

<
<=
=
>=
>

Constructs equivalent to combinations of these operators, such as BETWEEN and IN, can also be
implemented with a B-tree index search. Also, an IS NULL or IS NOT NULL condition on an index column
can be used with a B-tree index.

The optimizer can also use a B-tree index for queries involving the pattern matching operators LIKE and
~ if the pattern is a constant and is anchored to the beginning of the string — for example, col LIKE
'foo%' or col ~ '^foo', but not col LIKE '%bar'. However, if your database does not use the C locale
you will need to create the index with a special operator class to support indexing of pattern-matching
queries; see Section 11.10 below. It is also possible to use B-tree indexes for ILIKE and ~*, but only if
the pattern starts with non-alphabetic characters, i.e., characters that are not affected by upper/lower
case conversion.

B-tree indexes can also be used to retrieve data in sorted order. This is not always faster than a simple
scan and sort, but it is often helpful.

Hash indexes can only handle simple equality comparisons. The query planner will consider using a
hash index whenever an indexed column is involved in a comparison using the = operator. The following
command is used to create a hash index:

CREATE INDEX name ON table USING HASH (column);

GiST indexes are not a single kind of index, but rather an infrastructure within which many different
indexing strategies can be implemented. Accordingly, the particular operators with which a GiST index
can be used vary depending on the indexing strategy (the operator class). As an example, the standard
distribution of Postgres Pro includes GiST operator classes for several two-dimensional geometric data
types, which support indexed queries using these operators:

<<
&<
&>
>>
<<|
&<|
|&>
|>>
@>
<@
~=
&&

(See Section 9.11 for the meaning of these operators.) The GiST operator classes included in the standard
distribution are documented in Table 60.1. Many other GiST operator classes are available in the contrib
collection or as separate projects. For more information see Chapter 60.

352

Indexes

GiST indexes are also capable of optimizing “nearest-neighbor” searches, such as
SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

which finds the ten places closest to a given target point. The ability to do this is again dependent on
the particular operator class being used. In Table 60.1, operators that can be used in this way are listed
in the column “Ordering Operators”.

SP-GiST indexes, like GiST indexes, offer an infrastructure that supports various kinds of searches. SP-
GiST permits implementation of a wide range of different non-balanced disk-based data structures, such
as quadtrees, k-d trees, and radix trees (tries). As an example, the standard distribution of Postgres
Pro includes SP-GiST operator classes for two-dimensional points, which support indexed queries using
these operators:
<<
>>
~=
<@
<^
>^

(See Section 9.11 for the meaning of these operators.) The SP-GiST operator classes included in the
standard distribution are documented in Table 61.1. For more information see Chapter 61.

Like GiST, SP-GiST supports “nearest-neighbor” searches. For SP-GiST operator classes that support
distance ordering, the corresponding operator is specified in the “Ordering Operators” column in
Table 61.1.

GIN indexes are “inverted indexes” which are appropriate for data values that contain multiple
component values, such as arrays. An inverted index contains a separate entry for each component value,
and can efficiently handle queries that test for the presence of specific component values.

Like GiST and SP-GiST, GIN can support many different user-defined indexing strategies, and the
particular operators with which a GIN index can be used vary depending on the indexing strategy. As
an example, the standard distribution of Postgres Pro includes a GIN operator class for arrays, which
supports indexed queries using these operators:
<@
@>
=
&&

(See Section 9.19 for the meaning of these operators.) The GIN operator classes included in the standard
distribution are documented in Table 62.1. Many other GIN operator classes are available in the contrib
collection or as separate projects. For more information see Chapter 62.

BRIN indexes (a shorthand for Block Range INdexes) store summaries about the values stored in
consecutive physical block ranges of a table. Like GiST, SP-GiST and GIN, BRIN can support many
different indexing strategies, and the particular operators with which a BRIN index can be used vary
depending on the indexing strategy. For data types that have a linear sort order, the indexed data
corresponds to the minimum and maximum values of the values in the column for each block range. This
supports indexed queries using these operators:
<
<=
=
>=
>

The BRIN operator classes included in the standard distribution are documented in Table 63.1. For more
information see Chapter 63.

353

Indexes

11.3. Multicolumn Indexes
An index can be defined on more than one column of a table. For example, if you have a table of this form:
CREATE TABLE test2 (
 major int,
 minor int,
 name varchar
);

(say, you keep your /dev directory in a database...) and you frequently issue queries like:
SELECT name FROM test2 WHERE major = constant AND minor = constant;

then it might be appropriate to define an index on the columns major and minor together, e.g.:
CREATE INDEX test2_mm_idx ON test2 (major, minor);

Currently, only the B-tree, GiST, GIN, and BRIN index types support multicolumn indexes. Up to
32 columns can be specified. (This limit can be altered when building Postgres Pro; see the file
pg_config_manual.h.)

A multicolumn B-tree index can be used with query conditions that involve any subset of the index's
columns, but the index is most efficient when there are constraints on the leading (leftmost) columns.
The exact rule is that equality constraints on leading columns, plus any inequality constraints on the
first column that does not have an equality constraint, will be used to limit the portion of the index that
is scanned. Constraints on columns to the right of these columns are checked in the index, so they save
visits to the table proper, but they do not reduce the portion of the index that has to be scanned. For
example, given an index on (a, b, c) and a query condition WHERE a = 5 AND b >= 42 AND c < 77, the
index would have to be scanned from the first entry with a = 5 and b = 42 up through the last entry with
a = 5. Index entries with c >= 77 would be skipped, but they'd still have to be scanned through. This
index could in principle be used for queries that have constraints on b and/or c with no constraint on a
— but the entire index would have to be scanned, so in most cases the planner would prefer a sequential
table scan over using the index.

A multicolumn GiST index can be used with query conditions that involve any subset of the index's
columns. Conditions on additional columns restrict the entries returned by the index, but the condition
on the first column is the most important one for determining how much of the index needs to be scanned.
A GiST index will be relatively ineffective if its first column has only a few distinct values, even if there
are many distinct values in additional columns.

A multicolumn GIN index can be used with query conditions that involve any subset of the index's
columns. Unlike B-tree or GiST, index search effectiveness is the same regardless of which index
column(s) the query conditions use.

A multicolumn BRIN index can be used with query conditions that involve any subset of the index's
columns. Like GIN and unlike B-tree or GiST, index search effectiveness is the same regardless of which
index column(s) the query conditions use. The only reason to have multiple BRIN indexes instead of one
multicolumn BRIN index on a single table is to have a different pages_per_range storage parameter.

Of course, each column must be used with operators appropriate to the index type; clauses that involve
other operators will not be considered.

Multicolumn indexes should be used sparingly. In most situations, an index on a single column is
sufficient and saves space and time. Indexes with more than three columns are unlikely to be helpful
unless the usage of the table is extremely stylized. See also Section 11.5 and Section 11.9 for some
discussion of the merits of different index configurations.

11.4. Indexes and ORDER BY
In addition to simply finding the rows to be returned by a query, an index may be able to deliver them
in a specific sorted order. This allows a query's ORDER BY specification to be honored without a separate

354

Indexes

sorting step. Of the index types currently supported by Postgres Pro, only B-tree can produce sorted
output — the other index types return matching rows in an unspecified, implementation-dependent order.

The planner will consider satisfying an ORDER BY specification either by scanning an available index that
matches the specification, or by scanning the table in physical order and doing an explicit sort. For a
query that requires scanning a large fraction of the table, an explicit sort is likely to be faster than using
an index because it requires less disk I/O due to following a sequential access pattern. Indexes are more
useful when only a few rows need be fetched. An important special case is ORDER BY in combination with
LIMIT n: an explicit sort will have to process all the data to identify the first n rows, but if there is an index
matching the ORDER BY, the first n rows can be retrieved directly, without scanning the remainder at all.

By default, B-tree indexes store their entries in ascending order with nulls last (table TID is treated as
a tiebreaker column among otherwise equal entries). This means that a forward scan of an index on
column x produces output satisfying ORDER BY x (or more verbosely, ORDER BY x ASC NULLS LAST). The
index can also be scanned backward, producing output satisfying ORDER BY x DESC (or more verbosely,
ORDER BY x DESC NULLS FIRST, since NULLS FIRST is the default for ORDER BY DESC).

You can adjust the ordering of a B-tree index by including the options ASC, DESC, NULLS FIRST, and/or
NULLS LAST when creating the index; for example:

CREATE INDEX test2_info_nulls_low ON test2 (info NULLS FIRST);
CREATE INDEX test3_desc_index ON test3 (id DESC NULLS LAST);

An index stored in ascending order with nulls first can satisfy either ORDER BY x ASC NULLS FIRST or
ORDER BY x DESC NULLS LAST depending on which direction it is scanned in.

You might wonder why bother providing all four options, when two options together with the possibility
of backward scan would cover all the variants of ORDER BY. In single-column indexes the options are
indeed redundant, but in multicolumn indexes they can be useful. Consider a two-column index on (x,
y): this can satisfy ORDER BY x, y if we scan forward, or ORDER BY x DESC, y DESC if we scan backward.
But it might be that the application frequently needs to use ORDER BY x ASC, y DESC. There is no way
to get that ordering from a plain index, but it is possible if the index is defined as (x ASC, y DESC)
or (x DESC, y ASC).

Obviously, indexes with non-default sort orderings are a fairly specialized feature, but sometimes they
can produce tremendous speedups for certain queries. Whether it's worth maintaining such an index
depends on how often you use queries that require a special sort ordering.

11.5. Combining Multiple Indexes
A single index scan can only use query clauses that use the index's columns with operators of its operator
class and are joined with AND. For example, given an index on (a, b) a query condition like WHERE a = 5
AND b = 6 could use the index, but a query like WHERE a = 5 OR b = 6 could not directly use the index.

Fortunately, Postgres Pro has the ability to combine multiple indexes (including multiple uses of the
same index) to handle cases that cannot be implemented by single index scans. The system can form
AND and OR conditions across several index scans. For example, a query like WHERE x = 42 OR x =
47 OR x = 53 OR x = 99 could be broken down into four separate scans of an index on x, each scan
using one of the query clauses. The results of these scans are then ORed together to produce the result.
Another example is that if we have separate indexes on x and y, one possible implementation of a query
like WHERE x = 5 AND y = 6 is to use each index with the appropriate query clause and then AND
together the index results to identify the result rows.

To combine multiple indexes, the system scans each needed index and prepares a bitmap in memory
giving the locations of table rows that are reported as matching that index's conditions. The bitmaps
are then ANDed and ORed together as needed by the query. Finally, the actual table rows are visited
and returned. The table rows are visited in physical order, because that is how the bitmap is laid out;
this means that any ordering of the original indexes is lost, and so a separate sort step will be needed if
the query has an ORDER BY clause. For this reason, and because each additional index scan adds extra

355

Indexes

time, the planner will sometimes choose to use a simple index scan even though additional indexes are
available that could have been used as well.

In all but the simplest applications, there are various combinations of indexes that might be useful,
and the database developer must make trade-offs to decide which indexes to provide. Sometimes
multicolumn indexes are best, but sometimes it's better to create separate indexes and rely on the index-
combination feature. For example, if your workload includes a mix of queries that sometimes involve
only column x, sometimes only column y, and sometimes both columns, you might choose to create two
separate indexes on x and y, relying on index combination to process the queries that use both columns.
You could also create a multicolumn index on (x, y). This index would typically be more efficient than
index combination for queries involving both columns, but as discussed in Section 11.3, it would be
almost useless for queries involving only y, so it should not be the only index. A combination of the
multicolumn index and a separate index on y would serve reasonably well. For queries involving only
x, the multicolumn index could be used, though it would be larger and hence slower than an index on
x alone. The last alternative is to create all three indexes, but this is probably only reasonable if the
table is searched much more often than it is updated and all three types of query are common. If one
of the types of query is much less common than the others, you'd probably settle for creating just the
two indexes that best match the common types.

11.6. Unique Indexes
Indexes can also be used to enforce uniqueness of a column's value, or the uniqueness of the combined
values of more than one column.
CREATE UNIQUE INDEX name ON table (column [, ...]);

Currently, only B-tree indexes can be declared unique.

When an index is declared unique, multiple table rows with equal indexed values are not allowed. Null
values are not considered equal. A multicolumn unique index will only reject cases where all indexed
columns are equal in multiple rows.

Postgres Pro automatically creates a unique index when a unique constraint or primary key is defined for
a table. The index covers the columns that make up the primary key or unique constraint (a multicolumn
index, if appropriate), and is the mechanism that enforces the constraint.

Note
There's no need to manually create indexes on unique columns; doing so would just duplicate the
automatically-created index.

11.7. Indexes on Expressions
An index column need not be just a column of the underlying table, but can be a function or scalar
expression computed from one or more columns of the table. This feature is useful to obtain fast access
to tables based on the results of computations.

For example, a common way to do case-insensitive comparisons is to use the lower function:
SELECT * FROM test1 WHERE lower(col1) = 'value';

This query can use an index if one has been defined on the result of the lower(col1) function:
CREATE INDEX test1_lower_col1_idx ON test1 (lower(col1));

If we were to declare this index UNIQUE, it would prevent creation of rows whose col1 values differ only
in case, as well as rows whose col1 values are actually identical. Thus, indexes on expressions can be
used to enforce constraints that are not definable as simple unique constraints.

As another example, if one often does queries like:

356

Indexes

SELECT * FROM people WHERE (first_name || ' ' || last_name) = 'John Smith';

then it might be worth creating an index like this:
CREATE INDEX people_names ON people ((first_name || ' ' || last_name));

The syntax of the CREATE INDEX command normally requires writing parentheses around index
expressions, as shown in the second example. The parentheses can be omitted when the expression is
just a function call, as in the first example.

Index expressions are relatively expensive to maintain, because the derived expression(s) must be
computed for each row insertion and non-HOT update. However, the index expressions are not
recomputed during an indexed search, since they are already stored in the index. In both examples
above, the system sees the query as just WHERE indexedcolumn = 'constant' and so the speed of
the search is equivalent to any other simple index query. Thus, indexes on expressions are useful when
retrieval speed is more important than insertion and update speed.

11.8. Partial Indexes
A partial index is an index built over a subset of a table; the subset is defined by a conditional expression
(called the predicate of the partial index). The index contains entries only for those table rows that satisfy
the predicate. Partial indexes are a specialized feature, but there are several situations in which they
are useful.

One major reason for using a partial index is to avoid indexing common values. Since a query searching
for a common value (one that accounts for more than a few percent of all the table rows) will not use
the index anyway, there is no point in keeping those rows in the index at all. This reduces the size of the
index, which will speed up those queries that do use the index. It will also speed up many table update
operations because the index does not need to be updated in all cases. Example 11.1 shows a possible
application of this idea.

Example 11.1. Setting up a Partial Index to Exclude Common Values
Suppose you are storing web server access logs in a database. Most accesses originate from the IP
address range of your organization but some are from elsewhere (say, employees on dial-up connections).
If your searches by IP are primarily for outside accesses, you probably do not need to index the IP range
that corresponds to your organization's subnet.

Assume a table like this:
CREATE TABLE access_log (
 url varchar,
 client_ip inet,
 ...
);

To create a partial index that suits our example, use a command such as this:
CREATE INDEX access_log_client_ip_ix ON access_log (client_ip)
WHERE NOT (client_ip > inet '192.168.100.0' AND
 client_ip < inet '192.168.100.255');

A typical query that can use this index would be:
SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '212.78.10.32';

Here the query's IP address is covered by the partial index. The following query cannot use the partial
index, as it uses an IP address that is excluded from the index:
SELECT *
FROM access_log
WHERE url = '/index.html' AND client_ip = inet '192.168.100.23';

357

Indexes

Observe that this kind of partial index requires that the common values be predetermined, so such
partial indexes are best used for data distributions that do not change. Such indexes can be recreated
occasionally to adjust for new data distributions, but this adds maintenance effort.

Another possible use for a partial index is to exclude values from the index that the typical query workload
is not interested in; this is shown in Example 11.2. This results in the same advantages as listed above,
but it prevents the “uninteresting” values from being accessed via that index, even if an index scan might
be profitable in that case. Obviously, setting up partial indexes for this kind of scenario will require a
lot of care and experimentation.

Example 11.2. Setting up a Partial Index to Exclude Uninteresting Values
If you have a table that contains both billed and unbilled orders, where the unbilled orders take up a
small fraction of the total table and yet those are the most-accessed rows, you can improve performance
by creating an index on just the unbilled rows. The command to create the index would look like this:
CREATE INDEX orders_unbilled_index ON orders (order_nr)
 WHERE billed is not true;

A possible query to use this index would be:
SELECT * FROM orders WHERE billed is not true AND order_nr < 10000;

However, the index can also be used in queries that do not involve order_nr at all, e.g.:
SELECT * FROM orders WHERE billed is not true AND amount > 5000.00;

This is not as efficient as a partial index on the amount column would be, since the system has to scan
the entire index. Yet, if there are relatively few unbilled orders, using this partial index just to find the
unbilled orders could be a win.

Note that this query cannot use this index:
SELECT * FROM orders WHERE order_nr = 3501;

The order 3501 might be among the billed or unbilled orders.

Example 11.2 also illustrates that the indexed column and the column used in the predicate do not need
to match. Postgres Pro supports partial indexes with arbitrary predicates, so long as only columns of the
table being indexed are involved. However, keep in mind that the predicate must match the conditions
used in the queries that are supposed to benefit from the index. To be precise, a partial index can be
used in a query only if the system can recognize that the WHERE condition of the query mathematically
implies the predicate of the index. Postgres Pro does not have a sophisticated theorem prover that can
recognize mathematically equivalent expressions that are written in different forms. (Not only is such
a general theorem prover extremely difficult to create, it would probably be too slow to be of any real
use.) The system can recognize simple inequality implications, for example “x < 1” implies “x < 2”;
otherwise the predicate condition must exactly match part of the query's WHERE condition or the index
will not be recognized as usable. Matching takes place at query planning time, not at run time. As a
result, parameterized query clauses do not work with a partial index. For example a prepared query with
a parameter might specify “x < ?” which will never imply “x < 2” for all possible values of the parameter.

A third possible use for partial indexes does not require the index to be used in queries at all. The idea
here is to create a unique index over a subset of a table, as in Example 11.3. This enforces uniqueness
among the rows that satisfy the index predicate, without constraining those that do not.

Example 11.3. Setting up a Partial Unique Index
Suppose that we have a table describing test outcomes. We wish to ensure that there is only one
“successful” entry for a given subject and target combination, but there might be any number of
“unsuccessful” entries. Here is one way to do it:
CREATE TABLE tests (
 subject text,
 target text,
 success boolean,

358

Indexes

 ...
);

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

This is a particularly efficient approach when there are few successful tests and many unsuccessful ones.
It is also possible to allow only one null in a column by creating a unique partial index with an IS NULL
restriction.

Finally, a partial index can also be used to override the system's query plan choices. Also, data sets with
peculiar distributions might cause the system to use an index when it really should not. In that case
the index can be set up so that it is not available for the offending query. Normally, Postgres Pro makes
reasonable choices about index usage (e.g., it avoids them when retrieving common values, so the earlier
example really only saves index size, it is not required to avoid index usage), and grossly incorrect plan
choices are cause for a bug report.

Keep in mind that setting up a partial index indicates that you know at least as much as the query
planner knows, in particular you know when an index might be profitable. Forming this knowledge
requires experience and understanding of how indexes in Postgres Pro work. In most cases, the
advantage of a partial index over a regular index will be minimal. There are cases where they are quite
counterproductive, as in Example 11.4.

Example 11.4. Do Not Use Partial Indexes as a Substitute for Partitioning

You might be tempted to create a large set of non-overlapping partial indexes, for example

CREATE INDEX mytable_cat_1 ON mytable (data) WHERE category = 1;
CREATE INDEX mytable_cat_2 ON mytable (data) WHERE category = 2;
CREATE INDEX mytable_cat_3 ON mytable (data) WHERE category = 3;
...
CREATE INDEX mytable_cat_N ON mytable (data) WHERE category = N;

This is a bad idea! Almost certainly, you'll be better off with a single non-partial index, declared like

CREATE INDEX mytable_cat_data ON mytable (category, data);

(Put the category column first, for the reasons described in Section 11.3.) While a search in this larger
index might have to descend through a couple more tree levels than a search in a smaller index, that's
almost certainly going to be cheaper than the planner effort needed to select the appropriate one of the
partial indexes. The core of the problem is that the system does not understand the relationship among
the partial indexes, and will laboriously test each one to see if it's applicable to the current query.

If your table is large enough that a single index really is a bad idea, you should look into using partitioning
instead (see Section 5.11). With that mechanism, the system does understand that the tables and indexes
are non-overlapping, so far better performance is possible.

More information about partial indexes can be found in ston89b, olson93, and seshadri95.

11.9. Index-Only Scans and Covering Indexes
All indexes in Postgres Pro are secondary indexes, meaning that each index is stored separately from
the table's main data area (which is called the table's heap in Postgres Pro terminology). This means
that in an ordinary index scan, each row retrieval requires fetching data from both the index and the
heap. Furthermore, while the index entries that match a given indexable WHERE condition are usually
close together in the index, the table rows they reference might be anywhere in the heap. The heap-
access portion of an index scan thus involves a lot of random access into the heap, which can be slow,
particularly on traditional rotating media. (As described in Section 11.5, bitmap scans try to alleviate
this cost by doing the heap accesses in sorted order, but that only goes so far.)

To solve this performance problem, Postgres Pro supports index-only scans, which can answer queries
from an index alone without any heap access. The basic idea is to return values directly out of each

359

Indexes

index entry instead of consulting the associated heap entry. There are two fundamental restrictions on
when this method can be used:
1. The index type must support index-only scans. B-tree indexes always do. GiST and SP-GiST indexes

support index-only scans for some operator classes but not others. Other index types have no support.
The underlying requirement is that the index must physically store, or else be able to reconstruct,
the original data value for each index entry. As a counterexample, GIN indexes cannot support index-
only scans because each index entry typically holds only part of the original data value.

2. The query must reference only columns stored in the index. For example, given an index on columns
x and y of a table that also has a column z, these queries could use index-only scans:
SELECT x, y FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND y < 42;

but these queries could not:
SELECT x, z FROM tab WHERE x = 'key';
SELECT x FROM tab WHERE x = 'key' AND z < 42;

(Expression indexes and partial indexes complicate this rule, as discussed below.)

If these two fundamental requirements are met, then all the data values required by the query are
available from the index, so an index-only scan is physically possible. But there is an additional
requirement for any table scan in Postgres Pro: it must verify that each retrieved row be “visible” to
the query's MVCC snapshot, as discussed in Chapter 13. Visibility information is not stored in index
entries, only in heap entries; so at first glance it would seem that every row retrieval would require a
heap access anyway. And this is indeed the case, if the table row has been modified recently. However,
for seldom-changing data there is a way around this problem. Postgres Pro tracks, for each page in a
table's heap, whether all rows stored in that page are old enough to be visible to all current and future
transactions. This information is stored in a bit in the table's visibility map. An index-only scan, after
finding a candidate index entry, checks the visibility map bit for the corresponding heap page. If it's
set, the row is known visible and so the data can be returned with no further work. If it's not set, the
heap entry must be visited to find out whether it's visible, so no performance advantage is gained over a
standard index scan. Even in the successful case, this approach trades visibility map accesses for heap
accesses; but since the visibility map is four orders of magnitude smaller than the heap it describes, far
less physical I/O is needed to access it. In most situations the visibility map remains cached in memory
all the time.

In short, while an index-only scan is possible given the two fundamental requirements, it will be a win
only if a significant fraction of the table's heap pages have their all-visible map bits set. But tables in
which a large fraction of the rows are unchanging are common enough to make this type of scan very
useful in practice.

To make effective use of the index-only scan feature, you might choose to create a covering index, which
is an index specifically designed to include the columns needed by a particular type of query that you
run frequently. Since queries typically need to retrieve more columns than just the ones they search on,
Postgres Pro allows you to create an index in which some columns are just “payload” and are not part
of the search key. This is done by adding an INCLUDE clause listing the extra columns. For example, if
you commonly run queries like
SELECT y FROM tab WHERE x = 'key';

the traditional approach to speeding up such queries would be to create an index on x only. However,
an index defined as
CREATE INDEX tab_x_y ON tab(x) INCLUDE (y);

could handle these queries as index-only scans, because y can be obtained from the index without visiting
the heap.

Because column y is not part of the index's search key, it does not have to be of a data type that the
index can handle; it's merely stored in the index and is not interpreted by the index machinery. Also, if
the index is a unique index, that is

360

Indexes

CREATE UNIQUE INDEX tab_x_y ON tab(x) INCLUDE (y);

the uniqueness condition applies to just column x, not to the combination of x and y. (An INCLUDE clause
can also be written in UNIQUE and PRIMARY KEY constraints, providing alternative syntax for setting up
an index like this.)

It's wise to be conservative about adding non-key payload columns to an index, especially wide columns.
If an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any case,
non-key columns duplicate data from the index's table and bloat the size of the index, thus potentially
slowing searches. And remember that there is little point in including payload columns in an index unless
the table changes slowly enough that an index-only scan is likely to not need to access the heap. If the
heap tuple must be visited anyway, it costs nothing more to get the column's value from there. Other
restrictions are that expressions are not currently supported as included columns, and that only B-tree
and GiST indexes currently support included columns.

Before Postgres Pro had the INCLUDE feature, people sometimes made covering indexes by writing the
payload columns as ordinary index columns, that is writing

CREATE INDEX tab_x_y ON tab(x, y);

even though they had no intention of ever using y as part of a WHERE clause. This works fine as long
as the extra columns are trailing columns; making them be leading columns is unwise for the reasons
explained in Section 11.3. However, this method doesn't support the case where you want the index to
enforce uniqueness on the key column(s).

Suffix truncation always removes non-key columns from upper B-Tree levels. As payload columns, they
are never used to guide index scans. The truncation process also removes one or more trailing key
column(s) when the remaining prefix of key column(s) happens to be sufficient to describe tuples on the
lowest B-Tree level. In practice, covering indexes without an INCLUDE clause often avoid storing columns
that are effectively payload in the upper levels. However, explicitly defining payload columns as non-key
columns reliably keeps the tuples in upper levels small.

In principle, index-only scans can be used with expression indexes. For example, given an index on f(x)
where x is a table column, it should be possible to execute

SELECT f(x) FROM tab WHERE f(x) < 1;

as an index-only scan; and this is very attractive if f() is an expensive-to-compute function. However,
Postgres Pro's planner is currently not very smart about such cases. It considers a query to be potentially
executable by index-only scan only when all columns needed by the query are available from the index.
In this example, x is not needed except in the context f(x), but the planner does not notice that and
concludes that an index-only scan is not possible. If an index-only scan seems sufficiently worthwhile,
this can be worked around by adding x as an included column, for example

CREATE INDEX tab_f_x ON tab (f(x)) INCLUDE (x);

An additional caveat, if the goal is to avoid recalculating f(x), is that the planner won't necessarily
match uses of f(x) that aren't in indexable WHERE clauses to the index column. It will usually get this
right in simple queries such as shown above, but not in queries that involve joins. These deficiencies
may be remedied in future versions of Postgres Pro.

Partial indexes also have interesting interactions with index-only scans. Consider the partial index shown
in Example 11.3:

CREATE UNIQUE INDEX tests_success_constraint ON tests (subject, target)
 WHERE success;

In principle, we could do an index-only scan on this index to satisfy a query like

SELECT target FROM tests WHERE subject = 'some-subject' AND success;

But there's a problem: the WHERE clause refers to success which is not available as a result column of
the index. Nonetheless, an index-only scan is possible because the plan does not need to recheck that
part of the WHERE clause at run time: all entries found in the index necessarily have success = true so

361

Indexes

this need not be explicitly checked in the plan. Postgres Pro versions 9.6 and later will recognize such
cases and allow index-only scans to be generated, but older versions will not.

11.10. Operator Classes and Operator Families
An index definition can specify an operator class for each column of an index.

CREATE INDEX name ON table (column opclass [(opclass_options)] [sort options]
 [, ...]);

The operator class identifies the operators to be used by the index for that column. For example, a
B-tree index on the type int4 would use the int4_ops class; this operator class includes comparison
functions for values of type int4. In practice the default operator class for the column's data type is
usually sufficient. The main reason for having operator classes is that for some data types, there could
be more than one meaningful index behavior. For example, we might want to sort a complex-number
data type either by absolute value or by real part. We could do this by defining two operator classes for
the data type and then selecting the proper class when making an index. The operator class determines
the basic sort ordering (which can then be modified by adding sort options COLLATE, ASC/DESC and/or
NULLS FIRST/NULLS LAST).

There are also some built-in operator classes besides the default ones:
• The operator classes text_pattern_ops, varchar_pattern_ops, and bpchar_pattern_ops support

B-tree indexes on the types text, varchar, and char respectively. The difference from the default
operator classes is that the values are compared strictly character by character rather than
according to the locale-specific collation rules. This makes these operator classes suitable for use
by queries involving pattern matching expressions (LIKE or POSIX regular expressions) when the
database does not use the standard “C” locale. As an example, you might index a varchar column
like this:

CREATE INDEX test_index ON test_table (col varchar_pattern_ops);

Note that you should also create an index with the default operator class if you want queries
involving ordinary <, <=, >, or >= comparisons to use an index. Such queries cannot use the
xxx_pattern_ops operator classes. (Ordinary equality comparisons can use these operator classes,
however.) It is possible to create multiple indexes on the same column with different operator
classes. If you do use the C locale, you do not need the xxx_pattern_ops operator classes, because
an index with the default operator class is usable for pattern-matching queries in the C locale.

The following query shows all defined operator classes:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default
 FROM pg_am am, pg_opclass opc
 WHERE opc.opcmethod = am.oid
 ORDER BY index_method, opclass_name;

An operator class is actually just a subset of a larger structure called an operator family. In cases where
several data types have similar behaviors, it is frequently useful to define cross-data-type operators and
allow these to work with indexes. To do this, the operator classes for each of the types must be grouped
into the same operator family. The cross-type operators are members of the family, but are not associated
with any single class within the family.

This expanded version of the previous query shows the operator family each operator class belongs to:

SELECT am.amname AS index_method,
 opc.opcname AS opclass_name,
 opf.opfname AS opfamily_name,
 opc.opcintype::regtype AS indexed_type,
 opc.opcdefault AS is_default

362

Indexes

 FROM pg_am am, pg_opclass opc, pg_opfamily opf
 WHERE opc.opcmethod = am.oid AND
 opc.opcfamily = opf.oid
 ORDER BY index_method, opclass_name;

This query shows all defined operator families and all the operators included in each family:

SELECT am.amname AS index_method,
 opf.opfname AS opfamily_name,
 amop.amopopr::regoperator AS opfamily_operator
 FROM pg_am am, pg_opfamily opf, pg_amop amop
 WHERE opf.opfmethod = am.oid AND
 amop.amopfamily = opf.oid
 ORDER BY index_method, opfamily_name, opfamily_operator;

Tip
psql has commands \dAc, \dAf, and \dAo, which provide slightly more sophisticated versions of
these queries.

11.11. Indexes and Collations
An index can support only one collation per index column. If multiple collations are of interest, multiple
indexes may be needed.

Consider these statements:

CREATE TABLE test1c (
 id integer,
 content varchar COLLATE "x"
);

CREATE INDEX test1c_content_index ON test1c (content);

The index automatically uses the collation of the underlying column. So a query of the form

SELECT * FROM test1c WHERE content > constant;

could use the index, because the comparison will by default use the collation of the column. However,
this index cannot accelerate queries that involve some other collation. So if queries of the form, say,

SELECT * FROM test1c WHERE content > constant COLLATE "y";

are also of interest, an additional index could be created that supports the "y" collation, like this:

CREATE INDEX test1c_content_y_index ON test1c (content COLLATE "y");

11.12. Examining Index Usage
Although indexes in Postgres Pro do not need maintenance or tuning, it is still important to check which
indexes are actually used by the real-life query workload. Examining index usage for an individual query
is done with the EXPLAIN command; its application for this purpose is illustrated in Section 14.1. It is also
possible to gather overall statistics about index usage in a running server, as described in Section 26.2.

It is difficult to formulate a general procedure for determining which indexes to create. There are a
number of typical cases that have been shown in the examples throughout the previous sections. A good
deal of experimentation is often necessary. The rest of this section gives some tips for that:

• Always run ANALYZE first. This command collects statistics about the distribution of the values
in the table. This information is required to estimate the number of rows returned by a query,
which is needed by the planner to assign realistic costs to each possible query plan. In absence of

363

Indexes

any real statistics, some default values are assumed, which are almost certain to be inaccurate.
Examining an application's index usage without having run ANALYZE is therefore a lost cause. See
Section 23.1.3 and Section 23.1.6 for more information.

• Use real data for experimentation. Using test data for setting up indexes will tell you what indexes
you need for the test data, but that is all.

It is especially fatal to use very small test data sets. While selecting 1000 out of 100000 rows
could be a candidate for an index, selecting 1 out of 100 rows will hardly be, because the 100 rows
probably fit within a single disk page, and there is no plan that can beat sequentially fetching 1 disk
page.

Also be careful when making up test data, which is often unavoidable when the application is not
yet in production. Values that are very similar, completely random, or inserted in sorted order will
skew the statistics away from the distribution that real data would have.

• When indexes are not used, it can be useful for testing to force their use. There are run-time
parameters that can turn off various plan types (see Section 18.7.1). For instance, turning off
sequential scans (enable_seqscan) and nested-loop joins (enable_nestloop), which are the most
basic plans, will force the system to use a different plan. If the system still chooses a sequential
scan or nested-loop join then there is probably a more fundamental reason why the index is not
being used; for example, the query condition does not match the index. (What kind of query can use
what kind of index is explained in the previous sections.)

• If forcing index usage does use the index, then there are two possibilities: Either the system is
right and using the index is indeed not appropriate, or the cost estimates of the query plans are not
reflecting reality. So you should time your query with and without indexes. The EXPLAIN ANALYZE
command can be useful here.

• If it turns out that the cost estimates are wrong, there are, again, two possibilities. The total cost
is computed from the per-row costs of each plan node times the selectivity estimate of the plan
node. The costs estimated for the plan nodes can be adjusted via run-time parameters (described
in Section 18.7.2). An inaccurate selectivity estimate is due to insufficient statistics. It might be
possible to improve this by tuning the statistics-gathering parameters (see ALTER TABLE).

If you do not succeed in adjusting the costs to be more appropriate, then you might have to resort
to forcing index usage explicitly. You might also want to contact the Postgres Pro developers to
examine the issue.

364

Chapter 12. Full Text Search
12.1. Introduction

Full Text Searching (or just text search) provides the capability to identify natural-language documents
that satisfy a query, and optionally to sort them by relevance to the query. The most common type of
search is to find all documents containing given query terms and return them in order of their similarity
to the query. Notions of query and similarity are very flexible and depend on the specific application.
The simplest search considers query as a set of words and similarity as the frequency of query words
in the document.

Textual search operators have existed in databases for years. Postgres Pro has ~, ~*, LIKE, and ILIKE
operators for textual data types, but they lack many essential properties required by modern information
systems:

• There is no linguistic support, even for English. Regular expressions are not sufficient because they
cannot easily handle derived words, e.g., satisfies and satisfy. You might miss documents that
contain satisfies, although you probably would like to find them when searching for satisfy. It
is possible to use OR to search for multiple derived forms, but this is tedious and error-prone (some
words can have several thousand derivatives).

• They provide no ordering (ranking) of search results, which makes them ineffective when
thousands of matching documents are found.

• They tend to be slow because there is no index support, so they must process all documents for
every search.

Full text indexing allows documents to be preprocessed and an index saved for later rapid searching.
Preprocessing includes:

Parsing documents into tokens. It is useful to identify various classes of tokens, e.g., numbers,
words, complex words, email addresses, so that they can be processed differently. In principle
token classes depend on the specific application, but for most purposes it is adequate to use a
predefined set of classes. Postgres Pro uses a parser to perform this step. A standard parser is
provided, and custom parsers can be created for specific needs.
Converting tokens into lexemes. A lexeme is a string, just like a token, but it has been normalized
so that different forms of the same word are made alike. For example, normalization almost always
includes folding upper-case letters to lower-case, and often involves removal of suffixes (such as
s or es in English). This allows searches to find variant forms of the same word, without tediously
entering all the possible variants. Also, this step typically eliminates stop words, which are words
that are so common that they are useless for searching. (In short, then, tokens are raw fragments
of the document text, while lexemes are words that are believed useful for indexing and searching.)
Postgres Pro uses dictionaries to perform this step. Various standard dictionaries are provided, and
custom ones can be created for specific needs.
Storing preprocessed documents optimized for searching. For example, each document can be
represented as a sorted array of normalized lexemes. Along with the lexemes it is often desirable to
store positional information to use for proximity ranking, so that a document that contains a more
“dense” region of query words is assigned a higher rank than one with scattered query words.

Dictionaries allow fine-grained control over how tokens are normalized. With appropriate dictionaries,
you can:

• Define stop words that should not be indexed.
• Map synonyms to a single word using Ispell.
• Map phrases to a single word using a thesaurus.
• Map different variations of a word to a canonical form using an Ispell dictionary.
• Map different variations of a word to a canonical form using Snowball stemmer rules.

A data type tsvector is provided for storing preprocessed documents, along with a type tsquery
for representing processed queries (Section 8.11). There are many functions and operators available

365

Full Text Search

for these data types (Section 9.13), the most important of which is the match operator @@, which we
introduce in Section 12.1.2. Full text searches can be accelerated using indexes (Section 12.9).

12.1.1. What Is a Document?
A document is the unit of searching in a full text search system; for example, a magazine article or email
message. The text search engine must be able to parse documents and store associations of lexemes
(key words) with their parent document. Later, these associations are used to search for documents that
contain query words.

For searches within Postgres Pro, a document is normally a textual field within a row of a database table,
or possibly a combination (concatenation) of such fields, perhaps stored in several tables or obtained
dynamically. In other words, a document can be constructed from different parts for indexing and it
might not be stored anywhere as a whole. For example:
SELECT title || ' ' || author || ' ' || abstract || ' ' || body AS document
FROM messages
WHERE mid = 12;

SELECT m.title || ' ' || m.author || ' ' || m.abstract || ' ' || d.body AS document
FROM messages m, docs d
WHERE m.mid = d.did AND m.mid = 12;

Note
Actually, in these example queries, coalesce should be used to prevent a single NULL attribute
from causing a NULL result for the whole document.

Another possibility is to store the documents as simple text files in the file system. In this case, the
database can be used to store the full text index and to execute searches, and some unique identifier
can be used to retrieve the document from the file system. However, retrieving files from outside the
database requires superuser permissions or special function support, so this is usually less convenient
than keeping all the data inside Postgres Pro. Also, keeping everything inside the database allows easy
access to document metadata to assist in indexing and display.

For text search purposes, each document must be reduced to the preprocessed tsvector format.
Searching and ranking are performed entirely on the tsvector representation of a document — the
original text need only be retrieved when the document has been selected for display to a user. We
therefore often speak of the tsvector as being the document, but of course it is only a compact
representation of the full document.

12.1.2. Basic Text Matching
Full text searching in Postgres Pro is based on the match operator @@, which returns true if a tsvector
(document) matches a tsquery (query). It doesn't matter which data type is written first:
SELECT 'a fat cat sat on a mat and ate a fat rat'::tsvector @@ 'cat & rat'::tsquery;
 ?column?

 t

SELECT 'fat & cow'::tsquery @@ 'a fat cat sat on a mat and ate a fat rat'::tsvector;
 ?column?

 f

As the above example suggests, a tsquery is not just raw text, any more than a tsvector is. A tsquery
contains search terms, which must be already-normalized lexemes, and may combine multiple terms
using AND, OR, NOT, and FOLLOWED BY operators. (For syntax details see Section 8.11.2.) There are
functions to_tsquery, plainto_tsquery, and phraseto_tsquery that are helpful in converting user-

366

Full Text Search

written text into a proper tsquery, primarily by normalizing words appearing in the text. Similarly,
to_tsvector is used to parse and normalize a document string. So in practice a text search match would
look more like this:
SELECT to_tsvector('fat cats ate fat rats') @@ to_tsquery('fat & rat');
 ?column?

 t

Observe that this match would not succeed if written as
SELECT 'fat cats ate fat rats'::tsvector @@ to_tsquery('fat & rat');
 ?column?

 f

since here no normalization of the word rats will occur. The elements of a tsvector are lexemes, which
are assumed already normalized, so rats does not match rat.

The @@ operator also supports text input, allowing explicit conversion of a text string to tsvector or
tsquery to be skipped in simple cases. The variants available are:
tsvector @@ tsquery
tsquery @@ tsvector
text @@ tsquery
text @@ text

The first two of these we saw already. The form text @@ tsquery is equivalent to to_tsvector(x) @@ y.
The form text @@ text is equivalent to to_tsvector(x) @@ plainto_tsquery(y).

Within a tsquery, the & (AND) operator specifies that both its arguments must appear in the document
to have a match. Similarly, the | (OR) operator specifies that at least one of its arguments must appear,
while the ! (NOT) operator specifies that its argument must not appear in order to have a match. For
example, the query fat & ! rat matches documents that contain fat but not rat.

Searching for phrases is possible with the help of the <-> (FOLLOWED BY) tsquery operator, which
matches only if its arguments have matches that are adjacent and in the given order. For example:
SELECT to_tsvector('fatal error') @@ to_tsquery('fatal <-> error');
 ?column?

 t

SELECT to_tsvector('error is not fatal') @@ to_tsquery('fatal <-> error');
 ?column?

 f

There is a more general version of the FOLLOWED BY operator having the form <N>, where N is an integer
standing for the difference between the positions of the matching lexemes. <1> is the same as <->, while
<2> allows exactly one other lexeme to appear between the matches, and so on. The phraseto_tsquery
function makes use of this operator to construct a tsquery that can match a multi-word phrase when
some of the words are stop words. For example:
SELECT phraseto_tsquery('cats ate rats');
 phraseto_tsquery

 'cat' <-> 'ate' <-> 'rat'

SELECT phraseto_tsquery('the cats ate the rats');
 phraseto_tsquery

 'cat' <-> 'ate' <2> 'rat'

367

Full Text Search

A special case that's sometimes useful is that <0> can be used to require that two patterns match the
same word.

Parentheses can be used to control nesting of the tsquery operators. Without parentheses, | binds least
tightly, then &, then <->, and ! most tightly.

It's worth noticing that the AND/OR/NOT operators mean something subtly different when they are
within the arguments of a FOLLOWED BY operator than when they are not, because within FOLLOWED
BY the exact position of the match is significant. For example, normally !x matches only documents that
do not contain x anywhere. But !x <-> y matches y if it is not immediately after an x; an occurrence
of x elsewhere in the document does not prevent a match. Another example is that x & y normally only
requires that x and y both appear somewhere in the document, but (x & y) <-> z requires x and y to
match at the same place, immediately before a z. Thus this query behaves differently from x <-> z &
y <-> z, which will match a document containing two separate sequences x z and y z. (This specific
query is useless as written, since x and y could not match at the same place; but with more complex
situations such as prefix-match patterns, a query of this form could be useful.)

12.1.3. Configurations
The above are all simple text search examples. As mentioned before, full text search functionality
includes the ability to do many more things: skip indexing certain words (stop words), process synonyms,
and use sophisticated parsing, e.g., parse based on more than just white space. This functionality is
controlled by text search configurations. Postgres Pro comes with predefined configurations for many
languages, and you can easily create your own configurations. (psql's \dF command shows all available
configurations.)

During installation an appropriate configuration is selected and default_text_search_config is set
accordingly in postgresql.conf. If you are using the same text search configuration for the entire
cluster you can use the value in postgresql.conf. To use different configurations throughout the cluster
but the same configuration within any one database, use ALTER DATABASE ... SET. Otherwise, you can
set default_text_search_config in each session.

Each text search function that depends on a configuration has an optional regconfig argument, so that
the configuration to use can be specified explicitly. default_text_search_config is used only when this
argument is omitted.

To make it easier to build custom text search configurations, a configuration is built up from simpler
database objects. Postgres Pro's text search facility provides four types of configuration-related database
objects:

• Text search parsers break documents into tokens and classify each token (for example, as words or
numbers).

• Text search dictionaries convert tokens to normalized form and reject stop words.
• Text search templates provide the functions underlying dictionaries. (A dictionary simply specifies a

template and a set of parameters for the template.)
• Text search configurations select a parser and a set of dictionaries to use to normalize the tokens

produced by the parser.

Text search parsers and templates are built from low-level C functions; therefore it requires C
programming ability to develop new ones, and superuser privileges to install one into a database. (There
are examples of add-on parsers and templates in the contrib/ area of the Postgres Pro distribution.)
Since dictionaries and configurations just parameterize and connect together some underlying parsers
and templates, no special privilege is needed to create a new dictionary or configuration. Examples of
creating custom dictionaries and configurations appear later in this chapter.

12.2. Tables and Indexes
The examples in the previous section illustrated full text matching using simple constant strings. This
section shows how to search table data, optionally using indexes.

368

Full Text Search

12.2.1. Searching a Table
It is possible to do a full text search without an index. A simple query to print the title of each row
that contains the word friend in its body field is:

SELECT title
FROM pgweb
WHERE to_tsvector('english', body) @@ to_tsquery('english', 'friend');

This will also find related words such as friends and friendly, since all these are reduced to the same
normalized lexeme.

The query above specifies that the english configuration is to be used to parse and normalize the strings.
Alternatively we could omit the configuration parameters:

SELECT title
FROM pgweb
WHERE to_tsvector(body) @@ to_tsquery('friend');

This query will use the configuration set by default_text_search_config.

A more complex example is to select the ten most recent documents that contain create and table in
the title or body:

SELECT title
FROM pgweb
WHERE to_tsvector(title || ' ' || body) @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

For clarity we omitted the coalesce function calls which would be needed to find rows that contain NULL
in one of the two fields.

Although these queries will work without an index, most applications will find this approach too slow,
except perhaps for occasional ad-hoc searches. Practical use of text searching usually requires creating
an index.

12.2.2. Creating Indexes
We can create a GIN index (Section 12.9) to speed up text searches:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', body));

Notice that the 2-argument version of to_tsvector is used. Only text search functions that specify a
configuration name can be used in expression indexes (Section 11.7). This is because the index contents
must be unaffected by default_text_search_config. If they were affected, the index contents might be
inconsistent because different entries could contain tsvectors that were created with different text
search configurations, and there would be no way to guess which was which. It would be impossible to
dump and restore such an index correctly.

Because the two-argument version of to_tsvector was used in the index above, only a query reference
that uses the 2-argument version of to_tsvector with the same configuration name will use that
index. That is, WHERE to_tsvector('english', body) @@ 'a & b' can use the index, but WHERE
to_tsvector(body) @@ 'a & b' cannot. This ensures that an index will be used only with the same
configuration used to create the index entries.

It is possible to set up more complex expression indexes wherein the configuration name is specified
by another column, e.g.:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector(config_name, body));

where config_name is a column in the pgweb table. This allows mixed configurations in the same index
while recording which configuration was used for each index entry. This would be useful, for example, if

369

Full Text Search

the document collection contained documents in different languages. Again, queries that are meant to
use the index must be phrased to match, e.g., WHERE to_tsvector(config_name, body) @@ 'a & b'.

Indexes can even concatenate columns:

CREATE INDEX pgweb_idx ON pgweb USING GIN (to_tsvector('english', title || ' ' ||
 body));

Another approach is to create a separate tsvector column to hold the output of to_tsvector. To keep
this column automatically up to date with its source data, use a stored generated column. This example
is a concatenation of title and body, using coalesce to ensure that one field will still be indexed when
the other is NULL:

ALTER TABLE pgweb
 ADD COLUMN textsearchable_index_col tsvector
 GENERATED ALWAYS AS (to_tsvector('english', coalesce(title, '') || ' '
 || coalesce(body, ''))) STORED;

Then we create a GIN index to speed up the search:

CREATE INDEX textsearch_idx ON pgweb USING GIN (textsearchable_index_col);

Now we are ready to perform a fast full text search:

SELECT title
FROM pgweb
WHERE textsearchable_index_col @@ to_tsquery('create & table')
ORDER BY last_mod_date DESC
LIMIT 10;

One advantage of the separate-column approach over an expression index is that it is not necessary to
explicitly specify the text search configuration in queries in order to make use of the index. As shown
in the example above, the query can depend on default_text_search_config. Another advantage
is that searches will be faster, since it will not be necessary to redo the to_tsvector calls to verify
index matches. (This is more important when using a GiST index than a GIN index; see Section 12.9.)
The expression-index approach is simpler to set up, however, and it requires less disk space since the
tsvector representation is not stored explicitly.

12.3. Controlling Text Search
To implement full text searching there must be a function to create a tsvector from a document and
a tsquery from a user query. Also, we need to return results in a useful order, so we need a function
that compares documents with respect to their relevance to the query. It's also important to be able to
display the results nicely. Postgres Pro provides support for all of these functions.

12.3.1. Parsing Documents
Postgres Pro provides the function to_tsvector for converting a document to the tsvector data type.

to_tsvector([config regconfig,] document text) returns tsvector

to_tsvector parses a textual document into tokens, reduces the tokens to lexemes, and returns a
tsvector which lists the lexemes together with their positions in the document. The document is
processed according to the specified or default text search configuration. Here is a simple example:

SELECT to_tsvector('english', 'a fat cat sat on a mat - it ate a fat rats');
 to_tsvector

 'ate':9 'cat':3 'fat':2,11 'mat':7 'rat':12 'sat':4

In the example above we see that the resulting tsvector does not contain the words a, on, or it, the
word rats became rat, and the punctuation sign - was ignored.

370

Full Text Search

The to_tsvector function internally calls a parser which breaks the document text into tokens and
assigns a type to each token. For each token, a list of dictionaries (Section 12.6) is consulted, where
the list can vary depending on the token type. The first dictionary that recognizes the token emits one
or more normalized lexemes to represent the token. For example, rats became rat because one of the
dictionaries recognized that the word rats is a plural form of rat. Some words are recognized as stop
words (Section 12.6.1), which causes them to be ignored since they occur too frequently to be useful in
searching. In our example these are a, on, and it. If no dictionary in the list recognizes the token then
it is also ignored. In this example that happened to the punctuation sign - because there are in fact no
dictionaries assigned for its token type (Space symbols), meaning space tokens will never be indexed.
The choices of parser, dictionaries and which types of tokens to index are determined by the selected
text search configuration (Section 12.7). It is possible to have many different configurations in the same
database, and predefined configurations are available for various languages. In our example we used
the default configuration english for the English language.

The function setweight can be used to label the entries of a tsvector with a given weight, where a
weight is one of the letters A, B, C, or D. This is typically used to mark entries coming from different parts
of a document, such as title versus body. Later, this information can be used for ranking of search results.

Because to_tsvector(NULL) will return NULL, it is recommended to use coalesce whenever a field might
be null. Here is the recommended method for creating a tsvector from a structured document:

UPDATE tt SET ti =
 setweight(to_tsvector(coalesce(title,'')), 'A') ||
 setweight(to_tsvector(coalesce(keyword,'')), 'B') ||
 setweight(to_tsvector(coalesce(abstract,'')), 'C') ||
 setweight(to_tsvector(coalesce(body,'')), 'D');

Here we have used setweight to label the source of each lexeme in the finished tsvector, and then
merged the labeled tsvector values using the tsvector concatenation operator ||. (Section 12.4.1
gives details about these operations.)

12.3.2. Parsing Queries
Postgres Pro provides the functions to_tsquery, plainto_tsquery, phraseto_tsquery and
websearch_to_tsquery for converting a query to the tsquery data type. to_tsquery offers access to
more features than either plainto_tsquery or phraseto_tsquery, but it is less forgiving about its input.
websearch_to_tsquery is a simplified version of to_tsquery with an alternative syntax, similar to the
one used by web search engines.

to_tsquery([config regconfig,] querytext text) returns tsquery

to_tsquery creates a tsquery value from querytext, which must consist of single tokens separated
by the tsquery operators & (AND), | (OR), ! (NOT), and <-> (FOLLOWED BY), possibly grouped using
parentheses. In other words, the input to to_tsquery must already follow the general rules for tsquery
input, as described in Section 8.11.2. The difference is that while basic tsquery input takes the tokens at
face value, to_tsquery normalizes each token into a lexeme using the specified or default configuration,
and discards any tokens that are stop words according to the configuration. For example:

SELECT to_tsquery('english', 'The & Fat & Rats');
 to_tsquery

 'fat' & 'rat'

As in basic tsquery input, weight(s) can be attached to each lexeme to restrict it to match only tsvector
lexemes of those weight(s). For example:

SELECT to_tsquery('english', 'Fat | Rats:AB');
 to_tsquery

 'fat' | 'rat':AB

371

Full Text Search

Also, * can be attached to a lexeme to specify prefix matching:
SELECT to_tsquery('supern:*A & star:A*B');
 to_tsquery

 'supern':*A & 'star':*AB

Such a lexeme will match any word in a tsvector that begins with the given string.

to_tsquery can also accept single-quoted phrases. This is primarily useful when the configuration
includes a thesaurus dictionary that may trigger on such phrases. In the example below, a thesaurus
contains the rule supernovae stars : sn:
SELECT to_tsquery('''supernovae stars'' & !crab');
 to_tsquery

 'sn' & !'crab'

Without quotes, to_tsquery will generate a syntax error for tokens that are not separated by an AND,
OR, or FOLLOWED BY operator.

plainto_tsquery([config regconfig,] querytext text) returns tsquery

plainto_tsquery transforms the unformatted text querytext to a tsquery value. The text is parsed and
normalized much as for to_tsvector, then the & (AND) tsquery operator is inserted between surviving
words.

Example:
SELECT plainto_tsquery('english', 'The Fat Rats');
 plainto_tsquery

 'fat' & 'rat'

Note that plainto_tsquery will not recognize tsquery operators, weight labels, or prefix-match labels
in its input:
SELECT plainto_tsquery('english', 'The Fat & Rats:C');
 plainto_tsquery

 'fat' & 'rat' & 'c'

Here, all the input punctuation was discarded.

phraseto_tsquery([config regconfig,] querytext text) returns tsquery

phraseto_tsquery behaves much like plainto_tsquery, except that it inserts the <-> (FOLLOWED BY)
operator between surviving words instead of the & (AND) operator. Also, stop words are not simply
discarded, but are accounted for by inserting <N> operators rather than <-> operators. This function is
useful when searching for exact lexeme sequences, since the FOLLOWED BY operators check lexeme
order not just the presence of all the lexemes.

Example:
SELECT phraseto_tsquery('english', 'The Fat Rats');
 phraseto_tsquery

 'fat' <-> 'rat'

Like plainto_tsquery, the phraseto_tsquery function will not recognize tsquery operators, weight
labels, or prefix-match labels in its input:
SELECT phraseto_tsquery('english', 'The Fat & Rats:C');
 phraseto_tsquery

372

Full Text Search

 'fat' <-> 'rat' <-> 'c'

websearch_to_tsquery([config regconfig,] querytext text) returns tsquery

websearch_to_tsquery creates a tsquery value from querytext using an alternative syntax in which
simple unformatted text is a valid query. Unlike plainto_tsquery and phraseto_tsquery, it also
recognizes certain operators. Moreover, this function will never raise syntax errors, which makes it
possible to use raw user-supplied input for search. The following syntax is supported:
• unquoted text: text not inside quote marks will be converted to terms separated by & operators, as

if processed by plainto_tsquery.
• "quoted text": text inside quote marks will be converted to terms separated by <-> operators, as

if processed by phraseto_tsquery.
• OR: the word “or” will be converted to the | operator.
• -: a dash will be converted to the ! operator.
Other punctuation is ignored. So like plainto_tsquery and phraseto_tsquery, the
websearch_to_tsquery function will not recognize tsquery operators, weight labels, or prefix-match
labels in its input.

Examples:
SELECT websearch_to_tsquery('english', 'The fat rats');
 websearch_to_tsquery

 'fat' & 'rat'
(1 row)

SELECT websearch_to_tsquery('english', '"supernovae stars" -crab');
 websearch_to_tsquery

 'supernova' <-> 'star' & !'crab'
(1 row)

SELECT websearch_to_tsquery('english', '"sad cat" or "fat rat"');
 websearch_to_tsquery

 'sad' <-> 'cat' | 'fat' <-> 'rat'
(1 row)

SELECT websearch_to_tsquery('english', 'signal -"segmentation fault"');
 websearch_to_tsquery

 'signal' & !('segment' <-> 'fault')
(1 row)

SELECT websearch_to_tsquery('english', '""")(dummy \\ query <->');
 websearch_to_tsquery

 'dummi' & 'queri'
(1 row)

12.3.3. Ranking Search Results
Ranking attempts to measure how relevant documents are to a particular query, so that when there are
many matches the most relevant ones can be shown first. Postgres Pro provides two predefined ranking
functions, which take into account lexical, proximity, and structural information; that is, they consider
how often the query terms appear in the document, how close together the terms are in the document,
and how important is the part of the document where they occur. However, the concept of relevancy
is vague and very application-specific. Different applications might require additional information for
ranking, e.g., document modification time. The built-in ranking functions are only examples. You can

373

Full Text Search

write your own ranking functions and/or combine their results with additional factors to fit your specific
needs.

The two ranking functions currently available are:
ts_rank([weights float4[],] vector tsvector, query tsquery [, normalization integer
]) returns float4

Ranks vectors based on the frequency of their matching lexemes.

ts_rank_cd([weights float4[],] vector tsvector, query tsquery [, normalization integer
]) returns float4

This function computes the cover density ranking for the given document vector and query, as
described in Clarke, Cormack, and Tudhope's "Relevance Ranking for One to Three Term Queries"
in the journal "Information Processing and Management", 1999. Cover density is similar to ts_rank
ranking except that the proximity of matching lexemes to each other is taken into consideration.

This function requires lexeme positional information to perform its calculation. Therefore, it ignores
any “stripped” lexemes in the tsvector. If there are no unstripped lexemes in the input, the result will
be zero. (See Section 12.4.1 for more information about the strip function and positional information
in tsvectors.)

For both these functions, the optional weights argument offers the ability to weigh word instances more
or less heavily depending on how they are labeled. The weight arrays specify how heavily to weigh each
category of word, in the order:
{D-weight, C-weight, B-weight, A-weight}

If no weights are provided, then these defaults are used:
{0.1, 0.2, 0.4, 1.0}

Typically weights are used to mark words from special areas of the document, like the title or an initial
abstract, so they can be treated with more or less importance than words in the document body.

Since a longer document has a greater chance of containing a query term it is reasonable to take into
account document size, e.g., a hundred-word document with five instances of a search word is probably
more relevant than a thousand-word document with five instances. Both ranking functions take an
integer normalization option that specifies whether and how a document's length should impact its
rank. The integer option controls several behaviors, so it is a bit mask: you can specify one or more
behaviors using | (for example, 2|4).
• 0 (the default) ignores the document length
• 1 divides the rank by 1 + the logarithm of the document length
• 2 divides the rank by the document length
• 4 divides the rank by the mean harmonic distance between extents (this is implemented only by

ts_rank_cd)
• 8 divides the rank by the number of unique words in document
• 16 divides the rank by 1 + the logarithm of the number of unique words in document
• 32 divides the rank by itself + 1
If more than one flag bit is specified, the transformations are applied in the order listed.

It is important to note that the ranking functions do not use any global information, so it is impossible to
produce a fair normalization to 1% or 100% as sometimes desired. Normalization option 32 (rank/(rank
+1)) can be applied to scale all ranks into the range zero to one, but of course this is just a cosmetic
change; it will not affect the ordering of the search results.

Here is an example that selects only the ten highest-ranked matches:
SELECT title, ts_rank_cd(textsearch, query) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC

374

Full Text Search

LIMIT 10;
 title | rank
---+----------
 Neutrinos in the Sun | 3.1
 The Sudbury Neutrino Detector | 2.4
 A MACHO View of Galactic Dark Matter | 2.01317
 Hot Gas and Dark Matter | 1.91171
 The Virgo Cluster: Hot Plasma and Dark Matter | 1.90953
 Rafting for Solar Neutrinos | 1.9
 NGC 4650A: Strange Galaxy and Dark Matter | 1.85774
 Hot Gas and Dark Matter | 1.6123
 Ice Fishing for Cosmic Neutrinos | 1.6
 Weak Lensing Distorts the Universe | 0.818218

This is the same example using normalized ranking:

SELECT title, ts_rank_cd(textsearch, query, 32 /* rank/(rank+1) */) AS rank
FROM apod, to_tsquery('neutrino|(dark & matter)') query
WHERE query @@ textsearch
ORDER BY rank DESC
LIMIT 10;
 title | rank
---+-------------------
 Neutrinos in the Sun | 0.756097569485493
 The Sudbury Neutrino Detector | 0.705882361190954
 A MACHO View of Galactic Dark Matter | 0.668123210574724
 Hot Gas and Dark Matter | 0.65655958650282
 The Virgo Cluster: Hot Plasma and Dark Matter | 0.656301290640973
 Rafting for Solar Neutrinos | 0.655172410958162
 NGC 4650A: Strange Galaxy and Dark Matter | 0.650072921219637
 Hot Gas and Dark Matter | 0.617195790024749
 Ice Fishing for Cosmic Neutrinos | 0.615384618911517
 Weak Lensing Distorts the Universe | 0.450010798361481

Ranking can be expensive since it requires consulting the tsvector of each matching document, which
can be I/O bound and therefore slow. Unfortunately, it is almost impossible to avoid since practical
queries often result in large numbers of matches.

12.3.4. Highlighting Results
To present search results it is ideal to show a part of each document and how it is related to the
query. Usually, search engines show fragments of the document with marked search terms. Postgres Pro
provides a function ts_headline that implements this functionality.

ts_headline([config regconfig,] document text, query tsquery [, options text])
 returns text

ts_headline accepts a document along with a query, and returns an excerpt from the document in
which terms from the query are highlighted. The configuration to be used to parse the document can be
specified by config; if config is omitted, the default_text_search_config configuration is used.

If an options string is specified it must consist of a comma-separated list of one or more option=value
pairs. The available options are:
• MaxWords, MinWords (integers): these numbers determine the longest and shortest headlines to

output. The default values are 35 and 15.
• ShortWord (integer): words of this length or less will be dropped at the start and end of a headline,

unless they are query terms. The default value of three eliminates common English articles.
• HighlightAll (boolean): if true the whole document will be used as the headline, ignoring the

preceding three parameters. The default is false.

375

Full Text Search

• MaxFragments (integer): maximum number of text fragments to display. The default value of zero
selects a non-fragment-based headline generation method. A value greater than zero selects
fragment-based headline generation (see below).

• StartSel, StopSel (strings): the strings with which to delimit query words appearing in the
document, to distinguish them from other excerpted words. The default values are “” and “</
b>”, which can be suitable for HTML output.

• FragmentDelimiter (string): When more than one fragment is displayed, the fragments will be
separated by this string. The default is “ ... ”.

These option names are recognized case-insensitively. You must double-quote string values if they
contain spaces or commas.

In non-fragment-based headline generation, ts_headline locates matches for the given query and
chooses a single one to display, preferring matches that have more query words within the allowed
headline length. In fragment-based headline generation, ts_headline locates the query matches and
splits each match into “fragments” of no more than MaxWords words each, preferring fragments with
more query words, and when possible “stretching” fragments to include surrounding words. The
fragment-based mode is thus more useful when the query matches span large sections of the document,
or when it's desirable to display multiple matches. In either mode, if no query matches can be identified,
then a single fragment of the first MinWords words in the document will be displayed.

For example:

SELECT ts_headline('english',
 'The most common type of search
is to find all documents containing given query terms
and return them in order of their similarity to the
query.',
 to_tsquery('english', 'query & similarity'));
 ts_headline
--
 containing given query terms +
 and return them in order of their similarity to the+
 query.

SELECT ts_headline('english',
 'Search terms may occur
many times in a document,
requiring ranking of the search matches to decide which
occurrences to display in the result.',
 to_tsquery('english', 'search & term'),
 'MaxFragments=10, MaxWords=7, MinWords=3, StartSel=<<, StopSel=>>');
 ts_headline
--
 <<Search>> <<terms>> may occur +
 many times ... ranking of the <<search>> matches to decide

ts_headline uses the original document, not a tsvector summary, so it can be slow and should be used
with care.

12.4. Additional Features
This section describes additional functions and operators that are useful in connection with text search.

12.4.1. Manipulating Documents
Section 12.3.1 showed how raw textual documents can be converted into tsvector values. Postgres Pro
also provides functions and operators that can be used to manipulate documents that are already in
tsvector form.

376

Full Text Search

tsvector || tsvector

The tsvector concatenation operator returns a vector which combines the lexemes and positional
information of the two vectors given as arguments. Positions and weight labels are retained during
the concatenation. Positions appearing in the right-hand vector are offset by the largest position
mentioned in the left-hand vector, so that the result is nearly equivalent to the result of performing
to_tsvector on the concatenation of the two original document strings. (The equivalence is not
exact, because any stop-words removed from the end of the left-hand argument will not affect the
result, whereas they would have affected the positions of the lexemes in the right-hand argument if
textual concatenation were used.)

One advantage of using concatenation in the vector form, rather than concatenating text before
applying to_tsvector, is that you can use different configurations to parse different sections of the
document. Also, because the setweight function marks all lexemes of the given vector the same way,
it is necessary to parse the text and do setweight before concatenating if you want to label different
parts of the document with different weights.

setweight(vector tsvector, weight "char") returns tsvector

setweight returns a copy of the input vector in which every position has been labeled with the given
weight, either A, B, C, or D. (D is the default for new vectors and as such is not displayed on output.)
These labels are retained when vectors are concatenated, allowing words from different parts of a
document to be weighted differently by ranking functions.

Note that weight labels apply to positions, not lexemes. If the input vector has been stripped of
positions then setweight does nothing.

length(vector tsvector) returns integer

Returns the number of lexemes stored in the vector.

strip(vector tsvector) returns tsvector

Returns a vector that lists the same lexemes as the given vector, but lacks any position or weight
information. The result is usually much smaller than an unstripped vector, but it is also less useful.
Relevance ranking does not work as well on stripped vectors as unstripped ones. Also, the <->
(FOLLOWED BY) tsquery operator will never match stripped input, since it cannot determine the
distance between lexeme occurrences.

A full list of tsvector-related functions is available in Table 9.42.

12.4.2. Manipulating Queries
Section 12.3.2 showed how raw textual queries can be converted into tsquery values. Postgres Pro also
provides functions and operators that can be used to manipulate queries that are already in tsquery
form.

tsquery && tsquery

Returns the AND-combination of the two given queries.

tsquery || tsquery

Returns the OR-combination of the two given queries.

!! tsquery

Returns the negation (NOT) of the given query.

tsquery <-> tsquery

Returns a query that searches for a match to the first given query immediately followed by a match
to the second given query, using the <-> (FOLLOWED BY) tsquery operator. For example:
SELECT to_tsquery('fat') <-> to_tsquery('cat | rat');

377

Full Text Search

 ?column?

 'fat' <-> ('cat' | 'rat')

tsquery_phrase(query1 tsquery, query2 tsquery [, distance integer]) returns tsquery

Returns a query that searches for a match to the first given query followed by a match to the second
given query at a distance of exactly distance lexemes, using the <N> tsquery operator. For example:

SELECT tsquery_phrase(to_tsquery('fat'), to_tsquery('cat'), 10);
 tsquery_phrase

 'fat' <10> 'cat'

numnode(query tsquery) returns integer

Returns the number of nodes (lexemes plus operators) in a tsquery. This function is useful to
determine if the query is meaningful (returns > 0), or contains only stop words (returns 0). Examples:

SELECT numnode(plainto_tsquery('the any'));
NOTICE: query contains only stopword(s) or doesn't contain lexeme(s), ignored
 numnode

 0

SELECT numnode('foo & bar'::tsquery);
 numnode

 3

querytree(query tsquery) returns text

Returns the portion of a tsquery that can be used for searching an index. This function is useful for
detecting unindexable queries, for example those containing only stop words or only negated terms.
For example:

SELECT querytree(to_tsquery('defined'));
 querytree

 'defin'

SELECT querytree(to_tsquery('!defined'));
 querytree

 T

12.4.2.1. Query Rewriting
The ts_rewrite family of functions search a given tsquery for occurrences of a target subquery, and
replace each occurrence with a substitute subquery. In essence this operation is a tsquery-specific
version of substring replacement. A target and substitute combination can be thought of as a query
rewrite rule. A collection of such rewrite rules can be a powerful search aid. For example, you can
expand the search using synonyms (e.g., new york, big apple, nyc, gotham) or narrow the search
to direct the user to some hot topic. There is some overlap in functionality between this feature and
thesaurus dictionaries (Section 12.6.4). However, you can modify a set of rewrite rules on-the-fly without
reindexing, whereas updating a thesaurus requires reindexing to be effective.

ts_rewrite (query tsquery, target tsquery, substitute tsquery) returns tsquery

This form of ts_rewrite simply applies a single rewrite rule: target is replaced by substitute
wherever it appears in query. For example:

SELECT ts_rewrite('a & b'::tsquery, 'a'::tsquery, 'c'::tsquery);

378

Full Text Search

 ts_rewrite

 'b' & 'c'

ts_rewrite (query tsquery, select text) returns tsquery

This form of ts_rewrite accepts a starting query and a SQL select command, which is given as a
text string. The select must yield two columns of tsquery type. For each row of the select result,
occurrences of the first column value (the target) are replaced by the second column value (the
substitute) within the current query value. For example:
CREATE TABLE aliases (t tsquery PRIMARY KEY, s tsquery);
INSERT INTO aliases VALUES('a', 'c');

SELECT ts_rewrite('a & b'::tsquery, 'SELECT t,s FROM aliases');
 ts_rewrite

 'b' & 'c'

Note that when multiple rewrite rules are applied in this way, the order of application can be
important; so in practice you will want the source query to ORDER BY some ordering key.

Let's consider a real-life astronomical example. We'll expand query supernovae using table-driven
rewriting rules:
CREATE TABLE aliases (t tsquery primary key, s tsquery);
INSERT INTO aliases VALUES(to_tsquery('supernovae'), to_tsquery('supernovae|sn'));

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn')

We can change the rewriting rules just by updating the table:
UPDATE aliases
SET s = to_tsquery('supernovae|sn & !nebulae')
WHERE t = to_tsquery('supernovae');

SELECT ts_rewrite(to_tsquery('supernovae & crab'), 'SELECT * FROM aliases');
 ts_rewrite

 'crab' & ('supernova' | 'sn' & !'nebula')

Rewriting can be slow when there are many rewriting rules, since it checks every rule for a possible
match. To filter out obvious non-candidate rules we can use the containment operators for the tsquery
type. In the example below, we select only those rules which might match the original query:
SELECT ts_rewrite('a & b'::tsquery,
 'SELECT t,s FROM aliases WHERE ''a & b''::tsquery @> t');
 ts_rewrite

 'b' & 'c'

12.4.3. Triggers for Automatic Updates

Note
The method described in this section has been obsoleted by the use of stored generated columns,
as described in Section 12.2.2.

379

Full Text Search

When using a separate column to store the tsvector representation of your documents, it is necessary
to create a trigger to update the tsvector column when the document content columns change. Two
built-in trigger functions are available for this, or you can write your own.

tsvector_update_trigger(tsvector_column_name, config_name, text_column_name [, ...])
tsvector_update_trigger_column(tsvector_column_name,
 config_column_name, text_column_name [, ...])

These trigger functions automatically compute a tsvector column from one or more textual columns,
under the control of parameters specified in the CREATE TRIGGER command. An example of their use is:

CREATE TABLE messages (
 title text,
 body text,
 tsv tsvector
);

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE
ON messages FOR EACH ROW EXECUTE FUNCTION
tsvector_update_trigger(tsv, 'pg_catalog.english', title, body);

INSERT INTO messages VALUES('title here', 'the body text is here');

SELECT * FROM messages;
 title | body | tsv
------------+-----------------------+----------------------------
 title here | the body text is here | 'bodi':4 'text':5 'titl':1

SELECT title, body FROM messages WHERE tsv @@ to_tsquery('title & body');
 title | body
------------+-----------------------
 title here | the body text is here

Having created this trigger, any change in title or body will automatically be reflected into tsv, without
the application having to worry about it.

The first trigger argument must be the name of the tsvector column to be updated. The second
argument specifies the text search configuration to be used to perform the conversion. For
tsvector_update_trigger, the configuration name is simply given as the second trigger argument. It
must be schema-qualified as shown above, so that the trigger behavior will not change with changes
in search_path. For tsvector_update_trigger_column, the second trigger argument is the name of
another table column, which must be of type regconfig. This allows a per-row selection of configuration
to be made. The remaining argument(s) are the names of textual columns (of type text, varchar, or
char). These will be included in the document in the order given. NULL values will be skipped (but the
other columns will still be indexed).

A limitation of these built-in triggers is that they treat all the input columns alike. To process columns
differently — for example, to weight title differently from body — it is necessary to write a custom trigger.
Here is an example using PL/pgSQL as the trigger language:

CREATE FUNCTION messages_trigger() RETURNS trigger AS $$
begin
 new.tsv :=
 setweight(to_tsvector('pg_catalog.english', coalesce(new.title,'')), 'A') ||
 setweight(to_tsvector('pg_catalog.english', coalesce(new.body,'')), 'D');
 return new;
end
$$ LANGUAGE plpgsql;

CREATE TRIGGER tsvectorupdate BEFORE INSERT OR UPDATE

380

Full Text Search

 ON messages FOR EACH ROW EXECUTE FUNCTION messages_trigger();

Keep in mind that it is important to specify the configuration name explicitly when creating
tsvector values inside triggers, so that the column's contents will not be affected by changes to
default_text_search_config. Failure to do this is likely to lead to problems such as search results
changing after a dump and reload.

12.4.4. Gathering Document Statistics
The function ts_stat is useful for checking your configuration and for finding stop-word candidates.

ts_stat(sqlquery text, [weights text,]
 OUT word text, OUT ndoc integer,
 OUT nentry integer) returns setof record

sqlquery is a text value containing an SQL query which must return a single tsvector column. ts_stat
executes the query and returns statistics about each distinct lexeme (word) contained in the tsvector
data. The columns returned are

• word text — the value of a lexeme
• ndoc integer — number of documents (tsvectors) the word occurred in
• nentry integer — total number of occurrences of the word

If weights is supplied, only occurrences having one of those weights are counted.

For example, to find the ten most frequent words in a document collection:

SELECT * FROM ts_stat('SELECT vector FROM apod')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

The same, but counting only word occurrences with weight A or B:

SELECT * FROM ts_stat('SELECT vector FROM apod', 'ab')
ORDER BY nentry DESC, ndoc DESC, word
LIMIT 10;

12.5. Parsers
Text search parsers are responsible for splitting raw document text into tokens and identifying each
token's type, where the set of possible types is defined by the parser itself. Note that a parser does not
modify the text at all — it simply identifies plausible word boundaries. Because of this limited scope,
there is less need for application-specific custom parsers than there is for custom dictionaries. At present
Postgres Pro provides just one built-in parser, which has been found to be useful for a wide range of
applications.

The built-in parser is named pg_catalog.default. It recognizes 23 token types, shown in Table 12.1.

Table 12.1. Default Parser's Token Types

Alias Description Example
asciiword Word, all ASCII letters elephant

word Word, all letters mañana

numword Word, letters and digits beta1

asciihword Hyphenated word, all ASCII up-to-date

hword Hyphenated word, all
letters

lógico-matemática

numhword Hyphenated word, letters
and digits

postgresql-beta1

381

Full Text Search

Alias Description Example
hword_asciipart Hyphenated word part, all

ASCII
postgresql in the context postgresql-
beta1

hword_part Hyphenated word part, all
letters

lógico or matemática in the context
lógico-matemática

hword_numpart Hyphenated word part,
 letters and digits

beta1 in the context postgresql-beta1

email Email address foo@example.com

protocol Protocol head http://

url URL example.com/stuff/index.html

host Host example.com

url_path URL path /stuff/index.html, in the context of a
URL

file File or path name /usr/local/foo.txt, if not within a URL
sfloat Scientific notation -1.234e56

float Decimal notation -1.234

int Signed integer -1234

uint Unsigned integer 1234

version Version number 8.3.0

tag XML tag

entity XML entity &

blank Space symbols (any whitespace or punctuation not
otherwise recognized)

Note
The parser's notion of a “letter” is determined by the database's locale setting, specifically
lc_ctype. Words containing only the basic ASCII letters are reported as a separate token type,
since it is sometimes useful to distinguish them. In most European languages, token types word
and asciiword should be treated alike.

email does not support all valid email characters as defined by RFC 5322. Specifically, the only
non-alphanumeric characters supported for email user names are period, dash, and underscore.

It is possible for the parser to produce overlapping tokens from the same piece of text. As an example,
a hyphenated word will be reported both as the entire word and as each component:

SELECT alias, description, token FROM ts_debug('foo-bar-beta1');
 alias | description | token
-----------------+--+---------------
 numhword | Hyphenated word, letters and digits | foo-bar-beta1
 hword_asciipart | Hyphenated word part, all ASCII | foo
 blank | Space symbols | -
 hword_asciipart | Hyphenated word part, all ASCII | bar
 blank | Space symbols | -
 hword_numpart | Hyphenated word part, letters and digits | beta1

This behavior is desirable since it allows searches to work for both the whole compound word and for
components. Here is another instructive example:

SELECT alias, description, token FROM ts_debug('http://example.com/stuff/index.html');

382

Full Text Search

 alias | description | token
----------+---------------+------------------------------
 protocol | Protocol head | http://
 url | URL | example.com/stuff/index.html
 host | Host | example.com
 url_path | URL path | /stuff/index.html

12.6. Dictionaries
Dictionaries are used to eliminate words that should not be considered in a search (stop words), and to
normalize words so that different derived forms of the same word will match. A successfully normalized
word is called a lexeme. Aside from improving search quality, normalization and removal of stop
words reduce the size of the tsvector representation of a document, thereby improving performance.
Normalization does not always have linguistic meaning and usually depends on application semantics.

Some examples of normalization:
• Linguistic — Ispell dictionaries try to reduce input words to a normalized form; stemmer

dictionaries remove word endings
• URL locations can be canonicalized to make equivalent URLs match:

• http://www.pgsql.ru/db/mw/index.html
• http://www.pgsql.ru/db/mw/
• http://www.pgsql.ru/db/../db/mw/index.html

• Color names can be replaced by their hexadecimal values, e.g., red, green, blue, magenta ->
FF0000, 00FF00, 0000FF, FF00FF

• If indexing numbers, we can remove some fractional digits to reduce the range of possible
numbers, so for example 3.14159265359, 3.1415926, 3.14 will be the same after normalization if
only two digits are kept after the decimal point.

A dictionary is a program that accepts a token as input and returns:
• an array of lexemes if the input token is known to the dictionary (notice that one token can produce

more than one lexeme)
• a single lexeme with the TSL_FILTER flag set, to replace the original token with a new token to be

passed to subsequent dictionaries (a dictionary that does this is called a filtering dictionary)
• an empty array if the dictionary knows the token, but it is a stop word
• NULL if the dictionary does not recognize the input token

Postgres Pro provides predefined dictionaries for many languages. There are also several predefined
templates that can be used to create new dictionaries with custom parameters. Each predefined
dictionary template is described below. If no existing template is suitable, it is possible to create new
ones; see the contrib/ area of the Postgres Pro distribution for examples.

A text search configuration binds a parser together with a set of dictionaries to process the parser's
output tokens. For each token type that the parser can return, a separate list of dictionaries is specified
by the configuration. When a token of that type is found by the parser, each dictionary in the list is
consulted in turn, until some dictionary recognizes it as a known word. If it is identified as a stop word,
or if no dictionary recognizes the token, it will be discarded and not indexed or searched for. Normally,
the first dictionary that returns a non-NULL output determines the result, and any remaining dictionaries
are not consulted; but a filtering dictionary can replace the given word with a modified word, which is
then passed to subsequent dictionaries.

The general rule for configuring a list of dictionaries is to place first the most narrow, most specific
dictionary, then the more general dictionaries, finishing with a very general dictionary, like a Snowball
stemmer or simple, which recognizes everything. For example, for an astronomy-specific search
(astro_en configuration) one could bind token type asciiword (ASCII word) to a synonym dictionary of
astronomical terms, a general English dictionary and a Snowball English stemmer:
ALTER TEXT SEARCH CONFIGURATION astro_en
 ADD MAPPING FOR asciiword WITH astrosyn, english_ispell, english_stem;

383

Full Text Search

A filtering dictionary can be placed anywhere in the list, except at the end where it'd be useless. Filtering
dictionaries are useful to partially normalize words to simplify the task of later dictionaries. For example,
a filtering dictionary could be used to remove accents from accented letters, as is done by the unaccent
module.

12.6.1. Stop Words
Stop words are words that are very common, appear in almost every document, and have no
discrimination value. Therefore, they can be ignored in the context of full text searching. For example,
every English text contains words like a and the, so it is useless to store them in an index. However,
stop words do affect the positions in tsvector, which in turn affect ranking:

SELECT to_tsvector('english', 'in the list of stop words');
 to_tsvector

 'list':3 'stop':5 'word':6

The missing positions 1,2,4 are because of stop words. Ranks calculated for documents with and without
stop words are quite different:

SELECT ts_rank_cd (to_tsvector('english', 'in the list of stop words'),
 to_tsquery('list & stop'));
 ts_rank_cd

 0.05

SELECT ts_rank_cd (to_tsvector('english', 'list stop words'), to_tsquery('list &
 stop'));
 ts_rank_cd

 0.1

It is up to the specific dictionary how it treats stop words. For example, ispell dictionaries first
normalize words and then look at the list of stop words, while Snowball stemmers first check the list of
stop words. The reason for the different behavior is an attempt to decrease noise.

12.6.2. Simple Dictionary
The simple dictionary template operates by converting the input token to lower case and checking it
against a file of stop words. If it is found in the file then an empty array is returned, causing the token to
be discarded. If not, the lower-cased form of the word is returned as the normalized lexeme. Alternatively,
the dictionary can be configured to report non-stop-words as unrecognized, allowing them to be passed
on to the next dictionary in the list.

Here is an example of a dictionary definition using the simple template:

CREATE TEXT SEARCH DICTIONARY public.simple_dict (
 TEMPLATE = pg_catalog.simple,
 STOPWORDS = english
);

Here, english is the base name of a file of stop words. The file's full name will be $SHAREDIR/
tsearch_data/english.stop, where $SHAREDIR means the Postgres Pro installation's shared-data
directory, often /usr/local/share/postgresql (use pg_config --sharedir to determine it if you're not
sure). The file format is simply a list of words, one per line. Blank lines and trailing spaces are ignored,
and upper case is folded to lower case, but no other processing is done on the file contents.

Now we can test our dictionary:

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

384

Full Text Search

 {yes}

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

We can also choose to return NULL, instead of the lower-cased word, if it is not found in the stop words file.
This behavior is selected by setting the dictionary's Accept parameter to false. Continuing the example:

ALTER TEXT SEARCH DICTIONARY public.simple_dict (Accept = false);

SELECT ts_lexize('public.simple_dict', 'YeS');
 ts_lexize

SELECT ts_lexize('public.simple_dict', 'The');
 ts_lexize

 {}

With the default setting of Accept = true, it is only useful to place a simple dictionary at the end of a
list of dictionaries, since it will never pass on any token to a following dictionary. Conversely, Accept =
false is only useful when there is at least one following dictionary.

Caution
Most types of dictionaries rely on configuration files, such as files of stop words. These files must
be stored in UTF-8 encoding. They will be translated to the actual database encoding, if that is
different, when they are read into the server.

Caution
Normally, a database session will read a dictionary configuration file only once, when it is first
used within the session. If you modify a configuration file and want to force existing sessions to
pick up the new contents, issue an ALTER TEXT SEARCH DICTIONARY command on the dictionary.
This can be a “dummy” update that doesn't actually change any parameter values.

12.6.3. Synonym Dictionary
This dictionary template is used to create dictionaries that replace a word with a synonym. Phrases are
not supported (use the thesaurus template (Section 12.6.4) for that). A synonym dictionary can be used
to overcome linguistic problems, for example, to prevent an English stemmer dictionary from reducing
the word “Paris” to “pari”. It is enough to have a Paris paris line in the synonym dictionary and put
it before the english_stem dictionary. For example:

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | Paris | {english_stem} | english_stem | {pari}

CREATE TEXT SEARCH DICTIONARY my_synonym (
 TEMPLATE = synonym,
 SYNONYMS = my_synonyms
);

385

Full Text Search

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR asciiword
 WITH my_synonym, english_stem;

SELECT * FROM ts_debug('english', 'Paris');
 alias | description | token | dictionaries | dictionary |
 lexemes
-----------+-----------------+-------+---------------------------+------------
+---------
 asciiword | Word, all ASCII | Paris | {my_synonym,english_stem} | my_synonym | {paris}

The only parameter required by the synonym template is SYNONYMS, which is the base name of its
configuration file — my_synonyms in the above example. The file's full name will be $SHAREDIR/
tsearch_data/my_synonyms.syn (where $SHAREDIR means the Postgres Pro installation's shared-data
directory). The file format is just one line per word to be substituted, with the word followed by its
synonym, separated by white space. Blank lines and trailing spaces are ignored.

The synonym template also has an optional parameter CaseSensitive, which defaults to false. When
CaseSensitive is false, words in the synonym file are folded to lower case, as are input tokens. When
it is true, words and tokens are not folded to lower case, but are compared as-is.

An asterisk (*) can be placed at the end of a synonym in the configuration file. This indicates that the
synonym is a prefix. The asterisk is ignored when the entry is used in to_tsvector(), but when it is
used in to_tsquery(), the result will be a query item with the prefix match marker (see Section 12.3.2).
For example, suppose we have these entries in $SHAREDIR/tsearch_data/synonym_sample.syn:
postgres pgsql
postgresql pgsql
postgre pgsql
gogle googl
indices index*

Then we will get these results:
mydb=# CREATE TEXT SEARCH DICTIONARY syn (template=synonym, synonyms='synonym_sample');
mydb=# SELECT ts_lexize('syn', 'indices');
 ts_lexize

 {index}
(1 row)

mydb=# CREATE TEXT SEARCH CONFIGURATION tst (copy=simple);
mydb=# ALTER TEXT SEARCH CONFIGURATION tst ALTER MAPPING FOR asciiword WITH syn;
mydb=# SELECT to_tsvector('tst', 'indices');
 to_tsvector

 'index':1
(1 row)

mydb=# SELECT to_tsquery('tst', 'indices');
 to_tsquery

 'index':*
(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector;
 tsvector

 'are' 'indexes' 'useful' 'very'

386

Full Text Search

(1 row)

mydb=# SELECT 'indexes are very useful'::tsvector @@ to_tsquery('tst', 'indices');
 ?column?

 t
(1 row)

12.6.4. Thesaurus Dictionary
A thesaurus dictionary (sometimes abbreviated as TZ) is a collection of words that includes information
about the relationships of words and phrases, i.e., broader terms (BT), narrower terms (NT), preferred
terms, non-preferred terms, related terms, etc.

Basically a thesaurus dictionary replaces all non-preferred terms by one preferred term and, optionally,
preserves the original terms for indexing as well. Postgres Pro's current implementation of the thesaurus
dictionary is an extension of the synonym dictionary with added phrase support. A thesaurus dictionary
requires a configuration file of the following format:
this is a comment
sample word(s) : indexed word(s)
more sample word(s) : more indexed word(s)
...

where the colon (:) symbol acts as a delimiter between a phrase and its replacement.

A thesaurus dictionary uses a subdictionary (which is specified in the dictionary's configuration)
to normalize the input text before checking for phrase matches. It is only possible to select one
subdictionary. An error is reported if the subdictionary fails to recognize a word. In that case, you should
remove the use of the word or teach the subdictionary about it. You can place an asterisk (*) at the
beginning of an indexed word to skip applying the subdictionary to it, but all sample words must be
known to the subdictionary.

The thesaurus dictionary chooses the longest match if there are multiple phrases matching the input,
and ties are broken by using the last definition.

Specific stop words recognized by the subdictionary cannot be specified; instead use ? to mark the
location where any stop word can appear. For example, assuming that a and the are stop words according
to the subdictionary:
? one ? two : swsw

matches a one the two and the one a two; both would be replaced by swsw.

Since a thesaurus dictionary has the capability to recognize phrases it must remember its state and
interact with the parser. A thesaurus dictionary uses these assignments to check if it should handle the
next word or stop accumulation. The thesaurus dictionary must be configured carefully. For example,
if the thesaurus dictionary is assigned to handle only the asciiword token, then a thesaurus dictionary
definition like one 7 will not work since token type uint is not assigned to the thesaurus dictionary.

Caution
Thesauruses are used during indexing so any change in the thesaurus dictionary's parameters
requires reindexing. For most other dictionary types, small changes such as adding or removing
stopwords does not force reindexing.

12.6.4.1. Thesaurus Configuration
To define a new thesaurus dictionary, use the thesaurus template. For example:
CREATE TEXT SEARCH DICTIONARY thesaurus_simple (

387

Full Text Search

 TEMPLATE = thesaurus,
 DictFile = mythesaurus,
 Dictionary = pg_catalog.english_stem
);

Here:
• thesaurus_simple is the new dictionary's name
• mythesaurus is the base name of the thesaurus configuration file. (Its full name will be $SHAREDIR/

tsearch_data/mythesaurus.ths, where $SHAREDIR means the installation shared-data directory.)
• pg_catalog.english_stem is the subdictionary (here, a Snowball English stemmer) to use for

thesaurus normalization. Notice that the subdictionary will have its own configuration (for example,
stop words), which is not shown here.

Now it is possible to bind the thesaurus dictionary thesaurus_simple to the desired token types in a
configuration, for example:
ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_simple;

12.6.4.2. Thesaurus Example
Consider a simple astronomical thesaurus thesaurus_astro, which contains some astronomical word
combinations:
supernovae stars : sn
crab nebulae : crab

Below we create a dictionary and bind some token types to an astronomical thesaurus and English
stemmer:
CREATE TEXT SEARCH DICTIONARY thesaurus_astro (
 TEMPLATE = thesaurus,
 DictFile = thesaurus_astro,
 Dictionary = english_stem
);

ALTER TEXT SEARCH CONFIGURATION russian
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH thesaurus_astro, english_stem;

Now we can see how it works. ts_lexize is not very useful for testing a thesaurus, because it treats its
input as a single token. Instead we can use plainto_tsquery and to_tsvector which will break their
input strings into multiple tokens:
SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn'

SELECT to_tsvector('supernova star');
 to_tsvector

 'sn':1

In principle, one can use to_tsquery if you quote the argument:
SELECT to_tsquery('''supernova star''');
 to_tsquery

 'sn'

Notice that supernova star matches supernovae stars in thesaurus_astro because we specified the
english_stem stemmer in the thesaurus definition. The stemmer removed the e and s.

388

Full Text Search

To index the original phrase as well as the substitute, just include it in the right-hand part of the
definition:

supernovae stars : sn supernovae stars

SELECT plainto_tsquery('supernova star');
 plainto_tsquery

 'sn' & 'supernova' & 'star'

12.6.5. Ispell Dictionary
The Ispell dictionary template supports morphological dictionaries, which can normalize many different
linguistic forms of a word into the same lexeme. For example, an English Ispell dictionary can match all
declensions and conjugations of the search term bank, e.g., banking, banked, banks, banks', and bank's.

The standard Postgres Pro distribution does not include any Ispell configuration files. Dictionaries for a
large number of languages are available from Ispell. Also, some more modern dictionary file formats are
supported — MySpell (OO < 2.0.1) and Hunspell (OO >= 2.0.2). A large list of dictionaries is available
on the OpenOffice Wiki.

To create an Ispell dictionary perform these steps:

• download dictionary configuration files. OpenOffice extension files have the .oxt extension. It
is necessary to extract .aff and .dic files, change extensions to .affix and .dict. For some
dictionary files it is also needed to convert characters to the UTF-8 encoding with commands (for
example, for a Norwegian language dictionary):

iconv -f ISO_8859-1 -t UTF-8 -o nn_no.affix nn_NO.aff
iconv -f ISO_8859-1 -t UTF-8 -o nn_no.dict nn_NO.dic

• copy files to the $SHAREDIR/tsearch_data directory
• load files into Postgres Pro with the following command:

CREATE TEXT SEARCH DICTIONARY english_hunspell (
 TEMPLATE = ispell,
 DictFile = en_us,
 AffFile = en_us,
 Stopwords = english);

Here, DictFile, AffFile, and StopWords specify the base names of the dictionary, affixes, and stop-
words files. The stop-words file has the same format explained above for the simple dictionary type. The
format of the other files is not specified here but is available from the above-mentioned web sites.

Ispell dictionaries usually recognize a limited set of words, so they should be followed by another broader
dictionary; for example, a Snowball dictionary, which recognizes everything.

The .affix file of Ispell has the following structure:

prefixes
flag *A:
 . > RE # As in enter > reenter
suffixes
flag T:
 E > ST # As in late > latest
 [^AEIOU]Y > -Y,IEST # As in dirty > dirtiest
 [AEIOU]Y > EST # As in gray > grayest
 [^EY] > EST # As in small > smallest

And the .dict file has the following structure:

lapse/ADGRS
lard/DGRS

389

https://www.cs.hmc.edu/~geoff/ispell.html
https://en.wikipedia.org/wiki/MySpell
https://sourceforge.net/projects/hunspell/
https://wiki.openoffice.org/wiki/Dictionaries

Full Text Search

large/PRTY
lark/MRS

Format of the .dict file is:
basic_form/affix_class_name

In the .affix file every affix flag is described in the following format:
condition > [-stripping_letters,] adding_affix

Here, condition has a format similar to the format of regular expressions. It can use groupings [...]
and [^...]. For example, [AEIOU]Y means that the last letter of the word is "y" and the penultimate
letter is "a", "e", "i", "o" or "u". [^EY] means that the last letter is neither "e" nor "y".

Ispell dictionaries support splitting compound words; a useful feature. Notice that the affix file should
specify a special flag using the compoundwords controlled statement that marks dictionary words that
can participate in compound formation:
compoundwords controlled z

Here are some examples for the Norwegian language:
SELECT ts_lexize('norwegian_ispell', 'overbuljongterningpakkmesterassistent');
 {over,buljong,terning,pakk,mester,assistent}
SELECT ts_lexize('norwegian_ispell', 'sjokoladefabrikk');
 {sjokoladefabrikk,sjokolade,fabrikk}

MySpell format is a subset of Hunspell. The .affix file of Hunspell has the following structure:
PFX A Y 1
PFX A 0 re .
SFX T N 4
SFX T 0 st e
SFX T y iest [^aeiou]y
SFX T 0 est [aeiou]y
SFX T 0 est [^ey]

The first line of an affix class is the header. Fields of an affix rules are listed after the header:

• parameter name (PFX or SFX)
• flag (name of the affix class)
• stripping characters from beginning (at prefix) or end (at suffix) of the word
• adding affix
• condition that has a format similar to the format of regular expressions.
The .dict file looks like the .dict file of Ispell:
larder/M
lardy/RT
large/RSPMYT
largehearted

Note
MySpell does not support compound words. Hunspell has sophisticated support for compound
words. At present, Postgres Pro implements only the basic compound word operations of Hunspell.

12.6.6. Snowball Dictionary
The Snowball dictionary template is based on a project by Martin Porter, inventor of the popular Porter's
stemming algorithm for the English language. Snowball now provides stemming algorithms for many

390

Full Text Search

languages (see the Snowball site for more information). Each algorithm understands how to reduce
common variant forms of words to a base, or stem, spelling within its language. A Snowball dictionary
requires a language parameter to identify which stemmer to use, and optionally can specify a stopword
file name that gives a list of words to eliminate. (Postgres Pro's standard stopword lists are also provided
by the Snowball project.) For example, there is a built-in definition equivalent to

CREATE TEXT SEARCH DICTIONARY english_stem (
 TEMPLATE = snowball,
 Language = english,
 StopWords = english
);

The stopword file format is the same as already explained.

A Snowball dictionary recognizes everything, whether or not it is able to simplify the word, so it should
be placed at the end of the dictionary list. It is useless to have it before any other dictionary because a
token will never pass through it to the next dictionary.

12.7. Configuration Example
A text search configuration specifies all options necessary to transform a document into a tsvector: the
parser to use to break text into tokens, and the dictionaries to use to transform each token into a lexeme.
Every call of to_tsvector or to_tsquery needs a text search configuration to perform its processing.
The configuration parameter default_text_search_config specifies the name of the default configuration,
which is the one used by text search functions if an explicit configuration parameter is omitted. It can
be set in postgresql.conf, or set for an individual session using the SET command.

Several predefined text search configurations are available, and you can create custom configurations
easily. To facilitate management of text search objects, a set of SQL commands is available, and there
are several psql commands that display information about text search objects (Section 12.10).

As an example we will create a configuration pg, starting by duplicating the built-in english
configuration:

CREATE TEXT SEARCH CONFIGURATION public.pg (COPY = pg_catalog.english);

We will use a Postgres Pro-specific synonym list and store it in $SHAREDIR/tsearch_data/pg_dict.syn.
The file contents look like:

postgres pg
pgsql pg
postgresql pg

We define the synonym dictionary like this:

CREATE TEXT SEARCH DICTIONARY pg_dict (
 TEMPLATE = synonym,
 SYNONYMS = pg_dict
);

Next we register the Ispell dictionary english_ispell, which has its own configuration files:

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

Now we can set up the mappings for words in configuration pg:

ALTER TEXT SEARCH CONFIGURATION pg
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,

391

https://snowballstem.org/

Full Text Search

 word, hword, hword_part
 WITH pg_dict, english_ispell, english_stem;

We choose not to index or search some token types that the built-in configuration does handle:

ALTER TEXT SEARCH CONFIGURATION pg
 DROP MAPPING FOR email, url, url_path, sfloat, float;

Now we can test our configuration:

SELECT * FROM ts_debug('public.pg', '
Postgres Pro, the highly scalable, SQL compliant, open source object-relational
database management system, is now undergoing beta testing of the next
version of our software.
');

The next step is to set the session to use the new configuration, which was created in the public schema:

=> \dF
 List of text search configurations
 Schema | Name | Description
---------+------+-------------
 public | pg |

SET default_text_search_config = 'public.pg';
SET

SHOW default_text_search_config;
 default_text_search_config

 public.pg

12.8. Testing and Debugging Text Search
The behavior of a custom text search configuration can easily become confusing. The functions described
in this section are useful for testing text search objects. You can test a complete configuration, or test
parsers and dictionaries separately.

12.8.1. Configuration Testing
The function ts_debug allows easy testing of a text search configuration.

ts_debug([config regconfig,] document text,
 OUT alias text,
 OUT description text,
 OUT token text,
 OUT dictionaries regdictionary[],
 OUT dictionary regdictionary,
 OUT lexemes text[])
 returns setof record

ts_debug displays information about every token of document as produced by the parser and
processed by the configured dictionaries. It uses the configuration specified by config, or
default_text_search_config if that argument is omitted.

ts_debug returns one row for each token identified in the text by the parser. The columns returned are

• alias text — short name of the token type
• description text — description of the token type
• token text — text of the token

392

Full Text Search

• dictionaries regdictionary[] — the dictionaries selected by the configuration for this token type
• dictionary regdictionary — the dictionary that recognized the token, or NULL if none did
• lexemes text[] — the lexeme(s) produced by the dictionary that recognized the token, or NULL if

none did; an empty array ({}) means it was recognized as a stop word

Here is a simple example:

SELECT * FROM ts_debug('english', 'a fat cat sat on a mat - it ate a fat rats');
 alias | description | token | dictionaries | dictionary | lexemes
-----------+-----------------+-------+----------------+--------------+---------
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | cat | {english_stem} | english_stem | {cat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | sat | {english_stem} | english_stem | {sat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | on | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | mat | {english_stem} | english_stem | {mat}
 blank | Space symbols | | {} | |
 blank | Space symbols | - | {} | |
 asciiword | Word, all ASCII | it | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | ate | {english_stem} | english_stem | {ate}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | a | {english_stem} | english_stem | {}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | fat | {english_stem} | english_stem | {fat}
 blank | Space symbols | | {} | |
 asciiword | Word, all ASCII | rats | {english_stem} | english_stem | {rat}

For a more extensive demonstration, we first create a public.english configuration and Ispell
dictionary for the English language:

CREATE TEXT SEARCH CONFIGURATION public.english (COPY = pg_catalog.english);

CREATE TEXT SEARCH DICTIONARY english_ispell (
 TEMPLATE = ispell,
 DictFile = english,
 AffFile = english,
 StopWords = english
);

ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword WITH english_ispell, english_stem;

SELECT * FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-------------+-------------------------------
+----------------+-------------
 asciiword | Word, all ASCII | The | {english_ispell,english_stem} |
 english_ispell | {}
 blank | Space symbols | | {} |
 |

393

Full Text Search

 asciiword | Word, all ASCII | Brightest | {english_ispell,english_stem} |
 english_ispell | {bright}
 blank | Space symbols | | {} |
 |
 asciiword | Word, all ASCII | supernovaes | {english_ispell,english_stem} |
 english_stem | {supernova}

In this example, the word Brightest was recognized by the parser as an ASCII word (alias asciiword).
For this token type the dictionary list is english_ispell and english_stem. The word was recognized
by english_ispell, which reduced it to the noun bright. The word supernovaes is unknown to the
english_ispell dictionary so it was passed to the next dictionary, and, fortunately, was recognized (in
fact, english_stem is a Snowball dictionary which recognizes everything; that is why it was placed at
the end of the dictionary list).

The word The was recognized by the english_ispell dictionary as a stop word (Section 12.6.1) and
will not be indexed. The spaces are discarded too, since the configuration provides no dictionaries at
all for them.

You can reduce the width of the output by explicitly specifying which columns you want to see:
SELECT alias, token, dictionary, lexemes
FROM ts_debug('public.english', 'The Brightest supernovaes');
 alias | token | dictionary | lexemes
-----------+-------------+----------------+-------------
 asciiword | The | english_ispell | {}
 blank | | |
 asciiword | Brightest | english_ispell | {bright}
 blank | | |
 asciiword | supernovaes | english_stem | {supernova}

12.8.2. Parser Testing
The following functions allow direct testing of a text search parser.

ts_parse(parser_name text, document text,
 OUT tokid integer, OUT token text) returns setof record
ts_parse(parser_oid oid, document text,
 OUT tokid integer, OUT token text) returns setof record

ts_parse parses the given document and returns a series of records, one for each token produced by
parsing. Each record includes a tokid showing the assigned token type and a token which is the text
of the token. For example:
SELECT * FROM ts_parse('default', '123 - a number');
 tokid | token
-------+--------
 22 | 123
 12 |
 12 | -
 1 | a
 12 |
 1 | number

ts_token_type(parser_name text, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record
ts_token_type(parser_oid oid, OUT tokid integer,
 OUT alias text, OUT description text) returns setof record

ts_token_type returns a table which describes each type of token the specified parser can recognize.
For each token type, the table gives the integer tokid that the parser uses to label a token of that type,
the alias that names the token type in configuration commands, and a short description. For example:

394

Full Text Search

SELECT * FROM ts_token_type('default');
 tokid | alias | description
-------+-----------------+--
 1 | asciiword | Word, all ASCII
 2 | word | Word, all letters
 3 | numword | Word, letters and digits
 4 | email | Email address
 5 | url | URL
 6 | host | Host
 7 | sfloat | Scientific notation
 8 | version | Version number
 9 | hword_numpart | Hyphenated word part, letters and digits
 10 | hword_part | Hyphenated word part, all letters
 11 | hword_asciipart | Hyphenated word part, all ASCII
 12 | blank | Space symbols
 13 | tag | XML tag
 14 | protocol | Protocol head
 15 | numhword | Hyphenated word, letters and digits
 16 | asciihword | Hyphenated word, all ASCII
 17 | hword | Hyphenated word, all letters
 18 | url_path | URL path
 19 | file | File or path name
 20 | float | Decimal notation
 21 | int | Signed integer
 22 | uint | Unsigned integer
 23 | entity | XML entity

12.8.3. Dictionary Testing
The ts_lexize function facilitates dictionary testing.

ts_lexize(dict regdictionary, token text) returns text[]

ts_lexize returns an array of lexemes if the input token is known to the dictionary, or an empty array
if the token is known to the dictionary but it is a stop word, or NULL if it is an unknown word.

Examples:
SELECT ts_lexize('english_stem', 'stars');
 ts_lexize

 {star}

SELECT ts_lexize('english_stem', 'a');
 ts_lexize

 {}

Note
The ts_lexize function expects a single token, not text. Here is a case where this can be confusing:
SELECT ts_lexize('thesaurus_astro', 'supernovae stars') is null;
 ?column?

 t

The thesaurus dictionary thesaurus_astro does know the phrase supernovae stars, but
ts_lexize fails since it does not parse the input text but treats it as a single token. Use
plainto_tsquery or to_tsvector to test thesaurus dictionaries, for example:

395

Full Text Search

SELECT plainto_tsquery('supernovae stars');
 plainto_tsquery

 'sn'

12.9. Preferred Index Types for Text Search
There are two kinds of indexes that can be used to speed up full text searches: GIN and GiST. Note that
indexes are not mandatory for full text searching, but in cases where a column is searched on a regular
basis, an index is usually desirable.

To create such an index, do one of:

CREATE INDEX name ON table USING GIN (column);

Creates a GIN (Generalized Inverted Index)-based index. The column must be of tsvector type.

CREATE INDEX name ON table USING GIST (column [{ DEFAULT | tsvector_ops } (siglen =
number)]);

Creates a GiST (Generalized Search Tree)-based index. The column can be of tsvector or tsquery
type. Optional integer parameter siglen determines signature length in bytes (see below for details).

GIN indexes are the preferred text search index type. As inverted indexes, they contain an index entry
for each word (lexeme), with a compressed list of matching locations. Multi-word searches can find the
first match, then use the index to remove rows that are lacking additional words. GIN indexes store only
the words (lexemes) of tsvector values, and not their weight labels. Thus a table row recheck is needed
when using a query that involves weights.

A GiST index is lossy, meaning that the index might produce false matches, and it is necessary to check
the actual table row to eliminate such false matches. (Postgres Pro does this automatically when needed.)
GiST indexes are lossy because each document is represented in the index by a fixed-length signature.
The signature length in bytes is determined by the value of the optional integer parameter siglen. The
default signature length (when siglen is not specified) is 124 bytes, the maximum signature length is
2024 bytes. The signature is generated by hashing each word into a single bit in an n-bit string, with all
these bits OR-ed together to produce an n-bit document signature. When two words hash to the same bit
position there will be a false match. If all words in the query have matches (real or false) then the table
row must be retrieved to see if the match is correct. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

A GiST index can be covering, i.e., use the INCLUDE clause. Included columns can have data types without
any GiST operator class. Included attributes will be stored uncompressed.

Lossiness causes performance degradation due to unnecessary fetches of table records that turn out to
be false matches. Since random access to table records is slow, this limits the usefulness of GiST indexes.
The likelihood of false matches depends on several factors, in particular the number of unique words,
so using dictionaries to reduce this number is recommended.

Note that GIN index build time can often be improved by increasing maintenance_work_mem, while
GiST index build time is not sensitive to that parameter.

Partitioning of big collections and the proper use of GIN and GiST indexes allows the implementation
of very fast searches with online update. Partitioning can be done at the database level using table
inheritance, or by distributing documents over servers and collecting external search results, e.g., via
Foreign Data access. The latter is possible because ranking functions use only local information.

12.10. psql Support
Information about text search configuration objects can be obtained in psql using a set of commands:

396

Full Text Search

\dF{d,p,t}[+] [PATTERN]

An optional + produces more details.

The optional parameter PATTERN can be the name of a text search object, optionally schema-qualified. If
PATTERN is omitted then information about all visible objects will be displayed. PATTERN can be a regular
expression and can provide separate patterns for the schema and object names. The following examples
illustrate this:

=> \dF *fulltext*
 List of text search configurations
 Schema | Name | Description
--------+--------------+-------------
 public | fulltext_cfg |

=> \dF *.fulltext*
 List of text search configurations
 Schema | Name | Description
----------+----------------------------
 fulltext | fulltext_cfg |
 public | fulltext_cfg |

The available commands are:

\dF[+] [PATTERN]

List text search configurations (add + for more detail).

=> \dF russian
 List of text search configurations
 Schema | Name | Description
------------+---------+------------------------------------
 pg_catalog | russian | configuration for russian language

=> \dF+ russian
Text search configuration "pg_catalog.russian"
Parser: "pg_catalog.default"
 Token | Dictionaries
-----------------+--------------
 asciihword | english_stem
 asciiword | english_stem
 email | simple
 file | simple
 float | simple
 host | simple
 hword | russian_stem
 hword_asciipart | english_stem
 hword_numpart | simple
 hword_part | russian_stem
 int | simple
 numhword | simple
 numword | simple
 sfloat | simple
 uint | simple
 url | simple
 url_path | simple
 version | simple
 word | russian_stem

\dFd[+] [PATTERN]

List text search dictionaries (add + for more detail).

397

Full Text Search

=> \dFd
 List of text search dictionaries
 Schema | Name | Description
------------+-----------------
+---
 pg_catalog | arabic_stem | snowball stemmer for arabic language
 pg_catalog | danish_stem | snowball stemmer for danish language
 pg_catalog | dutch_stem | snowball stemmer for dutch language
 pg_catalog | english_stem | snowball stemmer for english language
 pg_catalog | finnish_stem | snowball stemmer for finnish language
 pg_catalog | french_stem | snowball stemmer for french language
 pg_catalog | german_stem | snowball stemmer for german language
 pg_catalog | greek_stem | snowball stemmer for greek language
 pg_catalog | hungarian_stem | snowball stemmer for hungarian language
 pg_catalog | indonesian_stem | snowball stemmer for indonesian language
 pg_catalog | irish_stem | snowball stemmer for irish language
 pg_catalog | italian_stem | snowball stemmer for italian language
 pg_catalog | lithuanian_stem | snowball stemmer for lithuanian language
 pg_catalog | nepali_stem | snowball stemmer for nepali language
 pg_catalog | norwegian_stem | snowball stemmer for norwegian language
 pg_catalog | portuguese_stem | snowball stemmer for portuguese language
 pg_catalog | romanian_stem | snowball stemmer for romanian language
 pg_catalog | russian_stem | snowball stemmer for russian language
 pg_catalog | simple | simple dictionary: just lower case and check for
 stopword
 pg_catalog | spanish_stem | snowball stemmer for spanish language
 pg_catalog | swedish_stem | snowball stemmer for swedish language
 pg_catalog | tamil_stem | snowball stemmer for tamil language
 pg_catalog | turkish_stem | snowball stemmer for turkish language

\dFp[+] [PATTERN]

List text search parsers (add + for more detail).

=> \dFp
 List of text search parsers
 Schema | Name | Description
------------+---------+---------------------
 pg_catalog | default | default word parser
=> \dFp+
 Text search parser "pg_catalog.default"
 Method | Function | Description
-----------------+----------------+-------------
 Start parse | prsd_start |
 Get next token | prsd_nexttoken |
 End parse | prsd_end |
 Get headline | prsd_headline |
 Get token types | prsd_lextype |

 Token types for parser "pg_catalog.default"
 Token name | Description
-----------------+--
 asciihword | Hyphenated word, all ASCII
 asciiword | Word, all ASCII
 blank | Space symbols
 email | Email address
 entity | XML entity
 file | File or path name
 float | Decimal notation

398

Full Text Search

 host | Host
 hword | Hyphenated word, all letters
 hword_asciipart | Hyphenated word part, all ASCII
 hword_numpart | Hyphenated word part, letters and digits
 hword_part | Hyphenated word part, all letters
 int | Signed integer
 numhword | Hyphenated word, letters and digits
 numword | Word, letters and digits
 protocol | Protocol head
 sfloat | Scientific notation
 tag | XML tag
 uint | Unsigned integer
 url | URL
 url_path | URL path
 version | Version number
 word | Word, all letters
(23 rows)

\dFt[+] [PATTERN]

List text search templates (add + for more detail).

=> \dFt
 List of text search templates
 Schema | Name | Description
------------+-----------+---
 pg_catalog | ispell | ispell dictionary
 pg_catalog | simple | simple dictionary: just lower case and check for stopword
 pg_catalog | snowball | snowball stemmer
 pg_catalog | synonym | synonym dictionary: replace word by its synonym
 pg_catalog | thesaurus | thesaurus dictionary: phrase by phrase substitution

12.11. Limitations
The current limitations of Postgres Pro's text search features are:
• The length of each lexeme must be less than 2 kilobytes
• The length of a tsvector (lexemes + positions) must be less than 1 megabyte
• The number of lexemes must be less than 264

• Position values in tsvector must be greater than 0 and no more than 16,383
• The match distance in a <N> (FOLLOWED BY) tsquery operator cannot be more than 16,384
• No more than 256 positions per lexeme
• The number of nodes (lexemes + operators) in a tsquery must be less than 32,768

For comparison, the PostgreSQL 8.1 documentation contained 10,441 unique words, a total of 335,420
words, and the most frequent word “postgresql” was mentioned 6,127 times in 655 documents.

Another example — the PostgreSQL mailing list archives contained 910,989 unique words with
57,491,343 lexemes in 461,020 messages.

399

Chapter 13. Concurrency Control
This chapter describes the behavior of the Postgres Pro database system when two or more sessions try
to access the same data at the same time. The goals in that situation are to allow efficient access for
all sessions while maintaining strict data integrity. Every developer of database applications should be
familiar with the topics covered in this chapter.

13.1. Introduction
Postgres Pro provides a rich set of tools for developers to manage concurrent access to data. Internally,
data consistency is maintained by using a multiversion model (Multiversion Concurrency Control,
MVCC). This means that each SQL statement sees a snapshot of data (a database version) as it
was some time ago, regardless of the current state of the underlying data. This prevents statements
from viewing inconsistent data produced by concurrent transactions performing updates on the
same data rows, providing transaction isolation for each database session. MVCC, by eschewing the
locking methodologies of traditional database systems, minimizes lock contention in order to allow for
reasonable performance in multiuser environments.

The main advantage of using the MVCC model of concurrency control rather than locking is that
in MVCC locks acquired for querying (reading) data do not conflict with locks acquired for writing
data, and so reading never blocks writing and writing never blocks reading. Postgres Pro maintains
this guarantee even when providing the strictest level of transaction isolation through the use of an
innovative Serializable Snapshot Isolation (SSI) level.

Table- and row-level locking facilities are also available in Postgres Pro for applications which don't
generally need full transaction isolation and prefer to explicitly manage particular points of conflict.
However, proper use of MVCC will generally provide better performance than locks. In addition,
application-defined advisory locks provide a mechanism for acquiring locks that are not tied to a single
transaction.

13.2. Transaction Isolation
The SQL standard defines four levels of transaction isolation. The most strict is Serializable, which is
defined by the standard in a paragraph which says that any concurrent execution of a set of Serializable
transactions is guaranteed to produce the same effect as running them one at a time in some order. The
other three levels are defined in terms of phenomena, resulting from interaction between concurrent
transactions, which must not occur at each level. The standard notes that due to the definition of
Serializable, none of these phenomena are possible at that level. (This is hardly surprising -- if the effect
of the transactions must be consistent with having been run one at a time, how could you see any
phenomena caused by interactions?)

The phenomena which are prohibited at various levels are:
dirty read

A transaction reads data written by a concurrent uncommitted transaction.

nonrepeatable read
A transaction re-reads data it has previously read and finds that data has been modified by another
transaction (that committed since the initial read).

phantom read
A transaction re-executes a query returning a set of rows that satisfy a search condition and finds that
the set of rows satisfying the condition has changed due to another recently-committed transaction.

serialization anomaly
The result of successfully committing a group of transactions is inconsistent with all possible
orderings of running those transactions one at a time.

400

Concurrency Control

The SQL standard and Postgres Pro-implemented transaction isolation levels are described in Table 13.1.

Table 13.1. Transaction Isolation Levels

Isolation Level Dirty Read Nonrepeatable
Read

Phantom Read Serialization
Anomaly

Read uncommitted Allowed, but not in
PG

Possible Possible Possible

Read committed Not possible Possible Possible Possible
Repeatable read Not possible Not possible Allowed, but not in

PG
Possible

Serializable Not possible Not possible Not possible Not possible

In Postgres Pro, you can request any of the four standard transaction isolation levels, but internally only
three distinct isolation levels are implemented, i.e., Postgres Pro's Read Uncommitted mode behaves
like Read Committed. This is because it is the only sensible way to map the standard isolation levels to
Postgres Pro's multiversion concurrency control architecture.

The table also shows that Postgres Pro's Repeatable Read implementation does not allow phantom reads.
Stricter behavior is permitted by the SQL standard: the four isolation levels only define which phenomena
must not happen, not which phenomena must happen. The behavior of the available isolation levels is
detailed in the following subsections.

To set the transaction isolation level of a transaction, use the command SET TRANSACTION.

Important
Some Postgres Pro data types and functions have special rules regarding transactional behavior.
In particular, changes made to a sequence (and therefore the counter of a column declared using
serial) are immediately visible to all other transactions and are not rolled back if the transaction
that made the changes aborts. See Section 9.17 and Section 8.1.4.

13.2.1. Read Committed Isolation Level
Read Committed is the default isolation level in Postgres Pro. When a transaction uses this isolation level,
a SELECT query (without a FOR UPDATE/SHARE clause) sees only data committed before the query began;
it never sees either uncommitted data or changes committed during query execution by concurrent
transactions. In effect, a SELECT query sees a snapshot of the database as of the instant the query begins
to run. However, SELECT does see the effects of previous updates executed within its own transaction,
even though they are not yet committed. Also note that two successive SELECT commands can see
different data, even though they are within a single transaction, if other transactions commit changes
after the first SELECT starts and before the second SELECT starts.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as SELECT
in terms of searching for target rows: they will only find target rows that were committed as of the
command start time. However, such a target row might have already been updated (or deleted or locked)
by another concurrent transaction by the time it is found. In this case, the would-be updater will wait
for the first updating transaction to commit or roll back (if it is still in progress). If the first updater rolls
back, then its effects are negated and the second updater can proceed with updating the originally found
row. If the first updater commits, the second updater will ignore the row if the first updater deleted it,
otherwise it will attempt to apply its operation to the updated version of the row. The search condition
of the command (the WHERE clause) is re-evaluated to see if the updated version of the row still matches
the search condition. If so, the second updater proceeds with its operation using the updated version of
the row. In the case of SELECT FOR UPDATE and SELECT FOR SHARE, this means it is the updated version
of the row that is locked and returned to the client.

401

Concurrency Control

INSERT with an ON CONFLICT DO UPDATE clause behaves similarly. In Read Committed mode, each row
proposed for insertion will either insert or update. Unless there are unrelated errors, one of those two
outcomes is guaranteed. If a conflict originates in another transaction whose effects are not yet visible
to the INSERT , the UPDATE clause will affect that row, even though possibly no version of that row is
conventionally visible to the command.

INSERT with an ON CONFLICT DO NOTHING clause may have insertion not proceed for a row due to the
outcome of another transaction whose effects are not visible to the INSERT snapshot. Again, this is only
the case in Read Committed mode.

Because of the above rules, it is possible for an updating command to see an inconsistent snapshot:
it can see the effects of concurrent updating commands on the same rows it is trying to update, but
it does not see effects of those commands on other rows in the database. This behavior makes Read
Committed mode unsuitable for commands that involve complex search conditions; however, it is just
right for simpler cases. For example, consider updating bank balances with transactions like:

BEGIN;
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 12345;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 7534;
COMMIT;

If two such transactions concurrently try to change the balance of account 12345, we clearly want the
second transaction to start with the updated version of the account's row. Because each command is
affecting only a predetermined row, letting it see the updated version of the row does not create any
troublesome inconsistency.

More complex usage can produce undesirable results in Read Committed mode. For example, consider
a DELETE command operating on data that is being both added and removed from its restriction criteria
by another command, e.g., assume website is a two-row table with website.hits equaling 9 and 10:

BEGIN;
UPDATE website SET hits = hits + 1;
-- run from another session: DELETE FROM website WHERE hits = 10;
COMMIT;

The DELETE will have no effect even though there is a website.hits = 10 row before and after the
UPDATE. This occurs because the pre-update row value 9 is skipped, and when the UPDATE completes and
DELETE obtains a lock, the new row value is no longer 10 but 11, which no longer matches the criteria.

Because Read Committed mode starts each command with a new snapshot that includes all transactions
committed up to that instant, subsequent commands in the same transaction will see the effects of
the committed concurrent transaction in any case. The point at issue above is whether or not a single
command sees an absolutely consistent view of the database.

The partial transaction isolation provided by Read Committed mode is adequate for many applications,
and this mode is fast and simple to use; however, it is not sufficient for all cases. Applications that do
complex queries and updates might require a more rigorously consistent view of the database than Read
Committed mode provides.

13.2.2. Repeatable Read Isolation Level
The Repeatable Read isolation level only sees data committed before the transaction began; it never sees
either uncommitted data or changes committed during transaction execution by concurrent transactions.
(However, the query does see the effects of previous updates executed within its own transaction, even
though they are not yet committed.) This is a stronger guarantee than is required by the SQL standard
for this isolation level, and prevents all of the phenomena described in Table 13.1 except for serialization
anomalies. As mentioned above, this is specifically allowed by the standard, which only describes the
minimum protections each isolation level must provide.

This level is different from Read Committed in that a query in a repeatable read transaction sees a
snapshot as of the start of the first non-transaction-control statement in the transaction, not as of the

402

Concurrency Control

start of the current statement within the transaction. Thus, successive SELECT commands within a single
transaction see the same data, i.e., they do not see changes made by other transactions that committed
after their own transaction started.

Applications using this level must be prepared to retry transactions due to serialization failures.

UPDATE, DELETE, SELECT FOR UPDATE, and SELECT FOR SHARE commands behave the same as SELECT
in terms of searching for target rows: they will only find target rows that were committed as of the
transaction start time. However, such a target row might have already been updated (or deleted or
locked) by another concurrent transaction by the time it is found. In this case, the repeatable read
transaction will wait for the first updating transaction to commit or roll back (if it is still in progress). If
the first updater rolls back, then its effects are negated and the repeatable read transaction can proceed
with updating the originally found row. But if the first updater commits (and actually updated or deleted
the row, not just locked it) then the repeatable read transaction will be rolled back with the message

ERROR: could not serialize access due to concurrent update

because a repeatable read transaction cannot modify or lock rows changed by other transactions after
the repeatable read transaction began.

When an application receives this error message, it should abort the current transaction and retry the
whole transaction from the beginning. The second time through, the transaction will see the previously-
committed change as part of its initial view of the database, so there is no logical conflict in using the
new version of the row as the starting point for the new transaction's update.

Note that only updating transactions might need to be retried; read-only transactions will never have
serialization conflicts.

The Repeatable Read mode provides a rigorous guarantee that each transaction sees a completely stable
view of the database. However, this view will not necessarily always be consistent with some serial
(one at a time) execution of concurrent transactions of the same level. For example, even a read only
transaction at this level may see a control record updated to show that a batch has been completed but
not see one of the detail records which is logically part of the batch because it read an earlier revision
of the control record. Attempts to enforce business rules by transactions running at this isolation level
are not likely to work correctly without careful use of explicit locks to block conflicting transactions.

The Repeatable Read isolation level is implemented using a technique known in academic database
literature and in some other database products as Snapshot Isolation. Differences in behavior and
performance may be observed when compared with systems that use a traditional locking technique
that reduces concurrency. Some other systems may even offer Repeatable Read and Snapshot Isolation
as distinct isolation levels with different behavior. The permitted phenomena that distinguish the two
techniques were not formalized by database researchers until after the SQL standard was developed,
and are outside the scope of this manual. For a full treatment, please see berenson95.

Note
Prior to PostgreSQL version 9.1, a request for the Serializable transaction isolation level provided
exactly the same behavior described here. To retain the legacy Serializable behavior, Repeatable
Read should now be requested.

13.2.3. Serializable Isolation Level
The Serializable isolation level provides the strictest transaction isolation. This level emulates serial
transaction execution for all committed transactions; as if transactions had been executed one after
another, serially, rather than concurrently. However, like the Repeatable Read level, applications using
this level must be prepared to retry transactions due to serialization failures. In fact, this isolation
level works exactly the same as Repeatable Read except that it monitors for conditions which could
make execution of a concurrent set of serializable transactions behave in a manner inconsistent with

403

Concurrency Control

all possible serial (one at a time) executions of those transactions. This monitoring does not introduce
any blocking beyond that present in repeatable read, but there is some overhead to the monitoring, and
detection of the conditions which could cause a serialization anomaly will trigger a serialization failure.

As an example, consider a table mytab, initially containing:

 class | value
-------+-------
 1 | 10
 1 | 20
 2 | 100
 2 | 200

Suppose that serializable transaction A computes:

SELECT SUM(value) FROM mytab WHERE class = 1;

and then inserts the result (30) as the value in a new row with class = 2. Concurrently, serializable
transaction B computes:

SELECT SUM(value) FROM mytab WHERE class = 2;

and obtains the result 300, which it inserts in a new row with class = 1. Then both transactions try to
commit. If either transaction were running at the Repeatable Read isolation level, both would be allowed
to commit; but since there is no serial order of execution consistent with the result, using Serializable
transactions will allow one transaction to commit and will roll the other back with this message:

ERROR: could not serialize access due to read/write dependencies among transactions

This is because if A had executed before B, B would have computed the sum 330, not 300, and similarly
the other order would have resulted in a different sum computed by A.

When relying on Serializable transactions to prevent anomalies, it is important that any data read from
a permanent user table not be considered valid until the transaction which read it has successfully
committed. This is true even for read-only transactions, except that data read within a deferrable read-
only transaction is known to be valid as soon as it is read, because such a transaction waits until it
can acquire a snapshot guaranteed to be free from such problems before starting to read any data. In
all other cases applications must not depend on results read during a transaction that later aborted;
instead, they should retry the transaction until it succeeds.

To guarantee true serializability Postgres Pro uses predicate locking, which means that it keeps locks
which allow it to determine when a write would have had an impact on the result of a previous read
from a concurrent transaction, had it run first. In Postgres Pro these locks do not cause any blocking and
therefore can not play any part in causing a deadlock. They are used to identify and flag dependencies
among concurrent Serializable transactions which in certain combinations can lead to serialization
anomalies. In contrast, a Read Committed or Repeatable Read transaction which wants to ensure data
consistency may need to take out a lock on an entire table, which could block other users attempting to
use that table, or it may use SELECT FOR UPDATE or SELECT FOR SHARE which not only can block other
transactions but cause disk access.

Predicate locks in Postgres Pro, like in most other database systems, are based on data actually accessed
by a transaction. These will show up in the pg_locks system view with a mode of SIReadLock. The
particular locks acquired during execution of a query will depend on the plan used by the query, and
multiple finer-grained locks (e.g., tuple locks) may be combined into fewer coarser-grained locks (e.g.,
page locks) during the course of the transaction to prevent exhaustion of the memory used to track the
locks. A READ ONLY transaction may be able to release its SIRead locks before completion, if it detects that
no conflicts can still occur which could lead to a serialization anomaly. In fact, READ ONLY transactions
will often be able to establish that fact at startup and avoid taking any predicate locks. If you explicitly
request a SERIALIZABLE READ ONLY DEFERRABLE transaction, it will block until it can establish this fact.
(This is the only case where Serializable transactions block but Repeatable Read transactions don't.)
On the other hand, SIRead locks often need to be kept past transaction commit, until overlapping read
write transactions complete.

404

Concurrency Control

Consistent use of Serializable transactions can simplify development. The guarantee that any set of
successfully committed concurrent Serializable transactions will have the same effect as if they were
run one at a time means that if you can demonstrate that a single transaction, as written, will do the
right thing when run by itself, you can have confidence that it will do the right thing in any mix of
Serializable transactions, even without any information about what those other transactions might do,
or it will not successfully commit. It is important that an environment which uses this technique have
a generalized way of handling serialization failures (which always return with a SQLSTATE value of
'40001'), because it will be very hard to predict exactly which transactions might contribute to the read/
write dependencies and need to be rolled back to prevent serialization anomalies. The monitoring of
read/write dependencies has a cost, as does the restart of transactions which are terminated with a
serialization failure, but balanced against the cost and blocking involved in use of explicit locks and
SELECT FOR UPDATE or SELECT FOR SHARE, Serializable transactions are the best performance choice
for some environments.

While Postgres Pro's Serializable transaction isolation level only allows concurrent transactions to
commit if it can prove there is a serial order of execution that would produce the same effect, it doesn't
always prevent errors from being raised that would not occur in true serial execution. In particular,
it is possible to see unique constraint violations caused by conflicts with overlapping Serializable
transactions even after explicitly checking that the key isn't present before attempting to insert it. This
can be avoided by making sure that all Serializable transactions that insert potentially conflicting keys
explicitly check if they can do so first. For example, imagine an application that asks the user for a new
key and then checks that it doesn't exist already by trying to select it first, or generates a new key by
selecting the maximum existing key and adding one. If some Serializable transactions insert new keys
directly without following this protocol, unique constraints violations might be reported even in cases
where they could not occur in a serial execution of the concurrent transactions.

For optimal performance when relying on Serializable transactions for concurrency control, these issues
should be considered:
• Declare transactions as READ ONLY when possible.
• Control the number of active connections, using a connection pool if needed. This is always an

important performance consideration, but it can be particularly important in a busy system using
Serializable transactions.

• Don't put more into a single transaction than needed for integrity purposes.
• Don't leave connections dangling “idle in transaction” longer than necessary. The configuration

parameter idle_in_transaction_session_timeout may be used to automatically disconnect lingering
sessions.

• Eliminate explicit locks, SELECT FOR UPDATE, and SELECT FOR SHARE where no longer needed due
to the protections automatically provided by Serializable transactions.

• When the system is forced to combine multiple page-level predicate locks into a single relation-
level predicate lock because the predicate lock table is short of memory, an increase in the rate of
serialization failures may occur. You can avoid this by increasing max_pred_locks_per_transaction,
max_pred_locks_per_relation, and/or max_pred_locks_per_page.

• A sequential scan will always necessitate a relation-level predicate lock. This can result in an
increased rate of serialization failures. It may be helpful to encourage the use of index scans by
reducing random_page_cost and/or increasing cpu_tuple_cost. Be sure to weigh any decrease in
transaction rollbacks and restarts against any overall change in query execution time.

The Serializable isolation level is implemented using a technique known in academic database literature
as Serializable Snapshot Isolation, which builds on Snapshot Isolation by adding checks for serialization
anomalies. Some differences in behavior and performance may be observed when compared with other
systems that use a traditional locking technique. Please see ports12 for detailed information.

13.3. Explicit Locking
Postgres Pro provides various lock modes to control concurrent access to data in tables. These modes can
be used for application-controlled locking in situations where MVCC does not give the desired behavior.

405

Concurrency Control

Also, most Postgres Pro commands automatically acquire locks of appropriate modes to ensure that
referenced tables are not dropped or modified in incompatible ways while the command executes. (For
example, TRUNCATE cannot safely be executed concurrently with other operations on the same table, so
it obtains an ACCESS EXCLUSIVE lock on the table to enforce that.)

To examine a list of the currently outstanding locks in a database server, use the pg_locks system view.
For more information on monitoring the status of the lock manager subsystem, refer to Chapter 26.

13.3.1. Table-Level Locks
The list below shows the available lock modes and the contexts in which they are used automatically
by Postgres Pro. You can also acquire any of these locks explicitly with the command LOCK. Remember
that all of these lock modes are table-level locks, even if the name contains the word “row”; the names
of the lock modes are historical. To some extent the names reflect the typical usage of each lock mode
— but the semantics are all the same. The only real difference between one lock mode and another is
the set of lock modes with which each conflicts (see Table 13.2). Two transactions cannot hold locks of
conflicting modes on the same table at the same time. (However, a transaction never conflicts with itself.
For example, it might acquire ACCESS EXCLUSIVE lock and later acquire ACCESS SHARE lock on the same
table.) Non-conflicting lock modes can be held concurrently by many transactions. Notice in particular
that some lock modes are self-conflicting (for example, an ACCESS EXCLUSIVE lock cannot be held by
more than one transaction at a time) while others are not self-conflicting (for example, an ACCESS SHARE
lock can be held by multiple transactions).

Table-Level Lock Modes

ACCESS SHARE

Conflicts with the ACCESS EXCLUSIVE lock mode only.

The SELECT command acquires a lock of this mode on referenced tables. In general, any query that
only reads a table and does not modify it will acquire this lock mode.

ROW SHARE

Conflicts with the EXCLUSIVE and ACCESS EXCLUSIVE lock modes.

The SELECT FOR UPDATE and SELECT FOR SHARE commands acquire a lock of this mode on the target
table(s) (in addition to ACCESS SHARE locks on any other tables that are referenced but not selected
FOR UPDATE/FOR SHARE).

ROW EXCLUSIVE

Conflicts with the SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes.

The commands UPDATE, DELETE, and INSERT acquire this lock mode on the target table (in addition
to ACCESS SHARE locks on any other referenced tables). In general, this lock mode will be acquired
by any command that modifies data in a table.

SHARE UPDATE EXCLUSIVE

Conflicts with the SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS
EXCLUSIVE lock modes. This mode protects a table against concurrent schema changes and VACUUM
runs.

Acquired by VACUUM (without FULL), ANALYZE, CREATE INDEX CONCURRENTLY, CREATE STATISTICS,
COMMENT ON, REINDEX CONCURRENTLY, and certain ALTER INDEX and ALTER TABLE variants (for full
details see ALTER INDEX and ALTER TABLE).

SHARE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE ROW EXCLUSIVE, EXCLUSIVE, and
ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent data changes.

406

Concurrency Control

Acquired by CREATE INDEX (without CONCURRENTLY).

SHARE ROW EXCLUSIVE

Conflicts with the ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW EXCLUSIVE,
EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode protects a table against concurrent data
changes, and is self-exclusive so that only one session can hold it at a time.

Acquired by CREATE TRIGGER and some forms of ALTER TABLE (see ALTER TABLE).

EXCLUSIVE

Conflicts with the ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE, SHARE ROW
EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE lock modes. This mode allows only concurrent ACCESS
SHARE locks, i.e., only reads from the table can proceed in parallel with a transaction holding this
lock mode.

Acquired by REFRESH MATERIALIZED VIEW CONCURRENTLY.

ACCESS EXCLUSIVE

Conflicts with locks of ACCESS SHARE, ROW SHARE, ROW EXCLUSIVE, SHARE UPDATE EXCLUSIVE, SHARE,
SHARE ROW EXCLUSIVE, EXCLUSIVE, and ACCESS EXCLUSIVE mode. This mode guarantees that the
holder is the only transaction accessing the table in any way.

Acquired by the DROP TABLE, TRUNCATE, REINDEX, CLUSTER, VACUUM FULL, and REFRESH MATERIALIZED
VIEW (without CONCURRENTLY) commands. Many forms of ALTER INDEX and ALTER TABLE also acquire
a lock at this level. This is also the default lock mode for LOCK TABLE statements that do not specify
a mode explicitly.

Tip
Only an ACCESS EXCLUSIVE lock blocks a SELECT (without FOR UPDATE/SHARE) statement.

Besides, there are two additional lock modes designed to support 1C Enterprise. These modes do not
conflict with any other lock modes described above. Their use is possible, but not encouraged, as advisory
locks provide the same functionality.

APPLICATION SHARE

Conflicts with the APPLICATION EXCLUSIVE lock mode only.

APPLICATION EXCLUSIVE

Conflicts with the APPLICATION SHARE and APPLICATION EXCLUSIVE lock modes.

Once acquired, a lock is normally held until the end of the transaction. But if a lock is acquired after
establishing a savepoint, the lock is released immediately if the savepoint is rolled back to. This is
consistent with the principle that ROLLBACK cancels all effects of the commands since the savepoint.
The same holds for locks acquired within a PL/pgSQL exception block: an error escape from the block
releases locks acquired within it.

Table 13.2. Conflicting Lock Modes

Existing Lock ModeRequested
Lock
Mode ACCESS

SHARE
ROW
SHARE

ROW
EXCL.

SHARE
UPDATE
EXCL.

SHARE SHARE
ROW
EXCL.

EXCL. ACCESS
EXCL.

APP.
SHARE

APP.
EXCL.

ACCESS
SHARE

 X

407

Concurrency Control

Existing Lock ModeRequested
Lock
Mode ACCESS

SHARE
ROW
SHARE

ROW
EXCL.

SHARE
UPDATE
EXCL.

SHARE SHARE
ROW
EXCL.

EXCL. ACCESS
EXCL.

APP.
SHARE

APP.
EXCL.

ROW
SHARE

 X X

ROW
EXCL.

 X X X X

SHARE
UPDATE
EXCL.

 X X X X X

SHARE X X X X X
SHARE
ROW
EXCL.

 X X X X X X

EXCL. X X X X X X X
ACCESS
EXCL.

X X X X X X X X

APP.
SHARE

 X

APP.
EXCL.

 X X

13.3.2. Row-Level Locks
In addition to table-level locks, there are row-level locks, which are listed as below with the contexts
in which they are used automatically by Postgres Pro. See Table 13.3 for a complete table of row-level
lock conflicts. Note that a transaction can hold conflicting locks on the same row, even in different
subtransactions; but other than that, two transactions can never hold conflicting locks on the same row.
Row-level locks do not affect data querying; they block only writers and lockers to the same row. Row-
level locks are released at transaction end or during savepoint rollback, just like table-level locks.

Row-Level Lock Modes
FOR UPDATE

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update.
This prevents them from being locked, modified or deleted by other transactions until the current
transaction ends. That is, other transactions that attempt UPDATE, DELETE, SELECT FOR UPDATE,
SELECT FOR NO KEY UPDATE, SELECT FOR SHARE or SELECT FOR KEY SHARE of these rows will be
blocked until the current transaction ends; conversely, SELECT FOR UPDATE will wait for a concurrent
transaction that has run any of those commands on the same row, and will then lock and return
the updated row (or no row, if the row was deleted). Within a REPEATABLE READ or SERIALIZABLE
transaction, however, an error will be thrown if a row to be locked has changed since the transaction
started. For further discussion see Section 13.4.

The FOR UPDATE lock mode is also acquired by any DELETE on a row, and also by an UPDATE that
modifies the values of certain columns. Currently, the set of columns considered for the UPDATE case
are those that have a unique index on them that can be used in a foreign key (so partial indexes and
expressional indexes are not considered), but this may change in the future.

FOR NO KEY UPDATE

Behaves similarly to FOR UPDATE, except that the lock acquired is weaker: this lock will not block
SELECT FOR KEY SHARE commands that attempt to acquire a lock on the same rows. This lock mode
is also acquired by any UPDATE that does not acquire a FOR UPDATE lock.

408

Concurrency Control

FOR SHARE

Behaves similarly to FOR NO KEY UPDATE, except that it acquires a shared lock rather than exclusive
lock on each retrieved row. A shared lock blocks other transactions from performing UPDATE, DELETE,
SELECT FOR UPDATE or SELECT FOR NO KEY UPDATE on these rows, but it does not prevent them from
performing SELECT FOR SHARE or SELECT FOR KEY SHARE.

FOR KEY SHARE

Behaves similarly to FOR SHARE, except that the lock is weaker: SELECT FOR UPDATE is blocked, but
not SELECT FOR NO KEY UPDATE. A key-shared lock blocks other transactions from performing DELETE
or any UPDATE that changes the key values, but not other UPDATE, and neither does it prevent SELECT
FOR NO KEY UPDATE, SELECT FOR SHARE, or SELECT FOR KEY SHARE.

Postgres Pro doesn't remember any information about modified rows in memory, so there is no limit on
the number of rows locked at one time. However, locking a row might cause a disk write, e.g., SELECT
FOR UPDATE modifies selected rows to mark them locked, and so will result in disk writes.

Table 13.3. Conflicting Row-Level Locks

Current Lock ModeRequested Lock Mode
FOR KEY
SHARE

FOR SHARE FOR NO KEY
UPDATE

FOR UPDATE

FOR KEY SHARE X
FOR SHARE X X
FOR NO KEY UPDATE X X X
FOR UPDATE X X X X

13.3.3. Page-Level Locks
In addition to table and row locks, page-level share/exclusive locks are used to control read/write access
to table pages in the shared buffer pool. These locks are released immediately after a row is fetched
or updated. Application developers normally need not be concerned with page-level locks, but they are
mentioned here for completeness.

13.3.4. Deadlocks
The use of explicit locking can increase the likelihood of deadlocks, wherein two (or more) transactions
each hold locks that the other wants. For example, if transaction 1 acquires an exclusive lock on table
A and then tries to acquire an exclusive lock on table B, while transaction 2 has already exclusive-
locked table B and now wants an exclusive lock on table A, then neither one can proceed. Postgres Pro
automatically detects deadlock situations and resolves them by aborting one of the transactions involved,
allowing the other(s) to complete. (Exactly which transaction will be aborted is difficult to predict and
should not be relied upon.)

Note that deadlocks can also occur as the result of row-level locks (and thus, they can occur even if
explicit locking is not used). Consider the case in which two concurrent transactions modify a table. The
first transaction executes:
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 11111;

This acquires a row-level lock on the row with the specified account number. Then, the second transaction
executes:
UPDATE accounts SET balance = balance + 100.00 WHERE acctnum = 22222;
UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 11111;

The first UPDATE statement successfully acquires a row-level lock on the specified row, so it succeeds in
updating that row. However, the second UPDATE statement finds that the row it is attempting to update
has already been locked, so it waits for the transaction that acquired the lock to complete. Transaction
two is now waiting on transaction one to complete before it continues execution. Now, transaction one
executes:

409

Concurrency Control

UPDATE accounts SET balance = balance - 100.00 WHERE acctnum = 22222;

Transaction one attempts to acquire a row-level lock on the specified row, but it cannot: transaction two
already holds such a lock. So it waits for transaction two to complete. Thus, transaction one is blocked
on transaction two, and transaction two is blocked on transaction one: a deadlock condition. Postgres
Pro will detect this situation and abort one of the transactions.

The best defense against deadlocks is generally to avoid them by being certain that all applications
using a database acquire locks on multiple objects in a consistent order. In the example above, if both
transactions had updated the rows in the same order, no deadlock would have occurred. One should also
ensure that the first lock acquired on an object in a transaction is the most restrictive mode that will be
needed for that object. If it is not feasible to verify this in advance, then deadlocks can be handled on-
the-fly by retrying transactions that abort due to deadlocks.

So long as no deadlock situation is detected, a transaction seeking either a table-level or row-level lock
will wait indefinitely for conflicting locks to be released. This means it is a bad idea for applications to
hold transactions open for long periods of time (e.g., while waiting for user input).

13.3.5. Advisory Locks
Postgres Pro provides a means for creating locks that have application-defined meanings. These are
called advisory locks, because the system does not enforce their use — it is up to the application to
use them correctly. Advisory locks can be useful for locking strategies that are an awkward fit for the
MVCC model. For example, a common use of advisory locks is to emulate pessimistic locking strategies
typical of so-called “flat file” data management systems. While a flag stored in a table could be used for
the same purpose, advisory locks are faster, avoid table bloat, and are automatically cleaned up by the
server at the end of the session.

There are two ways to acquire an advisory lock in Postgres Pro: at session level or at transaction level.
Once acquired at session level, an advisory lock is held until explicitly released or the session ends.
Unlike standard lock requests, session-level advisory lock requests do not honor transaction semantics:
a lock acquired during a transaction that is later rolled back will still be held following the rollback, and
likewise an unlock is effective even if the calling transaction fails later. A lock can be acquired multiple
times by its owning process; for each completed lock request there must be a corresponding unlock
request before the lock is actually released. Transaction-level lock requests, on the other hand, behave
more like regular lock requests: they are automatically released at the end of the transaction, and there
is no explicit unlock operation. This behavior is often more convenient than the session-level behavior
for short-term usage of an advisory lock. Session-level and transaction-level lock requests for the same
advisory lock identifier will block each other in the expected way. If a session already holds a given
advisory lock, additional requests by it will always succeed, even if other sessions are awaiting the lock;
this statement is true regardless of whether the existing lock hold and new request are at session level
or transaction level.

Like all locks in Postgres Pro, a complete list of advisory locks currently held by any session can be found
in the pg_locks system view.

Both advisory locks and regular locks are stored in a shared memory pool whose size is defined by
the configuration variables max_locks_per_transaction and max_connections. Care must be taken not to
exhaust this memory or the server will be unable to grant any locks at all. This imposes an upper limit
on the number of advisory locks grantable by the server, typically in the tens to hundreds of thousands
depending on how the server is configured.

In certain cases using advisory locking methods, especially in queries involving explicit ordering and
LIMIT clauses, care must be taken to control the locks acquired because of the order in which SQL
expressions are evaluated. For example:

SELECT pg_advisory_lock(id) FROM foo WHERE id = 12345; -- ok
SELECT pg_advisory_lock(id) FROM foo WHERE id > 12345 LIMIT 100; -- danger!
SELECT pg_advisory_lock(q.id) FROM
(

410

Concurrency Control

 SELECT id FROM foo WHERE id > 12345 LIMIT 100
) q; -- ok

In the above queries, the second form is dangerous because the LIMIT is not guaranteed to be applied
before the locking function is executed. This might cause some locks to be acquired that the application
was not expecting, and hence would fail to release (until it ends the session). From the point of view of
the application, such locks would be dangling, although still viewable in pg_locks.

The functions provided to manipulate advisory locks are described in Section 9.27.10.

13.4. Data Consistency Checks at the Application Level
It is very difficult to enforce business rules regarding data integrity using Read Committed transactions
because the view of the data is shifting with each statement, and even a single statement may not restrict
itself to the statement's snapshot if a write conflict occurs.

While a Repeatable Read transaction has a stable view of the data throughout its execution, there is
a subtle issue with using MVCC snapshots for data consistency checks, involving something known
as read/write conflicts. If one transaction writes data and a concurrent transaction attempts to read
the same data (whether before or after the write), it cannot see the work of the other transaction.
The reader then appears to have executed first regardless of which started first or which committed
first. If that is as far as it goes, there is no problem, but if the reader also writes data which is read
by a concurrent transaction there is now a transaction which appears to have run before either of
the previously mentioned transactions. If the transaction which appears to have executed last actually
commits first, it is very easy for a cycle to appear in a graph of the order of execution of the transactions.
When such a cycle appears, integrity checks will not work correctly without some help.

As mentioned in Section 13.2.3, Serializable transactions are just Repeatable Read transactions which
add nonblocking monitoring for dangerous patterns of read/write conflicts. When a pattern is detected
which could cause a cycle in the apparent order of execution, one of the transactions involved is rolled
back to break the cycle.

13.4.1. Enforcing Consistency with Serializable Transactions
If the Serializable transaction isolation level is used for all writes and for all reads which need a consistent
view of the data, no other effort is required to ensure consistency. Software from other environments
which is written to use serializable transactions to ensure consistency should “just work” in this regard
in Postgres Pro.

When using this technique, it will avoid creating an unnecessary burden for application programmers if
the application software goes through a framework which automatically retries transactions which are
rolled back with a serialization failure. It may be a good idea to set default_transaction_isolation
to serializable. It would also be wise to take some action to ensure that no other transaction isolation
level is used, either inadvertently or to subvert integrity checks, through checks of the transaction
isolation level in triggers.

See Section 13.2.3 for performance suggestions.

Warning
This level of integrity protection using Serializable transactions does not yet extend to hot standby
mode (Section 25.5). Because of that, those using hot standby may want to use Repeatable Read
and explicit locking on the master.

13.4.2. Enforcing Consistency with Explicit Blocking Locks
When non-serializable writes are possible, to ensure the current validity of a row and protect it against
concurrent updates one must use SELECT FOR UPDATE, SELECT FOR SHARE, or an appropriate LOCK TABLE
statement. (SELECT FOR UPDATE and SELECT FOR SHARE lock just the returned rows against concurrent

411

Concurrency Control

updates, while LOCK TABLE locks the whole table.) This should be taken into account when porting
applications to Postgres Pro from other environments.

Also of note to those converting from other environments is the fact that SELECT FOR UPDATE does not
ensure that a concurrent transaction will not update or delete a selected row. To do that in Postgres
Pro you must actually update the row, even if no values need to be changed. SELECT FOR UPDATE
temporarily blocks other transactions from acquiring the same lock or executing an UPDATE or DELETE
which would affect the locked row, but once the transaction holding this lock commits or rolls back, a
blocked transaction will proceed with the conflicting operation unless an actual UPDATE of the row was
performed while the lock was held.

Global validity checks require extra thought under non-serializable MVCC. For example, a banking
application might wish to check that the sum of all credits in one table equals the sum of debits in another
table, when both tables are being actively updated. Comparing the results of two successive SELECT
sum(...) commands will not work reliably in Read Committed mode, since the second query will likely
include the results of transactions not counted by the first. Doing the two sums in a single repeatable
read transaction will give an accurate picture of only the effects of transactions that committed before
the repeatable read transaction started — but one might legitimately wonder whether the answer is still
relevant by the time it is delivered. If the repeatable read transaction itself applied some changes before
trying to make the consistency check, the usefulness of the check becomes even more debatable, since
now it includes some but not all post-transaction-start changes. In such cases a careful person might
wish to lock all tables needed for the check, in order to get an indisputable picture of current reality.
A SHARE mode (or higher) lock guarantees that there are no uncommitted changes in the locked table,
other than those of the current transaction.

Note also that if one is relying on explicit locking to prevent concurrent changes, one should either use
Read Committed mode, or in Repeatable Read mode be careful to obtain locks before performing queries.
A lock obtained by a repeatable read transaction guarantees that no other transactions modifying the
table are still running, but if the snapshot seen by the transaction predates obtaining the lock, it might
predate some now-committed changes in the table. A repeatable read transaction's snapshot is actually
frozen at the start of its first query or data-modification command (SELECT, INSERT, UPDATE, or DELETE),
so it is possible to obtain locks explicitly before the snapshot is frozen.

13.5. Caveats
Some DDL commands, currently only TRUNCATE and the table-rewriting forms of ALTER TABLE, are
not MVCC-safe. This means that after the truncation or rewrite commits, the table will appear empty to
concurrent transactions, if they are using a snapshot taken before the DDL command committed. This
will only be an issue for a transaction that did not access the table in question before the DDL command
started — any transaction that has done so would hold at least an ACCESS SHARE table lock, which
would block the DDL command until that transaction completes. So these commands will not cause any
apparent inconsistency in the table contents for successive queries on the target table, but they could
cause visible inconsistency between the contents of the target table and other tables in the database.

Support for the Serializable transaction isolation level has not yet been added to Hot Standby replication
targets (described in Section 25.5). The strictest isolation level currently supported in hot standby mode
is Repeatable Read. While performing all permanent database writes within Serializable transactions
on the master will ensure that all standbys will eventually reach a consistent state, a Repeatable Read
transaction run on the standby can sometimes see a transient state that is inconsistent with any serial
execution of the transactions on the master.

Internal access to the system catalogs is not done using the isolation level of the current transaction. This
means that newly created database objects such as tables are visible to concurrent Repeatable Read and
Serializable transactions, even though the rows they contain are not. In contrast, queries that explicitly
examine the system catalogs don't see rows representing concurrently created database objects, in the
higher isolation levels.

13.6. Locking and Indexes

412

Concurrency Control

Though Postgres Pro provides nonblocking read/write access to table data, nonblocking read/write
access is not currently offered for every index access method implemented in Postgres Pro. The various
index types are handled as follows:
B-tree, GiST and SP-GiST indexes

Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. These index types provide the highest
concurrency without deadlock conditions.

Hash indexes
Share/exclusive hash-bucket-level locks are used for read/write access. Locks are released after the
whole bucket is processed. Bucket-level locks provide better concurrency than index-level ones, but
deadlock is possible since the locks are held longer than one index operation.

GIN indexes
Short-term share/exclusive page-level locks are used for read/write access. Locks are released
immediately after each index row is fetched or inserted. But note that insertion of a GIN-indexed
value usually produces several index key insertions per row, so GIN might do substantial work for
a single value's insertion.

Currently, B-tree indexes offer the best performance for concurrent applications; since they also have
more features than hash indexes, they are the recommended index type for concurrent applications that
need to index scalar data. When dealing with non-scalar data, B-trees are not useful, and GiST, SP-GiST
or GIN indexes should be used instead.

413

Chapter 14. Performance Tips
Query performance can be affected by many things. Some of these can be controlled by the user, while
others are fundamental to the underlying design of the system. This chapter provides some hints about
understanding and tuning Postgres Pro performance.

14.1. Using EXPLAIN
Postgres Pro devises a query plan for each query it receives. Choosing the right plan to match the
query structure and the properties of the data is absolutely critical for good performance, so the system
includes a complex planner that tries to choose good plans. You can use the EXPLAIN command to see
what query plan the planner creates for any query. Plan-reading is an art that requires some experience
to master, but this section attempts to cover the basics.

Examples in this section are drawn from the regression test database after doing a VACUUM ANALYZE,
using 9.3 development sources. You should be able to get similar results if you try the examples yourself,
but your estimated costs and row counts might vary slightly because ANALYZE's statistics are random
samples rather than exact, and because costs are inherently somewhat platform-dependent.

The examples use EXPLAIN's default “text” output format, which is compact and convenient for humans
to read. If you want to feed EXPLAIN's output to a program for further analysis, you should use one of its
machine-readable output formats (XML, JSON, or YAML) instead.

14.1.1. EXPLAIN Basics
The structure of a query plan is a tree of plan nodes. Nodes at the bottom level of the tree are scan
nodes: they return raw rows from a table. There are different types of scan nodes for different table
access methods: sequential scans, index scans, and bitmap index scans. There are also non-table row
sources, such as VALUES clauses and set-returning functions in FROM, which have their own scan node
types. If the query requires joining, aggregation, sorting, or other operations on the raw rows, then there
will be additional nodes above the scan nodes to perform these operations. Again, there is usually more
than one possible way to do these operations, so different node types can appear here too. The output of
EXPLAIN has one line for each node in the plan tree, showing the basic node type plus the cost estimates
that the planner made for the execution of that plan node. Additional lines might appear, indented from
the node's summary line, to show additional properties of the node. The very first line (the summary
line for the topmost node) has the estimated total execution cost for the plan; it is this number that the
planner seeks to minimize.

Here is a trivial example, just to show what the output looks like:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

Since this query has no WHERE clause, it must scan all the rows of the table, so the planner has chosen
to use a simple sequential scan plan. The numbers that are quoted in parentheses are (left to right):

• Estimated start-up cost. This is the time expended before the output phase can begin, e.g., time to
do the sorting in a sort node.

• Estimated total cost. This is stated on the assumption that the plan node is run to completion, i.e.,
all available rows are retrieved. In practice a node's parent node might stop short of reading all
available rows (see the LIMIT example below).

• Estimated number of rows output by this plan node. Again, the node is assumed to be run to
completion.

• Estimated average width of rows output by this plan node (in bytes).

414

Performance Tips

The costs are measured in arbitrary units determined by the planner's cost parameters (see
Section 18.7.2). Traditional practice is to measure the costs in units of disk page fetches; that is,
seq_page_cost is conventionally set to 1.0 and the other cost parameters are set relative to that. The
examples in this section are run with the default cost parameters.

It's important to understand that the cost of an upper-level node includes the cost of all its child nodes. It's
also important to realize that the cost only reflects things that the planner cares about. In particular, the
cost does not consider the time spent transmitting result rows to the client, which could be an important
factor in the real elapsed time; but the planner ignores it because it cannot change it by altering the
plan. (Every correct plan will output the same row set, we trust.)

The rows value is a little tricky because it is not the number of rows processed or scanned by the plan
node, but rather the number emitted by the node. This is often less than the number scanned, as a result
of filtering by any WHERE-clause conditions that are being applied at the node. Ideally the top-level rows
estimate will approximate the number of rows actually returned, updated, or deleted by the query.

Returning to our example:

EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

These numbers are derived very straightforwardly. If you do:

SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

you will find that tenk1 has 358 disk pages and 10000 rows. The estimated cost is computed as (disk
pages read * seq_page_cost) + (rows scanned * cpu_tuple_cost). By default, seq_page_cost is 1.0 and
cpu_tuple_cost is 0.01, so the estimated cost is (358 * 1.0) + (10000 * 0.01) = 458.

Now let's modify the query to add a WHERE condition:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 7000;

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=7001 width=244)
 Filter: (unique1 < 7000)

Notice that the EXPLAIN output shows the WHERE clause being applied as a “filter” condition attached to
the Seq Scan plan node. This means that the plan node checks the condition for each row it scans, and
outputs only the ones that pass the condition. The estimate of output rows has been reduced because of
the WHERE clause. However, the scan will still have to visit all 10000 rows, so the cost hasn't decreased;
in fact it has gone up a bit (by 10000 * cpu_operator_cost, to be exact) to reflect the extra CPU time
spent checking the WHERE condition.

The actual number of rows this query would select is 7000, but the rows estimate is only approximate.
If you try to duplicate this experiment, you will probably get a slightly different estimate; moreover, it
can change after each ANALYZE command, because the statistics produced by ANALYZE are taken from
a randomized sample of the table.

Now, let's make the condition more restrictive:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)

415

Performance Tips

 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

Here the planner has decided to use a two-step plan: the child plan node visits an index to find the
locations of rows matching the index condition, and then the upper plan node actually fetches those rows
from the table itself. Fetching rows separately is much more expensive than reading them sequentially,
but because not all the pages of the table have to be visited, this is still cheaper than a sequential scan.
(The reason for using two plan levels is that the upper plan node sorts the row locations identified by the
index into physical order before reading them, to minimize the cost of separate fetches. The “bitmap”
mentioned in the node names is the mechanism that does the sorting.)

Now let's add another condition to the WHERE clause:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=5.04..229.43 rows=1 width=244)
 Recheck Cond: (unique1 < 100)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)

The added condition stringu1 = 'xxx' reduces the output row count estimate, but not the cost because
we still have to visit the same set of rows. Notice that the stringu1 clause cannot be applied as an index
condition, since this index is only on the unique1 column. Instead it is applied as a filter on the rows
retrieved by the index. Thus the cost has actually gone up slightly to reflect this extra checking.

In some cases the planner will prefer a “simple” index scan plan:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 = 42;

 QUERY PLAN

 Index Scan using tenk1_unique1 on tenk1 (cost=0.29..8.30 rows=1 width=244)
 Index Cond: (unique1 = 42)

In this type of plan the table rows are fetched in index order, which makes them even more expensive
to read, but there are so few that the extra cost of sorting the row locations is not worth it. You'll most
often see this plan type for queries that fetch just a single row. It's also often used for queries that have
an ORDER BY condition that matches the index order, because then no extra sorting step is needed to
satisfy the ORDER BY. In this example, adding ORDER BY unique1 would use the same plan because the
index already implicitly provides the requested ordering.

The planner may implement an ORDER BY clause in several ways. The above example shows that such an
ordering clause may be implemented implicitly. The planner may also add an explicit sort step:

EXPLAIN SELECT * FROM tenk1 ORDER BY unique1;
 QUERY PLAN

 Sort (cost=1109.39..1134.39 rows=10000 width=244)
 Sort Key: unique1
 -> Seq Scan on tenk1 (cost=0.00..445.00 rows=10000 width=244)

If a part of the plan guarantees an ordering on a prefix of the required sort keys, then the planner may
instead decide to use an incremental sort step:

EXPLAIN SELECT * FROM tenk1 ORDER BY four, ten LIMIT 100;
 QUERY PLAN

 Limit (cost=521.06..538.05 rows=100 width=244)

416

Performance Tips

 -> Incremental Sort (cost=521.06..2220.95 rows=10000 width=244)
 Sort Key: four, ten
 Presorted Key: four
 -> Index Scan using index_tenk1_on_four on tenk1 (cost=0.29..1510.08
 rows=10000 width=244)

Compared to regular sorts, sorting incrementally allows returning tuples before the entire result set has
been sorted, which particularly enables optimizations with LIMIT queries. It may also reduce memory
usage and the likelihood of spilling sorts to disk, but it comes at the cost of the increased overhead of
splitting the result set into multiple sorting batches.

If there are separate indexes on several of the columns referenced in WHERE, the planner might choose
to use an AND or OR combination of the indexes:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 Index Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 Index Cond: (unique2 > 9000)

But this requires visiting both indexes, so it's not necessarily a win compared to using just one index
and treating the other condition as a filter. If you vary the ranges involved you'll see the plan change
accordingly.

Here is an example showing the effects of LIMIT:

EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

 Limit (cost=0.29..14.48 rows=2 width=244)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..71.27 rows=10 width=244)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)

This is the same query as above, but we added a LIMIT so that not all the rows need be retrieved, and
the planner changed its mind about what to do. Notice that the total cost and row count of the Index
Scan node are shown as if it were run to completion. However, the Limit node is expected to stop after
retrieving only a fifth of those rows, so its total cost is only a fifth as much, and that's the actual estimated
cost of the query. This plan is preferred over adding a Limit node to the previous plan because the Limit
could not avoid paying the startup cost of the bitmap scan, so the total cost would be something over
25 units with that approach.

Let's try joining two tables, using the columns we have been discussing:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.65..118.62 rows=10 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)

417

Performance Tips

 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

In this plan, we have a nested-loop join node with two table scans as inputs, or children. The indentation
of the node summary lines reflects the plan tree structure. The join's first, or “outer”, child is a bitmap
scan similar to those we saw before. Its cost and row count are the same as we'd get from SELECT ...
WHERE unique1 < 10 because we are applying the WHERE clause unique1 < 10 at that node. The
t1.unique2 = t2.unique2 clause is not relevant yet, so it doesn't affect the row count of the outer
scan. The nested-loop join node will run its second, or “inner” child once for each row obtained from
the outer child. Column values from the current outer row can be plugged into the inner scan; here, the
t1.unique2 value from the outer row is available, so we get a plan and costs similar to what we saw
above for a simple SELECT ... WHERE t2.unique2 = constant case. (The estimated cost is actually a
bit lower than what was seen above, as a result of caching that's expected to occur during the repeated
index scans on t2.) The costs of the loop node are then set on the basis of the cost of the outer scan,
plus one repetition of the inner scan for each outer row (10 * 7.91, here), plus a little CPU time for join
processing.

In this example the join's output row count is the same as the product of the two scans' row counts, but
that's not true in all cases because there can be additional WHERE clauses that mention both tables and
so can only be applied at the join point, not to either input scan. Here's an example:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t2.unique2 < 10 AND t1.hundred < t2.hundred;

 QUERY PLAN

 Nested Loop (cost=4.65..49.46 rows=33 width=488)
 Join Filter: (t1.hundred < t2.hundred)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 Index Cond: (unique1 < 10)
 -> Materialize (cost=0.29..8.51 rows=10 width=244)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..8.46 rows=10
 width=244)
 Index Cond: (unique2 < 10)

The condition t1.hundred < t2.hundred can't be tested in the tenk2_unique2 index, so it's applied
at the join node. This reduces the estimated output row count of the join node, but does not change
either input scan.

Notice that here the planner has chosen to “materialize” the inner relation of the join, by putting a
Materialize plan node atop it. This means that the t2 index scan will be done just once, even though
the nested-loop join node needs to read that data ten times, once for each row from the outer relation.
The Materialize node saves the data in memory as it's read, and then returns the data from memory
on each subsequent pass.

When dealing with outer joins, you might see join plan nodes with both “Join Filter” and plain “Filter”
conditions attached. Join Filter conditions come from the outer join's ON clause, so a row that fails the
Join Filter condition could still get emitted as a null-extended row. But a plain Filter condition is applied
after the outer-join rules and so acts to remove rows unconditionally. In an inner join there is no semantic
difference between these types of filters.

If we change the query's selectivity a bit, we might get a very different join plan:

EXPLAIN SELECT *
FROM tenk1 t1, tenk2 t2

418

Performance Tips

WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Hash Join (cost=230.47..713.98 rows=101 width=488)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244)
 -> Hash (cost=229.20..229.20 rows=101 width=244)
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
 width=0)
 Index Cond: (unique1 < 100)

Here, the planner has chosen to use a hash join, in which rows of one table are entered into an in-memory
hash table, after which the other table is scanned and the hash table is probed for matches to each row.
Again note how the indentation reflects the plan structure: the bitmap scan on tenk1 is the input to the
Hash node, which constructs the hash table. That's then returned to the Hash Join node, which reads
rows from its outer child plan and searches the hash table for each one.

Another possible type of join is a merge join, illustrated here:

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

 Merge Join (cost=198.11..268.19 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101
 width=244)
 Filter: (unique1 < 100)
 -> Sort (cost=197.83..200.33 rows=1000 width=244)
 Sort Key: t2.unique2
 -> Seq Scan on onek t2 (cost=0.00..148.00 rows=1000 width=244)

Merge join requires its input data to be sorted on the join keys. In this plan the tenk1 data is sorted by
using an index scan to visit the rows in the correct order, but a sequential scan and sort is preferred for
onek, because there are many more rows to be visited in that table. (Sequential-scan-and-sort frequently
beats an index scan for sorting many rows, because of the nonsequential disk access required by the
index scan.)

One way to look at variant plans is to force the planner to disregard whatever strategy it thought was
the cheapest, using the enable/disable flags described in Section 18.7.1. (This is a crude tool, but useful.
See also Section 14.3.) For example, if we're unconvinced that sequential-scan-and-sort is the best way
to deal with table onek in the previous example, we could try

SET enable_sort = off;

EXPLAIN SELECT *
FROM tenk1 t1, onek t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2;

 QUERY PLAN

419

Performance Tips

 Merge Join (cost=0.56..292.65 rows=10 width=488)
 Merge Cond: (t1.unique2 = t2.unique2)
 -> Index Scan using tenk1_unique2 on tenk1 t1 (cost=0.29..656.28 rows=101
 width=244)
 Filter: (unique1 < 100)
 -> Index Scan using onek_unique2 on onek t2 (cost=0.28..224.79 rows=1000
 width=244)

which shows that the planner thinks that sorting onek by index-scanning is about 12% more expensive
than sequential-scan-and-sort. Of course, the next question is whether it's right about that. We can
investigate that using EXPLAIN ANALYZE, as discussed below.

14.1.2. EXPLAIN ANALYZE
It is possible to check the accuracy of the planner's estimates by using EXPLAIN's ANALYZE option. With
this option, EXPLAIN actually executes the query, and then displays the true row counts and true run
time accumulated within each plan node, along with the same estimates that a plain EXPLAIN shows. For
example, we might get a result like this:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 10 AND t1.unique2 = t2.unique2;

 QUERY PLAN

--
 Nested Loop (cost=4.65..118.62 rows=10 width=488) (actual time=0.128..0.377 rows=10
 loops=1)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.36..39.47 rows=10 width=244) (actual
 time=0.057..0.121 rows=10 loops=1)
 Recheck Cond: (unique1 < 10)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.36 rows=10 width=0)
 (actual time=0.024..0.024 rows=10 loops=1)
 Index Cond: (unique1 < 10)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.29..7.91 rows=1 width=244)
 (actual time=0.021..0.022 rows=1 loops=10)
 Index Cond: (unique2 = t1.unique2)
 Planning time: 0.181 ms
 Execution time: 0.501 ms

Note that the “actual time” values are in milliseconds of real time, whereas the cost estimates are
expressed in arbitrary units; so they are unlikely to match up. The thing that's usually most important to
look for is whether the estimated row counts are reasonably close to reality. In this example the estimates
were all dead-on, but that's quite unusual in practice.

In some query plans, it is possible for a subplan node to be executed more than once. For example, the
inner index scan will be executed once per outer row in the above nested-loop plan. In such cases, the
loops value reports the total number of executions of the node, and the actual time and rows values
shown are averages per-execution. This is done to make the numbers comparable with the way that the
cost estimates are shown. Multiply by the loops value to get the total time actually spent in the node.
In the above example, we spent a total of 0.220 milliseconds executing the index scans on tenk2.

In some cases EXPLAIN ANALYZE shows additional execution statistics beyond the plan node execution
times and row counts. For example, Sort and Hash nodes provide extra information:

EXPLAIN ANALYZE SELECT *
FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 100 AND t1.unique2 = t2.unique2 ORDER BY t1.fivethous;

 QUERY PLAN

420

Performance Tips

 Sort (cost=717.34..717.59 rows=101 width=488) (actual time=7.761..7.774 rows=100
 loops=1)
 Sort Key: t1.fivethous
 Sort Method: quicksort Memory: 77kB
 -> Hash Join (cost=230.47..713.98 rows=101 width=488) (actual time=0.711..7.427
 rows=100 loops=1)
 Hash Cond: (t2.unique2 = t1.unique2)
 -> Seq Scan on tenk2 t2 (cost=0.00..445.00 rows=10000 width=244) (actual
 time=0.007..2.583 rows=10000 loops=1)
 -> Hash (cost=229.20..229.20 rows=101 width=244) (actual time=0.659..0.659
 rows=100 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 28kB
 -> Bitmap Heap Scan on tenk1 t1 (cost=5.07..229.20 rows=101 width=244)
 (actual time=0.080..0.526 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101
 width=0) (actual time=0.049..0.049 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.194 ms
 Execution time: 8.008 ms

The Sort node shows the sort method used (in particular, whether the sort was in-memory or on-disk)
and the amount of memory or disk space needed. The Hash node shows the number of hash buckets
and batches as well as the peak amount of memory used for the hash table. (If the number of batches
exceeds one, there will also be disk space usage involved, but that is not shown.)

Another type of extra information is the number of rows removed by a filter condition:

EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE ten < 7;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..483.00 rows=7000 width=244) (actual time=0.016..5.107
 rows=7000 loops=1)
 Filter: (ten < 7)
 Rows Removed by Filter: 3000
 Planning time: 0.083 ms
 Execution time: 5.905 ms

These counts can be particularly valuable for filter conditions applied at join nodes. The “Rows Removed”
line only appears when at least one scanned row, or potential join pair in the case of a join node, is
rejected by the filter condition.

A case similar to filter conditions occurs with “lossy” index scans. For example, consider this search for
polygons containing a specific point:

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Seq Scan on polygon_tbl (cost=0.00..1.05 rows=1 width=32) (actual time=0.044..0.044
 rows=0 loops=1)
 Filter: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Filter: 4
 Planning time: 0.040 ms
 Execution time: 0.083 ms

421

Performance Tips

The planner thinks (quite correctly) that this sample table is too small to bother with an index scan, so
we have a plain sequential scan in which all the rows got rejected by the filter condition. But if we force
an index scan to be used, we see:

SET enable_seqscan TO off;

EXPLAIN ANALYZE SELECT * FROM polygon_tbl WHERE f1 @> polygon '(0.5,2.0)';

 QUERY PLAN

 Index Scan using gpolygonind on polygon_tbl (cost=0.13..8.15 rows=1 width=32) (actual
 time=0.062..0.062 rows=0 loops=1)
 Index Cond: (f1 @> '((0.5,2))'::polygon)
 Rows Removed by Index Recheck: 1
 Planning time: 0.034 ms
 Execution time: 0.144 ms

Here we can see that the index returned one candidate row, which was then rejected by a recheck of the
index condition. This happens because a GiST index is “lossy” for polygon containment tests: it actually
returns the rows with polygons that overlap the target, and then we have to do the exact containment
test on those rows.

EXPLAIN has a BUFFERS option that can be used with ANALYZE to get even more run time statistics:

EXPLAIN (ANALYZE, BUFFERS) SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000;

 QUERY PLAN

--
 Bitmap Heap Scan on tenk1 (cost=25.08..60.21 rows=10 width=244) (actual
 time=0.323..0.342 rows=10 loops=1)
 Recheck Cond: ((unique1 < 100) AND (unique2 > 9000))
 Buffers: shared hit=15
 -> BitmapAnd (cost=25.08..25.08 rows=10 width=0) (actual time=0.309..0.309 rows=0
 loops=1)
 Buffers: shared hit=7
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 (actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Buffers: shared hit=2
 -> Bitmap Index Scan on tenk1_unique2 (cost=0.00..19.78 rows=999 width=0)
 (actual time=0.227..0.227 rows=999 loops=1)
 Index Cond: (unique2 > 9000)
 Buffers: shared hit=5
 Planning time: 0.088 ms
 Execution time: 0.423 ms

The numbers provided by BUFFERS help to identify which parts of the query are the most I/O-intensive.

Keep in mind that because EXPLAIN ANALYZE actually runs the query, any side-effects will happen as
usual, even though whatever results the query might output are discarded in favor of printing the
EXPLAIN data. If you want to analyze a data-modifying query without changing your tables, you can roll
the command back afterwards, for example:

BEGIN;

EXPLAIN ANALYZE UPDATE tenk1 SET hundred = hundred + 1 WHERE unique1 < 100;

 QUERY PLAN

422

Performance Tips

 Update on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual time=14.628..14.628
 rows=0 loops=1)
 -> Bitmap Heap Scan on tenk1 (cost=5.07..229.46 rows=101 width=250) (actual
 time=0.101..0.439 rows=100 loops=1)
 Recheck Cond: (unique1 < 100)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..5.04 rows=101 width=0)
 (actual time=0.043..0.043 rows=100 loops=1)
 Index Cond: (unique1 < 100)
 Planning time: 0.079 ms
 Execution time: 14.727 ms

ROLLBACK;

As seen in this example, when the query is an INSERT, UPDATE, or DELETE command, the actual work of
applying the table changes is done by a top-level Insert, Update, or Delete plan node. The plan nodes
underneath this node perform the work of locating the old rows and/or computing the new data. So
above, we see the same sort of bitmap table scan we've seen already, and its output is fed to an Update
node that stores the updated rows. It's worth noting that although the data-modifying node can take a
considerable amount of run time (here, it's consuming the lion's share of the time), the planner does not
currently add anything to the cost estimates to account for that work. That's because the work to be
done is the same for every correct query plan, so it doesn't affect planning decisions.

When an UPDATE or DELETE command affects an inheritance hierarchy, the output might look like this:

EXPLAIN UPDATE parent SET f2 = f2 + 1 WHERE f1 = 101;
 QUERY PLAN

 Update on parent (cost=0.00..24.53 rows=4 width=14)
 Update on parent
 Update on child1
 Update on child2
 Update on child3
 -> Seq Scan on parent (cost=0.00..0.00 rows=1 width=14)
 Filter: (f1 = 101)
 -> Index Scan using child1_f1_key on child1 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child2_f1_key on child2 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)
 -> Index Scan using child3_f1_key on child3 (cost=0.15..8.17 rows=1 width=14)
 Index Cond: (f1 = 101)

In this example the Update node needs to consider three child tables as well as the originally-mentioned
parent table. So there are four input scanning subplans, one per table. For clarity, the Update node is
annotated to show the specific target tables that will be updated, in the same order as the corresponding
subplans. (These annotations are new as of PostgreSQL 9.5; in prior versions the reader had to intuit
the target tables by inspecting the subplans.)

The Planning time shown by EXPLAIN ANALYZE is the time it took to generate the query plan from the
parsed query and optimize it. It does not include parsing or rewriting.

The Execution time shown by EXPLAIN ANALYZE includes executor start-up and shut-down time, as well
as the time to run any triggers that are fired, but it does not include parsing, rewriting, or planning time.
Time spent executing BEFORE triggers, if any, is included in the time for the related Insert, Update, or
Delete node; but time spent executing AFTER triggers is not counted there because AFTER triggers are
fired after completion of the whole plan. The total time spent in each trigger (either BEFORE or AFTER) is
also shown separately. Note that deferred constraint triggers will not be executed until end of transaction
and are thus not considered at all by EXPLAIN ANALYZE.

423

Performance Tips

14.1.3. Caveats
There are two significant ways in which run times measured by EXPLAIN ANALYZE can deviate from
normal execution of the same query. First, since no output rows are delivered to the client, network
transmission costs and I/O conversion costs are not included. Second, the measurement overhead added
by EXPLAIN ANALYZE can be significant, especially on machines with slow gettimeofday() operating-
system calls. You can use the pg_test_timing tool to measure the overhead of timing on your system.

EXPLAIN results should not be extrapolated to situations much different from the one you are actually
testing; for example, results on a toy-sized table cannot be assumed to apply to large tables. The planner's
cost estimates are not linear and so it might choose a different plan for a larger or smaller table. An
extreme example is that on a table that only occupies one disk page, you'll nearly always get a sequential
scan plan whether indexes are available or not. The planner realizes that it's going to take one disk page
read to process the table in any case, so there's no value in expending additional page reads to look at
an index. (We saw this happening in the polygon_tbl example above.)

There are cases in which the actual and estimated values won't match up well, but nothing is really
wrong. One such case occurs when plan node execution is stopped short by a LIMIT or similar effect.
For example, in the LIMIT query we used before,
EXPLAIN ANALYZE SELECT * FROM tenk1 WHERE unique1 < 100 AND unique2 > 9000 LIMIT 2;

 QUERY PLAN

--
 Limit (cost=0.29..14.71 rows=2 width=244) (actual time=0.177..0.249 rows=2 loops=1)
 -> Index Scan using tenk1_unique2 on tenk1 (cost=0.29..72.42 rows=10 width=244)
 (actual time=0.174..0.244 rows=2 loops=1)
 Index Cond: (unique2 > 9000)
 Filter: (unique1 < 100)
 Rows Removed by Filter: 287
 Planning time: 0.096 ms
 Execution time: 0.336 ms

the estimated cost and row count for the Index Scan node are shown as though it were run to completion.
But in reality the Limit node stopped requesting rows after it got two, so the actual row count is only
2 and the run time is less than the cost estimate would suggest. This is not an estimation error, only a
discrepancy in the way the estimates and true values are displayed.

Merge joins also have measurement artifacts that can confuse the unwary. A merge join will stop reading
one input if it's exhausted the other input and the next key value in the one input is greater than the last
key value of the other input; in such a case there can be no more matches and so no need to scan the
rest of the first input. This results in not reading all of one child, with results like those mentioned for
LIMIT. Also, if the outer (first) child contains rows with duplicate key values, the inner (second) child is
backed up and rescanned for the portion of its rows matching that key value. EXPLAIN ANALYZE counts
these repeated emissions of the same inner rows as if they were real additional rows. When there are
many outer duplicates, the reported actual row count for the inner child plan node can be significantly
larger than the number of rows that are actually in the inner relation.

BitmapAnd and BitmapOr nodes always report their actual row counts as zero, due to implementation
limitations.

Normally, EXPLAIN will display every plan node created by the planner. However, there are cases where
the executor can determine that certain nodes need not be executed because they cannot produce any
rows, based on parameter values that were not available at planning time. (Currently this can only
happen for child nodes of an Append or MergeAppend node that is scanning a partitioned table.) When
this happens, those plan nodes are omitted from the EXPLAIN output and a Subplans Removed: N
annotation appears instead.

14.2. Statistics Used by the Planner

424

Performance Tips

14.2.1. Single-Column Statistics
As we saw in the previous section, the query planner needs to estimate the number of rows retrieved by
a query in order to make good choices of query plans. This section provides a quick look at the statistics
that the system uses for these estimates.

One component of the statistics is the total number of entries in each table and index, as well as the
number of disk blocks occupied by each table and index. This information is kept in the table pg_class,
in the columns reltuples and relpages. We can look at it with queries similar to this one:

SELECT relname, relkind, reltuples, relpages
FROM pg_class
WHERE relname LIKE 'tenk1%';

 relname | relkind | reltuples | relpages
----------------------+---------+-----------+----------
 tenk1 | r | 10000 | 358
 tenk1_hundred | i | 10000 | 30
 tenk1_thous_tenthous | i | 10000 | 30
 tenk1_unique1 | i | 10000 | 30
 tenk1_unique2 | i | 10000 | 30
(5 rows)

Here we can see that tenk1 contains 10000 rows, as do its indexes, but the indexes are (unsurprisingly)
much smaller than the table.

For efficiency reasons, reltuples and relpages are not updated on-the-fly, and so they usually contain
somewhat out-of-date values. They are updated by VACUUM, ANALYZE, and a few DDL commands such as
CREATE INDEX. A VACUUM or ANALYZE operation that does not scan the entire table (which is commonly
the case) will incrementally update the reltuples count on the basis of the part of the table it did scan,
resulting in an approximate value. In any case, the planner will scale the values it finds in pg_class to
match the current physical table size, thus obtaining a closer approximation.

Most queries retrieve only a fraction of the rows in a table, due to WHERE clauses that restrict the rows
to be examined. The planner thus needs to make an estimate of the selectivity of WHERE clauses, that is,
the fraction of rows that match each condition in the WHERE clause. The information used for this task
is stored in the pg_statistic system catalog. Entries in pg_statistic are updated by the ANALYZE and
VACUUM ANALYZE commands, and are always approximate even when freshly updated.

Rather than look at pg_statistic directly, it's better to look at its view pg_stats when examining the
statistics manually. pg_stats is designed to be more easily readable. Furthermore, pg_stats is readable
by all, whereas pg_statistic is only readable by a superuser. (This prevents unprivileged users from
learning something about the contents of other people's tables from the statistics. The pg_stats view is
restricted to show only rows about tables that the current user can read.) For example, we might do:

SELECT attname, inherited, n_distinct,
 array_to_string(most_common_vals, E'\n') as most_common_vals
FROM pg_stats
WHERE tablename = 'road';

 attname | inherited | n_distinct | most_common_vals
---------+-----------+------------+------------------------------------
 name | f | -0.363388 | I- 580 Ramp+
 | | | I- 880 Ramp+
 | | | Sp Railroad +
 | | | I- 580 +
 | | | I- 680 Ramp
 name | t | -0.284859 | I- 880 Ramp+
 | | | I- 580 Ramp+

425

Performance Tips

 | | | I- 680 Ramp+
 | | | I- 580 +
 | | | State Hwy 13 Ramp
(2 rows)

Note that two rows are displayed for the same column, one corresponding to the complete inheritance
hierarchy starting at the road table (inherited=t), and another one including only the road table itself
(inherited=f).

The amount of information stored in pg_statistic by ANALYZE, in particular the maximum number
of entries in the most_common_vals and histogram_bounds arrays for each column, can be set on a
column-by-column basis using the ALTER TABLE SET STATISTICS command, or globally by setting the
default_statistics_target configuration variable. The default limit is presently 100 entries. Raising the
limit might allow more accurate planner estimates to be made, particularly for columns with irregular
data distributions, at the price of consuming more space in pg_statistic and slightly more time to
compute the estimates. Conversely, a lower limit might be sufficient for columns with simple data
distributions.

Further details about the planner's use of statistics can be found in Chapter 66.

14.2.2. Extended Statistics
It is common to see slow queries running bad execution plans because multiple columns used in the query
clauses are correlated. The planner normally assumes that multiple conditions are independent of each
other, an assumption that does not hold when column values are correlated. Regular statistics, because
of their per-individual-column nature, cannot capture any knowledge about cross-column correlation.
However, Postgres Pro has the ability to compute multivariate statistics, which can capture such
information.

Because the number of possible column combinations is very large, it's impractical to compute
multivariate statistics automatically. Instead, extended statistics objects, more often called just statistics
objects, can be created to instruct the server to obtain statistics across interesting sets of columns.

Statistics objects are created using the CREATE STATISTICS command. Creation of such an object
merely creates a catalog entry expressing interest in the statistics. Actual data collection is performed by
ANALYZE (either a manual command, or background auto-analyze). The collected values can be examined
in the pg_statistic_ext_data catalog.

ANALYZE computes extended statistics based on the same sample of table rows that it takes for computing
regular single-column statistics. Since the sample size is increased by increasing the statistics target
for the table or any of its columns (as described in the previous section), a larger statistics target will
normally result in more accurate extended statistics, as well as more time spent calculating them.

The following subsections describe the kinds of extended statistics that are currently supported.

14.2.2.1. Functional Dependencies
The simplest kind of extended statistics tracks functional dependencies, a concept used in definitions of
database normal forms. We say that column b is functionally dependent on column a if knowledge of the
value of a is sufficient to determine the value of b, that is there are no two rows having the same value of
a but different values of b. In a fully normalized database, functional dependencies should exist only on
primary keys and superkeys. However, in practice many data sets are not fully normalized for various
reasons; intentional denormalization for performance reasons is a common example. Even in a fully
normalized database, there may be partial correlation between some columns, which can be expressed
as partial functional dependency.

The existence of functional dependencies directly affects the accuracy of estimates in certain queries.
If a query contains conditions on both the independent and the dependent column(s), the conditions
on the dependent columns do not further reduce the result size; but without knowledge of the
functional dependency, the query planner will assume that the conditions are independent, resulting in
underestimating the result size.

426

Performance Tips

To inform the planner about functional dependencies, ANALYZE can collect measurements of cross-
column dependency. Assessing the degree of dependency between all sets of columns would be
prohibitively expensive, so data collection is limited to those groups of columns appearing together in a
statistics object defined with the dependencies option. It is advisable to create dependencies statistics
only for column groups that are strongly correlated, to avoid unnecessary overhead in both ANALYZE and
later query planning.

Here is an example of collecting functional-dependency statistics:

CREATE STATISTICS stts (dependencies) ON city, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxname, stxkeys, stxddependencies
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts';
 stxname | stxkeys | stxddependencies
---------+---------+--
 stts | 1 5 | {"1 => 5": 1.000000, "5 => 1": 0.423130}
(1 row)

Here it can be seen that column 1 (zip code) fully determines column 5 (city) so the coefficient is 1.0,
while city only determines zip code about 42% of the time, meaning that there are many cities (58%)
that are represented by more than a single ZIP code.

When computing the selectivity for a query involving functionally dependent columns, the planner
adjusts the per-condition selectivity estimates using the dependency coefficients so as not to produce
an underestimate.

14.2.2.1.1. Limitations of Functional Dependencies

Functional dependencies are currently only applied when considering simple equality conditions that
compare columns to constant values, and IN clauses with constant values. They are not used to improve
estimates for equality conditions comparing two columns or comparing a column to an expression, nor
for range clauses, LIKE or any other type of condition.

When estimating with functional dependencies, the planner assumes that conditions on the involved
columns are compatible and hence redundant. If they are incompatible, the correct estimate would be
zero rows, but that possibility is not considered. For example, given a query like

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '94105';

the planner will disregard the city clause as not changing the selectivity, which is correct. However, it
will make the same assumption about

SELECT * FROM zipcodes WHERE city = 'San Francisco' AND zip = '90210';

even though there will really be zero rows satisfying this query. Functional dependency statistics do not
provide enough information to conclude that, however.

In many practical situations, this assumption is usually satisfied; for example, there might be a GUI in
the application that only allows selecting compatible city and ZIP code values to use in a query. But if
that's not the case, functional dependencies may not be a viable option.

14.2.2.2. Multivariate N-Distinct Counts
Single-column statistics store the number of distinct values in each column. Estimates of the number of
distinct values when combining more than one column (for example, for GROUP BY a, b) are frequently
wrong when the planner only has single-column statistical data, causing it to select bad plans.

To improve such estimates, ANALYZE can collect n-distinct statistics for groups of columns. As before,
it's impractical to do this for every possible column grouping, so data is collected only for those groups

427

Performance Tips

of columns appearing together in a statistics object defined with the ndistinct option. Data will be
collected for each possible combination of two or more columns from the set of listed columns.

Continuing the previous example, the n-distinct counts in a table of ZIP codes might look like the
following:
CREATE STATISTICS stts2 (ndistinct) ON city, state, zip FROM zipcodes;

ANALYZE zipcodes;

SELECT stxkeys AS k, stxdndistinct AS nd
 FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid)
 WHERE stxname = 'stts2';
-[RECORD 1]--
k | 1 2 5
nd | {"1, 2": 33178, "1, 5": 33178, "2, 5": 27435, "1, 2, 5": 33178}
(1 row)

This indicates that there are three combinations of columns that have 33178 distinct values: ZIP code
and state; ZIP code and city; and ZIP code, city and state (the fact that they are all equal is expected
given that ZIP code alone is unique in this table). On the other hand, the combination of city and state
has only 27435 distinct values.

It's advisable to create ndistinct statistics objects only on combinations of columns that are actually
used for grouping, and for which misestimation of the number of groups is resulting in bad plans.
Otherwise, the ANALYZE cycles are just wasted.

14.2.2.3. Multivariate MCV Lists
Another type of statistic stored for each column are most-common value lists. This allows very accurate
estimates for individual columns, but may result in significant misestimates for queries with conditions
on multiple columns.

To improve such estimates, ANALYZE can collect MCV lists on combinations of columns. Similarly to
functional dependencies and n-distinct coefficients, it's impractical to do this for every possible column
grouping. Even more so in this case, as the MCV list (unlike functional dependencies and n-distinct
coefficients) does store the common column values. So data is collected only for those groups of columns
appearing together in a statistics object defined with the mcv option.

Continuing the previous example, the MCV list for a table of ZIP codes might look like the following
(unlike for simpler types of statistics, a function is required for inspection of MCV contents):
CREATE STATISTICS stts3 (mcv) ON city, state FROM zipcodes;

ANALYZE zipcodes;

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts3';

 index | values | nulls | frequency | base_frequency
-------+------------------------+-------+-----------+----------------
 0 | {Washington, DC} | {f,f} | 0.003467 | 2.7e-05
 1 | {Apo, AE} | {f,f} | 0.003067 | 1.9e-05
 2 | {Houston, TX} | {f,f} | 0.002167 | 0.000133
 3 | {El Paso, TX} | {f,f} | 0.002 | 0.000113
 4 | {New York, NY} | {f,f} | 0.001967 | 0.000114
 5 | {Atlanta, GA} | {f,f} | 0.001633 | 3.3e-05
 6 | {Sacramento, CA} | {f,f} | 0.001433 | 7.8e-05
 7 | {Miami, FL} | {f,f} | 0.0014 | 6e-05
 8 | {Dallas, TX} | {f,f} | 0.001367 | 8.8e-05
 9 | {Chicago, IL} | {f,f} | 0.001333 | 5.1e-05

428

Performance Tips

 ...
(99 rows)

This indicates that the most common combination of city and state is Washington in DC, with actual
frequency (in the sample) about 0.35%. The base frequency of the combination (as computed from the
simple per-column frequencies) is only 0.0027%, resulting in two orders of magnitude under-estimates.

It's advisable to create MCV statistics objects only on combinations of columns that are actually used
in conditions together, and for which misestimation of the number of groups is resulting in bad plans.
Otherwise, the ANALYZE and planning cycles are just wasted.

14.3. Controlling the Planner with Explicit JOIN Clauses
It is possible to control the query planner to some extent by using the explicit JOIN syntax. To see why
this matters, we first need some background.

In a simple join query, such as:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;

the planner is free to join the given tables in any order. For example, it could generate a query plan
that joins A to B, using the WHERE condition a.id = b.id, and then joins C to this joined table, using
the other WHERE condition. Or it could join B to C and then join A to that result. Or it could join A to C
and then join them with B — but that would be inefficient, since the full Cartesian product of A and C
would have to be formed, there being no applicable condition in the WHERE clause to allow optimization
of the join. (All joins in the Postgres Pro executor happen between two input tables, so it's necessary
to build up the result in one or another of these fashions.) The important point is that these different
join possibilities give semantically equivalent results but might have hugely different execution costs.
Therefore, the planner will explore all of them to try to find the most efficient query plan.

When a query only involves two or three tables, there aren't many join orders to worry about. But
the number of possible join orders grows exponentially as the number of tables expands. Beyond ten
or so input tables it's no longer practical to do an exhaustive search of all the possibilities, and even
for six or seven tables planning might take an annoyingly long time. When there are too many input
tables, the Postgres Pro planner will switch from exhaustive search to a genetic probabilistic search
through a limited number of possibilities. (The switch-over threshold is set by the geqo_threshold run-
time parameter.) The genetic search takes less time, but it won't necessarily find the best possible plan.

When the query involves outer joins, the planner has less freedom than it does for plain (inner) joins.
For example, consider:

SELECT * FROM a LEFT JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

Although this query's restrictions are superficially similar to the previous example, the semantics are
different because a row must be emitted for each row of A that has no matching row in the join of B
and C. Therefore the planner has no choice of join order here: it must join B to C and then join A to
that result. Accordingly, this query takes less time to plan than the previous query. In other cases, the
planner might be able to determine that more than one join order is safe. For example, given:

SELECT * FROM a LEFT JOIN b ON (a.bid = b.id) LEFT JOIN c ON (a.cid = c.id);

it is valid to join A to either B or C first. Currently, only FULL JOIN completely constrains the join order.
Most practical cases involving LEFT JOIN or RIGHT JOIN can be rearranged to some extent.

Explicit inner join syntax (INNER JOIN, CROSS JOIN, or unadorned JOIN) is semantically the same as
listing the input relations in FROM, so it does not constrain the join order.

Even though most kinds of JOIN don't completely constrain the join order, it is possible to instruct the
Postgres Pro query planner to treat all JOIN clauses as constraining the join order anyway. For example,
these three queries are logically equivalent:

SELECT * FROM a, b, c WHERE a.id = b.id AND b.ref = c.id;
SELECT * FROM a CROSS JOIN b CROSS JOIN c WHERE a.id = b.id AND b.ref = c.id;

429

Performance Tips

SELECT * FROM a JOIN (b JOIN c ON (b.ref = c.id)) ON (a.id = b.id);

But if we tell the planner to honor the JOIN order, the second and third take less time to plan than the first.
This effect is not worth worrying about for only three tables, but it can be a lifesaver with many tables.

To force the planner to follow the join order laid out by explicit JOINs, set the join_collapse_limit run-
time parameter to 1. (Other possible values are discussed below.)

You do not need to constrain the join order completely in order to cut search time, because it's OK to
use JOIN operators within items of a plain FROM list. For example, consider:
SELECT * FROM a CROSS JOIN b, c, d, e WHERE ...;

With join_collapse_limit = 1, this forces the planner to join A to B before joining them to other
tables, but doesn't constrain its choices otherwise. In this example, the number of possible join orders
is reduced by a factor of 5.

Constraining the planner's search in this way is a useful technique both for reducing planning time and
for directing the planner to a good query plan. If the planner chooses a bad join order by default, you
can force it to choose a better order via JOIN syntax — assuming that you know of a better order, that
is. Experimentation is recommended.

A closely related issue that affects planning time is collapsing of subqueries into their parent query. For
example, consider:
SELECT *
FROM x, y,
 (SELECT * FROM a, b, c WHERE something) AS ss
WHERE somethingelse;

This situation might arise from use of a view that contains a join; the view's SELECT rule will be inserted
in place of the view reference, yielding a query much like the above. Normally, the planner will try to
collapse the subquery into the parent, yielding:
SELECT * FROM x, y, a, b, c WHERE something AND somethingelse;

This usually results in a better plan than planning the subquery separately. (For example, the outer
WHERE conditions might be such that joining X to A first eliminates many rows of A, thus avoiding the
need to form the full logical output of the subquery.) But at the same time, we have increased the
planning time; here, we have a five-way join problem replacing two separate three-way join problems.
Because of the exponential growth of the number of possibilities, this makes a big difference. The planner
tries to avoid getting stuck in huge join search problems by not collapsing a subquery if more than
from_collapse_limit FROM items would result in the parent query. You can trade off planning time
against quality of plan by adjusting this run-time parameter up or down.

from_collapse_limit and join_collapse_limit are similarly named because they do almost the same thing:
one controls when the planner will “flatten out” subqueries, and the other controls when it will flatten
out explicit joins. Typically you would either set join_collapse_limit equal to from_collapse_limit
(so that explicit joins and subqueries act similarly) or set join_collapse_limit to 1 (if you want to
control join order with explicit joins). But you might set them differently if you are trying to fine-tune
the trade-off between planning time and run time.

14.4. Populating a Database
One might need to insert a large amount of data when first populating a database. This section contains
some suggestions on how to make this process as efficient as possible.

14.4.1. Disable Autocommit
When using multiple INSERTs, turn off autocommit and just do one commit at the end. (In plain SQL, this
means issuing BEGIN at the start and COMMIT at the end. Some client libraries might do this behind your
back, in which case you need to make sure the library does it when you want it done.) If you allow each
insertion to be committed separately, Postgres Pro is doing a lot of work for each row that is added. An

430

Performance Tips

additional benefit of doing all insertions in one transaction is that if the insertion of one row were to
fail then the insertion of all rows inserted up to that point would be rolled back, so you won't be stuck
with partially loaded data.

14.4.2. Use COPY
Use COPY to load all the rows in one command, instead of using a series of INSERT commands. The
COPY command is optimized for loading large numbers of rows; it is less flexible than INSERT, but incurs
significantly less overhead for large data loads. Since COPY is a single command, there is no need to
disable autocommit if you use this method to populate a table.

If you cannot use COPY, it might help to use PREPARE to create a prepared INSERT statement, and
then use EXECUTE as many times as required. This avoids some of the overhead of repeatedly parsing
and planning INSERT. Different interfaces provide this facility in different ways; look for “prepared
statements” in the interface documentation.

Note that loading a large number of rows using COPY is almost always faster than using INSERT, even if
PREPARE is used and multiple insertions are batched into a single transaction.

COPY is fastest when used within the same transaction as an earlier CREATE TABLE or TRUNCATE command.
In such cases no WAL needs to be written, because in case of an error, the files containing the newly
loaded data will be removed anyway. However, this consideration only applies when wal_level is minimal
as all commands must write WAL otherwise.

14.4.3. Remove Indexes
If you are loading a freshly created table, the fastest method is to create the table, bulk load the table's
data using COPY, then create any indexes needed for the table. Creating an index on pre-existing data is
quicker than updating it incrementally as each row is loaded.

If you are adding large amounts of data to an existing table, it might be a win to drop the indexes, load
the table, and then recreate the indexes. Of course, the database performance for other users might
suffer during the time the indexes are missing. One should also think twice before dropping a unique
index, since the error checking afforded by the unique constraint will be lost while the index is missing.

14.4.4. Remove Foreign Key Constraints
Just as with indexes, a foreign key constraint can be checked “in bulk” more efficiently than row-by-row.
So it might be useful to drop foreign key constraints, load data, and re-create the constraints. Again,
there is a trade-off between data load speed and loss of error checking while the constraint is missing.

What's more, when you load data into a table with existing foreign key constraints, each new row requires
an entry in the server's list of pending trigger events (since it is the firing of a trigger that checks
the row's foreign key constraint). Loading many millions of rows can cause the trigger event queue to
overflow available memory, leading to intolerable swapping or even outright failure of the command.
Therefore it may be necessary, not just desirable, to drop and re-apply foreign keys when loading large
amounts of data. If temporarily removing the constraint isn't acceptable, the only other recourse may
be to split up the load operation into smaller transactions.

14.4.5. Increase maintenance_work_mem
Temporarily increasing the maintenance_work_mem configuration variable when loading large amounts
of data can lead to improved performance. This will help to speed up CREATE INDEX commands and
ALTER TABLE ADD FOREIGN KEY commands. It won't do much for COPY itself, so this advice is only useful
when you are using one or both of the above techniques.

14.4.6. Increase max_wal_size
Temporarily increasing the max_wal_size configuration variable can also make large data loads faster.
This is because loading a large amount of data into Postgres Pro will cause checkpoints to occur

431

Performance Tips

more often than the normal checkpoint frequency (specified by the checkpoint_timeout configuration
variable). Whenever a checkpoint occurs, all dirty pages must be flushed to disk. By increasing
max_wal_size temporarily during bulk data loads, the number of checkpoints that are required can be
reduced.

14.4.7. Disable WAL Archival and Streaming Replication
When loading large amounts of data into an installation that uses WAL archiving or streaming replication,
it might be faster to take a new base backup after the load has completed than to process a large amount
of incremental WAL data. To prevent incremental WAL logging while loading, disable archiving and
streaming replication, by setting wal_level to minimal, archive_mode to off, and max_wal_senders to
zero. But note that changing these settings requires a server restart.

Aside from avoiding the time for the archiver or WAL sender to process the WAL data, doing this will
actually make certain commands faster, because they do not to write WAL at all if wal_level is minimal
and the current subtransaction (or top-level transaction) created or truncated the table or index they
change. (They can guarantee crash safety more cheaply by doing an fsync at the end than by writing
WAL.)

14.4.8. Run ANALYZE Afterwards
Whenever you have significantly altered the distribution of data within a table, running ANALYZE
is strongly recommended. This includes bulk loading large amounts of data into the table. Running
ANALYZE (or VACUUM ANALYZE) ensures that the planner has up-to-date statistics about the table. With no
statistics or obsolete statistics, the planner might make poor decisions during query planning, leading
to poor performance on any tables with inaccurate or nonexistent statistics. Note that if the autovacuum
daemon is enabled, it might run ANALYZE automatically; see Section 23.1.3 and Section 23.1.6 for more
information.

14.4.9. Some Notes about pg_dump
Dump scripts generated by pg_dump automatically apply several, but not all, of the above guidelines. To
reload a pg_dump dump as quickly as possible, you need to do a few extra things manually. (Note that
these points apply while restoring a dump, not while creating it. The same points apply whether loading
a text dump with psql or using pg_restore to load from a pg_dump archive file.)

By default, pg_dump uses COPY, and when it is generating a complete schema-and-data dump, it is careful
to load data before creating indexes and foreign keys. So in this case several guidelines are handled
automatically. What is left for you to do is to:

• Set appropriate (i.e., larger than normal) values for maintenance_work_mem and max_wal_size.

• If using WAL archiving or streaming replication, consider disabling them during the restore. To do
that, set archive_mode to off, wal_level to minimal, and max_wal_senders to zero before loading
the dump. Afterwards, set them back to the right values and take a fresh base backup.

• Experiment with the parallel dump and restore modes of both pg_dump and pg_restore and find the
optimal number of concurrent jobs to use. Dumping and restoring in parallel by means of the -j
option should give you a significantly higher performance over the serial mode.

• Consider whether the whole dump should be restored as a single transaction. To do that, pass
the -1 or --single-transaction command-line option to psql or pg_restore. When using this
mode, even the smallest of errors will rollback the entire restore, possibly discarding many hours
of processing. Depending on how interrelated the data is, that might seem preferable to manual
cleanup, or not. COPY commands will run fastest if you use a single transaction and have WAL
archiving turned off.

• If multiple CPUs are available in the database server, consider using pg_restore's --jobs option.
This allows concurrent data loading and index creation.

• Run ANALYZE afterwards.

432

Performance Tips

A data-only dump will still use COPY, but it does not drop or recreate indexes, and it does not normally
touch foreign keys. 1 So when loading a data-only dump, it is up to you to drop and recreate indexes and
foreign keys if you wish to use those techniques. It's still useful to increase max_wal_size while loading
the data, but don't bother increasing maintenance_work_mem; rather, you'd do that while manually
recreating indexes and foreign keys afterwards. And don't forget to ANALYZE when you're done; see
Section 23.1.3 and Section 23.1.6 for more information.

14.5. Non-Durable Settings
Durability is a database feature that guarantees the recording of committed transactions even if the
server crashes or loses power. However, durability adds significant database overhead, so if your site
does not require such a guarantee, Postgres Pro can be configured to run much faster. The following
are configuration changes you can make to improve performance in such cases. Except as noted below,
durability is still guaranteed in case of a crash of the database software; only abrupt operating system
stoppage creates a risk of data loss or corruption when these settings are used.
• Place the database cluster's data directory in a memory-backed file system (i.e., RAM disk). This

eliminates all database disk I/O, but limits data storage to the amount of available memory (and
perhaps swap).

• Turn off fsync; there is no need to flush data to disk.
• Turn off synchronous_commit; there might be no need to force WAL writes to disk on every commit.

This setting does risk transaction loss (though not data corruption) in case of a crash of the
database.

• Turn off full_page_writes; there is no need to guard against partial page writes.
• Increase max_wal_size and checkpoint_timeout; this reduces the frequency of checkpoints, but

increases the storage requirements of /pg_wal.
• Create unlogged tables to avoid WAL writes, though it makes the tables non-crash-safe.

1 You can get the effect of disabling foreign keys by using the --disable-triggers option — but realize that that eliminates, rather than just postpones, foreign
key validation, and so it is possible to insert bad data if you use it.

433

Chapter 15. Parallel Query
Postgres Pro can devise query plans that can leverage multiple CPUs in order to answer queries faster.
This feature is known as parallel query. Many queries cannot benefit from parallel query, either due
to limitations of the current implementation or because there is no imaginable query plan that is any
faster than the serial query plan. However, for queries that can benefit, the speedup from parallel query
is often very significant. Many queries can run more than twice as fast when using parallel query, and
some queries can run four times faster or even more. Queries that touch a large amount of data but
return only a few rows to the user will typically benefit most. This chapter explains some details of how
parallel query works and in which situations it can be used so that users who wish to make use of it
can understand what to expect.

15.1. How Parallel Query Works
When the optimizer determines that parallel query is the fastest execution strategy for a particular query,
it will create a query plan that includes a Gather or Gather Merge node. Here is a simple example:
EXPLAIN SELECT * FROM pgbench_accounts WHERE filler LIKE '%x%';
 QUERY PLAN

 Gather (cost=1000.00..217018.43 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..216018.33 rows=1 width=97)
 Filter: (filler ~~ '%x%'::text)
(4 rows)

In all cases, the Gather or Gather Merge node will have exactly one child plan, which is the portion of
the plan that will be executed in parallel. If the Gather or Gather Merge node is at the very top of the
plan tree, then the entire query will execute in parallel. If it is somewhere else in the plan tree, then only
the portion of the plan below it will run in parallel. In the example above, the query accesses only one
table, so there is only one plan node other than the Gather node itself; since that plan node is a child
of the Gather node, it will run in parallel.

Using EXPLAIN, you can see the number of workers chosen by the planner. When the Gather
node is reached during query execution, the process that is implementing the user's session will
request a number of background worker processes equal to the number of workers chosen by the
planner. The number of background workers that the planner will consider using is limited to at
most max_parallel_workers_per_gather. The total number of background workers that can exist at
any one time is limited by both max_worker_processes and max_parallel_workers. Therefore, it is
possible for a parallel query to run with fewer workers than planned, or even with no workers at
all. The optimal plan may depend on the number of workers that are available, so this can result in
poor query performance. If this occurrence is frequent, consider increasing max_worker_processes
and max_parallel_workers so that more workers can be run simultaneously or alternatively reducing
max_parallel_workers_per_gather so that the planner requests fewer workers.

Every background worker process that is successfully started for a given parallel query will execute
the parallel portion of the plan. The leader will also execute that portion of the plan, but it has an
additional responsibility: it must also read all of the tuples generated by the workers. When the parallel
portion of the plan generates only a small number of tuples, the leader will often behave very much like
an additional worker, speeding up query execution. Conversely, when the parallel portion of the plan
generates a large number of tuples, the leader may be almost entirely occupied with reading the tuples
generated by the workers and performing any further processing steps that are required by plan nodes
above the level of the Gather node or Gather Merge node. In such cases, the leader will do very little
of the work of executing the parallel portion of the plan.

When the node at the top of the parallel portion of the plan is Gather Merge rather than Gather, it
indicates that each process executing the parallel portion of the plan is producing tuples in sorted order,
and that the leader is performing an order-preserving merge. In contrast, Gather reads tuples from the
workers in whatever order is convenient, destroying any sort order that may have existed.

434

Parallel Query

15.2. When Can Parallel Query Be Used?
There are several settings that can cause the query planner not to generate a parallel query plan under
any circumstances. In order for any parallel query plans whatsoever to be generated, the following
settings must be configured as indicated.

• max_parallel_workers_per_gather must be set to a value that is greater than zero. This is a
special case of the more general principle that no more workers should be used than the number
configured via max_parallel_workers_per_gather.

In addition, the system must not be running in single-user mode. Since the entire database system is
running in single process in this situation, no background workers will be available.

Even when it is in general possible for parallel query plans to be generated, the planner will not generate
them for a given query if any of the following are true:

• The query writes any data or locks any database rows. If a query contains a data-modifying
operation either at the top level or within a CTE, no parallel plans for that query will be generated.
As an exception, the commands CREATE TABLE ... AS, SELECT INTO, and CREATE MATERIALIZED
VIEW that create a new table and populate it can use a parallel plan.

• The query might be suspended during execution. In any situation in which the system thinks that
partial or incremental execution might occur, no parallel plan is generated. For example, a cursor
created using DECLARE CURSOR will never use a parallel plan. Similarly, a PL/pgSQL loop of the
form FOR x IN query LOOP .. END LOOP will never use a parallel plan, because the parallel query
system is unable to verify that the code in the loop is safe to execute while parallel query is active.

• The query uses any function marked PARALLEL UNSAFE. Most system-defined functions are
PARALLEL SAFE, but user-defined functions are marked PARALLEL UNSAFE by default. See the
discussion of Section 15.4.

• The query is running inside of another query that is already parallel. For example, if a function
called by a parallel query issues an SQL query itself, that query will never use a parallel plan. This
is a limitation of the current implementation, but it may not be desirable to remove this limitation,
since it could result in a single query using a very large number of processes.

Even when parallel query plan is generated for a particular query, there are several circumstances under
which it will be impossible to execute that plan in parallel at execution time. If this occurs, the leader
will execute the portion of the plan below the Gather node entirely by itself, almost as if the Gather node
were not present. This will happen if any of the following conditions are met:

• No background workers can be obtained because of the limitation that the total number of
background workers cannot exceed max_worker_processes.

• No background workers can be obtained because of the limitation that the total number of
background workers launched for purposes of parallel query cannot exceed max_parallel_workers.

• The client sends an Execute message with a non-zero fetch count. See the discussion of the
extended query protocol. Since libpq currently provides no way to send such a message, this can
only occur when using a client that does not rely on libpq. If this is a frequent occurrence, it may
be a good idea to set max_parallel_workers_per_gather to zero in sessions where it is likely, so as to
avoid generating query plans that may be suboptimal when run serially.

15.3. Parallel Plans
Because each worker executes the parallel portion of the plan to completion, it is not possible to simply
take an ordinary query plan and run it using multiple workers. Each worker would produce a full copy
of the output result set, so the query would not run any faster than normal but would produce incorrect
results. Instead, the parallel portion of the plan must be what is known internally to the query optimizer
as a partial plan; that is, it must be constructed so that each process that executes the plan will generate
only a subset of the output rows in such a way that each required output row is guaranteed to be

435

Parallel Query

generated by exactly one of the cooperating processes. Generally, this means that the scan on the driving
table of the query must be a parallel-aware scan.

15.3.1. Parallel Scans
The following types of parallel-aware table scans are currently supported.

• In a parallel sequential scan, the table's blocks will be divided among the cooperating processes.
Blocks are handed out one at a time, so that access to the table remains sequential.

• In a parallel bitmap heap scan, one process is chosen as the leader. That process performs a scan
of one or more indexes and builds a bitmap indicating which table blocks need to be visited. These
blocks are then divided among the cooperating processes as in a parallel sequential scan. In other
words, the heap scan is performed in parallel, but the underlying index scan is not.

• In a parallel index scan or parallel index-only scan, the cooperating processes take turns reading
data from the index. Currently, parallel index scans are supported only for btree indexes. Each
process will claim a single index block and will scan and return all tuples referenced by that block;
other processes can at the same time be returning tuples from a different index block. The results
of a parallel btree scan are returned in sorted order within each worker process.

Other scan types, such as scans of non-btree indexes, may support parallel scans in the future.

15.3.2. Parallel Joins
Just as in a non-parallel plan, the driving table may be joined to one or more other tables using a nested
loop, hash join, or merge join. The inner side of the join may be any kind of non-parallel plan that is
otherwise supported by the planner provided that it is safe to run within a parallel worker. Depending
on the join type, the inner side may also be a parallel plan.

• In a nested loop join, the inner side is always non-parallel. Although it is executed in full, this is
efficient if the inner side is an index scan, because the outer tuples and thus the loops that look up
values in the index are divided over the cooperating processes.

• In a merge join, the inner side is always a non-parallel plan and therefore executed in full. This
may be inefficient, especially if a sort must be performed, because the work and resulting data are
duplicated in every cooperating process.

• In a hash join (without the "parallel" prefix), the inner side is executed in full by every cooperating
process to build identical copies of the hash table. This may be inefficient if the hash table is large
or the plan is expensive. In a parallel hash join, the inner side is a parallel hash that divides the
work of building a shared hash table over the cooperating processes.

15.3.3. Parallel Aggregation
Postgres Pro supports parallel aggregation by aggregating in two stages. First, each process
participating in the parallel portion of the query performs an aggregation step, producing a partial result
for each group of which that process is aware. This is reflected in the plan as a Partial Aggregate
node. Second, the partial results are transferred to the leader via Gather or Gather Merge. Finally, the
leader re-aggregates the results across all workers in order to produce the final result. This is reflected
in the plan as a Finalize Aggregate node.

Because the Finalize Aggregate node runs on the leader process, queries that produce a relatively
large number of groups in comparison to the number of input rows will appear less favorable to the
query planner. For example, in the worst-case scenario the number of groups seen by the Finalize
Aggregate node could be as many as the number of input rows that were seen by all worker processes
in the Partial Aggregate stage. For such cases, there is clearly going to be no performance benefit to
using parallel aggregation. The query planner takes this into account during the planning process and
is unlikely to choose parallel aggregate in this scenario.

Parallel aggregation is not supported in all situations. Each aggregate must be safe for parallelism
and must have a combine function. If the aggregate has a transition state of type internal, it must

436

Parallel Query

have serialization and deserialization functions. See CREATE AGGREGATE for more details. Parallel
aggregation is not supported if any aggregate function call contains DISTINCT or ORDER BY clause and
is also not supported for ordered set aggregates or when the query involves GROUPING SETS. It can only
be used when all joins involved in the query are also part of the parallel portion of the plan.

15.3.4. Parallel Append
Whenever Postgres Pro needs to combine rows from multiple sources into a single result set, it uses
an Append or MergeAppend plan node. This commonly happens when implementing UNION ALL or when
scanning a partitioned table. Such nodes can be used in parallel plans just as they can in any other plan.
However, in a parallel plan, the planner may instead use a Parallel Append node.

When an Append node is used in a parallel plan, each process will execute the child plans in the order in
which they appear, so that all participating processes cooperate to execute the first child plan until it is
complete and then move to the second plan at around the same time. When a Parallel Append is used
instead, the executor will instead spread out the participating processes as evenly as possible across its
child plans, so that multiple child plans are executed simultaneously. This avoids contention, and also
avoids paying the startup cost of a child plan in those processes that never execute it.

Also, unlike a regular Append node, which can only have partial children when used within a parallel plan,
a Parallel Append node can have both partial and non-partial child plans. Non-partial children will be
scanned by only a single process, since scanning them more than once would produce duplicate results.
Plans that involve appending multiple results sets can therefore achieve coarse-grained parallelism even
when efficient partial plans are not available. For example, consider a query against a partitioned table
that can only be implemented efficiently by using an index that does not support parallel scans. The
planner might choose a Parallel Append of regular Index Scan plans; each individual index scan would
have to be executed to completion by a single process, but different scans could be performed at the
same time by different processes.

enable_parallel_append can be used to disable this feature.

15.3.5. Parallel Plan Tips
If a query that is expected to do so does not produce a parallel plan, you can try reducing
parallel_setup_cost or parallel_tuple_cost. Of course, this plan may turn out to be slower than the serial
plan that the planner preferred, but this will not always be the case. If you don't get a parallel plan
even with very small values of these settings (e.g., after setting them both to zero), there may be some
reason why the query planner is unable to generate a parallel plan for your query. See Section 15.2 and
Section 15.4 for information on why this may be the case.

When executing a parallel plan, you can use EXPLAIN (ANALYZE, VERBOSE) to display per-worker
statistics for each plan node. This may be useful in determining whether the work is being evenly
distributed between all plan nodes and more generally in understanding the performance characteristics
of the plan.

15.4. Parallel Safety
The planner classifies operations involved in a query as either parallel safe, parallel restricted, or parallel
unsafe. A parallel safe operation is one that does not conflict with the use of parallel query. A parallel
restricted operation is one that cannot be performed in a parallel worker, but that can be performed
in the leader while parallel query is in use. Therefore, parallel restricted operations can never occur
below a Gather or Gather Merge node, but can occur elsewhere in a plan that contains such a node.
A parallel unsafe operation is one that cannot be performed while parallel query is in use, not even in
the leader. When a query contains anything that is parallel unsafe, parallel query is completely disabled
for that query.

The following operations are always parallel restricted:

• Scans of common table expressions (CTEs).

437

Parallel Query

• Scans of temporary tables.
• Scans of foreign tables, unless the foreign data wrapper has an IsForeignScanParallelSafe API

that indicates otherwise.
• Plan nodes to which an InitPlan is attached.
• Plan nodes that reference a correlated SubPlan.

15.4.1. Parallel Labeling for Functions and Aggregates
The planner cannot automatically determine whether a user-defined function or aggregate is parallel
safe, parallel restricted, or parallel unsafe, because this would require predicting every operation that
the function could possibly perform. In general, this is equivalent to the Halting Problem and therefore
impossible. Even for simple functions where it could conceivably be done, we do not try, since this would
be expensive and error-prone. Instead, all user-defined functions are assumed to be parallel unsafe
unless otherwise marked. When using CREATE FUNCTION or ALTER FUNCTION, markings can be set
by specifying PARALLEL SAFE, PARALLEL RESTRICTED, or PARALLEL UNSAFE as appropriate. When using
CREATE AGGREGATE, the PARALLEL option can be specified with SAFE, RESTRICTED, or UNSAFE as the
corresponding value.

Functions and aggregates must be marked PARALLEL UNSAFE if they write to the database, access
sequences, change the transaction state even temporarily (e.g., a PL/pgSQL function that establishes an
EXCEPTION block to catch errors), or make persistent changes to settings. Similarly, functions must be
marked PARALLEL RESTRICTED if they access temporary tables, client connection state, cursors, prepared
statements, or miscellaneous backend-local state that the system cannot synchronize across workers.
For example, setseed and random are parallel restricted for this last reason.

In general, if a function is labeled as being safe when it is restricted or unsafe, or if it is labeled as being
restricted when it is in fact unsafe, it may throw errors or produce wrong answers when used in a parallel
query. C-language functions could in theory exhibit totally undefined behavior if mislabeled, since there
is no way for the system to protect itself against arbitrary C code, but in most likely cases the result will
be no worse than for any other function. If in doubt, it is probably best to label functions as UNSAFE.

If a function executed within a parallel worker acquires locks that are not held by the leader, for example
by querying a table not referenced in the query, those locks will be released at worker exit, not end of
transaction. If you write a function that does this, and this behavior difference is important to you, mark
such functions as PARALLEL RESTRICTED to ensure that they execute only in the leader.

Note that the query planner does not consider deferring the evaluation of parallel-restricted functions
or aggregates involved in the query in order to obtain a superior plan. So, for example, if a WHERE clause
applied to a particular table is parallel restricted, the query planner will not consider performing a scan
of that table in the parallel portion of a plan. In some cases, it would be possible (and perhaps even
efficient) to include the scan of that table in the parallel portion of the query and defer the evaluation of
the WHERE clause so that it happens above the Gather node. However, the planner does not do this.

438

Part III. Server Administration
This part covers topics that are of interest to a Postgres Pro database administrator. This includes
installation of the software, set up and configuration of the server, management of users and databases,
and maintenance tasks. Anyone who runs a Postgres Pro server, even for personal use, but especially in
production, should be familiar with the topics covered in this part.

The information in this part is arranged approximately in the order in which a new user should read it.
But the chapters are self-contained and can be read individually as desired. The information in this part is
presented in a narrative fashion in topical units. Readers looking for a complete description of a particular
command should see Part VI.

The first few chapters are written so they can be understood without prerequisite knowledge, so new
users who need to set up their own server can begin their exploration with this part. The rest of this part
is about tuning and management; that material assumes that the reader is familiar with the general use
of the Postgres Pro database system. Readers are encouraged to look at Part I and Part II for additional
information.

Chapter 16. Binary Installation
16.1. Installing Postgres Pro Standard on Linux

For Linux-based operating systems, Postgres Pro Standard is shipped as binary packages. Each
Postgres Pro binary distribution consists of several packages. The package structure differs from vanilla
PostgreSQL and offers the following installation modes:

• Quick installation and setup. The postgrespro-std-13 package installs and configures all the
components required for a viable ready-to-use configuration of both server and client components.
Choose this option if you are going to install a single Postgres Pro instance only, and you are not
worried about possible conflicts with other PostgreSQL-based products.

Important
Installing the postgrespro-std-13 package can delete existing installations of Postgres
Pro and PostgreSQL-based products. Similarly, this Postgres Pro installation may be
automatically removed if you later install another PostgreSQL-based product. Do not use this
package for upgrades or migrations, or if you are going to maintain several installations on
the same system.

• Custom installation. You can select any packages required for your purposes, including
development packages. This option needs manual configuration, so a good grasp of Linux and
understanding of PostgreSQL architecture are required. This is the only option to choose if you are
going to use Postgres Pro in one of the following scenarios:

• Install several Postgres Pro versions side by side, or together with other PostgreSQL-based
products.

• Perform an upgrade from a previous version, or migrate from a different PostgreSQL-based
product.

• Control Postgres Pro server execution using high availability software, such as pacemaker,
instead of the standard system service management facility.

The minimum hardware required to install Postgres Pro, create a database cluster and start the database
server are as follows:

• 1-GHz processor

• 1 GB of RAM

• 1 GB of disk space

Additional disk space is required for data or supporting components.

16.1.1. Supported Linux Distributions
Postgres Pro binary packages are available for the following Linux-based systems:

• Red Hat Enterprise Linux (RHEL) systems and its derivatives: CentOS 7/8, Rocky Linux 8, Red Hat
Enterprise Linux 7/8, Oracle Linux 7/8, Rosa Enterprise Linux Server 7, ROSA COBALT (server
edition) based on Rosa platform 7, Red OS Murom 7, AlterOS 7.5

• Debian-based systems: Debian 9/10/11, Ubuntu 18.04/20.04/21.10/22.04, Astra Linux Smolensk
1.6/1.7, Astra Linux Orel 2.12

• ALT 8/9/10, ALT Linux SPT 7.0, ALT 8 SP, ALT 8.2 SP
• SUSE Linux Enterprise Server (SLES) 12/15

440

Binary Installation

Note
Postgres Pro binary packages rely on the tzdata library provided by the operating system, so you
must ensure that the latest available version is installed. If tzdata is outdated, the time in your
database may be incorrect.

16.1.2. Quick Installation and Setup
If you only need to install a single Postgres Pro instance and are not going to use any other PostgreSQL-
based products on your system, you can use the quick installation mode. The typical process is as follows:
1. Add the package repository required for your operating system. You can find the exact repositories

and commands for each supported Linux distribution on the Download page for the selected Postgres
Pro version.

2. Install the postgrespro-std-13 package. It will bring all the required components via dependencies,
create the default database, start the database server, as well as enable server autostart at system
boot and make all the provided programs available in PATH.

Note
By default, the database configuration is set for the Postgres Pro product being installed. If you
need your database configured for a different product, choose custom installation and use the
tune argument of the pg-setup initdb command.

Once the installation completes, you can launch psql on behalf of the postgres user and connect to the
newly created database, which is located in the /var/lib/pgpro/std-13/data directory.

Since the default database is created using the pg-setup script, the path to its data directory is stored
in the /etc/default/postgrespro-std-13 file. All the subsequent pg-setup commands, as well as any
commands that manage Postgres Pro service, affect this database only. In this file, you can also change
the value of PG_OOM_ADJUST_VALUE for postmaster child processes (see Section 17.4.4 for details).

16.1.3. Custom Installation
Splitting the distribution into multiple packages enables customizing the installation for different
purposes: database servers, client systems, or development workstations. Custom installations need to
be configured manually, but give you more flexibility in using the product. You can install several Postgres
Pro versions side by side, as well as together with other PostgreSQL-based products. In particular, this
may be required when performing upgrades, or migrating from a different PostgreSQL-based product.

To perform a custom installation, complete the following steps:

1. Add the package repository required for your operating system. You can find the exact repositories
and commands for each supported Linux distribution on the Download page for the selected Postgres
Pro version.

2. Choose Postgres Pro packages required for your purposes and install them using the standard
installation commands for your Linux distribution. The available packages are listed in Table 16.1.

As a result, all files get installed into the /opt/pgpro/std-13 directory.
3. Run pg-wrapper as root to make the installed client and server programs available via PATH and

add SQL man pages to the man page configuration file. This utility is provided in the postgrespro-
std-13-client package.

/opt/pgpro/std-13/bin/pg-wrapper links update

For details on how to handle possible conflicts, see pg-wrapper description.

441

https://postgrespro.com/products/download
https://postgrespro.com/products/download

Binary Installation

4. If you chose to install the postgrespro-std-13-server package, make sure to complete the following
server setup:

a. Create the default database by running the helper script pg-setup as root with the initdb option:

/opt/pgpro/std-13/bin/pg-setup initdb [--tune=conf] [initdb_options]

where:

• the tune command-line argument sets the database configuration.

• initdb_options are regular initdb options.

Note
By default, pg-setup initializes the database cluster with checksums enabled. If this is not
what you expect, specify the --no-data-checksums.

The pg-setup script performs database administration operations as user postgres. If you do not
specify any initdb options, the default database is created in the /var/lib/pgpro/std-13/data
directory, using localization settings specified in the LANG environment variable for the current
session. All the LC_* environment variables are ignored.

Since the default database is created using the pg-setup script, the path to its data directory is
stored in the /etc/default/postgrespro-std-13 file. All the subsequent pg-setup commands,
as well as any commands that manage Postgres Pro service, affect this database only. In this
file, you can also change the value of PG_OOM_ADJUST_VALUE for postmaster child processes (see
Section 17.4.4 for details).

b. Start the server by running pg-setup as root, as follows:

/opt/pgpro/std-13/bin/pg-setup service start

Like vanilla PostgreSQL, Postgres Pro server runs on behalf of the postgres user.

Note
By default, automatic server startup is disabled, so you can manually control the database
recovery after a system reboot. Optionally, you can configure the Postgres Pro server to start
automatically. For details, see Section 16.1.3.2.

16.1.3.1. Choosing the Packages to Install
The table below lists all the available Postgres Pro Standard packages.

Table 16.1. Postgres Pro Standard Packages

Package Description
postgrespro-std-13 Top-level package that installs and configures

Postgres Pro for server and client systems. Do not
use this package for upgrades or migrations.

Important
Installing the postgrespro-std-13 package
can delete existing installations of Postgres
Pro and PostgreSQL-based products.
Similarly, this Postgres Pro installation may442

Binary Installation

Package Description
be automatically removed if you later install
another PostgreSQL-based product.

postgrespro-std-13-client Standard client applications, such as psql or pg_
dump.

postgrespro-std-13-libs Shared libraries required to deploy client
applications, including libpq; runtime libraries for
ECPG processor.

postgrespro-std-13-server Postgres Pro server and PL/pgSQL server-side
programming language.

postgrespro-std-13-contrib Additional extensions and programs deployable on
database servers.

postgrespro-std-13-devel Header files and libraries for developing client
applications and server extensions.

On Debian-based systems, this package is called
postgrespro-std-13-dev.

postgrespro-std-13-plperl Server-side programming language based on Perl.
postgrespro-std-13-plpython Server-side programming language based on

Python.
postgrespro-std-13-plpython3 Server-side programming language based on

Python 3.
postgrespro-std-13-pltcl Server-side programming language based on Tcl.
postgrespro-std-13-docs Documentation (English).
postgrespro-std-13-docs-ru Documentation (Russian).
postgrespro-std-13-test Test scripts for the server.

This package is only available on RHEL-based and
SUSE systems.

postgrespro-std-13-jit This package provides support for Just-in-Time (
JIT) compilation.

This package is only available for the supported
Debian and Ubuntu systems, Astra Linux
Smolensk 1.6/1.7, Astra Linux Orel 2.12, ALT
8/9/10, CentOS 7/8, Rocky Linux 8, SLES 15, and
RHEL 7/8.

To learn more about enabling and using JIT, see
Chapter 30.

mamonsu A monitoring agent for collecting Postgres Pro
and system metrics.

pg-portal-modify-std-13 An extension to modify Postgres Pro cursors.
pg-probackup-std-13 pg_probackup utility.
pgpro-controldata pgpro_controldata application to display control

information of a PostgreSQL/Postgres Pro
database cluster and compatibility information for
a cluster and/or server.

443

Binary Installation

Package Description
pgpro-pwr-std-13 pgpro_pwr extension that enables you to generate

workload reports, which help to discover most
resource-intensive activities in your database.

pgpro-stats-std-13 pgpro_stats extension that combines tracking
execution statistics of SQL statements and
calculating wait event statistics.

Besides, there are separate packages providing several external modules that have been pre-built for
compatibility with Postgres Pro Standard:

Table 16.2. Third-party Packages Built for Postgres Pro Standard

Package Description
orafce-std-13 This package implements in Postgres Pro some of

the functions from the Oracle database that are
missing (or behaving differently).

pg-filedump-std-13 A utility to format Postgres Pro heap/index/control
files into a human-readable form.

pg-repack-std-13 Postgres Pro extension and utility for reorganizing
tables.

pgbouncer Connection pooler for Postgres Pro.
pgpro-pgbadger Postgres Pro log analyzer that provides detailed

reports and graphs.
pldebugger-std-13 A set of shared libraries that implement an API for

debugging PL/pgSQL functions in Postgres Pro.

Additionally, Postgres Pro provides separate packages with debug information for some operating
systems:

• On Debian-based systems, see the postgrespro-std-13-dbg package.
• On RHEL-based systems, see the postgrespro-std-13-debuginfo package.
• On ALT Linux systems, all packages containing binary files have the corresponding -debuginfo

packages.

Server installations require at least the following packages:

• postgrespro-std-13-server

• postgrespro-std-13-client

• postgrespro-std-13-libs

To use additional Postgres Pro extensions, you must also install the postgrespro-std-13-contrib
package. On Debian-based systems, postgrespro-std-13-server package depends on postgrespro-
std-13-contrib package, so the latter must always be installed together with the server.

For client installations, it is usually enough to install the postgrespro-std-13-client and postgrespro-
std-13-libs packages. If you use custom applications and do not need standard client utilities such as
psql, you can install the postgrespro-std-13-libs package only.

Development workstations require at least the following packages:

• postgrespro-std-13-libs

• postgrespro-std-13-devel/ postgrespro-std-13-dev

You may also want to install and configure the server with a test database on development systems. For
details on additional configuration that may be required, Section 16.1.4.

444

Binary Installation

16.1.3.2. Enabling Automatic Server Startup
If you are running a custom installation, automatic server startup is disabled by default. Once the default
database is created, you can configure the server to start automatically upon system boot using service
management solutions available in your operating system or third-party high-availability software. To
facilitate this task, postgrespro-std-13-server package provides the pg-setup script, which is installed
in the /opt/pgpro/std-13/bin directory.

To enable server autostart, run the pg-setup script with the following options:

pg-setup service enable

If required, you can disable server autostart using the same script:

pg-setup service disable

Alternatively, you can use system service management solutions directly by running the autostart scripts
for SysV-style init.d and systemd provided in the postgrespro-std-13-server package. Depending on
your Linux distribution, Postgres Pro supports different service management solutions:

Linux Distribution Provided Scripts
RHEL 7/8 and compatible distributions, SLES
12/15

systemd unit file

Debian, Ubuntu, ALT 8/9/10 Both systemd unit file and SysV-style init.d script

To use systemd for automatic server startup, run the following command:

systemctl enable postgrespro-std-13

To use SysV-style init.d script:
• On ALT Linux systems, run the following command:

systemctl enable postgrespro-std-13

• On Debian systems, use update-rc.d. See the corresponding man page for details.

16.1.4. Setting up Development Workstations
While installing postgrespro-std-13-libs and postgrespro-std-13-devel/ postgrespro-std-13-dev
packages may be enough, it is usually convenient to have the server set up on the development system.
For quick setup, you can install postgrespro-std-13 package, which automatically configures the
provided client and server programs and creates the default database. However, if you are going to
use several PostgreSQL-based products simultaneously, follow the custom installation instructions in
Section 16.1.3.

To compile programs with Postgres Pro libraries using the pg_config utility shipped with Postgres Pro,
make sure it appears before the path to other pg_config versions, if any. Note that on RHEL-based
systems pg_config is not added to PATH automatically. If you do not have any other pg_config versions on
your system, you can use pg-wrapper provided in the postgrespro-std-13-client package to create
a symbolic link to pg_config in the standard binary directory.

To compile programs using pkg-config command, add the /opt/pgpro/std-13/lib/pkgconfig/ path to
the PKG_CONFIG_PATH environment variable.

If you would like to compile Postgres Pro extensions that support JIT inlining, make sure to meet the
following additional requirements:

• Install LLVM development package and Clang compiler. You must choose the packages of the same
version that was used for the postgrespro-std-13-jit to be installed on the server. To determine
the required version for the current Postgres Pro release, check the CLANG value in the /opt/
pgpro/std-13/lib/pgxs/src/Makefile.global file.

445

Binary Installation

• When running make or make install commands, specify the with-llvm=yes option to compile and
install bitcode files for your extension. By default, bitcode compilation is disabled as it depends on
Clang compiler availability.

16.1.4.1. Using Third-Party Programs with Postgres Pro
To use Postgres Pro server with a client program provided with a third-party product, you can install
the version of PostgreSQL libraries that was used to compile this program. For example, if this program
is provided with vanilla PostgreSQL, you may need to install the libpq or postgresql-libs packages
available for your Linux distribution. In this case, the program may not be able to use some new features
of Postgres Pro server, but it is probably not designed to use them anyway.

If you prefer to use Postgres Pro libraries with a third-party program, or would like to enable support
for a new feature that does not require client application change, such as SCRAM authentication, you
can recompile your program with Postgres Pro libraries.

Important
If the program is compiled with one version of libpq but used with another, its stable work cannot
be guaranteed.

If you are creating .rpm or .deb packages for your program, it is recommended to do the following:
1. Add /opt/pgpro/std-13/bin to PATH inside your build scripts (.spec files or debian/rules).
2. Specify postgrespro-std-13-dev in the BuildDepends or BuildRequires tags for your program.
Thus, you can ensure that your package build process calls the right version of pg_config whenever the
source package is rebuilt.

16.1.5. Configuring Multiple Postgres Pro Instances
To set up several Postgres Pro server instances with different data directories on Linux, do the following:
1. Install and configure Postgres Pro as explained in Section 16.1.2 or Section 16.1.3.
2. Once the first default database is created, run initdb specifying the path to a different data directory

and any other parameters required to initialize another server instance.
3. Specify different ports for your server instances in the corresponding postgresql.conf files to avoid

conflicts.
4. If required, configure automatic server startup, as follows:

a. Create a copy of /etc/init.d/postgrespro-std-13 or /lib/systemd/system/postgrespro-
std-13.service with a different name, specifying the path to the data directory.

b. Enable automatic server startup using the provided autostart scripts for your system service
management facility instead of pg-setup, as described in Section 16.1.3.2. Make sure to use the
renamed copies of the scripts you created in step 1.

16.1.6. Antivirus Considerations
It is strongly recommended to avoid using antivirus software on systems where Postgres Pro is running
because it may cause additional load on your environment and result in unexpected database behavior
that would lead to performance and reliability issues. If you need to use antivirus software, make sure
to exclude the following directories from virus scanning as they do not contain any executable files:

• PGDATA directory that stores main cluster data, usually located in /var/lib/pgpro/std-13/data
unless you specified another directory in initdb options

• Paths to created tablespaces

16.2. Installing Postgres Pro Standard on Windows
Postgres Pro offers the following installation modes for the supported Windows systems:

446

Binary Installation

• GUI installation using an interactive wizard
• Command-line installation

Additionally, you have to set up the environment for using PL/Perl and PL/Python, if these procedural
languages are required for your purposes. For details, see Section 16.2.4.

To avoid confusion, note that there are the following different users on Windows systems:

• Postgres Pro installation is performed on behalf of an operating system user. All the database files
belong to this user.

• You must connect to the database cluster on behalf of the user created at installation time to be
able to work with the database. This is not an operating system user.

• By default, Postgres Pro service is started on behalf of NT AUTHORITY\NetworkService, which is a
special Windows Service Account. You can specify another Windows user for starting Postgres Pro
service in the corresponding text box of the installer, if required. The provided user must have the
right to start Windows services.

The minimum hardware required to install Postgres Pro, create a database cluster and start the database
server are as follows:

• 1-GHz processor

• 1 GB of RAM

• 1 GB of disk space

Additional disk space is required for data or supporting components.

16.2.1. Supported Windows Versions
Postgres Pro is available for the following 64-bit Windows versions:

• Windows 10 or higher
• Windows Server 2012 R2 or higher

16.2.2. GUI Installation
Postgres Pro provides an installer with an interactive wizard that configures and installs Postgres Pro
core components, creates the default database, and enables server autostart. The following components
have their own installers that should be run separately once the core components are installed:

• pg_probackup

To install Postgres Pro core components, run the provided installer as administrator and follow the on-
screen instructions. Make sure to take into account the following installation specifics:

• You can install all the Postgres Pro core components, or customize the installation by excluding
server or developer components. Client utilities are always installed.

• The selected data directory must be empty. Otherwise, Postgres Pro cannot create the default
database. The default data directory is C:\Program Files\PostgresPro\13\data.

• If the Allow external connections check box is selected (default), the installer modifies
postgresql.conf and pg_hba.conf files to allow external connections. Otherwise, Postgres
Pro server is listening for connections from the localhost only. If you decide to enable external
connections when the installation is complete, you have to modify the Windows Firewall
configuration to allow Postgres Pro server to accept connections.

• Make sure to remember the username and password you set up when installing Postgres Pro as it
will be required to connect to the Postgres Pro server when using password-based authentication
methods.

• By default, Postgres Pro uses icu collations. If you are upgrading an installation with the default
collation provided by libc, such as PostgreSQL, make sure to choose libc collation provider in the
corresponding drop-down list of the installer.

447

Binary Installation

• Postgres Pro provides a pre-configured psql that you can launch from the Start menu, so you do
not have to configure the standard environment variables. However, if you would like to work with
Postgres Pro from the standard command prompt without specifying full paths to the binary files,
select the Set up environment variables check box.

Once the installation completes, your Postgres Pro instance is ready to use, with server autostart
enabled. If you need more than one Postgres Pro instance on the same system, you have to configure
them manually. For details, see Section 16.2.5.

16.2.3. Command-Line Installation
To install Postgres Pro from the command line, run the downloaded installer file passing one or more
options described in Section 16.2.3.1.

16.2.3.1. Command-Line Options
Installation directory path:

/D=path

Silent install:

/S

INI file that provides the options to customize the server installation:

/init=ini_file_name

If you would like to customize the installation, you must create the INI file manually, as described in
Section 16.2.3.2.

16.2.3.2. INI File Format
You can add the following installation options to the [options] section of the INI file:

• InstallDir — path where to install server. If you specified the /D option on the command line, it
will be overwritten by the InstallDir value.

• DataDir — path where to create default database
• Port — TCP/IP port to listen. Default: 5432.
• SuperUser — name of the database user who will have admin rights in the database
• Password — password of the user
• noExtConnections = 1 — do not allow external connections
• Coding = UNICODE — character encoding to use in the database
• Locale — locale to use in the database. There can be several different locales for each encoding
• vcredist = no — do not install Visual C redistributable libraries (use it only if these libraries are

already installed on your system)
• envvar = 1 — set up environment variables helpful for Postgres Pro: PGDATA, PGDATABASE, PGUSER,

PGPORT, PGLOCALEDIR
• needoptimization = 0 — disable automatic tuning of configuration parameters based on the

available system resources.
• datachecksums = 0 — disable data checksums for the cluster.
• serviceaccount — specify a Windows user for starting Postgres Pro service. The provided user

must have the right to start Windows services. By default, Postgres Pro service is started on behalf
of NT AUTHORITY\NetworkService, which is a special Windows Service Account.

• servicepassword — provide the password for the Windows user specified in the serviceaccount
option.

• serviceid — change Postgres Pro service name.
• islibc = 1 — use libc as the provider of the default collation.

16.2.4. Loading Procedural Languages
Postgres Pro distribution for Windows systems includes PL/Perl and PL/Python procedural languages.

448

Binary Installation

16.2.4.1. Setting up the Environment for PL/Python
To configure the system for using PL/Python, complete the following steps:
1. Download and install the latest available version of Python 3.8 or 2.7 for Windows. Choose the 64-

bit version as Postgres Pro server has 64-bit architecture type. You can find the installers at https://
www.python.org/.

2. Create the PL/Python extension by running the following command in psql:
CREATE EXTENSION plpythonu

Tip
In some cases, when you create a PL/Python function, the connection to the server is lost and the
server log shows the following error message:
ImportError: module site not found

To avoid this issue, try to specify the Python installation directory in the PYTHONHOME environment
variable and restart the Postgres Pro service.

16.2.4.2. Setting up the Environment for PL/Perl
To configure the system for using PL/Perl, complete the following steps:
1. Download the MSI package of the 64-bit Strawberry Perl 5.26 from https://strawberryperl.com/

releases.html and perform the installation.
2. Restart the Postgres Pro server.
3. Create the PL/Perl extension by running the following command in psql:

CREATE EXTENSION plperlu

16.2.5. Configuring Multiple Postgres Pro Instances
To set up several Postgres Pro server instances with different data directories on Windows, do the
following:

1. Install Postgres Pro as explained in Section 16.2.2 or Section 16.2.3. The installed binary files are
shared by all Postgres Pro instances, so you need to complete this step only once.

2. Select an empty folder that your new Postgres Pro instance will use as the data directory. For
example, C:\Program Files\PostgresPro\13\data2. Make sure to grant Full Control permissions
for this folder to the current OS user that will own the database files and the user on behalf of which
the server is running (NT AUTHORITY\NetworkService by default).

3. Run initdb specifying the path to the new data directory and any other parameters required to
initialize another server instance. For example:
"C:\Program Files\PostgresPro\13\bin\initdb.exe" --encoding=UTF8 -U "postgres" -D
 "C:\Program Files\PostgresPro\13\data2"

Alternatively, you can stop the running server and copy the contents of the existing data directory
into the newly created folder. In this case, the new Postgres Pro instance inherits all the settings of
the original instance, including authentication settings.

4. Modify postgresql.conf settings for the new Postgres Pro instance as required. Make sure to
specify different ports for your server instances to avoid conflicts.

5. Open the command prompt as Administrator and register a new Postgres Pro service with a unique
name, for example, postgrespro-data2:
"C:\Program Files\PostgresPro\13\bin\pg_ctl.exe" register -N "postgrespro-data2" -U
 "NT AUTHORITY\NetworkService" -D "C:\Program Files\PostgresPro\13\data2" -w

449

https://www.python.org/
https://www.python.org/
https://strawberryperl.com/releases.html
https://strawberryperl.com/releases.html

Binary Installation

Start the registered service:

sc start "postgrespro-data2"

Once the service is started, your Postgres Pro instance is ready to use. If you need any additional Postgres
Pro extensions, make sure to enable them for the new instance as explained in Section 16.3.

16.2.6. Uninstalling Postgres Pro Standard
The procedure of uninstalling Postgres Pro Standard depends on the number of Postgres Pro instances
set up on your system.

If you have a single Postgres Pro instance created at installation time, you only need to run the
C:\Program Files\PostgresPro\13\uninstall.exe program. This program automatically stops the
server and unregisters the service for this instance.

If you have created any additional Postgres Pro instances, you have to complete the following steps:

1. Stop the server for each instance:

"C:\Program Files\PostgresPro\13\bin\pg_ctl.exe" stop -D "C:\Program Files
\PostgresPro\13\data_dir" -m fast -w

2. Unregister the service for each instance:

"C:\Program Files\PostgresPro\13\bin\pg_ctl.exe" unregister -N
 "postgrespro_service_name"

3. Run the C:\Program Files\PostgresPro\13\uninstall.exe to uninstall Postgres Pro binary files.

16.2.7. Antivirus Considerations
It is strongly recommended to avoid using antivirus software on systems where Postgres Pro is running
because it may cause additional load on your environment and result in unexpected database behavior
that would lead to performance and reliability issues. If you need to use antivirus software, make sure
to exclude the following directories from virus scanning as they do not contain any executable files:

• PGDATA directory that stores main cluster data, usually located in C:\Program Files\PostgresPro
\13\data unless you specified another directory in initdb options

• Paths to created tablespaces

16.3. Installing Additional Supplied Modules
Postgres Pro comes with a set of additional server extensions, or modules. On Linux, these extensions
are provided in the postgrespro-contrib package. On Windows, these extensions are installed together
with the server components.

Once you have the binary files installed, you have to enable additional extensions in the database in
order to use them. In most cases, you only need to issue the CREATE EXTENSION command. However,
some extensions also require shared libraries to be preloaded on server startup. If you want to use such
extensions, you need to configure parameter

shared_preload_libraries = 'lib1, lib2, lib3'

in the postgresql.conf file of your Postgres Pro database instance and restart the server before
executing the CREATE EXTENSION statement.

For the exact installation and configuration instructions for each particular extension, see the
corresponding documentation under Appendix F.

To get the list of extensions available in your Postgres Pro installation, you can view the
pg_available_extensions system catalog.

450

Binary Installation

16.4. Migrating to Postgres Pro
Different major versions of Postgres Pro, as well as different PostgreSQL-based products based on the
same major version, can have binary incompatible databases, so you cannot replace the server binary
and continue running. To convert databases that used previous major versions, you must perform a
dump/restore using pg_dumpall or use the pg_upgrade utility.

For upgrade instructions specific to a particular release, see the Release Notes for the corresponding
Postgres Pro version.

451

Chapter 17. Server Setup and Operation
This chapter discusses how to set up and run the database server, and its interactions with the operating
system.

The directions in this chapter assume that you are working with plain PostgreSQL without any additional
infrastructure, for example a copy that you built from source according to the directions in the preceding
chapters. If you are working with a pre-packaged or vendor-supplied version of PostgreSQL, it is likely
that the packager has made special provisions for installing and starting the database server according
to your system's conventions. Consult the package-level documentation for details.

17.1. The Postgres Pro User Account
As with any server daemon that is accessible to the outside world, it is advisable to run Postgres Pro
under a separate user account. This user account should only own the data that is managed by the server,
and should not be shared with other daemons. (For example, using the user nobody is a bad idea.) In
particular, it is advisable that this user account not own the Postgres Pro executable files, to ensure that
a compromised server process could not modify those executables.

Pre-packaged versions of PostgreSQL will typically create a suitable user account automatically during
package installation.

To add a Unix user account to your system, look for a command useradd or adduser. The user name
postgres is often used, and is assumed throughout this book, but you can use another name if you like.

17.2. Creating a Database Cluster
Before you can do anything, you must initialize a database storage area on disk. We call this a database
cluster. (The SQL standard uses the term catalog cluster.) A database cluster is a collection of databases
that is managed by a single instance of a running database server. After initialization, a database cluster
will contain a database named postgres, which is meant as a default database for use by utilities, users
and third party applications. The database server itself does not require the postgres database to exist,
but many external utility programs assume it exists. Another database created within each cluster during
initialization is called template1. As the name suggests, this will be used as a template for subsequently
created databases; it should not be used for actual work. (See Chapter 21 for information about creating
new databases within a cluster.)

In file system terms, a database cluster is a single directory under which all data will be stored. We call
this the data directory or data area. It is completely up to you where you choose to store your data. There
is no default, although locations such as /usr/local/pgsql/data or /var/lib/pgsql/data are popular.
The data directory must be initialized before being used, using the program initdbwhich is installed with
Postgres Pro.

If you are using a pre-packaged version of PostgreSQL, it may well have a specific convention for where
to place the data directory, and it may also provide a script for creating the data directory. In that case you
should use that script in preference to running initdb directly. Consult the package-level documentation
for details.

To initialize a database cluster manually, run initdb and specify the desired file system location of the
database cluster with the -D option, for example:
$ initdb -D /usr/local/pgsql/data

Note that you must execute this command while logged into the Postgres Pro user account, which is
described in the previous section.

Tip
As an alternative to the -D option, you can set the environment variable PGDATA.

452

Server Setup and Operation

Alternatively, you can run initdb via the pg_ctl program like so:
$ pg_ctl -D /usr/local/pgsql/data initdb

This may be more intuitive if you are using pg_ctl for starting and stopping the server (see Section 17.3),
so that pg_ctl would be the sole command you use for managing the database server instance.

initdb will attempt to create the directory you specify if it does not already exist. Of course, this will
fail if initdb does not have permissions to write in the parent directory. It's generally recommendable
that the Postgres Pro user own not just the data directory but its parent directory as well, so that this
should not be a problem. If the desired parent directory doesn't exist either, you will need to create it
first, using root privileges if the grandparent directory isn't writable. So the process might look like this:
root# mkdir /usr/local/pgsql
root# chown postgres /usr/local/pgsql
root# su postgres
postgres$ initdb -D /usr/local/pgsql/data

initdb will refuse to run if the data directory exists and already contains files; this is to prevent
accidentally overwriting an existing installation.

Because the data directory contains all the data stored in the database, it is essential that it be secured
from unauthorized access. initdb therefore revokes access permissions from everyone but the Postgres
Pro user, and optionally, group. Group access, when enabled, is read-only. This allows an unprivileged
user in the same group as the cluster owner to take a backup of the cluster data or perform other
operations that only require read access.

Note that enabling or disabling group access on an existing cluster requires the cluster to be shut down
and the appropriate mode to be set on all directories and files before restarting Postgres Pro. Otherwise,
a mix of modes might exist in the data directory. For clusters that allow access only by the owner, the
appropriate modes are 0700 for directories and 0600 for files. For clusters that also allow reads by the
group, the appropriate modes are 0750 for directories and 0640 for files.

However, while the directory contents are secure, the default client authentication setup allows any local
user to connect to the database and even become the database superuser. If you do not trust other local
users, we recommend you use one of initdb's -W, --pwprompt or --pwfile options to assign a password
to the database superuser. Also, specify -A md5 or -A password so that the default trust authentication
mode is not used; or modify the generated pg_hba.conf file after running initdb, but before you start
the server for the first time. (Other reasonable approaches include using peer authentication or file
system permissions to restrict connections. See Chapter 19 for more information.)

initdb also initializes the default locale for the database cluster. Normally, it will just take the locale
settings in the environment and apply them to the initialized database. It is possible to specify a different
locale for the database; more information about that can be found in Section 22.1. The default sort order
used within the particular database cluster is set by initdb, and while you can create new databases
using different sort order, the order used in the template databases that initdb creates cannot be changed
without dropping and recreating them. There is also a performance impact for using locales other than
C or POSIX. Therefore, it is important to make this choice correctly the first time.

initdb also sets the default character set encoding for the database cluster. Normally this should be
chosen to match the locale setting. For details see Section 22.3.

Non-C and non-POSIX locales rely on the operating system's collation library for character set ordering.
This controls the ordering of keys stored in indexes. For this reason, a cluster cannot switch to an
incompatible collation library version, either through snapshot restore, binary streaming replication, a
different operating system, or an operating system upgrade.

17.2.1. Use of Secondary File Systems
Many installations create their database clusters on file systems (volumes) other than the machine's
“root” volume. If you choose to do this, it is not advisable to try to use the secondary volume's topmost

453

Server Setup and Operation

directory (mount point) as the data directory. Best practice is to create a directory within the mount-
point directory that is owned by the Postgres Pro user, and then create the data directory within that.
This avoids permissions problems, particularly for operations such as pg_upgrade, and it also ensures
clean failures if the secondary volume is taken offline.

17.2.2. File Systems
Generally, any file system with POSIX semantics can be used for Postgres Pro. Users prefer different
file systems for a variety of reasons, including vendor support, performance, and familiarity. Experience
suggests that, all other things being equal, one should not expect major performance or behavior changes
merely from switching file systems or making minor file system configuration changes.

17.2.2.1. NFS
It is possible to use an NFS file system for storing the Postgres Pro data directory. Postgres Pro does
nothing special for NFS file systems, meaning it assumes NFS behaves exactly like locally-connected
drives. Postgres Pro does not use any functionality that is known to have nonstandard behavior on NFS,
such as file locking.

The only firm requirement for using NFS with Postgres Pro is that the file system is mounted using the
hard option. With the hard option, processes can “hang” indefinitely if there are network problems, so
this configuration will require a careful monitoring setup. The soft option will interrupt system calls in
case of network problems, but Postgres Pro will not repeat system calls interrupted in this way, so any
such interruption will result in an I/O error being reported.

It is not necessary to use the sync mount option. The behavior of the async option is sufficient, since
Postgres Pro issues fsync calls at appropriate times to flush the write caches. (This is analogous to how
it works on a local file system.) However, it is strongly recommended to use the sync export option on
the NFS server on systems where it exists (mainly Linux). Otherwise, an fsync or equivalent on the NFS
client is not actually guaranteed to reach permanent storage on the server, which could cause corruption
similar to running with the parameter fsync off. The defaults of these mount and export options differ
between vendors and versions, so it is recommended to check and perhaps specify them explicitly in
any case to avoid any ambiguity.

In some cases, an external storage product can be accessed either via NFS or a lower-level protocol such
as iSCSI. In the latter case, the storage appears as a block device and any available file system can be
created on it. That approach might relieve the DBA from having to deal with some of the idiosyncrasies
of NFS, but of course the complexity of managing remote storage then happens at other levels.

17.3. Starting the Database Server

Important
In binary installations on Linux systems, the default database is located in /var/lib/pgpro/
std-13/data, unless you specify a custom directory. See Section 16.1 for details.

Before anyone can access the database, you must start the database server. The database server program
is called postgres.

If you are using a pre-packaged version of PostgreSQL, it almost certainly includes provisions for running
the server as a background task according to the conventions of your operating system. Using the
package's infrastructure to start the server will be much less work than figuring out how to do this
yourself. Consult the package-level documentation for details.

The bare-bones way to start the server manually is just to invoke postgres directly, specifying the
location of the data directory with the -D option, for example:

$ postgres -D /usr/local/pgsql/data

454

Server Setup and Operation

which will leave the server running in the foreground. This must be done while logged into the Postgres
Pro user account. Without -D, the server will try to use the data directory named by the environment
variable PGDATA. If that variable is not provided either, it will fail.

Normally it is better to start postgres in the background. For this, use the usual Unix shell syntax:

$ postgres -D /usr/local/pgsql/data >logfile 2>&1 &

It is important to store the server's stdout and stderr output somewhere, as shown above. It will help
for auditing purposes and to diagnose problems. (See Section 23.3 for a more thorough discussion of
log file handling.)

The postgres program also takes a number of other command-line options. For more information, see
the postgres reference page and Chapter 18 below.

This shell syntax can get tedious quickly. Therefore the wrapper program pg_ctlis provided to simplify
some tasks. For example:

pg_ctl start -l logfile

will start the server in the background and put the output into the named log file. The -D option has the
same meaning here as for postgres. pg_ctl is also capable of stopping the server.

Normally, you will want to start the database server when the computer boots. Autostart scripts are
operating-system-specific. There are a few example scripts distributed with Postgres Pro in the contrib/
start-scripts directory. Installing one will require root privileges.

Different systems have different conventions for starting up daemons at boot time. Many systems have
a file /etc/rc.local or /etc/rc.d/rc.local. Others use init.d or rc.d directories. Whatever you do,
the server must be run by the Postgres Pro user account and not by root or any other user. Therefore
you probably should form your commands using su postgres -c '...'. For example:

su postgres -c 'pg_ctl start -D /usr/local/pgsql/data -l serverlog'

Here are a few more operating-system-specific suggestions. (In each case be sure to use the proper
installation directory and user name where we show generic values.)

• For FreeBSD, look at the file contrib/start-scripts/freebsd in the Postgres Pro source
distribution.

• On OpenBSD, add the following lines to the file /etc/rc.local:

if [-x /usr/local/pgsql/bin/pg_ctl -a -x /usr/local/pgsql/bin/postgres]; then
 su -l postgres -c '/usr/local/pgsql/bin/pg_ctl start -s -l /var/postgresql/log -
D /usr/local/pgsql/data'
 echo -n ' postgresql'
fi

• On Linux systems either add

/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/data

to /etc/rc.d/rc.local or /etc/rc.local or look at the file contrib/start-scripts/linux in the
Postgres Pro source distribution.

When using systemd, you can use the following service unit file (e.g., at /etc/systemd/system/
postgresql.service):

[Unit]
Description=Postgres Pro database server
Documentation=man:postgres(1)

[Service]
Type=notify

455

Server Setup and Operation

User=postgres
ExecStart=/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data
ExecReload=/bin/kill -HUP $MAINPID
KillMode=mixed
KillSignal=SIGINT
TimeoutSec=infinity

[Install]
WantedBy=multi-user.target

Using Type=notify requires that the server binary was built with configure --with-systemd.

Consider carefully the timeout setting. systemd has a default timeout of 90 seconds as of this
writing and will kill a process that does not report readiness within that time. But a Postgres Pro
server that might have to perform crash recovery at startup could take much longer to become
ready. The suggested value of infinity disables the timeout logic.

• On NetBSD, use either the FreeBSD or Linux start scripts, depending on preference.

• On Solaris, create a file called /etc/init.d/postgresql that contains the following line:

su - postgres -c "/usr/local/pgsql/bin/pg_ctl start -l logfile -D /usr/local/pgsql/
data"

Then, create a symbolic link to it in /etc/rc3.d as S99postgresql.

While the server is running, its PID is stored in the file postmaster.pid in the data directory. This is
used to prevent multiple server instances from running in the same data directory and can also be used
for shutting down the server.

17.3.1. Server Start-up Failures
There are several common reasons the server might fail to start. Check the server's log file, or start it
by hand (without redirecting standard output or standard error) and see what error messages appear.
Below we explain some of the most common error messages in more detail.

LOG: could not bind IPv4 address "127.0.0.1": Address already in use
HINT: Is another postmaster already running on port 5432? If not, wait a few seconds
 and retry.
FATAL: could not create any TCP/IP sockets

This usually means just what it suggests: you tried to start another server on the same port where one is
already running. However, if the kernel error message is not Address already in use or some variant
of that, there might be a different problem. For example, trying to start a server on a reserved port
number might draw something like:

$ postgres -p 666
LOG: could not bind IPv4 address "127.0.0.1": Permission denied
HINT: Is another postmaster already running on port 666? If not, wait a few seconds
 and retry.
FATAL: could not create any TCP/IP sockets

A message like:

FATAL: could not create shared memory segment: Invalid argument
DETAIL: Failed system call was shmget(key=5440001, size=4011376640, 03600).

probably means your kernel's limit on the size of shared memory is smaller than the work area Postgres
Pro is trying to create (4011376640 bytes in this example). This is only likely to happen if you have set
shared_memory_type to sysv. In that case, you can try starting the server with a smaller-than-normal
number of buffers (shared_buffers), or reconfigure your kernel to increase the allowed shared memory
size. You might also see this message when trying to start multiple servers on the same machine, if their
total space requested exceeds the kernel limit.

456

Server Setup and Operation

An error like:

FATAL: could not create semaphores: No space left on device
DETAIL: Failed system call was semget(5440126, 17, 03600).

does not mean you've run out of disk space. It means your kernel's limit on the number of System V
semaphores is smaller than the number Postgres Pro wants to create. As above, you might be able
to work around the problem by starting the server with a reduced number of allowed connections
(max_connections), but you'll eventually want to increase the kernel limit.

Details about configuring System V IPC facilities are given in Section 17.4.1.

17.3.2. Client Connection Problems
Although the error conditions possible on the client side are quite varied and application-dependent, a
few of them might be directly related to how the server was started. Conditions other than those shown
below should be documented with the respective client application.

psql: could not connect to server: Connection refused
 Is the server running on host "server.joe.com" and accepting
 TCP/IP connections on port 5432?

This is the generic “I couldn't find a server to talk to” failure. It looks like the above when TCP/IP
communication is attempted. A common mistake is to forget to configure the server to allow TCP/IP
connections.

Alternatively, you'll get this when attempting Unix-domain socket communication to a local server:

psql: could not connect to server: No such file or directory
 Is the server running locally and accepting
 connections on Unix domain socket "/tmp/.s.PGSQL.5432"?

The last line is useful in verifying that the client is trying to connect to the right place. If there is in
fact no server running there, the kernel error message will typically be either Connection refused or
No such file or directory, as illustrated. (It is important to realize that Connection refused in
this context does not mean that the server got your connection request and rejected it. That case will
produce a different message, as shown in Section 19.15.) Other error messages such as Connection
timed out might indicate more fundamental problems, like lack of network connectivity.

17.4. Managing Kernel Resources
Postgres Pro can sometimes exhaust various operating system resource limits, especially when multiple
copies of the server are running on the same system, or in very large installations. This section explains
the kernel resources used by Postgres Pro and the steps you can take to resolve problems related to
kernel resource consumption.

17.4.1. Shared Memory and Semaphores
Postgres Pro requires the operating system to provide inter-process communication (IPC) features,
specifically shared memory and semaphores. Unix-derived systems typically provide “System V” IPC,
“POSIX” IPC, or both. Windows has its own implementation of these features and is not discussed here.

By default, Postgres Pro allocates a very small amount of System V shared memory, as well as a much
larger amount of anonymous mmap shared memory. Alternatively, a single large System V shared memory
region can be used (see shared_memory_type). In addition a significant number of semaphores, which
can be either System V or POSIX style, are created at server startup. Currently, POSIX semaphores are
used on Linux and FreeBSD systems while other platforms use System V semaphores.

System V IPC features are typically constrained by system-wide allocation limits. When Postgres Pro
exceeds one of these limits, the server will refuse to start and should leave an instructive error message
describing the problem and what to do about it. (See also Section 17.3.1.) The relevant kernel parameters

457

Server Setup and Operation

are named consistently across different systems; Table 17.1 gives an overview. The methods to set them,
however, vary. Suggestions for some platforms are given below.

Table 17.1. System V IPC Parameters

Name Description Values needed to run one Postgres Pro
instance

SHMMAX Maximum size of shared memory segment
(bytes)

at least 1kB, but the default is usually
much higher

SHMMIN Minimum size of shared memory segment (
bytes)

1

SHMALL Total amount of shared memory available (
bytes or pages)

same as SHMMAX if bytes, or ceil(SHMMAX/
PAGE_SIZE) if pages, plus room for other
applications

SHMSEG Maximum number of shared memory
segments per process

only 1 segment is needed, but the default
is much higher

SHMMNI Maximum number of shared memory
segments system-wide

like SHMSEG plus room for other
applications

SEMMNI Maximum number of semaphore identifiers
(i.e., sets)

at least ceil((max_connections +
autovacuum_max_workers + max_wal_
senders + max_worker_processes +
5) / 16) plus room for other applications

SEMMNS Maximum number of semaphores system-
wide

ceil((max_connections +
autovacuum_max_workers + max_wal_
senders + max_worker_processes
+ 5) / 16) * 17 plus room for other
applications

SEMMSL Maximum number of semaphores per set at least 17
SEMMAP Number of entries in semaphore map see text
SEMVMX Maximum value of semaphore at least 1000 (The default is often 32767;

do not change unless necessary)

Postgres Pro requires a few bytes of System V shared memory (typically 48 bytes, on 64-bit platforms)
for each copy of the server. On most modern operating systems, this amount can easily be allocated.
However, if you are running many copies of the server or you explicitly configure the server to use large
amounts of System V shared memory (see shared_memory_type and dynamic_shared_memory_type), it
may be necessary to increase SHMALL, which is the total amount of System V shared memory system-
wide. Note that SHMALL is measured in pages rather than bytes on many systems.

Less likely to cause problems is the minimum size for shared memory segments (SHMMIN), which should
be at most approximately 32 bytes for Postgres Pro (it is usually just 1). The maximum number of
segments system-wide (SHMMNI) or per-process (SHMSEG) are unlikely to cause a problem unless your
system has them set to zero.

When using System V semaphores, Postgres Pro uses one semaphore per allowed connection
(max_connections), allowed autovacuum worker process (autovacuum_max_workers) and allowed
background process (max_worker_processes), in sets of 16. Each such set will also contain a 17th
semaphore which contains a “magic number”, to detect collision with semaphore sets used by other
applications. The maximum number of semaphores in the system is set by SEMMNS, which consequently
must be at least as high as max_connections plus autovacuum_max_workers plus max_wal_senders, plus
max_worker_processes, plus one extra for each 16 allowed connections plus workers (see the formula
in Table 17.1). The parameter SEMMNI determines the limit on the number of semaphore sets that can
exist on the system at one time. Hence this parameter must be at least ceil((max_connections +
autovacuum_max_workers + max_wal_senders + max_worker_processes + 5) / 16). Lowering the

458

Server Setup and Operation

number of allowed connections is a temporary workaround for failures, which are usually confusingly
worded “No space left on device”, from the function semget.

In some cases it might also be necessary to increase SEMMAP to be at least on the order of SEMMNS. If the
system has this parameter (many do not), it defines the size of the semaphore resource map, in which
each contiguous block of available semaphores needs an entry. When a semaphore set is freed it is either
added to an existing entry that is adjacent to the freed block or it is registered under a new map entry.
If the map is full, the freed semaphores get lost (until reboot). Fragmentation of the semaphore space
could over time lead to fewer available semaphores than there should be.

Various other settings related to “semaphore undo”, such as SEMMNU and SEMUME, do not affect Postgres
Pro.

When using POSIX semaphores, the number of semaphores needed is the same as for System
V, that is one semaphore per allowed connection (max_connections), allowed autovacuum worker
process (autovacuum_max_workers) and allowed background process (max_worker_processes). On the
platforms where this option is preferred, there is no specific kernel limit on the number of POSIX
semaphores.

AIX
It should not be necessary to do any special configuration for such parameters as SHMMAX, as it
appears this is configured to allow all memory to be used as shared memory. That is the sort of
configuration commonly used for other databases such as DB/2.

It might, however, be necessary to modify the global ulimit information in /etc/security/limits,
as the default hard limits for file sizes (fsize) and numbers of files (nofiles) might be too low.

FreeBSD
The default shared memory settings are usually good enough, unless you have set
shared_memory_type to sysv. System V semaphores are not used on this platform.

The default IPC settings can be changed using the sysctl or loader interfaces. The following
parameters can be set using sysctl:
sysctl kern.ipc.shmall=32768
sysctl kern.ipc.shmmax=134217728

To make these settings persist over reboots, modify /etc/sysctl.conf.

If you have set shared_memory_type to sysv, you might also want to configure your kernel to lock
System V shared memory into RAM and prevent it from being paged out to swap. This can be
accomplished using the sysctl setting kern.ipc.shm_use_phys.

If running in a FreeBSD jail, you should set its sysvshm parameter to new, so that it has its own
separate System V shared memory namespace. (Before FreeBSD 11.0, it was necessary to enable
shared access to the host's IPC namespace from jails, and take measures to avoid collisions.)

NetBSD
The default shared memory settings are usually good enough, unless you have set
shared_memory_type to sysv. You will usually want to increase kern.ipc.semmni and
kern.ipc.semmns, as NetBSD's default settings for these are uncomfortably small.

IPC parameters can be adjusted using sysctl, for example:
sysctl -w kern.ipc.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

If you have set shared_memory_type to sysv, you might also want to configure your kernel to lock
System V shared memory into RAM and prevent it from being paged out to swap. This can be
accomplished using the sysctl setting kern.ipc.shm_use_phys.

459

Server Setup and Operation

OpenBSD
The default shared memory settings are usually good enough, unless you have set
shared_memory_type to sysv. You will usually want to increase kern.seminfo.semmni and
kern.seminfo.semmns, as OpenBSD's default settings for these are uncomfortably small.

IPC parameters can be adjusted using sysctl, for example:
sysctl kern.seminfo.semmni=100

To make these settings persist over reboots, modify /etc/sysctl.conf.

HP-UX
The default settings tend to suffice for normal installations.

IPC parameters can be set in the System Administration Manager (SAM) under Kernel Configuration
→ Configurable Parameters. Choose Create A New Kernel when you're done.

Linux
The default shared memory settings are usually good enough, unless you have set
shared_memory_type to sysv, and even then only on older kernel versions that shipped with low
defaults. System V semaphores are not used on this platform.

The shared memory size settings can be changed via the sysctl interface. For example, to allow
16 GB:
$ sysctl -w kernel.shmmax=17179869184
$ sysctl -w kernel.shmall=4194304

To make these settings persist over reboots, see /etc/sysctl.conf.

macOS
The default shared memory and semaphore settings are usually good enough, unless you have set
shared_memory_type to sysv.

The recommended method for configuring shared memory in macOS is to create a file named /etc/
sysctl.conf, containing variable assignments such as:
kern.sysv.shmmax=4194304
kern.sysv.shmmin=1
kern.sysv.shmmni=32
kern.sysv.shmseg=8
kern.sysv.shmall=1024

Note that in some macOS versions, all five shared-memory parameters must be set in /etc/
sysctl.conf, else the values will be ignored.

SHMMAX can only be set to a multiple of 4096.

SHMALL is measured in 4 kB pages on this platform.

It is possible to change all but SHMMNI on the fly, using sysctl. But it's still best to set up your preferred
values via /etc/sysctl.conf, so that the values will be kept across reboots.

Solaris
illumos

The default shared memory and semaphore settings are usually good enough for most Postgres Pro
applications. Solaris defaults to a SHMMAX of one-quarter of system RAM. To further adjust this setting,
use a project setting associated with the postgres user. For example, run the following as root:
projadd -c "Postgres Pro DB User" -K "project.max-shm-memory=(privileged,8GB,deny)"
 -U postgres -G postgres user.postgres

460

Server Setup and Operation

This command adds the user.postgres project and sets the shared memory maximum for the
postgres user to 8GB, and takes effect the next time that user logs in, or when you restart Postgres
Pro (not reload). The above assumes that Postgres Pro is run by the postgres user in the postgres
group. No server reboot is required.

Other recommended kernel setting changes for database servers which will have a large number
of connections are:
project.max-shm-ids=(priv,32768,deny)
project.max-sem-ids=(priv,4096,deny)
project.max-msg-ids=(priv,4096,deny)

Additionally, if you are running Postgres Pro inside a zone, you may need to raise the zone resource
usage limits as well. See "Chapter2: Projects and Tasks" in the System Administrator's Guide for
more information on projects and prctl.

17.4.2. systemd RemoveIPC
If systemd is in use, some care must be taken that IPC resources (including shared memory) are not
prematurely removed by the operating system. This is especially of concern when installing Postgres
Pro from source. Users of distribution packages of Postgres Pro are less likely to be affected, as the
postgres user is then normally created as a system user.

The setting RemoveIPC in logind.conf controls whether IPC objects are removed when a user fully logs
out. System users are exempt. This setting defaults to on in stock systemd, but some operating system
distributions default it to off.

A typical observed effect when this setting is on is that shared memory objects used for parallel query
execution are removed at apparently random times, leading to errors and warnings while attempting
to open and remove them, like
WARNING: could not remove shared memory segment "/PostgreSQL.1450751626": No such file
 or directory

Different types of IPC objects (shared memory vs. semaphores, System V vs. POSIX) are treated slightly
differently by systemd, so one might observe that some IPC resources are not removed in the same way
as others. But it is not advisable to rely on these subtle differences.

A “user logging out” might happen as part of a maintenance job or manually when an administrator logs
in as the postgres user or something similar, so it is hard to prevent in general.

What is a “system user” is determined at systemd compile time from the SYS_UID_MAX setting in /etc/
login.defs.

Packaging and deployment scripts should be careful to create the postgres user as a system user by
using useradd -r, adduser --system, or equivalent.

Alternatively, if the user account was created incorrectly or cannot be changed, it is recommended to set
RemoveIPC=no

in /etc/systemd/logind.conf or another appropriate configuration file.

Caution
At least one of these two things has to be ensured, or the Postgres Pro server will be very unreliable.

17.4.3. Resource Limits
Unix-like operating systems enforce various kinds of resource limits that might interfere with the
operation of your Postgres Pro server. Of particular importance are limits on the number of processes

461

Server Setup and Operation

per user, the number of open files per process, and the amount of memory available to each process.
Each of these have a “hard” and a “soft” limit. The soft limit is what actually counts but it can be changed
by the user up to the hard limit. The hard limit can only be changed by the root user. The system call
setrlimit is responsible for setting these parameters. The shell's built-in command ulimit (Bourne
shells) or limit (csh) is used to control the resource limits from the command line. On BSD-derived
systems the file /etc/login.conf controls the various resource limits set during login. See the operating
system documentation for details. The relevant parameters are maxproc, openfiles, and datasize. For
example:

default:\
...
 :datasize-cur=256M:\
 :maxproc-cur=256:\
 :openfiles-cur=256:\
...

(-cur is the soft limit. Append -max to set the hard limit.)

Kernels can also have system-wide limits on some resources.
• On Linux /proc/sys/fs/file-max determines the maximum number of open files that the

kernel will support. It can be changed by writing a different number into the file or by adding an
assignment in /etc/sysctl.conf. The maximum limit of files per process is fixed at the time the
kernel is compiled; see /usr/src/linux/Documentation/proc.txt for more information.

The Postgres Pro server uses one process per connection so you should provide for at least as many
processes as allowed connections, in addition to what you need for the rest of your system. This is usually
not a problem but if you run several servers on one machine things might get tight.

The factory default limit on open files is often set to “socially friendly” values that allow many users to
coexist on a machine without using an inappropriate fraction of the system resources. If you run many
servers on a machine this is perhaps what you want, but on dedicated servers you might want to raise
this limit.

On the other side of the coin, some systems allow individual processes to open large numbers of
files; if more than a few processes do so then the system-wide limit can easily be exceeded. If you
find this happening, and you do not want to alter the system-wide limit, you can set Postgres Pro's
max_files_per_process configuration parameter to limit the consumption of open files.

17.4.4. Linux Memory Overcommit
The default virtual memory behavior on Linux is not optimal for Postgres Pro. Because of the way that
the kernel implements memory overcommit, the kernel might terminate the Postgres Pro postmaster
(the master server process) if the memory demands of either Postgres Pro or another process cause the
system to run out of virtual memory.

If this happens, you will see a kernel message that looks like this (consult your system documentation
and configuration on where to look for such a message):

Out of Memory: Killed process 12345 (postgres).

This indicates that the postgres process has been terminated due to memory pressure. Although existing
database connections will continue to function normally, no new connections will be accepted. To recover,
Postgres Pro will need to be restarted.

One way to avoid this problem is to run Postgres Pro on a machine where you can be sure that other
processes will not run the machine out of memory. If memory is tight, increasing the swap space of the
operating system can help avoid the problem, because the out-of-memory (OOM) killer is invoked only
when physical memory and swap space are exhausted.

If Postgres Pro itself is the cause of the system running out of memory, you can avoid the problem
by changing your configuration. In some cases, it may help to lower memory-related configuration

462

Server Setup and Operation

parameters, particularly shared_buffers, work_mem, and hash_mem_multiplier. In other cases, the
problem may be caused by allowing too many connections to the database server itself. In many cases, it
may be better to reduce max_connections and instead make use of external connection-pooling software.

It is possible to modify the kernel's behavior so that it will not “overcommit” memory. Although
this setting will not prevent the OOM killer from being invoked altogether, it will lower the chances
significantly and will therefore lead to more robust system behavior. This is done by selecting strict
overcommit mode via sysctl:

sysctl -w vm.overcommit_memory=2

or placing an equivalent entry in /etc/sysctl.conf. You might also wish to modify the related
setting vm.overcommit_ratio. For details see the kernel documentation file https://www.kernel.org/doc/
Documentation/vm/overcommit-accounting.

Another approach, which can be used with or without altering vm.overcommit_memory, is to set the
process-specific OOM score adjustment value for the postmaster process to -1000, thereby guaranteeing
it will not be targeted by the OOM killer. The simplest way to do this is to execute

echo -1000 > /proc/self/oom_score_adj

in the postmaster's startup script just before invoking the postmaster. Note that this action must be done
as root, or it will have no effect; so a root-owned startup script is the easiest place to do it. If you do this,
you should also set these environment variables in the startup script before invoking the postmaster:

export PG_OOM_ADJUST_FILE=/proc/self/oom_score_adj
export PG_OOM_ADJUST_VALUE=0

These settings will cause postmaster child processes to run with the normal OOM score adjustment
of zero, so that the OOM killer can still target them at need. You could use some other value for
PG_OOM_ADJUST_VALUE if you want the child processes to run with some other OOM score adjustment.
(PG_OOM_ADJUST_VALUE can also be omitted, in which case it defaults to zero.) If you do not set
PG_OOM_ADJUST_FILE, the child processes will run with the same OOM score adjustment as the
postmaster, which is unwise since the whole point is to ensure that the postmaster has a preferential
setting.

17.4.5. Linux Huge Pages
Using huge pages reduces overhead when using large contiguous chunks of memory, as Postgres Pro
does, particularly when using large values of shared_buffers. To use this feature in Postgres Pro you need
a kernel with CONFIG_HUGETLBFS=y and CONFIG_HUGETLB_PAGE=y. You will also have to adjust the kernel
setting vm.nr_hugepages. To estimate the number of huge pages needed, start Postgres Pro without
huge pages enabled and check the postmaster's anonymous shared memory segment size, as well as the
system's huge page size, using the /proc file system. This might look like:

$ head -1 $PGDATA/postmaster.pid
4170
$ pmap 4170 | awk '/rw-s/ && /zero/ {print $2}'
6490428K
$ grep ^Hugepagesize /proc/meminfo
Hugepagesize: 2048 kB

6490428 / 2048 gives approximately 3169.154, so in this example we need at least 3170 huge pages,
which we can set with:

$ sysctl -w vm.nr_hugepages=3170

A larger setting would be appropriate if other programs on the machine also need huge pages. Don't
forget to add this setting to /etc/sysctl.conf so that it will be reapplied after reboots.

Sometimes the kernel is not able to allocate the desired number of huge pages immediately, so it might
be necessary to repeat the command or to reboot. (Immediately after a reboot, most of the machine's
memory should be available to convert into huge pages.) To verify the huge page allocation situation, use:

463

https://lwn.net/Articles/104179/
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting
https://www.kernel.org/doc/Documentation/vm/overcommit-accounting

Server Setup and Operation

$ grep Huge /proc/meminfo

It may also be necessary to give the database server's operating system user permission to use huge
pages by setting vm.hugetlb_shm_group via sysctl, and/or give permission to lock memory with ulimit
-l.

The default behavior for huge pages in Postgres Pro is to use them when possible and to fall back
to normal pages when failing. To enforce the use of huge pages, you can set huge_pages to on in
postgresql.conf. Note that with this setting Postgres Pro will fail to start if not enough huge pages
are available.

For a detailed description of the Linux huge pages feature have a look at https://www.kernel.org/doc/
Documentation/vm/hugetlbpage.txt.

17.5. Shutting Down the Server
There are several ways to shut down the database server. Under the hood, they all reduce to sending
a signal to the supervisor postgres process.

If you are using a pre-packaged version of PostgreSQL, and you used its provisions for starting the server,
then you should also use its provisions for stopping the server. Consult the package-level documentation
for details.

When managing the server directly, you can control the type of shutdown by sending different signals
to the postgres process:
SIGTERM

This is the Smart Shutdown mode. After receiving SIGTERM, the server disallows new connections,
but lets existing sessions end their work normally. It shuts down only after all of the sessions
terminate. If the server is in online backup mode, it additionally waits until online backup mode is
no longer active. While backup mode is active, new connections will still be allowed, but only to
superusers (this exception allows a superuser to connect to terminate online backup mode). If the
server is in recovery when a smart shutdown is requested, recovery and streaming replication will
be stopped only after all regular sessions have terminated.

SIGINT
This is the Fast Shutdown mode. The server disallows new connections and sends all existing server
processes SIGTERM, which will cause them to abort their current transactions and exit promptly. It
then waits for all server processes to exit and finally shuts down. If the server is in online backup
mode, backup mode will be terminated, rendering the backup useless.

SIGQUIT
This is the Immediate Shutdown mode. The server will send SIGQUIT to all child processes and wait
for them to terminate. If any do not terminate within 5 seconds, they will be sent SIGKILL. The
master server process exits as soon as all child processes have exited, without doing normal database
shutdown processing. This will lead to recovery (by replaying the WAL log) upon next start-up. This
is recommended only in emergencies.

The pg_ctl program provides a convenient interface for sending these signals to shut down the server.
Alternatively, you can send the signal directly using kill on non-Windows systems. The PID of the
postgres process can be found using the ps program, or from the file postmaster.pid in the data
directory. For example, to do a fast shutdown:
$ kill -INT `head -1 /usr/local/pgsql/data/postmaster.pid`

Important
It is best not to use SIGKILL to shut down the server. Doing so will prevent the server from
releasing shared memory and semaphores. Furthermore, SIGKILL kills the postgres process

464

https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt
https://www.kernel.org/doc/Documentation/vm/hugetlbpage.txt

Server Setup and Operation

without letting it relay the signal to its subprocesses, so it might be necessary to kill the individual
subprocesses by hand as well.

To terminate an individual session while allowing other sessions to continue, use
pg_terminate_backend() (see Table 9.84) or send a SIGTERM signal to the child process associated
with the session.

17.6. Upgrading a Postgres Pro Cluster
This section discusses how to upgrade your database data from one Postgres Pro release to a newer one.

Current Postgres Pro version numbers consist of a major and a minor version number. For example, in
the version number 10.1, the 10 is the major version number and the 1 is the minor version number,
meaning this would be the first minor release of the major release 10. For releases before Postgres Pro
version 10.0, version numbers consist of three numbers, for example, 9.5.3. In those cases, the major
version consists of the first two digit groups of the version number, e.g., 9.5, and the minor version is
the third number, e.g., 3, meaning this would be the third minor release of the major release 9.5.

Minor releases never change the internal storage format and are always compatible with earlier and
later minor releases of the same major version number. For example, version 10.1 is compatible with
version 10.0 and version 10.6. Similarly, for example, 9.5.3 is compatible with 9.5.0, 9.5.1, and 9.5.6. To
update between compatible versions, you simply replace the executables while the server is down and
restart the server. The data directory remains unchanged — minor upgrades are that simple.

For major releases of Postgres Pro, the internal data storage format is subject to change, thus
complicating upgrades. The traditional method for moving data to a new major version is to dump and
reload the database, though this can be slow. A faster method is pg_upgrade. Replication methods are
also available, as discussed below.

New major versions also typically introduce some user-visible incompatibilities, so application
programming changes might be required. All user-visible changes are listed in the release notes
(Appendix E); pay particular attention to the section labeled "Migration". Though you can upgrade from
one major version to another without upgrading to intervening versions, you should read the major
release notes of all intervening versions.

Cautious users will want to test their client applications on the new version before switching over fully;
therefore, it's often a good idea to set up concurrent installations of old and new versions. When testing
a Postgres Pro major upgrade, consider the following categories of possible changes:

Administration

The capabilities available for administrators to monitor and control the server often change and
improve in each major release.

SQL

Typically this includes new SQL command capabilities and not changes in behavior, unless
specifically mentioned in the release notes.

Library API

Typically libraries like libpq only add new functionality, again unless mentioned in the release notes.

System Catalogs

System catalog changes usually only affect database management tools.

Server C-language API

This involves changes in the backend function API, which is written in the C programming language.
Such changes affect code that references backend functions deep inside the server.

465

Server Setup and Operation

17.6.1. Upgrading Data via pg_dumpall
One upgrade method is to dump data from one major version of Postgres Pro and reload it in another
— to do this, you must use a logical backup tool like pg_dumpall; file system level backup methods will
not work. (There are checks in place that prevent you from using a data directory with an incompatible
version of Postgres Pro, so no great harm can be done by trying to start the wrong server version on
a data directory.)

It is recommended that you use the pg_dump and pg_dumpall programs from the newer version of
Postgres Pro, to take advantage of enhancements that might have been made in these programs. Current
releases of the dump programs can read data from any server version back to 7.0.

These instructions assume that your existing installation is under the /usr/local/pgsql directory, and
that the data area is in /usr/local/pgsql/data. Substitute your paths appropriately.

1. If making a backup, make sure that your database is not being updated. This does not affect the
integrity of the backup, but the changed data would of course not be included. If necessary, edit
the permissions in the file /usr/local/pgsql/data/pg_hba.conf (or equivalent) to disallow access
from everyone except you. See Chapter 19 for additional information on access control.

To back up your database installation, type:

pg_dumpall > outputfile

To make the backup, you can use the pg_dumpall command from the version you are currently
running; see Section 24.1.2 for more details. For best results, however, try to use the pg_dumpall
command from Postgres Pro Standard 13.7.2, since this version contains bug fixes and improvements
over older versions. While this advice might seem idiosyncratic since you haven't installed the new
version yet, it is advisable to follow it if you plan to install the new version in parallel with the old
version. In that case you can complete the installation normally and transfer the data later. This will
also decrease the downtime.

2. Shut down the old server:

pg_ctl stop

On systems that have Postgres Pro started at boot time, there is probably a start-up file that will
accomplish the same thing. For example, on a Red Hat Linux system one might find that this works:

/etc/rc.d/init.d/postgresql stop

See Chapter 17 for details about starting and stopping the server.

3. If restoring from backup, rename or delete the old installation directory if it is not version-specific.
It is a good idea to rename the directory, rather than delete it, in case you have trouble and need
to revert to it. Keep in mind the directory might consume significant disk space. To rename the
directory, use a command like this:

mv /usr/local/pgsql /usr/local/pgsql.old

(Be sure to move the directory as a single unit so relative paths remain unchanged.)

4. Install the new version of Postgres Pro Standard.

5. Create a new database cluster if needed. Remember that you must execute these commands while
logged in to the special database user account (which you already have if you are upgrading).

/usr/local/pgsql/bin/initdb -D /usr/local/pgsql/data

6. Restore your previous pg_hba.conf and any postgresql.conf modifications.

7. Start the database server, again using the special database user account:

/usr/local/pgsql/bin/postgres -D /usr/local/pgsql/data

8. Finally, restore your data from backup with:

466

Server Setup and Operation

/usr/local/pgsql/bin/psql -d postgres -f outputfile

using the new psql.

The least downtime can be achieved by installing the new server in a different directory and running
both the old and the new servers in parallel, on different ports. Then you can use something like:

pg_dumpall -p 5432 | psql -d postgres -p 5433

to transfer your data.

17.6.2. Upgrading Data via pg_upgrade
The pg_upgrade module allows an installation to be migrated in-place from one major Postgres Pro
version to another. Upgrades can be performed in minutes, particularly with --link mode. It requires
steps similar to pg_dumpall above, e.g., starting/stopping the server, running initdb. The pg_upgrade
documentation outlines the necessary steps.

17.6.3. Upgrading Data via Replication
It is also possible to use logical replication methods to create a standby server with the updated version
of Postgres Pro. This is possible because logical replication supports replication between different major
versions of Postgres Pro. The standby can be on the same computer or a different computer. Once it has
synced up with the master server (running the older version of Postgres Pro), you can switch masters
and make the standby the master and shut down the older database instance. Such a switch-over results
in only several seconds of downtime for an upgrade.

This method of upgrading can be performed using the built-in logical replication facilities as well as
using external logical replication systems such as pglogical, Slony, Londiste, and Bucardo.

17.7. Preventing Server Spoofing
While the server is running, it is not possible for a malicious user to take the place of the normal database
server. However, when the server is down, it is possible for a local user to spoof the normal server by
starting their own server. The spoof server could read passwords and queries sent by clients, but could
not return any data because the PGDATA directory would still be secure because of directory permissions.
Spoofing is possible because any user can start a database server; a client cannot identify an invalid
server unless it is specially configured.

One way to prevent spoofing of local connections is to use a Unix domain socket directory
(unix_socket_directories) that has write permission only for a trusted local user. This prevents a malicious
user from creating their own socket file in that directory. If you are concerned that some applications
might still reference /tmp for the socket file and hence be vulnerable to spoofing, during operating
system startup create a symbolic link /tmp/.s.PGSQL.5432 that points to the relocated socket file. You
also might need to modify your /tmp cleanup script to prevent removal of the symbolic link.

Another option for local connections is for clients to use requirepeer to specify the required owner of
the server process connected to the socket.

To prevent spoofing on TCP connections, either use SSL certificates and make sure that clients check
the server's certificate, or use GSSAPI encryption (or both, if they're on separate connections).

To prevent spoofing with SSL, the server must be configured to accept only hostssl connections
(Section 19.1) and have SSL key and certificate files (Section 17.9). The TCP client must connect
using sslmode=verify-ca or verify-full and have the appropriate root certificate file installed
(Section 31.18.1).

To prevent spoofing with GSSAPI, the server must be configured to accept only hostgssenc
connections (Section 19.1) and use gss authentication with them. The TCP client must connect using
gssencmode=require.

467

Server Setup and Operation

17.8. Encryption Options
Postgres Pro offers encryption at several levels, and provides flexibility in protecting data from disclosure
due to database server theft, unscrupulous administrators, and insecure networks. Encryption might
also be required to secure sensitive data such as medical records or financial transactions.

Password Encryption
Database user passwords are stored as hashes (determined by the setting password_encryption),
so the administrator cannot determine the actual password assigned to the user. If SCRAM or MD5
encryption is used for client authentication, the unencrypted password is never even temporarily
present on the server because the client encrypts it before being sent across the network. SCRAM is
preferred, because it is an Internet standard and is more secure than the PostgreSQL-specific MD5
authentication protocol.

Encryption For Specific Columns
The pgcrypto module allows certain fields to be stored encrypted. This is useful if only some of the
data is sensitive. The client supplies the decryption key and the data is decrypted on the server and
then sent to the client.

The decrypted data and the decryption key are present on the server for a brief time while it is being
decrypted and communicated between the client and server. This presents a brief moment where
the data and keys can be intercepted by someone with complete access to the database server, such
as the system administrator.

Data Partition Encryption
Storage encryption can be performed at the file system level or the block level. Linux file system
encryption options include eCryptfs and EncFS, while FreeBSD uses PEFS. Block level or full disk
encryption options include dm-crypt + LUKS on Linux and GEOM modules geli and gbde on FreeBSD.
Many other operating systems support this functionality, including Windows.

This mechanism prevents unencrypted data from being read from the drives if the drives or the entire
computer is stolen. This does not protect against attacks while the file system is mounted, because
when mounted, the operating system provides an unencrypted view of the data. However, to mount
the file system, you need some way for the encryption key to be passed to the operating system, and
sometimes the key is stored somewhere on the host that mounts the disk.

Encrypting Data Across A Network
SSL connections encrypt all data sent across the network: the password, the queries, and the data
returned. The pg_hba.conf file allows administrators to specify which hosts can use non-encrypted
connections (host) and which require SSL-encrypted connections (hostssl). Also, clients can specify
that they connect to servers only via SSL.

GSSAPI-encrypted connections encrypt all data sent across the network, including queries and data
returned. (No password is sent across the network.) The pg_hba.conf file allows administrators to
specify which hosts can use non-encrypted connections (host) and which require GSSAPI-encrypted
connections (hostgssenc). Also, clients can specify that they connect to servers only on GSSAPI-
encrypted connections (gssencmode=require).

Stunnel or SSH can also be used to encrypt transmissions.

SSL Host Authentication
It is possible for both the client and server to provide SSL certificates to each other. It takes some
extra configuration on each side, but this provides stronger verification of identity than the mere
use of passwords. It prevents a computer from pretending to be the server just long enough to read
the password sent by the client. It also helps prevent “man in the middle” attacks where a computer
between the client and server pretends to be the server and reads and passes all data between the
client and server.

468

Server Setup and Operation

Client-Side Encryption

If the system administrator for the server's machine cannot be trusted, it is necessary for the client to
encrypt the data; this way, unencrypted data never appears on the database server. Data is encrypted
on the client before being sent to the server, and database results have to be decrypted on the client
before being used.

17.9. Secure TCP/IP Connections with SSL
Postgres Pro has native support for using SSL connections to encrypt client/server communications for
increased security.

17.9.1. Basic Setup
With SSL support compiled in, the Postgres Pro server can be started with SSL enabled by setting the
parameter ssl to on in postgresql.conf. The server will listen for both normal and SSL connections on
the same TCP port, and will negotiate with any connecting client on whether to use SSL. By default,
this is at the client's option; see Section 19.1 about how to set up the server to require use of SSL for
some or all connections.

To start in SSL mode, files containing the server certificate and private key must exist. By default, these
files are expected to be named server.crt and server.key, respectively, in the server's data directory,
but other names and locations can be specified using the configuration parameters ssl_cert_file and
ssl_key_file.

On Unix systems, the permissions on server.key must disallow any access to world or group; achieve
this by the command chmod 0600 server.key. Alternatively, the file can be owned by root and have
group read access (that is, 0640 permissions). That setup is intended for installations where certificate
and key files are managed by the operating system. The user under which the Postgres Pro server runs
should then be made a member of the group that has access to those certificate and key files.

If the data directory allows group read access then certificate files may need to be located outside of the
data directory in order to conform to the security requirements outlined above. Generally, group access
is enabled to allow an unprivileged user to backup the database, and in that case the backup software
will not be able to read the certificate files and will likely error.

If the private key is protected with a passphrase, the server will prompt for the passphrase and will
not start until it has been entered. Using a passphrase by default disables the ability to change the
server's SSL configuration without a server restart, but see ssl_passphrase_command_supports_reload.
Furthermore, passphrase-protected private keys cannot be used at all on Windows.

The first certificate in server.crt must be the server's certificate because it must match the server's
private key. The certificates of “intermediate” certificate authorities can also be appended to the file.
Doing this avoids the necessity of storing intermediate certificates on clients, assuming the root and
intermediate certificates were created with v3_ca extensions. (This sets the certificate's basic constraint
of CA to true.) This allows easier expiration of intermediate certificates.

It is not necessary to add the root certificate to server.crt. Instead, clients must have the root certificate
of the server's certificate chain.

17.9.2. OpenSSL Configuration
Postgres Pro reads the system-wide OpenSSL configuration file. By default, this file is named
openssl.cnf and is located in the directory reported by openssl version -d. This default can be
overridden by setting environment variable OPENSSL_CONF to the name of the desired configuration file.

OpenSSL supports a wide range of ciphers and authentication algorithms, of varying strength. While a
list of ciphers can be specified in the OpenSSL configuration file, you can specify ciphers specifically for
use by the database server by modifying ssl_ciphers in postgresql.conf.

469

Server Setup and Operation

Note
It is possible to have authentication without encryption overhead by using NULL-SHA or NULL-
MD5 ciphers. However, a man-in-the-middle could read and pass communications between client
and server. Also, encryption overhead is minimal compared to the overhead of authentication. For
these reasons NULL ciphers are not recommended.

17.9.3. Using Client Certificates
To require the client to supply a trusted certificate, place certificates of the root certificate authorities
(CAs) you trust in a file in the data directory, set the parameter ssl_ca_file in postgresql.conf to the new
file name, and add the authentication option clientcert=verify-ca or clientcert=verify-full to the
appropriate hostssl line(s) in pg_hba.conf. A certificate will then be requested from the client during
SSL connection startup. (See Section 31.18 for a description of how to set up certificates on the client.)

For a hostssl entry with clientcert=verify-ca, the server will verify that the client's certificate is
signed by one of the trusted certificate authorities. If clientcert=verify-full is specified, the server
will not only verify the certificate chain, but it will also check whether the username or its mapping
matches the cn (Common Name) of the provided certificate. Note that certificate chain validation is
always ensured when the cert authentication method is used (see Section 19.12).

Intermediate certificates that chain up to existing root certificates can also appear in the ssl_ca_file file if
you wish to avoid storing them on clients (assuming the root and intermediate certificates were created
with v3_ca extensions). Certificate Revocation List (CRL) entries are also checked if the parameter
ssl_crl_file is set.

The clientcert authentication option is available for all authentication methods, but only in
pg_hba.conf lines specified as hostssl. When clientcert is not specified or is set to no-verify, the
server will still verify any presented client certificates against its CA file, if one is configured — but it
will not insist that a client certificate be presented.

There are two approaches to enforce that users provide a certificate during login.

The first approach makes use of the cert authentication method for hostssl entries in pg_hba.conf,
such that the certificate itself is used for authentication while also providing ssl connection security. See
Section 19.12 for details. (It is not necessary to specify any clientcert options explicitly when using the
cert authentication method.) In this case, the cn (Common Name) provided in the certificate is checked
against the user name or an applicable mapping.

The second approach combines any authentication method for hostssl entries with the verification of
client certificates by setting the clientcert authentication option to verify-ca or verify-full. The
former option only enforces that the certificate is valid, while the latter also ensures that the cn (Common
Name) in the certificate matches the user name or an applicable mapping.

17.9.4. SSL Server File Usage
Table 17.2 summarizes the files that are relevant to the SSL setup on the server. (The shown file names
are default names. The locally configured names could be different.)

Table 17.2. SSL Server File Usage

File Contents Effect
ssl_cert_file ($PGDATA/
server.crt)

server certificate sent to client to indicate server's
identity

ssl_key_file ($PGDATA/
server.key)

server private key proves server certificate was
sent by the owner; does not

470

Server Setup and Operation

File Contents Effect
indicate certificate owner is
trustworthy

ssl_ca_file trusted certificate authorities checks that client certificate is
signed by a trusted certificate
authority

ssl_crl_file certificates revoked by
certificate authorities

client certificate must not be on
this list

The server reads these files at server start and whenever the server configuration is reloaded. On
Windows systems, they are also re-read whenever a new backend process is spawned for a new client
connection.

If an error in these files is detected at server start, the server will refuse to start. But if an error is
detected during a configuration reload, the files are ignored and the old SSL configuration continues to
be used. On Windows systems, if an error in these files is detected at backend start, that backend will be
unable to establish an SSL connection. In all these cases, the error condition is reported in the server log.

17.9.5. Creating Certificates
To create a simple self-signed certificate for the server, valid for 365 days, use the following OpenSSL
command, replacing dbhost.yourdomain.com with the server's host name:
openssl req -new -x509 -days 365 -nodes -text -out server.crt \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"

Then do:
chmod og-rwx server.key

because the server will reject the file if its permissions are more liberal than this. For more details on
how to create your server private key and certificate, refer to the OpenSSL documentation.

While a self-signed certificate can be used for testing, a certificate signed by a certificate authority (CA)
(usually an enterprise-wide root CA) should be used in production.

To create a server certificate whose identity can be validated by clients, first create a certificate signing
request (CSR) and a public/private key file:
openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key

Then, sign the request with the key to create a root certificate authority (using the default OpenSSL
configuration file location on Linux):
openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

Finally, create a server certificate signed by the new root certificate authority:
openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key

openssl x509 -req -in server.csr -text -days 365 \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out server.crt

server.crt and server.key should be stored on the server, and root.crt should be stored on the
client so the client can verify that the server's leaf certificate was signed by its trusted root certificate.
root.key should be stored offline for use in creating future certificates.

471

Server Setup and Operation

It is also possible to create a chain of trust that includes intermediate certificates:

root
openssl req -new -nodes -text -out root.csr \
 -keyout root.key -subj "/CN=root.yourdomain.com"
chmod og-rwx root.key
openssl x509 -req -in root.csr -text -days 3650 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -signkey root.key -out root.crt

intermediate
openssl req -new -nodes -text -out intermediate.csr \
 -keyout intermediate.key -subj "/CN=intermediate.yourdomain.com"
chmod og-rwx intermediate.key
openssl x509 -req -in intermediate.csr -text -days 1825 \
 -extfile /etc/ssl/openssl.cnf -extensions v3_ca \
 -CA root.crt -CAkey root.key -CAcreateserial \
 -out intermediate.crt

leaf
openssl req -new -nodes -text -out server.csr \
 -keyout server.key -subj "/CN=dbhost.yourdomain.com"
chmod og-rwx server.key
openssl x509 -req -in server.csr -text -days 365 \
 -CA intermediate.crt -CAkey intermediate.key -CAcreateserial \
 -out server.crt

server.crt and intermediate.crt should be concatenated into a certificate file bundle and stored on
the server. server.key should also be stored on the server. root.crt should be stored on the client so
the client can verify that the server's leaf certificate was signed by a chain of certificates linked to its
trusted root certificate. root.key and intermediate.key should be stored offline for use in creating
future certificates.

17.10. Secure TCP/IP Connections with GSSAPI
Encryption

Postgres Pro also has native support for using GSSAPI to encrypt client/server communications for
increased security. Support requires that a GSSAPI implementation (such as MIT Kerberos) is installed
on both client and server systems, and that support in Postgres Pro is enabled at build time.

17.10.1. Basic Setup
The Postgres Pro server will listen for both normal and GSSAPI-encrypted connections on the same
TCP port, and will negotiate with any connecting client whether to use GSSAPI for encryption (and for
authentication). By default, this decision is up to the client (which means it can be downgraded by an
attacker); see Section 19.1 about setting up the server to require the use of GSSAPI for some or all
connections.

When using GSSAPI for encryption, it is common to use GSSAPI for authentication as well, since
the underlying mechanism will determine both client and server identities (according to the GSSAPI
implementation) in any case. But this is not required; another Postgres Pro authentication method can
be chosen to perform additional verification.

Other than configuration of the negotiation behavior, GSSAPI encryption requires no setup beyond
that which is necessary for GSSAPI authentication. (For more information on configuring that, see
Section 19.6.)

17.11. Secure TCP/IP Connections with SSH Tunnels

472

Server Setup and Operation

It is possible to use SSH to encrypt the network connection between clients and a Postgres Pro server.
Done properly, this provides an adequately secure network connection, even for non-SSL-capable clients.

First make sure that an SSH server is running properly on the same machine as the Postgres Pro server
and that you can log in using ssh as some user; you then can establish a secure tunnel to the remote
server. A secure tunnel listens on a local port and forwards all traffic to a port on the remote machine.
Traffic sent to the remote port can arrive on its localhost address, or different bind address if desired;
it does not appear as coming from your local machine. This command creates a secure tunnel from the
client machine to the remote machine foo.com:
ssh -L 63333:localhost:5432 joe@foo.com

The first number in the -L argument, 63333, is the local port number of the tunnel; it can be any unused
port. (IANA reserves ports 49152 through 65535 for private use.) The name or IP address after this is
the remote bind address you are connecting to, i.e., localhost, which is the default. The second number,
5432, is the remote end of the tunnel, e.g., the port number your database server is using. In order to
connect to the database server using this tunnel, you connect to port 63333 on the local machine:
psql -h localhost -p 63333 postgres

To the database server it will then look as though you are user joe on host foo.com connecting to
the localhost bind address, and it will use whatever authentication procedure was configured for
connections by that user to that bind address. Note that the server will not think the connection is SSL-
encrypted, since in fact it is not encrypted between the SSH server and the Postgres Pro server. This
should not pose any extra security risk because they are on the same machine.

In order for the tunnel setup to succeed you must be allowed to connect via ssh as joe@foo.com, just as
if you had attempted to use ssh to create a terminal session.

You could also have set up port forwarding as
ssh -L 63333:foo.com:5432 joe@foo.com

but then the database server will see the connection as coming in on its foo.com bind address, which is
not opened by the default setting listen_addresses = 'localhost'. This is usually not what you want.

If you have to “hop” to the database server via some login host, one possible setup could look like this:
ssh -L 63333:db.foo.com:5432 joe@shell.foo.com

Note that this way the connection from shell.foo.com to db.foo.com will not be encrypted by the SSH
tunnel. SSH offers quite a few configuration possibilities when the network is restricted in various ways.
Please refer to the SSH documentation for details.

Tip
Several other applications exist that can provide secure tunnels using a procedure similar in
concept to the one just described.

17.12. Registering Event Log on Windows
To register a Windows event log library with the operating system, issue this command:
regsvr32 pgsql_library_directory/pgevent.dll

This creates registry entries used by the event viewer, under the default event source named Postgres
Pro.

To specify a different event source name (see event_source), use the /n and /i options:
regsvr32 /n /i:event_source_name pgsql_library_directory/pgevent.dll

To unregister the event log library from the operating system, issue this command:

473

Server Setup and Operation

regsvr32 /u [/i:event_source_name] pgsql_library_directory/pgevent.dll

Note
To enable event logging in the database server, modify log_destination to include eventlog in
postgresql.conf.

474

Chapter 18. Server Configuration
There are many configuration parameters that affect the behavior of the database system. In the first
section of this chapter we describe how to interact with configuration parameters. The subsequent
sections discuss each parameter in detail.

18.1. Setting Parameters
18.1.1. Parameter Names and Values

All parameter names are case-insensitive. Every parameter takes a value of one of five types: boolean,
string, integer, floating point, or enumerated (enum). The type determines the syntax for setting the
parameter:

• Boolean: Values can be written as on, off, true, false, yes, no, 1, 0 (all case-insensitive) or any
unambiguous prefix of one of these.

• String: In general, enclose the value in single quotes, doubling any single quotes within the value.
Quotes can usually be omitted if the value is a simple number or identifier, however. (Values that
match a SQL keyword require quoting in some contexts.)

• Numeric (integer and floating point): Numeric parameters can be specified in the customary
integer and floating-point formats; fractional values are rounded to the nearest integer if the
parameter is of integer type. Integer parameters additionally accept hexadecimal input (beginning
with 0x) and octal input (beginning with 0), but these formats cannot have a fraction. Do not use
thousands separators. Quotes are not required, except for hexadecimal input.

• Numeric with Unit: Some numeric parameters have an implicit unit, because they describe
quantities of memory or time. The unit might be bytes, kilobytes, blocks (typically eight kilobytes),
milliseconds, seconds, or minutes. An unadorned numeric value for one of these settings will use
the setting's default unit, which can be learned from pg_settings.unit. For convenience, settings
can be given with a unit specified explicitly, for example '120 ms' for a time value, and they will
be converted to whatever the parameter's actual unit is. Note that the value must be written
as a string (with quotes) to use this feature. The unit name is case-sensitive, and there can be
whitespace between the numeric value and the unit.

• Valid memory units are B (bytes), kB (kilobytes), MB (megabytes), GB (gigabytes), and TB
(terabytes). The multiplier for memory units is 1024, not 1000.

• Valid time units are us (microseconds), ms (milliseconds), s (seconds), min (minutes), h (hours),
and d (days).

If a fractional value is specified with a unit, it will be rounded to a multiple of the next smaller
unit if there is one. For example, 30.1 GB will be converted to 30822 MB not 32319628902 B. If the
parameter is of integer type, a final rounding to integer occurs after any unit conversion.

• Enumerated: Enumerated-type parameters are written in the same way as string parameters, but
are restricted to have one of a limited set of values. The values allowable for such a parameter can
be found from pg_settings.enumvals. Enum parameter values are case-insensitive.

18.1.2. Parameter Interaction via the Configuration File
The most fundamental way to set these parameters is to edit the file postgresql.conf, which is normally
kept in the data directory. A default copy is installed when the database cluster directory is initialized.
An example of what this file might look like is:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

475

Server Configuration

One parameter is specified per line. The equal sign between name and value is optional. Whitespace
is insignificant (except within a quoted parameter value) and blank lines are ignored. Hash marks (#)
designate the remainder of the line as a comment. Parameter values that are not simple identifiers or
numbers must be single-quoted. To embed a single quote in a parameter value, write either two quotes
(preferred) or backslash-quote. If the file contains multiple entries for the same parameter, all but the
last one are ignored.

Parameters set in this way provide default values for the cluster. The settings seen by active sessions
will be these values unless they are overridden. The following sections describe ways in which the
administrator or user can override these defaults.

The configuration file is reread whenever the main server process receives a SIGHUP signal; this signal
is most easily sent by running pg_ctl reload from the command line or by calling the SQL function
pg_reload_conf(). The main server process also propagates this signal to all currently running server
processes, so that existing sessions also adopt the new values (this will happen after they complete any
currently-executing client command). Alternatively, you can send the signal to a single server process
directly. Some parameters can only be set at server start; any changes to their entries in the configuration
file will be ignored until the server is restarted. Invalid parameter settings in the configuration file are
likewise ignored (but logged) during SIGHUP processing.

In addition to postgresql.conf, a Postgres Pro data directory contains a file postgresql.auto.conf,
which has the same format as postgresql.conf but is intended to be edited automatically, not manually.
This file holds settings provided through the ALTER SYSTEM command. This file is read whenever
postgresql.conf is, and its settings take effect in the same way. Settings in postgresql.auto.conf
override those in postgresql.conf.

External tools may also modify postgresql.auto.conf. It is not recommended to do this while the
server is running, since a concurrent ALTER SYSTEM command could overwrite such changes. Such tools
might simply append new settings to the end, or they might choose to remove duplicate settings and/
or comments (as ALTER SYSTEM will).

The system view pg_file_settings can be helpful for pre-testing changes to the configuration files, or
for diagnosing problems if a SIGHUP signal did not have the desired effects.

18.1.3. Parameter Interaction via SQL
Postgres Pro provides three SQL commands to establish configuration defaults. The already-mentioned
ALTER SYSTEM command provides a SQL-accessible means of changing global defaults; it is functionally
equivalent to editing postgresql.conf. In addition, there are two commands that allow setting of
defaults on a per-database or per-role basis:

• The ALTER DATABASE command allows global settings to be overridden on a per-database basis.
• The ALTER ROLE command allows both global and per-database settings to be overridden with

user-specific values.
Values set with ALTER DATABASE and ALTER ROLE are applied only when starting a fresh database session.
They override values obtained from the configuration files or server command line, and constitute
defaults for the rest of the session. Note that some settings cannot be changed after server start, and
so cannot be set with these commands (or the ones listed below).

Once a client is connected to the database, Postgres Pro provides two additional SQL commands (and
equivalent functions) to interact with session-local configuration settings:

• The SHOW command allows inspection of the current value of any parameter. The corresponding
SQL function is current_setting(setting_name text) (see Section 9.27.1).

• The SET command allows modification of the current value of those parameters that can be
set locally to a session; it has no effect on other sessions. The corresponding SQL function is
set_config(setting_name, new_value, is_local) (see Section 9.27.1).

In addition, the system view pg_settings can be used to view and change session-local values:

476

Server Configuration

• Querying this view is similar to using SHOW ALL but provides more detail. It is also more flexible,
since it's possible to specify filter conditions or join against other relations.

• Using UPDATE on this view, specifically updating the setting column, is the equivalent of issuing
SET commands. For example, the equivalent of
SET configuration_parameter TO DEFAULT;

is:
UPDATE pg_settings SET setting = reset_val WHERE name = 'configuration_parameter';

18.1.4. Parameter Interaction via the Shell
In addition to setting global defaults or attaching overrides at the database or role level, you can pass
settings to Postgres Pro via shell facilities. Both the server and libpq client library accept parameter
values via the shell.

• During server startup, parameter settings can be passed to the postgres command via the -c
command-line parameter. For example,
postgres -c log_connections=yes -c log_destination='syslog'

Settings provided in this way override those set via postgresql.conf or ALTER SYSTEM, so they
cannot be changed globally without restarting the server.

• When starting a client session via libpq, parameter settings can be specified using the PGOPTIONS
environment variable. Settings established in this way constitute defaults for the life of the session,
but do not affect other sessions. For historical reasons, the format of PGOPTIONS is similar to
that used when launching the postgres command; specifically, the -c flag must be specified. For
example,
env PGOPTIONS="-c geqo=off -c statement_timeout=5min" psql

Other clients and libraries might provide their own mechanisms, via the shell or otherwise, that
allow the user to alter session settings without direct use of SQL commands.

18.1.5. Managing Configuration File Contents
Postgres Pro provides several features for breaking down complex postgresql.conf files into sub-files.
These features are especially useful when managing multiple servers with related, but not identical,
configurations.

In addition to individual parameter settings, the postgresql.conf file can contain include directives,
which specify another file to read and process as if it were inserted into the configuration file at this point.
This feature allows a configuration file to be divided into physically separate parts. Include directives
simply look like:
include 'filename'

If the file name is not an absolute path, it is taken as relative to the directory containing the referencing
configuration file. Inclusions can be nested.

There is also an include_if_exists directive, which acts the same as the include directive, except
when the referenced file does not exist or cannot be read. A regular include will consider this an error
condition, but include_if_exists merely logs a message and continues processing the referencing
configuration file.

The postgresql.conf file can also contain include_dir directives, which specify an entire directory of
configuration files to include. These look like
include_dir 'directory'

Non-absolute directory names are taken as relative to the directory containing the referencing
configuration file. Within the specified directory, only non-directory files whose names end with the suffix
.conf will be included. File names that start with the . character are also ignored, to prevent mistakes

477

Server Configuration

since such files are hidden on some platforms. Multiple files within an include directory are processed
in file name order (according to C locale rules, i.e., numbers before letters, and uppercase letters before
lowercase ones).

Include files or directories can be used to logically separate portions of the database configuration,
rather than having a single large postgresql.conf file. Consider a company that has two database
servers, each with a different amount of memory. There are likely elements of the configuration both
will share, for things such as logging. But memory-related parameters on the server will vary between
the two. And there might be server specific customizations, too. One way to manage this situation is to
break the custom configuration changes for your site into three files. You could add this to the end of
your postgresql.conf file to include them:
include 'shared.conf'
include 'memory.conf'
include 'server.conf'

All systems would have the same shared.conf. Each server with a particular amount of memory could
share the same memory.conf; you might have one for all servers with 8GB of RAM, another for those
having 16GB. And finally server.conf could have truly server-specific configuration information in it.

Another possibility is to create a configuration file directory and put this information into files there. For
example, a conf.d directory could be referenced at the end of postgresql.conf:
include_dir 'conf.d'

Then you could name the files in the conf.d directory like this:
00shared.conf
01memory.conf
02server.conf

This naming convention establishes a clear order in which these files will be loaded. This is important
because only the last setting encountered for a particular parameter while the server is reading
configuration files will be used. In this example, something set in conf.d/02server.conf would override
a value set in conf.d/01memory.conf.

You might instead use this approach to naming the files descriptively:
00shared.conf
01memory-8GB.conf
02server-foo.conf

This sort of arrangement gives a unique name for each configuration file variation. This can help
eliminate ambiguity when several servers have their configurations all stored in one place, such as in a
version control repository. (Storing database configuration files under version control is another good
practice to consider.)

18.2. File Locations
In addition to the postgresql.conf file already mentioned, Postgres Pro uses two other manually-edited
configuration files, which control client authentication (their use is discussed in Chapter 19). By default,
all three configuration files are stored in the database cluster's data directory. The parameters described
in this section allow the configuration files to be placed elsewhere. (Doing so can ease administration.
In particular it is often easier to ensure that the configuration files are properly backed-up when they
are kept separate.)

data_directory (string)
Specifies the directory to use for data storage. This parameter can only be set at server start.

config_file (string)
Specifies the main server configuration file (customarily called postgresql.conf). This parameter
can only be set on the postgres command line.

478

Server Configuration

hba_file (string)

Specifies the configuration file for host-based authentication (customarily called pg_hba.conf). This
parameter can only be set at server start.

ident_file (string)

Specifies the configuration file for user name mapping (customarily called pg_ident.conf). This
parameter can only be set at server start. See also Section 19.2.

external_pid_file (string)

Specifies the name of an additional process-ID (PID) file that the server should create for use by
server administration programs. This parameter can only be set at server start.

In a default installation, none of the above parameters are set explicitly. Instead, the data directory is
specified by the -D command-line option or the PGDATA environment variable, and the configuration files
are all found within the data directory.

If you wish to keep the configuration files elsewhere than the data directory, the postgres -D command-
line option or PGDATA environment variable must point to the directory containing the configuration files,
and the data_directory parameter must be set in postgresql.conf (or on the command line) to show
where the data directory is actually located. Notice that data_directory overrides -D and PGDATA for
the location of the data directory, but not for the location of the configuration files.

If you wish, you can specify the configuration file names and locations individually using the parameters
config_file, hba_file and/or ident_file. config_file can only be specified on the postgres
command line, but the others can be set within the main configuration file. If all three parameters plus
data_directory are explicitly set, then it is not necessary to specify -D or PGDATA.

When setting any of these parameters, a relative path will be interpreted with respect to the directory
in which postgres is started.

18.3. Connections and Authentication
18.3.1. Connection Settings

listen_addresses (string)

Specifies the TCP/IP address(es) on which the server is to listen for connections from client
applications. The value takes the form of a comma-separated list of host names and/or numeric IP
addresses. The special entry * corresponds to all available IP interfaces. The entry 0.0.0.0 allows
listening for all IPv4 addresses and :: allows listening for all IPv6 addresses. If the list is empty, the
server does not listen on any IP interface at all, in which case only Unix-domain sockets can be used
to connect to it. The default value is localhost, which allows only local TCP/IP “loopback” connections
to be made. While client authentication (Chapter 19) allows fine-grained control over who can access
the server, listen_addresses controls which interfaces accept connection attempts, which can help
prevent repeated malicious connection requests on insecure network interfaces. This parameter can
only be set at server start.

port (integer)

The TCP port the server listens on; 5432 by default. Note that the same port number is used for all
IP addresses the server listens on. This parameter can only be set at server start.

max_connections (integer)

Determines the maximum number of concurrent connections to the database server. The default is
typically 100 connections, but might be less if your kernel settings will not support it (as determined
during initdb). This parameter can only be set at server start.

479

Server Configuration

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

superuser_reserved_connections (integer)
Determines the number of connection “slots” that are reserved for connections by Postgres
Pro superusers. At most max_connections connections can ever be active simultaneously.
Whenever the number of active concurrent connections is at least max_connections minus
superuser_reserved_connections, new connections will be accepted only for superusers, and no
new replication connections will be accepted.

The default value is three connections. The value must be less than max_connections. This parameter
can only be set at server start.

unix_socket_directories (string)
Specifies the directory of the Unix-domain socket(s) on which the server is to listen for connections
from client applications. Multiple sockets can be created by listing multiple directories separated by
commas. Whitespace between entries is ignored; surround a directory name with double quotes if
you need to include whitespace or commas in the name. An empty value specifies not listening on
any Unix-domain sockets, in which case only TCP/IP sockets can be used to connect to the server.
The default value is normally /tmp, but that can be changed at build time. On Windows, the default
is empty, which means no Unix-domain socket is created by default. This parameter can only be set
at server start.

In addition to the socket file itself, which is named .s.PGSQL.nnnn where nnnn is the server's
port number, an ordinary file named .s.PGSQL.nnnn.lock will be created in each of the
unix_socket_directories directories. Neither file should ever be removed manually.

unix_socket_group (string)
Sets the owning group of the Unix-domain socket(s). (The owning user of the sockets is always the
user that starts the server.) In combination with the parameter unix_socket_permissions this can
be used as an additional access control mechanism for Unix-domain connections. By default this is
the empty string, which uses the default group of the server user. This parameter can only be set
at server start.

This parameter is not supported on Windows. Any setting will be ignored.

unix_socket_permissions (integer)
Sets the access permissions of the Unix-domain socket(s). Unix-domain sockets use the usual Unix
file system permission set. The parameter value is expected to be a numeric mode specified in the
format accepted by the chmod and umask system calls. (To use the customary octal format the number
must start with a 0 (zero).)

The default permissions are 0777, meaning anyone can connect. Reasonable alternatives are 0770
(only user and group, see also unix_socket_group) and 0700 (only user). (Note that for a Unix-
domain socket, only write permission matters, so there is no point in setting or revoking read or
execute permissions.)

This access control mechanism is independent of the one described in Chapter 19.

This parameter can only be set at server start.

This parameter is irrelevant on systems, notably Solaris as of Solaris 10, that ignore socket
permissions entirely. There, one can achieve a similar effect by pointing unix_socket_directories
to a directory having search permission limited to the desired audience.

bonjour (boolean)
Enables advertising the server's existence via Bonjour. The default is off. This parameter can only
be set at server start.

480

Server Configuration

bonjour_name (string)
Specifies the Bonjour service name. The computer name is used if this parameter is set to the empty
string '' (which is the default). This parameter is ignored if the server was not compiled with Bonjour
support. This parameter can only be set at server start.

tcp_keepalives_idle (integer)
Specifies the amount of time with no network activity after which the operating system should send
a TCP keepalive message to the client. If this value is specified without units, it is taken as seconds.
A value of 0 (the default) selects the operating system's default. This parameter is supported only
on systems that support TCP_KEEPIDLE or an equivalent socket option, and on Windows; on other
systems, it must be zero. In sessions connected via a Unix-domain socket, this parameter is ignored
and always reads as zero.

Note
On Windows, setting a value of 0 will set this parameter to 2 hours, since Windows does not
provide a way to read the system default value.

tcp_keepalives_interval (integer)
Specifies the amount of time after which a TCP keepalive message that has not been acknowledged
by the client should be retransmitted. If this value is specified without units, it is taken as seconds.
A value of 0 (the default) selects the operating system's default. This parameter is supported only
on systems that support TCP_KEEPINTVL or an equivalent socket option, and on Windows; on other
systems, it must be zero. In sessions connected via a Unix-domain socket, this parameter is ignored
and always reads as zero.

Note
On Windows, setting a value of 0 will set this parameter to 1 second, since Windows does not
provide a way to read the system default value.

tcp_keepalives_count (integer)
Specifies the number of TCP keepalive messages that can be lost before the server's connection to
the client is considered dead. A value of 0 (the default) selects the operating system's default. This
parameter is supported only on systems that support TCP_KEEPCNT or an equivalent socket option;
on other systems, it must be zero. In sessions connected via a Unix-domain socket, this parameter
is ignored and always reads as zero.

Note
This parameter is not supported on Windows, and must be zero.

tcp_user_timeout (integer)
Specifies the amount of time that transmitted data may remain unacknowledged before the TCP
connection is forcibly closed. If this value is specified without units, it is taken as milliseconds. A
value of 0 (the default) selects the operating system's default. This parameter is supported only on
systems that support TCP_USER_TIMEOUT; on other systems, it must be zero. In sessions connected
via a Unix-domain socket, this parameter is ignored and always reads as zero.

Note
This parameter is not supported on Windows, and must be zero.

481

Server Configuration

18.3.2. Authentication
authentication_timeout (integer)

Maximum amount of time allowed to complete client authentication. If a would-be client has not
completed the authentication protocol in this much time, the server closes the connection. This
prevents hung clients from occupying a connection indefinitely. If this value is specified without
units, it is taken as seconds. The default is one minute (1m). This parameter can only be set in the
postgresql.conf file or on the server command line.

password_encryption (enum)
When a password is specified in CREATE ROLE or ALTER ROLE, this parameter determines the
algorithm to use to encrypt the password. The default value is md5, which stores the password as
an MD5 hash (on is also accepted, as alias for md5). Setting this parameter to scram-sha-256 will
encrypt the password with SCRAM-SHA-256.

Note that older clients might lack support for the SCRAM authentication mechanism, and hence not
work with passwords encrypted with SCRAM-SHA-256. See Section 19.5 for more details.

krb_server_keyfile (string)

Sets the location of the server's Kerberos key file. The default is FILE:/usr/local/pgsql/etc/
krb5.keytab (where the directory part is whatever was specified as sysconfdir at build time; use
pg_config --sysconfdir to determine that). If this parameter is set to an empty string, it is ignored
and a system-dependent default is used. This parameter can only be set in the postgresql.conf file
or on the server command line. See Section 19.6 for more information.

krb_caseins_users (boolean)

Sets whether GSSAPI user names should be treated case-insensitively. The default is off (case
sensitive). This parameter can only be set in the postgresql.conf file or on the server command line.

db_user_namespace (boolean)
This parameter enables per-database user names. It is off by default. This parameter can only be set
in the postgresql.conf file or on the server command line.

If this is on, you should create users as username@dbname. When username is passed by a connecting
client, @ and the database name are appended to the user name and that database-specific user name
is looked up by the server. Note that when you create users with names containing @ within the SQL
environment, you will need to quote the user name.

With this parameter enabled, you can still create ordinary global users. Simply append @ when
specifying the user name in the client, e.g., joe@. The @ will be stripped off before the user name
is looked up by the server.

db_user_namespace causes the client's and server's user name representation to differ.
Authentication checks are always done with the server's user name so authentication methods must
be configured for the server's user name, not the client's. Because md5 uses the user name as salt on
both the client and server, md5 cannot be used with db_user_namespace.

Note
This feature is intended as a temporary measure until a complete solution is found. At that
time, this option will be removed.

18.3.3. SSL
See Section 17.9 for more information about setting up SSL.

482

Server Configuration

ssl (boolean)

Enables SSL connections. This parameter can only be set in the postgresql.conf file or on the server
command line. The default is off.

ssl_ca_file (string)

Specifies the name of the file containing the SSL server certificate authority (CA). Relative paths
are relative to the data directory. This parameter can only be set in the postgresql.conf file or on
the server command line. The default is empty, meaning no CA file is loaded, and client certificate
verification is not performed.

ssl_cert_file (string)

Specifies the name of the file containing the SSL server certificate. Relative paths are relative to the
data directory. This parameter can only be set in the postgresql.conf file or on the server command
line. The default is server.crt.

ssl_crl_file (string)

Specifies the name of the file containing the SSL client certificate revocation list (CRL). Relative
paths are relative to the data directory. This parameter can only be set in the postgresql.conf file
or on the server command line. The default is empty, meaning no CRL file is loaded.

ssl_key_file (string)

Specifies the name of the file containing the SSL server private key. Relative paths are relative to the
data directory. This parameter can only be set in the postgresql.conf file or on the server command
line. The default is server.key.

ssl_ciphers (string)

Specifies a list of SSL cipher suites that are allowed to be used by SSL connections. See the ciphers
manual page in the OpenSSL package for the syntax of this setting and a list of supported values. Only
connections using TLS version 1.2 and lower are affected. There is currently no setting that controls
the cipher choices used by TLS version 1.3 connections. The default value is HIGH:MEDIUM:+3DES:!
aNULL. The default is usually a reasonable choice unless you have specific security requirements.

This parameter can only be set in the postgresql.conf file or on the server command line.

Explanation of the default value:

HIGH

Cipher suites that use ciphers from HIGH group (e.g., AES, Camellia, 3DES)

MEDIUM

Cipher suites that use ciphers from MEDIUM group (e.g., RC4, SEED)

+3DES

The OpenSSL default order for HIGH is problematic because it orders 3DES higher than AES128.
This is wrong because 3DES offers less security than AES128, and it is also much slower. +3DES
reorders it after all other HIGH and MEDIUM ciphers.

!aNULL

Disables anonymous cipher suites that do no authentication. Such cipher suites are vulnerable
to man-in-the-middle attacks and therefore should not be used.

Available cipher suite details will vary across OpenSSL versions. Use the command openssl ciphers
-v 'HIGH:MEDIUM:+3DES:!aNULL' to see actual details for the currently installed OpenSSL version.
Note that this list is filtered at run time based on the server key type.

483

Server Configuration

ssl_prefer_server_ciphers (boolean)
Specifies whether to use the server's SSL cipher preferences, rather than the client's. This parameter
can only be set in the postgresql.conf file or on the server command line. The default is on.

Older Postgres Pro versions do not have this setting and always use the client's preferences. This
setting is mainly for backward compatibility with those versions. Using the server's preferences is
usually better because it is more likely that the server is appropriately configured.

ssl_ecdh_curve (string)
Specifies the name of the curve to use in ECDH key exchange. It needs to be supported by all clients
that connect. It does not need to be the same curve used by the server's Elliptic Curve key. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is prime256v1.

OpenSSL names for the most common curves are: prime256v1 (NIST P-256), secp384r1 (NIST P-384),
secp521r1 (NIST P-521). The full list of available curves can be shown with the command openssl
ecparam -list_curves. Not all of them are usable in TLS though.

ssl_min_protocol_version (enum)
Sets the minimum SSL/TLS protocol version to use. Valid values are currently: TLSv1, TLSv1.1,
TLSv1.2, TLSv1.3. Older versions of the OpenSSL library do not support all values; an error will be
raised if an unsupported setting is chosen. Protocol versions before TLS 1.0, namely SSL version 2
and 3, are always disabled.

The default is TLSv1.2, which satisfies industry best practices as of this writing.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_max_protocol_version (enum)
Sets the maximum SSL/TLS protocol version to use. Valid values are as for ssl_min_protocol_version,
with addition of an empty string, which allows any protocol version. The default is to allow any
version. Setting the maximum protocol version is mainly useful for testing or if some component has
issues working with a newer protocol.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_dh_params_file (string)
Specifies the name of the file containing Diffie-Hellman parameters used for so-called ephemeral DH
family of SSL ciphers. The default is empty, in which case compiled-in default DH parameters used.
Using custom DH parameters reduces the exposure if an attacker manages to crack the well-known
compiled-in DH parameters. You can create your own DH parameters file with the command openssl
dhparam -out dhparams.pem 2048.

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command (string)
Sets an external command to be invoked when a passphrase for decrypting an SSL file such as
a private key needs to be obtained. By default, this parameter is empty, which means the built-in
prompting mechanism is used.

The command must print the passphrase to the standard output and exit with code 0. In the parameter
value, %p is replaced by a prompt string. (Write %% for a literal %.) Note that the prompt string will
probably contain whitespace, so be sure to quote adequately. A single newline is stripped from the
end of the output if present.

The command does not actually have to prompt the user for a passphrase. It can read it from a file,
obtain it from a keychain facility, or similar. It is up to the user to make sure the chosen mechanism
is adequately secure.

484

Server Configuration

This parameter can only be set in the postgresql.conf file or on the server command line.

ssl_passphrase_command_supports_reload (boolean)

This parameter determines whether the passphrase command set by ssl_passphrase_command will
also be called during a configuration reload if a key file needs a passphrase. If this parameter
is off (the default), then ssl_passphrase_command will be ignored during a reload and the SSL
configuration will not be reloaded if a passphrase is needed. That setting is appropriate for a
command that requires a TTY for prompting, which might not be available when the server is running.
Setting this parameter to on might be appropriate if the passphrase is obtained from a file, for
example.

This parameter can only be set in the postgresql.conf file or on the server command line.

18.4. Resource Consumption
18.4.1. Memory

shared_buffers (integer)
Sets the amount of memory the database server uses for shared memory buffers. The default is
typically 128 megabytes (128MB), but might be less if your kernel settings will not support it (as
determined during initdb). This setting must be at least 128 kilobytes. However, settings significantly
higher than the minimum are usually needed for good performance. If this value is specified without
units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. (Non-default values of BLCKSZ change
the minimum value.) This parameter can only be set at server start.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value for
shared_buffers is 25% of the memory in your system. There are some workloads where even larger
settings for shared_buffers are effective, but because Postgres Pro also relies on the operating
system cache, it is unlikely that an allocation of more than 40% of RAM to shared_buffers will work
better than a smaller amount. Larger settings for shared_buffers usually require a corresponding
increase in max_wal_size, in order to spread out the process of writing large quantities of new or
changed data over a longer period of time.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so as to leave
adequate space for the operating system.

huge_pages (enum)

Controls whether huge pages are requested for the main shared memory area. Valid values are try
(the default), on, and off. With huge_pages set to try, the server will try to request huge pages, but
fall back to the default if that fails. With on, failure to request huge pages will prevent the server
from starting up. With off, huge pages will not be requested.

At present, this setting is supported only on Linux and Windows. The setting is ignored on other
systems when set to try. On Linux, it is only supported when shared_memory_type is set to mmap
(the default).

The use of huge pages results in smaller page tables and less CPU time spent on memory
management, increasing performance. For more details about using huge pages on Linux, see
Section 17.4.5.

Huge pages are known as large pages on Windows. To use them, you need to assign the user right
Lock Pages in Memory to the Windows user account that runs Postgres Pro. You can use Windows
Group Policy tool (gpedit.msc) to assign the user right Lock Pages in Memory. To start the database
server on the command prompt as a standalone process, not as a Windows service, the command
prompt must be run as an administrator or User Access Control (UAC) must be disabled. When the
UAC is enabled, the normal command prompt revokes the user right Lock Pages in Memory when
started.

485

Server Configuration

Note that this setting only affects the main shared memory area. Operating systems such as Linux,
FreeBSD, and Illumos can also use huge pages (also known as “super” pages or “large” pages)
automatically for normal memory allocation, without an explicit request from Postgres Pro. On Linux,
this is called “transparent huge pages”(THP). That feature has been known to cause performance
degradation with Postgres Pro for some users on some Linux versions, so its use is currently
discouraged (unlike explicit use of huge_pages).

temp_buffers (integer)
Sets the maximum amount of memory used for temporary buffers within each database session. These
are session-local buffers used only for access to temporary tables. If this value is specified without
units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The default is eight megabytes (8MB).
(If BLCKSZ is not 8kB, the default value scales proportionally to it.) This setting can be changed within
individual sessions, but only before the first use of temporary tables within the session; subsequent
attempts to change the value will have no effect on that session.

A session will allocate temporary buffers as needed up to the limit given by temp_buffers. The cost
of setting a large value in sessions that do not actually need many temporary buffers is only a buffer
descriptor, or about 64 bytes, per increment in temp_buffers. However if a buffer is actually used
an additional 8192 bytes will be consumed for it (or in general, BLCKSZ bytes).

max_prepared_transactions (integer)
Sets the maximum number of transactions that can be in the “prepared” state simultaneously
(see PREPARE TRANSACTION). Setting this parameter to zero (which is the default) disables the
prepared-transaction feature. This parameter can only be set at server start.

If you are not planning to use prepared transactions, this parameter should be set to zero to
prevent accidental creation of prepared transactions. If you are using prepared transactions, you
will probably want max_prepared_transactions to be at least as large as max_connections, so that
every session can have a prepared transaction pending.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

work_mem (integer)
Sets the base maximum amount of memory to be used by a query operation (such as a sort or hash
table) before writing to temporary disk files. If this value is specified without units, it is taken as
kilobytes. The default value is four megabytes (4MB). Note that for a complex query, several sort or
hash operations might be running in parallel; each operation will generally be allowed to use as much
memory as this value specifies before it starts to write data into temporary files. Also, several running
sessions could be doing such operations concurrently. Therefore, the total memory used could be
many times the value of work_mem; it is necessary to keep this fact in mind when choosing the value.
Sort operations are used for ORDER BY, DISTINCT, and merge joins. Hash tables are used in hash
joins, hash-based aggregation, and hash-based processing of IN subqueries.

Hash-based operations are generally more sensitive to memory availability than equivalent sort-
based operations. The memory available for hash tables is computed by multiplying work_mem by
hash_mem_multiplier. This makes it possible for hash-based operations to use an amount of memory
that exceeds the usual work_mem base amount.

hash_mem_multiplier (floating point)
Used to compute the maximum amount of memory that hash-based operations can use. The final
limit is determined by multiplying work_mem by hash_mem_multiplier. The default value is 1.0,
which makes hash-based operations subject to the same simple work_mem maximum as sort-based
operations.

Consider increasing hash_mem_multiplier in environments where spilling by query operations is
a regular occurrence, especially when simply increasing work_mem results in memory pressure

486

Server Configuration

(memory pressure typically takes the form of intermittent out of memory errors). A setting of 1.5 or
2.0 may be effective with mixed workloads. Higher settings in the range of 2.0 - 8.0 or more may be
effective in environments where work_mem has already been increased to 40MB or more.

maintenance_work_mem (integer)
Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM,
CREATE INDEX, and ALTER TABLE ADD FOREIGN KEY. If this value is specified without units, it is
taken as kilobytes. It defaults to 64 megabytes (64MB). Since only one of these operations can be
executed at a time by a database session, and an installation normally doesn't have many of them
running concurrently, it's safe to set this value significantly larger than work_mem. Larger settings
might improve performance for vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be
allocated, so be careful not to set the default value too high. It may be useful to control for this by
separately setting autovacuum_work_mem.

Note that for the collection of dead tuple identifiers, VACUUM is only able to utilize up to a maximum
of 1GB of memory.

autovacuum_work_mem (integer)
Specifies the maximum amount of memory to be used by each autovacuum worker process. If this
value is specified without units, it is taken as kilobytes. It defaults to -1, indicating that the value of
maintenance_work_mem should be used instead. The setting has no effect on the behavior of VACUUM
when run in other contexts. This parameter can only be set in the postgresql.conf file or on the
server command line.

For the collection of dead tuple identifiers, autovacuum is only able to utilize up to a maximum of 1GB
of memory, so setting autovacuum_work_mem to a value higher than that has no effect on the number
of dead tuples that autovacuum can collect while scanning a table.

logical_decoding_work_mem (integer)
Specifies the maximum amount of memory to be used by logical decoding, before some of the decoded
changes are written to local disk. This limits the amount of memory used by logical streaming
replication connections. It defaults to 64 megabytes (64MB). Since each replication connection only
uses a single buffer of this size, and an installation normally doesn't have many such connections
concurrently (as limited by max_wal_senders), it's safe to set this value significantly higher than
work_mem, reducing the amount of decoded changes written to disk.

max_stack_depth (integer)
Specifies the maximum safe depth of the server's execution stack. The ideal setting for this parameter
is the actual stack size limit enforced by the kernel (as set by ulimit -s or local equivalent), less
a safety margin of a megabyte or so. The safety margin is needed because the stack depth is not
checked in every routine in the server, but only in key potentially-recursive routines. If this value is
specified without units, it is taken as kilobytes. The default setting is two megabytes (2MB), which is
conservatively small and unlikely to risk crashes. However, it might be too small to allow execution
of complex functions. Only superusers can change this setting.

Setting max_stack_depth higher than the actual kernel limit will mean that a runaway recursive
function can crash an individual backend process. On platforms where Postgres Pro can determine
the kernel limit, the server will not allow this variable to be set to an unsafe value. However, not all
platforms provide the information, so caution is recommended in selecting a value.

shared_memory_type (enum)
Specifies the shared memory implementation that the server should use for the main shared memory
region that holds Postgres Pro's shared buffers and other shared data. Possible values are mmap (for
anonymous shared memory allocated using mmap), sysv (for System V shared memory allocated via
shmget) and windows (for Windows shared memory). Not all values are supported on all platforms;

487

Server Configuration

the first supported option is the default for that platform. The use of the sysv option, which is not
the default on any platform, is generally discouraged because it typically requires non-default kernel
settings to allow for large allocations (see Section 17.4.1).

dynamic_shared_memory_type (enum)
Specifies the dynamic shared memory implementation that the server should use. Possible values
are posix (for POSIX shared memory allocated using shm_open), sysv (for System V shared memory
allocated via shmget), windows (for Windows shared memory), and mmap (to simulate shared memory
using memory-mapped files stored in the data directory). Not all values are supported on all
platforms; the first supported option is the default for that platform. The use of the mmap option, which
is not the default on any platform, is generally discouraged because the operating system may write
modified pages back to disk repeatedly, increasing system I/O load; however, it may be useful for
debugging, when the pg_dynshmem directory is stored on a RAM disk, or when other shared memory
facilities are not available.

18.4.2. Disk
temp_file_limit (integer)

Specifies the maximum amount of disk space that a process can use for temporary files, such as sort
and hash temporary files, or the storage file for a held cursor. A transaction attempting to exceed this
limit will be canceled. If this value is specified without units, it is taken as kilobytes. -1 (the default)
means no limit. Only superusers can change this setting.

This setting constrains the total space used at any instant by all temporary files used by a given
Postgres Pro process. It should be noted that disk space used for explicit temporary tables, as opposed
to temporary files used behind-the-scenes in query execution, does not count against this limit.

18.4.3. Kernel Resource Usage
max_files_per_process (integer)

Sets the maximum number of simultaneously open files allowed to each server subprocess. The
default is one thousand files. If the kernel is enforcing a safe per-process limit, you don't need to
worry about this setting. But on some platforms (notably, most BSD systems), the kernel will allow
individual processes to open many more files than the system can actually support if many processes
all try to open that many files. If you find yourself seeing “Too many open files” failures, try reducing
this setting. This parameter can only be set at server start.

18.4.4. Cost-based Vacuum Delay
During the execution of VACUUM and ANALYZE commands, the system maintains an internal counter
that keeps track of the estimated cost of the various I/O operations that are performed. When
the accumulated cost reaches a limit (specified by vacuum_cost_limit), the process performing the
operation will sleep for a short period of time, as specified by vacuum_cost_delay. Then it will reset the
counter and continue execution.

The intent of this feature is to allow administrators to reduce the I/O impact of these commands on
concurrent database activity. There are many situations where it is not important that maintenance
commands like VACUUM and ANALYZE finish quickly; however, it is usually very important that these
commands do not significantly interfere with the ability of the system to perform other database
operations. Cost-based vacuum delay provides a way for administrators to achieve this.

This feature is disabled by default for manually issued VACUUM commands. To enable it, set the
vacuum_cost_delay variable to a nonzero value.

vacuum_cost_delay (floating point)
The amount of time that the process will sleep when the cost limit has been exceeded. If this value is
specified without units, it is taken as milliseconds. The default value is zero, which disables the cost-
based vacuum delay feature. Positive values enable cost-based vacuuming.

488

Server Configuration

When using cost-based vacuuming, appropriate values for vacuum_cost_delay are usually quite
small, perhaps less than 1 millisecond. While vacuum_cost_delay can be set to fractional-millisecond
values, such delays may not be measured accurately on older platforms. On such platforms,
increasing VACUUM's throttled resource consumption above what you get at 1ms will require changing
the other vacuum cost parameters. You should, nonetheless, keep vacuum_cost_delay as small as
your platform will consistently measure; large delays are not helpful.

vacuum_cost_page_hit (integer)

The estimated cost for vacuuming a buffer found in the shared buffer cache. It represents the cost
to lock the buffer pool, lookup the shared hash table and scan the content of the page. The default
value is one.

vacuum_cost_page_miss (integer)

The estimated cost for vacuuming a buffer that has to be read from disk. This represents the effort
to lock the buffer pool, lookup the shared hash table, read the desired block in from the disk and
scan its content. The default value is 10.

vacuum_cost_page_dirty (integer)

The estimated cost charged when vacuum modifies a block that was previously clean. It represents
the extra I/O required to flush the dirty block out to disk again. The default value is 20.

vacuum_cost_limit (integer)

The accumulated cost that will cause the vacuuming process to sleep. The default value is 200.

Note
There are certain operations that hold critical locks and should therefore complete as quickly as
possible. Cost-based vacuum delays do not occur during such operations. Therefore it is possible
that the cost accumulates far higher than the specified limit. To avoid uselessly long delays
in such cases, the actual delay is calculated as vacuum_cost_delay * accumulated_balance /
vacuum_cost_limit with a maximum of vacuum_cost_delay * 4.

18.4.5. Background Writer
There is a separate server process called the background writer, whose function is to issue writes
of “dirty” (new or modified) shared buffers. When the number of clean shared buffers appears to be
insufficient, the background writer writes some dirty buffers to the file system and marks them as clean.
This reduces the likelihood that server processes handling user queries will be unable to find clean
buffers and have to write dirty buffers themselves. However, the background writer does cause a net
overall increase in I/O load, because while a repeatedly-dirtied page might otherwise be written only
once per checkpoint interval, the background writer might write it several times as it is dirtied in the
same interval. The parameters discussed in this subsection can be used to tune the behavior for local
needs.

bgwriter_delay (integer)

Specifies the delay between activity rounds for the background writer. In each round the writer issues
writes for some number of dirty buffers (controllable by the following parameters). It then sleeps
for the length of bgwriter_delay, and repeats. When there are no dirty buffers in the buffer pool,
though, it goes into a longer sleep regardless of bgwriter_delay. If this value is specified without
units, it is taken as milliseconds. The default value is 200 milliseconds (200ms). Note that on many
systems, the effective resolution of sleep delays is 10 milliseconds; setting bgwriter_delay to a value
that is not a multiple of 10 might have the same results as setting it to the next higher multiple of
10. This parameter can only be set in the postgresql.conf file or on the server command line.

489

Server Configuration

bgwriter_lru_maxpages (integer)
In each round, no more than this many buffers will be written by the background writer. Setting
this to zero disables background writing. (Note that checkpoints, which are managed by a separate,
dedicated auxiliary process, are unaffected.) The default value is 100 buffers. This parameter can
only be set in the postgresql.conf file or on the server command line.

bgwriter_lru_multiplier (floating point)
The number of dirty buffers written in each round is based on the number of new buffers that have
been needed by server processes during recent rounds. The average recent need is multiplied by
bgwriter_lru_multiplier to arrive at an estimate of the number of buffers that will be needed
during the next round. Dirty buffers are written until there are that many clean, reusable buffers
available. (However, no more than bgwriter_lru_maxpages buffers will be written per round.) Thus,
a setting of 1.0 represents a “just in time” policy of writing exactly the number of buffers predicted
to be needed. Larger values provide some cushion against spikes in demand, while smaller values
intentionally leave writes to be done by server processes. The default is 2.0. This parameter can only
be set in the postgresql.conf file or on the server command line.

bgwriter_flush_after (integer)
Whenever more than this amount of data has been written by the background writer, attempt to
force the OS to issue these writes to the underlying storage. Doing so will limit the amount of dirty
data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at the
end of a checkpoint, or when the OS writes data back in larger batches in the background. Often
that will result in greatly reduced transaction latency, but there also are some cases, especially
with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. If this value is
specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 512kB on Linux, 0 elsewhere. (If
BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This parameter can
only be set in the postgresql.conf file or on the server command line.

Smaller values of bgwriter_lru_maxpages and bgwriter_lru_multiplier reduce the extra I/O load
caused by the background writer, but make it more likely that server processes will have to issue writes
for themselves, delaying interactive queries.

18.4.6. Asynchronous Behavior
effective_io_concurrency (integer)

Sets the number of concurrent disk I/O operations that Postgres Pro expects can be executed
simultaneously. Raising this value will increase the number of I/O operations that any individual
Postgres Pro session attempts to initiate in parallel. The allowed range is 1 to 1000, or zero to disable
issuance of asynchronous I/O requests. Currently, this setting only affects bitmap heap scans.

For magnetic drives, a good starting point for this setting is the number of separate drives comprising
a RAID 0 stripe or RAID 1 mirror being used for the database. (For RAID 5 the parity drive should
not be counted.) However, if the database is often busy with multiple queries issued in concurrent
sessions, lower values may be sufficient to keep the disk array busy. A value higher than needed to
keep the disks busy will only result in extra CPU overhead. SSDs and other memory-based storage
can often process many concurrent requests, so the best value might be in the hundreds.

Asynchronous I/O depends on an effective posix_fadvise function, which some operating systems
lack. If the function is not present then setting this parameter to anything but zero will result in
an error. On some operating systems (e.g., Solaris), the function is present but does not actually do
anything.

The default is 1 on supported systems, otherwise 0. This value can be overridden for tables
in a particular tablespace by setting the tablespace parameter of the same name (see ALTER
TABLESPACE).

490

Server Configuration

maintenance_io_concurrency (integer)

Similar to effective_io_concurrency, but used for maintenance work that is done on behalf of
many client sessions.

The default is 10 on supported systems, otherwise 0. This value can be overridden for tables
in a particular tablespace by setting the tablespace parameter of the same name (see ALTER
TABLESPACE).

max_worker_processes (integer)

Sets the maximum number of background processes that the system can support. This parameter
can only be set at server start. The default is 8.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

When changing this value, consider also adjusting max_parallel_workers,
max_parallel_maintenance_workers, and max_parallel_workers_per_gather.

max_parallel_workers_per_gather (integer)

Sets the maximum number of workers that can be started by a single Gather or Gather Merge node.
Parallel workers are taken from the pool of processes established by max_worker_processes, limited
by max_parallel_workers. Note that the requested number of workers may not actually be available at
run time. If this occurs, the plan will run with fewer workers than expected, which may be inefficient.
The default value is 2. Setting this value to 0 disables parallel query execution.

Note that parallel queries may consume very substantially more resources than non-parallel queries,
because each worker process is a completely separate process which has roughly the same impact
on the system as an additional user session. This should be taken into account when choosing a value
for this setting, as well as when configuring other settings that control resource utilization, such as
work_mem. Resource limits such as work_mem are applied individually to each worker, which means
the total utilization may be much higher across all processes than it would normally be for any single
process. For example, a parallel query using 4 workers may use up to 5 times as much CPU time,
memory, I/O bandwidth, and so forth as a query which uses no workers at all.

For more information on parallel query, see Chapter 15.

max_parallel_maintenance_workers (integer)

Sets the maximum number of parallel workers that can be started by a single utility command.
Currently, the parallel utility commands that support the use of parallel workers are CREATE INDEX
only when building a B-tree index, and VACUUM without FULL option. Parallel workers are taken from
the pool of processes established by max_worker_processes, limited by max_parallel_workers. Note
that the requested number of workers may not actually be available at run time. If this occurs, the
utility operation will run with fewer workers than expected. The default value is 2. Setting this value
to 0 disables the use of parallel workers by utility commands.

Note that parallel utility commands should not consume substantially more memory than
equivalent non-parallel operations. This strategy differs from that of parallel query, where resource
limits generally apply per worker process. Parallel utility commands treat the resource limit
maintenance_work_mem as a limit to be applied to the entire utility command, regardless of
the number of parallel worker processes. However, parallel utility commands may still consume
substantially more CPU resources and I/O bandwidth.

max_parallel_workers (integer)

Sets the maximum number of workers that the system can support for parallel operations.
The default value is 8. When increasing or decreasing this value, consider also adjusting
max_parallel_maintenance_workers and max_parallel_workers_per_gather. Also, note that a setting

491

Server Configuration

for this value which is higher than max_worker_processes will have no effect, since parallel workers
are taken from the pool of worker processes established by that setting.

backend_flush_after (integer)

Whenever more than this amount of data has been written by a single backend, attempt to force the
OS to issue these writes to the underlying storage. Doing so will limit the amount of dirty data in
the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at the end of a
checkpoint, or when the OS writes data back in larger batches in the background. Often that will
result in greatly reduced transaction latency, but there also are some cases, especially with workloads
that are bigger than shared_buffers, but smaller than the OS's page cache, where performance might
degrade. This setting may have no effect on some platforms. If this value is specified without units,
it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is between 0, which disables
forced writeback, and 2MB. The default is 0, i.e., no forced writeback. (If BLCKSZ is not 8kB, the
maximum value scales proportionally to it.)

old_snapshot_threshold (integer)

Sets the minimum amount of time that a query snapshot can be used without risk of a “snapshot too
old” error occurring when using the snapshot. Data that has been dead for longer than this threshold
is allowed to be vacuumed away. This can help prevent bloat in the face of snapshots which remain
in use for a long time. To prevent incorrect results due to cleanup of data which would otherwise be
visible to the snapshot, an error is generated when the snapshot is older than this threshold and the
snapshot is used to read a page which has been modified since the snapshot was built.

If this value is specified without units, it is taken as minutes. A value of -1 (the default) disables
this feature, effectively setting the snapshot age limit to infinity. This parameter can only be set at
server start.

Useful values for production work probably range from a small number of hours to a few days. Small
values (such as 0 or 1min) are only allowed because they may sometimes be useful for testing. While
a setting as high as 60d is allowed, please note that in many workloads extreme bloat or transaction
ID wraparound may occur in much shorter time frames.

When this feature is enabled, freed space at the end of a relation cannot be released to the operating
system, since that could remove information needed to detect the “snapshot too old” condition. All
space allocated to a relation remains associated with that relation for reuse only within that relation
unless explicitly freed (for example, with VACUUM FULL).

This setting does not attempt to guarantee that an error will be generated under any particular
circumstances. In fact, if the correct results can be generated from (for example) a cursor which has
materialized a result set, no error will be generated even if the underlying rows in the referenced
table have been vacuumed away. Some tables cannot safely be vacuumed early, and so will not be
affected by this setting, such as system catalogs. For such tables this setting will neither reduce bloat
nor create a possibility of a “snapshot too old” error on scanning.

18.5. Write Ahead Log
For additional information on tuning these settings, see Section 28.4.

18.5.1. Settings
wal_level (enum)

wal_level determines how much information is written to the WAL. The default value is replica,
which writes enough data to support WAL archiving and replication, including running read-only
queries on a standby server. minimal removes all logging except the information required to recover
from a crash or immediate shutdown. Finally, logical adds information necessary to support logical
decoding. Each level includes the information logged at all lower levels. This parameter can only be
set at server start.

492

Server Configuration

In minimal level, no information is logged for permanent relations for the remainder of a transaction
that creates or rewrites them. This can make operations much faster (see Section 14.4.7). Operations
that initiate this optimization include:

ALTER ... SET TABLESPACE
CLUSTER
CREATE TABLE
REFRESH MATERIALIZED VIEW (without CONCURRENTLY)
REINDEX
TRUNCATE

But minimal WAL does not contain enough information to reconstruct the data from a base backup
and the WAL logs, so replica or higher must be used to enable WAL archiving (archive_mode) and
streaming replication.

In logical level, the same information is logged as with replica, plus information needed to allow
extracting logical change sets from the WAL. Using a level of logical will increase the WAL volume,
particularly if many tables are configured for REPLICA IDENTITY FULL and many UPDATE and DELETE
statements are executed.

In releases prior to 9.6, this parameter also allowed the values archive and hot_standby. These are
still accepted but mapped to replica.

fsync (boolean)

If this parameter is on, the Postgres Pro server will try to make sure that updates are
physically written to disk, by issuing fsync() system calls or various equivalent methods (see
wal_sync_method). This ensures that the database cluster can recover to a consistent state after an
operating system or hardware crash.

While turning off fsync is often a performance benefit, this can result in unrecoverable data
corruption in the event of a power failure or system crash. Thus it is only advisable to turn off fsync
if you can easily recreate your entire database from external data.

Examples of safe circumstances for turning off fsync include the initial loading of a new database
cluster from a backup file, using a database cluster for processing a batch of data after which the
database will be thrown away and recreated, or for a read-only database clone which gets recreated
frequently and is not used for failover. High quality hardware alone is not a sufficient justification
for turning off fsync.

For reliable recovery when changing fsync off to on, it is necessary to force all modified buffers in
the kernel to durable storage. This can be done while the cluster is shutdown or while fsync is on by
running initdb --sync-only, running sync, unmounting the file system, or rebooting the server.

In many situations, turning off synchronous_commit for noncritical transactions can provide much of
the potential performance benefit of turning off fsync, without the attendant risks of data corruption.

fsync can only be set in the postgresql.conf file or on the server command line. If you turn this
parameter off, also consider turning off full_page_writes.

synchronous_commit (enum)

Specifies how much WAL processing must complete before the database server returns a “success”
indication to the client. Valid values are remote_apply, on (the default), remote_write, local, and
off.

If synchronous_standby_names is empty, the only meaningful settings are on and off; remote_apply,
remote_write and local all provide the same local synchronization level as on. The local behavior
of all non-off modes is to wait for local flush of WAL to disk. In off mode, there is no waiting, so
there can be a delay between when success is reported to the client and when the transaction is later

493

Server Configuration

guaranteed to be safe against a server crash. (The maximum delay is three times wal_writer_delay.)
Unlike fsync, setting this parameter to off does not create any risk of database inconsistency: an
operating system or database crash might result in some recent allegedly-committed transactions
being lost, but the database state will be just the same as if those transactions had been aborted
cleanly. So, turning synchronous_commit off can be a useful alternative when performance is more
important than exact certainty about the durability of a transaction. For more discussion see
Section 28.3.

If synchronous_standby_names is non-empty, synchronous_commit also controls whether transaction
commits will wait for their WAL records to be processed on the standby server(s).

When set to remote_apply, commits will wait until replies from the current synchronous standby(s)
indicate they have received the commit record of the transaction and applied it, so that it has become
visible to queries on the standby(s), and also written to durable storage on the standbys. This will
cause much larger commit delays than previous settings since it waits for WAL replay. When set to on,
commits wait until replies from the current synchronous standby(s) indicate they have received the
commit record of the transaction and flushed it to durable storage. This ensures the transaction will
not be lost unless both the primary and all synchronous standbys suffer corruption of their database
storage. When set to remote_write, commits will wait until replies from the current synchronous
standby(s) indicate they have received the commit record of the transaction and written it to their
file systems. This setting ensures data preservation if a standby instance of Postgres Pro crashes,
but not if the standby suffers an operating-system-level crash because the data has not necessarily
reached durable storage on the standby. The setting local causes commits to wait for local flush
to disk, but not for replication. This is usually not desirable when synchronous replication is in use,
but is provided for completeness.

This parameter can be changed at any time; the behavior for any one transaction is determined
by the setting in effect when it commits. It is therefore possible, and useful, to have some
transactions commit synchronously and others asynchronously. For example, to make a single
multistatement transaction commit asynchronously when the default is the opposite, issue SET LOCAL
synchronous_commit TO OFF within the transaction.

Table 18.1 summarizes the capabilities of the synchronous_commit settings.

Table 18.1. synchronous_commit Modes

synchronous_commit
setting

local durable
commit

standby
durable
commit after
PG crash

standby
durable
commit after
OS crash

standby query
consistency

remote_apply • • • •
on • • •
remote_write • •
local •
off

wal_sync_method (enum)

Method used for forcing WAL updates out to disk. If fsync is off then this setting is irrelevant, since
WAL file updates will not be forced out at all. Possible values are:

• open_datasync (write WAL files with open() option O_DSYNC)
• fdatasync (call fdatasync() at each commit)
• fsync (call fsync() at each commit)
• fsync_writethrough (call fsync() at each commit, forcing write-through of any disk write

cache)

494

Server Configuration

• open_sync (write WAL files with open() option O_SYNC)

The open_* options also use O_DIRECT if available. Not all of these choices are available on all
platforms. The default is the first method in the above list that is supported by the platform, except
that fdatasync is the default on Linux and FreeBSD. The default is not necessarily ideal; it might
be necessary to change this setting or other aspects of your system configuration in order to
create a crash-safe configuration or achieve optimal performance. These aspects are discussed in
Section 28.1. This parameter can only be set in the postgresql.conf file or on the server command
line.

full_page_writes (boolean)
When this parameter is on, the Postgres Pro server writes the entire content of each disk page to
WAL during the first modification of that page after a checkpoint. This is needed because a page
write that is in process during an operating system crash might be only partially completed, leading
to an on-disk page that contains a mix of old and new data. The row-level change data normally stored
in WAL will not be enough to completely restore such a page during post-crash recovery. Storing the
full page image guarantees that the page can be correctly restored, but at the price of increasing the
amount of data that must be written to WAL. (Because WAL replay always starts from a checkpoint,
it is sufficient to do this during the first change of each page after a checkpoint. Therefore, one way
to reduce the cost of full-page writes is to increase the checkpoint interval parameters.)

Turning this parameter off speeds normal operation, but might lead to either unrecoverable data
corruption, or silent data corruption, after a system failure. The risks are similar to turning off fsync,
though smaller, and it should be turned off only based on the same circumstances recommended for
that parameter.

Turning off this parameter does not affect use of WAL archiving for point-in-time recovery (PITR)
(see Section 24.3).

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is on.

wal_log_hints (boolean)

When this parameter is on, the Postgres Pro server writes the entire content of each disk page to
WAL during the first modification of that page after a checkpoint, even for non-critical modifications
of so-called hint bits.

If data checksums are enabled, hint bit updates are always WAL-logged and this setting is ignored.
You can use this setting to test how much extra WAL-logging would occur if your database had data
checksums enabled.

This parameter can only be set at server start. The default value is off.

wal_compression (boolean)

When this parameter is on, the Postgres Pro server compresses a full page image written to WAL
when full_page_writes is on or during a base backup. A compressed page image will be decompressed
during WAL replay. The default value is off. Only superusers can change this setting.

Turning this parameter on can reduce the WAL volume without increasing the risk of unrecoverable
data corruption, but at the cost of some extra CPU spent on the compression during WAL logging
and on the decompression during WAL replay.

wal_init_zero (boolean)

If set to on (the default), this option causes new WAL files to be filled with zeroes. On some file
systems, this ensures that space is allocated before we need to write WAL records. However, Copy-
On-Write (COW) file systems may not benefit from this technique, so the option is given to skip the
unnecessary work. If set to off, only the final byte is written when the file is created so that it has
the expected size.

495

Server Configuration

wal_recycle (boolean)

If set to on (the default), this option causes WAL files to be recycled by renaming them, avoiding the
need to create new ones. On COW file systems, it may be faster to create new ones, so the option
is given to disable this behavior.

wal_buffers (integer)

The amount of shared memory used for WAL data that has not yet been written to disk. The default
setting of -1 selects a size equal to 1/32nd (about 3%) of shared_buffers, but not less than 64kB
nor more than the size of one WAL segment, typically 16MB. This value can be set manually if the
automatic choice is too large or too small, but any positive value less than 32kB will be treated as
32kB. If this value is specified without units, it is taken as WAL blocks, that is XLOG_BLCKSZ bytes,
typically 8kB. This parameter can only be set at server start.

The contents of the WAL buffers are written out to disk at every transaction commit, so extremely
large values are unlikely to provide a significant benefit. However, setting this value to at least a few
megabytes can improve write performance on a busy server where many clients are committing at
once. The auto-tuning selected by the default setting of -1 should give reasonable results in most
cases.

wal_writer_delay (integer)

Specifies how often the WAL writer flushes WAL, in time terms. After flushing WAL the writer sleeps
for the length of time given by wal_writer_delay, unless woken up sooner by an asynchronously
committing transaction. If the last flush happened less than wal_writer_delay ago and less than
wal_writer_flush_after worth of WAL has been produced since, then WAL is only written to
the operating system, not flushed to disk. If this value is specified without units, it is taken as
milliseconds. The default value is 200 milliseconds (200ms). Note that on many systems, the effective
resolution of sleep delays is 10 milliseconds; setting wal_writer_delay to a value that is not a
multiple of 10 might have the same results as setting it to the next higher multiple of 10. This
parameter can only be set in the postgresql.conf file or on the server command line.

wal_writer_flush_after (integer)

Specifies how often the WAL writer flushes WAL, in volume terms. If the last flush happened
less than wal_writer_delay ago and less than wal_writer_flush_after worth of WAL has
been produced since, then WAL is only written to the operating system, not flushed to disk. If
wal_writer_flush_after is set to 0 then WAL data is always flushed immediately. If this value is
specified without units, it is taken as WAL blocks, that is XLOG_BLCKSZ bytes, typically 8kB. The default
is 1MB. This parameter can only be set in the postgresql.conf file or on the server command line.

wal_skip_threshold (integer)

When wal_level is minimal and a transaction commits after creating or rewriting a permanent
relation, this setting determines how to persist the new data. If the data is smaller than this setting,
write it to the WAL log; otherwise, use an fsync of affected files. Depending on the properties of
your storage, raising or lowering this value might help if such commits are slowing concurrent
transactions. If this value is specified without units, it is taken as kilobytes. The default is two
megabytes (2MB).

commit_delay (integer)

Setting commit_delay adds a time delay before a WAL flush is initiated. This can improve group
commit throughput by allowing a larger number of transactions to commit via a single WAL flush,
if system load is high enough that additional transactions become ready to commit within the given
interval. However, it also increases latency by up to the commit_delay for each WAL flush. Because
the delay is just wasted if no other transactions become ready to commit, a delay is only performed
if at least commit_siblings other transactions are active when a flush is about to be initiated. Also,
no delays are performed if fsync is disabled. If this value is specified without units, it is taken as
microseconds. The default commit_delay is zero (no delay). Only superusers can change this setting.

496

Server Configuration

In PostgreSQL releases prior to 9.3, commit_delay behaved differently and was much less effective:
it affected only commits, rather than all WAL flushes, and waited for the entire configured delay even
if the WAL flush was completed sooner. Beginning in PostgreSQL 9.3, the first process that becomes
ready to flush waits for the configured interval, while subsequent processes wait only until the leader
completes the flush operation.

commit_siblings (integer)
Minimum number of concurrent open transactions to require before performing the commit_delay
delay. A larger value makes it more probable that at least one other transaction will become ready
to commit during the delay interval. The default is five transactions.

18.5.2. Checkpoints
checkpoint_timeout (integer)

Maximum time between automatic WAL checkpoints. If this value is specified without units, it is
taken as seconds. The valid range is between 30 seconds and one day. The default is five minutes
(5min). Increasing this parameter can increase the amount of time needed for crash recovery. This
parameter can only be set in the postgresql.conf file or on the server command line.

checkpoint_completion_target (floating point)
Specifies the target of checkpoint completion, as a fraction of total time between checkpoints. The
default is 0.5. This parameter can only be set in the postgresql.conf file or on the server command
line.

checkpoint_flush_after (integer)
Whenever more than this amount of data has been written while performing a checkpoint, attempt
to force the OS to issue these writes to the underlying storage. Doing so will limit the amount of
dirty data in the kernel's page cache, reducing the likelihood of stalls when an fsync is issued at
the end of the checkpoint, or when the OS writes data back in larger batches in the background.
Often that will result in greatly reduced transaction latency, but there also are some cases, especially
with workloads that are bigger than shared_buffers, but smaller than the OS's page cache, where
performance might degrade. This setting may have no effect on some platforms. If this value is
specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The valid range is
between 0, which disables forced writeback, and 2MB. The default is 256kB on Linux, 0 elsewhere. (If
BLCKSZ is not 8kB, the default and maximum values scale proportionally to it.) This parameter can
only be set in the postgresql.conf file or on the server command line.

checkpoint_warning (integer)
Write a message to the server log if checkpoints caused by the filling of WAL segment files happen
closer together than this amount of time (which suggests that max_wal_size ought to be raised).
If this value is specified without units, it is taken as seconds. The default is 30 seconds (30s).
Zero disables the warning. No warnings will be generated if checkpoint_timeout is less than
checkpoint_warning. This parameter can only be set in the postgresql.conf file or on the server
command line.

max_wal_size (integer)
Maximum size to let the WAL grow during automatic checkpoints. This is a soft limit; WAL size can
exceed max_wal_size under special circumstances, such as heavy load, a failing archive_command,
or a high wal_keep_size setting. If this value is specified without units, it is taken as megabytes.
The default is 1 GB. Increasing this parameter can increase the amount of time needed for crash
recovery. This parameter can only be set in the postgresql.conf file or on the server command line.

min_wal_size (integer)
As long as WAL disk usage stays below this setting, old WAL files are always recycled for future use
at a checkpoint, rather than removed. This can be used to ensure that enough WAL space is reserved
to handle spikes in WAL usage, for example when running large batch jobs. If this value is specified

497

Server Configuration

without units, it is taken as megabytes. The default is 80 MB. This parameter can only be set in the
postgresql.conf file or on the server command line.

18.5.3. Archiving
archive_mode (enum)

When archive_mode is enabled, completed WAL segments are sent to archive storage by setting
archive_command. In addition to off, to disable, there are two modes: on, and always. During normal
operation, there is no difference between the two modes, but when set to always the WAL archiver
is enabled also during archive recovery or standby mode. In always mode, all files restored from
the archive or streamed with streaming replication will be archived (again). See Section 25.2.9 for
details.

archive_mode and archive_command are separate variables so that archive_command can be
changed without leaving archiving mode. This parameter can only be set at server start.
archive_mode cannot be enabled when wal_level is set to minimal.

archive_command (string)
The local shell command to execute to archive a completed WAL file segment. Any %p in the string is
replaced by the path name of the file to archive, and any %f is replaced by only the file name. (The
path name is relative to the working directory of the server, i.e., the cluster's data directory.) Use %
% to embed an actual % character in the command. It is important for the command to return a zero
exit status only if it succeeds. For more information see Section 24.3.1.

This parameter can only be set in the postgresql.conf file or on the server command line. It is
ignored unless archive_mode was enabled at server start. If archive_command is an empty string
(the default) while archive_mode is enabled, WAL archiving is temporarily disabled, but the server
continues to accumulate WAL segment files in the expectation that a command will soon be provided.
Setting archive_command to a command that does nothing but return true, e.g., /bin/true (REM on
Windows), effectively disables archiving, but also breaks the chain of WAL files needed for archive
recovery, so it should only be used in unusual circumstances.

archive_timeout (integer)
The archive_command is only invoked for completed WAL segments. Hence, if your server generates
little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To limit how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment file
periodically. When this parameter is greater than zero, the server will switch to a new segment file
whenever this amount of time has elapsed since the last segment file switch, and there has been
any database activity, including a single checkpoint (checkpoints are skipped if there is no database
activity). Note that archived files that are closed early due to a forced switch are still the same length
as completely full files. Therefore, it is unwise to use a very short archive_timeout — it will bloat
your archive storage. archive_timeout settings of a minute or so are usually reasonable. You should
consider using streaming replication, instead of archiving, if you want data to be copied off the master
server more quickly than that. If this value is specified without units, it is taken as seconds. This
parameter can only be set in the postgresql.conf file or on the server command line.

18.5.4. Archive Recovery
This section describes the settings that apply only for the duration of the recovery. They must be reset
for any subsequent recovery you wish to perform.

“Recovery” covers using the server as a standby or for executing a targeted recovery. Typically, standby
mode would be used to provide high availability and/or read scalability, whereas a targeted recovery is
used to recover from data loss.

To start the server in standby mode, create a file called standby.signalin the data directory. The server
will enter recovery and will not stop recovery when the end of archived WAL is reached, but will keep

498

Server Configuration

trying to continue recovery by connecting to the sending server as specified by the primary_conninfo
setting and/or by fetching new WAL segments using restore_command. For this mode, the parameters
from this section and Section 18.6.3 are of interest. Parameters from Section 18.5.5 will also be applied
but are typically not useful in this mode.

To start the server in targeted recovery mode, create a file called recovery.signalin the data directory.
If both standby.signal and recovery.signal files are created, standby mode takes precedence.
Targeted recovery mode ends when the archived WAL is fully replayed, or when recovery_target is
reached. In this mode, the parameters from both this section and Section 18.5.5 will be used.

restore_command (string)
The local shell command to execute to retrieve an archived segment of the WAL file series. This
parameter is required for archive recovery, but optional for streaming replication. Any %f in the string
is replaced by the name of the file to retrieve from the archive, and any %p is replaced by the copy
destination path name on the server. (The path name is relative to the current working directory,
i.e., the cluster's data directory.) Any %r is replaced by the name of the file containing the last valid
restart point. That is the earliest file that must be kept to allow a restore to be restartable, so this
information can be used to truncate the archive to just the minimum required to support restarting
from the current restore. %r is typically only used by warm-standby configurations (see Section 25.2).
Write %% to embed an actual % character.

It is important for the command to return a zero exit status only if it succeeds. The command will
be asked for file names that are not present in the archive; it must return nonzero when so asked.
Examples:
restore_command = 'cp /mnt/server/archivedir/%f "%p"'
restore_command = 'copy "C:\\server\\archivedir\\%f" "%p"' # Windows

An exception is that if the command was terminated by a signal (other than SIGTERM, which is used
as part of a database server shutdown) or an error by the shell (such as command not found), then
recovery will abort and the server will not start up.

archive_cleanup_command (string)
This optional parameter specifies a shell command that will be executed at every restartpoint.
The purpose of archive_cleanup_command is to provide a mechanism for cleaning up old archived
WAL files that are no longer needed by the standby server. Any %r is replaced by the name of the
file containing the last valid restart point. That is the earliest file that must be kept to allow a
restore to be restartable, and so all files earlier than %r may be safely removed. This information
can be used to truncate the archive to just the minimum required to support restart from the
current restore. The pg_archivecleanup module is often used in archive_cleanup_command for
single-standby configurations, for example:
archive_cleanup_command = 'pg_archivecleanup /mnt/server/archivedir %r'

Note however that if multiple standby servers are restoring from the same archive directory, you
will need to ensure that you do not delete WAL files until they are no longer needed by any of the
servers. archive_cleanup_command would typically be used in a warm-standby configuration (see
Section 25.2). Write %% to embed an actual % character in the command.

If the command returns a nonzero exit status then a warning log message will be written. An
exception is that if the command was terminated by a signal or an error by the shell (such as command
not found), a fatal error will be raised.

This parameter can only be set in the postgresql.conf file or on the server command line.

recovery_end_command (string)
This parameter specifies a shell command that will be executed once only at the end of recovery.
This parameter is optional. The purpose of the recovery_end_command is to provide a mechanism for
cleanup following replication or recovery. Any %r is replaced by the name of the file containing the
last valid restart point, like in archive_cleanup_command.

499

Server Configuration

If the command returns a nonzero exit status then a warning log message will be written and the
database will proceed to start up anyway. An exception is that if the command was terminated by
a signal or an error by the shell (such as command not found), the database will not proceed with
startup.

This parameter can only be set in the postgresql.conf file or on the server command line.

18.5.5. Recovery Target
By default, recovery will recover to the end of the WAL log. The following parameters can be
used to specify an earlier stopping point. At most one of recovery_target, recovery_target_lsn,
recovery_target_name, recovery_target_time, or recovery_target_xid can be used; if more than
one of these is specified in the configuration file, an error will be raised. These parameters can only be
set at server start.

recovery_target = 'immediate'

This parameter specifies that recovery should end as soon as a consistent state is reached, i.e., as
early as possible. When restoring from an online backup, this means the point where taking the
backup ended.

Technically, this is a string parameter, but 'immediate' is currently the only allowed value.

recovery_target_name (string)

This parameter specifies the named restore point (created with pg_create_restore_point()) to
which recovery will proceed.

recovery_target_time (timestamp)

This parameter specifies the time stamp up to which recovery will proceed. The precise stopping
point is also influenced by recovery_target_inclusive.

The value of this parameter is a time stamp in the same format accepted by the timestamp
with time zone data type, except that you cannot use a time zone abbreviation (unless the
timezone_abbreviations variable has been set earlier in the configuration file). Preferred style is to
use a numeric offset from UTC, or you can write a full time zone name, e.g., Europe/Helsinki not
EEST.

recovery_target_xid (string)

This parameter specifies the transaction ID up to which recovery will proceed. Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete
in a different numeric order. The transactions that will be recovered are those that committed
before (and optionally including) the specified one. The precise stopping point is also influenced by
recovery_target_inclusive.

recovery_target_lsn (pg_lsn)

This parameter specifies the LSN of the write-ahead log location up to which recovery will proceed.
The precise stopping point is also influenced by recovery_target_inclusive. This parameter is parsed
using the system data type pg_lsn.

The following options further specify the recovery target, and affect what happens when the target is
reached:

recovery_target_inclusive (boolean)

Specifies whether to stop just after the specified recovery target (on), or just before the recovery
target (off). Applies when recovery_target_lsn, recovery_target_time, or recovery_target_xid is
specified. This setting controls whether transactions having exactly the target WAL location (LSN),
commit time, or transaction ID, respectively, will be included in the recovery. Default is on.

500

Server Configuration

recovery_target_timeline (string)

Specifies recovering into a particular timeline. The value can be a numeric timeline ID or a special
value. The value current recovers along the same timeline that was current when the base backup
was taken. The value latest recovers to the latest timeline found in the archive, which is useful in
a standby server. latest is the default.

You usually only need to set this parameter in complex re-recovery situations, where you need
to return to a state that itself was reached after a point-in-time recovery. See Section 24.3.5 for
discussion.

recovery_target_action (enum)

Specifies what action the server should take once the recovery target is reached. The default is
pause, which means recovery will be paused. promote means the recovery process will finish and
the server will start to accept connections. Finally shutdown will stop the server after reaching the
recovery target.

The intended use of the pause setting is to allow queries to be executed against the database to check
if this recovery target is the most desirable point for recovery. The paused state can be resumed by
using pg_wal_replay_resume() (see Table 9.87), which then causes recovery to end. If this recovery
target is not the desired stopping point, then shut down the server, change the recovery target
settings to a later target and restart to continue recovery.

The shutdown setting is useful to have the instance ready at the exact replay point desired. The
instance will still be able to replay more WAL records (and in fact will have to replay WAL records
since the last checkpoint next time it is started).

Note that because recovery.signal will not be removed when recovery_target_action is set
to shutdown, any subsequent start will end with immediate shutdown unless the configuration is
changed or the recovery.signal file is removed manually.

This setting has no effect if no recovery target is set. If hot_standby is not enabled, a setting of pause
will act the same as shutdown. If the recovery target is reached while a promotion is ongoing, a
setting of pause will act the same as promote.

In any case, if a recovery target is configured but the archive recovery ends before the target is
reached, the server will shut down with a fatal error.

18.6. Replication
These settings control the behavior of the built-in streaming replication feature (see Section 25.2.5).
Servers will be either a master or a standby server. Masters can send data, while standbys are always
receivers of replicated data. When cascading replication (see Section 25.2.7) is used, standby servers
can also be senders, as well as receivers. Parameters are mainly for sending and standby servers, though
some parameters have meaning only on the master server. Settings may vary across the cluster without
problems if that is required.

18.6.1. Sending Servers
These parameters can be set on any server that is to send replication data to one or more standby
servers. The master is always a sending server, so these parameters must always be set on the master.
The role and meaning of these parameters does not change after a standby becomes the master.

max_wal_senders (integer)

Specifies the maximum number of concurrent connections from standby servers or streaming base
backup clients (i.e., the maximum number of simultaneously running WAL sender processes). The
default is 10. The value 0 means replication is disabled. Abrupt disconnection of a streaming client
might leave an orphaned connection slot behind until a timeout is reached, so this parameter should

501

Server Configuration

be set slightly higher than the maximum number of expected clients so disconnected clients can
immediately reconnect. This parameter can only be set at server start. Also, wal_level must be set
to replica or higher to allow connections from standby servers.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

max_replication_slots (integer)

Specifies the maximum number of replication slots (see Section 25.2.6) that the server can support.
The default is 10. This parameter can only be set at server start. Setting it to a lower value than the
number of currently existing replication slots will prevent the server from starting. Also, wal_level
must be set to replica or higher to allow replication slots to be used.

On the subscriber side, specifies how many replication origins (see Chapter 47) can be tracked
simultaneously, effectively limiting how many logical replication subscriptions can be created on the
server. Setting it a lower value than the current number of tracked replication origins (reflected in
pg_replication_origin_status, not pg_replication_origin) will prevent the server from starting.

wal_keep_size (integer)

Specifies the minimum size of past log file segments kept in the pg_wal directory, in case a standby
server needs to fetch them for streaming replication. If a standby server connected to the sending
server falls behind by more than wal_keep_size megabytes, the sending server might remove a WAL
segment still needed by the standby, in which case the replication connection will be terminated.
Downstream connections will also eventually fail as a result. (However, the standby server can
recover by fetching the segment from archive, if WAL archiving is in use.)

This sets only the minimum size of segments retained in pg_wal; the system might need to retain
more segments for WAL archival or to recover from a checkpoint. If wal_keep_size is zero (the
default), the system doesn't keep any extra segments for standby purposes, so the number of old
WAL segments available to standby servers is a function of the location of the previous checkpoint
and status of WAL archiving. If this value is specified without units, it is taken as megabytes. This
parameter can only be set in the postgresql.conf file or on the server command line.

max_slot_wal_keep_size (integer)

Specify the maximum size of WAL files that replication slots are allowed to retain in the pg_wal
directory at checkpoint time. If max_slot_wal_keep_size is -1 (the default), replication slots may
retain an unlimited amount of WAL files. Otherwise, if restart_lsn of a replication slot falls behind the
current LSN by more than the given size, the standby using the slot may no longer be able to continue
replication due to removal of required WAL files. You can see the WAL availability of replication
slots in pg_replication_slots. If this value is specified without units, it is taken as megabytes. This
parameter can only be set in the postgresql.conf file or on the server command line.

wal_sender_timeout (integer)

Terminate replication connections that are inactive for longer than this amount of time. This is useful
for the sending server to detect a standby crash or network outage. If this value is specified without
units, it is taken as milliseconds. The default value is 60 seconds. A value of zero disables the timeout
mechanism.

With a cluster distributed across multiple geographic locations, using different values per location
brings more flexibility in the cluster management. A smaller value is useful for faster failure detection
with a standby having a low-latency network connection, and a larger value helps in judging better
the health of a standby if located on a remote location, with a high-latency network connection.

track_commit_timestamp (boolean)

Record commit time of transactions. This parameter can only be set in postgresql.conf file or on
the server command line. The default value is off.

502

Server Configuration

18.6.2. Master Server
These parameters can be set on the master/primary server that is to send replication data to one or
more standby servers. Note that in addition to these parameters, wal_level must be set appropriately
on the master server, and optionally WAL archiving can be enabled as well (see Section 18.5.3). The
values of these parameters on standby servers are irrelevant, although you may wish to set them there
in preparation for the possibility of a standby becoming the master.

synchronous_standby_names (string)

Specifies a list of standby servers that can support synchronous replication, as described in
Section 25.2.8. There will be one or more active synchronous standbys; transactions waiting for
commit will be allowed to proceed after these standby servers confirm receipt of their data.
The synchronous standbys will be those whose names appear in this list, and that are both
currently connected and streaming data in real-time (as shown by a state of streaming in the
pg_stat_replication view). Specifying more than one synchronous standby can allow for very high
availability and protection against data loss.

The name of a standby server for this purpose is the application_name setting of the standby, as set
in the standby's connection information. In case of a physical replication standby, this should be set in
the primary_conninfo setting; the default is the setting of cluster_name if set, else walreceiver. For
logical replication, this can be set in the connection information of the subscription, and it defaults
to the subscription name. For other replication stream consumers, consult their documentation.

This parameter specifies a list of standby servers using either of the following syntaxes:

[FIRST] num_sync (standby_name [, ...])
ANY num_sync (standby_name [, ...])
standby_name [, ...]

where num_sync is the number of synchronous standbys that transactions need to wait for replies
from, and standby_name is the name of a standby server. FIRST and ANY specify the method to choose
synchronous standbys from the listed servers.

The keyword FIRST, coupled with num_sync, specifies a priority-based synchronous replication and
makes transaction commits wait until their WAL records are replicated to num_sync synchronous
standbys chosen based on their priorities. For example, a setting of FIRST 3 (s1, s2, s3, s4)
will cause each commit to wait for replies from three higher-priority standbys chosen from standby
servers s1, s2, s3 and s4. The standbys whose names appear earlier in the list are given higher
priority and will be considered as synchronous. Other standby servers appearing later in this list
represent potential synchronous standbys. If any of the current synchronous standbys disconnects for
whatever reason, it will be replaced immediately with the next-highest-priority standby. The keyword
FIRST is optional.

The keyword ANY, coupled with num_sync, specifies a quorum-based synchronous replication and
makes transaction commits wait until their WAL records are replicated to at least num_sync listed
standbys. For example, a setting of ANY 3 (s1, s2, s3, s4) will cause each commit to proceed as
soon as at least any three standbys of s1, s2, s3 and s4 reply.

FIRST and ANY are case-insensitive. If these keywords are used as the name of a standby server, its
standby_name must be double-quoted.

The third syntax was used before Postgres Pro version 9.6 and is still supported. It's the same as the
first syntax with FIRST and num_sync equal to 1. For example, FIRST 1 (s1, s2) and s1, s2 have
the same meaning: either s1 or s2 is chosen as a synchronous standby.

The special entry * matches any standby name.

There is no mechanism to enforce uniqueness of standby names. In case of duplicates one of the
matching standbys will be considered as higher priority, though exactly which one is indeterminate.

503

Server Configuration

Note
Each standby_name should have the form of a valid SQL identifier, unless it is *. You can use
double-quoting if necessary. But note that standby_names are compared to standby application
names case-insensitively, whether double-quoted or not.

If no synchronous standby names are specified here, then synchronous replication is not enabled
and transaction commits will not wait for replication. This is the default configuration. Even
when synchronous replication is enabled, individual transactions can be configured not to wait for
replication by setting the synchronous_commit parameter to local or off.

This parameter can only be set in the postgresql.conf file or on the server command line.

vacuum_defer_cleanup_age (integer)

Specifies the number of transactions by which VACUUM and HOT updates will defer cleanup of dead
row versions. The default is zero transactions, meaning that dead row versions can be removed as
soon as possible, that is, as soon as they are no longer visible to any open transaction. You may
wish to set this to a non-zero value on a primary server that is supporting hot standby servers, as
described in Section 25.5. This allows more time for queries on the standby to complete without
incurring conflicts due to early cleanup of rows. However, since the value is measured in terms of
number of write transactions occurring on the primary server, it is difficult to predict just how much
additional grace time will be made available to standby queries. This parameter can only be set in
the postgresql.conf file or on the server command line.

You should also consider setting hot_standby_feedback on standby server(s) as an alternative to
using this parameter.

This does not prevent cleanup of dead rows which have reached the age specified by
old_snapshot_threshold.

18.6.3. Standby Servers
These settings control the behavior of a standby server that is to receive replication data. Their values
on the master server are irrelevant.

primary_conninfo (string)

Specifies a connection string to be used for the standby server to connect with a sending server. This
string is in the format described in Section 31.1.1. If any option is unspecified in this string, then
the corresponding environment variable (see Section 31.14) is checked. If the environment variable
is not set either, then defaults are used.

The connection string should specify the host name (or address) of the sending server, as well as
the port number if it is not the same as the standby server's default. Also specify a user name
corresponding to a suitably-privileged role on the sending server (see Section 25.2.5.1). A password
needs to be provided too, if the sender demands password authentication. It can be provided in the
primary_conninfo string, or in a separate ~/.pgpass file on the standby server (use replication
as the database name). Do not specify a database name in the primary_conninfo string.

This parameter can only be set in the postgresql.conf file or on the server command line. If this
parameter is changed while the WAL receiver process is running, that process is signaled to shut
down and expected to restart with the new setting (except if primary_conninfo is an empty string).
This setting has no effect if the server is not in standby mode.

primary_slot_name (string)

Optionally specifies an existing replication slot to be used when connecting to the sending server
via streaming replication to control resource removal on the upstream node (see Section 25.2.6).

504

Server Configuration

This parameter can only be set in the postgresql.conf file or on the server command line. If this
parameter is changed while the WAL receiver process is running, that process is signaled to shut
down and expected to restart with the new setting. This setting has no effect if primary_conninfo
is not set or the server is not in standby mode.

promote_trigger_file (string)

Specifies a trigger file whose presence ends recovery in the standby. Even if this value is not set, you
can still promote the standby using pg_ctl promote or calling pg_promote(). This parameter can
only be set in the postgresql.conf file or on the server command line.

hot_standby (boolean)

Specifies whether or not you can connect and run queries during recovery, as described in
Section 25.5. The default value is on. This parameter can only be set at server start. It only has effect
during archive recovery or in standby mode.

max_standby_archive_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described in
Section 25.5.2. max_standby_archive_delay applies when WAL data is being read from WAL archive
(and is therefore not current). If this value is specified without units, it is taken as milliseconds.
The default is 30 seconds. A value of -1 allows the standby to wait forever for conflicting queries to
complete. This parameter can only be set in the postgresql.conf file or on the server command line.

Note that max_standby_archive_delay is not the same as the maximum length of time a query can
run before cancellation; rather it is the maximum total time allowed to apply any one WAL segment's
data. Thus, if one query has resulted in significant delay earlier in the WAL segment, subsequent
conflicting queries will have much less grace time.

max_standby_streaming_delay (integer)

When Hot Standby is active, this parameter determines how long the standby server should wait
before canceling standby queries that conflict with about-to-be-applied WAL entries, as described
in Section 25.5.2. max_standby_streaming_delay applies when WAL data is being received via
streaming replication. If this value is specified without units, it is taken as milliseconds. The default
is 30 seconds. A value of -1 allows the standby to wait forever for conflicting queries to complete.
This parameter can only be set in the postgresql.conf file or on the server command line.

Note that max_standby_streaming_delay is not the same as the maximum length of time a query
can run before cancellation; rather it is the maximum total time allowed to apply WAL data once
it has been received from the primary server. Thus, if one query has resulted in significant delay,
subsequent conflicting queries will have much less grace time until the standby server has caught
up again.

wal_receiver_create_temp_slot (boolean)

Specifies whether the WAL receiver process should create a temporary replication slot on the remote
instance when no permanent replication slot to use has been configured (using primary_slot_name).
The default is off. This parameter can only be set in the postgresql.conf file or on the server
command line. If this parameter is changed while the WAL receiver process is running, that process
is signaled to shut down and expected to restart with the new setting.

wal_receiver_status_interval (integer)

Specifies the minimum frequency for the WAL receiver process on the standby to send information
about replication progress to the primary or upstream standby, where it can be seen using the
pg_stat_replication view. The standby will report the last write-ahead log location it has written,
the last position it has flushed to disk, and the last position it has applied. This parameter's value
is the maximum amount of time between reports. Updates are sent each time the write or flush

505

Server Configuration

positions change, or at least as often as specified by this parameter. Thus, the apply position may lag
slightly behind the true position. If this value is specified without units, it is taken as seconds. The
default value is 10 seconds. Setting this parameter to zero disables status updates completely. This
parameter can only be set in the postgresql.conf file or on the server command line.

hot_standby_feedback (boolean)
Specifies whether or not a hot standby will send feedback to the primary or upstream standby
about queries currently executing on the standby. This parameter can be used to eliminate query
cancels caused by cleanup records, but can cause database bloat on the primary for some workloads.
Feedback messages will not be sent more frequently than once per wal_receiver_status_interval.
The default value is off. This parameter can only be set in the postgresql.conf file or on the server
command line.

If cascaded replication is in use the feedback is passed upstream until it eventually reaches the
primary. Standbys make no other use of feedback they receive other than to pass upstream.

This setting does not override the behavior of old_snapshot_threshold on the primary; a snapshot
on the standby which exceeds the primary's age threshold can become invalid, resulting in
cancellation of transactions on the standby. This is because old_snapshot_threshold is intended to
provide an absolute limit on the time which dead rows can contribute to bloat, which would otherwise
be violated because of the configuration of a standby.

wal_receiver_timeout (integer)
Terminate replication connections that are inactive for longer than this amount of time. This is useful
for the receiving standby server to detect a primary node crash or network outage. If this value is
specified without units, it is taken as milliseconds. The default value is 60 seconds. A value of zero
disables the timeout mechanism. This parameter can only be set in the postgresql.conf file or on
the server command line.

wal_retrieve_retry_interval (integer)
Specifies how long the standby server should wait when WAL data is not available from any sources
(streaming replication, local pg_wal or WAL archive) before trying again to retrieve WAL data. If
this value is specified without units, it is taken as milliseconds. The default value is 5 seconds. This
parameter can only be set in the postgresql.conf file or on the server command line.

This parameter is useful in configurations where a node in recovery needs to control the amount
of time to wait for new WAL data to be available. For example, in archive recovery, it is possible to
make the recovery more responsive in the detection of a new WAL log file by reducing the value
of this parameter. On a system with low WAL activity, increasing it reduces the amount of requests
necessary to access WAL archives, something useful for example in cloud environments where the
amount of times an infrastructure is accessed is taken into account.

recovery_min_apply_delay (integer)
By default, a standby server restores WAL records from the sending server as soon as possible. It may
be useful to have a time-delayed copy of the data, offering opportunities to correct data loss errors.
This parameter allows you to delay recovery by a specified amount of time. For example, if you set
this parameter to 5min, the standby will replay each transaction commit only when the system time
on the standby is at least five minutes past the commit time reported by the master. If this value is
specified without units, it is taken as milliseconds. The default is zero, adding no delay.

It is possible that the replication delay between servers exceeds the value of this parameter, in which
case no delay is added. Note that the delay is calculated between the WAL time stamp as written on
master and the current time on the standby. Delays in transfer because of network lag or cascading
replication configurations may reduce the actual wait time significantly. If the system clocks on
master and standby are not synchronized, this may lead to recovery applying records earlier than
expected; but that is not a major issue because useful settings of this parameter are much larger
than typical time deviations between servers.

506

Server Configuration

The delay occurs only on WAL records for transaction commits. Other records are replayed as quickly
as possible, which is not a problem because MVCC visibility rules ensure their effects are not visible
until the corresponding commit record is applied.

The delay occurs once the database in recovery has reached a consistent state, until the standby is
promoted or triggered. After that the standby will end recovery without further waiting.

This parameter is intended for use with streaming replication deployments; however, if the parameter
is specified it will be honored in all cases except crash recovery. hot_standby_feedback will be
delayed by use of this feature which could lead to bloat on the master; use both together with care.

Warning
Synchronous replication is affected by this setting when synchronous_commit is set to
remote_apply; every COMMIT will need to wait to be applied.

This parameter can only be set in the postgresql.conf file or on the server command line.

18.6.4. Subscribers
These settings control the behavior of a logical replication subscriber. Their values on the publisher are
irrelevant.

Note that wal_receiver_timeout, wal_receiver_status_interval and
wal_retrieve_retry_interval configuration parameters affect the logical replication workers as well.

max_logical_replication_workers (int)

Specifies maximum number of logical replication workers. This includes both apply workers and
table synchronization workers.

Logical replication workers are taken from the pool defined by max_worker_processes.

The default value is 4. This parameter can only be set at server start.

max_sync_workers_per_subscription (integer)

Maximum number of synchronization workers per subscription. This parameter controls the amount
of parallelism of the initial data copy during the subscription initialization or when new tables are
added.

Currently, there can be only one synchronization worker per table.

The synchronization workers are taken from the pool defined by
max_logical_replication_workers.

The default value is 2. This parameter can only be set in the postgresql.conf file or on the server
command line.

18.7. Query Planning
18.7.1. Planner Method Configuration

These configuration parameters provide a crude method of influencing the query plans chosen by the
query optimizer. If the default plan chosen by the optimizer for a particular query is not optimal, a
temporary solution is to use one of these configuration parameters to force the optimizer to choose a
different plan. Better ways to improve the quality of the plans chosen by the optimizer include adjusting
the planner cost constants (see Section 18.7.2), running ANALYZE manually, increasing the value of the

507

Server Configuration

default_statistics_target configuration parameter, and increasing the amount of statistics collected for
specific columns using ALTER TABLE SET STATISTICS.

enable_bitmapscan (boolean)

Enables or disables the query planner's use of bitmap-scan plan types. The default is on.

enable_gathermerge (boolean)

Enables or disables the query planner's use of gather merge plan types. The default is on.

enable_hashagg (boolean)

Enables or disables the query planner's use of hashed aggregation plan types. The default is on.

enable_hashjoin (boolean)

Enables or disables the query planner's use of hash-join plan types. The default is on.

enable_incremental_sort (boolean)

Enables or disables the query planner's use of incremental sort steps. The default is on.

enable_indexscan (boolean)

Enables or disables the query planner's use of index-scan plan types. The default is on.

enable_indexonlyscan (boolean)
Enables or disables the query planner's use of index-only-scan plan types (see Section 11.9). The
default is on.

enable_material (boolean)
Enables or disables the query planner's use of materialization. It is impossible to suppress
materialization entirely, but turning this variable off prevents the planner from inserting materialize
nodes except in cases where it is required for correctness. The default is on.

enable_mergejoin (boolean)

Enables or disables the query planner's use of merge-join plan types. The default is on.

enable_nestloop (boolean)
Enables or disables the query planner's use of nested-loop join plans. It is impossible to suppress
nested-loop joins entirely, but turning this variable off discourages the planner from using one if
there are other methods available. The default is on.

enable_parallel_append (boolean)

Enables or disables the query planner's use of parallel-aware append plan types. The default is on.

enable_parallel_hash (boolean)
Enables or disables the query planner's use of hash-join plan types with parallel hash. Has no effect
if hash-join plans are not also enabled. The default is on.

enable_partition_pruning (boolean)
Enables or disables the query planner's ability to eliminate a partitioned table's partitions from query
plans. This also controls the planner's ability to generate query plans which allow the query executor
to remove (ignore) partitions during query execution. The default is on. See Section 5.11.4 for details.

enable_partitionwise_join (boolean)
Enables or disables the query planner's use of partitionwise join, which allows a join between
partitioned tables to be performed by joining the matching partitions. Partitionwise join currently

508

Server Configuration

applies only when the join conditions include all the partition keys, which must be of the same data
type and have one-to-one matching sets of child partitions. Because partitionwise join planning can
use significantly more CPU time and memory during planning, the default is off.

enable_partitionwise_aggregate (boolean)

Enables or disables the query planner's use of partitionwise grouping or aggregation, which allows
grouping or aggregation on a partitioned tables performed separately for each partition. If the
GROUP BY clause does not include the partition keys, only partial aggregation can be performed on
a per-partition basis, and finalization must be performed later. Because partitionwise grouping or
aggregation can use significantly more CPU time and memory during planning, the default is off.

enable_self_join_removal (boolean)

Enables or disables removal of self joins from query plans. Removing self joins based on unique
column can significantly speed up queries without affecting the results.

Default: on

enable_compound_index_stats (boolean)

Enables or disables use of compound indexes statistics for selectivity estimation.

Default: on

enable_seqscan (boolean)

Enables or disables the query planner's use of sequential scan plan types. It is impossible to suppress
sequential scans entirely, but turning this variable off discourages the planner from using one if there
are other methods available. The default is on.

enable_sort (boolean)

Enables or disables the query planner's use of explicit sort steps. It is impossible to suppress explicit
sorts entirely, but turning this variable off discourages the planner from using one if there are other
methods available. The default is on.

enable_tidscan (boolean)

Enables or disables the query planner's use of TID scan plan types. The default is on.

18.7.2. Planner Cost Constants
The cost variables described in this section are measured on an arbitrary scale. Only their relative
values matter, hence scaling them all up or down by the same factor will result in no change in the
planner's choices. By default, these cost variables are based on the cost of sequential page fetches; that
is, seq_page_cost is conventionally set to 1.0 and the other cost variables are set with reference to
that. But you can use a different scale if you prefer, such as actual execution times in milliseconds on
a particular machine.

Note
Unfortunately, there is no well-defined method for determining ideal values for the cost variables.
They are best treated as averages over the entire mix of queries that a particular installation will
receive. This means that changing them on the basis of just a few experiments is very risky.

seq_page_cost (floating point)

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of sequential fetches.
The default is 1.0. This value can be overridden for tables and indexes in a particular tablespace by
setting the tablespace parameter of the same name (see ALTER TABLESPACE).

509

Server Configuration

random_page_cost (floating point)
Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0. This
value can be overridden for tables and indexes in a particular tablespace by setting the tablespace
parameter of the same name (see ALTER TABLESPACE).

Reducing this value relative to seq_page_cost will cause the system to prefer index scans; raising it
will make index scans look relatively more expensive. You can raise or lower both values together to
change the importance of disk I/O costs relative to CPU costs, which are described by the following
parameters.

Random access to mechanical disk storage is normally much more expensive than four times
sequential access. However, a lower default is used (4.0) because the majority of random accesses
to disk, such as indexed reads, are assumed to be in cache. The default value can be thought of as
modeling random access as 40 times slower than sequential, while expecting 90% of random reads
to be cached.

If you believe a 90% cache rate is an incorrect assumption for your workload, you can increase
random_page_cost to better reflect the true cost of random storage reads. Correspondingly, if your
data is likely to be completely in cache, such as when the database is smaller than the total server
memory, decreasing random_page_cost can be appropriate. Storage that has a low random read cost
relative to sequential, e.g., solid-state drives, might also be better modeled with a lower value for
random_page_cost, e.g., 1.1.

Tip
Although the system will let you set random_page_cost to less than seq_page_cost, it is not
physically sensible to do so. However, setting them equal makes sense if the database is entirely
cached in RAM, since in that case there is no penalty for touching pages out of sequence. Also,
in a heavily-cached database you should lower both values relative to the CPU parameters,
since the cost of fetching a page already in RAM is much smaller than it would normally be.

cpu_tuple_cost (floating point)
Sets the planner's estimate of the cost of processing each row during a query. The default is 0.01.

cpu_index_tuple_cost (floating point)
Sets the planner's estimate of the cost of processing each index entry during an index scan. The
default is 0.005.

cpu_operator_cost (floating point)
Sets the planner's estimate of the cost of processing each operator or function executed during a
query. The default is 0.0025.

parallel_setup_cost (floating point)
Sets the planner's estimate of the cost of launching parallel worker processes. The default is 1000.

parallel_tuple_cost (floating point)
Sets the planner's estimate of the cost of transferring one tuple from a parallel worker process to
another process. The default is 0.1.

min_parallel_table_scan_size (integer)
Sets the minimum amount of table data that must be scanned in order for a parallel scan to be
considered. For a parallel sequential scan, the amount of table data scanned is always equal to the
size of the table, but when indexes are used the amount of table data scanned will normally be less.
If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The
default is 8 megabytes (8MB).

510

Server Configuration

min_parallel_index_scan_size (integer)

Sets the minimum amount of index data that must be scanned in order for a parallel scan to be
considered. Note that a parallel index scan typically won't touch the entire index; it is the number
of pages which the planner believes will actually be touched by the scan which is relevant. This
parameter is also used to decide whether a particular index can participate in a parallel vacuum. See
VACUUM. If this value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically
8kB. The default is 512 kilobytes (512kB).

effective_cache_size (integer)

Sets the planner's assumption about the effective size of the disk cache that is available to a single
query. This is factored into estimates of the cost of using an index; a higher value makes it more likely
index scans will be used, a lower value makes it more likely sequential scans will be used. When
setting this parameter you should consider both Postgres Pro's shared buffers and the portion of the
kernel's disk cache that will be used for Postgres Pro data files, though some data might exist in
both places. Also, take into account the expected number of concurrent queries on different tables,
since they will have to share the available space. This parameter has no effect on the size of shared
memory allocated by Postgres Pro, nor does it reserve kernel disk cache; it is used only for estimation
purposes. The system also does not assume data remains in the disk cache between queries. If this
value is specified without units, it is taken as blocks, that is BLCKSZ bytes, typically 8kB. The default
is 4 gigabytes (4GB). (If BLCKSZ is not 8kB, the default value scales proportionally to it.)

jit_above_cost (floating point)

Sets the query cost above which JIT compilation is activated, if enabled (see Chapter 30). Performing
JIT costs planning time but can accelerate query execution. Setting this to -1 disables JIT compilation.
The default is 100000.

jit_inline_above_cost (floating point)

Sets the query cost above which JIT compilation attempts to inline functions and operators. Inlining
adds planning time, but can improve execution speed. It is not meaningful to set this to less than
jit_above_cost. Setting this to -1 disables inlining. The default is 500000.

jit_optimize_above_cost (floating point)

Sets the query cost above which JIT compilation applies expensive optimizations. Such optimization
adds planning time, but can improve execution speed. It is not meaningful to set this to less than
jit_above_cost, and it is unlikely to be beneficial to set it to more than jit_inline_above_cost.
Setting this to -1 disables expensive optimizations. The default is 500000.

18.7.3. Genetic Query Optimizer
The genetic query optimizer (GEQO) is an algorithm that does query planning using heuristic searching.
This reduces planning time for complex queries (those joining many relations), at the cost of producing
plans that are sometimes inferior to those found by the normal exhaustive-search algorithm. For more
information see Chapter 55.

geqo (boolean)

Enables or disables genetic query optimization. This is on by default. It is usually best not to turn it
off in production; the geqo_threshold variable provides more granular control of GEQO.

geqo_threshold (integer)

Use genetic query optimization to plan queries with at least this many FROM items involved. (Note
that a FULL OUTER JOIN construct counts as only one FROM item.) The default is 12. For simpler
queries it is usually best to use the regular, exhaustive-search planner, but for queries with many
tables the exhaustive search takes too long, often longer than the penalty of executing a suboptimal
plan. Thus, a threshold on the size of the query is a convenient way to manage use of GEQO.

511

Server Configuration

geqo_effort (integer)
Controls the trade-off between planning time and query plan quality in GEQO. This variable must be
an integer in the range from 1 to 10. The default value is five. Larger values increase the time spent
doing query planning, but also increase the likelihood that an efficient query plan will be chosen.

geqo_effort doesn't actually do anything directly; it is only used to compute the default values for
the other variables that influence GEQO behavior (described below). If you prefer, you can set the
other parameters by hand instead.

geqo_pool_size (integer)
Controls the pool size used by GEQO, that is the number of individuals in the genetic population.
It must be at least two, and useful values are typically 100 to 1000. If it is set to zero (the default
setting) then a suitable value is chosen based on geqo_effort and the number of tables in the query.

geqo_generations (integer)
Controls the number of generations used by GEQO, that is the number of iterations of the algorithm.
It must be at least one, and useful values are in the same range as the pool size. If it is set to zero
(the default setting) then a suitable value is chosen based on geqo_pool_size.

geqo_selection_bias (floating point)
Controls the selection bias used by GEQO. The selection bias is the selective pressure within the
population. Values can be from 1.50 to 2.00; the latter is the default.

geqo_seed (floating point)
Controls the initial value of the random number generator used by GEQO to select random paths
through the join order search space. The value can range from zero (the default) to one. Varying the
value changes the set of join paths explored, and may result in a better or worse best path being
found.

18.7.4. Other Planner Options
default_statistics_target (integer)

Sets the default statistics target for table columns without a column-specific target set via ALTER
TABLE SET STATISTICS. Larger values increase the time needed to do ANALYZE, but might improve
the quality of the planner's estimates. The default is 100. For more information on the use of statistics
by the Postgres Pro query planner, refer to Section 14.2.

constraint_exclusion (enum)
Controls the query planner's use of table constraints to optimize queries. The allowed values of
constraint_exclusion are on (examine constraints for all tables), off (never examine constraints),
and partition (examine constraints only for inheritance child tables and UNION ALL subqueries).
partition is the default setting. It is often used with traditional inheritance trees to improve
performance.

When this parameter allows it for a particular table, the planner compares query conditions with
the table's CHECK constraints, and omits scanning tables for which the conditions contradict the
constraints. For example:
CREATE TABLE parent(key integer, ...);
CREATE TABLE child1000(check (key between 1000 and 1999)) INHERITS(parent);
CREATE TABLE child2000(check (key between 2000 and 2999)) INHERITS(parent);
...
SELECT * FROM parent WHERE key = 2400;

With constraint exclusion enabled, this SELECT will not scan child1000 at all, improving performance.

Currently, constraint exclusion is enabled by default only for cases that are often used to implement
table partitioning via inheritance trees. Turning it on for all tables imposes extra planning overhead

512

Server Configuration

that is quite noticeable on simple queries, and most often will yield no benefit for simple queries.
If you have no tables that are partitioned using traditional inheritance, you might prefer to turn
it off entirely. (Note that the equivalent feature for partitioned tables is controlled by a separate
parameter, enable_partition_pruning.)

Refer to Section 5.11.5 for more information on using constraint exclusion to implement partitioning.

cursor_tuple_fraction (floating point)
Sets the planner's estimate of the fraction of a cursor's rows that will be retrieved. The default is 0.1.
Smaller values of this setting bias the planner towards using “fast start” plans for cursors, which
will retrieve the first few rows quickly while perhaps taking a long time to fetch all rows. Larger
values put more emphasis on the total estimated time. At the maximum setting of 1.0, cursors are
planned exactly like regular queries, considering only the total estimated time and not how soon the
first rows might be delivered.

from_collapse_limit (integer)
The planner will merge sub-queries into upper queries if the resulting FROM list would have no more
than this many items. Smaller values reduce planning time but might yield inferior query plans. The
default is eight. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 18.7.3.

jit (boolean)
Determines whether JIT compilation may be used by Postgres Pro, if available (see Chapter 30). The
default is on.

join_collapse_limit (integer)
The planner will rewrite explicit JOIN constructs (except FULL JOINs) into lists of FROM items
whenever a list of no more than this many items would result. Smaller values reduce planning time
but might yield inferior query plans.

By default, this variable is set the same as from_collapse_limit, which is appropriate for most uses.
Setting it to 1 prevents any reordering of explicit JOINs. Thus, the explicit join order specified in the
query will be the actual order in which the relations are joined. Because the query planner does not
always choose the optimal join order, advanced users can elect to temporarily set this variable to 1,
and then specify the join order they desire explicitly. For more information see Section 14.3.

Setting this value to geqo_threshold or more may trigger use of the GEQO planner, resulting in non-
optimal plans. See Section 18.7.3.

parallel_leader_participation (boolean)
Allows the leader process to execute the query plan under Gather and Gather Merge nodes instead
of waiting for worker processes. The default is on. Setting this value to off reduces the likelihood
that workers will become blocked because the leader is not reading tuples fast enough, but requires
the leader process to wait for worker processes to start up before the first tuples can be produced.
The degree to which the leader can help or hinder performance depends on the plan type, number
of workers and query duration.

force_parallel_mode (enum)
Allows the use of parallel queries for testing purposes even in cases where no performance benefit
is expected. The allowed values of force_parallel_mode are off (use parallel mode only when it is
expected to improve performance), on (force parallel query for all queries for which it is thought to
be safe), and regress (like on, but with additional behavior changes as explained below).

More specifically, setting this value to on will add a Gather node to the top of any query plan for
which this appears to be safe, so that the query runs inside of a parallel worker. Even when a parallel

513

Server Configuration

worker is not available or cannot be used, operations such as starting a subtransaction that would
be prohibited in a parallel query context will be prohibited unless the planner believes that this will
cause the query to fail. If failures or unexpected results occur when this option is set, some functions
used by the query may need to be marked PARALLEL UNSAFE (or, possibly, PARALLEL RESTRICTED).

Setting this value to regress has all of the same effects as setting it to on plus some additional effects
that are intended to facilitate automated regression testing. Normally, messages from a parallel
worker include a context line indicating that, but a setting of regress suppresses this line so that the
output is the same as in non-parallel execution. Also, the Gather nodes added to plans by this setting
are hidden in EXPLAIN output so that the output matches what would be obtained if this setting were
turned off.

plan_cache_mode (enum)
Prepared statements (either explicitly prepared or implicitly generated, for example by PL/pgSQL)
can be executed using custom or generic plans. Custom plans are made afresh for each execution
using its specific set of parameter values, while generic plans do not rely on the parameter values and
can be re-used across executions. Thus, use of a generic plan saves planning time, but if the ideal plan
depends strongly on the parameter values then a generic plan may be inefficient. The choice between
these options is normally made automatically, but it can be overridden with plan_cache_mode. The
allowed values are auto (the default), force_custom_plan and force_generic_plan. This setting is
considered when a cached plan is to be executed, not when it is prepared. For more information
see PREPARE.

18.8. Error Reporting and Logging
18.8.1. Where to Log

log_destination (string)
Postgres Pro supports several methods for logging server messages, including stderr, csvlog and
syslog. On Windows, eventlog is also supported. Set this parameter to a list of desired log destinations
separated by commas. The default is to log to stderr only. This parameter can only be set in the
postgresql.conf file or on the server command line.

If csvlog is included in log_destination, log entries are output in “comma separated value”
(CSV) format, which is convenient for loading logs into programs. See Section 18.8.4 for details.
logging_collector must be enabled to generate CSV-format log output.

When either stderr or csvlog are included, the file current_logfiles is created to record the location
of the log file(s) currently in use by the logging collector and the associated logging destination. This
provides a convenient way to find the logs currently in use by the instance. Here is an example of
this file's content:
stderr log/postgresql.log
csvlog log/postgresql.csv

current_logfiles is recreated when a new log file is created as an effect of rotation, and
when log_destination is reloaded. It is removed when neither stderr nor csvlog are included in
log_destination, and when the logging collector is disabled.

Note
On most Unix systems, you will need to alter the configuration of your system's syslog daemon
in order to make use of the syslog option for log_destination. Postgres Pro can log to syslog
facilities LOCAL0 through LOCAL7 (see syslog_facility), but the default syslog configuration on
most platforms will discard all such messages. You will need to add something like:
local0.* /var/log/postgresql

to the syslog daemon's configuration file to make it work.

514

Server Configuration

On Windows, when you use the eventlog option for log_destination, you should register an
event source and its library with the operating system so that the Windows Event Viewer can
display event log messages cleanly. See Section 17.12 for details.

logging_collector (boolean)
This parameter enables the logging collector, which is a background process that captures log
messages sent to stderr and redirects them into log files. This approach is often more useful than
logging to syslog, since some types of messages might not appear in syslog output. (One common
example is dynamic-linker failure messages; another is error messages produced by scripts such as
archive_command.) This parameter can only be set at server start.

Note
It is possible to log to stderr without using the logging collector; the log messages will just go
to wherever the server's stderr is directed. However, that method is only suitable for low log
volumes, since it provides no convenient way to rotate log files. Also, on some platforms not
using the logging collector can result in lost or garbled log output, because multiple processes
writing concurrently to the same log file can overwrite each other's output.

Note
The logging collector is designed to never lose messages. This means that in case of extremely
high load, server processes could be blocked while trying to send additional log messages
when the collector has fallen behind. In contrast, syslog prefers to drop messages if it cannot
write them, which means it may fail to log some messages in such cases but it will not block
the rest of the system.

log_directory (string)
When logging_collector is enabled, this parameter determines the directory in which log files will
be created. It can be specified as an absolute path, or relative to the cluster data directory. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is log.

log_filename (string)
When logging_collector is enabled, this parameter sets the file names of the created log files.
The value is treated as a strftime pattern, so %-escapes can be used to specify time-varying file
names. (Note that if there are any time-zone-dependent %-escapes, the computation is done in the
zone specified by log_timezone.) The supported %-escapes are similar to those listed in the Open
Group's strftime specification. Note that the system's strftime is not used directly, so platform-
specific (nonstandard) extensions do not work. The default is postgresql-%Y-%m-%d_%H%M%S.log.

If you specify a file name without escapes, you should plan to use a log rotation utility to avoid
eventually filling the entire disk. In releases prior to 8.4, if no % escapes were present, PostgreSQL
would append the epoch of the new log file's creation time, but this is no longer the case.

If CSV-format output is enabled in log_destination, .csv will be appended to the timestamped log
file name to create the file name for CSV-format output. (If log_filename ends in .log, the suffix
is replaced instead.)

This parameter can only be set in the postgresql.conf file or on the server command line.

log_file_mode (integer)
On Unix systems this parameter sets the permissions for log files when logging_collector is
enabled. (On Microsoft Windows this parameter is ignored.) The parameter value is expected to be

515

https://pubs.opengroup.org/onlinepubs/009695399/functions/strftime.html

Server Configuration

a numeric mode specified in the format accepted by the chmod and umask system calls. (To use the
customary octal format the number must start with a 0 (zero).)

The default permissions are 0600, meaning only the server owner can read or write the log files.
The other commonly useful setting is 0640, allowing members of the owner's group to read the files.
Note however that to make use of such a setting, you'll need to alter log_directory to store the files
somewhere outside the cluster data directory. In any case, it's unwise to make the log files world-
readable, since they might contain sensitive data.

This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_age (integer)
When logging_collector is enabled, this parameter determines the maximum amount of time to
use an individual log file, after which a new log file will be created. If this value is specified without
units, it is taken as minutes. The default is 24 hours. Set to zero to disable time-based creation of new
log files. This parameter can only be set in the postgresql.conf file or on the server command line.

log_rotation_size (integer)
When logging_collector is enabled, this parameter determines the maximum size of an individual
log file. After this amount of data has been emitted into a log file, a new log file will be created. If this
value is specified without units, it is taken as kilobytes. The default is 10 megabytes. Set to zero to
disable size-based creation of new log files. This parameter can only be set in the postgresql.conf
file or on the server command line.

log_truncate_on_rotation (boolean)
When logging_collector is enabled, this parameter will cause Postgres Pro to truncate (overwrite),
rather than append to, any existing log file of the same name. However, truncation will occur only
when a new file is being opened due to time-based rotation, not during server startup or size-based
rotation. When off, pre-existing files will be appended to in all cases. For example, using this setting
in combination with a log_filename like postgresql-%H.log would result in generating twenty-
four hourly log files and then cyclically overwriting them. This parameter can only be set in the
postgresql.conf file or on the server command line.

Example: To keep 7 days of logs, one log file per day named server_log.Mon, server_log.Tue, etc,
and automatically overwrite last week's log with this week's log, set log_filename to server_log.
%a, log_truncate_on_rotation to on, and log_rotation_age to 1440.

Example: To keep 24 hours of logs, one log file per hour, but also rotate sooner if the log
file size exceeds 1GB, set log_filename to server_log.%H%M, log_truncate_on_rotation to on,
log_rotation_age to 60, and log_rotation_size to 1000000. Including %M in log_filename allows
any size-driven rotations that might occur to select a file name different from the hour's initial file
name.

syslog_facility (enum)
When logging to syslog is enabled, this parameter determines the syslog “facility” to be used. You
can choose from LOCAL0, LOCAL1, LOCAL2, LOCAL3, LOCAL4, LOCAL5, LOCAL6, LOCAL7; the default is
LOCAL0. See also the documentation of your system's syslog daemon. This parameter can only be set
in the postgresql.conf file or on the server command line.

syslog_ident (string)
When logging to syslog is enabled, this parameter determines the program name used to identify
Postgres Pro messages in syslog logs. The default is postgres. This parameter can only be set in the
postgresql.conf file or on the server command line.

syslog_sequence_numbers (boolean)
When logging to syslog and this is on (the default), then each message will be prefixed
by an increasing sequence number (such as [2]). This circumvents the “--- last message

516

Server Configuration

repeated N times ---” suppression that many syslog implementations perform by default. In more
modern syslog implementations, repeated message suppression can be configured (for example,
$RepeatedMsgReduction in rsyslog), so this might not be necessary. Also, you could turn this off if
you actually want to suppress repeated messages.

This parameter can only be set in the postgresql.conf file or on the server command line.

syslog_split_messages (boolean)

When logging to syslog is enabled, this parameter determines how messages are delivered to syslog.
When on (the default), messages are split by lines, and long lines are split so that they will fit into
1024 bytes, which is a typical size limit for traditional syslog implementations. When off, Postgres
Pro server log messages are delivered to the syslog service as is, and it is up to the syslog service
to cope with the potentially bulky messages.

If syslog is ultimately logging to a text file, then the effect will be the same either way, and it is best
to leave the setting on, since most syslog implementations either cannot handle large messages or
would need to be specially configured to handle them. But if syslog is ultimately writing into some
other medium, it might be necessary or more useful to keep messages logically together.

This parameter can only be set in the postgresql.conf file or on the server command line.

event_source (string)

When logging to event log is enabled, this parameter determines the program name used to identify
Postgres Pro messages in the log. The default is Postgres Pro. This parameter can only be set in
the postgresql.conf file or on the server command line.

18.8.2. When to Log
log_min_messages (enum)

Controls which message levels are written to the server log. Valid values are DEBUG5, DEBUG4, DEBUG3,
DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC. Each level includes all the
levels that follow it. The later the level, the fewer messages are sent to the log. The default is WARNING.
Note that LOG has a different rank here than in client_min_messages. Only superusers can change
this setting.

log_min_error_statement (enum)

Controls which SQL statements that cause an error condition are recorded in the server log. The
current SQL statement is included in the log entry for any message of the specified severity or higher.
Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, ERROR, LOG, FATAL,
and PANIC. The default is ERROR, which means statements causing errors, log messages, fatal errors,
or panics will be logged. To effectively turn off logging of failing statements, set this parameter to
PANIC. Only superusers can change this setting.

log_min_duration_statement (integer)

Causes the duration of each completed statement to be logged if the statement ran for at least the
specified amount of time. For example, if you set it to 250ms then all SQL statements that run 250ms or
longer will be logged. Enabling this parameter can be helpful in tracking down unoptimized queries
in your applications. If this value is specified without units, it is taken as milliseconds. Setting this
to zero prints all statement durations. -1 (the default) disables logging statement durations. Only
superusers can change this setting.

This overrides log_min_duration_sample, meaning that queries with duration exceeding this setting
are not subject to sampling and are always logged.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

517

Server Configuration

Note
When using this option together with log_statement, the text of statements that are logged
because of log_statement will not be repeated in the duration log message. If you are not
using syslog, it is recommended that you log the PID or session ID using log_line_prefix so
that you can link the statement message to the later duration message using the process ID
or session ID.

log_min_duration_sample (integer)
Allows sampling the duration of completed statements that ran for at least the specified amount
of time. This produces the same kind of log entries as log_min_duration_statement, but only for a
subset of the executed statements, with sample rate controlled by log_statement_sample_rate. For
example, if you set it to 100ms then all SQL statements that run 100ms or longer will be considered
for sampling. Enabling this parameter can be helpful when the traffic is too high to log all queries.
If this value is specified without units, it is taken as milliseconds. Setting this to zero samples all
statement durations. -1 (the default) disables sampling statement durations. Only superusers can
change this setting.

This setting has lower priority than log_min_duration_statement, meaning that statements with
durations exceeding log_min_duration_statement are not subject to sampling and are always
logged.

Other notes for log_min_duration_statement apply also to this setting.

log_statement_sample_rate (floating point)
Determines the fraction of statements with duration exceeding log_min_duration_sample that will be
logged. Sampling is stochastic, for example 0.5 means there is statistically one chance in two that any
given statement will be logged. The default is 1.0, meaning to log all sampled statements. Setting this
to zero disables sampled statement-duration logging, the same as setting log_min_duration_sample
to -1. Only superusers can change this setting.

log_transaction_sample_rate (floating point)
Sets the fraction of transactions whose statements are all logged, in addition to statements logged for
other reasons. It applies to each new transaction regardless of its statements' durations. Sampling is
stochastic, for example 0.1 means there is statistically one chance in ten that any given transaction
will be logged. log_transaction_sample_rate can be helpful to construct a sample of transactions.
The default is 0, meaning not to log statements from any additional transactions. Setting this to 1
logs all statements of all transactions. Only superusers can change this setting.

Note
Like all statement-logging options, this option can add significant overhead.

Table 18.2 explains the message severity levels used by Postgres Pro. If logging output is sent to syslog
or Windows' eventlog, the severity levels are translated as shown in the table.

Table 18.2. Message Severity Levels

Severity Usage syslog eventlog
DEBUG1 .. DEBUG5 Provides successively-more-detailed

information for use by developers.
DEBUG INFORMATION

INFO Provides information implicitly
requested by the user, e.g., output from
VACUUM VERBOSE.

INFO INFORMATION

518

Server Configuration

Severity Usage syslog eventlog
NOTICE Provides information that might

be helpful to users, e.g., notice of
truncation of long identifiers.

NOTICE INFORMATION

WARNING Provides warnings of likely problems,
e.g., COMMIT outside a transaction block.

NOTICE WARNING

ERROR Reports an error that caused the
current command to abort.

WARNING ERROR

LOG Reports information of interest to
administrators, e.g., checkpoint activity.

INFO INFORMATION

FATAL Reports an error that caused the
current session to abort.

ERR ERROR

PANIC Reports an error that caused all
database sessions to abort.

CRIT ERROR

18.8.3. What to Log
application_name (string)

The application_name can be any string of less than NAMEDATALEN characters (64 characters in a
standard build). It is typically set by an application upon connection to the server. The name will be
displayed in the pg_stat_activity view and included in CSV log entries. It can also be included in
regular log entries via the log_line_prefix parameter. Only printable ASCII characters may be used
in the application_name value. Other characters will be replaced with question marks (?).

debug_print_parse (boolean)
debug_print_rewritten (boolean)
debug_print_plan (boolean)

These parameters enable various debugging output to be emitted. When set, they print the resulting
parse tree, the query rewriter output, or the execution plan for each executed query. These messages
are emitted at LOG message level, so by default they will appear in the server log but will not be
sent to the client. You can change that by adjusting client_min_messages and/or log_min_messages.
These parameters are off by default.

debug_pretty_print (boolean)
When set, debug_pretty_print indents the messages produced by debug_print_parse,
debug_print_rewritten, or debug_print_plan. This results in more readable but much longer
output than the “compact” format used when it is off. It is on by default.

log_checkpoints (boolean)
Causes checkpoints and restartpoints to be logged in the server log. Some statistics are included
in the log messages, including the number of buffers written and the time spent writing them. This
parameter can only be set in the postgresql.conf file or on the server command line. The default
is off.

log_connections (boolean)
Causes each attempted connection to the server to be logged, as well as successful completion of
client authentication. Only superusers can change this parameter at session start, and it cannot be
changed at all within a session. The default is off.

Note
Some client programs, like psql, attempt to connect twice while determining if a password is
required, so duplicate “connection received” messages do not necessarily indicate a problem.

519

Server Configuration

log_disconnections (boolean)
Causes session terminations to be logged. The log output provides information similar to
log_connections, plus the duration of the session. Only superusers can change this parameter at
session start, and it cannot be changed at all within a session. The default is off.

log_duration (boolean)

Causes the duration of every completed statement to be logged. The default is off. Only superusers
can change this setting.

For clients using extended query protocol, durations of the Parse, Bind, and Execute steps are logged
independently.

Note
The difference between enabling log_duration and setting log_min_duration_statement to
zero is that exceeding log_min_duration_statement forces the text of the query to be logged,
but this option doesn't. Thus, if log_duration is on and log_min_duration_statement has
a positive value, all durations are logged but the query text is included only for statements
exceeding the threshold. This behavior can be useful for gathering statistics in high-load
installations.

log_error_verbosity (enum)
Controls the amount of detail written in the server log for each message that is logged. Valid values
are TERSE, DEFAULT, and VERBOSE, each adding more fields to displayed messages. TERSE excludes
the logging of DETAIL, HINT, QUERY, and CONTEXT error information. VERBOSE output includes the
SQLSTATE error code (see also Appendix A) and the source code file name, function name, and line
number that generated the error. Only superusers can change this setting.

log_hostname (boolean)
By default, connection log messages only show the IP address of the connecting host. Turning this
parameter on causes logging of the host name as well. Note that depending on your host name
resolution setup this might impose a non-negligible performance penalty. This parameter can only
be set in the postgresql.conf file or on the server command line.

log_line_prefix (string)

This is a printf-style string that is output at the beginning of each log line. % characters begin “escape
sequences” that are replaced with status information as outlined below. Unrecognized escapes are
ignored. Other characters are copied straight to the log line. Some escapes are only recognized by
session processes, and will be treated as empty by background processes such as the main server
process. Status information may be aligned either left or right by specifying a numeric literal after
the % and before the option. A negative value will cause the status information to be padded on the
right with spaces to give it a minimum width, whereas a positive value will pad on the left. Padding
can be useful to aid human readability in log files.

This parameter can only be set in the postgresql.conf file or on the server command line. The
default is '%m [%p] ' which logs a time stamp and the process ID.

Escape Effect Session only
%a Application name yes
%u User name yes
%d Database name yes
%r Remote host name or IP

address, and remote port
yes

520

Server Configuration

Escape Effect Session only
%h Remote host name or IP

address
yes

%b Backend type no
%p Process ID no
%t Time stamp without

milliseconds
no

%m Time stamp with milliseconds no
%n Time stamp with milliseconds (

as a Unix epoch)
no

%i Command tag: type of session's
current command

yes

%e SQLSTATE error code no
%c Session ID: see below no
%l Number of the log line for each

session or process, starting at 1
no

%s Process start time stamp no
%v Virtual transaction ID (

backendID/localXID)
no

%x Transaction ID (0 if none is
assigned)

no

%q Produces no output, but tells
non-session processes to stop at
this point in the string; ignored
by session processes

no

%% Literal % no

The backend type corresponds to the column backend_type in the view pg_stat_activity, but
additional types can appear in the log that don't show in that view.

The %c escape prints a quasi-unique session identifier, consisting of two 4-byte hexadecimal numbers
(without leading zeros) separated by a dot. The numbers are the process start time and the process
ID, so %c can also be used as a space saving way of printing those items. For example, to generate
the session identifier from pg_stat_activity, use this query:

SELECT to_hex(trunc(EXTRACT(EPOCH FROM backend_start))::integer) || '.' ||
 to_hex(pid)
FROM pg_stat_activity;

Tip
If you set a nonempty value for log_line_prefix, you should usually make its last character
be a space, to provide visual separation from the rest of the log line. A punctuation character
can be used too.

Tip
Syslog produces its own time stamp and process ID information, so you probably do not want
to include those escapes if you are logging to syslog.

521

Server Configuration

Tip
The %q escape is useful when including information that is only available in session (backend)
context like user or database name. For example:
log_line_prefix = '%m [%p] %q%u@%d/%a '

log_lock_waits (boolean)
Controls whether a log message is produced when a session waits longer than deadlock_timeout to
acquire a lock. This is useful in determining if lock waits are causing poor performance. The default
is off. Only superusers can change this setting.

log_parameter_max_length (integer)
If greater than zero, each bind parameter value logged with a non-error statement-logging message
is trimmed to this many bytes. Zero disables logging of bind parameters for non-error statement logs.
-1 (the default) allows bind parameters to be logged in full. If this value is specified without units,
it is taken as bytes. Only superusers can change this setting.

This setting only affects log messages printed as a result of log_statement, log_duration, and related
settings. Non-zero values of this setting add some overhead, particularly if parameters are sent in
binary form, since then conversion to text is required.

log_parameter_max_length_on_error (integer)
If greater than zero, each bind parameter value reported in error messages is trimmed to this
many bytes. Zero (the default) disables including bind parameters in error messages. -1 allows bind
parameters to be printed in full. If this value is specified without units, it is taken as bytes.

Non-zero values of this setting add overhead, as PostgreSQL will need to store textual
representations of parameter values in memory at the start of each statement, whether or not an
error eventually occurs. The overhead is greater when bind parameters are sent in binary form than
when they are sent as text, since the former case requires data conversion while the latter only
requires copying the string.

log_statement (enum)
Controls which SQL statements are logged. Valid values are none (off), ddl, mod, and all (all
statements). ddl logs all data definition statements, such as CREATE, ALTER, and DROP statements. mod
logs all ddl statements, plus data-modifying statements such as INSERT, UPDATE, DELETE, TRUNCATE,
and COPY FROM. PREPARE, EXECUTE, and EXPLAIN ANALYZE statements are also logged if their contained
command is of an appropriate type. For clients using extended query protocol, logging occurs when
an Execute message is received, and values of the Bind parameters are included (with any embedded
single-quote marks doubled).

The default is none. Only superusers can change this setting.

Note
Statements that contain simple syntax errors are not logged even by the log_statement =
all setting, because the log message is emitted only after basic parsing has been done to
determine the statement type. In the case of extended query protocol, this setting likewise does
not log statements that fail before the Execute phase (i.e., during parse analysis or planning).
Set log_min_error_statement to ERROR (or lower) to log such statements.

log_replication_commands (boolean)
Causes each replication command to be logged in the server log. See Section 50.4 for more
information about replication command. The default value is off. Only superusers can change this
setting.

522

Server Configuration

log_temp_files (integer)
Controls logging of temporary file names and sizes. Temporary files can be created for sorts, hashes,
and temporary query results. If enabled by this setting, a log entry is emitted for each temporary
file when it is deleted. A value of zero logs all temporary file information, while positive values log
only files whose size is greater than or equal to the specified amount of data. If this value is specified
without units, it is taken as kilobytes. The default setting is -1, which disables such logging. Only
superusers can change this setting.

log_timezone (string)
Sets the time zone used for timestamps written in the server log. Unlike TimeZone, this value is
cluster-wide, so that all sessions will report timestamps consistently. The built-in default is GMT, but
that is typically overridden in postgresql.conf; initdb will install a setting there corresponding to
its system environment. See Section 8.5.3 for more information. This parameter can only be set in
the postgresql.conf file or on the server command line.

18.8.4. Using CSV-Format Log Output
Including csvlog in the log_destination list provides a convenient way to import log files into a
database table. This option emits log lines in comma-separated-values (CSV) format, with these columns:
time stamp with milliseconds, user name, database name, process ID, client host:port number, session
ID, per-session line number, command tag, session start time, virtual transaction ID, regular transaction
ID, error severity, SQLSTATE code, error message, error message detail, hint, internal query that led
to the error (if any), character count of the error position therein, error context, user query that led
to the error (if any and enabled by log_min_error_statement), character count of the error position
therein, location of the error in the Postgres Pro source code (if log_error_verbosity is set to verbose),
application name, and backend type. Here is a sample table definition for storing CSV-format log output:
CREATE TABLE postgres_log
(
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,
 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text,
 PRIMARY KEY (session_id, session_line_num)
);

To import a log file into this table, use the COPY FROM command:
COPY postgres_log FROM '/full/path/to/logfile.csv' WITH csv;

523

Server Configuration

It is also possible to access the file as a foreign table, using the supplied file_fdw module.

There are a few things you need to do to simplify importing CSV log files:
1. Set log_filename and log_rotation_age to provide a consistent, predictable naming scheme for

your log files. This lets you predict what the file name will be and know when an individual log file
is complete and therefore ready to be imported.

2. Set log_rotation_size to 0 to disable size-based log rotation, as it makes the log file name difficult
to predict.

3. Set log_truncate_on_rotation to on so that old log data isn't mixed with the new in the same file.
4. The table definition above includes a primary key specification. This is useful to protect against

accidentally importing the same information twice. The COPY command commits all of the data it
imports at one time, so any error will cause the entire import to fail. If you import a partial log file
and later import the file again when it is complete, the primary key violation will cause the import
to fail. Wait until the log is complete and closed before importing. This procedure will also protect
against accidentally importing a partial line that hasn't been completely written, which would also
cause COPY to fail.

18.8.5. Process Title
These settings control how process titles of server processes are modified. Process titles are typically
viewed using programs like ps or, on Windows, Process Explorer. See Section 26.1 for details.

cluster_name (string)
Sets a name that identifies this database cluster (instance) for various purposes. The cluster name
appears in the process title for all server processes in this cluster. Moreover, it is the default
application name for a standby connection (see synchronous_standby_names.)

The name can be any string of less than NAMEDATALEN characters (64 characters in a standard build).
Only printable ASCII characters may be used in the cluster_name value. Other characters will be
replaced with question marks (?). No name is shown if this parameter is set to the empty string ''
(which is the default). This parameter can only be set at server start.

update_process_title (boolean)
Enables updating of the process title every time a new SQL command is received by the server. This
setting defaults to on on most platforms, but it defaults to off on Windows due to that platform's
larger overhead for updating the process title. Only superusers can change this setting.

18.9. Run-time Statistics
18.9.1. Query and Index Statistics Collector

These parameters control server-wide statistics collection features. When statistics collection is enabled,
the data that is produced can be accessed via the pg_stat and pg_statio family of system views. Refer
to Chapter 26 for more information.

track_activities (boolean)
Enables the collection of information on the currently executing command of each session, along
with the time when that command began execution. This parameter is on by default. Note that even
when enabled, this information is not visible to all users, only to superusers and the user owning the
session being reported on, so it should not represent a security risk. Only superusers can change
this setting.

track_activity_query_size (integer)
Specifies the amount of memory reserved to store the text of the currently executing command for
each active session, for the pg_stat_activity.query field. If this value is specified without units, it
is taken as bytes. The default value is 1024 bytes. This parameter can only be set at server start.

524

Server Configuration

track_counts (boolean)

Enables collection of statistics on database activity. This parameter is on by default, because the
autovacuum daemon needs the collected information. Only superusers can change this setting.

track_io_timing (boolean)

Enables timing of database I/O calls. This parameter is off by default, because it will repeatedly query
the operating system for the current time, which may cause significant overhead on some platforms.
You can use the pg_test_timing tool to measure the overhead of timing on your system. I/O timing
information is displayed in pg_stat_database, in the output of EXPLAIN when the BUFFERS option
is used, and by pg_stat_statements. Only superusers can change this setting.

track_functions (enum)

Enables tracking of function call counts and time used. Specify pl to track only procedural-language
functions, all to also track SQL and C language functions. The default is none, which disables
function statistics tracking. Only superusers can change this setting.

Note
SQL-language functions that are simple enough to be “inlined” into the calling query will not
be tracked, regardless of this setting.

stats_temp_directory (string)

Sets the directory to store temporary statistics data in. This can be a path relative to the data
directory or an absolute path. The default is pg_stat_tmp. Pointing this at a RAM-based file system
will decrease physical I/O requirements and can lead to improved performance. This parameter can
only be set in the postgresql.conf file or on the server command line.

18.9.2. Statistics Monitoring
log_statement_stats (boolean)
log_parser_stats (boolean)
log_planner_stats (boolean)
log_executor_stats (boolean)

For each query, output performance statistics of the respective module to the server log. This
is a crude profiling instrument, similar to the Unix getrusage() operating system facility.
log_statement_stats reports total statement statistics, while the others report per-module
statistics. log_statement_stats cannot be enabled together with any of the per-module options. All
of these options are disabled by default. Only superusers can change these settings.

18.10. Automatic Vacuuming
These settings control the behavior of the autovacuum feature. Refer to Section 23.1.6 for more
information. Note that many of these settings can be overridden on a per-table basis; see Storage
Parameters.

autovacuum (boolean)

Controls whether the server should run the autovacuum launcher daemon. This is on by default;
however, track_counts must also be enabled for autovacuum to work. This parameter can only be set
in the postgresql.conf file or on the server command line; however, autovacuuming can be disabled
for individual tables by changing table storage parameters.

Note that even when this parameter is disabled, the system will launch autovacuum processes if
necessary to prevent transaction ID wraparound. See Section 23.1.5 for more information.

525

Server Configuration

log_autovacuum_min_duration (integer)
Causes each action executed by autovacuum to be logged if it ran for at least the specified amount of
time. Setting this to zero logs all autovacuum actions. -1 (the default) disables logging autovacuum
actions. If this value is specified without units, it is taken as milliseconds. For example, if you set
this to 250ms then all automatic vacuums and analyzes that run 250ms or longer will be logged.
In addition, when this parameter is set to any value other than -1, a message will be logged if an
autovacuum action is skipped due to a conflicting lock or a concurrently dropped relation. Enabling
this parameter can be helpful in tracking autovacuum activity. This parameter can only be set in the
postgresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

autovacuum_max_workers (integer)
Specifies the maximum number of autovacuum processes (other than the autovacuum launcher) that
may be running at any one time. The default is three. This parameter can only be set at server start.

autovacuum_naptime (integer)
Specifies the minimum delay between autovacuum runs on any given database. In each round the
daemon examines the database and issues VACUUM and ANALYZE commands as needed for tables in
that database. If this value is specified without units, it is taken as seconds. The default is one minute
(1min). This parameter can only be set in the postgresql.conf file or on the server command line.

autovacuum_vacuum_threshold (integer)
Specifies the minimum number of updated or deleted tuples needed to trigger a VACUUM in any one
table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file or on
the server command line; but the setting can be overridden for individual tables by changing table
storage parameters.

autovacuum_vacuum_insert_threshold (integer)
Specifies the number of inserted tuples needed to trigger a VACUUM in any one table. The default is
1000 tuples. If -1 is specified, autovacuum will not trigger a VACUUM operation on any tables based on
the number of inserts. This parameter can only be set in the postgresql.conf file or on the server
command line; but the setting can be overridden for individual tables by changing table storage
parameters.

autovacuum_analyze_threshold (integer)
Specifies the minimum number of inserted, updated or deleted tuples needed to trigger an ANALYZE
in any one table. The default is 50 tuples. This parameter can only be set in the postgresql.conf file
or on the server command line; but the setting can be overridden for individual tables by changing
table storage parameters.

autovacuum_vacuum_scale_factor (floating point)
Specifies a fraction of the table size to add to autovacuum_vacuum_threshold when deciding whether
to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be set in the
postgresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

autovacuum_vacuum_insert_scale_factor (floating point)
Specifies a fraction of the table size to add to autovacuum_vacuum_insert_threshold when deciding
whether to trigger a VACUUM. The default is 0.2 (20% of table size). This parameter can only be set
in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

autovacuum_analyze_scale_factor (floating point)
Specifies a fraction of the table size to add to autovacuum_analyze_threshold when deciding
whether to trigger an ANALYZE. The default is 0.1 (10% of table size). This parameter can only be set

526

Server Configuration

in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

autovacuum_freeze_max_age (integer)
Specifies the maximum age (in transactions) that a table's pg_class.relfrozenxid field can attain
before a VACUUM operation is forced to prevent transaction ID wraparound within the table. Note
that the system will launch autovacuum processes to prevent wraparound even when autovacuum
is otherwise disabled.

Vacuum also allows removal of old files from the pg_xact subdirectory, which is why the default is a
relatively low 200 million transactions. This parameter can only be set at server start, but the setting
can be reduced for individual tables by changing table storage parameters. For more information
see Section 23.1.5.

autovacuum_multixact_freeze_max_age (integer)
Specifies the maximum age (in multixacts) that a table's pg_class.relminmxid field can attain
before a VACUUM operation is forced to prevent multixact ID wraparound within the table. Note that
the system will launch autovacuum processes to prevent wraparound even when autovacuum is
otherwise disabled.

Vacuuming multixacts also allows removal of old files from the pg_multixact/members and
pg_multixact/offsets subdirectories, which is why the default is a relatively low 400 million
multixacts. This parameter can only be set at server start, but the setting can be reduced for
individual tables by changing table storage parameters. For more information see Section 23.1.5.1.

autovacuum_vacuum_cost_delay (floating point)
Specifies the cost delay value that will be used in automatic VACUUM operations. If -1 is specified,
the regular vacuum_cost_delay value will be used. If this value is specified without units, it is
taken as milliseconds. The default value is 2 milliseconds. This parameter can only be set in the
postgresql.conf file or on the server command line; but the setting can be overridden for individual
tables by changing table storage parameters.

autovacuum_vacuum_cost_limit (integer)
Specifies the cost limit value that will be used in automatic VACUUM operations. If -1 is specified (which
is the default), the regular vacuum_cost_limit value will be used. Note that the value is distributed
proportionally among the running autovacuum workers, if there is more than one, so that the sum
of the limits for each worker does not exceed the value of this variable. This parameter can only be
set in the postgresql.conf file or on the server command line; but the setting can be overridden for
individual tables by changing table storage parameters.

18.11. Client Connection Defaults
18.11.1. Statement Behavior

client_min_messages (enum)
Controls which message levels are sent to the client. Valid values are DEBUG5, DEBUG4, DEBUG3, DEBUG2,
DEBUG1, LOG, NOTICE, WARNING, and ERROR. Each level includes all the levels that follow it. The later
the level, the fewer messages are sent. The default is NOTICE. Note that LOG has a different rank here
than in log_min_messages.

INFO level messages are always sent to the client.

search_path (string)
This variable specifies the order in which schemas are searched when an object (table, data type,
function, etc.) is referenced by a simple name with no schema specified. When there are objects of
identical names in different schemas, the one found first in the search path is used. An object that

527

Server Configuration

is not in any of the schemas in the search path can only be referenced by specifying its containing
schema with a qualified (dotted) name.

The value for search_path must be a comma-separated list of schema names. Any name that is not
an existing schema, or is a schema for which the user does not have USAGE permission, is silently
ignored.

If one of the list items is the special name $user, then the schema having the name returned by
CURRENT_USER is substituted, if there is such a schema and the user has USAGE permission for it. (If
not, $user is ignored.)

The system catalog schema, pg_catalog, is always searched, whether it is mentioned in the path or
not. If it is mentioned in the path then it will be searched in the specified order. If pg_catalog is not
in the path then it will be searched before searching any of the path items.

Likewise, the current session's temporary-table schema, pg_temp_nnn, is always searched if it exists.
It can be explicitly listed in the path by using the alias pg_temp. If it is not listed in the path then
it is searched first (even before pg_catalog). However, the temporary schema is only searched for
relation (table, view, sequence, etc) and data type names. It is never searched for function or operator
names.

When objects are created without specifying a particular target schema, they will be placed in the
first valid schema named in search_path. An error is reported if the search path is empty.

The default value for this parameter is "$user", public. This setting supports shared use of a
database (where no users have private schemas, and all share use of public), private per-user
schemas, and combinations of these. Other effects can be obtained by altering the default search
path setting, either globally or per-user.

For more information on schema handling, see Section 5.9. In particular, the default configuration is
suitable only when the database has a single user or a few mutually-trusting users.

The current effective value of the search path can be examined via the SQL function current_schemas
(see Section 9.26). This is not quite the same as examining the value of search_path, since
current_schemas shows how the items appearing in search_path were resolved.

row_security (boolean)
This variable controls whether to raise an error in lieu of applying a row security policy. When set to
on, policies apply normally. When set to off, queries fail which would otherwise apply at least one
policy. The default is on. Change to off where limited row visibility could cause incorrect results; for
example, pg_dump makes that change by default. This variable has no effect on roles which bypass
every row security policy, to wit, superusers and roles with the BYPASSRLS attribute.

For more information on row security policies, see CREATE POLICY.

default_table_access_method (string)
This parameter specifies the default table access method to use when creating tables or materialized
views if the CREATE command does not explicitly specify an access method, or when SELECT ... INTO
is used, which does not allow specifying a table access method. The default is heap.

default_tablespace (string)
This variable specifies the default tablespace in which to create objects (tables and indexes) when a
CREATE command does not explicitly specify a tablespace.

The value is either the name of a tablespace, or an empty string to specify using the default tablespace
of the current database. If the value does not match the name of any existing tablespace, Postgres
Pro will automatically use the default tablespace of the current database. If a nondefault tablespace
is specified, the user must have CREATE privilege for it, or creation attempts will fail.

528

Server Configuration

This variable is not used for temporary tables; for them, temp_tablespaces is consulted instead.

This variable is also not used when creating databases. By default, a new database inherits its
tablespace setting from the template database it is copied from.

If this parameter is set to a value other than the empty string when a partitioned table is created, the
partitioned table's tablespace will be set to that value, which will be used as the default tablespace
for partitions created in the future, even if default_tablespace has changed since then.

For more information on tablespaces, see Section 21.6.

temp_tablespaces (string)

This variable specifies tablespaces in which to create temporary objects (temp tables and indexes on
temp tables) when a CREATE command does not explicitly specify a tablespace. Temporary files for
purposes such as sorting large data sets are also created in these tablespaces.

The value is a list of names of tablespaces. When there is more than one name in the list, Postgres
Pro chooses a random member of the list each time a temporary object is to be created; except that
within a transaction, successively created temporary objects are placed in successive tablespaces
from the list. If the selected element of the list is an empty string, Postgres Pro will automatically
use the default tablespace of the current database instead.

When temp_tablespaces is set interactively, specifying a nonexistent tablespace is an error, as is
specifying a tablespace for which the user does not have CREATE privilege. However, when using a
previously set value, nonexistent tablespaces are ignored, as are tablespaces for which the user lacks
CREATE privilege. In particular, this rule applies when using a value set in postgresql.conf.

The default value is an empty string, which results in all temporary objects being created in the
default tablespace of the current database.

See also default_tablespace.

check_function_bodies (boolean)

This parameter is normally on. When set to off, it disables validation of the function body string
during CREATE FUNCTION. Disabling validation avoids side effects of the validation process and
avoids false positives due to problems such as forward references. Set this parameter to off before
loading functions on behalf of other users; pg_dump does so automatically.

default_transaction_isolation (enum)

Each SQL transaction has an isolation level, which can be either “read uncommitted”, “read
committed”, “repeatable read”, or “serializable”. This parameter controls the default isolation level
of each new transaction. The default is “read committed”.

Consult Chapter 13 and SET TRANSACTION for more information.

default_transaction_read_only (boolean)

A read-only SQL transaction cannot alter non-temporary tables. This parameter controls the default
read-only status of each new transaction. The default is off (read/write).

Consult SET TRANSACTION for more information.

default_transaction_deferrable (boolean)

When running at the serializable isolation level, a deferrable read-only SQL transaction may be
delayed before it is allowed to proceed. However, once it begins executing it does not incur any of
the overhead required to ensure serializability; so serialization code will have no reason to force
it to abort because of concurrent updates, making this option suitable for long-running read-only
transactions.

529

Server Configuration

This parameter controls the default deferrable status of each new transaction. It currently has no
effect on read-write transactions or those operating at isolation levels lower than serializable. The
default is off.

Consult SET TRANSACTION for more information.

transaction_isolation (enum)
This parameter reflects the current transaction's isolation level. At the beginning of each transaction,
it is set to the current value of default_transaction_isolation. Any subsequent attempt to change it is
equivalent to a SET TRANSACTION command.

transaction_read_only (boolean)
This parameter reflects the current transaction's read-only status. At the beginning of each
transaction, it is set to the current value of default_transaction_read_only. Any subsequent attempt
to change it is equivalent to a SET TRANSACTION command.

transaction_deferrable (boolean)
This parameter reflects the current transaction's deferrability status. At the beginning of each
transaction, it is set to the current value of default_transaction_deferrable. Any subsequent attempt
to change it is equivalent to a SET TRANSACTION command.

session_replication_role (enum)
Controls firing of replication-related triggers and rules for the current session. Setting this variable
requires superuser privilege and results in discarding any previously cached query plans. Possible
values are origin (the default), replica and local.

The intended use of this setting is that logical replication systems set it to replica when they are
applying replicated changes. The effect of that will be that triggers and rules (that have not been
altered from their default configuration) will not fire on the replica. See the ALTER TABLE clauses
ENABLE TRIGGER and ENABLE RULE for more information.

Postgres Pro treats the settings origin and local the same internally. Third-party replication
systems may use these two values for their internal purposes, for example using local to designate
a session whose changes should not be replicated.

Since foreign keys are implemented as triggers, setting this parameter to replica also disables all
foreign key checks, which can leave data in an inconsistent state if improperly used.

statement_timeout (integer)
Abort any statement that takes more than the specified amount of time. If log_min_error_statement
is set to ERROR or lower, the statement that timed out will also be logged. If this value is specified
without units, it is taken as milliseconds. A value of zero (the default) disables the timeout.

The timeout is measured from the time a command arrives at the server until it is completed by the
server. If multiple SQL statements appear in a single simple-Query message, the timeout is applied to
each statement separately. (PostgreSQL versions before 13 usually treated the timeout as applying
to the whole query string.) In extended query protocol, the timeout starts running when any query-
related message (Parse, Bind, Execute, Describe) arrives, and it is canceled by completion of an
Execute or Sync message.

Setting statement_timeout in postgresql.conf is not recommended because it would affect all
sessions.

lock_timeout (integer)
Abort any statement that waits longer than the specified amount of time while attempting to acquire
a lock on a table, index, row, or other database object. The time limit applies separately to each
lock acquisition attempt. The limit applies both to explicit locking requests (such as LOCK TABLE, or

530

Server Configuration

SELECT FOR UPDATE without NOWAIT) and to implicitly-acquired locks. If this value is specified without
units, it is taken as milliseconds. A value of zero (the default) disables the timeout.

Unlike statement_timeout, this timeout can only occur while waiting for locks. Note that if
statement_timeout is nonzero, it is rather pointless to set lock_timeout to the same or larger value,
since the statement timeout would always trigger first. If log_min_error_statement is set to ERROR
or lower, the statement that timed out will be logged.

Setting lock_timeout in postgresql.conf is not recommended because it would affect all sessions.

idle_in_transaction_session_timeout (integer)
Terminate any session with an open transaction that has been idle for longer than the specified
amount of time. This allows any locks held by that session to be released and the connection slot
to be reused; it also allows tuples visible only to this transaction to be vacuumed. See Section 23.1
for more details about this.

If this value is specified without units, it is taken as milliseconds. A value of zero (the default) disables
the timeout.

vacuum_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relfrozenxid field has reached the age
specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits every
page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples. The
default is 150 million transactions. Although users can set this value anywhere from zero to two
billion, VACUUM will silently limit the effective value to 95% of autovacuum_freeze_max_age, so that
a periodic manual VACUUM has a chance to run before an anti-wraparound autovacuum is launched
for the table. For more information see Section 23.1.5.

vacuum_freeze_min_age (integer)

Specifies the cutoff age (in transactions) that VACUUM should use to decide whether to freeze row
versions while scanning a table. The default is 50 million transactions. Although users can set this
value anywhere from zero to one billion, VACUUM will silently limit the effective value to half the value
of autovacuum_freeze_max_age, so that there is not an unreasonably short time between forced
autovacuums. For more information see Section 23.1.5.

vacuum_multixact_freeze_table_age (integer)

VACUUM performs an aggressive scan if the table's pg_class.relminmxid field has reached the age
specified by this setting. An aggressive scan differs from a regular VACUUM in that it visits every
page that might contain unfrozen XIDs or MXIDs, not just those that might contain dead tuples. The
default is 150 million multixacts. Although users can set this value anywhere from zero to two billion,
VACUUM will silently limit the effective value to 95% of autovacuum_multixact_freeze_max_age, so that
a periodic manual VACUUM has a chance to run before an anti-wraparound is launched for the table.
For more information see Section 23.1.5.1.

vacuum_multixact_freeze_min_age (integer)

Specifies the cutoff age (in multixacts) that VACUUM should use to decide whether to replace multixact
IDs with a newer transaction ID or multixact ID while scanning a table. The default is 5 million
multixacts. Although users can set this value anywhere from zero to one billion, VACUUM will
silently limit the effective value to half the value of autovacuum_multixact_freeze_max_age, so that
there is not an unreasonably short time between forced autovacuums. For more information see
Section 23.1.5.1.

bytea_output (enum)

Sets the output format for values of type bytea. Valid values are hex (the default) and escape (the
traditional Postgres Pro format). See Section 8.4 for more information. The bytea type always accepts
both formats on input, regardless of this setting.

531

Server Configuration

xmlbinary (enum)
Sets how binary values are to be encoded in XML. This applies for example when bytea values are
converted to XML by the functions xmlelement or xmlforest. Possible values are base64 and hex,
which are both defined in the XML Schema standard. The default is base64. For further information
about XML-related functions, see Section 9.15.

The actual choice here is mostly a matter of taste, constrained only by possible restrictions in client
applications. Both methods support all possible values, although the hex encoding will be somewhat
larger than the base64 encoding.

xmloption (enum)
Sets whether DOCUMENT or CONTENT is implicit when converting between XML and character string
values. See Section 8.13 for a description of this. Valid values are DOCUMENT and CONTENT. The default
is CONTENT.

According to the SQL standard, the command to set this option is
SET XML OPTION { DOCUMENT | CONTENT };

This syntax is also available in Postgres Pro.

gin_pending_list_limit (integer)
Sets the maximum size of a GIN index's pending list, which is used when fastupdate is enabled.
If the list grows larger than this maximum size, it is cleaned up by moving the entries in it to the
index's main GIN data structure in bulk. If this value is specified without units, it is taken as kilobytes.
The default is four megabytes (4MB). This setting can be overridden for individual GIN indexes by
changing index storage parameters. See Section 62.4.1 and Section 62.5 for more information.

18.11.2. Locale and Formatting
DateStyle (string)

Sets the display format for date and time values, as well as the rules for interpreting ambiguous
date input values. For historical reasons, this variable contains two independent components: the
output format specification (ISO, Postgres, SQL, or German) and the input/output specification for
year/month/day ordering (DMY, MDY, or YMD). These can be set separately or together. The keywords
Euro and European are synonyms for DMY; the keywords US, NonEuro, and NonEuropean are synonyms
for MDY. See Section 8.5 for more information. The built-in default is ISO, MDY, but initdb will initialize
the configuration file with a setting that corresponds to the behavior of the chosen lc_time locale.

IntervalStyle (enum)
Sets the display format for interval values. The value sql_standard will produce output matching
SQL standard interval literals. The value postgres (which is the default) will produce output
matching PostgreSQL releases prior to 8.4 when the DateStyle parameter was set to ISO. The
value postgres_verbose will produce output matching PostgreSQL releases prior to 8.4 when the
DateStyle parameter was set to non-ISO output. The value iso_8601 will produce output matching
the time interval “format with designators” defined in section 4.4.3.2 of ISO 8601.

The IntervalStyle parameter also affects the interpretation of ambiguous interval input. See
Section 8.5.4 for more information.

TimeZone (string)
Sets the time zone for displaying and interpreting time stamps. The built-in default is GMT, but that
is typically overridden in postgresql.conf; initdb will install a setting there corresponding to its
system environment. See Section 8.5.3 for more information.

timezone_abbreviations (string)
Sets the collection of time zone abbreviations that will be accepted by the server for datetime input.
The default is 'Default', which is a collection that works in most of the world; there are also

532

Server Configuration

'Australia' and 'India', and other collections can be defined for a particular installation. See
Section B.4 for more information.

extra_float_digits (integer)
This parameter adjusts the number of digits used for textual output of floating-point values, including
float4, float8, and geometric data types.

If the value is 1 (the default) or above, float values are output in shortest-precise format; see
Section 8.1.3. The actual number of digits generated depends only on the value being output, not
on the value of this parameter. At most 17 digits are required for float8 values, and 9 for float4
values. This format is both fast and precise, preserving the original binary float value exactly when
correctly read. For historical compatibility, values up to 3 are permitted.

If the value is zero or negative, then the output is rounded to a given decimal precision. The precision
used is the standard number of digits for the type (FLT_DIG or DBL_DIG as appropriate) reduced
according to the value of this parameter. (For example, specifying -1 will cause float4 values to be
output rounded to 5 significant digits, and float8 values rounded to 14 digits.) This format is slower
and does not preserve all the bits of the binary float value, but may be more human-readable.

Note
The meaning of this parameter, and its default value, changed in Postgres Pro 12; see
Section 8.1.3 for further discussion.

client_encoding (string)
Sets the client-side encoding (character set). The default is to use the database encoding. The
character sets supported by the Postgres Pro server are described in Section 22.3.1.

lc_messages (string)
Sets the language in which messages are displayed. Acceptable values are system-dependent; see
Section 22.1 for more information. If this variable is set to the empty string (which is the default)
then the value is inherited from the execution environment of the server in a system-dependent way.

On some systems, this locale category does not exist. Setting this variable will still work, but there
will be no effect. Also, there is a chance that no translated messages for the desired language exist.
In that case you will continue to see the English messages.

Only superusers can change this setting, because it affects the messages sent to the server log as
well as to the client, and an improper value might obscure the readability of the server logs.

lc_monetary (string)

Sets the locale to use for formatting monetary amounts, for example with the to_char family of
functions. Acceptable values are system-dependent; see Section 22.1 for more information. If this
variable is set to the empty string (which is the default) then the value is inherited from the execution
environment of the server in a system-dependent way.

lc_numeric (string)

Sets the locale to use for formatting numbers, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 22.1 for more information. If this variable is set
to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

lc_time (string)

Sets the locale to use for formatting dates and times, for example with the to_char family of functions.
Acceptable values are system-dependent; see Section 22.1 for more information. If this variable is set

533

Server Configuration

to the empty string (which is the default) then the value is inherited from the execution environment
of the server in a system-dependent way.

default_text_search_config (string)
Selects the text search configuration that is used by those variants of the text search functions that do
not have an explicit argument specifying the configuration. See Chapter 12 for further information.
The built-in default is pg_catalog.simple, but initdb will initialize the configuration file with a
setting that corresponds to the chosen lc_ctype locale, if a configuration matching that locale can
be identified.

18.11.3. Shared Library Preloading
Several settings are available for preloading shared libraries into the server, in order to load additional
functionality or achieve performance benefits. For example, a setting of '$libdir/mylib' would cause
mylib.so (or on some platforms, mylib.sl) to be preloaded from the installation's standard library
directory. The differences between the settings are when they take effect and what privileges are
required to change them.

Postgres Pro procedural language libraries can be preloaded in this way, typically by using the syntax
'$libdir/plXXX' where XXX is pgsql, perl, tcl, or python.

Only shared libraries specifically intended to be used with Postgres Pro can be loaded this way. Every
Postgres Pro-supported library has a “magic block” that is checked to guarantee compatibility. For this
reason, non-Postgres Pro libraries cannot be loaded in this way. You might be able to use operating-
system facilities such as LD_PRELOAD for that.

In general, refer to the documentation of a specific module for the recommended way to load that module.

local_preload_libraries (string)
This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if
you need to include whitespace or commas in the name. The parameter value only takes effect at
the start of the connection. Subsequent changes have no effect. If a specified library is not found,
the connection attempt will fail.

This option can be set by any user. Because of that, the libraries that can be loaded are restricted
to those appearing in the plugins subdirectory of the installation's standard library directory. (It is
the database administrator's responsibility to ensure that only “safe” libraries are installed there.)
Entries in local_preload_libraries can specify this directory explicitly, for example $libdir/
plugins/mylib, or just specify the library name — mylib would have the same effect as $libdir/
plugins/mylib.

The intent of this feature is to allow unprivileged users to load debugging or performance-
measurement libraries into specific sessions without requiring an explicit LOAD command. To that
end, it would be typical to set this parameter using the PGOPTIONS environment variable on the client
or by using ALTER ROLE SET.

However, unless a module is specifically designed to be used in this way by non-superusers, this is
usually not the right setting to use. Look at session_preload_libraries instead.

session_preload_libraries (string)
This variable specifies one or more shared libraries that are to be preloaded at connection start. It
contains a comma-separated list of library names, where each name is interpreted as for the LOAD
command. Whitespace between entries is ignored; surround a library name with double quotes if
you need to include whitespace or commas in the name. The parameter value only takes effect at the
start of the connection. Subsequent changes have no effect. If a specified library is not found, the
connection attempt will fail. Only superusers can change this setting.

534

Server Configuration

The intent of this feature is to allow debugging or performance-measurement libraries to be loaded
into specific sessions without an explicit LOAD command being given. For example, auto_explain could
be enabled for all sessions under a given user name by setting this parameter with ALTER ROLE SET.
Also, this parameter can be changed without restarting the server (but changes only take effect when
a new session is started), so it is easier to add new modules this way, even if they should apply to
all sessions.

Unlike shared_preload_libraries, there is no large performance advantage to loading a library at
session start rather than when it is first used. There is some advantage, however, when connection
pooling is used.

shared_preload_libraries (string)

This variable specifies one or more shared libraries to be preloaded at server start. It contains a
comma-separated list of library names, where each name is interpreted as for the LOAD command.
Whitespace between entries is ignored; surround a library name with double quotes if you need
to include whitespace or commas in the name. This parameter can only be set at server start. If a
specified library is not found, the server will fail to start.

Some libraries need to perform certain operations that can only take place at postmaster start, such
as allocating shared memory, reserving light-weight locks, or starting background workers. Those
libraries must be loaded at server start through this parameter. See the documentation of each library
for details.

Other libraries can also be preloaded. By preloading a shared library, the library startup time is
avoided when the library is first used. However, the time to start each new server process might
increase slightly, even if that process never uses the library. So this parameter is recommended
only for libraries that will be used in most sessions. Also, changing this parameter requires a
server restart, so this is not the right setting to use for short-term debugging tasks, say. Use
session_preload_libraries for that instead.

Note
On Windows hosts, preloading a library at server start will not reduce the time required to
start each new server process; each server process will re-load all preload libraries. However,
shared_preload_libraries is still useful on Windows hosts for libraries that need to perform
operations at postmaster start time.

jit_provider (string)

This variable is the name of the JIT provider library to be used (see Section 30.4.2). The default is
llvmjit. This parameter can only be set at server start.

If set to a non-existent library, JIT will not be available, but no error will be raised. This allows JIT
support to be installed separately from the main Postgres Pro package.

18.11.4. Other Defaults
dynamic_library_path (string)

If a dynamically loadable module needs to be opened and the file name specified in the CREATE
FUNCTION or LOAD command does not have a directory component (i.e., the name does not contain a
slash), the system will search this path for the required file.

The value for dynamic_library_path must be a list of absolute directory paths separated by colons
(or semi-colons on Windows). If a list element starts with the special string $libdir, the compiled-in
Postgres Pro package library directory is substituted for $libdir; this is where the modules provided
by the standard Postgres Pro distribution are installed. (Use pg_config --pkglibdir to find out the
name of this directory.) For example:

535

Server Configuration

dynamic_library_path = '/usr/local/lib/postgresql:/home/my_project/lib:$libdir'

or, in a Windows environment:

dynamic_library_path = 'C:\tools\postgresql;H:\my_project\lib;$libdir'

The default value for this parameter is '$libdir'. If the value is set to an empty string, the automatic
path search is turned off.

This parameter can be changed at run time by superusers, but a setting done that way will only
persist until the end of the client connection, so this method should be reserved for development
purposes. The recommended way to set this parameter is in the postgresql.conf configuration file.

gin_fuzzy_search_limit (integer)

Soft upper limit of the size of the set returned by GIN index scans. For more information see
Section 62.5.

18.12. Lock Management
deadlock_timeout (integer)

This is the amount of time to wait on a lock before checking to see if there is a deadlock condition.
The check for deadlock is relatively expensive, so the server doesn't run it every time it waits for a
lock. We optimistically assume that deadlocks are not common in production applications and just
wait on the lock for a while before checking for a deadlock. Increasing this value reduces the amount
of time wasted in needless deadlock checks, but slows down reporting of real deadlock errors. If this
value is specified without units, it is taken as milliseconds. The default is one second (1s), which is
probably about the smallest value you would want in practice. On a heavily loaded server you might
want to raise it. Ideally the setting should exceed your typical transaction time, so as to improve the
odds that a lock will be released before the waiter decides to check for deadlock. Only superusers
can change this setting.

When log_lock_waits is set, this parameter also determines the amount of time to wait before a log
message is issued about the lock wait. If you are trying to investigate locking delays you might want
to set a shorter than normal deadlock_timeout.

max_locks_per_transaction (integer)

The shared lock table tracks locks on max_locks_per_transaction * (max_connections +
max_prepared_transactions) objects (e.g., tables); hence, no more than this many distinct objects can
be locked at any one time. This parameter controls the average number of object locks allocated for
each transaction; individual transactions can lock more objects as long as the locks of all transactions
fit in the lock table. This is not the number of rows that can be locked; that value is unlimited. The
default, 64, has historically proven sufficient, but you might need to raise this value if you have
queries that touch many different tables in a single transaction, e.g., query of a parent table with
many children. This parameter can only be set at server start.

When running a standby server, you must set this parameter to the same or higher value than on the
master server. Otherwise, queries will not be allowed in the standby server.

max_pred_locks_per_transaction (integer)

The shared predicate lock table tracks locks on max_pred_locks_per_transaction *
(max_connections + max_prepared_transactions) objects (e.g., tables); hence, no more than this
many distinct objects can be locked at any one time. This parameter controls the average number of
object locks allocated for each transaction; individual transactions can lock more objects as long as
the locks of all transactions fit in the lock table. This is not the number of rows that can be locked;
that value is unlimited. The default, 64, has generally been sufficient in testing, but you might need to
raise this value if you have clients that touch many different tables in a single serializable transaction.
This parameter can only be set at server start.

536

Server Configuration

max_pred_locks_per_relation (integer)
This controls how many pages or tuples of a single relation can be predicate-locked before the lock
is promoted to covering the whole relation. Values greater than or equal to zero mean an absolute
limit, while negative values mean max_pred_locks_per_transaction divided by the absolute value of
this setting. The default is -2, which keeps the behavior from previous versions of Postgres Pro. This
parameter can only be set in the postgresql.conf file or on the server command line.

max_pred_locks_per_page (integer)
This controls how many rows on a single page can be predicate-locked before the lock is promoted
to covering the whole page. The default is 2. This parameter can only be set in the postgresql.conf
file or on the server command line.

18.13. Version and Platform Compatibility
18.13.1. Previous Postgres Pro Versions

array_nulls (boolean)
This controls whether the array input parser recognizes unquoted NULL as specifying a null array
element. By default, this is on, allowing array values containing null values to be entered. However,
PostgreSQL versions before 8.2 did not support null values in arrays, and therefore would treat NULL
as specifying a normal array element with the string value “NULL”. For backward compatibility with
applications that require the old behavior, this variable can be turned off.

Note that it is possible to create array values containing null values even when this variable is off.

backslash_quote (enum)
This controls whether a quote mark can be represented by \' in a string literal. The preferred,
SQL-standard way to represent a quote mark is by doubling it ('') but Postgres Pro has historically
also accepted \'. However, use of \' creates security risks because in some client character set
encodings, there are multibyte characters in which the last byte is numerically equivalent to ASCII
\. If client-side code does escaping incorrectly then a SQL-injection attack is possible. This risk can
be prevented by making the server reject queries in which a quote mark appears to be escaped by a
backslash. The allowed values of backslash_quote are on (allow \' always), off (reject always), and
safe_encoding (allow only if client encoding does not allow ASCII \ within a multibyte character).
safe_encoding is the default setting.

Note that in a standard-conforming string literal, \ just means \ anyway. This parameter only affects
the handling of non-standard-conforming literals, including escape string syntax (E'...').

escape_string_warning (boolean)
When on, a warning is issued if a backslash (\) appears in an ordinary string literal ('...' syntax)
and standard_conforming_strings is off. The default is on.

Applications that wish to use backslash as escape should be modified to use escape string syntax
(E'...'), because the default behavior of ordinary strings is now to treat backslash as an ordinary
character, per SQL standard. This variable can be enabled to help locate code that needs to be
changed.

lo_compat_privileges (boolean)
In PostgreSQL releases prior to 9.0, large objects did not have access privileges and were, therefore,
always readable and writable by all users. Setting this variable to on disables the new privilege
checks, for compatibility with prior releases. The default is off. Only superusers can change this
setting.

Setting this variable does not disable all security checks related to large objects — only those for
which the default behavior has changed in PostgreSQL 9.0.

537

Server Configuration

operator_precedence_warning (boolean)
When on, the parser will emit a warning for any construct that might have changed meanings since
PostgreSQL 9.4 as a result of changes in operator precedence. This is useful for auditing applications
to see if precedence changes have broken anything; but it is not meant to be kept turned on in
production, since it will warn about some perfectly valid, standard-compliant SQL code. The default
is off.

See Section 4.1.6 for more information.

quote_all_identifiers (boolean)
When the database generates SQL, force all identifiers to be quoted, even if they are not
(currently) keywords. This will affect the output of EXPLAIN as well as the results of functions like
pg_get_viewdef. See also the --quote-all-identifiers option of pg_dump and pg_dumpall.

nul_byte_replacement_on_import (string)
Replace NUL bytes '\0' with the specified decimal code of an ASCII character while loading data
using the COPY FROM command. Such a replacement may be required when transferring data from
another DBMS since Postgres Pro does not allow NUL bytes in data. The specified ASCII code must
not coincide with the QUOTE and DELIMITER characters used by COPY FROM as it may cause unexpected
results. The default value is '\0', so no replacement occurs.

standard_conforming_strings (boolean)
This controls whether ordinary string literals ('...') treat backslashes literally, as specified in the
SQL standard. Beginning in PostgreSQL 9.1, the default is on (prior releases defaulted to off).
Applications can check this parameter to determine how string literals will be processed. The
presence of this parameter can also be taken as an indication that the escape string syntax (E'...') is
supported. Escape string syntax (Section 4.1.2.2) should be used if an application desires backslashes
to be treated as escape characters.

synchronize_seqscans (boolean)
This allows sequential scans of large tables to synchronize with each other, so that concurrent scans
read the same block at about the same time and hence share the I/O workload. When this is enabled,
a scan might start in the middle of the table and then “wrap around” the end to cover all rows, so as to
synchronize with the activity of scans already in progress. This can result in unpredictable changes
in the row ordering returned by queries that have no ORDER BY clause. Setting this parameter to
off ensures the pre-8.3 behavior in which a sequential scan always starts from the beginning of the
table. The default is on.

18.13.2. Platform and Client Compatibility
transform_null_equals (boolean)

When on, expressions of the form expr = NULL (or NULL = expr) are treated as expr IS NULL, that
is, they return true if expr evaluates to the null value, and false otherwise. The correct SQL-spec-
compliant behavior of expr = NULL is to always return null (unknown). Therefore this parameter
defaults to off.

However, filtered forms in Microsoft Access generate queries that appear to use expr = NULL to
test for null values, so if you use that interface to access the database you might want to turn this
option on. Since expressions of the form expr = NULL always return the null value (using the SQL
standard interpretation), they are not very useful and do not appear often in normal applications so
this option does little harm in practice. But new users are frequently confused about the semantics
of expressions involving null values, so this option is off by default.

Note that this option only affects the exact form = NULL, not other comparison operators or other
expressions that are computationally equivalent to some expression involving the equals operator
(such as IN). Thus, this option is not a general fix for bad programming.

538

Server Configuration

Refer to Section 9.2 for related information.

18.14. Error Handling
exit_on_error (boolean)

If on, any error will terminate the current session. By default, this is set to off, so that only FATAL
errors will terminate the session.

restart_after_crash (boolean)
When set to on, which is the default, Postgres Pro will automatically reinitialize after a backend crash.
Leaving this value set to on is normally the best way to maximize the availability of the database.
However, in some circumstances, such as when Postgres Pro is being invoked by clusterware, it may
be useful to disable the restart so that the clusterware can gain control and take any actions it deems
appropriate.

This parameter can only be set in the postgresql.conf file or on the server command line.

data_sync_retry (boolean)
When set to off, which is the default, Postgres Pro will raise a PANIC-level error on failure to flush
modified data files to the file system. This causes the database server to crash. This parameter can
only be set at server start.

On some operating systems, the status of data in the kernel's page cache is unknown after a write-
back failure. In some cases it might have been entirely forgotten, making it unsafe to retry; the second
attempt may be reported as successful, when in fact the data has been lost. In these circumstances,
the only way to avoid data loss is to recover from the WAL after any failure is reported, preferably
after investigating the root cause of the failure and replacing any faulty hardware.

If set to on, Postgres Pro will instead report an error but continue to run so that the data flushing
operation can be retried in a later checkpoint. Only set it to on after investigating the operating
system's treatment of buffered data in case of write-back failure.

18.15. Preset Options
The following “parameters” are read-only, and are determined when Postgres Pro is compiled or when
it is installed. As such, they have been excluded from the sample postgresql.conf file. These options
report various aspects of Postgres Pro behavior that might be of interest to certain applications,
particularly administrative front-ends.

block_size (integer)
Reports the size of a disk block. It is determined by the value of BLCKSZ when building the server. The
default value is 8192 bytes. The meaning of some configuration variables (such as shared_buffers)
is influenced by block_size. See Section 18.4 for information.

data_checksums (boolean)
Reports whether data checksums are enabled for this cluster. See data checksums for more
information.

data_directory_mode (integer)
On Unix systems this parameter reports the permissions of the data directory defined by
(data_directory) at startup. (On Microsoft Windows this parameter will always display 0700). See
group access for more information.

debug_assertions (boolean)
Reports whether Postgres Pro has been built with assertions enabled. That is the case if the macro
USE_ASSERT_CHECKING is defined when Postgres Pro is built (accomplished e.g., by the configure
option --enable-cassert). By default Postgres Pro is built without assertions.

539

Server Configuration

integer_datetimes (boolean)
Reports whether Postgres Pro was built with support for 64-bit-integer dates and times. As of
Postgres Pro 10, this is always on.

lc_collate (string)
Reports the locale in which sorting of textual data is done. See Section 22.1 for more information.
This value is determined when a database is created.

lc_collate_canonical (string)
Reports the canonical name of the collation order locale. Unlike lc_collate, lc_collate_canonical
does not contain the modifier of the collation provider.

lc_ctype (string)
Reports the locale that determines character classifications. See Section 22.1 for more information.
This value is determined when a database is created. Ordinarily this will be the same as lc_collate,
but for special applications it might be set differently.

max_function_args (integer)
Reports the maximum number of function arguments. It is determined by the value of FUNC_MAX_ARGS
when building the server. The default value is 100 arguments.

max_identifier_length (integer)
Reports the maximum identifier length. It is determined as one less than the value of NAMEDATALEN
when building the server. The default value of NAMEDATALEN is 64; therefore the default
max_identifier_length is 63 bytes, which can be less than 63 characters when using multibyte
encodings.

max_index_keys (integer)
Reports the maximum number of index keys. It is determined by the value of INDEX_MAX_KEYS when
building the server. The default value is 32 keys.

segment_size (integer)
Reports the number of blocks (pages) that can be stored within a file segment. It is determined by
the value of RELSEG_SIZE when building the server. The maximum size of a segment file in bytes is
equal to segment_size multiplied by block_size; by default this is 1GB.

server_encoding (string)
Reports the database encoding (character set). It is determined when the database is created.
Ordinarily, clients need only be concerned with the value of client_encoding.

server_version (string)
Reports the version number of the server. It is determined by the value of PG_VERSION when building
the server.

server_version_num (integer)
Reports the version number of the server as an integer. It is determined by the value of
PG_VERSION_NUM when building the server.

ssl_library (string)
Reports the name of the SSL library that this Postgres Pro server was built with (even if SSL is not
currently configured or in use on this instance), for example OpenSSL, or an empty string if none.

wal_block_size (integer)
Reports the size of a WAL disk block. It is determined by the value of XLOG_BLCKSZ when building
the server. The default value is 8192 bytes.

540

Server Configuration

wal_segment_size (integer)
Reports the size of write ahead log segments. The default value is 16MB. See Section 28.4 for more
information.

18.16. Customized Options
This feature was designed to allow parameters not normally known to Postgres Pro to be added by
add-on modules (such as procedural languages). This allows extension modules to be configured in the
standard ways.

Custom options have two-part names: an extension name, then a dot, then the parameter name proper,
much like qualified names in SQL. An example is plpgsql.variable_conflict.

Because custom options may need to be set in processes that have not loaded the relevant extension
module, Postgres Pro will accept a setting for any two-part parameter name. Such variables are treated
as placeholders and have no function until the module that defines them is loaded. When an extension
module is loaded, it will add its variable definitions, convert any placeholder values according to those
definitions, and issue warnings for any unrecognized placeholders that begin with its extension name.

18.17. Developer Options
The following parameters are intended for work on the Postgres Pro source code, and in some cases
to assist with recovery of severely damaged databases. There should be no reason to use them on a
production database. As such, they have been excluded from the sample postgresql.conf file. Note
that many of these parameters require special source compilation flags to work at all.

allow_system_table_mods (boolean)
Allows modification of the structure of system tables as well as certain other risky actions on system
tables. This is otherwise not allowed even for superusers. Ill-advised use of this setting can cause
irretrievable data loss or seriously corrupt the database system. Only superusers can change this
setting.

backtrace_functions (string)
This parameter contains a comma-separated list of C function names. If an error is raised and the
name of the internal C function where the error happens matches a value in the list, then a backtrace
is written to the server log together with the error message. This can be used to debug specific areas
of the source code.

Backtrace support is not available on all platforms, and the quality of the backtraces depends on
compilation options.

This parameter can only be set by superusers.

ignore_system_indexes (boolean)
Ignore system indexes when reading system tables (but still update the indexes when modifying the
tables). This is useful when recovering from damaged system indexes. This parameter cannot be
changed after session start.

post_auth_delay (integer)
The amount of time to delay when a new server process is started, after it conducts the authentication
procedure. This is intended to give developers an opportunity to attach to the server process with a
debugger. If this value is specified without units, it is taken as seconds. A value of zero (the default)
disables the delay. This parameter cannot be changed after session start.

pre_auth_delay (integer)
The amount of time to delay just after a new server process is forked, before it conducts the
authentication procedure. This is intended to give developers an opportunity to attach to the server

541

Server Configuration

process with a debugger to trace down misbehavior in authentication. If this value is specified without
units, it is taken as seconds. A value of zero (the default) disables the delay. This parameter can only
be set in the postgresql.conf file or on the server command line.

trace_notify (boolean)
Generates a great amount of debugging output for the LISTEN and NOTIFY commands.
client_min_messages or log_min_messages must be DEBUG1 or lower to send this output to the client
or server logs, respectively.

trace_recovery_messages (enum)
Enables logging of recovery-related debugging output that otherwise would not be logged. This
parameter allows the user to override the normal setting of log_min_messages, but only for specific
messages. This is intended for use in debugging Hot Standby. Valid values are DEBUG5, DEBUG4,
DEBUG3, DEBUG2, DEBUG1, and LOG. The default, LOG, does not affect logging decisions at all. The other
values cause recovery-related debug messages of that priority or higher to be logged as though they
had LOG priority; for common settings of log_min_messages this results in unconditionally sending
them to the server log. This parameter can only be set in the postgresql.conf file or on the server
command line.

trace_sort (boolean)
If on, emit information about resource usage during sort operations. This parameter is only available
if the TRACE_SORT macro was defined when Postgres Pro was compiled. (However, TRACE_SORT is
currently defined by default.)

trace_locks (boolean)
If on, emit information about lock usage. Information dumped includes the type of lock operation,
the type of lock and the unique identifier of the object being locked or unlocked. Also included are bit
masks for the lock types already granted on this object as well as for the lock types awaited on this
object. For each lock type a count of the number of granted locks and waiting locks is also dumped
as well as the totals. An example of the log file output is shown here:
LOG: LockAcquire: new: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: GrantLock: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(2) req(1,0,0,0,0,0,0)=1 grant(1,0,0,0,0,0,0)=1
 wait(0) type(AccessShareLock)
LOG: UnGrantLock: updated: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(AccessShareLock)
LOG: CleanUpLock: deleting: lock(0xb7acd844) id(24688,24696,0,0,0,1)
 grantMask(0) req(0,0,0,0,0,0,0)=0 grant(0,0,0,0,0,0,0)=0
 wait(0) type(INVALID)

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

trace_lwlocks (boolean)
If on, emit information about lightweight lock usage. Lightweight locks are intended primarily to
provide mutual exclusion of access to shared-memory data structures.

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

trace_userlocks (boolean)
If on, emit information about user lock usage. Output is the same as for trace_locks, only for
advisory locks.

542

Server Configuration

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

trace_lock_oidmin (integer)

If set, do not trace locks for tables below this OID (used to avoid output on system tables).

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

trace_lock_table (integer)

Unconditionally trace locks on this table (OID).

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

debug_deadlocks (boolean)

If set, dumps information about all current locks when a deadlock timeout occurs.

This parameter is only available if the LOCK_DEBUG macro was defined when Postgres Pro was
compiled.

log_btree_build_stats (boolean)

If set, logs system resource usage statistics (memory and CPU) on various B-tree operations.

This parameter is only available if the BTREE_BUILD_STATS macro was defined when Postgres Pro
was compiled.

wal_consistency_checking (string)

This parameter is intended to be used to check for bugs in the WAL redo routines. When enabled,
full-page images of any buffers modified in conjunction with the WAL record are added to the record.
If the record is subsequently replayed, the system will first apply each record and then test whether
the buffers modified by the record match the stored images. In certain cases (such as hint bits),
minor variations are acceptable, and will be ignored. Any unexpected differences will result in a fatal
error, terminating recovery.

The default value of this setting is the empty string, which disables the feature. It can be set to
all to check all records, or to a comma-separated list of resource managers to check only records
originating from those resource managers. Currently, the supported resource managers are heap,
heap2, btree, hash, gin, gist, sequence, spgist, brin, and generic. Only superusers can change
this setting.

wal_debug (boolean)

If on, emit WAL-related debugging output. This parameter is only available if the WAL_DEBUG macro
was defined when Postgres Pro was compiled.

ignore_checksum_failure (boolean)

Only has effect if data checksums are enabled.

Detection of a checksum failure during a read normally causes Postgres Pro to report an error,
aborting the current transaction. Setting ignore_checksum_failure to on causes the system to
ignore the failure (but still report a warning), and continue processing. This behavior may cause
crashes, propagate or hide corruption, or other serious problems. However, it may allow you to get
past the error and retrieve undamaged tuples that might still be present in the table if the block
header is still sane. If the header is corrupt an error will be reported even if this option is enabled.
The default setting is off, and it can only be changed by a superuser.

543

Server Configuration

zero_damaged_pages (boolean)

Detection of a damaged page header normally causes Postgres Pro to report an error, aborting
the current transaction. Setting zero_damaged_pages to on causes the system to instead report a
warning, zero out the damaged page in memory, and continue processing. This behavior will destroy
data, namely all the rows on the damaged page. However, it does allow you to get past the error and
retrieve rows from any undamaged pages that might be present in the table. It is useful for recovering
data if corruption has occurred due to a hardware or software error. You should generally not set this
on until you have given up hope of recovering data from the damaged pages of a table. Zeroed-out
pages are not forced to disk so it is recommended to recreate the table or the index before turning
this parameter off again. The default setting is off, and it can only be changed by a superuser.

ignore_invalid_pages (boolean)

If set to off (the default), detection of WAL records having references to invalid pages
during recovery causes PostgreSQL to raise a PANIC-level error, aborting the recovery. Setting
ignore_invalid_pages to on causes the system to ignore invalid page references in WAL records
(but still report a warning), and continue the recovery. This behavior may cause crashes, data loss,
propagate or hide corruption, or other serious problems. However, it may allow you to get past the
PANIC-level error, to finish the recovery, and to cause the server to start up. The parameter can only
be set at server start. It only has effect during recovery or in standby mode.

jit_debugging_support (boolean)

If LLVM has the required functionality, register generated functions with GDB. This makes debugging
easier. The default setting is off. This parameter can only be set at server start.

jit_dump_bitcode (boolean)

Writes the generated LLVM IR out to the file system, inside data_directory. This is only useful for
working on the internals of the JIT implementation. The default setting is off. This parameter can
only be changed by a superuser.

jit_expressions (boolean)

Determines whether expressions are JIT compiled, when JIT compilation is activated (see
Section 30.2). The default is on.

jit_profiling_support (boolean)

If LLVM has the required functionality, emit the data needed to allow perf to profile functions
generated by JIT. This writes out files to $HOME/.debug/jit/; the user is responsible for performing
cleanup when desired. The default setting is off. This parameter can only be set at server start.

jit_tuple_deforming (boolean)

Determines whether tuple deforming is JIT compiled, when JIT compilation is activated (see
Section 30.2). The default is on.

18.18. Short Options
For convenience there are also single letter command-line option switches available for some
parameters. They are described in Table 18.3. Some of these options exist for historical reasons, and
their presence as a single-letter option does not necessarily indicate an endorsement to use the option
heavily.

Table 18.3. Short Option Key

Short Option Equivalent
-B x shared_buffers = x

-d x log_min_messages = DEBUG x

544

Server Configuration

Short Option Equivalent
-e datestyle = euro

-fb, -fh, -fi, -fm, -fn, -fo, -fs,
 -ft

enable_bitmapscan = off , enable_hashjoin = off , enable_
indexscan = off , enable_mergejoin = off , enable_nestloop
= off, enable_indexonlyscan = off , enable_seqscan = off ,
 enable_tidscan = off

-F fsync = off

-h x listen_addresses = x

-i listen_addresses = '*'

-k x unix_socket_directories = x

-l ssl = on

-N x max_connections = x

-O allow_system_table_mods = on

-p x port = x

-P ignore_system_indexes = on

-s log_statement_stats = on

-S x work_mem = x

-tpa, -tpl, -te log_parser_stats = on , log_planner_stats = on , log_
executor_stats = on

-W x post_auth_delay = x

545

Chapter 19. Client Authentication
When a client application connects to the database server, it specifies which Postgres Pro database user
name it wants to connect as, much the same way one logs into a Unix computer as a particular user.
Within the SQL environment the active database user name determines access privileges to database
objects — see Chapter 20 for more information. Therefore, it is essential to restrict which database users
can connect.

Note
As explained in Chapter 20, Postgres Pro actually does privilege management in terms of “roles”.
In this chapter, we consistently use database user to mean “role with the LOGIN privilege”.

Authentication is the process by which the database server establishes the identity of the client, and
by extension determines whether the client application (or the user who runs the client application) is
permitted to connect with the database user name that was requested.

Postgres Pro offers a number of different client authentication methods. The method used to authenticate
a particular client connection can be selected on the basis of (client) host address, database, and user.

Postgres Pro database user names are logically separate from user names of the operating system in
which the server runs. If all the users of a particular server also have accounts on the server's machine,
it makes sense to assign database user names that match their operating system user names. However,
a server that accepts remote connections might have many database users who have no local operating
system account, and in such cases there need be no connection between database user names and OS
user names.

19.1. The pg_hba.conf File
Client authentication is controlled by a configuration file, which traditionally is named pg_hba.conf and
is stored in the database cluster's data directory. (HBA stands for host-based authentication.) A default
pg_hba.conf file is installed when the data directory is initialized by initdb. It is possible to place the
authentication configuration file elsewhere, however; see the hba_file configuration parameter.

The general format of the pg_hba.conf file is a set of records, one per line. Blank lines are ignored, as
is any text after the # comment character. Records cannot be continued across lines. A record is made
up of a number of fields which are separated by spaces and/or tabs. Fields can contain white space if
the field value is double-quoted. Quoting one of the keywords in a database, user, or address field (e.g.,
all or replication) makes the word lose its special meaning, and just match a database, user, or host
with that name.

Each record specifies a connection type, a client IP address range (if relevant for the connection type),
a database name, a user name, and the authentication method to be used for connections matching
these parameters. The first record with a matching connection type, client address, requested database,
and user name is used to perform authentication. There is no “fall-through” or “backup”: if one record
is chosen and the authentication fails, subsequent records are not considered. If no record matches,
access is denied.

A record can have several formats:
local database user auth-method [auth-options]
host database user address auth-method [auth-options]
hostssl database user address auth-method [auth-options]
hostnossl database user address auth-method [auth-options]
hostgssenc database user address auth-method [auth-options]
hostnogssenc database user address auth-method [auth-options]
host database user IP-address IP-mask auth-method [auth-options]
hostssl database user IP-address IP-mask auth-method [auth-options]

546

Client Authentication

hostnossl database user IP-address IP-mask auth-method [auth-options]
hostgssenc database user IP-address IP-mask auth-method [auth-options]
hostnogssenc database user IP-address IP-mask auth-method [auth-options]

The meaning of the fields is as follows:
local

This record matches connection attempts using Unix-domain sockets. Without a record of this type,
Unix-domain socket connections are disallowed.

host

This record matches connection attempts made using TCP/IP. host records match SSL or non-SSL
connection attempts as well as GSSAPI encrypted or non-GSSAPI encrypted connection attempts.

Note
Remote TCP/IP connections will not be possible unless the server is started with an appropriate
value for the listen_addresses configuration parameter, since the default behavior is to listen
for TCP/IP connections only on the local loopback address localhost.

hostssl

This record matches connection attempts made using TCP/IP, but only when the connection is made
with SSL encryption.

To make use of this option the server must be built with SSL support. Furthermore, SSL must
be enabled by setting the ssl configuration parameter (see Section 17.9 for more information).
Otherwise, the hostssl record is ignored except for logging a warning that it cannot match any
connections.

hostnossl

This record type has the opposite behavior of hostssl; it only matches connection attempts made
over TCP/IP that do not use SSL.

hostgssenc

This record matches connection attempts made using TCP/IP, but only when the connection is made
with GSSAPI encryption.

To make use of this option the server must be built with GSSAPI support. Otherwise, the hostgssenc
record is ignored except for logging a warning that it cannot match any connections.

hostnogssenc

This record type has the opposite behavior of hostgssenc; it only matches connection attempts made
over TCP/IP that do not use GSSAPI encryption.

database

Specifies which database name(s) this record matches. The value all specifies that it matches all
databases. The value sameuser specifies that the record matches if the requested database has the
same name as the requested user. The value samerole specifies that the requested user must be a
member of the role with the same name as the requested database. (samegroup is an obsolete but
still accepted spelling of samerole.) Superusers are not considered to be members of a role for the
purposes of samerole unless they are explicitly members of the role, directly or indirectly, and not just
by virtue of being a superuser. The value replication specifies that the record matches if a physical
replication connection is requested (note that replication connections do not specify any particular
database). Otherwise, this is the name of a specific Postgres Pro database. Multiple database names
can be supplied by separating them with commas. A separate file containing database names can be
specified by preceding the file name with @.

547

Client Authentication

user

Specifies which database user name(s) this record matches. The value all specifies that it matches
all users. Otherwise, this is either the name of a specific database user, or a group name preceded by
+. (Recall that there is no real distinction between users and groups in Postgres Pro; a + mark really
means “match any of the roles that are directly or indirectly members of this role”, while a name
without a + mark matches only that specific role.) For this purpose, a superuser is only considered to
be a member of a role if they are explicitly a member of the role, directly or indirectly, and not just by
virtue of being a superuser. Multiple user names can be supplied by separating them with commas.
A separate file containing user names can be specified by preceding the file name with @.

address

Specifies the client machine address(es) that this record matches. This field can contain either a host
name, an IP address range, or one of the special key words mentioned below.

An IP address range is specified using standard numeric notation for the range's starting address,
then a slash (/) and a CIDR mask length. The mask length indicates the number of high-order bits of
the client IP address that must match. Bits to the right of this should be zero in the given IP address.
There must not be any white space between the IP address, the /, and the CIDR mask length.

Typical examples of an IPv4 address range specified this way are 172.20.143.89/32 for a single
host, or 172.20.143.0/24 for a small network, or 10.6.0.0/16 for a larger one. An IPv6 address
range might look like ::1/128 for a single host (in this case the IPv6 loopback address) or
fe80::7a31:c1ff:0000:0000/96 for a small network. 0.0.0.0/0 represents all IPv4 addresses, and
::0/0 represents all IPv6 addresses. To specify a single host, use a mask length of 32 for IPv4 or 128
for IPv6. In a network address, do not omit trailing zeroes.

An entry given in IPv4 format will match only IPv4 connections, and an entry given in IPv6 format
will match only IPv6 connections, even if the represented address is in the IPv4-in-IPv6 range. Note
that entries in IPv6 format will be rejected if the system's C library does not have support for IPv6
addresses.

You can also write all to match any IP address, samehost to match any of the server's own IP
addresses, or samenet to match any address in any subnet that the server is directly connected to.

If a host name is specified (anything that is not an IP address range or a special key word is treated
as a host name), that name is compared with the result of a reverse name resolution of the client's IP
address (e.g., reverse DNS lookup, if DNS is used). Host name comparisons are case insensitive. If
there is a match, then a forward name resolution (e.g., forward DNS lookup) is performed on the host
name to check whether any of the addresses it resolves to are equal to the client's IP address. If both
directions match, then the entry is considered to match. (The host name that is used in pg_hba.conf
should be the one that address-to-name resolution of the client's IP address returns, otherwise the
line won't be matched. Some host name databases allow associating an IP address with multiple host
names, but the operating system will only return one host name when asked to resolve an IP address.)

A host name specification that starts with a dot (.) matches a suffix of the actual host name. So
.example.com would match foo.example.com (but not just example.com).

When host names are specified in pg_hba.conf, you should make sure that name resolution is
reasonably fast. It can be of advantage to set up a local name resolution cache such as nscd. Also, you
may wish to enable the configuration parameter log_hostname to see the client's host name instead
of the IP address in the log.

These fields do not apply to local records.

Note
Users sometimes wonder why host names are handled in this seemingly complicated way, with
two name resolutions including a reverse lookup of the client's IP address. This complicates

548

Client Authentication

use of the feature in case the client's reverse DNS entry is not set up or yields some undesirable
host name. It is done primarily for efficiency: this way, a connection attempt requires at most
two resolver lookups, one reverse and one forward. If there is a resolver problem with some
address, it becomes only that client's problem. A hypothetical alternative implementation that
only did forward lookups would have to resolve every host name mentioned in pg_hba.conf
during every connection attempt. That could be quite slow if many names are listed. And if
there is a resolver problem with one of the host names, it becomes everyone's problem.

Also, a reverse lookup is necessary to implement the suffix matching feature, because the
actual client host name needs to be known in order to match it against the pattern.

Note that this behavior is consistent with other popular implementations of host name-based
access control, such as the Apache HTTP Server and TCP Wrappers.

IP-address
IP-mask

These two fields can be used as an alternative to the IP-address/mask-length notation. Instead
of specifying the mask length, the actual mask is specified in a separate column. For example,
255.0.0.0 represents an IPv4 CIDR mask length of 8, and 255.255.255.255 represents a CIDR mask
length of 32.

These fields do not apply to local records.

auth-method

Specifies the authentication method to use when a connection matches this record. The possible
choices are summarized here; details are in Section 19.3.
trust

Allow the connection unconditionally. This method allows anyone that can connect to the Postgres
Pro database server to login as any Postgres Pro user they wish, without the need for a password
or any other authentication. See Section 19.4 for details.

reject

Reject the connection unconditionally. This is useful for “filtering out” certain hosts from a group,
for example a reject line could block a specific host from connecting, while a later line allows
the remaining hosts in a specific network to connect.

scram-sha-256

Perform SCRAM-SHA-256 authentication to verify the user's password. See Section 19.5 for
details.

md5

Perform SCRAM-SHA-256 or MD5 authentication to verify the user's password. See Section 19.5
for details.

password

Require the client to supply an unencrypted password for authentication. Since the password
is sent in clear text over the network, this should not be used on untrusted networks. See
Section 19.5 for details.

gss

Use GSSAPI to authenticate the user. This is only available for TCP/IP connections. See
Section 19.6 for details. It can be used in conjunction with GSSAPI encryption.

sspi

Use SSPI to authenticate the user. This is only available on Windows. See Section 19.7 for details.

549

Client Authentication

ident

Obtain the operating system user name of the client by contacting the ident server on the client
and check if it matches the requested database user name. Ident authentication can only be used
on TCP/IP connections. When specified for local connections, peer authentication will be used
instead. See Section 19.8 for details.

peer

Obtain the client's operating system user name from the operating system and check if it matches
the requested database user name. This is only available for local connections. See Section 19.9
for details.

ldap

Authenticate using an LDAP server. See Section 19.10 for details.

radius

Authenticate using a RADIUS server. See Section 19.11 for details.

cert

Authenticate using SSL client certificates. See Section 19.12 for details.

pam

Authenticate using the Pluggable Authentication Modules (PAM) service provided by the
operating system. See Section 19.13 for details.

bsd

Authenticate using the BSD Authentication service provided by the operating system. See
Section 19.14 for details.

auth-options

After the auth-method field, there can be field(s) of the form name=value that specify options for the
authentication method. Details about which options are available for which authentication methods
appear below.

In addition to the method-specific options listed below, there is one method-independent
authentication option clientcert, which can be specified in any hostssl record. This option can be
set to verify-ca or verify-full. Both options require the client to present a valid (trusted) SSL
certificate, while verify-full additionally enforces that the cn (Common Name) in the certificate
matches the username or an applicable mapping. This behavior is similar to the cert authentication
method (see Section 19.12) but enables pairing the verification of client certificates with any
authentication method that supports hostssl entries.

Files included by @ constructs are read as lists of names, which can be separated by either whitespace
or commas. Comments are introduced by #, just as in pg_hba.conf, and nested @ constructs are allowed.
Unless the file name following @ is an absolute path, it is taken to be relative to the directory containing
the referencing file.

Since the pg_hba.conf records are examined sequentially for each connection attempt, the order of
the records is significant. Typically, earlier records will have tight connection match parameters and
weaker authentication methods, while later records will have looser match parameters and stronger
authentication methods. For example, one might wish to use trust authentication for local TCP/IP
connections but require a password for remote TCP/IP connections. In this case a record specifying
trust authentication for connections from 127.0.0.1 would appear before a record specifying password
authentication for a wider range of allowed client IP addresses.

The pg_hba.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload,
calling the SQL function pg_reload_conf(), or using kill -HUP) to make it re-read the file.

550

Client Authentication

Note
The preceding statement is not true on Microsoft Windows: there, any changes in the pg_hba.conf
file are immediately applied by subsequent new connections.

The system view pg_hba_file_rules can be helpful for pre-testing changes to the pg_hba.conf file, or
for diagnosing problems if loading of the file did not have the desired effects. Rows in the view with non-
null error fields indicate problems in the corresponding lines of the file.

Tip
To connect to a particular database, a user must not only pass the pg_hba.conf checks, but must
have the CONNECT privilege for the database. If you wish to restrict which users can connect to
which databases, it's usually easier to control this by granting/revoking CONNECT privilege than to
put the rules in pg_hba.conf entries.

Some examples of pg_hba.conf entries are shown in Example 19.1. See the next section for details on
the different authentication methods.

Example 19.1. Example pg_hba.conf Entries

Allow any user on the local system to connect to any database with
any database user name using Unix-domain sockets (the default for local
connections).
#
TYPE DATABASE USER ADDRESS METHOD
local all all trust

The same using local loopback TCP/IP connections.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 127.0.0.1/32 trust

The same as the previous line, but using a separate netmask column
#
TYPE DATABASE USER IP-ADDRESS IP-MASK METHOD
host all all 127.0.0.1 255.255.255.255 trust

The same over IPv6.
#
TYPE DATABASE USER ADDRESS METHOD
host all all ::1/128 trust

The same using a host name (would typically cover both IPv4 and IPv6).
#
TYPE DATABASE USER ADDRESS METHOD
host all all localhost trust

Allow any user from any host with IP address 192.168.93.x to connect
to database "postgres" as the same user name that ident reports for
the connection (typically the operating system user name).
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.93.0/24 ident

Allow any user from host 192.168.12.10 to connect to database

551

Client Authentication

"postgres" if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host postgres all 192.168.12.10/32 scram-sha-256

Allow any user from hosts in the example.com domain to connect to
any database if the user's password is correctly supplied.
#
Require SCRAM authentication for most users, but make an exception
for user 'mike', who uses an older client that doesn't support SCRAM
authentication.
#
TYPE DATABASE USER ADDRESS METHOD
host all mike .example.com md5
host all all .example.com scram-sha-256

In the absence of preceding "host" lines, these three lines will
reject all connections from 192.168.54.1 (since that entry will be
matched first), but allow GSSAPI-encrypted connections from anywhere else
on the Internet. The zero mask causes no bits of the host IP address to
be considered, so it matches any host. Unencrypted GSSAPI connections
(which "fall through" to the third line since "hostgssenc" only matches
encrypted GSSAPI connections) are allowed, but only from 192.168.12.10.
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.54.1/32 reject
hostgssenc all all 0.0.0.0/0 gss
host all all 192.168.12.10/32 gss

Allow users from 192.168.x.x hosts to connect to any database, if
they pass the ident check. If, for example, ident says the user is
"bryanh" and he requests to connect as Postgres Pro user "guest1", the
connection is allowed if there is an entry in pg_ident.conf for map
"omicron" that says "bryanh" is allowed to connect as "guest1".
#
TYPE DATABASE USER ADDRESS METHOD
host all all 192.168.0.0/16 ident map=omicron

If these are the only three lines for local connections, they will
allow local users to connect only to their own databases (databases
with the same name as their database user name) except for administrators
and members of role "support", who can connect to all databases. The file
$PGDATA/admins contains a list of names of administrators. Passwords
are required in all cases.
#
TYPE DATABASE USER ADDRESS METHOD
local sameuser all md5
local all @admins md5
local all +support md5

The last two lines above can be combined into a single line:
local all @admins,+support md5

The database column can also use lists and file names:
local db1,db2,@demodbs all md5

19.2. User Name Maps

552

Client Authentication

When using an external authentication system such as Ident or GSSAPI, the name of the operating
system user that initiated the connection might not be the same as the database user (role) that is to be
used. In this case, a user name map can be applied to map the operating system user name to a database
user. To use user name mapping, specify map=map-name in the options field in pg_hba.conf. This option
is supported for all authentication methods that receive external user names. Since different mappings
might be needed for different connections, the name of the map to be used is specified in the map-name
parameter in pg_hba.conf to indicate which map to use for each individual connection.

User name maps are defined in the ident map file, which by default is named pg_ident.confand is stored
in the cluster's data directory. (It is possible to place the map file elsewhere, however; see the ident_file
configuration parameter.) The ident map file contains lines of the general form:

map-name system-username database-username

Comments and whitespace are handled in the same way as in pg_hba.conf. The map-name is an arbitrary
name that will be used to refer to this mapping in pg_hba.conf. The other two fields specify an operating
system user name and a matching database user name. The same map-name can be used repeatedly to
specify multiple user-mappings within a single map.

There is no restriction regarding how many database users a given operating system user can correspond
to, nor vice versa. Thus, entries in a map should be thought of as meaning “this operating system
user is allowed to connect as this database user”, rather than implying that they are equivalent. The
connection will be allowed if there is any map entry that pairs the user name obtained from the external
authentication system with the database user name that the user has requested to connect as.

If the system-username field starts with a slash (/), the remainder of the field is treated as a regular
expression. (See Section 9.7.3.1 for details of Postgres Pro's regular expression syntax.) The regular
expression can include a single capture, or parenthesized subexpression, which can then be referenced
in the database-username field as \1 (backslash-one). This allows the mapping of multiple user names
in a single line, which is particularly useful for simple syntax substitutions. For example, these entries

mymap /^(.*)@mydomain\.com$ \1
mymap /^(.*)@otherdomain\.com$ guest

will remove the domain part for users with system user names that end with @mydomain.com, and allow
any user whose system name ends with @otherdomain.com to log in as guest.

Tip
Keep in mind that by default, a regular expression can match just part of a string. It's usually
wise to use ^ and $, as shown in the above example, to force the match to be to the entire system
user name.

The pg_ident.conf file is read on start-up and when the main server process receives a SIGHUP signal.
If you edit the file on an active system, you will need to signal the postmaster (using pg_ctl reload,
calling the SQL function pg_reload_conf(), or using kill -HUP) to make it re-read the file.

A pg_ident.conf file that could be used in conjunction with the pg_hba.conf file in Example 19.1 is
shown in Example 19.2. In this example, anyone logged in to a machine on the 192.168 network that
does not have the operating system user name bryanh, ann, or robert would not be granted access.
Unix user robert would only be allowed access when he tries to connect as Postgres Pro user bob, not
as robert or anyone else. ann would only be allowed to connect as ann. User bryanh would be allowed
to connect as either bryanh or as guest1.

Example 19.2. An Example pg_ident.conf File

MAPNAME SYSTEM-USERNAME PG-USERNAME

omicron bryanh bryanh

553

Client Authentication

omicron ann ann
bob has user name robert on these machines
omicron robert bob
bryanh can also connect as guest1
omicron bryanh guest1

19.3. Authentication Methods
Postgres Pro provides various methods for authenticating users:

• Trust authentication, which simply trusts that users are who they say they are.

• Password authentication, which requires that users send a password.

• GSSAPI authentication, which relies on a GSSAPI-compatible security library. Typically this is used
to access an authentication server such as a Kerberos or Microsoft Active Directory server.

• SSPI authentication, which uses a Windows-specific protocol similar to GSSAPI.

• Ident authentication, which relies on an “Identification Protocol” (RFC 1413) service on the client's
machine. (On local Unix-socket connections, this is treated as peer authentication.)

• Peer authentication, which relies on operating system facilities to identify the process at the other
end of a local connection. This is not supported for remote connections.

• LDAP authentication, which relies on an LDAP authentication server.

• RADIUS authentication, which relies on a RADIUS authentication server.

• Certificate authentication, which requires an SSL connection and authenticates users by checking
the SSL certificate they send.

• PAM authentication, which relies on a PAM (Pluggable Authentication Modules) library.

• BSD authentication, which relies on the BSD Authentication framework (currently available only on
OpenBSD).

Peer authentication is usually recommendable for local connections, though trust authentication
might be sufficient in some circumstances. Password authentication is the easiest choice for remote
connections. All the other options require some kind of external security infrastructure (usually an
authentication server or a certificate authority for issuing SSL certificates), or are platform-specific.

The following sections describe each of these authentication methods in more detail.

19.4. Trust Authentication
When trust authentication is specified, Postgres Pro assumes that anyone who can connect to the server
is authorized to access the database with whatever database user name they specify (even superuser
names). Of course, restrictions made in the database and user columns still apply. This method should
only be used when there is adequate operating-system-level protection on connections to the server.

trust authentication is appropriate and very convenient for local connections on a single-user
workstation. It is usually not appropriate by itself on a multiuser machine. However, you might be
able to use trust even on a multiuser machine, if you restrict access to the server's Unix-domain
socket file using file-system permissions. To do this, set the unix_socket_permissions (and possibly
unix_socket_group) configuration parameters as described in Section 18.3. Or you could set the
unix_socket_directories configuration parameter to place the socket file in a suitably restricted
directory.

Setting file-system permissions only helps for Unix-socket connections. Local TCP/IP connections are
not restricted by file-system permissions. Therefore, if you want to use file-system permissions for local
security, remove the host ... 127.0.0.1 ... line from pg_hba.conf, or change it to a non-trust
authentication method.

554

Client Authentication

trust authentication is only suitable for TCP/IP connections if you trust every user on every machine that
is allowed to connect to the server by the pg_hba.conf lines that specify trust. It is seldom reasonable
to use trust for any TCP/IP connections other than those from localhost (127.0.0.1).

19.5. Password Authentication
There are several password-based authentication methods. These methods operate similarly but differ
in how the users' passwords are stored on the server and how the password provided by a client is sent
across the connection.

scram-sha-256

The method scram-sha-256 performs SCRAM-SHA-256 authentication, as described in RFC 7677.
It is a challenge-response scheme that prevents password sniffing on untrusted connections and
supports storing passwords on the server in a cryptographically hashed form that is thought to be
secure.

This is the most secure of the currently provided methods, but it is not supported by older client
libraries.

md5

The method md5 uses a custom less secure challenge-response mechanism. It prevents password
sniffing and avoids storing passwords on the server in plain text but provides no protection if an
attacker manages to steal the password hash from the server. Also, the MD5 hash algorithm is
nowadays no longer considered secure against determined attacks.

The md5 method cannot be used with the db_user_namespace feature.

To ease transition from the md5 method to the newer SCRAM method, if md5 is specified as a method
in pg_hba.conf but the user's password on the server is encrypted for SCRAM (see below), then
SCRAM-based authentication will automatically be chosen instead.

password

The method password sends the password in clear-text and is therefore vulnerable to password
“sniffing” attacks. It should always be avoided if possible. If the connection is protected by SSL
encryption then password can be used safely, though. (Though SSL certificate authentication might
be a better choice if one is depending on using SSL).

Postgres Pro database passwords are separate from operating system user passwords. The password for
each database user is stored in the pg_authid system catalog. Passwords can be managed with the SQL
commands CREATE ROLE and ALTER ROLE, e.g., CREATE ROLE foo WITH LOGIN PASSWORD 'secret',
or the psql command \password. If no password has been set up for a user, the stored password is null
and password authentication will always fail for that user.

The availability of the different password-based authentication methods depends on how a user's
password on the server is encrypted (or hashed, more accurately). This is controlled by the configuration
parameter password_encryption at the time the password is set. If a password was encrypted using
the scram-sha-256 setting, then it can be used for the authentication methods scram-sha-256 and
password (but password transmission will be in plain text in the latter case). The authentication method
specification md5 will automatically switch to using the scram-sha-256 method in this case, as explained
above, so it will also work. If a password was encrypted using the md5 setting, then it can be used only
for the md5 and password authentication method specifications (again, with the password transmitted
in plain text in the latter case). (Previous Postgres Pro releases supported storing the password on the
server in plain text. This is no longer possible.) To check the currently stored password hashes, see the
system catalog pg_authid.

To upgrade an existing installation from md5 to scram-sha-256, after having ensured that all client
libraries in use are new enough to support SCRAM, set password_encryption = 'scram-sha-256'

555

https://tools.ietf.org/html/rfc7677

Client Authentication

in postgresql.conf, make all users set new passwords, and change the authentication method
specifications in pg_hba.conf to scram-sha-256.

19.6. GSSAPI Authentication
GSSAPI is an industry-standard protocol for secure authentication defined in RFC 2743. Postgres Pro
supports GSSAPI for authentication, communications encryption, or both. GSSAPI provides automatic
authentication (single sign-on) for systems that support it. The authentication itself is secure. If GSSAPI
encryption or SSL encryption is used, the data sent along the database connection will be encrypted;
otherwise, it will not.

GSSAPI support has to be enabled when Postgres Pro Standard is built.

When GSSAPI uses Kerberos, it uses a standard service principal (authentication identity) name in
the format servicename/hostname@realm. The principal name used by a particular installation is not
encoded in the Postgres Pro server in any way; rather it is specified in the keytab file that the server
reads to determine its identity. If multiple principals are listed in the keytab file, the server will accept
any one of them. The server's realm name is the preferred realm specified in the Kerberos configuration
file(s) accessible to the server.

When connecting, the client must know the principal name of the server it intends to connect to. The
servicename part of the principal is ordinarily postgres, but another value can be selected via libpq's
krbsrvname connection parameter. The hostname part is the fully qualified host name that libpq is told
to connect to. The realm name is the preferred realm specified in the Kerberos configuration file(s)
accessible to the client.

The client will also have a principal name for its own identity (and it must have a valid ticket for this
principal). To use GSSAPI for authentication, the client principal must be associated with a Postgres Pro
database user name. The pg_ident.conf configuration file can be used to map principals to user names;
for example, pgusername@realm could be mapped to just pgusername. Alternatively, you can use the full
username@realm principal as the role name in Postgres Pro without any mapping.

Postgres Pro also supports mapping client principals to user names by just stripping the realm from the
principal. This method is supported for backwards compatibility and is strongly discouraged as it is then
impossible to distinguish different users with the same user name but coming from different realms.
To enable this, set include_realm to 0. For simple single-realm installations, doing that combined with
setting the krb_realm parameter (which checks that the principal's realm matches exactly what is in
the krb_realm parameter) is still secure; but this is a less capable approach compared to specifying an
explicit mapping in pg_ident.conf.

The location of the server's keytab file is specified by the krb_server_keyfile configuration parameter.
For security reasons, it is recommended to use a separate keytab just for the Postgres Pro server rather
than allowing the server to read the system keytab file. Make sure that your server keytab file is readable
(and preferably only readable, not writable) by the Postgres Pro server account. (See also Section 17.1.)

The keytab file is generated using the Kerberos software; see the Kerberos documentation for
details. The following example shows doing this using the kadmin tool of MIT-compatible Kerberos 5
implementations:
kadmin% addprinc -randkey postgres/server.my.domain.org
kadmin% ktadd -k krb5.keytab postgres/server.my.domain.org

The following authentication options are supported for the GSSAPI authentication method:
include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 19.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to Postgres Pro user names.

556

https://tools.ietf.org/html/rfc2743

Client Authentication

map

Allows mapping from client principals to database user names. See Section 19.2 for details.
For a GSSAPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/
hostbased@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM (or username/
hostbased@EXAMPLE.COM, respectively), unless include_realm has been set to 0, in which case
username (or username/hostbased) is what is seen as the system user name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that
realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user
name mapping is done.

In addition to these settings, which can be different for different pg_hba.conf entries, there is the server-
wide krb_caseins_users configuration parameter. If that is set to true, client principals are matched to
user map entries case-insensitively. krb_realm, if set, is also matched case-insensitively.

19.7. SSPI Authentication
SSPI is a Windows technology for secure authentication with single sign-on. Postgres Pro will use SSPI
in negotiate mode, which will use Kerberos when possible and automatically fall back to NTLM in other
cases. SSPI authentication only works when both server and client are running Windows, or, on non-
Windows platforms, when GSSAPI is available.

When using Kerberos authentication, SSPI works the same way GSSAPI does; see Section 19.6 for
details.

The following configuration options are supported for SSPI:

include_realm

If set to 0, the realm name from the authenticated user principal is stripped off before being passed
through the user name mapping (Section 19.2). This is discouraged and is primarily available for
backwards compatibility, as it is not secure in multi-realm environments unless krb_realm is also
used. It is recommended to leave include_realm set to the default (1) and to provide an explicit
mapping in pg_ident.conf to convert principal names to Postgres Pro user names.

compat_realm

If set to 1, the domain's SAM-compatible name (also known as the NetBIOS name) is used for the
include_realm option. This is the default. If set to 0, the true realm name from the Kerberos user
principal name is used.

Do not disable this option unless your server runs under a domain account (this includes virtual
service accounts on a domain member system) and all clients authenticating through SSPI are also
using domain accounts, or authentication will fail.

upn_username

If this option is enabled along with compat_realm, the user name from the Kerberos UPN is used
for authentication. If it is disabled (the default), the SAM-compatible user name is used. By default,
these two names are identical for new user accounts.

Note that libpq uses the SAM-compatible name if no explicit user name is specified. If you use libpq
or a driver based on it, you should leave this option disabled or explicitly specify user name in the
connection string.

map

Allows for mapping between system and database user names. See Section 19.2 for details.
For a SSPI/Kerberos principal, such as username@EXAMPLE.COM (or, less commonly, username/

557

Client Authentication

hostbased@EXAMPLE.COM), the user name used for mapping is username@EXAMPLE.COM (or username/
hostbased@EXAMPLE.COM, respectively), unless include_realm has been set to 0, in which case
username (or username/hostbased) is what is seen as the system user name when mapping.

krb_realm

Sets the realm to match user principal names against. If this parameter is set, only users of that
realm will be accepted. If it is not set, users of any realm can connect, subject to whatever user
name mapping is done.

19.8. Ident Authentication
The ident authentication method works by obtaining the client's operating system user name from an
ident server and using it as the allowed database user name (with an optional user name mapping). This
is only supported on TCP/IP connections.

Note
When ident is specified for a local (non-TCP/IP) connection, peer authentication (see Section 19.9)
will be used instead.

The following configuration options are supported for ident:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

The “Identification Protocol” is described in RFC 1413. Virtually every Unix-like operating system ships
with an ident server that listens on TCP port 113 by default. The basic functionality of an ident server is
to answer questions like “What user initiated the connection that goes out of your port X and connects
to my port Y?”. Since Postgres Pro knows both X and Y when a physical connection is established, it can
interrogate the ident server on the host of the connecting client and can theoretically determine the
operating system user for any given connection.

The drawback of this procedure is that it depends on the integrity of the client: if the client machine is
untrusted or compromised, an attacker could run just about any program on port 113 and return any user
name they choose. This authentication method is therefore only appropriate for closed networks where
each client machine is under tight control and where the database and system administrators operate in
close contact. In other words, you must trust the machine running the ident server. Heed the warning:

The Identification Protocol is not intended as an authorization or access control protocol.

—RFC 1413

Some ident servers have a nonstandard option that causes the returned user name to be encrypted, using
a key that only the originating machine's administrator knows. This option must not be used when using
the ident server with Postgres Pro, since Postgres Pro does not have any way to decrypt the returned
string to determine the actual user name.

19.9. Peer Authentication
The peer authentication method works by obtaining the client's operating system user name from the
kernel and using it as the allowed database user name (with optional user name mapping). This method
is only supported on local connections.

The following configuration options are supported for peer:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

558

Client Authentication

Peer authentication is only available on operating systems providing the getpeereid() function, the
SO_PEERCRED socket parameter, or similar mechanisms. Currently that includes Linux, most flavors of
BSD including macOS, and Solaris.

19.10. LDAP Authentication
This authentication method operates similarly to password except that it uses LDAP as the password
verification method. LDAP is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before LDAP can be used for authentication.

LDAP authentication can operate in two modes. In the first mode, which we will call the simple bind
mode, the server will bind to the distinguished name constructed as prefix username suffix. Typically,
the prefix parameter is used to specify cn=, or DOMAIN\ in an Active Directory environment. suffix is
used to specify the remaining part of the DN in a non-Active Directory environment.

In the second mode, which we will call the search+bind mode, the server first binds to the LDAP directory
with a fixed user name and password, specified with ldapbinddn and ldapbindpasswd, and performs a
search for the user trying to log in to the database. If no user and password is configured, an anonymous
bind will be attempted to the directory. The search will be performed over the subtree at ldapbasedn,
and will try to do an exact match of the attribute specified in ldapsearchattribute. Once the user has
been found in this search, the server disconnects and re-binds to the directory as this user, using the
password specified by the client, to verify that the login is correct. This mode is the same as that used by
LDAP authentication schemes in other software, such as Apache mod_authnz_ldap and pam_ldap. This
method allows for significantly more flexibility in where the user objects are located in the directory, but
will cause two separate connections to the LDAP server to be made.

The following configuration options are used in both modes:

ldapserver

Names or IP addresses of LDAP servers to connect to. Multiple servers may be specified, separated
by spaces.

ldapport

Port number on LDAP server to connect to. If no port is specified, the LDAP library's default port
setting will be used.

ldapscheme

Set to ldaps to use LDAPS. This is a non-standard way of using LDAP over SSL, supported by some
LDAP server implementations. See also the ldaptls option for an alternative.

ldaptls

Set to 1 to make the connection between Postgres Pro and the LDAP server use TLS encryption. This
uses the StartTLS operation per RFC 4513. See also the ldapscheme option for an alternative.

Note that using ldapscheme or ldaptls only encrypts the traffic between the Postgres Pro server and
the LDAP server. The connection between the Postgres Pro server and the Postgres Pro client will still
be unencrypted unless SSL is used there as well.

The following options are used in simple bind mode only:

ldapprefix

String to prepend to the user name when forming the DN to bind as, when doing simple bind
authentication.

ldapsuffix

String to append to the user name when forming the DN to bind as, when doing simple bind
authentication.

559

Client Authentication

The following options are used in search+bind mode only:

ldapbasedn

Root DN to begin the search for the user in, when doing search+bind authentication.

ldapbinddn

DN of user to bind to the directory with to perform the search when doing search+bind
authentication.

ldapbindpasswd

Password for user to bind to the directory with to perform the search when doing search+bind
authentication.

ldapsearchattribute

Attribute to match against the user name in the search when doing search+bind authentication. If
no attribute is specified, the uid attribute will be used.

ldapsearchfilter

The search filter to use when doing search+bind authentication. Occurrences of $username will be
replaced with the user name. This allows for more flexible search filters than ldapsearchattribute.

ldapurl

An RFC 4516 LDAP URL. This is an alternative way to write some of the other LDAP options in a
more compact and standard form. The format is

ldap[s]://host[:port]/basedn[?[attribute][?[scope][?[filter]]]]

scope must be one of base, one, sub, typically the last. (The default is base, which is normally not
useful in this application.) attribute can nominate a single attribute, in which case it is used as
a value for ldapsearchattribute. If attribute is empty then filter can be used as a value for
ldapsearchfilter.

The URL scheme ldaps chooses the LDAPS method for making LDAP connections over SSL,
equivalent to using ldapscheme=ldaps. To use encrypted LDAP connections using the StartTLS
operation, use the normal URL scheme ldap and specify the ldaptls option in addition to ldapurl.

For non-anonymous binds, ldapbinddn and ldapbindpasswd must be specified as separate options.

LDAP URLs are currently only supported with OpenLDAP, not on Windows.

It is an error to mix configuration options for simple bind with options for search+bind.

When using search+bind mode, the search can be performed using a single attribute specified with
ldapsearchattribute, or using a custom search filter specified with ldapsearchfilter. Specifying
ldapsearchattribute=foo is equivalent to specifying ldapsearchfilter="(foo=$username)". If
neither option is specified the default is ldapsearchattribute=uid.

If Postgres Pro was compiled with OpenLDAP as the LDAP client library, the ldapserver setting may be
omitted. In that case, a list of host names and ports is looked up via RFC 2782 DNS SRV records. The
name _ldap._tcp.DOMAIN is looked up, where DOMAIN is extracted from ldapbasedn.

Here is an example for a simple-bind LDAP configuration:

host ... ldap ldapserver=ldap.example.net ldapprefix="cn=" ldapsuffix=", dc=example,
 dc=net"

When a connection to the database server as database user someuser is requested, Postgres Pro will
attempt to bind to the LDAP server using the DN cn=someuser, dc=example, dc=net and the password
provided by the client. If that connection succeeds, the database access is granted.

560

Client Authentication

Here is an example for a search+bind configuration:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net"
 ldapsearchattribute=uid

When a connection to the database server as database user someuser is requested, Postgres Pro will
attempt to bind anonymously (since ldapbinddn was not specified) to the LDAP server, perform a search
for (uid=someuser) under the specified base DN. If an entry is found, it will then attempt to bind using
that found information and the password supplied by the client. If that second connection succeeds, the
database access is granted.

Here is the same search+bind configuration written as a URL:

host ... ldap ldapurl="ldap://ldap.example.net/dc=example,dc=net?uid?sub"

Some other software that supports authentication against LDAP uses the same URL format, so it will
be easier to share the configuration.

Here is an example for a search+bind configuration that uses ldapsearchfilter instead of
ldapsearchattribute to allow authentication by user ID or email address:

host ... ldap ldapserver=ldap.example.net ldapbasedn="dc=example, dc=net"
 ldapsearchfilter="(|(uid=$username)(mail=$username))"

Here is an example for a search+bind configuration that uses DNS SRV discovery to find the host name(s)
and port(s) for the LDAP service for the domain name example.net:

host ... ldap ldapbasedn="dc=example,dc=net"

Tip
Since LDAP often uses commas and spaces to separate the different parts of a DN, it is often
necessary to use double-quoted parameter values when configuring LDAP options, as shown in
the examples.

19.11. RADIUS Authentication
This authentication method operates similarly to password except that it uses RADIUS as the password
verification method. RADIUS is used only to validate the user name/password pairs. Therefore the user
must already exist in the database before RADIUS can be used for authentication.

When using RADIUS authentication, an Access Request message will be sent to the configured RADIUS
server. This request will be of type Authenticate Only, and include parameters for user name, password
(encrypted) and NAS Identifier. The request will be encrypted using a secret shared with the server.
The RADIUS server will respond to this request with either Access Accept or Access Reject. There
is no support for RADIUS accounting.

Multiple RADIUS servers can be specified, in which case they will be tried sequentially. If a negative
response is received from a server, the authentication will fail. If no response is received, the next server
in the list will be tried. To specify multiple servers, separate the server names with commas and surround
the list with double quotes. If multiple servers are specified, the other RADIUS options can also be given
as comma-separated lists, to provide individual values for each server. They can also be specified as a
single value, in which case that value will apply to all servers.

The following configuration options are supported for RADIUS:

radiusservers

The DNS names or IP addresses of the RADIUS servers to connect to. This parameter is required.

561

Client Authentication

radiussecrets

The shared secrets used when talking securely to the RADIUS servers. This must have exactly the
same value on the Postgres Pro and RADIUS servers. It is recommended that this be a string of at
least 16 characters. This parameter is required.

Note
The encryption vector used will only be cryptographically strong if Postgres Pro is built with
support for OpenSSL. In other cases, the transmission to the RADIUS server should only
be considered obfuscated, not secured, and external security measures should be applied if
necessary.

radiusports

The port numbers to connect to on the RADIUS servers. If no port is specified, the default RADIUS
port (1812) will be used.

radiusidentifiers

The strings to be used as NAS Identifier in the RADIUS requests. This parameter can be used,
for example, to identify which database cluster the user is attempting to connect to, which can be
useful for policy matching on the RADIUS server. If no identifier is specified, the default postgresql
will be used.

If it is necessary to have a comma or whitespace in a RADIUS parameter value, that can be done by
putting double quotes around the value, but it is tedious because two layers of double-quoting are now
required. An example of putting whitespace into RADIUS secret strings is:

host ... radius radiusservers="server1,server2" radiussecrets="""secret one"",""secret
 two"""

19.12. Certificate Authentication
This authentication method uses SSL client certificates to perform authentication. It is therefore only
available for SSL connections. When using this authentication method, the server will require that the
client provide a valid, trusted certificate. No password prompt will be sent to the client. The cn (Common
Name) attribute of the certificate will be compared to the requested database user name, and if they
match the login will be allowed. User name mapping can be used to allow cn to be different from the
database user name.

The following configuration options are supported for SSL certificate authentication:

map

Allows for mapping between system and database user names. See Section 19.2 for details.

It is redundant to use the clientcert option with cert authentication because cert authentication is
effectively trust authentication with clientcert=verify-full.

19.13. PAM Authentication
This authentication method operates similarly to password except that it uses PAM (Pluggable
Authentication Modules) as the authentication mechanism. The default PAM service name is postgresql.
PAM is used only to validate user name/password pairs and optionally the connected remote host name
or IP address. Therefore the user must already exist in the database before PAM can be used for
authentication. For more information about PAM, please read the Linux-PAM Page.

The following configuration options are supported for PAM:

562

https://www.kernel.org/pub/linux/libs/pam/

Client Authentication

pamservice

PAM service name.

pam_use_hostname

Determines whether the remote IP address or the host name is provided to PAM modules through
the PAM_RHOST item. By default, the IP address is used. Set this option to 1 to use the resolved host
name instead. Host name resolution can lead to login delays. (Most PAM configurations don't use this
information, so it is only necessary to consider this setting if a PAM configuration was specifically
created to make use of it.)

Note
If PAM is set up to read /etc/shadow, authentication will fail because the Postgres Pro server is
started by a non-root user. However, this is not an issue when PAM is configured to use LDAP or
other authentication methods.

19.14. BSD Authentication
This authentication method operates similarly to password except that it uses BSD Authentication
to verify the password. BSD Authentication is used only to validate user name/password pairs.
Therefore the user's role must already exist in the database before BSD Authentication can be used for
authentication. The BSD Authentication framework is currently only available on OpenBSD.

BSD Authentication in Postgres Pro uses the auth-postgresql login type and authenticates with the
postgresql login class if that's defined in login.conf. By default that login class does not exist, and
Postgres Pro will use the default login class.

Note
To use BSD Authentication, the Postgres Pro user account (that is, the operating system user
running the server) must first be added to the auth group. The auth group exists by default on
OpenBSD systems.

19.15. Authentication Problems
Authentication failures and related problems generally manifest themselves through error messages like
the following:

FATAL: no pg_hba.conf entry for host "123.123.123.123", user "andym", database
 "testdb"

This is what you are most likely to get if you succeed in contacting the server, but it does not want to
talk to you. As the message suggests, the server refused the connection request because it found no
matching entry in its pg_hba.conf configuration file.

FATAL: password authentication failed for user "andym"

Messages like this indicate that you contacted the server, and it is willing to talk to you, but not until you
pass the authorization method specified in the pg_hba.conf file. Check the password you are providing,
or check your Kerberos or ident software if the complaint mentions one of those authentication types.

FATAL: user "andym" does not exist

The indicated database user name was not found.

FATAL: database "testdb" does not exist

563

Client Authentication

The database you are trying to connect to does not exist. Note that if you do not specify a database name,
it defaults to the database user name, which might or might not be the right thing.

Tip
The server log might contain more information about an authentication failure than is reported to
the client. If you are confused about the reason for a failure, check the server log.

564

Chapter 20. Database Roles
Postgres Pro manages database access permissions using the concept of roles. A role can be thought of
as either a database user, or a group of database users, depending on how the role is set up. Roles can
own database objects (for example, tables and functions) and can assign privileges on those objects to
other roles to control who has access to which objects. Furthermore, it is possible to grant membership
in a role to another role, thus allowing the member role to use privileges assigned to another role.

The concept of roles subsumes the concepts of “users” and “groups”. In PostgreSQL versions before
8.1, users and groups were distinct kinds of entities, but now there are only roles. Any role can act as
a user, a group, or both.

This chapter describes how to create and manage roles. More information about the effects of role
privileges on various database objects can be found in Section 5.7.

20.1. Database Roles
Database roles are conceptually completely separate from operating system users. In practice it might
be convenient to maintain a correspondence, but this is not required. Database roles are global across
a database cluster installation (and not per individual database). To create a role use the CREATE ROLE
SQL command:

CREATE ROLE name;

name follows the rules for SQL identifiers: either unadorned without special characters, or double-quoted.
(In practice, you will usually want to add additional options, such as LOGIN, to the command. More details
appear below.) To remove an existing role, use the analogous DROP ROLE command:

DROP ROLE name;

For convenience, the programs createuser and dropuser are provided as wrappers around these SQL
commands that can be called from the shell command line:

createuser name
dropuser name

To determine the set of existing roles, examine the pg_roles system catalog, for example

SELECT rolname FROM pg_roles;

The psql program's \du meta-command is also useful for listing the existing roles.

In order to bootstrap the database system, a freshly initialized system always contains one predefined
role. This role is always a “superuser”, and by default (unless altered when running initdb) it will have
the same name as the operating system user that initialized the database cluster. Customarily, this role
will be named postgres. In order to create more roles you first have to connect as this initial role.

Every connection to the database server is made using the name of some particular role, and this role
determines the initial access privileges for commands issued in that connection. The role name to use
for a particular database connection is indicated by the client that is initiating the connection request
in an application-specific fashion. For example, the psql program uses the -U command line option to
indicate the role to connect as. Many applications assume the name of the current operating system
user by default (including createuser and psql). Therefore it is often convenient to maintain a naming
correspondence between roles and operating system users.

The set of database roles a given client connection can connect as is determined by the client
authentication setup, as explained in Chapter 19. (Thus, a client is not limited to connect as the role
matching its operating system user, just as a person's login name need not match his or her real name.)
Since the role identity determines the set of privileges available to a connected client, it is important to
carefully configure privileges when setting up a multiuser environment.

565

Database Roles

20.2. Role Attributes
A database role can have a number of attributes that define its privileges and interact with the client
authentication system.
login privilege

Only roles that have the LOGIN attribute can be used as the initial role name for a database connection.
A role with the LOGIN attribute can be considered the same as a “database user”. To create a role
with login privilege, use either:
CREATE ROLE name LOGIN;
CREATE USER name;

(CREATE USER is equivalent to CREATE ROLE except that CREATE USER includes LOGIN by default, while
CREATE ROLE does not.)

superuser status
A database superuser bypasses all permission checks, except the right to log in. This is a dangerous
privilege and should not be used carelessly; it is best to do most of your work as a role that is not
a superuser. To create a new database superuser, use CREATE ROLE name SUPERUSER. You must do
this as a role that is already a superuser.

database creation
A role must be explicitly given permission to create databases (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEDB.

role creation
A role must be explicitly given permission to create more roles (except for superusers, since those
bypass all permission checks). To create such a role, use CREATE ROLE name CREATEROLE. A role with
CREATEROLE privilege can alter and drop other roles, too, as well as grant or revoke membership in
them. However, to create, alter, drop, or change membership of a superuser role, superuser status
is required; CREATEROLE is insufficient for that.

initiating replication
A role must explicitly be given permission to initiate streaming replication (except for superusers,
since those bypass all permission checks). A role used for streaming replication must have LOGIN
permission as well. To create such a role, use CREATE ROLE name REPLICATION LOGIN.

password
A password is only significant if the client authentication method requires the user to supply a
password when connecting to the database. The password and md5 authentication methods make
use of passwords. Database passwords are separate from operating system passwords. Specify a
password upon role creation with CREATE ROLE name PASSWORD 'string'.

A role's attributes can be modified after creation with ALTER ROLE. See the reference pages for the
CREATE ROLE and ALTER ROLE commands for details.

Tip
It is good practice to create a role that has the CREATEDB and CREATEROLE privileges, but is not a
superuser, and then use this role for all routine management of databases and roles. This approach
avoids the dangers of operating as a superuser for tasks that do not really require it.

A role can also have role-specific defaults for many of the run-time configuration settings described in
Chapter 18. For example, if for some reason you want to disable index scans (hint: not a good idea)
anytime you connect, you can use:
ALTER ROLE myname SET enable_indexscan TO off;

566

Database Roles

This will save the setting (but not set it immediately). In subsequent connections by this role it will
appear as though SET enable_indexscan TO off had been executed just before the session started.
You can still alter this setting during the session; it will only be the default. To remove a role-specific
default setting, use ALTER ROLE rolename RESET varname. Note that role-specific defaults attached to
roles without LOGIN privilege are fairly useless, since they will never be invoked.

20.3. Role Membership
It is frequently convenient to group users together to ease management of privileges: that way, privileges
can be granted to, or revoked from, a group as a whole. In Postgres Pro this is done by creating a role
that represents the group, and then granting membership in the group role to individual user roles.

To set up a group role, first create the role:
CREATE ROLE name;

Typically a role being used as a group would not have the LOGIN attribute, though you can set it if you
wish.

Once the group role exists, you can add and remove members using the GRANT and REVOKE commands:
GRANT group_role TO role1, ... ;
REVOKE group_role FROM role1, ... ;

You can grant membership to other group roles, too (since there isn't really any distinction between
group roles and non-group roles). The database will not let you set up circular membership loops. Also,
it is not permitted to grant membership in a role to PUBLIC.

The members of a group role can use the privileges of the role in two ways. First, every member of a
group can explicitly do SET ROLE to temporarily “become” the group role. In this state, the database
session has access to the privileges of the group role rather than the original login role, and any database
objects created are considered owned by the group role not the login role. Second, member roles that
have the INHERIT attribute automatically have use of the privileges of roles of which they are members,
including any privileges inherited by those roles. As an example, suppose we have done:
CREATE ROLE joe LOGIN INHERIT;
CREATE ROLE admin NOINHERIT;
CREATE ROLE wheel NOINHERIT;
GRANT admin TO joe;
GRANT wheel TO admin;

Immediately after connecting as role joe, a database session will have use of privileges granted
directly to joe plus any privileges granted to admin, because joe “inherits” admin's privileges. However,
privileges granted to wheel are not available, because even though joe is indirectly a member of wheel,
the membership is via admin which has the NOINHERIT attribute. After:
SET ROLE admin;

the session would have use of only those privileges granted to admin, and not those granted to joe. After:
SET ROLE wheel;

the session would have use of only those privileges granted to wheel, and not those granted to either
joe or admin. The original privilege state can be restored with any of:
SET ROLE joe;
SET ROLE NONE;
RESET ROLE;

Note
The SET ROLE command always allows selecting any role that the original login role is directly or
indirectly a member of. Thus, in the above example, it is not necessary to become admin before
becoming wheel.

567

Database Roles

Note
In the SQL standard, there is a clear distinction between users and roles, and users do not
automatically inherit privileges while roles do. This behavior can be obtained in Postgres Pro by
giving roles being used as SQL roles the INHERIT attribute, while giving roles being used as SQL
users the NOINHERIT attribute. However, Postgres Pro defaults to giving all roles the INHERIT
attribute, for backward compatibility with pre-8.1 releases in which users always had use of
permissions granted to groups they were members of.

The role attributes LOGIN, SUPERUSER, CREATEDB, and CREATEROLE can be thought of as special privileges,
but they are never inherited as ordinary privileges on database objects are. You must actually SET ROLE
to a specific role having one of these attributes in order to make use of the attribute. Continuing the
above example, we might choose to grant CREATEDB and CREATEROLE to the admin role. Then a session
connecting as role joe would not have these privileges immediately, only after doing SET ROLE admin.

To destroy a group role, use DROP ROLE:

DROP ROLE name;

Any memberships in the group role are automatically revoked (but the member roles are not otherwise
affected).

20.4. Dropping Roles
Because roles can own database objects and can hold privileges to access other objects, dropping a role
is often not just a matter of a quick DROP ROLE. Any objects owned by the role must first be dropped
or reassigned to other owners; and any permissions granted to the role must be revoked.

Ownership of objects can be transferred one at a time using ALTER commands, for example:

ALTER TABLE bobs_table OWNER TO alice;

Alternatively, the REASSIGN OWNED command can be used to reassign ownership of all objects owned
by the role-to-be-dropped to a single other role. Because REASSIGN OWNED cannot access objects in other
databases, it is necessary to run it in each database that contains objects owned by the role. (Note that
the first such REASSIGN OWNED will change the ownership of any shared-across-databases objects, that
is databases or tablespaces, that are owned by the role-to-be-dropped.)

Once any valuable objects have been transferred to new owners, any remaining objects owned by the
role-to-be-dropped can be dropped with the DROP OWNED command. Again, this command cannot
access objects in other databases, so it is necessary to run it in each database that contains objects owned
by the role. Also, DROP OWNED will not drop entire databases or tablespaces, so it is necessary to do that
manually if the role owns any databases or tablespaces that have not been transferred to new owners.

DROP OWNED also takes care of removing any privileges granted to the target role for objects that do not
belong to it. Because REASSIGN OWNED does not touch such objects, it's typically necessary to run both
REASSIGN OWNED and DROP OWNED (in that order!) to fully remove the dependencies of a role to be dropped.

In short then, the most general recipe for removing a role that has been used to own objects is:

REASSIGN OWNED BY doomed_role TO successor_role;
DROP OWNED BY doomed_role;
-- repeat the above commands in each database of the cluster
DROP ROLE doomed_role;

When not all owned objects are to be transferred to the same successor owner, it's best to handle the
exceptions manually and then perform the above steps to mop up.

568

Database Roles

If DROP ROLE is attempted while dependent objects still remain, it will issue messages identifying which
objects need to be reassigned or dropped.

20.5. Default Roles
Postgres Pro provides a set of default roles which provide access to certain, commonly needed, privileged
capabilities and information. Administrators can GRANT these roles to users and/or other roles in their
environment, providing those users with access to the specified capabilities and information.

The default roles are described in Table 20.1. Note that the specific permissions for each of the default
roles may change in the future as additional capabilities are added. Administrators should monitor the
release notes for changes.

Table 20.1. Default Roles

Role Allowed Access
pg_read_all_settings Read all configuration variables, even those normally visible only to

superusers.
pg_read_all_stats Read all pg_stat_* views and use various statistics related

extensions, even those normally visible only to superusers.
pg_stat_scan_tables Execute monitoring functions that may take ACCESS SHARE locks on

tables, potentially for a long time.
pg_monitor Read/execute various monitoring views and functions. This role is a

member of pg_read_all_settings , pg_read_all_stats and
pg_stat_scan_tables .

pg_signal_backend Signal another backend to cancel a query or terminate its session.
pg_read_server_files Allow reading files from any location the database can access on

the server with COPY and other file-access functions.
pg_write_server_files Allow writing to files in any location the database can access on the

server with COPY and other file-access functions.
pg_execute_server_program Allow executing programs on the database server as the user

the database runs as with COPY and other functions which allow
executing a server-side program.

The pg_monitor, pg_read_all_settings, pg_read_all_stats and pg_stat_scan_tables roles are
intended to allow administrators to easily configure a role for the purpose of monitoring the database
server. They grant a set of common privileges allowing the role to read various useful configuration
settings, statistics and other system information normally restricted to superusers.

The pg_signal_backend role is intended to allow administrators to enable trusted, but non-superuser,
roles to send signals to other backends. Currently this role enables sending of signals for canceling
a query on another backend or terminating its session. A user granted this role cannot however send
signals to a backend owned by a superuser. See Section 9.27.2.

The pg_read_server_files, pg_write_server_files and pg_execute_server_program roles are
intended to allow administrators to have trusted, but non-superuser, roles which are able to access files
and run programs on the database server as the user the database runs as. As these roles are able to
access any file on the server file system, they bypass all database-level permission checks when accessing
files directly and they could be used to gain superuser-level access, therefore great care should be taken
when granting these roles to users.

Care should be taken when granting these roles to ensure they are only used where needed and with
the understanding that these roles grant access to privileged information.

Administrators can grant access to these roles to users using the GRANT command, for example:

GRANT pg_signal_backend TO admin_user;

569

Database Roles

20.6. Function Security
Functions, triggers and row-level security policies allow users to insert code into the backend server
that other users might execute unintentionally. Hence, these mechanisms permit users to “Trojan
horse” others with relative ease. The strongest protection is tight control over who can define objects.
Where that is infeasible, write queries referring only to objects having trusted owners. Remove from
search_path the public schema and any other schemas that permit untrusted users to create objects.

Functions run inside the backend server process with the operating system permissions of the database
server daemon. If the programming language used for the function allows unchecked memory accesses,
it is possible to change the server's internal data structures. Hence, among many other things, such
functions can circumvent any system access controls. Function languages that allow such access are
considered “untrusted”, and Postgres Pro allows only superusers to create functions written in those
languages.

570

Chapter 21. Managing Databases
Every instance of a running Postgres Pro server manages one or more databases. Databases are
therefore the topmost hierarchical level for organizing SQL objects (“database objects”). This chapter
describes the properties of databases, and how to create, manage, and destroy them.

21.1. Overview
A small number of objects, like role, database, and tablespace names, are defined at the cluster level
and stored in the pg_global tablespace. Inside the cluster are multiple databases, which are isolated
from each other but can access cluster-level objects. Inside each database are multiple schemas, which
contain objects like tables and functions. So the full hierarchy is: cluster, database, schema, table (or
some other kind of object, such as a function).

When connecting to the database server, a client must specify the database name in its connection
request. It is not possible to access more than one database per connection. However, clients can
open multiple connections to the same database, or different databases. Database-level security has
two components: access control (see Section 19.1), managed at the connection level, and authorization
control (see Section 5.7), managed via the grant system. Foreign data wrappers (see postgres_fdw) allow
for objects within one database to act as proxies for objects in other database or clusters. The older
dblink module (see dblink) provides a similar capability. By default, all users can connect to all databases
using all connection methods.

If one Postgres Pro server cluster is planned to contain unrelated projects or users that should be, for
the most part, unaware of each other, it is recommended to put them into separate databases and adjust
authorizations and access controls accordingly. If the projects or users are interrelated, and thus should
be able to use each other's resources, they should be put in the same database but probably into separate
schemas; this provides a modular structure with namespace isolation and authorization control. More
information about managing schemas is in Section 5.9.

While multiple databases can be created within a single cluster, it is advised to consider carefully whether
the benefits outweigh the risks and limitations. In particular, the impact that having a shared WAL (see
Chapter 28) has on backup and recovery options. While individual databases in the cluster are isolated
when considered from the user's perspective, they are closely bound from the database administrator's
point-of-view.

Databases are created with the CREATE DATABASE command (see Section 21.2) and destroyed with the
DROP DATABASE command (see Section 21.5). To determine the set of existing databases, examine the
pg_database system catalog, for example
SELECT datname FROM pg_database;

The psql program's \l meta-command and -l command-line option are also useful for listing the existing
databases.

Note
The SQL standard calls databases “catalogs”, but there is no difference in practice.

21.2. Creating a Database
In order to create a database, the Postgres Pro server must be up and running (see Section 17.3).

Databases are created with the SQL command CREATE DATABASE:
CREATE DATABASE name;

where name follows the usual rules for SQL identifiers. The current role automatically becomes the owner
of the new database. It is the privilege of the owner of a database to remove it later (which also removes
all the objects in it, even if they have a different owner).

571

Managing Databases

The creation of databases is a restricted operation. See Section 20.2 for how to grant permission.

Since you need to be connected to the database server in order to execute the CREATE DATABASE
command, the question remains how the first database at any given site can be created. The first
database is always created by the initdb command when the data storage area is initialized. (See
Section 17.2.) This database is called postgres. So to create the first “ordinary” database you can
connect to postgres.

A second database, template1, is also created during database cluster initialization. Whenever a new
database is created within the cluster, template1 is essentially cloned. This means that any changes
you make in template1 are propagated to all subsequently created databases. Because of this, avoid
creating objects in template1 unless you want them propagated to every newly created database. More
details appear in Section 21.3.

As a convenience, there is a program you can execute from the shell to create new databases, createdb.

createdb dbname

createdb does no magic. It connects to the postgres database and issues the CREATE DATABASE
command, exactly as described above. The createdb reference page contains the invocation details. Note
that createdb without any arguments will create a database with the current user name.

Note
Chapter 19 contains information about how to restrict who can connect to a given database.

Sometimes you want to create a database for someone else, and have them become the owner of the
new database, so they can configure and manage it themselves. To achieve that, use one of the following
commands:

CREATE DATABASE dbname OWNER rolename;

from the SQL environment, or:

createdb -O rolename dbname

from the shell. Only the superuser is allowed to create a database for someone else (that is, for a role
you are not a member of).

21.3. Template Databases
CREATE DATABASE actually works by copying an existing database. By default, it copies the standard
system database named template1. Thus that database is the “template” from which new databases
are made. If you add objects to template1, these objects will be copied into subsequently created user
databases. This behavior allows site-local modifications to the standard set of objects in databases. For
example, if you install the procedural language PL/Perl in template1, it will automatically be available
in user databases without any extra action being taken when those databases are created.

There is a second standard system database named template0. This database contains the same data
as the initial contents of template1, that is, only the standard objects predefined by your version of
Postgres Pro. template0 should never be changed after the database cluster has been initialized. By
instructing CREATE DATABASE to copy template0 instead of template1, you can create a “pristine” user
database (one where no user-defined objects exist and where the system objects have not been altered)
that contains none of the site-local additions in template1. This is particularly handy when restoring a
pg_dump dump: the dump script should be restored in a pristine database to ensure that one recreates
the correct contents of the dumped database, without conflicting with objects that might have been
added to template1 later on.

Another common reason for copying template0 instead of template1 is that new encoding and locale
settings can be specified when copying template0, whereas a copy of template1 must use the same

572

Managing Databases

settings it does. This is because template1 might contain encoding-specific or locale-specific data, while
template0 is known not to.

To create a database by copying template0, use:
CREATE DATABASE dbname TEMPLATE template0;

from the SQL environment, or:
createdb -T template0 dbname

from the shell.

It is possible to create additional template databases, and indeed one can copy any database in a cluster
by specifying its name as the template for CREATE DATABASE. It is important to understand, however, that
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that
no other sessions can be connected to the source database while it is being copied. CREATE DATABASE
will fail if any other connection exists when it starts; during the copy operation, new connections to the
source database are prevented.

Two useful flags exist in pg_databasefor each database: the columns datistemplate and datallowconn.
datistemplate can be set to indicate that a database is intended as a template for CREATE DATABASE.
If this flag is set, the database can be cloned by any user with CREATEDB privileges; if it is not set, only
superusers and the owner of the database can clone it. If datallowconn is false, then no new connections
to that database will be allowed (but existing sessions are not terminated simply by setting the flag
false). The template0 database is normally marked datallowconn = false to prevent its modification.
Both template0 and template1 should always be marked with datistemplate = true.

Note
template1 and template0 do not have any special status beyond the fact that the name template1
is the default source database name for CREATE DATABASE. For example, one could drop template1
and recreate it from template0 without any ill effects. This course of action might be advisable
if one has carelessly added a bunch of junk in template1. (To delete template1, it must have
pg_database.datistemplate = false.)

The postgres database is also created when a database cluster is initialized. This database is
meant as a default database for users and applications to connect to. It is simply a copy of
template1 and can be dropped and recreated if necessary.

21.4. Database Configuration
Recall from Chapter 18 that the Postgres Pro server provides a large number of run-time configuration
variables. You can set database-specific default values for many of these settings.

For example, if for some reason you want to disable the GEQO optimizer for a given database, you'd
ordinarily have to either disable it for all databases or make sure that every connecting client is careful
to issue SET geqo TO off. To make this setting the default within a particular database, you can execute
the command:
ALTER DATABASE mydb SET geqo TO off;

This will save the setting (but not set it immediately). In subsequent connections to this database it will
appear as though SET geqo TO off; had been executed just before the session started. Note that users
can still alter this setting during their sessions; it will only be the default. To undo any such setting, use
ALTER DATABASE dbname RESET varname.

21.5. Destroying a Database
Databases are destroyed with the command DROP DATABASE:

573

Managing Databases

DROP DATABASE name;

Only the owner of the database, or a superuser, can drop a database. Dropping a database removes all
objects that were contained within the database. The destruction of a database cannot be undone.

You cannot execute the DROP DATABASE command while connected to the victim database. You can,
however, be connected to any other database, including the template1 database. template1 would be
the only option for dropping the last user database of a given cluster.

For convenience, there is also a shell program to drop databases, dropdb:

dropdb dbname

(Unlike createdb, it is not the default action to drop the database with the current user name.)

21.6. Tablespaces
Tablespaces in Postgres Pro allow database administrators to define locations in the file system where
the files representing database objects can be stored. Once created, a tablespace can be referred to by
name when creating database objects.

By using tablespaces, an administrator can control the disk layout of a Postgres Pro installation. This
is useful in at least two ways. First, if the partition or volume on which the cluster was initialized runs
out of space and cannot be extended, a tablespace can be created on a different partition and used until
the system can be reconfigured.

Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects
to optimize performance. For example, an index which is very heavily used can be placed on a very fast,
highly available disk, such as an expensive solid state device. At the same time a table storing archived
data which is rarely used or not performance critical could be stored on a less expensive, slower disk
system.

Warning
Even though located outside the main Postgres Pro data directory, tablespaces are an integral part
of the database cluster and cannot be treated as an autonomous collection of data files. They are
dependent on metadata contained in the main data directory, and therefore cannot be attached to a
different database cluster or backed up individually. Similarly, if you lose a tablespace (file deletion,
disk failure, etc), the database cluster might become unreadable or unable to start. Placing a
tablespace on a temporary file system like a RAM disk risks the reliability of the entire cluster.

To define a tablespace, use the CREATE TABLESPACE command, for example::

CREATE TABLESPACE fastspace LOCATION '/ssd1/postgresql/data';

The location must be an existing, empty directory that is owned by the Postgres Pro operating system
user. All objects subsequently created within the tablespace will be stored in files underneath this
directory. The location must not be on removable or transient storage, as the cluster might fail to function
if the tablespace is missing or lost.

Note
There is usually not much point in making more than one tablespace per logical file system, since
you cannot control the location of individual files within a logical file system. However, Postgres
Pro does not enforce any such limitation, and indeed it is not directly aware of the file system
boundaries on your system. It just stores files in the directories you tell it to use.

Creation of the tablespace itself must be done as a database superuser, but after that you can allow
ordinary database users to use it. To do that, grant them the CREATE privilege on it.

574

Managing Databases

Tables, indexes, and entire databases can be assigned to particular tablespaces. To do so, a user with the
CREATE privilege on a given tablespace must pass the tablespace name as a parameter to the relevant
command. For example, the following creates a table in the tablespace space1:

CREATE TABLE foo(i int) TABLESPACE space1;

Alternatively, use the default_tablespace parameter:

SET default_tablespace = space1;
CREATE TABLE foo(i int);

When default_tablespace is set to anything but an empty string, it supplies an implicit TABLESPACE
clause for CREATE TABLE and CREATE INDEX commands that do not have an explicit one.

There is also a temp_tablespaces parameter, which determines the placement of temporary tables and
indexes, as well as temporary files that are used for purposes such as sorting large data sets. This can
be a list of tablespace names, rather than only one, so that the load associated with temporary objects
can be spread over multiple tablespaces. A random member of the list is picked each time a temporary
object is to be created.

The tablespace associated with a database is used to store the system catalogs of that database.
Furthermore, it is the default tablespace used for tables, indexes, and temporary files created within the
database, if no TABLESPACE clause is given and no other selection is specified by default_tablespace
or temp_tablespaces (as appropriate). If a database is created without specifying a tablespace for it, it
uses the same tablespace as the template database it is copied from.

Two tablespaces are automatically created when the database cluster is initialized. The pg_global
tablespace is used for shared system catalogs. The pg_default tablespace is the default tablespace of the
template1 and template0 databases (and, therefore, will be the default tablespace for other databases
as well, unless overridden by a TABLESPACE clause in CREATE DATABASE).

Once created, a tablespace can be used from any database, provided the requesting user has sufficient
privilege. This means that a tablespace cannot be dropped until all objects in all databases using the
tablespace have been removed.

To remove an empty tablespace, use the DROP TABLESPACE command.

To determine the set of existing tablespaces, examine the pg_tablespace system catalog, for example

SELECT spcname FROM pg_tablespace;

The psql program's \db meta-command is also useful for listing the existing tablespaces.

Postgres Pro makes use of symbolic links to simplify the implementation of tablespaces. This means that
tablespaces can be used only on systems that support symbolic links.

The directory $PGDATA/pg_tblspc contains symbolic links that point to each of the non-built-in
tablespaces defined in the cluster. Although not recommended, it is possible to adjust the tablespace
layout by hand by redefining these links. Under no circumstances perform this operation while the server
is running. Note that in PostgreSQL 9.1 and earlier you will also need to update the pg_tablespace
catalog with the new locations. (If you do not, pg_dump will continue to output the old tablespace
locations.)

575

Chapter 22. Localization
This chapter describes the available localization features from the point of view of the administrator.
Postgres Pro supports two localization facilities:
• Using the locale features of the operating system to provide locale-specific collation order,

number formatting, translated messages, and other aspects. This is covered in Section 22.1 and
Section 22.2.

• Providing a number of different character sets to support storing text in all kinds of languages, and
providing character set translation between client and server. This is covered in Section 22.3.

22.1. Locale Support
Locale support refers to an application respecting cultural preferences regarding alphabets, sorting,
number formatting, etc. Postgres Pro uses the standard ISO C and POSIX locale facilities provided by
the server operating system. For additional information refer to the documentation of your system.

22.1.1. Overview
Locale support is automatically initialized when a database cluster is created using initdb. initdb will
initialize the database cluster with the locale setting of its execution environment by default, so if your
system is already set to use the locale that you want in your database cluster then there is nothing else
you need to do. If you want to use a different locale (or you are not sure which locale your system is set
to), you can instruct initdb exactly which locale to use by specifying the --locale option. For example:
initdb --locale=ru_RU

This example for Unix systems sets the locale to Russian (ru) as spoken in Russia (RU). Other possibilities
might include en_US (U.S. English) and fr_CA (French Canadian). If more than one character set can be
used for a locale then the specifications can take the form language_territory.codeset. For example,
fr_BE.UTF-8 represents the French language (fr) as spoken in Belgium (BE), with a UTF-8 character
set encoding.

What locales are available on your system under what names depends on what was provided by the
operating system vendor and what was installed. On most Unix systems, the command locale -a will
provide a list of available locales. Windows uses more verbose locale names, such as German_Germany
or Swedish_Sweden.1252, but the principles are the same.

Occasionally it is useful to mix rules from several locales, e.g., use English collation rules but Spanish
messages. To support that, a set of locale subcategories exist that control only certain aspects of the
localization rules:

LC_COLLATE String sort order
LC_CTYPE Character classification (What is a letter? Its upper-case equivalent?)
LC_MESSAGES Language of messages
LC_MONETARY Formatting of currency amounts
LC_NUMERIC Formatting of numbers
LC_TIME Formatting of dates and times

The category names translate into names of initdb options to override the locale choice for a specific
category. For instance, to set the locale to French Canadian, but use U.S. rules for formatting currency,
use initdb --locale=fr_CA --lc-monetary=en_US.

If you want the system to behave as if it had no locale support, use the special locale name C, or
equivalently POSIX.

Some locale categories must have their values fixed when the database is created. You can use different
settings for different databases, but once a database is created, you cannot change them for that
database anymore. LC_COLLATE and LC_CTYPE are these categories. They affect the sort order of indexes,

576

Localization

so they must be kept fixed, or indexes on text columns would become corrupt. (But you can alleviate
this restriction using collations, as discussed in Section 22.2.) The default values for these categories
are determined when initdb is run, and those values are used when new databases are created, unless
specified otherwise in the CREATE DATABASE command.

The other locale categories can be changed whenever desired by setting the server configuration
parameters that have the same name as the locale categories (see Section 18.11.2 for details). The values
that are chosen by initdb are actually only written into the configuration file postgresql.conf to serve
as defaults when the server is started. If you remove these assignments from postgresql.conf then the
server will inherit the settings from its execution environment.

Note that the locale behavior of the server is determined by the environment variables seen by the
server, not by the environment of any client. Therefore, be careful to configure the correct locale settings
before starting the server. A consequence of this is that if client and server are set up in different locales,
messages might appear in different languages depending on where they originated.

Note
When we speak of inheriting the locale from the execution environment, this means the
following on most operating systems: For a given locale category, say the collation, the following
environment variables are consulted in this order until one is found to be set: LC_ALL, LC_COLLATE
(or the variable corresponding to the respective category), LANG. If none of these environment
variables are set then the locale defaults to C.

Some message localization libraries also look at the environment variable LANGUAGE which
overrides all other locale settings for the purpose of setting the language of messages. If in doubt,
please refer to the documentation of your operating system, in particular the documentation about
gettext.

To enable messages to be translated to the user's preferred language, NLS must have been selected at
build time (configure --enable-nls). All other locale support is built in automatically.

22.1.2. Behavior
The locale settings influence the following SQL features:
• Sort order in queries using ORDER BY or the standard comparison operators on textual data
• The upper, lower, and initcap functions
• Pattern matching operators (LIKE, SIMILAR TO, and POSIX-style regular expressions); locales

affect both case insensitive matching and the classification of characters by character-class regular
expressions

• The to_char family of functions
• The ability to use indexes with LIKE clauses

The drawback of using locales other than C or POSIX in Postgres Pro is its performance impact. It slows
character handling and prevents ordinary indexes from being used by LIKE. For this reason use locales
only if you actually need them.

As a workaround to allow Postgres Pro to use indexes with LIKE clauses under a non-C locale, several
custom operator classes exist. These allow the creation of an index that performs a strict character-by-
character comparison, ignoring locale comparison rules. Refer to Section 11.10 for more information.
Another approach is to create indexes using the C collation, as discussed in Section 22.2.

22.1.3. Problems
If locale support doesn't work according to the explanation above, check that the locale support in your
operating system is correctly configured. To check what locales are installed on your system, you can
use the command locale -a if your operating system provides it.

577

Localization

Check that Postgres Pro is actually using the locale that you think it is. The LC_COLLATE and LC_CTYPE
settings are determined when a database is created, and cannot be changed except by creating a new
database. Other locale settings including LC_MESSAGES and LC_MONETARY are initially determined by the
environment the server is started in, but can be changed on-the-fly. You can check the active locale
settings using the SHOW command.

Client applications that handle server-side errors by parsing the text of the error message will obviously
have problems when the server's messages are in a different language. Authors of such applications are
advised to make use of the error code scheme instead.

22.2. Collation Support
The collation feature allows specifying the sort order and character classification behavior of data per-
column, or even per-operation. This alleviates the restriction that the LC_COLLATE and LC_CTYPE settings
of a database cannot be changed after its creation.

22.2.1. Concepts
Conceptually, every expression of a collatable data type has a collation. (The built-in collatable data types
are text, varchar, and char. User-defined base types can also be marked collatable, and of course a
domain over a collatable data type is collatable.) If the expression is a column reference, the collation of
the expression is the defined collation of the column. If the expression is a constant, the collation is the
default collation of the data type of the constant. The collation of a more complex expression is derived
from the collations of its inputs, as described below.

The collation of an expression can be the “default” collation, which means the locale settings defined for
the database. It is also possible for an expression's collation to be indeterminate. In such cases, ordering
operations and other operations that need to know the collation will fail.

When the database system has to perform an ordering or a character classification, it uses the collation
of the input expression. This happens, for example, with ORDER BY clauses and function or operator
calls such as <. The collation to apply for an ORDER BY clause is simply the collation of the sort key. The
collation to apply for a function or operator call is derived from the arguments, as described below. In
addition to comparison operators, collations are taken into account by functions that convert between
lower and upper case letters, such as lower, upper, and initcap; by pattern matching operators; and
by to_char and related functions.

For a function or operator call, the collation that is derived by examining the argument collations is used
at run time for performing the specified operation. If the result of the function or operator call is of a
collatable data type, the collation is also used at parse time as the defined collation of the function or
operator expression, in case there is a surrounding expression that requires knowledge of its collation.

The collation derivation of an expression can be implicit or explicit. This distinction affects how collations
are combined when multiple different collations appear in an expression. An explicit collation derivation
occurs when a COLLATE clause is used; all other collation derivations are implicit. When multiple
collations need to be combined, for example in a function call, the following rules are used:
1. If any input expression has an explicit collation derivation, then all explicitly derived collations among

the input expressions must be the same, otherwise an error is raised. If any explicitly derived collation
is present, that is the result of the collation combination.

2. Otherwise, all input expressions must have the same implicit collation derivation or the default
collation. If any non-default collation is present, that is the result of the collation combination.
Otherwise, the result is the default collation.

3. If there are conflicting non-default implicit collations among the input expressions, then the
combination is deemed to have indeterminate collation. This is not an error condition unless the
particular function being invoked requires knowledge of the collation it should apply. If it does, an
error will be raised at run-time.

For example, consider this table definition:

578

Localization

CREATE TABLE test1 (
 a text COLLATE "ru_RU",
 b text COLLATE "es_ES",
 ...
);

Then in
SELECT a < 'foo' FROM test1;

the < comparison is performed according to ru_RU rules, because the expression combines an implicitly
derived collation with the default collation. But in
SELECT a < ('foo' COLLATE "fr_FR") FROM test1;

the comparison is performed using fr_FR rules, because the explicit collation derivation overrides the
implicit one. Furthermore, given
SELECT a < b FROM test1;

the parser cannot determine which collation to apply, since the a and b columns have conflicting implicit
collations. Since the < operator does need to know which collation to use, this will result in an error. The
error can be resolved by attaching an explicit collation specifier to either input expression, thus:
SELECT a < b COLLATE "ru_RU" FROM test1;

or equivalently
SELECT a COLLATE "ru_RU" < b FROM test1;

On the other hand, the structurally similar case
SELECT a || b FROM test1;

does not result in an error, because the || operator does not care about collations: its result is the same
regardless of the collation.

The collation assigned to a function or operator's combined input expressions is also considered to apply
to the function or operator's result, if the function or operator delivers a result of a collatable data type.
So, in
SELECT * FROM test1 ORDER BY a || 'foo';

the ordering will be done according to ru_RU rules. But this query:
SELECT * FROM test1 ORDER BY a || b;

results in an error, because even though the || operator doesn't need to know a collation, the ORDER BY
clause does. As before, the conflict can be resolved with an explicit collation specifier:
SELECT * FROM test1 ORDER BY a || b COLLATE "fr_FR";

22.2.2. Managing Collations
A collation is an SQL schema object that maps an SQL name to locales provided by libraries installed in
the operating system. A collation definition has a provider that specifies which library supplies the locale
data. One standard provider name is libc, which uses the locales provided by the operating system C
library. These are the locales that most tools provided by the operating system use. Another provider is
icu, which uses the external ICU library. ICU locales can only be used if support for ICU was configured
when Postgres Pro was built.

A collation object provided by libc maps to a combination of LC_COLLATE and LC_CTYPE settings, as
accepted by the setlocale() system library call. (As the name would suggest, the main purpose of a
collation is to set LC_COLLATE, which controls the sort order. But it is rarely necessary in practice to
have an LC_CTYPE setting that is different from LC_COLLATE, so it is more convenient to collect these
under one concept than to create another infrastructure for setting LC_CTYPE per expression.) Also, a
libc collation is tied to a character set encoding (see Section 22.3). The same collation name may exist
for different encodings.

579

Localization

A collation object provided by icu maps to a named collator provided by the ICU library. ICU does not
support separate “collate” and “ctype” settings, so they are always the same. Also, ICU collations are
independent of the encoding, so there is always only one ICU collation of a given name in a database.

You can specify the provider of the default collation with the --locale and --lc-collate options of the
initdb or createdb commands, as follows:
--locale=locale[@provider]
--lc-collate=locale[@provider]

where provider can take the icu or libc value, and locale is specified in the libc format. You can only
specify a single locale provider after the @ symbol. The --lc-collate option overrides the --locale
setting, regardless of whether the collation provider is specified.

If you do not specify the provider, libc is used for C and POSIX locales. For other locales, the default
provider is:
• icu at the cluster level
• Provider of the default collation from the template database at the database level

Important
You can only use the icu collation provider for locales that are supported by libc in your operating
system and satisfy all restrictions applicable to icu.

Before starting the server, Postgres Pro checks that the cluster was initialized by a server compiled with
the same version of ICU, even if icu is not used as the provider for the default collation. If the ICU library
versions do not match, Postgres Pro emits the appropriate informational message.

Before connecting to a database with an icu default collation, Postgres Pro compares this collation
version to the one provided by the ICU library. If the collation version changes, you may need to rebuild
the objects that depend on a changed collation if you think this change may affect the sort order of your
data. Postgres Pro displays a warning if collation versions do not match, or it is impossible to compare
them because the cluster does not provide any information about the collation version for the default
collation. To suppress these warnings, you can use the ALTER COLLATION "default" REFRESH VERSION
command, as explained in ALTER COLLATION.

You can find the default collation and its provider in pg_database.datcollate:
locale@provider

22.2.2.1. Standard Collations
On all platforms, the collations named default, C, and POSIX are available. Additional collations may
be available depending on operating system support. The default collation selects the LC_COLLATE and
LC_CTYPE values specified at database creation time. The C and POSIX collations both specify “traditional
C” behavior, in which only the ASCII letters “A” through “Z” are treated as letters, and sorting is done
strictly by character code byte values.

Additionally, the SQL standard collation name ucs_basic is available for encoding UTF8. It is equivalent
to C and sorts by Unicode code point.

22.2.2.2. Predefined Collations
If the operating system provides support for using multiple locales within a single program (newlocale
and related functions), or if support for ICU is configured, then when a database cluster is initialized,
initdb populates the system catalog pg_collation with collations based on all the locales it finds in
the operating system at the time.

To inspect the currently available locales, use the query SELECT * FROM pg_collation, or the command
\dOS+ in psql.

580

Localization

22.2.2.2.1. libc Collations

For example, the operating system might provide a locale named ru_RU.utf8. initdb would then
create a collation named ru_RU.utf8 for encoding UTF8 that has both LC_COLLATE and LC_CTYPE set to
ru_RU.utf8. It will also create a collation with the .utf8 tag stripped off the name. So you could also
use the collation under the name ru_RU, which is less cumbersome to write and makes the name less
encoding-dependent. Note that, nevertheless, the initial set of collation names is platform-dependent.

The default set of collations provided by libc map directly to the locales installed in the operating
system, which can be listed using the command locale -a. In case a libc collation is needed that
has different values for LC_COLLATE and LC_CTYPE, or if new locales are installed in the operating
system after the database system was initialized, then a new collation may be created using the
CREATE COLLATION command. New operating system locales can also be imported en masse using the
pg_import_system_collations() function.

Within any particular database, only collations that use that database's encoding are of interest. Other
entries in pg_collation are ignored. Thus, a stripped collation name such as ru_RU can be considered
unique within a given database even though it would not be unique globally. Use of the stripped collation
names is recommended, since it will make one fewer thing you need to change if you decide to change
to another database encoding. Note however that the default, C, and POSIX collations can be used
regardless of the database encoding.

Postgres Pro considers distinct collation objects to be incompatible even when they have identical
properties. Thus for example,
SELECT a COLLATE "C" < b COLLATE "POSIX" FROM test1;

will draw an error even though the C and POSIX collations have identical behaviors. Mixing stripped and
non-stripped collation names is therefore not recommended.

22.2.2.2.2. ICU Collations
With ICU, it is not sensible to enumerate all possible locale names. ICU uses a particular naming system
for locales, but there are many more ways to name a locale than there are actually distinct locales.
initdb uses the ICU APIs to extract a set of distinct locales to populate the initial set of collations.
Collations provided by ICU are created in the SQL environment with names in BCP 47 language tag
format, with a “private use” extension -x-icu appended, to distinguish them from libc locales.

Here are some example collations that might be created:
ru-x-icu

Russian collation, default variant

ru-UA-x-icu

Russian collation for Ukraine, default variant

(There is also, say, ru-RU-x-icu, but as of this writing, it is equivalent to ru-x-icu.)

und-x-icu (for “undefined”)
ICU “root” collation. Use this to get a reasonable language-agnostic sort order.

Some (less frequently used) encodings are not supported by ICU. When the database encoding is one
of these, ICU collation entries in pg_collation are ignored. Attempting to use one will draw an error
along the lines of “collation "de-x-icu" for encoding "WIN874" does not exist”.

22.2.2.3. Creating New Collation Objects
If the standard and predefined collations are not sufficient, users can create their own collation objects
using the SQL command CREATE COLLATION.

The standard and predefined collations are in the schema pg_catalog, like all predefined objects. User-
defined collations should be created in user schemas. This also ensures that they are saved by pg_dump.

581

Localization

22.2.2.3.1. libc Collations
New libc collations can be created like this:
CREATE COLLATION russian (provider = libc, locale = 'ru_RU');

The exact values that are acceptable for the locale clause in this command depend on the operating
system. On Unix-like systems, the command locale -a will show a list.

Since the predefined libc collations already include all collations defined in the operating system when
the database instance is initialized, it is not often necessary to manually create new ones. Reasons
might be if a different naming system is desired (in which case see also Section 22.2.2.3.3) or if
the operating system has been upgraded to provide new locale definitions (in which case see also
pg_import_system_collations()).

22.2.2.3.2. ICU Collations
ICU allows collations to be customized beyond the basic language+country set that is preloaded by
initdb. Users are encouraged to define their own collation objects that make use of these facilities to
suit the sorting behavior to their requirements. See https://unicode-org.github.io/icu/userguide/locale/
and https://unicode-org.github.io/icu/userguide/collation/api.html for information on ICU locale naming.
The set of acceptable names and attributes depends on the particular ICU version.

Here are some examples:
CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale = 'de-u-co-phonebk');
CREATE COLLATION "de-u-co-phonebk-x-icu" (provider = icu, locale =
'de@collation=phonebook');

German collation with phone book collation type

The first example selects the ICU locale using a “language tag” per BCP 47. The second example
uses the traditional ICU-specific locale syntax. The first style is preferred going forward, but it is not
supported by older ICU versions.

Note that you can name the collation objects in the SQL environment anything you want. In this
example, we follow the naming style that the predefined collations use, which in turn also follow BCP
47, but that is not required for user-defined collations.

CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = 'und-u-co-emoji');
CREATE COLLATION "und-u-co-emoji-x-icu" (provider = icu, locale = '@collation=emoji');

Root collation with Emoji collation type, per Unicode Technical Standard #51

Observe how in the traditional ICU locale naming system, the root locale is selected by an empty
string.

CREATE COLLATION latn_cyrl (provider = icu, locale = 'ru-RU-u-kr-latn-cyrl');
CREATE COLLATION latn_cyrl (provider = icu, locale = 'ru@colReorder=latn-cyrl');

Sort Latin letters before Cyrillic ones. (The default is Cyrillic before Latin.)

CREATE COLLATION upperfirst (provider = icu, locale = 'ru-RU-u-kf-upper');
CREATE COLLATION upperfirst (provider = icu, locale = 'ru@colCaseFirst=upper');

Sort upper-case letters before lower-case letters. (The default is lower-case letters first.)

CREATE COLLATION special (provider = icu, locale = 'ru-RU-u-kf-upper-kr-latn-cyrl');
CREATE COLLATION special (provider = icu, locale =
'ru@colCaseFirst=upper;colReorder=latn-cyrl');

Combines both of the above options.

CREATE COLLATION numeric (provider = icu, locale = 'en-u-kn-true');
CREATE COLLATION numeric (provider = icu, locale = 'en@colNumeric=yes');

Numeric ordering, sorts sequences of digits by their numeric value, for example: A-21 < A-123 (also
known as natural sort).

582

https://unicode-org.github.io/icu/userguide/locale/
https://unicode-org.github.io/icu/userguide/collation/api.html

Localization

See Unicode Technical Standard #35 and BCP 47 for details. The list of possible collation types (co
subtag) can be found in the CLDR repository.

Note that while this system allows creating collations that “ignore case” or “ignore accents” or similar
(using the ks key), in order for such collations to act in a truly case- or accent-insensitive manner, they
also need to be declared as not deterministic in CREATE COLLATION; see Section 22.2.2.4. Otherwise,
any strings that compare equal according to the collation but are not byte-wise equal will be sorted
according to their byte values.

Note
By design, ICU will accept almost any string as a locale name and match it to the closest locale
it can provide, using the fallback procedure described in its documentation. Thus, there will be
no direct feedback if a collation specification is composed using features that the given ICU
installation does not actually support. It is therefore recommended to create application-level test
cases to check that the collation definitions satisfy one's requirements.

22.2.2.3.3. Copying Collations

The command CREATE COLLATION can also be used to create a new collation from an existing collation,
which can be useful to be able to use operating-system-independent collation names in applications,
create compatibility names, or use an ICU-provided collation under a more readable name. For example:

CREATE COLLATION russian FROM "ru_RU";
CREATE COLLATION french FROM "fr-x-icu";

22.2.2.4. Nondeterministic Collations
A collation is either deterministic or nondeterministic. A deterministic collation uses deterministic
comparisons, which means that it considers strings to be equal only if they consist of the same byte
sequence. Nondeterministic comparison may determine strings to be equal even if they consist of
different bytes. Typical situations include case-insensitive comparison, accent-insensitive comparison,
as well as comparison of strings in different Unicode normal forms. It is up to the collation provider to
actually implement such insensitive comparisons; the deterministic flag only determines whether ties are
to be broken using bytewise comparison. See also Unicode Technical Standard 10 for more information
on the terminology.

To create a nondeterministic collation, specify the property deterministic = false to CREATE
COLLATION, for example:

CREATE COLLATION ndcoll (provider = icu, locale = 'und', deterministic = false);

This example would use the standard Unicode collation in a nondeterministic way. In particular, this
would allow strings in different normal forms to be compared correctly. More interesting examples make
use of the ICU customization facilities explained above. For example:

CREATE COLLATION case_insensitive (provider = icu, locale = 'und-u-ks-level2',
 deterministic = false);
CREATE COLLATION ignore_accents (provider = icu, locale = 'und-u-ks-level1-kc-true',
 deterministic = false);

All standard and predefined collations are deterministic, all user-defined collations are deterministic by
default. While nondeterministic collations give a more “correct” behavior, especially when considering
the full power of Unicode and its many special cases, they also have some drawbacks. Foremost, their
use leads to a performance penalty. Note, in particular, that B-tree cannot use deduplication with indexes
that use a nondeterministic collation. Also, certain operations are not possible with nondeterministic
collations, such as pattern matching operations. Therefore, they should be used only in cases where
they are specifically wanted.

583

https://www.unicode.org/reports/tr35/tr35-collation.html
https://tools.ietf.org/html/bcp47
https://github.com/unicode-org/cldr/blob/master/common/bcp47/collation.xml
https://www.unicode.org/reports/tr10

Localization

Tip
To deal with text in different Unicode normalization forms, it is also an option to use the functions/
expressions normalize and is normalized to preprocess or check the strings, instead of using
nondeterministic collations. There are different trade-offs for each approach.

22.3. Character Set Support
The character set support in Postgres Pro allows you to store text in a variety of character sets (also called
encodings), including single-byte character sets such as the ISO 8859 series and multiple-byte character
sets such as EUC (Extended Unix Code), UTF-8, and Mule internal code. All supported character sets can
be used transparently by clients, but a few are not supported for use within the server (that is, as a server-
side encoding). The default character set is selected while initializing your Postgres Pro database cluster
using initdb. It can be overridden when you create a database, so you can have multiple databases
each with a different character set.

An important restriction, however, is that each database's character set must be compatible with the
database's LC_CTYPE (character classification) and LC_COLLATE (string sort order) locale settings. For
C or POSIX locale, any character set is allowed, but for other libc-provided locales there is only one
character set that will work correctly. (On Windows, however, UTF-8 encoding can be used with any
locale.) If you have ICU support configured, ICU-provided locales can be used with most but not all
server-side encodings.

22.3.1. Supported Character Sets
Table 22.1 shows the character sets available for use in Postgres Pro.

Table 22.1. Postgres Pro Character Sets

Name Description Language Server? ICU? Bytes/
Char

Aliases

BIG5 Big Five Traditional
Chinese

No No 1–2 WIN950,
 Windows950

EUC_CN Extended UNIX
Code-CN

Simplified
Chinese

Yes Yes 1–3

EUC_JP Extended UNIX
Code-JP

Japanese Yes Yes 1–3

EUC_JIS_2004 Extended UNIX
Code-JP, JIS X
0213

Japanese Yes No 1–3

EUC_KR Extended UNIX
Code-KR

Korean Yes Yes 1–3

EUC_TW Extended UNIX
Code-TW

Traditional
Chinese,
 Taiwanese

Yes Yes 1–3

GB18030 National
Standard

Chinese No No 1–4

GBK Extended
National
Standard

Simplified
Chinese

No No 1–2 WIN936,
 Windows936

ISO_8859_5 ISO 8859-5,
 ECMA 113

Latin/Cyrillic Yes Yes 1

ISO_8859_6 ISO 8859-6,
 ECMA 114

Latin/Arabic Yes Yes 1

584

Localization

Name Description Language Server? ICU? Bytes/
Char

Aliases

ISO_8859_7 ISO 8859-7,
 ECMA 118

Latin/Greek Yes Yes 1

ISO_8859_8 ISO 8859-8,
 ECMA 121

Latin/Hebrew Yes Yes 1

JOHAB JOHAB Korean (
Hangul)

No No 1–3

KOI8R KOI8-R Cyrillic (
Russian)

Yes Yes 1 KOI8

KOI8U KOI8-U Cyrillic (
Ukrainian)

Yes Yes 1

LATIN1 ISO 8859-1,
 ECMA 94

Western
European

Yes Yes 1 ISO88591

LATIN2 ISO 8859-2,
 ECMA 94

Central
European

Yes Yes 1 ISO88592

LATIN3 ISO 8859-3,
 ECMA 94

South
European

Yes Yes 1 ISO88593

LATIN4 ISO 8859-4,
 ECMA 94

North
European

Yes Yes 1 ISO88594

LATIN5 ISO 8859-9,
 ECMA 128

Turkish Yes Yes 1 ISO88599

LATIN6 ISO 8859-10,
 ECMA 144

Nordic Yes Yes 1 ISO885910

LATIN7 ISO 8859-13 Baltic Yes Yes 1 ISO885913

LATIN8 ISO 8859-14 Celtic Yes Yes 1 ISO885914

LATIN9 ISO 8859-15 LATIN1 with
Euro and
accents

Yes Yes 1 ISO885915

LATIN10 ISO 8859-16,
 ASRO SR
14111

Romanian Yes No 1 ISO885916

MULE_INTERNAL Mule internal
code

Multilingual
Emacs

Yes No 1–4

SJIS Shift JIS Japanese No No 1–2 Mskanji,
 ShiftJIS,
 WIN932,
 Windows932

SHIFT_JIS_2004 Shift JIS, JIS X
0213

Japanese No No 1–2

SQL_ASCII unspecified (
see text)

any Yes No 1

UHC Unified Hangul
Code

Korean No No 1–2 WIN949,
 Windows949

UTF8 Unicode, 8-bit all Yes Yes 1–4 Unicode

WIN866 Windows
CP866

Cyrillic Yes Yes 1 ALT

585

Localization

Name Description Language Server? ICU? Bytes/
Char

Aliases

WIN874 Windows
CP874

Thai Yes No 1

WIN1250 Windows
CP1250

Central
European

Yes Yes 1

WIN1251 Windows
CP1251

Cyrillic Yes Yes 1 WIN

WIN1252 Windows
CP1252

Western
European

Yes Yes 1

WIN1253 Windows
CP1253

Greek Yes Yes 1

WIN1254 Windows
CP1254

Turkish Yes Yes 1

WIN1255 Windows
CP1255

Hebrew Yes Yes 1

WIN1256 Windows
CP1256

Arabic Yes Yes 1

WIN1257 Windows
CP1257

Baltic Yes Yes 1

WIN1258 Windows
CP1258

Vietnamese Yes Yes 1 ABC, TCVN,
 TCVN5712,
 VSCII

Not all client APIs support all the listed character sets. For example, the Postgres Pro JDBC driver does
not support MULE_INTERNAL, LATIN6, LATIN8, and LATIN10.

The SQL_ASCII setting behaves considerably differently from the other settings. When the server
character set is SQL_ASCII, the server interprets byte values 0–127 according to the ASCII standard,
while byte values 128–255 are taken as uninterpreted characters. No encoding conversion will be done
when the setting is SQL_ASCII. Thus, this setting is not so much a declaration that a specific encoding
is in use, as a declaration of ignorance about the encoding. In most cases, if you are working with any
non-ASCII data, it is unwise to use the SQL_ASCII setting because Postgres Pro will be unable to help
you by converting or validating non-ASCII characters.

22.3.2. Setting the Character Set
initdb defines the default character set (encoding) for a Postgres Pro cluster. For example,
initdb -E EUC_JP

sets the default character set to EUC_JP (Extended Unix Code for Japanese). You can use --encoding
instead of -E if you prefer longer option strings. If no -E or --encoding option is given, initdb attempts
to determine the appropriate encoding to use based on the specified or default locale.

You can specify a non-default encoding at database creation time, provided that the encoding is
compatible with the selected locale:
createdb -E EUC_KR -T template0 --lc-collate=ko_KR.euckr --lc-ctype=ko_KR.euckr korean

This will create a database named korean that uses the character set EUC_KR, and locale ko_KR. Another
way to accomplish this is to use this SQL command:
CREATE DATABASE korean WITH ENCODING 'EUC_KR' LC_COLLATE='ko_KR.euckr'
 LC_CTYPE='ko_KR.euckr' TEMPLATE=template0;

Notice that the above commands specify copying the template0 database. When copying any other
database, the encoding and locale settings cannot be changed from those of the source database,
because that might result in corrupt data. For more information see Section 21.3.

586

Localization

The encoding for a database is stored in the system catalog pg_database. You can see it by using the
psql -l option or the \l command.
$ psql -l
 List of databases
 Name | Owner | Encoding | Collation | Ctype | Access
 Privileges
-----------+----------+-----------+-------------+-------------
+-------------------------------------
 clocaledb | hlinnaka | SQL_ASCII | C | C |
 englishdb | hlinnaka | UTF8 | en_GB.UTF8 | en_GB.UTF8 |
 japanese | hlinnaka | UTF8 | ja_JP.UTF8 | ja_JP.UTF8 |
 korean | hlinnaka | EUC_KR | ko_KR.euckr | ko_KR.euckr |
 postgres | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 |
 template0 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
 template1 | hlinnaka | UTF8 | fi_FI.UTF8 | fi_FI.UTF8 | {=c/
hlinnaka,hlinnaka=CTc/hlinnaka}
(7 rows)

Important
On most modern operating systems, Postgres Pro can determine which character set is implied
by the LC_CTYPE setting, and it will enforce that only the matching database encoding is used. On
older systems it is your responsibility to ensure that you use the encoding expected by the locale
you have selected. A mistake in this area is likely to lead to strange behavior of locale-dependent
operations such as sorting.

Postgres Pro will allow superusers to create databases with SQL_ASCII encoding even when
LC_CTYPE is not C or POSIX. As noted above, SQL_ASCII does not enforce that the data stored
in the database has any particular encoding, and so this choice poses risks of locale-dependent
misbehavior. Using this combination of settings is deprecated and may someday be forbidden
altogether.

22.3.3. Automatic Character Set Conversion Between Server and
Client

Postgres Pro supports automatic character set conversion between server and client for many
combinations of character sets (Section 22.3.4 shows which ones).

To enable automatic character set conversion, you have to tell Postgres Pro the character set (encoding)
you would like to use in the client. There are several ways to accomplish this:
• Using the \encoding command in psql. \encoding allows you to change client encoding on the fly.

For example, to change the encoding to SJIS, type:
\encoding SJIS

• libpq (Section 31.10) has functions to control the client encoding.
• Using SET client_encoding TO. Setting the client encoding can be done with this SQL command:

SET CLIENT_ENCODING TO 'value';

Also you can use the standard SQL syntax SET NAMES for this purpose:
SET NAMES 'value';

To query the current client encoding:
SHOW client_encoding;

To return to the default encoding:

587

Localization

RESET client_encoding;

• Using PGCLIENTENCODING. If the environment variable PGCLIENTENCODING is defined in the client's
environment, that client encoding is automatically selected when a connection to the server is
made. (This can subsequently be overridden using any of the other methods mentioned above.)

• Using the configuration variable client_encoding. If the client_encoding variable is set, that client
encoding is automatically selected when a connection to the server is made. (This can subsequently
be overridden using any of the other methods mentioned above.)

If the conversion of a particular character is not possible — suppose you chose EUC_JP for the server
and LATIN1 for the client, and some Japanese characters are returned that do not have a representation
in LATIN1 — an error is reported.

If the client character set is defined as SQL_ASCII, encoding conversion is disabled, regardless of the
server's character set. (However, if the server's character set is not SQL_ASCII, the server will still check
that incoming data is valid for that encoding; so the net effect is as though the client character set were
the same as the server's.) Just as for the server, use of SQL_ASCII is unwise unless you are working with
all-ASCII data.

22.3.4. Available Character Set Conversions
PostgreSQL allows conversion between any two character sets for which a conversion function is
listed in the pg_conversion system catalog. PostgreSQL comes with some predefined conversions, as
summarized in Table 22.2 and shown in more detail in Table 22.3. You can create a new conversion
using the SQL command CREATE CONVERSION. (To be used for automatic client/server conversions, a
conversion must be marked as “default” for its character set pair.)

Table 22.2. Built-in Client/Server Character Set Conversions

Server Character Set Available Client Character Sets
BIG5 not supported as a server encoding
EUC_CN EUC_CN, MULE_INTERNAL , UTF8
EUC_JP EUC_JP, MULE_INTERNAL , SJIS, UTF8
EUC_JIS_2004 EUC_JIS_2004, SHIFT_JIS_2004 , UTF8
EUC_KR EUC_KR, MULE_INTERNAL , UTF8
EUC_TW EUC_TW, BIG5, MULE_INTERNAL , UTF8
GB18030 not supported as a server encoding
GBK not supported as a server encoding
ISO_8859_5 ISO_8859_5, KOI8R, MULE_INTERNAL , UTF8, WIN866, WIN1251
ISO_8859_6 ISO_8859_6, UTF8
ISO_8859_7 ISO_8859_7, UTF8
ISO_8859_8 ISO_8859_8, UTF8
JOHAB not supported as a server encoding
KOI8R KOI8R, ISO_8859_5 , MULE_INTERNAL , UTF8, WIN866, WIN1251
KOI8U KOI8U, UTF8
LATIN1 LATIN1, MULE_INTERNAL , UTF8
LATIN2 LATIN2, MULE_INTERNAL , UTF8, WIN1250
LATIN3 LATIN3, MULE_INTERNAL , UTF8
LATIN4 LATIN4, MULE_INTERNAL , UTF8
LATIN5 LATIN5, UTF8
LATIN6 LATIN6, UTF8

588

Localization

Server Character Set Available Client Character Sets
LATIN7 LATIN7, UTF8
LATIN8 LATIN8, UTF8
LATIN9 LATIN9, UTF8
LATIN10 LATIN10, UTF8
MULE_INTERNAL MULE_INTERNAL, BIG5, EUC_CN , EUC_JP , EUC_KR , EUC_TW , ISO_8859_

5 , KOI8R, LATIN1 to LATIN4, SJIS, WIN866, WIN1250, WIN1251
SJIS not supported as a server encoding
SHIFT_JIS_2004 not supported as a server encoding
SQL_ASCII any (no conversion will be performed)
UHC not supported as a server encoding
UTF8 all supported encodings
WIN866 WIN866, ISO_8859_5 , KOI8R, MULE_INTERNAL , UTF8, WIN1251
WIN874 WIN874, UTF8
WIN1250 WIN1250, LATIN2, MULE_INTERNAL , UTF8
WIN1251 WIN1251, ISO_8859_5 , KOI8R, MULE_INTERNAL , UTF8, WIN866
WIN1252 WIN1252, UTF8
WIN1253 WIN1253, UTF8
WIN1254 WIN1254, UTF8
WIN1255 WIN1255, UTF8
WIN1256 WIN1256, UTF8
WIN1257 WIN1257, UTF8
WIN1258 WIN1258, UTF8

Table 22.3. All Built-in Character Set Conversions

Conversion Name a Source Encoding Destination Encoding
big5_to_euc_tw BIG5 EUC_TW

big5_to_mic BIG5 MULE_INTERNAL

big5_to_utf8 BIG5 UTF8

euc_cn_to_mic EUC_CN MULE_INTERNAL

euc_cn_to_utf8 EUC_CN UTF8

euc_jp_to_mic EUC_JP MULE_INTERNAL

euc_jp_to_sjis EUC_JP SJIS

euc_jp_to_utf8 EUC_JP UTF8

euc_kr_to_mic EUC_KR MULE_INTERNAL

euc_kr_to_utf8 EUC_KR UTF8

euc_tw_to_big5 EUC_TW BIG5

euc_tw_to_mic EUC_TW MULE_INTERNAL

euc_tw_to_utf8 EUC_TW UTF8

gb18030_to_utf8 GB18030 UTF8

gbk_to_utf8 GBK UTF8

iso_8859_10_to_utf8 LATIN6 UTF8

589

Localization

Conversion Name a Source Encoding Destination Encoding
iso_8859_13_to_utf8 LATIN7 UTF8

iso_8859_14_to_utf8 LATIN8 UTF8

iso_8859_15_to_utf8 LATIN9 UTF8

iso_8859_16_to_utf8 LATIN10 UTF8

iso_8859_1_to_mic LATIN1 MULE_INTERNAL

iso_8859_1_to_utf8 LATIN1 UTF8

iso_8859_2_to_mic LATIN2 MULE_INTERNAL

iso_8859_2_to_utf8 LATIN2 UTF8

iso_8859_2_to_windows_1250 LATIN2 WIN1250

iso_8859_3_to_mic LATIN3 MULE_INTERNAL

iso_8859_3_to_utf8 LATIN3 UTF8

iso_8859_4_to_mic LATIN4 MULE_INTERNAL

iso_8859_4_to_utf8 LATIN4 UTF8

iso_8859_5_to_koi8_r ISO_8859_5 KOI8R

iso_8859_5_to_mic ISO_8859_5 MULE_INTERNAL

iso_8859_5_to_utf8 ISO_8859_5 UTF8

iso_8859_5_to_windows_1251 ISO_8859_5 WIN1251

iso_8859_5_to_windows_866 ISO_8859_5 WIN866

iso_8859_6_to_utf8 ISO_8859_6 UTF8

iso_8859_7_to_utf8 ISO_8859_7 UTF8

iso_8859_8_to_utf8 ISO_8859_8 UTF8

iso_8859_9_to_utf8 LATIN5 UTF8

johab_to_utf8 JOHAB UTF8

koi8_r_to_iso_8859_5 KOI8R ISO_8859_5

koi8_r_to_mic KOI8R MULE_INTERNAL

koi8_r_to_utf8 KOI8R UTF8

koi8_r_to_windows_1251 KOI8R WIN1251

koi8_r_to_windows_866 KOI8R WIN866

koi8_u_to_utf8 KOI8U UTF8

mic_to_big5 MULE_INTERNAL BIG5

mic_to_euc_cn MULE_INTERNAL EUC_CN

mic_to_euc_jp MULE_INTERNAL EUC_JP

mic_to_euc_kr MULE_INTERNAL EUC_KR

mic_to_euc_tw MULE_INTERNAL EUC_TW

mic_to_iso_8859_1 MULE_INTERNAL LATIN1

mic_to_iso_8859_2 MULE_INTERNAL LATIN2

mic_to_iso_8859_3 MULE_INTERNAL LATIN3

mic_to_iso_8859_4 MULE_INTERNAL LATIN4

mic_to_iso_8859_5 MULE_INTERNAL ISO_8859_5

mic_to_koi8_r MULE_INTERNAL KOI8R

590

Localization

Conversion Name a Source Encoding Destination Encoding
mic_to_sjis MULE_INTERNAL SJIS

mic_to_windows_1250 MULE_INTERNAL WIN1250

mic_to_windows_1251 MULE_INTERNAL WIN1251

mic_to_windows_866 MULE_INTERNAL WIN866

sjis_to_euc_jp SJIS EUC_JP

sjis_to_mic SJIS MULE_INTERNAL

sjis_to_utf8 SJIS UTF8

windows_1258_to_utf8 WIN1258 UTF8

uhc_to_utf8 UHC UTF8

utf8_to_big5 UTF8 BIG5

utf8_to_euc_cn UTF8 EUC_CN

utf8_to_euc_jp UTF8 EUC_JP

utf8_to_euc_kr UTF8 EUC_KR

utf8_to_euc_tw UTF8 EUC_TW

utf8_to_gb18030 UTF8 GB18030

utf8_to_gbk UTF8 GBK

utf8_to_iso_8859_1 UTF8 LATIN1

utf8_to_iso_8859_10 UTF8 LATIN6

utf8_to_iso_8859_13 UTF8 LATIN7

utf8_to_iso_8859_14 UTF8 LATIN8

utf8_to_iso_8859_15 UTF8 LATIN9

utf8_to_iso_8859_16 UTF8 LATIN10

utf8_to_iso_8859_2 UTF8 LATIN2

utf8_to_iso_8859_3 UTF8 LATIN3

utf8_to_iso_8859_4 UTF8 LATIN4

utf8_to_iso_8859_5 UTF8 ISO_8859_5

utf8_to_iso_8859_6 UTF8 ISO_8859_6

utf8_to_iso_8859_7 UTF8 ISO_8859_7

utf8_to_iso_8859_8 UTF8 ISO_8859_8

utf8_to_iso_8859_9 UTF8 LATIN5

utf8_to_johab UTF8 JOHAB

utf8_to_koi8_r UTF8 KOI8R

utf8_to_koi8_u UTF8 KOI8U

utf8_to_sjis UTF8 SJIS

utf8_to_windows_1258 UTF8 WIN1258

utf8_to_uhc UTF8 UHC

utf8_to_windows_1250 UTF8 WIN1250

utf8_to_windows_1251 UTF8 WIN1251

utf8_to_windows_1252 UTF8 WIN1252

utf8_to_windows_1253 UTF8 WIN1253

591

Localization

Conversion Name a Source Encoding Destination Encoding
utf8_to_windows_1254 UTF8 WIN1254

utf8_to_windows_1255 UTF8 WIN1255

utf8_to_windows_1256 UTF8 WIN1256

utf8_to_windows_1257 UTF8 WIN1257

utf8_to_windows_866 UTF8 WIN866

utf8_to_windows_874 UTF8 WIN874

windows_1250_to_iso_8859_2 WIN1250 LATIN2

windows_1250_to_mic WIN1250 MULE_INTERNAL

windows_1250_to_utf8 WIN1250 UTF8

windows_1251_to_iso_8859_5 WIN1251 ISO_8859_5

windows_1251_to_koi8_r WIN1251 KOI8R

windows_1251_to_mic WIN1251 MULE_INTERNAL

windows_1251_to_utf8 WIN1251 UTF8

windows_1251_to_windows_866 WIN1251 WIN866

windows_1252_to_utf8 WIN1252 UTF8

windows_1256_to_utf8 WIN1256 UTF8

windows_866_to_iso_8859_5 WIN866 ISO_8859_5

windows_866_to_koi8_r WIN866 KOI8R

windows_866_to_mic WIN866 MULE_INTERNAL

windows_866_to_utf8 WIN866 UTF8

windows_866_to_windows_1251 WIN866 WIN

windows_874_to_utf8 WIN874 UTF8

euc_jis_2004_to_utf8 EUC_JIS_2004 UTF8

utf8_to_euc_jis_2004 UTF8 EUC_JIS_2004

shift_jis_2004_to_utf8 SHIFT_JIS_2004 UTF8

utf8_to_shift_jis_2004 UTF8 SHIFT_JIS_2004

euc_jis_2004_to_shift_jis_2004 EUC_JIS_2004 SHIFT_JIS_2004

shift_jis_2004_to_euc_jis_2004 SHIFT_JIS_2004 EUC_JIS_2004
a The conversion names follow a standard naming scheme: The official name of the source encoding with all non-alphanumeric characters replaced by underscores,
followed by _to_, followed by the similarly processed destination encoding name. Therefore, these names sometimes deviate from the customary encoding names
shown in Table 22.1.

22.3.5. Further Reading
These are good sources to start learning about various kinds of encoding systems.
CJKV Information Processing: Chinese, Japanese, Korean & Vietnamese Computing

Contains detailed explanations of EUC_JP, EUC_CN, EUC_KR, EUC_TW.

https://www.unicode.org/
The web site of the Unicode Consortium.

RFC 3629
UTF-8 (8-bit UCS/Unicode Transformation Format) is defined here.

592

https://www.unicode.org/

Chapter 23. Routine Database Maintenance
Tasks

Postgres Pro, like any database software, requires that certain tasks be performed regularly to achieve
optimum performance. The tasks discussed here are required, but they are repetitive in nature and can
easily be automated using standard tools such as cron scripts or Windows' Task Scheduler. It is the
database administrator's responsibility to set up appropriate scripts, and to check that they execute
successfully.

One obvious maintenance task is the creation of backup copies of the data on a regular schedule. Without
a recent backup, you have no chance of recovery after a catastrophe (disk failure, fire, mistakenly
dropping a critical table, etc.). The backup and recovery mechanisms available in Postgres Pro are
discussed at length in Chapter 24.

The other main category of maintenance task is periodic “vacuuming” of the database. This activity is
discussed in Section 23.1. Closely related to this is updating the statistics that will be used by the query
planner, as discussed in Section 23.1.3.

Another task that might need periodic attention is log file management. This is discussed in Section 23.3.

check_postgres is available for monitoring database health and reporting unusual conditions.
check_postgres integrates with Nagios and MRTG, but can be run standalone too.

Postgres Pro is low-maintenance compared to some other database management systems. Nonetheless,
appropriate attention to these tasks will go far towards ensuring a pleasant and productive experience
with the system.

23.1. Routine Vacuuming
Postgres Pro databases require periodic maintenance known as vacuuming. For many installations,
it is sufficient to let vacuuming be performed by the autovacuum daemon, which is described in
Section 23.1.6. You might need to adjust the autovacuuming parameters described there to obtain
best results for your situation. Some database administrators will want to supplement or replace the
daemon's activities with manually-managed VACUUM commands, which typically are executed according
to a schedule by cron or Task Scheduler scripts. To set up manually-managed vacuuming properly, it is
essential to understand the issues discussed in the next few subsections. Administrators who rely on
autovacuuming may still wish to skim this material to help them understand and adjust autovacuuming.

23.1.1. Vacuuming Basics
Postgres Pro's VACUUM command has to process each table on a regular basis for several reasons:

1. To recover or reuse disk space occupied by updated or deleted rows.

2. To update data statistics used by the Postgres Pro query planner.

3. To update the visibility map, which speeds up index-only scans.

4. To protect against loss of very old data due to transaction ID wraparound or multixact ID wraparound.

Each of these reasons dictates performing VACUUM operations of varying frequency and scope, as
explained in the following subsections.

There are two variants of VACUUM: standard VACUUM and VACUUM FULL. VACUUM FULL can reclaim more disk
space but runs much more slowly. Also, the standard form of VACUUM can run in parallel with production
database operations. (Commands such as SELECT, INSERT, UPDATE, and DELETE will continue to function
normally, though you will not be able to modify the definition of a table with commands such as ALTER
TABLE while it is being vacuumed.) VACUUM FULL requires an ACCESS EXCLUSIVE lock on the table it is

593

https://bucardo.org/check_postgres/

Routine Database
Maintenance Tasks

working on, and therefore cannot be done in parallel with other use of the table. Generally, therefore,
administrators should strive to use standard VACUUM and avoid VACUUM FULL.

VACUUM creates a substantial amount of I/O traffic, which can cause poor performance for other active
sessions. There are configuration parameters that can be adjusted to reduce the performance impact of
background vacuuming — see Section 18.4.4.

23.1.2. Recovering Disk Space
In Postgres Pro, an UPDATE or DELETE of a row does not immediately remove the old version of the
row. This approach is necessary to gain the benefits of multiversion concurrency control (MVCC, see
Chapter 13): the row version must not be deleted while it is still potentially visible to other transactions.
But eventually, an outdated or deleted row version is no longer of interest to any transaction. The space
it occupies must then be reclaimed for reuse by new rows, to avoid unbounded growth of disk space
requirements. This is done by running VACUUM.

The standard form of VACUUM removes dead row versions in tables and indexes and marks the space
available for future reuse. However, it will not return the space to the operating system, except in the
special case where one or more pages at the end of a table become entirely free and an exclusive table
lock can be easily obtained. In contrast, VACUUM FULL actively compacts tables by writing a complete
new version of the table file with no dead space. This minimizes the size of the table, but can take a long
time. It also requires extra disk space for the new copy of the table, until the operation completes.

The usual goal of routine vacuuming is to do standard VACUUMs often enough to avoid needing VACUUM
FULL. The autovacuum daemon attempts to work this way, and in fact will never issue VACUUM FULL. In
this approach, the idea is not to keep tables at their minimum size, but to maintain steady-state usage
of disk space: each table occupies space equivalent to its minimum size plus however much space gets
used up between vacuum runs. Although VACUUM FULL can be used to shrink a table back to its minimum
size and return the disk space to the operating system, there is not much point in this if the table will
just grow again in the future. Thus, moderately-frequent standard VACUUM runs are a better approach
than infrequent VACUUM FULL runs for maintaining heavily-updated tables.

Some administrators prefer to schedule vacuuming themselves, for example doing all the work at night
when load is low. The difficulty with doing vacuuming according to a fixed schedule is that if a table has an
unexpected spike in update activity, it may get bloated to the point that VACUUM FULL is really necessary
to reclaim space. Using the autovacuum daemon alleviates this problem, since the daemon schedules
vacuuming dynamically in response to update activity. It is unwise to disable the daemon completely
unless you have an extremely predictable workload. One possible compromise is to set the daemon's
parameters so that it will only react to unusually heavy update activity, thus keeping things from getting
out of hand, while scheduled VACUUMs are expected to do the bulk of the work when the load is typical.

For those not using autovacuum, a typical approach is to schedule a database-wide VACUUM once a day
during a low-usage period, supplemented by more frequent vacuuming of heavily-updated tables as
necessary. (Some installations with extremely high update rates vacuum their busiest tables as often as
once every few minutes.) If you have multiple databases in a cluster, don't forget to VACUUM each one;
the program vacuumdb might be helpful.

Tip
Plain VACUUM may not be satisfactory when a table contains large numbers of dead row versions as
a result of massive update or delete activity. If you have such a table and you need to reclaim the
excess disk space it occupies, you will need to use VACUUM FULL, or alternatively CLUSTER or one
of the table-rewriting variants of ALTER TABLE. These commands rewrite an entire new copy of
the table and build new indexes for it. All these options require an ACCESS EXCLUSIVE lock. Note
that they also temporarily use extra disk space approximately equal to the size of the table, since
the old copies of the table and indexes can't be released until the new ones are complete.

594

Routine Database
Maintenance Tasks

Tip
If you have a table whose entire contents are deleted on a periodic basis, consider doing it with
TRUNCATE rather than using DELETE followed by VACUUM. TRUNCATE removes the entire content
of the table immediately, without requiring a subsequent VACUUM or VACUUM FULL to reclaim the
now-unused disk space. The disadvantage is that strict MVCC semantics are violated.

23.1.3. Updating Planner Statistics
The Postgres Pro query planner relies on statistical information about the contents of tables in order to
generate good plans for queries. These statistics are gathered by the ANALYZE command, which can be
invoked by itself or as an optional step in VACUUM. It is important to have reasonably accurate statistics,
otherwise poor choices of plans might degrade database performance.

The autovacuum daemon, if enabled, will automatically issue ANALYZE commands whenever the content
of a table has changed sufficiently. However, administrators might prefer to rely on manually-scheduled
ANALYZE operations, particularly if it is known that update activity on a table will not affect the statistics
of “interesting” columns. The daemon schedules ANALYZE strictly as a function of the number of rows
inserted or updated; it has no knowledge of whether that will lead to meaningful statistical changes.

Tuples changed in partitions and inheritance children do not trigger analyze on the parent table. If the
parent table is empty or rarely changed, it may never be processed by autovacuum, and the statistics
for the inheritance tree as a whole won't be collected. It is necessary to run ANALYZE on the parent table
manually in order to keep the statistics up to date.

As with vacuuming for space recovery, frequent updates of statistics are more useful for heavily-updated
tables than for seldom-updated ones. But even for a heavily-updated table, there might be no need
for statistics updates if the statistical distribution of the data is not changing much. A simple rule of
thumb is to think about how much the minimum and maximum values of the columns in the table
change. For example, a timestamp column that contains the time of row update will have a constantly-
increasing maximum value as rows are added and updated; such a column will probably need more
frequent statistics updates than, say, a column containing URLs for pages accessed on a website. The
URL column might receive changes just as often, but the statistical distribution of its values probably
changes relatively slowly.

It is possible to run ANALYZE on specific tables and even just specific columns of a table, so the flexibility
exists to update some statistics more frequently than others if your application requires it. In practice,
however, it is usually best to just analyze the entire database, because it is a fast operation. ANALYZE
uses a statistically random sampling of the rows of a table rather than reading every single row.

Tip
Although per-column tweaking of ANALYZE frequency might not be very productive, you might
find it worthwhile to do per-column adjustment of the level of detail of the statistics collected
by ANALYZE. Columns that are heavily used in WHERE clauses and have highly irregular data
distributions might require a finer-grain data histogram than other columns. See ALTER TABLE SET
STATISTICS, or change the database-wide default using the default_statistics_target configuration
parameter.

Also, by default there is limited information available about the selectivity of functions. However,
if you create an expression index that uses a function call, useful statistics will be gathered about
the function, which can greatly improve query plans that use the expression index.

Tip
The autovacuum daemon does not issue ANALYZE commands for foreign tables, since it has no
means of determining how often that might be useful. If your queries require statistics on foreign

595

Routine Database
Maintenance Tasks

tables for proper planning, it's a good idea to run manually-managed ANALYZE commands on those
tables on a suitable schedule.

Tip
The autovacuum daemon does not issue ANALYZE commands for partitioned tables. Inheritance
parents will only be analyzed if the parent itself is changed - changes to child tables do not trigger
autoanalyze on the parent table. If your queries require statistics on parent tables for proper
planning, it is necessary to periodically run a manual ANALYZE on those tables to keep the statistics
up to date.

23.1.4. Updating the Visibility Map
Vacuum maintains a visibility map for each table to keep track of which pages contain only tuples that
are known to be visible to all active transactions (and all future transactions, until the page is again
modified). This has two purposes. First, vacuum itself can skip such pages on the next run, since there
is nothing to clean up.

Second, it allows Postgres Pro to answer some queries using only the index, without reference to the
underlying table. Since Postgres Pro indexes don't contain tuple visibility information, a normal index
scan fetches the heap tuple for each matching index entry, to check whether it should be seen by the
current transaction. An index-only scan, on the other hand, checks the visibility map first. If it's known
that all tuples on the page are visible, the heap fetch can be skipped. This is most useful on large data
sets where the visibility map can prevent disk accesses. The visibility map is vastly smaller than the
heap, so it can easily be cached even when the heap is very large.

23.1.5. Preventing Transaction ID Wraparound Failures
Postgres Pro's MVCC transaction semantics depend on being able to compare transaction ID (XID)
numbers: a row version with an insertion XID greater than the current transaction's XID is “in the future”
and should not be visible to the current transaction. But since transaction IDs have limited size (32
bits) a cluster that runs for a long time (more than 4 billion transactions) would suffer transaction ID
wraparound: the XID counter wraps around to zero, and all of a sudden transactions that were in the
past appear to be in the future — which means their output become invisible. In short, catastrophic data
loss. (Actually the data is still there, but that's cold comfort if you cannot get at it.) To avoid this, it is
necessary to vacuum every table in every database at least once every two billion transactions.

The reason that periodic vacuuming solves the problem is that VACUUM will mark rows as frozen,
indicating that they were inserted by a transaction that committed sufficiently far in the past that
the effects of the inserting transaction are certain to be visible to all current and future transactions.
Normal XIDs are compared using modulo-232 arithmetic. This means that for every normal XID, there
are two billion XIDs that are “older” and two billion that are “newer”; another way to say it is that the
normal XID space is circular with no endpoint. Therefore, once a row version has been created with a
particular normal XID, the row version will appear to be “in the past” for the next two billion transactions,
no matter which normal XID we are talking about. If the row version still exists after more than two
billion transactions, it will suddenly appear to be in the future. To prevent this, Postgres Pro reserves a
special XID, FrozenTransactionId, which does not follow the normal XID comparison rules and is always
considered older than every normal XID. Frozen row versions are treated as if the inserting XID were
FrozenTransactionId, so that they will appear to be “in the past” to all normal transactions regardless
of wraparound issues, and so such row versions will be valid until deleted, no matter how long that is.

Note
In PostgreSQL versions before 9.4, freezing was implemented by actually replacing a row's
insertion XID with FrozenTransactionId, which was visible in the row's xmin system column.
Newer versions just set a flag bit, preserving the row's original xmin for possible forensic use.

596

Routine Database
Maintenance Tasks

However, rows with xmin equal to FrozenTransactionId (2) may still be found in databases
pg_upgrade'd from pre-9.4 versions.

Also, system catalogs may contain rows with xmin equal to BootstrapTransactionId (1),
indicating that they were inserted during the first phase of initdb. Like FrozenTransactionId,
this special XID is treated as older than every normal XID.

vacuum_freeze_min_age controls how old an XID value has to be before rows bearing that XID will be
frozen. Increasing this setting may avoid unnecessary work if the rows that would otherwise be frozen
will soon be modified again, but decreasing this setting increases the number of transactions that can
elapse before the table must be vacuumed again.

VACUUM uses the visibility map to determine which pages of a table must be scanned. Normally, it will
skip pages that don't have any dead row versions even if those pages might still have row versions
with old XID values. Therefore, normal VACUUMs won't always freeze every old row version in the table.
Periodically, VACUUM will perform an aggressive vacuum, skipping only those pages which contain neither
dead rows nor any unfrozen XID or MXID values. vacuum_freeze_table_age controls when VACUUM does
that: all-visible but not all-frozen pages are scanned if the number of transactions that have passed since
the last such scan is greater than vacuum_freeze_table_age minus vacuum_freeze_min_age. Setting
vacuum_freeze_table_age to 0 forces VACUUM to use this more aggressive strategy for all scans.

The maximum time that a table can go unvacuumed is two billion transactions minus the
vacuum_freeze_min_age value at the time of the last aggressive vacuum. If it were to go unvacuumed for
longer than that, data loss could result. To ensure that this does not happen, autovacuum is invoked on
any table that might contain unfrozen rows with XIDs older than the age specified by the configuration
parameter autovacuum_freeze_max_age. (This will happen even if autovacuum is disabled.)

This implies that if a table is not otherwise vacuumed, autovacuum will be invoked on it approximately
once every autovacuum_freeze_max_age minus vacuum_freeze_min_age transactions. For tables that
are regularly vacuumed for space reclamation purposes, this is of little importance. However, for static
tables (including tables that receive inserts, but no updates or deletes), there is no need to vacuum for
space reclamation, so it can be useful to try to maximize the interval between forced autovacuums on
very large static tables. Obviously one can do this either by increasing autovacuum_freeze_max_age or
decreasing vacuum_freeze_min_age.

The effective maximum for vacuum_freeze_table_age is 0.95 * autovacuum_freeze_max_age; a setting
higher than that will be capped to the maximum. A value higher than autovacuum_freeze_max_age
wouldn't make sense because an anti-wraparound autovacuum would be triggered at that point
anyway, and the 0.95 multiplier leaves some breathing room to run a manual VACUUM before
that happens. As a rule of thumb, vacuum_freeze_table_age should be set to a value somewhat
below autovacuum_freeze_max_age, leaving enough gap so that a regularly scheduled VACUUM or an
autovacuum triggered by normal delete and update activity is run in that window. Setting it too close
could lead to anti-wraparound autovacuums, even though the table was recently vacuumed to reclaim
space, whereas lower values lead to more frequent aggressive vacuuming.

The sole disadvantage of increasing autovacuum_freeze_max_age (and vacuum_freeze_table_age
along with it) is that the pg_xact and pg_commit_ts subdirectories of the database cluster will take more
space, because it must store the commit status and (if track_commit_timestamp is enabled) timestamp
of all transactions back to the autovacuum_freeze_max_age horizon. The commit status uses two bits
per transaction, so if autovacuum_freeze_max_age is set to its maximum allowed value of two billion,
pg_xact can be expected to grow to about half a gigabyte and pg_commit_ts to about 20GB. If this
is trivial compared to your total database size, setting autovacuum_freeze_max_age to its maximum
allowed value is recommended. Otherwise, set it depending on what you are willing to allow for pg_xact
and pg_commit_ts storage. (The default, 200 million transactions, translates to about 50MB of pg_xact
storage and about 2GB of pg_commit_ts storage.)

One disadvantage of decreasing vacuum_freeze_min_age is that it might cause VACUUM to do useless
work: freezing a row version is a waste of time if the row is modified soon thereafter (causing it to acquire

597

Routine Database
Maintenance Tasks

a new XID). So the setting should be large enough that rows are not frozen until they are unlikely to
change any more.

To track the age of the oldest unfrozen XIDs in a database, VACUUM stores XID statistics in the system
tables pg_class and pg_database. In particular, the relfrozenxid column of a table's pg_class row
contains the freeze cutoff XID that was used by the last aggressive VACUUM for that table. All rows inserted
by transactions with XIDs older than this cutoff XID are guaranteed to have been frozen. Similarly, the
datfrozenxid column of a database's pg_database row is a lower bound on the unfrozen XIDs appearing
in that database — it is just the minimum of the per-table relfrozenxid values within the database. A
convenient way to examine this information is to execute queries such as:
SELECT c.oid::regclass as table_name,
 greatest(age(c.relfrozenxid),age(t.relfrozenxid)) as age
FROM pg_class c
LEFT JOIN pg_class t ON c.reltoastrelid = t.oid
WHERE c.relkind IN ('r', 'm');

SELECT datname, age(datfrozenxid) FROM pg_database;

The age column measures the number of transactions from the cutoff XID to the current transaction's
XID.

VACUUM normally only scans pages that have been modified since the last vacuum, but relfrozenxid
can only be advanced when every page of the table that might contain unfrozen XIDs is scanned. This
happens when relfrozenxid is more than vacuum_freeze_table_age transactions old, when VACUUM's
FREEZE option is used, or when all pages that are not already all-frozen happen to require vacuuming to
remove dead row versions. When VACUUM scans every page in the table that is not already all-frozen, it
should set age(relfrozenxid) to a value just a little more than the vacuum_freeze_min_age setting that
was used (more by the number of transactions started since the VACUUM started). If no relfrozenxid-
advancing VACUUM is issued on the table until autovacuum_freeze_max_age is reached, an autovacuum
will soon be forced for the table.

If for some reason autovacuum fails to clear old XIDs from a table, the system will begin to emit
warning messages like this when the database's oldest XIDs reach eleven million transactions from the
wraparound point:
WARNING: database "mydb" must be vacuumed within 10985967 transactions
HINT: To avoid a database shutdown, execute a database-wide VACUUM in that database.

(A manual VACUUM should fix the problem, as suggested by the hint; but note that the VACUUM must be
performed by a superuser, else it will fail to process system catalogs and thus not be able to advance the
database's datfrozenxid.) If these warnings are ignored, the system will shut down and refuse to start
any new transactions once there are fewer than 1 million transactions left until wraparound:
ERROR: database is not accepting commands to avoid wraparound data loss in database
 "mydb"
HINT: Stop the postmaster and vacuum that database in single-user mode.

The 1-million-transaction safety margin exists to let the administrator recover without data loss,
by manually executing the required VACUUM commands. However, since the system will not execute
commands once it has gone into the safety shutdown mode, the only way to do this is to stop the server
and start the server in single-user mode to execute VACUUM. The shutdown mode is not enforced in single-
user mode. See the postgres reference page for details about using single-user mode.

23.1.5.1. Multixacts and Wraparound
Multixact IDs are used to support row locking by multiple transactions. Since there is only limited space
in a tuple header to store lock information, that information is encoded as a “multiple transaction ID”,
or multixact ID for short, whenever there is more than one transaction concurrently locking a row.
Information about which transaction IDs are included in any particular multixact ID is stored separately
in the pg_multixact subdirectory, and only the multixact ID appears in the xmax field in the tuple header.
Like transaction IDs, multixact IDs are implemented as a 32-bit counter and corresponding storage, all

598

Routine Database
Maintenance Tasks

of which requires careful aging management, storage cleanup, and wraparound handling. There is a
separate storage area which holds the list of members in each multixact, which also uses a 32-bit counter
and which must also be managed.

Whenever VACUUM scans any part of a table, it will replace any multixact ID it encounters which
is older than vacuum_multixact_freeze_min_age by a different value, which can be the zero value,
a single transaction ID, or a newer multixact ID. For each table, pg_class.relminmxid stores the
oldest possible multixact ID still appearing in any tuple of that table. If this value is older than
vacuum_multixact_freeze_table_age, an aggressive vacuum is forced. As discussed in the previous
section, an aggressive vacuum means that only those pages which are known to be all-frozen will be
skipped. mxid_age() can be used on pg_class.relminmxid to find its age.

Aggressive VACUUM scans, regardless of what causes them, enable advancing the value for that table.
Eventually, as all tables in all databases are scanned and their oldest multixact values are advanced, on-
disk storage for older multixacts can be removed.

As a safety device, an aggressive vacuum scan will occur for any table whose multixact-age is greater
than autovacuum_multixact_freeze_max_age. Aggressive vacuum scans will also occur progressively for
all tables, starting with those that have the oldest multixact-age, if the amount of used member storage
space exceeds the amount 50% of the addressable storage space. Both of these kinds of aggressive scans
will occur even if autovacuum is nominally disabled.

23.1.6. The Autovacuum Daemon
Postgres Pro has an optional but highly recommended feature called autovacuum, whose purpose is to
automate the execution of VACUUM and ANALYZE commands. When enabled, autovacuum checks for tables
that have had a large number of inserted, updated or deleted tuples. These checks use the statistics
collection facility; therefore, autovacuum cannot be used unless track_counts is set to true. In the default
configuration, autovacuuming is enabled and the related configuration parameters are appropriately set.

The “autovacuum daemon” actually consists of multiple processes. There is a persistent daemon
process, called the autovacuum launcher, which is in charge of starting autovacuum worker processes
for all databases. The launcher will distribute the work across time, attempting to start one
worker within each database every autovacuum_naptime seconds. (Therefore, if the installation has
N databases, a new worker will be launched every autovacuum_naptime/N seconds.) A maximum of
autovacuum_max_workers worker processes are allowed to run at the same time. If there are more than
autovacuum_max_workers databases to be processed, the next database will be processed as soon as the
first worker finishes. Each worker process will check each table within its database and execute VACUUM
and/or ANALYZE as needed. log_autovacuum_min_duration can be set to monitor autovacuum workers'
activity.

If several large tables all become eligible for vacuuming in a short amount of time, all autovacuum
workers might become occupied with vacuuming those tables for a long period. This would result in
other tables and databases not being vacuumed until a worker becomes available. There is no limit on
how many workers might be in a single database, but workers do try to avoid repeating work that has
already been done by other workers. Note that the number of running workers does not count towards
max_connections or superuser_reserved_connections limits.

Tables whose relfrozenxid value is more than autovacuum_freeze_max_age transactions old are always
vacuumed (this also applies to those tables whose freeze max age has been modified via storage
parameters; see below). Otherwise, if the number of tuples obsoleted since the last VACUUM exceeds the
“vacuum threshold”, the table is vacuumed. The vacuum threshold is defined as:

vacuum threshold = vacuum base threshold + vacuum scale factor * number of tuples

where the vacuum base threshold is autovacuum_vacuum_threshold, the vacuum scale factor is
autovacuum_vacuum_scale_factor, and the number of tuples is pg_class.reltuples.

The table is also vacuumed if the number of tuples inserted since the last vacuum has exceeded the
defined insert threshold, which is defined as:

599

Routine Database
Maintenance Tasks

vacuum insert threshold = vacuum base insert threshold + vacuum insert scale factor *
 number of tuples

where the vacuum insert base threshold is autovacuum_vacuum_insert_threshold, and vacuum insert
scale factor is autovacuum_vacuum_insert_scale_factor. Such vacuums may allow portions of the table
to be marked as all visible and also allow tuples to be frozen, which can reduce the work required in
subsequent vacuums. For tables which receive INSERT operations but no or almost no UPDATE/DELETE
operations, it may be beneficial to lower the table's autovacuum_freeze_min_age as this may allow tuples
to be frozen by earlier vacuums. The number of obsolete tuples and the number of inserted tuples are
obtained from the statistics collector; it is a semi-accurate count updated by each UPDATE, DELETE and
INSERT operation. (It is only semi-accurate because some information might be lost under heavy load.)
If the relfrozenxid value of the table is more than vacuum_freeze_table_age transactions old, an
aggressive vacuum is performed to freeze old tuples and advance relfrozenxid; otherwise, only pages
that have been modified since the last vacuum are scanned.

For analyze, a similar condition is used: the threshold, defined as:

analyze threshold = analyze base threshold + analyze scale factor * number of tuples

is compared to the total number of tuples inserted, updated, or deleted since the last ANALYZE.

Partitioned tables are not processed by autovacuum. Statistics should be collected by running a manual
ANALYZE when it is first populated, and again whenever the distribution of data in its partitions changes
significantly.

Temporary tables cannot be accessed by autovacuum. Therefore, appropriate vacuum and analyze
operations should be performed via session SQL commands.

The default thresholds and scale factors are taken from postgresql.conf, but it is possible to override
them (and many other autovacuum control parameters) on a per-table basis; see Storage Parameters
for more information. If a setting has been changed via a table's storage parameters, that value is used
when processing that table; otherwise the global settings are used. See Section 18.10 for more details
on the global settings.

When multiple workers are running, the autovacuum cost delay parameters (see Section 18.4.4) are
“balanced” among all the running workers, so that the total I/O impact on the system is the same
regardless of the number of workers actually running. However, any workers processing tables whose
per-table autovacuum_vacuum_cost_delay or autovacuum_vacuum_cost_limit storage parameters
have been set are not considered in the balancing algorithm.

Autovacuum workers generally don't block other commands. If a process attempts to acquire a lock that
conflicts with the SHARE UPDATE EXCLUSIVE lock held by autovacuum, lock acquisition will interrupt
the autovacuum. For conflicting lock modes, see Table 13.2. However, if the autovacuum is running to
prevent transaction ID wraparound (i.e., the autovacuum query name in the pg_stat_activity view
ends with (to prevent wraparound)), the autovacuum is not automatically interrupted.

Warning
Regularly running commands that acquire locks conflicting with a SHARE UPDATE EXCLUSIVE lock
(e.g., ANALYZE) can effectively prevent autovacuums from ever completing.

23.2. Routine Reindexing
In some situations it is worthwhile to rebuild indexes periodically with the REINDEX command or a
series of individual rebuilding steps.

B-tree index pages that have become completely empty are reclaimed for re-use. However, there is
still a possibility of inefficient use of space: if all but a few index keys on a page have been deleted,

600

Routine Database
Maintenance Tasks

the page remains allocated. Therefore, a usage pattern in which most, but not all, keys in each range
are eventually deleted will see poor use of space. For such usage patterns, periodic reindexing is
recommended.

The potential for bloat in non-B-tree indexes has not been well researched. It is a good idea to periodically
monitor the index's physical size when using any non-B-tree index type.

Also, for B-tree indexes, a freshly-constructed index is slightly faster to access than one that has been
updated many times because logically adjacent pages are usually also physically adjacent in a newly
built index. (This consideration does not apply to non-B-tree indexes.) It might be worthwhile to reindex
periodically just to improve access speed.

REINDEX can be used safely and easily in all cases. This command requires an ACCESS EXCLUSIVE lock
by default, hence it is often preferable to execute it with its CONCURRENTLY option, which requires only
a SHARE UPDATE EXCLUSIVE lock.

23.3. Log File Maintenance
It is a good idea to save the database server's log output somewhere, rather than just discarding it via /
dev/null. The log output is invaluable when diagnosing problems. However, the log output tends to be
voluminous (especially at higher debug levels) so you won't want to save it indefinitely. You need to rotate
the log files so that new log files are started and old ones removed after a reasonable period of time.

If you simply direct the stderr of postgres into a file, you will have log output, but the only way to
truncate the log file is to stop and restart the server. This might be acceptable if you are using Postgres
Pro in a development environment, but few production servers would find this behavior acceptable.

A better approach is to send the server's stderr output to some type of log rotation program.
There is a built-in log rotation facility, which you can use by setting the configuration parameter
logging_collector to true in postgresql.conf. The control parameters for this program are described
in Section 18.8.1. You can also use this approach to capture the log data in machine readable CSV
(comma-separated values) format.

Alternatively, you might prefer to use an external log rotation program if you have one that you are
already using with other server software. For example, the rotatelogs tool included in the Apache
distribution can be used with Postgres Pro. One way to do this is to pipe the server's stderr output to
the desired program. If you start the server with pg_ctl, then stderr is already redirected to stdout, so
you just need a pipe command, for example:
pg_ctl start | rotatelogs /var/log/pgsql_log 86400

You can combine these approaches by setting up logrotate to collect log files produced by Postgres Pro
built-in logging collector. In this case, the logging collector defines the names and location of the log
files, while logrotate periodically archives these files. When initiating log rotation, logrotate must ensure
that the application sends further output to the new file. This is commonly done with a postrotate
script that sends a SIGHUP signal to the application, which then reopens the log file. In Postgres Pro, you
can run pg_ctl with the logrotate option instead. When the server receives this command, the server
either switches to a new log file or reopens the existing file, depending on the logging configuration
(see Section 18.8.1).

Note
When using static log file names, the server might fail to reopen the log file if the max open file
limit is reached or a file table overflow occurs. In this case, log messages are sent to the old log
file until a successful log rotation. If logrotate is configured to compress the log file and delete it,
the server may lose the messages logged in this time frame. To avoid this issue, you can configure
the logging collector to dynamically assign log file names and use a prerotate script to ignore
open log files.

601

Routine Database
Maintenance Tasks

Another production-grade approach to managing log output is to send it to syslog and let syslog deal with
file rotation. To do this, set the configuration parameter log_destination to syslog (to log to syslog
only) in postgresql.conf. Then you can send a SIGHUP signal to the syslog daemon whenever you want
to force it to start writing a new log file. If you want to automate log rotation, the logrotate program can
be configured to work with log files from syslog.

On many systems, however, syslog is not very reliable, particularly with large log messages; it might
truncate or drop messages just when you need them the most. Also, on Linux, syslog will flush each
message to disk, yielding poor performance. (You can use a “-” at the start of the file name in the syslog
configuration file to disable syncing.)

Note that all the solutions described above take care of starting new log files at configurable intervals,
but they do not handle deletion of old, no-longer-useful log files. You will probably want to set up a batch
job to periodically delete old log files. Another possibility is to configure the rotation program so that
old log files are overwritten cyclically.

pgBadger is an external project that does sophisticated log file analysis. check_postgres provides Nagios
alerts when important messages appear in the log files, as well as detection of many other extraordinary
conditions.

602

https://pgbadger.darold.net/
https://bucardo.org/check_postgres/

Chapter 24. Backup and Restore
As with everything that contains valuable data, Postgres Pro databases should be backed up regularly.
While the procedure is essentially simple, it is important to have a clear understanding of the underlying
techniques and assumptions.

There are three fundamentally different approaches to backing up Postgres Pro data:
• SQL dump
• File system level backup
• Continuous archiving
Each has its own strengths and weaknesses; each is discussed in turn in the following sections.

24.1. SQL Dump
The idea behind this dump method is to generate a file with SQL commands that, when fed back to
the server, will recreate the database in the same state as it was at the time of the dump. Postgres Pro
provides the utility program pg_dump for this purpose. The basic usage of this command is:
pg_dump dbname > dumpfile

As you see, pg_dump writes its result to the standard output. We will see below how this can be useful.
While the above command creates a text file, pg_dump can create files in other formats that allow for
parallelism and more fine-grained control of object restoration.

pg_dump is a regular Postgres Pro client application (albeit a particularly clever one). This means that
you can perform this backup procedure from any remote host that has access to the database. But
remember that pg_dump does not operate with special permissions. In particular, it must have read
access to all tables that you want to back up, so in order to back up the entire database you almost
always have to run it as a database superuser. (If you do not have sufficient privileges to back up the
entire database, you can still back up portions of the database to which you do have access using options
such as -n schema or -t table.)

To specify which database server pg_dump should contact, use the command line options -h host and -p
port. The default host is the local host or whatever your PGHOST environment variable specifies. Similarly,
the default port is indicated by the PGPORT environment variable or, failing that, by the compiled-in
default. (Conveniently, the server will normally have the same compiled-in default.)

Like any other Postgres Pro client application, pg_dump will by default connect with the database user
name that is equal to the current operating system user name. To override this, either specify the -U
option or set the environment variable PGUSER. Remember that pg_dump connections are subject to the
normal client authentication mechanisms (which are described in Chapter 19).

An important advantage of pg_dump over the other backup methods described later is that pg_dump's
output can generally be re-loaded into newer versions of Postgres Pro, whereas file-level backups and
continuous archiving are both extremely server-version-specific. pg_dump is also the only method that
will work when transferring a database to a different machine architecture, such as going from a 32-
bit to a 64-bit server.

Dumps created by pg_dump are internally consistent, meaning, the dump represents a snapshot of the
database at the time pg_dump began running. pg_dump does not block other operations on the database
while it is working. (Exceptions are those operations that need to operate with an exclusive lock, such
as most forms of ALTER TABLE.)

24.1.1. Restoring the Dump
Text files created by pg_dump are intended to be read in by the psql program. The general command
form to restore a dump is
psql dbname < dumpfile

603

Backup and Restore

where dumpfile is the file output by the pg_dump command. The database dbname will not be created by
this command, so you must create it yourself from template0 before executing psql (e.g., with createdb
-T template0 dbname). psql supports options similar to pg_dump for specifying the database server to
connect to and the user name to use. See the psql reference page for more information. Non-text file
dumps are restored using the pg_restore utility.

Before restoring an SQL dump, all the users who own objects or were granted permissions on objects in
the dumped database must already exist. If they do not, the restore will fail to recreate the objects with
the original ownership and/or permissions. (Sometimes this is what you want, but usually it is not.)

By default, the psql script will continue to execute after an SQL error is encountered. You might wish
to run psql with the ON_ERROR_STOP variable set to alter that behavior and have psql exit with an exit
status of 3 if an SQL error occurs:
psql --set ON_ERROR_STOP=on dbname < dumpfile

Either way, you will only have a partially restored database. Alternatively, you can specify that the whole
dump should be restored as a single transaction, so the restore is either fully completed or fully rolled
back. This mode can be specified by passing the -1 or --single-transaction command-line options to
psql. When using this mode, be aware that even a minor error can rollback a restore that has already
run for many hours. However, that might still be preferable to manually cleaning up a complex database
after a partially restored dump.

The ability of pg_dump and psql to write to or read from pipes makes it possible to dump a database
directly from one server to another, for example:
pg_dump -h host1 dbname | psql -h host2 dbname

Important
The dumps produced by pg_dump are relative to template0. This means that any languages,
procedures, etc. added via template1 will also be dumped by pg_dump. As a result, when restoring,
if you are using a customized template1, you must create the empty database from template0,
as in the example above.

After restoring a backup, it is wise to run ANALYZE on each database so the query optimizer has useful
statistics; see Section 23.1.3 and Section 23.1.6 for more information. For more advice on how to load
large amounts of data into Postgres Pro efficiently, refer to Section 14.4.

24.1.2. Using pg_dumpall
pg_dump dumps only a single database at a time, and it does not dump information about roles or
tablespaces (because those are cluster-wide rather than per-database). To support convenient dumping
of the entire contents of a database cluster, the pg_dumpall program is provided. pg_dumpall backs
up each database in a given cluster, and also preserves cluster-wide data such as role and tablespace
definitions. The basic usage of this command is:
pg_dumpall > dumpfile

The resulting dump can be restored with psql:
psql -f dumpfile postgres

(Actually, you can specify any existing database name to start from, but if you are loading into an empty
cluster then postgres should usually be used.) It is always necessary to have database superuser access
when restoring a pg_dumpall dump, as that is required to restore the role and tablespace information.
If you use tablespaces, make sure that the tablespace paths in the dump are appropriate for the new
installation.

pg_dumpall works by emitting commands to re-create roles, tablespaces, and empty databases, then
invoking pg_dump for each database. This means that while each database will be internally consistent,
the snapshots of different databases are not synchronized.

604

Backup and Restore

Cluster-wide data can be dumped alone using the pg_dumpall --globals-only option. This is necessary
to fully backup the cluster if running the pg_dump command on individual databases.

24.1.3. Handling Large Databases
Some operating systems have maximum file size limits that cause problems when creating large pg_dump
output files. Fortunately, pg_dump can write to the standard output, so you can use standard Unix tools
to work around this potential problem. There are several possible methods:

Use compressed dumps. You can use your favorite compression program, for example gzip:
pg_dump dbname | gzip > filename.gz

Reload with:
gunzip -c filename.gz | psql dbname

or:
cat filename.gz | gunzip | psql dbname

Use split. The split command allows you to split the output into smaller files that are acceptable
in size to the underlying file system. For example, to make 2 gigabyte chunks:
pg_dump dbname | split -b 2G - filename

Reload with:
cat filename* | psql dbname

If using GNU split, it is possible to use it and gzip together:
pg_dump dbname | split -b 2G --filter='gzip > $FILE.gz'

It can be restored using zcat.

Use pg_dump's custom dump format. If Postgres Pro was built on a system with the zlib
compression library installed, the custom dump format will compress data as it writes it to the output
file. This will produce dump file sizes similar to using gzip, but it has the added advantage that tables
can be restored selectively. The following command dumps a database using the custom dump format:
pg_dump -Fc dbname > filename

A custom-format dump is not a script for psql, but instead must be restored with pg_restore, for example:
pg_restore -d dbname filename

See the pg_dump and pg_restore reference pages for details.

For very large databases, you might need to combine split with one of the other two approaches.

Use pg_dump's parallel dump feature. To speed up the dump of a large database, you can use
pg_dump's parallel mode. This will dump multiple tables at the same time. You can control the degree of
parallelism with the -j parameter. Parallel dumps are only supported for the "directory" archive format.
pg_dump -j num -F d -f out.dir dbname

You can use pg_restore -j to restore a dump in parallel. This will work for any archive of either the
"custom" or the "directory" archive mode, whether or not it has been created with pg_dump -j.

24.2. File System Level Backup
An alternative backup strategy is to directly copy the files that Postgres Pro uses to store the data in the
database; Section 17.2 explains where these files are located. You can use whatever method you prefer
for doing file system backups; for example:
tar -cf backup.tar /usr/local/pgsql/data

There are two restrictions, however, which make this method impractical, or at least inferior to the
pg_dump method:

605

Backup and Restore

1. The database server must be shut down in order to get a usable backup. Half-way measures such as
disallowing all connections will not work (in part because tar and similar tools do not take an atomic
snapshot of the state of the file system, but also because of internal buffering within the server).
Information about stopping the server can be found in Section 17.5. Needless to say, you also need
to shut down the server before restoring the data.

2. If you have dug into the details of the file system layout of the database, you might be tempted to
try to back up or restore only certain individual tables or databases from their respective files or
directories. This will not work because the information contained in these files is not usable without
the commit log files, pg_xact/*, which contain the commit status of all transactions. A table file
is only usable with this information. Of course it is also impossible to restore only a table and the
associated pg_xact data because that would render all other tables in the database cluster useless.
So file system backups only work for complete backup and restoration of an entire database cluster.

An alternative file-system backup approach is to make a “consistent snapshot” of the data directory, if the
file system supports that functionality (and you are willing to trust that it is implemented correctly). The
typical procedure is to make a “frozen snapshot” of the volume containing the database, then copy the
whole data directory (not just parts, see above) from the snapshot to a backup device, then release the
frozen snapshot. This will work even while the database server is running. However, a backup created
in this way saves the database files in a state as if the database server was not properly shut down;
therefore, when you start the database server on the backed-up data, it will think the previous server
instance crashed and will replay the WAL log. This is not a problem; just be aware of it (and be sure
to include the WAL files in your backup). You can perform a CHECKPOINT before taking the snapshot to
reduce recovery time.

If your database is spread across multiple file systems, there might not be any way to obtain exactly-
simultaneous frozen snapshots of all the volumes. For example, if your data files and WAL log are on
different disks, or if tablespaces are on different file systems, it might not be possible to use snapshot
backup because the snapshots must be simultaneous. Read your file system documentation very carefully
before trusting the consistent-snapshot technique in such situations.

If simultaneous snapshots are not possible, one option is to shut down the database server long enough
to establish all the frozen snapshots. Another option is to perform a continuous archiving base backup
(Section 24.3.2) because such backups are immune to file system changes during the backup. This
requires enabling continuous archiving just during the backup process; restore is done using continuous
archive recovery (Section 24.3.4).

Another option is to use rsync to perform a file system backup. This is done by first running rsync while
the database server is running, then shutting down the database server long enough to do an rsync
--checksum. (--checksum is necessary because rsync only has file modification-time granularity of one
second.) The second rsync will be quicker than the first, because it has relatively little data to transfer,
and the end result will be consistent because the server was down. This method allows a file system
backup to be performed with minimal downtime.

Note that a file system backup will typically be larger than an SQL dump. (pg_dump does not need to
dump the contents of indexes for example, just the commands to recreate them.) However, taking a file
system backup might be faster.

24.3. Continuous Archiving and Point-in-Time Recovery
(PITR)

At all times, Postgres Pro maintains a write ahead log (WAL) in the pg_wal/ subdirectory of the
cluster's data directory. The log records every change made to the database's data files. This log exists
primarily for crash-safety purposes: if the system crashes, the database can be restored to consistency
by “replaying” the log entries made since the last checkpoint. However, the existence of the log makes
it possible to use a third strategy for backing up databases: we can combine a file-system-level backup
with backup of the WAL files. If recovery is needed, we restore the file system backup and then replay
from the backed-up WAL files to bring the system to a current state. This approach is more complex to
administer than either of the previous approaches, but it has some significant benefits:

606

Backup and Restore

• We do not need a perfectly consistent file system backup as the starting point. Any internal
inconsistency in the backup will be corrected by log replay (this is not significantly different from
what happens during crash recovery). So we do not need a file system snapshot capability, just tar
or a similar archiving tool.

• Since we can combine an indefinitely long sequence of WAL files for replay, continuous backup can
be achieved simply by continuing to archive the WAL files. This is particularly valuable for large
databases, where it might not be convenient to take a full backup frequently.

• It is not necessary to replay the WAL entries all the way to the end. We could stop the replay at any
point and have a consistent snapshot of the database as it was at that time. Thus, this technique
supports point-in-time recovery: it is possible to restore the database to its state at any time since
your base backup was taken.

• If we continuously feed the series of WAL files to another machine that has been loaded with the
same base backup file, we have a warm standby system: at any point we can bring up the second
machine and it will have a nearly-current copy of the database.

Note
pg_dump and pg_dumpall do not produce file-system-level backups and cannot be used as part of
a continuous-archiving solution. Such dumps are logical and do not contain enough information
to be used by WAL replay.

As with the plain file-system-backup technique, this method can only support restoration of an entire
database cluster, not a subset. Also, it requires a lot of archival storage: the base backup might be bulky,
and a busy system will generate many megabytes of WAL traffic that have to be archived. Still, it is the
preferred backup technique in many situations where high reliability is needed.

To recover successfully using continuous archiving (also called “online backup” by many database
vendors), you need a continuous sequence of archived WAL files that extends back at least as far as the
start time of your backup. So to get started, you should set up and test your procedure for archiving WAL
files before you take your first base backup. Accordingly, we first discuss the mechanics of archiving
WAL files.

24.3.1. Setting Up WAL Archiving
In an abstract sense, a running Postgres Pro system produces an indefinitely long sequence of WAL
records. The system physically divides this sequence into WAL segment files, which are normally 16MB
apiece (although the segment size can be altered during initdb). The segment files are given numeric
names that reflect their position in the abstract WAL sequence. When not using WAL archiving, the
system normally creates just a few segment files and then “recycles” them by renaming no-longer-needed
segment files to higher segment numbers. It's assumed that segment files whose contents precede the
last checkpoint are no longer of interest and can be recycled.

When archiving WAL data, we need to capture the contents of each segment file once it is filled, and save
that data somewhere before the segment file is recycled for reuse. Depending on the application and
the available hardware, there could be many different ways of “saving the data somewhere”: we could
copy the segment files to an NFS-mounted directory on another machine, write them onto a tape drive
(ensuring that you have a way of identifying the original name of each file), or batch them together and
burn them onto CDs, or something else entirely. To provide the database administrator with flexibility,
Postgres Pro tries not to make any assumptions about how the archiving will be done. Instead, Postgres
Pro lets the administrator specify a shell command to be executed to copy a completed segment file to
wherever it needs to go. The command could be as simple as a cp, or it could invoke a complex shell
script — it's all up to you.

To enable WAL archiving, set the wal_level configuration parameter to replica or higher, archive_mode
to on, and specify the shell command to use in the archive_command configuration parameter. In practice
these settings will always be placed in the postgresql.conf file. In archive_command, %p is replaced by

607

Backup and Restore

the path name of the file to archive, while %f is replaced by only the file name. (The path name is relative
to the current working directory, i.e., the cluster's data directory.) Use %% if you need to embed an actual
% character in the command. The simplest useful command is something like:

archive_command = 'test ! -f /mnt/server/archivedir/%f && cp %p /mnt/server/archivedir/
%f' # Unix
archive_command = 'copy "%p" "C:\\server\\archivedir\\%f"' # Windows

which will copy archivable WAL segments to the directory /mnt/server/archivedir. (This is an
example, not a recommendation, and might not work on all platforms.) After the %p and %f parameters
have been replaced, the actual command executed might look like this:

test ! -f /mnt/server/archivedir/00000001000000A900000065 && cp
 pg_wal/00000001000000A900000065 /mnt/server/archivedir/00000001000000A900000065

A similar command will be generated for each new file to be archived.

The archive command will be executed under the ownership of the same user that the Postgres Pro
server is running as. Since the series of WAL files being archived contains effectively everything in your
database, you will want to be sure that the archived data is protected from prying eyes; for example,
archive into a directory that does not have group or world read access.

It is important that the archive command return zero exit status if and only if it succeeds. Upon getting
a zero result, Postgres Pro will assume that the file has been successfully archived, and will remove or
recycle it. However, a nonzero status tells Postgres Pro that the file was not archived; it will try again
periodically until it succeeds.

The archive command should generally be designed to refuse to overwrite any pre-existing archive file.
This is an important safety feature to preserve the integrity of your archive in case of administrator error
(such as sending the output of two different servers to the same archive directory).

It is advisable to test your proposed archive command to ensure that it indeed does not overwrite an
existing file, and that it returns nonzero status in this case. The example command above for Unix ensures
this by including a separate test step. On some Unix platforms, cp has switches such as -i that can be
used to do the same thing less verbosely, but you should not rely on these without verifying that the right
exit status is returned. (In particular, GNU cp will return status zero when -i is used and the target file
already exists, which is not the desired behavior.)

While designing your archiving setup, consider what will happen if the archive command fails repeatedly
because some aspect requires operator intervention or the archive runs out of space. For example, this
could occur if you write to tape without an autochanger; when the tape fills, nothing further can be
archived until the tape is swapped. You should ensure that any error condition or request to a human
operator is reported appropriately so that the situation can be resolved reasonably quickly. The pg_wal/
directory will continue to fill with WAL segment files until the situation is resolved. (If the file system
containing pg_wal/ fills up, Postgres Pro will do a PANIC shutdown. No committed transactions will be
lost, but the database will remain offline until you free some space.)

The speed of the archiving command is unimportant as long as it can keep up with the average rate at
which your server generates WAL data. Normal operation continues even if the archiving process falls
a little behind. If archiving falls significantly behind, this will increase the amount of data that would be
lost in the event of a disaster. It will also mean that the pg_wal/ directory will contain large numbers of
not-yet-archived segment files, which could eventually exceed available disk space. You are advised to
monitor the archiving process to ensure that it is working as you intend.

In writing your archive command, you should assume that the file names to be archived can be up to 64
characters long and can contain any combination of ASCII letters, digits, and dots. It is not necessary to
preserve the original relative path (%p) but it is necessary to preserve the file name (%f).

Note that although WAL archiving will allow you to restore any modifications made to the data in your
Postgres Pro database, it will not restore changes made to configuration files (that is, postgresql.conf,
pg_hba.conf and pg_ident.conf), since those are edited manually rather than through SQL operations.

608

Backup and Restore

You might wish to keep the configuration files in a location that will be backed up by your regular file
system backup procedures. See Section 18.2 for how to relocate the configuration files.

The archive command is only invoked on completed WAL segments. Hence, if your server generates
only little WAL traffic (or has slack periods where it does so), there could be a long delay between the
completion of a transaction and its safe recording in archive storage. To put a limit on how old unarchived
data can be, you can set archive_timeout to force the server to switch to a new WAL segment file at
least that often. Note that archived files that are archived early due to a forced switch are still the same
length as completely full files. It is therefore unwise to set a very short archive_timeout — it will bloat
your archive storage. archive_timeout settings of a minute or so are usually reasonable.

Also, you can force a segment switch manually with pg_switch_wal if you want to ensure that a just-
finished transaction is archived as soon as possible. Other utility functions related to WAL management
are listed in Table 9.85.

When wal_level is minimal some SQL commands are optimized to avoid WAL logging, as described
in Section 14.4.7. If archiving or streaming replication were turned on during execution of one of
these statements, WAL would not contain enough information for archive recovery. (Crash recovery is
unaffected.) For this reason, wal_level can only be changed at server start. However, archive_command
can be changed with a configuration file reload. If you wish to temporarily stop archiving, one way to do
it is to set archive_command to the empty string (''). This will cause WAL files to accumulate in pg_wal/
until a working archive_command is re-established.

24.3.2. Making a Base Backup
The easiest way to perform a base backup is to use the pg_basebackup tool. It can create a base backup
either as regular files or as a tar archive. If more flexibility than pg_basebackup can provide is required,
you can also make a base backup using the low level API (see Section 24.3.3).

It is not necessary to be concerned about the amount of time it takes to make a base backup. However,
if you normally run the server with full_page_writes disabled, you might notice a drop in performance
while the backup runs since full_page_writes is effectively forced on during backup mode.

To make use of the backup, you will need to keep all the WAL segment files generated during and after
the file system backup. To aid you in doing this, the base backup process creates a backup history file that
is immediately stored into the WAL archive area. This file is named after the first WAL segment file that
you need for the file system backup. For example, if the starting WAL file is 0000000100001234000055CD
the backup history file will be named something like 0000000100001234000055CD.007C9330.backup.
(The second part of the file name stands for an exact position within the WAL file, and can ordinarily be
ignored.) Once you have safely archived the file system backup and the WAL segment files used during
the backup (as specified in the backup history file), all archived WAL segments with names numerically
less are no longer needed to recover the file system backup and can be deleted. However, you should
consider keeping several backup sets to be absolutely certain that you can recover your data.

The backup history file is just a small text file. It contains the label string you gave to pg_basebackup, as
well as the starting and ending times and WAL segments of the backup. If you used the label to identify
the associated dump file, then the archived history file is enough to tell you which dump file to restore.

Since you have to keep around all the archived WAL files back to your last base backup, the interval
between base backups should usually be chosen based on how much storage you want to expend on
archived WAL files. You should also consider how long you are prepared to spend recovering, if recovery
should be necessary — the system will have to replay all those WAL segments, and that could take awhile
if it has been a long time since the last base backup.

24.3.3. Making a Base Backup Using the Low Level API
The procedure for making a base backup using the low level APIs contains a few more steps than the
pg_basebackup method, but is relatively simple. It is very important that these steps are executed in
sequence, and that the success of a step is verified before proceeding to the next step.

609

Backup and Restore

Low level base backups can be made in a non-exclusive or an exclusive way. The non-exclusive method
is recommended and the exclusive one is deprecated and will eventually be removed.

24.3.3.1. Making a Non-Exclusive Low-Level Backup
A non-exclusive low level backup is one that allows other concurrent backups to be running (both those
started using the same backup API and those started using pg_basebackup).

1. Ensure that WAL archiving is enabled and working.
2. Connect to the server (it does not matter which database) as a user with rights to run pg_start_backup

(superuser, or a user who has been granted EXECUTE on the function) and issue the command:
SELECT pg_start_backup('label', false, false);

where label is any string you want to use to uniquely identify this backup operation. The connection
calling pg_start_backup must be maintained until the end of the backup, or the backup will be
automatically aborted.

By default, pg_start_backup can take a long time to finish. This is because it performs a checkpoint,
and the I/O required for the checkpoint will be spread out over a significant period of time, by default
half your inter-checkpoint interval (see the configuration parameter checkpoint_completion_target).
This is usually what you want, because it minimizes the impact on query processing. If you want
to start the backup as soon as possible, change the second parameter to true, which will issue an
immediate checkpoint using as much I/O as available.

The third parameter being false tells pg_start_backup to initiate a non-exclusive base backup.
3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump

or pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while
you do this. See Section 24.3.3.3 for things to consider during this backup.

4. In the same connection as before, issue the command:
SELECT * FROM pg_stop_backup(false, true);

This terminates backup mode. On a primary, it also performs an automatic switch to the next WAL
segment. On a standby, it is not possible to automatically switch WAL segments, so you may wish
to run pg_switch_wal on the primary to perform a manual switch. The reason for the switch is to
arrange for the last WAL segment file written during the backup interval to be ready to archive.

The pg_stop_backup will return one row with three values. The second of these fields should be
written to a file named backup_label in the root directory of the backup. The third field should be
written to a file named tablespace_map unless the field is empty. These files are vital to the backup
working and must be written byte for byte without modification, which may require opening the file
in binary mode.

5. Once the WAL segment files active during the backup are archived, you are done. The file identified
by pg_stop_backup's first return value is the last segment that is required to form a complete set
of backup files. On a primary, if archive_mode is enabled and the wait_for_archive parameter
is true, pg_stop_backup does not return until the last segment has been archived. On a standby,
archive_mode must be always in order for pg_stop_backup to wait. Archiving of these files happens
automatically since you have already configured archive_command. In most cases this happens
quickly, but you are advised to monitor your archive system to ensure there are no delays. If the
archive process has fallen behind because of failures of the archive command, it will keep retrying
until the archive succeeds and the backup is complete. If you wish to place a time limit on the
execution of pg_stop_backup, set an appropriate statement_timeout value, but make note that if
pg_stop_backup terminates because of this your backup may not be valid.

If the backup process monitors and ensures that all WAL segment files required for the backup are
successfully archived then the wait_for_archive parameter (which defaults to true) can be set to
false to have pg_stop_backup return as soon as the stop backup record is written to the WAL. By
default, pg_stop_backup will wait until all WAL has been archived, which can take some time. This

610

Backup and Restore

option must be used with caution: if WAL archiving is not monitored correctly then the backup might
not include all of the WAL files and will therefore be incomplete and not able to be restored.

24.3.3.2. Making an Exclusive Low-Level Backup

Note
The exclusive backup method is deprecated and should be avoided. Prior to PostgreSQL 9.6, this
was the only low-level method available, but it is now recommended that all users upgrade their
scripts to use non-exclusive backups.

The process for an exclusive backup is mostly the same as for a non-exclusive one, but it differs in a few
key steps. This type of backup can only be taken on a primary and does not allow concurrent backups.
Moreover, because it creates a backup label file, as described below, it can block automatic restart of
the master server after a crash. On the other hand, the erroneous removal of this file from a backup or
standby is a common mistake, which can result in serious data corruption. If it is necessary to use this
method, the following steps may be used.

1. Ensure that WAL archiving is enabled and working.
2. Connect to the server (it does not matter which database) as a user with rights to run pg_start_backup

(superuser, or a user who has been granted EXECUTE on the function) and issue the command:
SELECT pg_start_backup('label');

where label is any string you want to use to uniquely identify this backup operation.
pg_start_backup creates a backup label file, called backup_label, in the cluster directory with
information about your backup, including the start time and label string. The function also creates
a tablespace map file, called tablespace_map, in the cluster directory with information about
tablespace symbolic links in pg_tblspc/ if one or more such link is present. Both files are critical to
the integrity of the backup, should you need to restore from it.

By default, pg_start_backup can take a long time to finish. This is because it performs a checkpoint,
and the I/O required for the checkpoint will be spread out over a significant period of time, by default
half your inter-checkpoint interval (see the configuration parameter checkpoint_completion_target).
This is usually what you want, because it minimizes the impact on query processing. If you want to
start the backup as soon as possible, use:
SELECT pg_start_backup('label', true);

This forces the checkpoint to be done as quickly as possible.
3. Perform the backup, using any convenient file-system-backup tool such as tar or cpio (not pg_dump

or pg_dumpall). It is neither necessary nor desirable to stop normal operation of the database while
you do this. See Section 24.3.3.3 for things to consider during this backup.

As noted above, if the server crashes during the backup it may not be possible to restart until the
backup_label file has been manually deleted from the PGDATA directory. Note that it is very important
to never remove the backup_label file when restoring a backup, because this will result in corruption.
Confusion about when it is appropriate to remove this file is a common cause of data corruption when
using this method; be very certain that you remove the file only on an existing master and never when
building a standby or restoring a backup, even if you are building a standby that will subsequently
be promoted to a new master.

4. Again connect to the database as a user with rights to run pg_stop_backup (superuser, or a user who
has been granted EXECUTE on the function), and issue the command:
SELECT pg_stop_backup();

This function terminates backup mode and performs an automatic switch to the next WAL segment.
The reason for the switch is to arrange for the last WAL segment written during the backup interval
to be ready to archive.

611

Backup and Restore

5. Once the WAL segment files active during the backup are archived, you are done. The file identified by
pg_stop_backup's result is the last segment that is required to form a complete set of backup files. If
archive_mode is enabled, pg_stop_backup does not return until the last segment has been archived.
Archiving of these files happens automatically since you have already configured archive_command.
In most cases this happens quickly, but you are advised to monitor your archive system to ensure there
are no delays. If the archive process has fallen behind because of failures of the archive command, it
will keep retrying until the archive succeeds and the backup is complete.

When using exclusive backup mode, it is absolutely imperative to ensure that pg_stop_backup
completes successfully at the end of the backup. Even if the backup itself fails, for example due to lack
of disk space, failure to call pg_stop_backup will leave the server in backup mode indefinitely, causing
future backups to fail and increasing the risk of a restart failure during the time that backup_label
exists.

24.3.3.3. Backing Up the Data Directory
Some file system backup tools emit warnings or errors if the files they are trying to copy change while
the copy proceeds. When taking a base backup of an active database, this situation is normal and not
an error. However, you need to ensure that you can distinguish complaints of this sort from real errors.
For example, some versions of rsync return a separate exit code for “vanished source files”, and you
can write a driver script to accept this exit code as a non-error case. Also, some versions of GNU tar
return an error code indistinguishable from a fatal error if a file was truncated while tar was copying it.
Fortunately, GNU tar versions 1.16 and later exit with 1 if a file was changed during the backup, and 2
for other errors. With GNU tar version 1.23 and later, you can use the warning options --warning=no-
file-changed --warning=no-file-removed to hide the related warning messages.

Be certain that your backup includes all of the files under the database cluster directory (e.g., /usr/
local/pgsql/data). If you are using tablespaces that do not reside underneath this directory, be careful
to include them as well (and be sure that your backup archives symbolic links as links, otherwise the
restore will corrupt your tablespaces).

You should, however, omit from the backup the files within the cluster's pg_wal/ subdirectory. This
slight adjustment is worthwhile because it reduces the risk of mistakes when restoring. This is easy
to arrange if pg_wal/ is a symbolic link pointing to someplace outside the cluster directory, which is a
common setup anyway for performance reasons. You might also want to exclude postmaster.pid and
postmaster.opts, which record information about the running postmaster, not about the postmaster
which will eventually use this backup. (These files can confuse pg_ctl.)

It is often a good idea to also omit from the backup the files within the cluster's pg_replslot/ directory,
so that replication slots that exist on the master do not become part of the backup. Otherwise, the
subsequent use of the backup to create a standby may result in indefinite retention of WAL files on the
standby, and possibly bloat on the master if hot standby feedback is enabled, because the clients that
are using those replication slots will still be connecting to and updating the slots on the master, not the
standby. Even if the backup is only intended for use in creating a new master, copying the replication
slots isn't expected to be particularly useful, since the contents of those slots will likely be badly out of
date by the time the new master comes on line.

The contents of the directories pg_dynshmem/, pg_notify/, pg_serial/, pg_snapshots/, pg_stat_tmp/,
and pg_subtrans/ (but not the directories themselves) can be omitted from the backup as they will be
initialized on postmaster startup. If stats_temp_directory is set and is under the data directory then the
contents of that directory can also be omitted.

Any file or directory beginning with pgsql_tmp can be omitted from the backup. These files are removed
on postmaster start and the directories will be recreated as needed.

pg_internal.init files can be omitted from the backup whenever a file of that name is found. These
files contain relation cache data that is always rebuilt when recovering.

The backup label file includes the label string you gave to pg_start_backup, as well as the time at which
pg_start_backup was run, and the name of the starting WAL file. In case of confusion it is therefore

612

Backup and Restore

possible to look inside a backup file and determine exactly which backup session the dump file came
from. The tablespace map file includes the symbolic link names as they exist in the directory pg_tblspc/
and the full path of each symbolic link. These files are not merely for your information; their presence
and contents are critical to the proper operation of the system's recovery process.

It is also possible to make a backup while the server is stopped. In this case, you obviously cannot use
pg_start_backup or pg_stop_backup, and you will therefore be left to your own devices to keep track
of which backup is which and how far back the associated WAL files go. It is generally better to follow
the continuous archiving procedure above.

24.3.4. Recovering Using a Continuous Archive Backup
Okay, the worst has happened and you need to recover from your backup. Here is the procedure:
1. Stop the server, if it's running.
2. If you have the space to do so, copy the whole cluster data directory and any tablespaces to a

temporary location in case you need them later. Note that this precaution will require that you have
enough free space on your system to hold two copies of your existing database. If you do not have
enough space, you should at least save the contents of the cluster's pg_wal subdirectory, as it might
contain logs which were not archived before the system went down.

3. Remove all existing files and subdirectories under the cluster data directory and under the root
directories of any tablespaces you are using.

4. Restore the database files from your file system backup. Be sure that they are restored with the right
ownership (the database system user, not root!) and with the right permissions. If you are using
tablespaces, you should verify that the symbolic links in pg_tblspc/ were correctly restored.

5. Remove any files present in pg_wal/; these came from the file system backup and are therefore
probably obsolete rather than current. If you didn't archive pg_wal/ at all, then recreate it with proper
permissions, being careful to ensure that you re-establish it as a symbolic link if you had it set up
that way before.

6. If you have unarchived WAL segment files that you saved in step 2, copy them into pg_wal/. (It is
best to copy them, not move them, so you still have the unmodified files if a problem occurs and you
have to start over.)

7. Set recovery configuration settings in postgresql.conf (see Section 18.5.4) and create a file
recovery.signal in the cluster data directory. You might also want to temporarily modify
pg_hba.conf to prevent ordinary users from connecting until you are sure the recovery was
successful.

8. Start the server. The server will go into recovery mode and proceed to read through the archived
WAL files it needs. Should the recovery be terminated because of an external error, the server can
simply be restarted and it will continue recovery. Upon completion of the recovery process, the server
will remove recovery.signal (to prevent accidentally re-entering recovery mode later) and then
commence normal database operations.

9. Inspect the contents of the database to ensure you have recovered to the desired state. If not, return
to step 1. If all is well, allow your users to connect by restoring pg_hba.conf to normal.

The key part of all this is to set up a recovery configuration that describes how you want to recover and
how far the recovery should run. The one thing that you absolutely must specify is the restore_command,
which tells Postgres Pro how to retrieve archived WAL file segments. Like the archive_command, this
is a shell command string. It can contain %f, which is replaced by the name of the desired log file, and
%p, which is replaced by the path name to copy the log file to. (The path name is relative to the current
working directory, i.e., the cluster's data directory.) Write %% if you need to embed an actual % character
in the command. The simplest useful command is something like:
restore_command = 'cp /mnt/server/archivedir/%f %p'

which will copy previously archived WAL segments from the directory /mnt/server/archivedir. Of
course, you can use something much more complicated, perhaps even a shell script that requests the
operator to mount an appropriate tape.

613

Backup and Restore

It is important that the command return nonzero exit status on failure. The command will be called
requesting files that are not present in the archive; it must return nonzero when so asked. This is not an
error condition. An exception is that if the command was terminated by a signal (other than SIGTERM,
which is used as part of a database server shutdown) or an error by the shell (such as command not
found), then recovery will abort and the server will not start up.

Not all of the requested files will be WAL segment files; you should also expect requests for files with
a suffix of .history. Also be aware that the base name of the %p path will be different from %f; do not
expect them to be interchangeable.

WAL segments that cannot be found in the archive will be sought in pg_wal/; this allows use of recent
un-archived segments. However, segments that are available from the archive will be used in preference
to files in pg_wal/.

Normally, recovery will proceed through all available WAL segments, thereby restoring the database to
the current point in time (or as close as possible given the available WAL segments). Therefore, a normal
recovery will end with a “file not found” message, the exact text of the error message depending upon
your choice of restore_command. You may also see an error message at the start of recovery for a file
named something like 00000001.history. This is also normal and does not indicate a problem in simple
recovery situations; see Section 24.3.5 for discussion.

If you want to recover to some previous point in time (say, right before the junior DBA dropped your main
transaction table), just specify the required stopping point. You can specify the stop point, known as the
“recovery target”, either by date/time, named restore point or by completion of a specific transaction
ID. As of this writing only the date/time and named restore point options are very usable, since there
are no tools to help you identify with any accuracy which transaction ID to use.

Note
The stop point must be after the ending time of the base backup, i.e., the end time of
pg_stop_backup. You cannot use a base backup to recover to a time when that backup was in
progress. (To recover to such a time, you must go back to your previous base backup and roll
forward from there.)

If recovery finds corrupted WAL data, recovery will halt at that point and the server will not start. In such
a case the recovery process could be re-run from the beginning, specifying a “recovery target” before
the point of corruption so that recovery can complete normally. If recovery fails for an external reason,
such as a system crash or if the WAL archive has become inaccessible, then the recovery can simply be
restarted and it will restart almost from where it failed. Recovery restart works much like checkpointing
in normal operation: the server periodically forces all its state to disk, and then updates the pg_control
file to indicate that the already-processed WAL data need not be scanned again.

24.3.5. Timelines
The ability to restore the database to a previous point in time creates some complexities that are akin to
science-fiction stories about time travel and parallel universes. For example, in the original history of the
database, suppose you dropped a critical table at 5:15PM on Tuesday evening, but didn't realize your
mistake until Wednesday noon. Unfazed, you get out your backup, restore to the point-in-time 5:14PM
Tuesday evening, and are up and running. In this history of the database universe, you never dropped the
table. But suppose you later realize this wasn't such a great idea, and would like to return to sometime
Wednesday morning in the original history. You won't be able to if, while your database was up-and-
running, it overwrote some of the WAL segment files that led up to the time you now wish you could get
back to. Thus, to avoid this, you need to distinguish the series of WAL records generated after you've
done a point-in-time recovery from those that were generated in the original database history.

To deal with this problem, Postgres Pro has a notion of timelines. Whenever an archive recovery
completes, a new timeline is created to identify the series of WAL records generated after that recovery.
The timeline ID number is part of WAL segment file names so a new timeline does not overwrite the WAL

614

Backup and Restore

data generated by previous timelines. It is in fact possible to archive many different timelines. While that
might seem like a useless feature, it's often a lifesaver. Consider the situation where you aren't quite
sure what point-in-time to recover to, and so have to do several point-in-time recoveries by trial and error
until you find the best place to branch off from the old history. Without timelines this process would soon
generate an unmanageable mess. With timelines, you can recover to any prior state, including states in
timeline branches that you abandoned earlier.

Every time a new timeline is created, Postgres Pro creates a “timeline history” file that shows which
timeline it branched off from and when. These history files are necessary to allow the system to pick the
right WAL segment files when recovering from an archive that contains multiple timelines. Therefore,
they are archived into the WAL archive area just like WAL segment files. The history files are just small
text files, so it's cheap and appropriate to keep them around indefinitely (unlike the segment files which
are large). You can, if you like, add comments to a history file to record your own notes about how and
why this particular timeline was created. Such comments will be especially valuable when you have a
thicket of different timelines as a result of experimentation.

The default behavior of recovery is to recover to the latest timeline found in the archive. If you wish to
recover to the timeline that was current when the base backup was taken or into a specific child timeline
(that is, you want to return to some state that was itself generated after a recovery attempt), you need to
specify current or the target timeline ID in recovery_target_timeline. You cannot recover into timelines
that branched off earlier than the base backup.

24.3.6. Tips and Examples
Some tips for configuring continuous archiving are given here.

24.3.6.1. Standalone Hot Backups
It is possible to use Postgres Pro's backup facilities to produce standalone hot backups. These are
backups that cannot be used for point-in-time recovery, yet are typically much faster to backup and
restore than pg_dump dumps. (They are also much larger than pg_dump dumps, so in some cases the
speed advantage might be negated.)

As with base backups, the easiest way to produce a standalone hot backup is to use the pg_basebackup
tool. If you include the -X parameter when calling it, all the write-ahead log required to use the backup
will be included in the backup automatically, and no special action is required to restore the backup.

If more flexibility in copying the backup files is needed, a lower level process can be used for standalone
hot backups as well. To prepare for low level standalone hot backups, make sure wal_level is set to
replica or higher, archive_mode to on, and set up an archive_command that performs archiving only
when a switch file exists. For example:

archive_command = 'test ! -f /var/lib/pgsql/backup_in_progress || (test ! -f /var/lib/
pgsql/archive/%f && cp %p /var/lib/pgsql/archive/%f)'

This command will perform archiving when /var/lib/pgsql/backup_in_progress exists, and otherwise
silently return zero exit status (allowing Postgres Pro to recycle the unwanted WAL file).

With this preparation, a backup can be taken using a script like the following:

touch /var/lib/pgsql/backup_in_progress
psql -c "select pg_start_backup('hot_backup');"
tar -cf /var/lib/pgsql/backup.tar /var/lib/pgsql/data/
psql -c "select pg_stop_backup();"
rm /var/lib/pgsql/backup_in_progress
tar -rf /var/lib/pgsql/backup.tar /var/lib/pgsql/archive/

The switch file /var/lib/pgsql/backup_in_progress is created first, enabling archiving of completed
WAL files to occur. After the backup the switch file is removed. Archived WAL files are then added to
the backup so that both base backup and all required WAL files are part of the same tar file. Please
remember to add error handling to your backup scripts.

615

Backup and Restore

24.3.6.2. Compressed Archive Logs
If archive storage size is a concern, you can use gzip to compress the archive files:

archive_command = 'gzip < %p > /var/lib/pgsql/archive/%f'

You will then need to use gunzip during recovery:

restore_command = 'gunzip < /mnt/server/archivedir/%f > %p'

24.3.6.3. archive_command Scripts
Many people choose to use scripts to define their archive_command, so that their postgresql.conf entry
looks very simple:

archive_command = 'local_backup_script.sh "%p" "%f"'

Using a separate script file is advisable any time you want to use more than a single command in the
archiving process. This allows all complexity to be managed within the script, which can be written in
a popular scripting language such as bash or perl.

Examples of requirements that might be solved within a script include:
• Copying data to secure off-site data storage
• Batching WAL files so that they are transferred every three hours, rather than one at a time
• Interfacing with other backup and recovery software
• Interfacing with monitoring software to report errors

Tip
When using an archive_command script, it's desirable to enable logging_collector. Any messages
written to stderr from the script will then appear in the database server log, allowing complex
configurations to be diagnosed easily if they fail.

24.3.7. Caveats
At this writing, there are several limitations of the continuous archiving technique. These will probably
be fixed in future releases:
• If a CREATE DATABASE command is executed while a base backup is being taken, and then the

template database that the CREATE DATABASE copied is modified while the base backup is still
in progress, it is possible that recovery will cause those modifications to be propagated into the
created database as well. This is of course undesirable. To avoid this risk, it is best not to modify
any template databases while taking a base backup.

• CREATE TABLESPACE commands are WAL-logged with the literal absolute path, and will therefore
be replayed as tablespace creations with the same absolute path. This might be undesirable if the
log is being replayed on a different machine. It can be dangerous even if the log is being replayed
on the same machine, but into a new data directory: the replay will still overwrite the contents of
the original tablespace. To avoid potential gotchas of this sort, the best practice is to take a new
base backup after creating or dropping tablespaces.

It should also be noted that the default WAL format is fairly bulky since it includes many disk page
snapshots. These page snapshots are designed to support crash recovery, since we might need to fix
partially-written disk pages. Depending on your system hardware and software, the risk of partial writes
might be small enough to ignore, in which case you can significantly reduce the total volume of archived
logs by turning off page snapshots using the full_page_writes parameter. (Read the notes and warnings
in Chapter 28 before you do so.) Turning off page snapshots does not prevent use of the logs for PITR
operations. An area for future development is to compress archived WAL data by removing unnecessary
page copies even when full_page_writes is on. In the meantime, administrators might wish to reduce

616

Backup and Restore

the number of page snapshots included in WAL by increasing the checkpoint interval parameters as
much as feasible.

617

Chapter 25. High Availability, Load
Balancing, and Replication

Database servers can work together to allow a second server to take over quickly if the primary server
fails (high availability), or to allow several computers to serve the same data (load balancing). Ideally,
database servers could work together seamlessly. Web servers serving static web pages can be combined
quite easily by merely load-balancing web requests to multiple machines. In fact, read-only database
servers can be combined relatively easily too. Unfortunately, most database servers have a read/write
mix of requests, and read/write servers are much harder to combine. This is because though read-only
data needs to be placed on each server only once, a write to any server has to be propagated to all
servers so that future read requests to those servers return consistent results.

This synchronization problem is the fundamental difficulty for servers working together. Because there
is no single solution that eliminates the impact of the sync problem for all use cases, there are multiple
solutions. Each solution addresses this problem in a different way, and minimizes its impact for a specific
workload.

Some solutions deal with synchronization by allowing only one server to modify the data. Servers that
can modify data are called read/write, master or primary servers. Servers that track changes in the
master are called standby or secondary servers. A standby server that cannot be connected to until it is
promoted to a master server is called a warm standby server, and one that can accept connections and
serves read-only queries is called a hot standby server.

Some solutions are synchronous, meaning that a data-modifying transaction is not considered committed
until all servers have committed the transaction. This guarantees that a failover will not lose any data
and that all load-balanced servers will return consistent results no matter which server is queried. In
contrast, asynchronous solutions allow some delay between the time of a commit and its propagation to
the other servers, opening the possibility that some transactions might be lost in the switch to a backup
server, and that load balanced servers might return slightly stale results. Asynchronous communication
is used when synchronous would be too slow.

Solutions can also be categorized by their granularity. Some solutions can deal only with an entire
database server, while others allow control at the per-table or per-database level.

Performance must be considered in any choice. There is usually a trade-off between functionality and
performance. For example, a fully synchronous solution over a slow network might cut performance by
more than half, while an asynchronous one might have a minimal performance impact.

The remainder of this section outlines various failover, replication, and load balancing solutions.

25.1. Comparison of Different Solutions
Shared Disk Failover

Shared disk failover avoids synchronization overhead by having only one copy of the database. It uses
a single disk array that is shared by multiple servers. If the main database server fails, the standby
server is able to mount and start the database as though it were recovering from a database crash.
This allows rapid failover with no data loss.

Shared hardware functionality is common in network storage devices. Using a network file system
is also possible, though care must be taken that the file system has full POSIX behavior (see
Section 17.2.2.1). One significant limitation of this method is that if the shared disk array fails or
becomes corrupt, the primary and standby servers are both nonfunctional. Another issue is that the
standby server should never access the shared storage while the primary server is running.

File System (Block Device) Replication
A modified version of shared hardware functionality is file system replication, where all changes to
a file system are mirrored to a file system residing on another computer. The only restriction is that
the mirroring must be done in a way that ensures the standby server has a consistent copy of the file

618

High Availability, Load
Balancing, and Replication

system — specifically, writes to the standby must be done in the same order as those on the master.
DRBD is a popular file system replication solution for Linux.

Write-Ahead Log Shipping
Warm and hot standby servers can be kept current by reading a stream of write-ahead log (WAL)
records. If the main server fails, the standby contains almost all of the data of the main server, and
can be quickly made the new master database server. This can be synchronous or asynchronous and
can only be done for the entire database server.

A standby server can be implemented using file-based log shipping (Section 25.2) or streaming
replication (see Section 25.2.5), or a combination of both. For information on hot standby, see
Section 25.5.

Logical Replication
Logical replication allows a database server to send a stream of data modifications to another server.
Postgres Pro logical replication constructs a stream of logical data modifications from the WAL.
Logical replication allows the data changes from individual tables to be replicated. Logical replication
doesn't require a particular server to be designated as a master or a replica but allows data to flow in
multiple directions. For more information on logical replication, see Chapter 29. Through the logical
decoding interface (Chapter 46), third-party extensions can also provide similar functionality.

Trigger-Based Master-Standby Replication
A master-standby replication setup sends all data modification queries to the master server. The
master server asynchronously sends data changes to the standby server. The standby can answer
read-only queries while the master server is running. The standby server is ideal for data warehouse
queries.

Slony-I is an example of this type of replication, with per-table granularity, and support for multiple
standby servers. Because it updates the standby server asynchronously (in batches), there is possible
data loss during fail over.

SQL-Based Replication Middleware
With SQL-based replication middleware, a program intercepts every SQL query and sends it to one
or all servers. Each server operates independently. Read-write queries must be sent to all servers, so
that every server receives any changes. But read-only queries can be sent to just one server, allowing
the read workload to be distributed among them.

If queries are simply broadcast unmodified, functions like random(), CURRENT_TIMESTAMP, and
sequences can have different values on different servers. This is because each server operates
independently, and because SQL queries are broadcast (and not actual modified rows). If this is
unacceptable, either the middleware or the application must query such values from a single server
and then use those values in write queries. Another option is to use this replication option with a
traditional master-standby setup, i.e., data modification queries are sent only to the master and are
propagated to the standby servers via master-standby replication, not by the replication middleware.
Care must also be taken that all transactions either commit or abort on all servers, perhaps using
two-phase commit (PREPARE TRANSACTION and COMMIT PREPARED). Pgpool-II and Continuent
Tungsten are examples of this type of replication.

Asynchronous Multimaster Replication
For servers that are not regularly connected or have slow communication links, like laptops or remote
servers, keeping data consistent among servers is a challenge. Using asynchronous multimaster
replication, each server works independently, and periodically communicates with the other servers
to identify conflicting transactions. The conflicts can be resolved by users or conflict resolution rules.
Bucardo is an example of this type of replication.

Synchronous Multimaster Replication
In synchronous multimaster replication, each server can accept write requests, and modified data
is transmitted from the original server to every other server before each transaction commits.
Heavy write activity can cause excessive locking and commit delays, leading to poor performance.

619

High Availability, Load
Balancing, and Replication

Read requests can be sent to any server. Some implementations use shared disk to reduce the
communication overhead. Synchronous multimaster replication is best for mostly read workloads,
though its big advantage is that any server can accept write requests — there is no need to partition
workloads between master and standby servers, and because the data changes are sent from one
server to another, there is no problem with non-deterministic functions like random().

Postgres Pro Enterprise provides multimaster extension that implements this type of replication.
Using multimaster, you can configure a synchronous shared-nothing cluster that provides Online
Transaction Processing (OLTP) scalability for read transactions, as well as ensures high availability
with automatic disaster recovery.

Table 25.1 summarizes the capabilities of the various solutions listed above.

Table 25.1. High Availability, Load Balancing, and Replication Feature Matrix

Feature Shared
Disk

File
System
Repl.

Write-
Ahead
Log
Shipping

Logical
Repl.

Trigger-
Based
Repl.

SQL
Repl.
Middle-
ware

Async.
MM
Repl.

Sync.
MM
Repl.

Popular
examples

NAS DRBD built-in
streaming

repl.

built-in
logical
repl.,

 pglogical

Londiste,
 Slony

pgpool-II Bucardo multimaster
extension

of
Postgres

Pro
Enterprise

Comm.
method

shared
disk

disk
blocks

WAL logical
decoding

table
rows

SQL table
rows

table
rows and
row locks

No special
hardware
required

 • • • • • • •

Allows
multiple
master
servers

 • • • •

No master
server
overhead

• • • •

No
waiting for
multiple
servers

• with
sync off

with
sync off

• •

Master
failure will
never lose
data

• • with
sync on

with
sync on

 • •

Replicas
accept
read-only
queries

 with hot
standby

• • • • •

Per-table
granularity

 • • • •

No conflict
resolution
necessary

• • • • • •

620

High Availability, Load
Balancing, and Replication

There are a few solutions that do not fit into the above categories:

Data Partitioning
Data partitioning splits tables into data sets. Each set can be modified by only one server. For
example, data can be partitioned by offices, e.g., London and Paris, with a server in each office. If
queries combining London and Paris data are necessary, an application can query both servers, or
master/standby replication can be used to keep a read-only copy of the other office's data on each
server.

Multiple-Server Parallel Query Execution
Many of the above solutions allow multiple servers to handle multiple queries, but none allow a
single query to use multiple servers to complete faster. This solution allows multiple servers to work
concurrently on a single query. It is usually accomplished by splitting the data among servers and
having each server execute its part of the query and return results to a central server where they
are combined and returned to the user. This can be implemented using the PL/Proxy tool set.

25.2. Log-Shipping Standby Servers
Continuous archiving can be used to create a high availability (HA) cluster configuration with one or
more standby servers ready to take over operations if the primary server fails. This capability is widely
referred to as warm standby or log shipping.

The primary and standby server work together to provide this capability, though the servers are only
loosely coupled. The primary server operates in continuous archiving mode, while each standby server
operates in continuous recovery mode, reading the WAL files from the primary. No changes to the
database tables are required to enable this capability, so it offers low administration overhead compared
to some other replication solutions. This configuration also has relatively low performance impact on
the primary server.

Directly moving WAL records from one database server to another is typically described as log shipping.
Postgres Pro implements file-based log shipping by transferring WAL records one file (WAL segment)
at a time. WAL files (16MB) can be shipped easily and cheaply over any distance, whether it be to an
adjacent system, another system at the same site, or another system on the far side of the globe. The
bandwidth required for this technique varies according to the transaction rate of the primary server.
Record-based log shipping is more granular and streams WAL changes incrementally over a network
connection (see Section 25.2.5).

It should be noted that log shipping is asynchronous, i.e., the WAL records are shipped after transaction
commit. As a result, there is a window for data loss should the primary server suffer a catastrophic
failure; transactions not yet shipped will be lost. The size of the data loss window in file-based log
shipping can be limited by use of the archive_timeout parameter, which can be set as low as a few
seconds. However such a low setting will substantially increase the bandwidth required for file shipping.
Streaming replication (see Section 25.2.5) allows a much smaller window of data loss.

Recovery performance is sufficiently good that the standby will typically be only moments away from
full availability once it has been activated. As a result, this is called a warm standby configuration
which offers high availability. Restoring a server from an archived base backup and rollforward will take
considerably longer, so that technique only offers a solution for disaster recovery, not high availability.
A standby server can also be used for read-only queries, in which case it is called a Hot Standby server.
See Section 25.5 for more information.

25.2.1. Planning
It is usually wise to create the primary and standby servers so that they are as similar as possible, at least
from the perspective of the database server. In particular, the path names associated with tablespaces
will be passed across unmodified, so both primary and standby servers must have the same mount paths
for tablespaces if that feature is used. Keep in mind that if CREATE TABLESPACE is executed on the
primary, any new mount point needed for it must be created on the primary and all standby servers
before the command is executed. Hardware need not be exactly the same, but experience shows that

621

High Availability, Load
Balancing, and Replication

maintaining two identical systems is easier than maintaining two dissimilar ones over the lifetime of the
application and system. In any case the hardware architecture must be the same — shipping from, say,
a 32-bit to a 64-bit system will not work.

In general, log shipping between servers running different major Postgres Pro release levels is not
possible. It is the policy of the Postgres Pro Global Development Group not to make changes to disk
formats during minor release upgrades, so it is likely that running different minor release levels on
primary and standby servers will work successfully. However, no formal support for that is offered and
you are advised to keep primary and standby servers at the same release level as much as possible.
When updating to a new minor release, the safest policy is to update the standby servers first — a new
minor release is more likely to be able to read WAL files from a previous minor release than vice versa.

25.2.2. Standby Server Operation
A server enters standby mode if a standby.signal file exists in the data directory when the server is
started.

In standby mode, the server continuously applies WAL received from the master server. The standby
server can read WAL from a WAL archive (see restore_command) or directly from the master over a TCP
connection (streaming replication). The standby server will also attempt to restore any WAL found in
the standby cluster's pg_wal directory. That typically happens after a server restart, when the standby
replays again WAL that was streamed from the master before the restart, but you can also manually
copy files to pg_wal at any time to have them replayed.

At startup, the standby begins by restoring all WAL available in the archive location, calling
restore_command. Once it reaches the end of WAL available there and restore_command fails, it tries
to restore any WAL available in the pg_wal directory. If that fails, and streaming replication has been
configured, the standby tries to connect to the primary server and start streaming WAL from the last
valid record found in archive or pg_wal. If that fails or streaming replication is not configured, or if the
connection is later disconnected, the standby goes back to step 1 and tries to restore the file from the
archive again. This loop of retries from the archive, pg_wal, and via streaming replication goes on until
the server is stopped or failover is triggered by a trigger file.

Standby mode is exited and the server switches to normal operation when pg_ctl promote is run,
pg_promote() is called, or a trigger file is found (promote_trigger_file). Before failover, any WAL
immediately available in the archive or in pg_wal will be restored, but no attempt is made to connect
to the master.

25.2.3. Preparing the Master for Standby Servers
Set up continuous archiving on the primary to an archive directory accessible from the standby, as
described in Section 24.3. The archive location should be accessible from the standby even when the
master is down, i.e., it should reside on the standby server itself or another trusted server, not on the
master server.

If you want to use streaming replication, set up authentication on the primary server to allow replication
connections from the standby server(s); that is, create a role and provide a suitable entry or entries
in pg_hba.conf with the database field set to replication. Also ensure max_wal_senders is set to a
sufficiently large value in the configuration file of the primary server. If replication slots will be used,
ensure that max_replication_slots is set sufficiently high as well.

Take a base backup as described in Section 24.3.2 to bootstrap the standby server.

25.2.4. Setting Up a Standby Server
To set up the standby server, restore the base backup taken from primary server (see Section 24.3.4).
Create a file standby.signalin the standby's cluster data directory. Set restore_command to a simple
command to copy files from the WAL archive. If you plan to have multiple standby servers for high
availability purposes, make sure that recovery_target_timeline is set to latest (the default), to make
the standby server follow the timeline change that occurs at failover to another standby.

622

High Availability, Load
Balancing, and Replication

Note
Do not use pg_standby or similar tools with the built-in standby mode described here.
restore_command should return immediately if the file does not exist; the server will retry the
command again if necessary. See Section 25.4 for using tools like pg_standby.

If you want to use streaming replication, fill in primary_conninfo with a libpq connection string, including
the host name (or IP address) and any additional details needed to connect to the primary server. If the
primary needs a password for authentication, the password needs to be specified in primary_conninfo
as well.

If you're setting up the standby server for high availability purposes, set up WAL archiving, connections
and authentication like the primary server, because the standby server will work as a primary server
after failover.

If you're using a WAL archive, its size can be minimized using the archive_cleanup_command parameter
to remove files that are no longer required by the standby server. The pg_archivecleanup utility is
designed specifically to be used with archive_cleanup_command in typical single-standby configurations,
see pg_archivecleanup. Note however, that if you're using the archive for backup purposes, you need
to retain files needed to recover from at least the latest base backup, even if they're no longer needed
by the standby.

A simple example of configuration is:
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass options=''-c
 wal_sender_timeout=5000'''
restore_command = 'cp /path/to/archive/%f %p'
archive_cleanup_command = 'pg_archivecleanup /path/to/archive %r'

You can have any number of standby servers, but if you use streaming replication, make sure you set
max_wal_senders high enough in the primary to allow them to be connected simultaneously.

25.2.5. Streaming Replication
Streaming replication allows a standby server to stay more up-to-date than is possible with file-based
log shipping. The standby connects to the primary, which streams WAL records to the standby as they're
generated, without waiting for the WAL file to be filled.

Streaming replication is asynchronous by default (see Section 25.2.8), in which case there is a small delay
between committing a transaction in the primary and the changes becoming visible in the standby. This
delay is however much smaller than with file-based log shipping, typically under one second assuming
the standby is powerful enough to keep up with the load. With streaming replication, archive_timeout
is not required to reduce the data loss window.

If you use streaming replication without file-based continuous archiving, the server might recycle
old WAL segments before the standby has received them. If this occurs, the standby will need to be
reinitialized from a new base backup. You can avoid this by setting wal_keep_size to a value large
enough to ensure that WAL segments are not recycled too early, or by configuring a replication slot
for the standby. If you set up a WAL archive that's accessible from the standby, these solutions are not
required, since the standby can always use the archive to catch up provided it retains enough segments.

To use streaming replication, set up a file-based log-shipping standby server as described in Section 25.2.
The step that turns a file-based log-shipping standby into streaming replication standby is setting the
primary_conninfo setting to point to the primary server. Set listen_addresses and authentication options
(see pg_hba.conf) on the primary so that the standby server can connect to the replication pseudo-
database on the primary server (see Section 25.2.5.1).

On systems that support the keepalive socket option, setting tcp_keepalives_idle, tcp_keepalives_interval
and tcp_keepalives_count helps the primary promptly notice a broken connection.

623

High Availability, Load
Balancing, and Replication

Set the maximum number of concurrent connections from the standby servers (see max_wal_senders
for details).

When the standby is started and primary_conninfo is set correctly, the standby will connect to the
primary after replaying all WAL files available in the archive. If the connection is established successfully,
you will see a walreceiver in the standby, and a corresponding walsender process in the primary.

25.2.5.1. Authentication
It is very important that the access privileges for replication be set up so that only trusted users can
read the WAL stream, because it is easy to extract privileged information from it. Standby servers
must authenticate to the primary as an account that has the REPLICATION privilege or a superuser. It is
recommended to create a dedicated user account with REPLICATION and LOGIN privileges for replication.
While REPLICATION privilege gives very high permissions, it does not allow the user to modify any data
on the primary system, which the SUPERUSER privilege does.

Client authentication for replication is controlled by a pg_hba.conf record specifying replication in the
database field. For example, if the standby is running on host IP 192.168.1.100 and the account name
for replication is foo, the administrator can add the following line to the pg_hba.conf file on the primary:

Allow the user "foo" from host 192.168.1.100 to connect to the primary
as a replication standby if the user's password is correctly supplied.
#
TYPE DATABASE USER ADDRESS METHOD
host replication foo 192.168.1.100/32 md5

The host name and port number of the primary, connection user name, and password are specified
in the primary_conninfo. The password can also be set in the ~/.pgpass file on the standby (specify
replication in the database field). For example, if the primary is running on host IP 192.168.1.50,
port 5432, the account name for replication is foo, and the password is foopass, the administrator can
add the following line to the postgresql.conf file on the standby:

The standby connects to the primary that is running on host 192.168.1.50
and port 5432 as the user "foo" whose password is "foopass".
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'

25.2.5.2. Monitoring
An important health indicator of streaming replication is the amount of WAL records generated in the
primary, but not yet applied in the standby. You can calculate this lag by comparing the current WAL
write location on the primary with the last WAL location received by the standby. These locations can
be retrieved using pg_current_wal_lsn on the primary and pg_last_wal_receive_lsn on the standby,
respectively (see Table 9.85 and Table 9.86 for details). The last WAL receive location in the standby
is also displayed in the process status of the WAL receiver process, displayed using the ps command
(see Section 26.1 for details).

You can retrieve a list of WAL sender processes via the pg_stat_replication view. Large differences
between pg_current_wal_lsn and the view's sent_lsn field might indicate that the master server is
under heavy load, while differences between sent_lsn and pg_last_wal_receive_lsn on the standby
might indicate network delay, or that the standby is under heavy load.

On a hot standby, the status of the WAL receiver process can be retrieved via the pg_stat_wal_receiver
view. A large difference between pg_last_wal_replay_lsn and the view's flushed_lsn indicates that
WAL is being received faster than it can be replayed.

25.2.6. Replication Slots
Replication slots provide an automated way to ensure that the master does not remove WAL segments
until they have been received by all standbys, and that the master does not remove rows which could
cause a recovery conflict even when the standby is disconnected.

624

High Availability, Load
Balancing, and Replication

In lieu of using replication slots, it is possible to prevent the removal of old WAL segments using
wal_keep_size, or by storing the segments in an archive using archive_command. However, these
methods often result in retaining more WAL segments than required, whereas replication slots retain
only the number of segments known to be needed. On the other hand, replication slots can retain so
many WAL segments that they fill up the space allocated for pg_wal; max_slot_wal_keep_size limits the
size of WAL files retained by replication slots.

Similarly, hot_standby_feedback and vacuum_defer_cleanup_age provide protection against relevant
rows being removed by vacuum, but the former provides no protection during any time period when
the standby is not connected, and the latter often needs to be set to a high value to provide adequate
protection. Replication slots overcome these disadvantages.

25.2.6.1. Querying and Manipulating Replication Slots
Each replication slot has a name, which can contain lower-case letters, numbers, and the underscore
character.

Existing replication slots and their state can be seen in the pg_replication_slots view.

Slots can be created and dropped either via the streaming replication protocol (see Section 50.4) or via
SQL functions (see Section 9.27.6).

25.2.6.2. Configuration Example
You can create a replication slot like this:
postgres=# SELECT * FROM pg_create_physical_replication_slot('node_a_slot');
 slot_name | lsn
-------------+-----
 node_a_slot |

postgres=# SELECT slot_name, slot_type, active FROM pg_replication_slots;
 slot_name | slot_type | active
-------------+-----------+--------
 node_a_slot | physical | f
(1 row)

To configure the standby to use this slot, primary_slot_name should be configured on the standby. Here
is a simple example:
primary_conninfo = 'host=192.168.1.50 port=5432 user=foo password=foopass'
primary_slot_name = 'node_a_slot'

25.2.7. Cascading Replication
The cascading replication feature allows a standby server to accept replication connections and stream
WAL records to other standbys, acting as a relay. This can be used to reduce the number of direct
connections to the master and also to minimize inter-site bandwidth overheads.

A standby acting as both a receiver and a sender is known as a cascading standby. Standbys that are
more directly connected to the master are known as upstream servers, while those standby servers
further away are downstream servers. Cascading replication does not place limits on the number or
arrangement of downstream servers, though each standby connects to only one upstream server which
eventually links to a single master/primary server.

A cascading standby sends not only WAL records received from the master but also those restored from
the archive. So even if the replication connection in some upstream connection is terminated, streaming
replication continues downstream for as long as new WAL records are available.

Cascading replication is currently asynchronous. Synchronous replication (see Section 25.2.8) settings
have no effect on cascading replication at present.

Hot Standby feedback propagates upstream, whatever the cascaded arrangement.

625

High Availability, Load
Balancing, and Replication

If an upstream standby server is promoted to become new master, downstream servers will continue to
stream from the new master if recovery_target_timeline is set to 'latest' (the default).

To use cascading replication, set up the cascading standby so that it can accept replication connections
(that is, set max_wal_senders and hot_standby, and configure host-based authentication). You will also
need to set primary_conninfo in the downstream standby to point to the cascading standby.

25.2.8. Synchronous Replication
Postgres Pro streaming replication is asynchronous by default. If the primary server crashes then some
transactions that were committed may not have been replicated to the standby server, causing data loss.
The amount of data loss is proportional to the replication delay at the time of failover.

Synchronous replication offers the ability to confirm that all changes made by a transaction have
been transferred to one or more synchronous standby servers. This extends that standard level of
durability offered by a transaction commit. This level of protection is referred to as 2-safe replication
in computer science theory, and group-1-safe (group-safe and 1-safe) when synchronous_commit is set
to remote_write.

When requesting synchronous replication, each commit of a write transaction will wait until confirmation
is received that the commit has been written to the write-ahead log on disk of both the primary and
standby server. The only possibility that data can be lost is if both the primary and the standby suffer
crashes at the same time. This can provide a much higher level of durability, though only if the sysadmin
is cautious about the placement and management of the two servers. Waiting for confirmation increases
the user's confidence that the changes will not be lost in the event of server crashes but it also necessarily
increases the response time for the requesting transaction. The minimum wait time is the round-trip
time between primary and standby.

Read only transactions and transaction rollbacks need not wait for replies from standby servers.
Subtransaction commits do not wait for responses from standby servers, only top-level commits. Long
running actions such as data loading or index building do not wait until the very final commit message.
All two-phase commit actions require commit waits, including both prepare and commit.

A synchronous standby can be a physical replication standby or a logical replication subscriber. It
can also be any other physical or logical WAL replication stream consumer that knows how to send
the appropriate feedback messages. Besides the built-in physical and logical replication systems,
this includes special programs such as pg_receivewal and pg_recvlogical as well as some third-
party replication systems and custom programs. Check the respective documentation for details on
synchronous replication support.

25.2.8.1. Basic Configuration
Once streaming replication has been configured, configuring synchronous replication requires only
one additional configuration step: synchronous_standby_names must be set to a non-empty value.
synchronous_commit must also be set to on, but since this is the default value, typically no change is
required. (See Section 18.5.1 and Section 18.6.2.) This configuration will cause each commit to wait for
confirmation that the standby has written the commit record to durable storage. synchronous_commit
can be set by individual users, so it can be configured in the configuration file, for particular users
or databases, or dynamically by applications, in order to control the durability guarantee on a per-
transaction basis.

After a commit record has been written to disk on the primary, the WAL record is then sent to the
standby. The standby sends reply messages each time a new batch of WAL data is written to disk, unless
wal_receiver_status_interval is set to zero on the standby. In the case that synchronous_commit is
set to remote_apply, the standby sends reply messages when the commit record is replayed, making
the transaction visible. If the standby is chosen as a synchronous standby, according to the setting of
synchronous_standby_names on the primary, the reply messages from that standby will be considered
along with those from other synchronous standbys to decide when to release transactions waiting for
confirmation that the commit record has been received. These parameters allow the administrator

626

High Availability, Load
Balancing, and Replication

to specify which standby servers should be synchronous standbys. Note that the configuration of
synchronous replication is mainly on the master. Named standbys must be directly connected to the
master; the master knows nothing about downstream standby servers using cascaded replication.

Setting synchronous_commit to remote_write will cause each commit to wait for confirmation that the
standby has received the commit record and written it out to its own operating system, but not for the
data to be flushed to disk on the standby. This setting provides a weaker guarantee of durability than on
does: the standby could lose the data in the event of an operating system crash, though not a Postgres
Pro crash. However, it's a useful setting in practice because it can decrease the response time for the
transaction. Data loss could only occur if both the primary and the standby crash and the database of
the primary gets corrupted at the same time.

Setting synchronous_commit to remote_apply will cause each commit to wait until the current
synchronous standbys report that they have replayed the transaction, making it visible to user queries.
In simple cases, this allows for load balancing with causal consistency.

Users will stop waiting if a fast shutdown is requested. However, as when using asynchronous replication,
the server will not fully shutdown until all outstanding WAL records are transferred to the currently
connected standby servers.

25.2.8.2. Multiple Synchronous Standbys
Synchronous replication supports one or more synchronous standby servers; transactions will wait
until all the standby servers which are considered as synchronous confirm receipt of their data.
The number of synchronous standbys that transactions must wait for replies from is specified in
synchronous_standby_names. This parameter also specifies a list of standby names and the method
(FIRST and ANY) to choose synchronous standbys from the listed ones.

The method FIRST specifies a priority-based synchronous replication and makes transaction commits
wait until their WAL records are replicated to the requested number of synchronous standbys chosen
based on their priorities. The standbys whose names appear earlier in the list are given higher priority
and will be considered as synchronous. Other standby servers appearing later in this list represent
potential synchronous standbys. If any of the current synchronous standbys disconnects for whatever
reason, it will be replaced immediately with the next-highest-priority standby.

An example of synchronous_standby_names for a priority-based multiple synchronous standbys is:

synchronous_standby_names = 'FIRST 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, the two standbys s1 and s2 will
be chosen as synchronous standbys because their names appear early in the list of standby names. s3
is a potential synchronous standby and will take over the role of synchronous standby when either of s1
or s2 fails. s4 is an asynchronous standby since its name is not in the list.

The method ANY specifies a quorum-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to at least the requested number of synchronous standbys in the
list.

An example of synchronous_standby_names for a quorum-based multiple synchronous standbys is:

synchronous_standby_names = 'ANY 2 (s1, s2, s3)'

In this example, if four standby servers s1, s2, s3 and s4 are running, transaction commits will wait for
replies from at least any two standbys of s1, s2 and s3. s4 is an asynchronous standby since its name
is not in the list.

The synchronous states of standby servers can be viewed using the pg_stat_replication view.

25.2.8.3. Planning for Performance
Synchronous replication usually requires carefully planned and placed standby servers to ensure
applications perform acceptably. Waiting doesn't utilize system resources, but transaction locks continue

627

High Availability, Load
Balancing, and Replication

to be held until the transfer is confirmed. As a result, incautious use of synchronous replication
will reduce performance for database applications because of increased response times and higher
contention.

Postgres Pro allows the application developer to specify the durability level required via replication. This
can be specified for the system overall, though it can also be specified for specific users or connections,
or even individual transactions.

For example, an application workload might consist of: 10% of changes are important customer details,
while 90% of changes are less important data that the business can more easily survive if it is lost, such
as chat messages between users.

With synchronous replication options specified at the application level (on the primary) we can offer
synchronous replication for the most important changes, without slowing down the bulk of the total
workload. Application level options are an important and practical tool for allowing the benefits of
synchronous replication for high performance applications.

You should consider that the network bandwidth must be higher than the rate of generation of WAL data.

25.2.8.4. Planning for High Availability
synchronous_standby_names specifies the number and names of synchronous standbys that transaction
commits made when synchronous_commit is set to on, remote_apply or remote_write will wait for
responses from. Such transaction commits may never be completed if any one of synchronous standbys
should crash.

The best solution for high availability is to ensure you keep as many synchronous standbys
as requested. This can be achieved by naming multiple potential synchronous standbys using
synchronous_standby_names.

In a priority-based synchronous replication, the standbys whose names appear earlier in the list will be
used as synchronous standbys. Standbys listed after these will take over the role of synchronous standby
if one of current ones should fail.

In a quorum-based synchronous replication, all the standbys appearing in the list will be used as
candidates for synchronous standbys. Even if one of them should fail, the other standbys will keep
performing the role of candidates of synchronous standby.

When a standby first attaches to the primary, it will not yet be properly synchronized. This is described
as catchup mode. Once the lag between standby and primary reaches zero for the first time we move to
real-time streaming state. The catch-up duration may be long immediately after the standby has been
created. If the standby is shut down, then the catch-up period will increase according to the length of
time the standby has been down. The standby is only able to become a synchronous standby once it has
reached streaming state. This state can be viewed using the pg_stat_replication view.

If primary restarts while commits are waiting for acknowledgment, those waiting transactions will be
marked fully committed once the primary database recovers. There is no way to be certain that all
standbys have received all outstanding WAL data at time of the crash of the primary. Some transactions
may not show as committed on the standby, even though they show as committed on the primary. The
guarantee we offer is that the application will not receive explicit acknowledgment of the successful
commit of a transaction until the WAL data is known to be safely received by all the synchronous
standbys.

If you really cannot keep as many synchronous standbys as requested then you should decrease
the number of synchronous standbys that transaction commits must wait for responses from in
synchronous_standby_names (or disable it) and reload the configuration file on the primary server.

If the primary is isolated from remaining standby servers you should fail over to the best candidate of
those other remaining standby servers.

628

High Availability, Load
Balancing, and Replication

If you need to re-create a standby server while transactions are waiting, make sure that the commands
pg_start_backup() and pg_stop_backup() are run in a session with synchronous_commit = off, otherwise
those requests will wait forever for the standby to appear.

25.2.9. Continuous Archiving in Standby
When continuous WAL archiving is used in a standby, there are two different scenarios: the WAL archive
can be shared between the primary and the standby, or the standby can have its own WAL archive. When
the standby has its own WAL archive, set archive_mode to always, and the standby will call the archive
command for every WAL segment it receives, whether it's by restoring from the archive or by streaming
replication. The shared archive can be handled similarly, but the archive_command must test if the file
being archived exists already, and if the existing file has identical contents. This requires more care in
the archive_command, as it must be careful to not overwrite an existing file with different contents, but
return success if the exactly same file is archived twice. And all that must be done free of race conditions,
if two servers attempt to archive the same file at the same time.

If archive_mode is set to on, the archiver is not enabled during recovery or standby mode. If the standby
server is promoted, it will start archiving after the promotion, but will not archive any WAL or timeline
history files that it did not generate itself. To get a complete series of WAL files in the archive, you must
ensure that all WAL is archived, before it reaches the standby. This is inherently true with file-based
log shipping, as the standby can only restore files that are found in the archive, but not if streaming
replication is enabled. When a server is not in recovery mode, there is no difference between on and
always modes.

25.3. Failover
If the primary server fails then the standby server should begin failover procedures.

If the standby server fails then no failover need take place. If the standby server can be restarted,
even some time later, then the recovery process can also be restarted immediately, taking advantage of
restartable recovery. If the standby server cannot be restarted, then a full new standby server instance
should be created.

If the primary server fails and the standby server becomes the new primary, and then the old primary
restarts, you must have a mechanism for informing the old primary that it is no longer the primary. This
is sometimes known as STONITH (Shoot The Other Node In The Head), which is necessary to avoid
situations where both systems think they are the primary, which will lead to confusion and ultimately
data loss.

Many failover systems use just two systems, the primary and the standby, connected by some kind of
heartbeat mechanism to continually verify the connectivity between the two and the viability of the
primary. It is also possible to use a third system (called a witness server) to prevent some cases of
inappropriate failover, but the additional complexity might not be worthwhile unless it is set up with
sufficient care and rigorous testing.

Postgres Pro does not provide the system software required to identify a failure on the primary and notify
the standby database server. Many such tools exist and are well integrated with the operating system
facilities required for successful failover, such as IP address migration.

Once failover to the standby occurs, there is only a single server in operation. This is known as a
degenerate state. The former standby is now the primary, but the former primary is down and might
stay down. To return to normal operation, a standby server must be recreated, either on the former
primary system when it comes up, or on a third, possibly new, system. The pg_rewind utility can be used
to speed up this process on large clusters. Once complete, the primary and standby can be considered
to have switched roles. Some people choose to use a third server to provide backup for the new primary
until the new standby server is recreated, though clearly this complicates the system configuration and
operational processes.

So, switching from primary to standby server can be fast but requires some time to re-prepare the
failover cluster. Regular switching from primary to standby is useful, since it allows regular downtime

629

High Availability, Load
Balancing, and Replication

on each system for maintenance. This also serves as a test of the failover mechanism to ensure that it
will really work when you need it. Written administration procedures are advised.

To trigger failover of a log-shipping standby server, run pg_ctl promote, call pg_promote(), or create a
trigger file with the file name and path specified by the promote_trigger_file. If you're planning to use
pg_ctl promote or to call pg_promote() to fail over, promote_trigger_file is not required. If you're
setting up the reporting servers that are only used to offload read-only queries from the primary, not for
high availability purposes, you don't need to promote it.

25.4. Alternative Method for Log Shipping
An alternative to the built-in standby mode described in the previous sections is to use a
restore_command that polls the archive location. This was the only option available in versions 8.4 and
below. See the pg_standby module for a reference implementation of this.

Note that in this mode, the server will apply WAL one file at a time, so if you use the standby server for
queries (see Hot Standby), there is a delay between an action in the master and when the action becomes
visible in the standby, corresponding to the time it takes to fill up the WAL file. archive_timeout can be
used to make that delay shorter. Also note that you can't combine streaming replication with this method.

The operations that occur on both primary and standby servers are normal continuous archiving and
recovery tasks. The only point of contact between the two database servers is the archive of WAL files
that both share: primary writing to the archive, standby reading from the archive. Care must be taken
to ensure that WAL archives from separate primary servers do not become mixed together or confused.
The archive need not be large if it is only required for standby operation.

The magic that makes the two loosely coupled servers work together is simply a restore_command used
on the standby that, when asked for the next WAL file, waits for it to become available from the primary.
Normal recovery processing would request a file from the WAL archive, reporting failure if the file was
unavailable. For standby processing it is normal for the next WAL file to be unavailable, so the standby
must wait for it to appear. For files ending in .history there is no need to wait, and a non-zero return
code must be returned. A waiting restore_command can be written as a custom script that loops after
polling for the existence of the next WAL file. There must also be some way to trigger failover, which
should interrupt the restore_command, break the loop and return a file-not-found error to the standby
server. This ends recovery and the standby will then come up as a normal server.

Pseudocode for a suitable restore_command is:
triggered = false;
while (!NextWALFileReady() && !triggered)
{
 sleep(100000L); /* wait for ~0.1 sec */
 if (CheckForExternalTrigger())
 triggered = true;
}
if (!triggered)
 CopyWALFileForRecovery();

A working example of a waiting restore_command is provided in the pg_standby module. It should be
used as a reference on how to correctly implement the logic described above. It can also be extended
as needed to support specific configurations and environments.

The method for triggering failover is an important part of planning and design. One potential option
is the restore_command command. It is executed once for each WAL file, but the process running the
restore_command is created and dies for each file, so there is no daemon or server process, and signals or
a signal handler cannot be used. Therefore, the restore_command is not suitable to trigger failover. It is
possible to use a simple timeout facility, especially if used in conjunction with a known archive_timeout
setting on the primary. However, this is somewhat error prone since a network problem or busy primary
server might be sufficient to initiate failover. A notification mechanism such as the explicit creation of
a trigger file is ideal, if this can be arranged.

630

High Availability, Load
Balancing, and Replication

25.4.1. Implementation
The short procedure for configuring a standby server using this alternative method is as follows. For full
details of each step, refer to previous sections as noted.

1. Set up primary and standby systems as nearly identical as possible, including two identical copies of
Postgres Pro at the same release level.

2. Set up continuous archiving from the primary to a WAL archive directory on the standby server.
Ensure that archive_mode, archive_command and archive_timeout are set appropriately on the
primary (see Section 24.3.1).

3. Make a base backup of the primary server (see Section 24.3.2), and load this data onto the standby.

4. Begin recovery on the standby server from the local WAL archive, using restore_command that waits
as described previously (see Section 24.3.4).

Recovery treats the WAL archive as read-only, so once a WAL file has been copied to the standby system
it can be copied to tape at the same time as it is being read by the standby database server. Thus, running
a standby server for high availability can be performed at the same time as files are stored for longer
term disaster recovery purposes.

For testing purposes, it is possible to run both primary and standby servers on the same system. This
does not provide any worthwhile improvement in server robustness, nor would it be described as HA.

25.4.2. Record-Based Log Shipping
It is also possible to implement record-based log shipping using this alternative method, though this
requires custom development, and changes will still only become visible to hot standby queries after a
full WAL file has been shipped.

An external program can call the pg_walfile_name_offset() function (see Section 9.27) to find out the
file name and the exact byte offset within it of the current end of WAL. It can then access the WAL file
directly and copy the data from the last known end of WAL through the current end over to the standby
servers. With this approach, the window for data loss is the polling cycle time of the copying program,
which can be very small, and there is no wasted bandwidth from forcing partially-used segment files
to be archived. Note that the standby servers' restore_command scripts can only deal with whole WAL
files, so the incrementally copied data is not ordinarily made available to the standby servers. It is of
use only when the primary dies — then the last partial WAL file is fed to the standby before allowing it
to come up. The correct implementation of this process requires cooperation of the restore_command
script with the data copying program.

Starting with PostgreSQL version 9.0, you can use streaming replication (see Section 25.2.5) to achieve
the same benefits with less effort.

25.5. Hot Standby
Hot Standby is the term used to describe the ability to connect to the server and run read-only queries
while the server is in archive recovery or standby mode. This is useful both for replication purposes and
for restoring a backup to a desired state with great precision. The term Hot Standby also refers to the
ability of the server to move from recovery through to normal operation while users continue running
queries and/or keep their connections open.

Running queries in hot standby mode is similar to normal query operation, though there are several
usage and administrative differences explained below.

25.5.1. User's Overview
When the hot_standby parameter is set to true on a standby server, it will begin accepting connections
once the recovery has brought the system to a consistent state. All such connections are strictly read-
only; not even temporary tables may be written.

631

High Availability, Load
Balancing, and Replication

The data on the standby takes some time to arrive from the primary server so there will be a measurable
delay between primary and standby. Running the same query nearly simultaneously on both primary and
standby might therefore return differing results. We say that data on the standby is eventually consistent
with the primary. Once the commit record for a transaction is replayed on the standby, the changes made
by that transaction will be visible to any new snapshots taken on the standby. Snapshots may be taken at
the start of each query or at the start of each transaction, depending on the current transaction isolation
level. For more details, see Section 13.2.

Transactions started during hot standby may issue the following commands:

• Query access: SELECT, COPY TO

• Cursor commands: DECLARE, FETCH, CLOSE

• Settings: SHOW, SET, RESET

• Transaction management commands:

• BEGIN, END, ABORT, START TRANSACTION

• SAVEPOINT, RELEASE, ROLLBACK TO SAVEPOINT

• EXCEPTION blocks and other internal subtransactions

• LOCK TABLE, though only when explicitly in one of these modes: ACCESS SHARE, ROW SHARE or ROW
EXCLUSIVE.

• Plans and resources: PREPARE, EXECUTE, DEALLOCATE, DISCARD

• Plugins and extensions: LOAD

• UNLISTEN

Transactions started during hot standby will never be assigned a transaction ID and cannot write to the
system write-ahead log. Therefore, the following actions will produce error messages:

• Data Manipulation Language (DML): INSERT, UPDATE, DELETE, COPY FROM, TRUNCATE. Note that
there are no allowed actions that result in a trigger being executed during recovery. This restriction
applies even to temporary tables, because table rows cannot be read or written without assigning a
transaction ID, which is currently not possible in a Hot Standby environment.

• Data Definition Language (DDL): CREATE, DROP, ALTER, COMMENT. This restriction applies even to
temporary tables, because carrying out these operations would require updating the system catalog
tables.

• SELECT ... FOR SHARE | UPDATE, because row locks cannot be taken without updating the
underlying data files.

• Rules on SELECT statements that generate DML commands.

• LOCK that explicitly requests a mode higher than ROW EXCLUSIVE MODE.

• LOCK in short default form, since it requests ACCESS EXCLUSIVE MODE.

• Transaction management commands that explicitly set non-read-only state:

• BEGIN READ WRITE, START TRANSACTION READ WRITE

• SET TRANSACTION READ WRITE, SET SESSION CHARACTERISTICS AS TRANSACTION READ WRITE

• SET transaction_read_only = off

• Two-phase commit commands: PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED
because even read-only transactions need to write WAL in the prepare phase (the first phase of two
phase commit).

• Sequence updates: nextval(), setval()

• LISTEN, NOTIFY

632

High Availability, Load
Balancing, and Replication

In normal operation, “read-only” transactions are allowed to use LISTEN and NOTIFY, so Hot Standby
sessions operate under slightly tighter restrictions than ordinary read-only sessions. It is possible that
some of these restrictions might be loosened in a future release.

During hot standby, the parameter transaction_read_only is always true and may not be changed. But
as long as no attempt is made to modify the database, connections during hot standby will act much
like any other database connection. If failover or switchover occurs, the database will switch to normal
processing mode. Sessions will remain connected while the server changes mode. Once hot standby
finishes, it will be possible to initiate read-write transactions (even from a session begun during hot
standby).

Users will be able to tell whether their session is read-only by issuing SHOW transaction_read_only.
In addition, a set of functions (Table 9.86) allow users to access information about the standby server.
These allow you to write programs that are aware of the current state of the database. These can be
used to monitor the progress of recovery, or to allow you to write complex programs that restore the
database to particular states.

25.5.2. Handling Query Conflicts
The primary and standby servers are in many ways loosely connected. Actions on the primary will have
an effect on the standby. As a result, there is potential for negative interactions or conflicts between
them. The easiest conflict to understand is performance: if a huge data load is taking place on the primary
then this will generate a similar stream of WAL records on the standby, so standby queries may contend
for system resources, such as I/O.

There are also additional types of conflict that can occur with Hot Standby. These conflicts are hard
conflicts in the sense that queries might need to be canceled and, in some cases, sessions disconnected
to resolve them. The user is provided with several ways to handle these conflicts. Conflict cases include:
• Access Exclusive locks taken on the primary server, including both explicit LOCK commands and

various DDL actions, conflict with table accesses in standby queries.
• Dropping a tablespace on the primary conflicts with standby queries using that tablespace for

temporary work files.
• Dropping a database on the primary conflicts with sessions connected to that database on the

standby.
• Application of a vacuum cleanup record from WAL conflicts with standby transactions whose

snapshots can still “see” any of the rows to be removed.
• Application of a vacuum cleanup record from WAL conflicts with queries accessing the target page

on the standby, whether or not the data to be removed is visible.

On the primary server, these cases simply result in waiting; and the user might choose to cancel either
of the conflicting actions. However, on the standby there is no choice: the WAL-logged action already
occurred on the primary so the standby must not fail to apply it. Furthermore, allowing WAL application
to wait indefinitely may be very undesirable, because the standby's state will become increasingly far
behind the primary's. Therefore, a mechanism is provided to forcibly cancel standby queries that conflict
with to-be-applied WAL records.

An example of the problem situation is an administrator on the primary server running DROP TABLE on
a table that is currently being queried on the standby server. Clearly the standby query cannot continue
if the DROP TABLE is applied on the standby. If this situation occurred on the primary, the DROP TABLE
would wait until the other query had finished. But when DROP TABLE is run on the primary, the primary
doesn't have information about what queries are running on the standby, so it will not wait for any such
standby queries. The WAL change records come through to the standby while the standby query is still
running, causing a conflict. The standby server must either delay application of the WAL records (and
everything after them, too) or else cancel the conflicting query so that the DROP TABLE can be applied.

When a conflicting query is short, it's typically desirable to allow it to complete by delaying WAL
application for a little bit; but a long delay in WAL application is usually not desirable. So the cancel

633

High Availability, Load
Balancing, and Replication

mechanism has parameters, max_standby_archive_delay and max_standby_streaming_delay, that define
the maximum allowed delay in WAL application. Conflicting queries will be canceled once it has taken
longer than the relevant delay setting to apply any newly-received WAL data. There are two parameters
so that different delay values can be specified for the case of reading WAL data from an archive (i.e.,
initial recovery from a base backup or “catching up” a standby server that has fallen far behind) versus
reading WAL data via streaming replication.

In a standby server that exists primarily for high availability, it's best to set the delay parameters
relatively short, so that the server cannot fall far behind the primary due to delays caused by standby
queries. However, if the standby server is meant for executing long-running queries, then a high or even
infinite delay value may be preferable. Keep in mind however that a long-running query could cause
other sessions on the standby server to not see recent changes on the primary, if it delays application
of WAL records.

Once the delay specified by max_standby_archive_delay or max_standby_streaming_delay has been
exceeded, conflicting queries will be canceled. This usually results just in a cancellation error, although
in the case of replaying a DROP DATABASE the entire conflicting session will be terminated. Also, if the
conflict is over a lock held by an idle transaction, the conflicting session is terminated (this behavior
might change in the future).

Canceled queries may be retried immediately (after beginning a new transaction, of course). Since query
cancellation depends on the nature of the WAL records being replayed, a query that was canceled may
well succeed if it is executed again.

Keep in mind that the delay parameters are compared to the elapsed time since the WAL data was
received by the standby server. Thus, the grace period allowed to any one query on the standby is never
more than the delay parameter, and could be considerably less if the standby has already fallen behind
as a result of waiting for previous queries to complete, or as a result of being unable to keep up with
a heavy update load.

The most common reason for conflict between standby queries and WAL replay is “early cleanup”.
Normally, Postgres Pro allows cleanup of old row versions when there are no transactions that need to
see them to ensure correct visibility of data according to MVCC rules. However, this rule can only be
applied for transactions executing on the master. So it is possible that cleanup on the master will remove
row versions that are still visible to a transaction on the standby.

Experienced users should note that both row version cleanup and row version freezing will potentially
conflict with standby queries. Running a manual VACUUM FREEZE is likely to cause conflicts even on tables
with no updated or deleted rows.

Users should be clear that tables that are regularly and heavily updated on the primary server will
quickly cause cancellation of longer running queries on the standby. In such cases the setting of a finite
value for max_standby_archive_delay or max_standby_streaming_delay can be considered similar to
setting statement_timeout.

Remedial possibilities exist if the number of standby-query cancellations is found to be unacceptable.
The first option is to set the parameter hot_standby_feedback, which prevents VACUUM from removing
recently-dead rows and so cleanup conflicts do not occur. If you do this, you should note that this
will delay cleanup of dead rows on the primary, which may result in undesirable table bloat. However,
the cleanup situation will be no worse than if the standby queries were running directly on the
primary server, and you are still getting the benefit of off-loading execution onto the standby. If
standby servers connect and disconnect frequently, you might want to make adjustments to handle the
period when hot_standby_feedback feedback is not being provided. For example, consider increasing
max_standby_archive_delay so that queries are not rapidly canceled by conflicts in WAL archive files
during disconnected periods. You should also consider increasing max_standby_streaming_delay to
avoid rapid cancellations by newly-arrived streaming WAL entries after reconnection.

Another option is to increase vacuum_defer_cleanup_age on the primary server, so that dead rows will
not be cleaned up as quickly as they normally would be. This will allow more time for queries to execute

634

High Availability, Load
Balancing, and Replication

before they are canceled on the standby, without having to set a high max_standby_streaming_delay.
However it is difficult to guarantee any specific execution-time window with this approach, since
vacuum_defer_cleanup_age is measured in transactions executed on the primary server.

The number of query cancels and the reason for them can be viewed using the
pg_stat_database_conflicts system view on the standby server. The pg_stat_database system view
also contains summary information.

25.5.3. Administrator's Overview
If hot_standby is on in postgresql.conf (the default value) and there is a standby.signalfile present,
the server will run in Hot Standby mode. However, it may take some time for Hot Standby connections
to be allowed, because the server will not accept connections until it has completed sufficient recovery
to provide a consistent state against which queries can run. During this period, clients that attempt to
connect will be refused with an error message. To confirm the server has come up, either loop trying to
connect from the application, or look for these messages in the server logs:

LOG: entering standby mode

... then some time later ...

LOG: consistent recovery state reached
LOG: database system is ready to accept read only connections

Consistency information is recorded once per checkpoint on the primary. It is not possible to enable
hot standby when reading WAL written during a period when wal_level was not set to replica or
logical on the primary. Reaching a consistent state can also be delayed in the presence of both of these
conditions:

• A write transaction has more than 64 subtransactions

• Very long-lived write transactions

If you are running file-based log shipping ("warm standby"), you might need to wait until the next WAL
file arrives, which could be as long as the archive_timeout setting on the primary.

The setting of some parameters on the standby will need reconfiguration if they have been changed on
the primary. For these parameters, the value on the standby must be equal to or greater than the value
on the primary. Therefore, if you want to increase these values, you should do so on all standby servers
first, before applying the changes to the primary server. Conversely, if you want to decrease these values,
you should do so on the primary server first, before applying the changes to all standby servers. If these
parameters are not set high enough then the standby will refuse to start. Higher values can then be
supplied and the server restarted to begin recovery again. These parameters are:

• max_connections

• max_prepared_transactions

• max_locks_per_transaction

• max_wal_senders

• max_worker_processes

It is important that the administrator select appropriate settings for max_standby_archive_delay and
max_standby_streaming_delay. The best choices vary depending on business priorities. For example if
the server is primarily tasked as a High Availability server, then you will want low delay settings, perhaps
even zero, though that is a very aggressive setting. If the standby server is tasked as an additional server
for decision support queries then it might be acceptable to set the maximum delay values to many hours,
or even -1 which means wait forever for queries to complete.

Transaction status "hint bits" written on the primary are not WAL-logged, so data on the standby will
likely re-write the hints again on the standby. Thus, the standby server will still perform disk writes even

635

High Availability, Load
Balancing, and Replication

though all users are read-only; no changes occur to the data values themselves. Users will still write
large sort temporary files and re-generate relcache info files, so no part of the database is truly read-
only during hot standby mode. Note also that writes to remote databases using dblink module, and other
operations outside the database using PL functions will still be possible, even though the transaction
is read-only locally.

The following types of administration commands are not accepted during recovery mode:

• Data Definition Language (DDL): e.g., CREATE INDEX

• Privilege and Ownership: GRANT, REVOKE, REASSIGN

• Maintenance commands: ANALYZE, VACUUM, CLUSTER, REINDEX

Again, note that some of these commands are actually allowed during "read only" mode transactions
on the primary.

As a result, you cannot create additional indexes that exist solely on the standby, nor statistics that exist
solely on the standby. If these administration commands are needed, they should be executed on the
primary, and eventually those changes will propagate to the standby.

pg_cancel_backend() and pg_terminate_backend() will work on user backends, but not the Startup
process, which performs recovery. pg_stat_activity does not show recovering transactions as active.
As a result, pg_prepared_xacts is always empty during recovery. If you wish to resolve in-doubt prepared
transactions, view pg_prepared_xacts on the primary and issue commands to resolve transactions there
or resolve them after the end of recovery.

pg_locks will show locks held by backends, as normal. pg_locks also shows a virtual transaction
managed by the Startup process that owns all AccessExclusiveLocks held by transactions being
replayed by recovery. Note that the Startup process does not acquire locks to make database changes,
and thus locks other than AccessExclusiveLocks do not show in pg_locks for the Startup process; they
are just presumed to exist.

The Nagios plugin check_pgsql will work, because the simple information it checks for exists. The
check_postgres monitoring script will also work, though some reported values could give different or
confusing results. For example, last vacuum time will not be maintained, since no vacuum occurs on the
standby. Vacuums running on the primary do still send their changes to the standby.

WAL file control commands will not work during recovery, e.g., pg_start_backup, pg_switch_wal etc.

Dynamically loadable modules work, including pg_stat_statements.

Advisory locks work normally in recovery, including deadlock detection. Note that advisory locks are
never WAL logged, so it is impossible for an advisory lock on either the primary or the standby to conflict
with WAL replay. Nor is it possible to acquire an advisory lock on the primary and have it initiate a similar
advisory lock on the standby. Advisory locks relate only to the server on which they are acquired.

Trigger-based replication systems such as Slony, Londiste and Bucardo won't run on the standby at all,
though they will run happily on the primary server as long as the changes are not sent to standby servers
to be applied. WAL replay is not trigger-based so you cannot relay from the standby to any system that
requires additional database writes or relies on the use of triggers.

New OIDs cannot be assigned, though some UUID generators may still work as long as they do not rely
on writing new status to the database.

Currently, temporary table creation is not allowed during read only transactions, so in some cases
existing scripts will not run correctly. This restriction might be relaxed in a later release. This is both a
SQL Standard compliance issue and a technical issue.

DROP TABLESPACE can only succeed if the tablespace is empty. Some standby users may be actively using
the tablespace via their temp_tablespaces parameter. If there are temporary files in the tablespace,

636

High Availability, Load
Balancing, and Replication

all active queries are canceled to ensure that temporary files are removed, so the tablespace can be
removed and WAL replay can continue.

Running DROP DATABASE or ALTER DATABASE ... SET TABLESPACE on the primary will generate a WAL
entry that will cause all users connected to that database on the standby to be forcibly disconnected.
This action occurs immediately, whatever the setting of max_standby_streaming_delay. Note that ALTER
DATABASE ... RENAME does not disconnect users, which in most cases will go unnoticed, though might
in some cases cause a program confusion if it depends in some way upon database name.

In normal (non-recovery) mode, if you issue DROP USER or DROP ROLE for a role with login capability while
that user is still connected then nothing happens to the connected user — they remain connected. The
user cannot reconnect however. This behavior applies in recovery also, so a DROP USER on the primary
does not disconnect that user on the standby.

The statistics collector is active during recovery. All scans, reads, blocks, index usage, etc., will be
recorded normally on the standby. Replayed actions will not duplicate their effects on primary, so
replaying an insert will not increment the Inserts column of pg_stat_user_tables. The stats file is deleted
at the start of recovery, so stats from primary and standby will differ; this is considered a feature, not
a bug.

Autovacuum is not active during recovery. It will start normally at the end of recovery.

The checkpointer process and the background writer process are active during recovery. The
checkpointer process will perform restartpoints (similar to checkpoints on the primary) and the
background writer process will perform normal block cleaning activities. This can include updates of the
hint bit information stored on the standby server. The CHECKPOINT command is accepted during recovery,
though it performs a restartpoint rather than a new checkpoint.

25.5.4. Hot Standby Parameter Reference
Various parameters have been mentioned above in Section 25.5.2 and Section 25.5.3.

On the primary, parameters wal_level and vacuum_defer_cleanup_age can be used.
max_standby_archive_delay and max_standby_streaming_delay have no effect if set on the primary.

On the standby, parameters hot_standby, max_standby_archive_delay and
max_standby_streaming_delay can be used. vacuum_defer_cleanup_age has no effect as long as the
server remains in standby mode, though it will become relevant if the standby becomes primary.

25.5.5. Caveats
There are several limitations of Hot Standby. These can and probably will be fixed in future releases:
• Full knowledge of running transactions is required before snapshots can be taken. Transactions

that use large numbers of subtransactions (currently greater than 64) will delay the start of read
only connections until the completion of the longest running write transaction. If this situation
occurs, explanatory messages will be sent to the server log.

• Valid starting points for standby queries are generated at each checkpoint on the master. If the
standby is shut down while the master is in a shutdown state, it might not be possible to re-enter
Hot Standby until the primary is started up, so that it generates further starting points in the
WAL logs. This situation isn't a problem in the most common situations where it might happen.
Generally, if the primary is shut down and not available anymore, that's likely due to a serious
failure that requires the standby being converted to operate as the new primary anyway. And in
situations where the primary is being intentionally taken down, coordinating to make sure the
standby becomes the new primary smoothly is also standard procedure.

• At the end of recovery, AccessExclusiveLocks held by prepared transactions will require twice the
normal number of lock table entries. If you plan on running either a large number of concurrent
prepared transactions that normally take AccessExclusiveLocks, or you plan on having one large
transaction that takes many AccessExclusiveLocks, you are advised to select a larger value of

637

High Availability, Load
Balancing, and Replication

max_locks_per_transaction, perhaps as much as twice the value of the parameter on the primary
server. You need not consider this at all if your setting of max_prepared_transactions is 0.

• The Serializable transaction isolation level is not yet available in hot standby. (See Section 13.2.3
and Section 13.4.1 for details.) An attempt to set a transaction to the serializable isolation level in
hot standby mode will generate an error.

638

Chapter 26. Monitoring Database Activity
A database administrator frequently wonders, “What is the system doing right now?” This chapter
discusses how to find that out.

Several tools are available for monitoring database activity and analyzing performance. Most of this
chapter is devoted to describing Postgres Pro's statistics collector, but one should not neglect regular
Unix monitoring programs such as ps, top, iostat, and vmstat. Also, once one has identified a poorly-
performing query, further investigation might be needed using Postgres Pro's EXPLAIN command.
Section 14.1 discusses EXPLAIN and other methods for understanding the behavior of an individual query.

26.1. Standard Unix Tools
On most Unix platforms, Postgres Pro modifies its command title as reported by ps, so that individual
server processes can readily be identified. A sample display is

$ ps auxww | grep ^postgres
postgres 15551 0.0 0.1 57536 7132 pts/0 S 18:02 0:00 postgres -i
postgres 15554 0.0 0.0 57536 1184 ? Ss 18:02 0:00 postgres: background
 writer
postgres 15555 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres:
 checkpointer
postgres 15556 0.0 0.0 57536 916 ? Ss 18:02 0:00 postgres: walwriter
postgres 15557 0.0 0.0 58504 2244 ? Ss 18:02 0:00 postgres: autovacuum
 launcher
postgres 15558 0.0 0.0 17512 1068 ? Ss 18:02 0:00 postgres: stats
 collector
postgres 15582 0.0 0.0 58772 3080 ? Ss 18:04 0:00 postgres: joe runbug
 127.0.0.1 idle
postgres 15606 0.0 0.0 58772 3052 ? Ss 18:07 0:00 postgres: tgl
 regression [local] SELECT waiting
postgres 15610 0.0 0.0 58772 3056 ? Ss 18:07 0:00 postgres: tgl
 regression [local] idle in transaction

(The appropriate invocation of ps varies across different platforms, as do the details of what is shown.
This example is from a recent Linux system.) The first process listed here is the master server process.
The command arguments shown for it are the same ones used when it was launched. The next five
processes are background worker processes automatically launched by the master process. (The “stats
collector” process will not be present if you have set the system not to start the statistics collector;
likewise the “autovacuum launcher” process can be disabled.) Each of the remaining processes is a
server process handling one client connection. Each such process sets its command line display in the
form

postgres: user database host activity

The user, database, and (client) host items remain the same for the life of the client connection, but
the activity indicator changes. The activity can be idle (i.e., waiting for a client command), idle in
transaction (waiting for client inside a BEGIN block), or a command type name such as SELECT. Also,
waiting is appended if the server process is presently waiting on a lock held by another session. In the
above example we can infer that process 15606 is waiting for process 15610 to complete its transaction
and thereby release some lock. (Process 15610 must be the blocker, because there is no other active
session. In more complicated cases it would be necessary to look into the pg_locks system view to
determine who is blocking whom.)

If cluster_name has been configured the cluster name will also be shown in ps output:

$ psql -c 'SHOW cluster_name'
 cluster_name

639

Monitoring Database Activity

 server1
(1 row)

$ ps aux|grep server1
postgres 27093 0.0 0.0 30096 2752 ? Ss 11:34 0:00 postgres: server1:
 background writer
...

If you have turned off update_process_title then the activity indicator is not updated; the process title
is set only once when a new process is launched. On some platforms this saves a measurable amount of
per-command overhead; on others it's insignificant.

Tip
Solaris requires special handling. You must use /usr/ucb/ps, rather than /bin/ps. You also must
use two w flags, not just one. In addition, your original invocation of the postgres command must
have a shorter ps status display than that provided by each server process. If you fail to do all
three things, the ps output for each server process will be the original postgres command line.

26.2. The Statistics Collector
Postgres Pro's statistics collector is a subsystem that supports collection and reporting of information
about server activity. Presently, the collector can count accesses to tables and indexes in both disk-block
and individual-row terms. It also tracks the total number of rows in each table, and information about
vacuum and analyze actions for each table. It can also count calls to user-defined functions and the total
time spent in each one.

Postgres Pro also supports reporting dynamic information about exactly what is going on in the system
right now, such as the exact command currently being executed by other server processes, and which
other connections exist in the system. This facility is independent of the collector process.

26.2.1. Statistics Collection Configuration
Since collection of statistics adds some overhead to query execution, the system can be configured to
collect or not collect information. This is controlled by configuration parameters that are normally set
in postgresql.conf. (See Chapter 18 for details about setting configuration parameters.)

The parameter track_activities enables monitoring of the current command being executed by any server
process.

The parameter track_counts controls whether statistics are collected about table and index accesses.

The parameter track_functions enables tracking of usage of user-defined functions.

The parameter track_io_timing enables monitoring of block read and write times.

Normally these parameters are set in postgresql.conf so that they apply to all server processes, but
it is possible to turn them on or off in individual sessions using the SET command. (To prevent ordinary
users from hiding their activity from the administrator, only superusers are allowed to change these
parameters with SET.)

The statistics collector transmits the collected information to other Postgres Pro processes through
temporary files. These files are stored in the directory named by the stats_temp_directory parameter,
pg_stat_tmp by default. For better performance, stats_temp_directory can be pointed at a RAM-based
file system, decreasing physical I/O requirements. When the server shuts down cleanly, a permanent
copy of the statistics data is stored in the pg_stat subdirectory, so that statistics can be retained across

640

Monitoring Database Activity

server restarts. When recovery is performed at server start (e.g., after immediate shutdown, server
crash, and point-in-time recovery), all statistics counters are reset.

26.2.2. Viewing Statistics
Several predefined views, listed in Table 26.1, are available to show the current state of the system. There
are also several other views, listed in Table 26.2, available to show the results of statistics collection.
Alternatively, one can build custom views using the underlying statistics functions, as discussed in
Section 26.2.20.

When using the statistics to monitor collected data, it is important to realize that the information does not
update instantaneously. Each individual server process transmits new statistical counts to the collector
just before going idle; so a query or transaction still in progress does not affect the displayed totals.
Also, the collector itself emits a new report at most once per PGSTAT_STAT_INTERVAL milliseconds (500
ms unless altered while building the server). So the displayed information lags behind actual activity.
However, current-query information collected by track_activities is always up-to-date.

Another important point is that when a server process is asked to display any of these statistics, it
first fetches the most recent report emitted by the collector process and then continues to use this
snapshot for all statistical views and functions until the end of its current transaction. So the statistics
will show static information as long as you continue the current transaction. Similarly, information about
the current queries of all sessions is collected when any such information is first requested within a
transaction, and the same information will be displayed throughout the transaction. This is a feature,
not a bug, because it allows you to perform several queries on the statistics and correlate the results
without worrying that the numbers are changing underneath you. But if you want to see new results
with each query, be sure to do the queries outside any transaction block. Alternatively, you can invoke
pg_stat_clear_snapshot(), which will discard the current transaction's statistics snapshot (if any). The
next use of statistical information will cause a new snapshot to be fetched.

A transaction can also see its own statistics (as yet untransmitted to the collector) in
the views pg_stat_xact_all_tables, pg_stat_xact_sys_tables, pg_stat_xact_user_tables, and
pg_stat_xact_user_functions. These numbers do not act as stated above; instead they update
continuously throughout the transaction.

Some of the information in the dynamic statistics views shown in Table 26.1 is security restricted.
Ordinary users can only see all the information about their own sessions (sessions belonging to a role
that they are a member of). In rows about other sessions, many columns will be null. Note, however, that
the existence of a session and its general properties such as its sessions user and database are visible to
all users. Superusers and members of the built-in role pg_read_all_stats (see also Section 20.5) can
see all the information about all sessions.

Table 26.1. Dynamic Statistics Views

View Name Description
pg_stat_activity One row per server process, showing information

related to the current activity of that process,
 such as state and current query. See pg_stat_
activity for details.

pg_stat_replication One row per WAL sender process, showing
statistics about replication to that sender's
connected standby server. See pg_stat_
replication for details.

pg_stat_wal_receiver Only one row, showing statistics about the WAL
receiver from that receiver's connected server.
See pg_stat_wal_receiver for details.

pg_stat_subscription At least one row per subscription, showing
information about the subscription workers. See
pg_stat_subscription for details.

641

Monitoring Database Activity

View Name Description
pg_stat_ssl One row per connection (regular and replication),

 showing information about SSL used on this
connection. See pg_stat_ssl for details.

pg_stat_gssapi One row per connection (regular and replication),
showing information about GSSAPI authentication
and encryption used on this connection. See pg_
stat_gssapi for details.

pg_stat_progress_analyze One row for each backend (including autovacuum
worker processes) running ANALYZE, showing
current progress. See Section 26.4.1.

pg_stat_progress_create_index One row for each backend running CREATE INDEX
or REINDEX, showing current progress. See
Section 26.4.2.

pg_stat_progress_vacuum One row for each backend (including autovacuum
worker processes) running VACUUM, showing
current progress. See Section 26.4.3.

pg_stat_progress_cluster One row for each backend running CLUSTER or
VACUUM FULL, showing current progress. See
Section 26.4.4.

pg_stat_progress_basebackup One row for each WAL sender process streaming
a base backup, showing current progress. See
Section 26.4.5.

Table 26.2. Collected Statistics Views

View Name Description
pg_stat_archiver One row only, showing statistics about the WAL

archiver process's activity. See pg_stat_
archiver for details.

pg_stat_bgwriter One row only, showing statistics about the
background writer process's activity. See pg_
stat_bgwriter for details.

pg_stat_database One row per database, showing database-wide
statistics. See pg_stat_database for details.

pg_stat_database_conflicts One row per database, showing database-wide
statistics about query cancels due to conflict with
recovery on standby servers. See pg_stat_
database_conflicts for details.

pg_stat_all_tables One row for each table in the current database,
 showing statistics about accesses to that specific
table. See pg_stat_all_tables for details.

pg_stat_sys_tables Same as pg_stat_all_tables , except that
only system tables are shown.

pg_stat_user_tables Same as pg_stat_all_tables , except that
only user tables are shown.

pg_stat_xact_all_tables Similar to pg_stat_all_tables , but counts
actions taken so far within the current transaction
(which are not yet included in pg_stat_all_
tables and related views). The columns for
numbers of live and dead rows and vacuum and
analyze actions are not present in this view.

642

Monitoring Database Activity

View Name Description
pg_stat_xact_sys_tables Same as pg_stat_xact_all_tables , except

that only system tables are shown.
pg_stat_xact_user_tables Same as pg_stat_xact_all_tables , except

that only user tables are shown.
pg_stat_all_indexes One row for each index in the current database,

 showing statistics about accesses to that specific
index. See pg_stat_all_indexes for details.

pg_stat_sys_indexes Same as pg_stat_all_indexes , except that
only indexes on system tables are shown.

pg_stat_user_indexes Same as pg_stat_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_tables One row for each table in the current database,
 showing statistics about I/O on that specific table.
See pg_statio_all_tables for details.

pg_statio_sys_tables Same as pg_statio_all_tables , except that
only system tables are shown.

pg_statio_user_tables Same as pg_statio_all_tables , except that
only user tables are shown.

pg_statio_all_indexes One row for each index in the current database,
showing statistics about I/O on that specific index.
See pg_statio_all_indexes for details.

pg_statio_sys_indexes Same as pg_statio_all_indexes , except that
only indexes on system tables are shown.

pg_statio_user_indexes Same as pg_statio_all_indexes , except that
only indexes on user tables are shown.

pg_statio_all_sequences One row for each sequence in the current
database, showing statistics about I/O on that
specific sequence. See pg_statio_all_
sequences for details.

pg_statio_sys_sequences Same as pg_statio_all_sequences , except
that only system sequences are shown. (Presently,
 no system sequences are defined, so this view is
always empty.)

pg_statio_user_sequences Same as pg_statio_all_sequences , except
that only user sequences are shown.

pg_stat_user_functions One row for each tracked function, showing
statistics about executions of that function. See
pg_stat_user_functions for details.

pg_stat_xact_user_functions Similar to pg_stat_user_functions , but
counts only calls during the current transaction
(which are not yet included in pg_stat_user_
functions).

pg_stat_slru One row per SLRU, showing statistics of
operations. See pg_stat_slru for details.

The per-index statistics are particularly useful to determine which indexes are being used and how
effective they are.

The pg_statio_ views are primarily useful to determine the effectiveness of the buffer cache. When the
number of actual disk reads is much smaller than the number of buffer hits, then the cache is satisfying

643

Monitoring Database Activity

most read requests without invoking a kernel call. However, these statistics do not give the entire story:
due to the way in which Postgres Pro handles disk I/O, data that is not in the Postgres Pro buffer cache
might still reside in the kernel's I/O cache, and might therefore still be fetched without requiring a
physical read. Users interested in obtaining more detailed information on Postgres Pro I/O behavior are
advised to use the Postgres Pro statistics collector in combination with operating system utilities that
allow insight into the kernel's handling of I/O.

26.2.3. pg_stat_activity
The pg_stat_activity view will have one row per server process, showing information related to the
current activity of that process.

Table 26.3. pg_stat_activity View

Column Type
Description

datid oid
OID of the database this backend is connected to

datname name
Name of the database this backend is connected to

pid integer
Process ID of this backend

leader_pid integer
Process ID of the parallel group leader, if this process is a parallel query worker. NULL if this
process is a parallel group leader or does not participate in parallel query.

usesysid oid
OID of the user logged into this backend

usename name
Name of the user logged into this backend

application_name text
Name of the application that is connected to this backend

client_addr inet
IP address of the client connected to this backend. If this field is null, it indicates either that
the client is connected via a Unix socket on the server machine or that this is an internal
process such as autovacuum.

client_hostname text
Host name of the connected client, as reported by a reverse DNS lookup of client_addr .
This field will only be non-null for IP connections, and only when log_hostname is enabled.

client_port integer
TCP port number that the client is using for communication with this backend, or -1 if a Unix
socket is used. If this field is null, it indicates that this is an internal server process.

backend_start timestamp with time zone
Time when this process was started. For client backends, this is the time the client connected
to the server.

xact_start timestamp with time zone
Time when this process' current transaction was started, or null if no transaction is active.
If the current query is the first of its transaction, this column is equal to the query_start
column.

query_start timestamp with time zone
Time when the currently active query was started, or if state is not active, when the last
query was started

state_change timestamp with time zone
Time when the state was last changed

644

Monitoring Database Activity

Column Type
Description

wait_event_type text
The type of event for which the backend is waiting, if any; otherwise NULL. See Table 26.4.

wait_event text
Wait event name if backend is currently waiting, otherwise NULL. See Table 26.5 through
Table 26.13.

state text
Current overall state of this backend. Possible values are:
• active: The backend is executing a query.
• idle: The backend is waiting for a new client command.
• idle in transaction: The backend is in a transaction, but is not currently executing a

query.
• idle in transaction (aborted) : This state is similar to idle in transaction, except

one of the statements in the transaction caused an error.
• fastpath function call: The backend is executing a fast-path function.
• disabled: This state is reported if track_activities is disabled in this backend.

backend_xid xid
Top-level transaction identifier of this backend, if any.

backend_xmin xid
The current backend's xmin horizon.

query text
Text of this backend's most recent query. If state is active this field shows the currently
executing query. In all other states, it shows the last query that was executed. By default the
query text is truncated at 1024 bytes; this value can be changed via the parameter track_
activity_query_size.

backend_type text
Type of current backend. Possible types are autovacuum launcher, autovacuum worker,
 logical replication launcher, logical replication worker, parallel worker,
 background writer, client backend, checkpointer, startup, walreceiver, walsender and
walwriter. In addition, background workers registered by extensions may have additional
types.

Note
The wait_event and state columns are independent. If a backend is in the active state, it may
or may not be waiting on some event. If the state is active and wait_event is non-null, it means
that a query is being executed, but is being blocked somewhere in the system.

Table 26.4. Wait Event Types

Wait Event Type Description
Activity The server process is idle. This event type

indicates a process waiting for activity in its main
processing loop. wait_event will identify the
specific wait point; see Table 26.5.

BufferPin The server process is waiting for exclusive
access to a data buffer. Buffer pin waits can be

645

Monitoring Database Activity

Wait Event Type Description
protracted if another process holds an open
cursor that last read data from the buffer in
question. See Table 26.6.

Client The server process is waiting for activity on a
socket connected to a user application. Thus,
 the server expects something to happen that
is independent of its internal processes. wait_
event will identify the specific wait point; see
Table 26.7.

Extension The server process is waiting for some condition
defined by an extension module. See Table 26.8.

IO The server process is waiting for an I/O operation
to complete. wait_event will identify the specific
wait point; see Table 26.9.

IPC The server process is waiting for some interaction
with another server process. wait_event will
identify the specific wait point; see Table 26.10.

Lock The server process is waiting for a heavyweight
lock. Heavyweight locks, also known as lock
manager locks or simply locks, primarily protect
SQL-visible objects such as tables. However,
 they are also used to ensure mutual exclusion
for certain internal operations such as relation
extension. wait_event will identify the type of
lock awaited; see Table 26.11.

LWLock The server process is waiting for a lightweight
lock. Most such locks protect a particular data
structure in shared memory. wait_event will
contain a name identifying the purpose of the
lightweight lock. (Some locks have specific
names; others are part of a group of locks each
with a similar purpose.) See Table 26.12.

Timeout The server process is waiting for a timeout to
expire. wait_event will identify the specific wait
point; see Table 26.13.

Table 26.5. Wait Events of Type Activity

Activity Wait Event Description
ArchiverMain Waiting in main loop of archiver process.
AutoVacuumMain Waiting in main loop of autovacuum launcher

process.
BgWriterHibernate Waiting in background writer process,

 hibernating.
BgWriterMain Waiting in main loop of background writer

process.
CheckpointerMain Waiting in main loop of checkpointer process.
LogicalApplyMain Waiting in main loop of logical replication apply

process.
LogicalLauncherMain Waiting in main loop of logical replication

launcher process.

646

Monitoring Database Activity

Activity Wait Event Description
PgStatMain Waiting in main loop of statistics collector

process.
RecoveryWalStream Waiting in main loop of startup process for WAL to

arrive, during streaming recovery.
SysLoggerMain Waiting in main loop of syslogger process.
WalReceiverMain Waiting in main loop of WAL receiver process.
WalSenderMain Waiting in main loop of WAL sender process.
WalWriterMain Waiting in main loop of WAL writer process.

Table 26.6. Wait Events of Type BufferPin

BufferPin Wait Event Description
BufferPin Waiting to acquire an exclusive pin on a buffer.

Table 26.7. Wait Events of Type Client

Client Wait Event Description
ClientRead Waiting to read data from the client.
ClientWrite Waiting to write data to the client.
GSSOpenServer Waiting to read data from the client while

establishing a GSSAPI session.
LibPQWalReceiverConnect Waiting in WAL receiver to establish connection to

remote server.
LibPQWalReceiverReceive Waiting in WAL receiver to receive data from

remote server.
SSLOpenServer Waiting for SSL while attempting connection.
WalReceiverWaitStart Waiting for startup process to send initial data for

streaming replication.
WalSenderWaitForWAL Waiting for WAL to be flushed in WAL sender

process.
WalSenderWriteData Waiting for any activity when processing replies

from WAL receiver in WAL sender process.

Table 26.8. Wait Events of Type Extension

Extension Wait Event Description
Extension Waiting in an extension.

Table 26.9. Wait Events of Type IO

IO Wait Event Description
BufFileRead Waiting for a read from a buffered file.
BufFileWrite Waiting for a write to a buffered file.
ControlFileRead Waiting for a read from the pg_control file.
ControlFileSync Waiting for the pg_control file to reach durable

storage.
ControlFileSyncUpdate Waiting for an update to the pg_control file to

reach durable storage.
ControlFileWrite Waiting for a write to the pg_control file.
ControlFileWriteUpdate Waiting for a write to update the pg_control file.

647

Monitoring Database Activity

IO Wait Event Description
CopyFileRead Waiting for a read during a file copy operation.
CopyFileWrite Waiting for a write during a file copy operation.
DSMFillZeroWrite Waiting to fill a dynamic shared memory backing

file with zeroes.
DataFileExtend Waiting for a relation data file to be extended.
DataFileFlush Waiting for a relation data file to reach durable

storage.
DataFileImmediateSync Waiting for an immediate synchronization of a

relation data file to durable storage.
DataFilePrefetch Waiting for an asynchronous prefetch from a

relation data file.
DataFileRead Waiting for a read from a relation data file.
DataFileSync Waiting for changes to a relation data file to reach

durable storage.
DataFileTruncate Waiting for a relation data file to be truncated.
DataFileWrite Waiting for a write to a relation data file.
LockFileAddToDataDirRead Waiting for a read while adding a line to the data

directory lock file.
LockFileAddToDataDirSync Waiting for data to reach durable storage while

adding a line to the data directory lock file.
LockFileAddToDataDirWrite Waiting for a write while adding a line to the data

directory lock file.
LockFileCreateRead Waiting to read while creating the data directory

lock file.
LockFileCreateSync Waiting for data to reach durable storage while

creating the data directory lock file.
LockFileCreateWrite Waiting for a write while creating the data

directory lock file.
LockFileReCheckDataDirRead Waiting for a read during recheck of the data

directory lock file.
LogicalRewriteCheckpointSync Waiting for logical rewrite mappings to reach

durable storage during a checkpoint.
LogicalRewriteMappingSync Waiting for mapping data to reach durable

storage during a logical rewrite.
LogicalRewriteMappingWrite Waiting for a write of mapping data during a

logical rewrite.
LogicalRewriteSync Waiting for logical rewrite mappings to reach

durable storage.
LogicalRewriteTruncate Waiting for truncate of mapping data during a

logical rewrite.
LogicalRewriteWrite Waiting for a write of logical rewrite mappings.
RelationMapRead Waiting for a read of the relation map file.
RelationMapSync Waiting for the relation map file to reach durable

storage.
RelationMapWrite Waiting for a write to the relation map file.

648

Monitoring Database Activity

IO Wait Event Description
ReorderBufferRead Waiting for a read during reorder buffer

management.
ReorderBufferWrite Waiting for a write during reorder buffer

management.
ReorderLogicalMappingRead Waiting for a read of a logical mapping during

reorder buffer management.
ReplicationSlotRead Waiting for a read from a replication slot control

file.
ReplicationSlotRestoreSync Waiting for a replication slot control file to reach

durable storage while restoring it to memory.
ReplicationSlotSync Waiting for a replication slot control file to reach

durable storage.
ReplicationSlotWrite Waiting for a write to a replication slot control

file.
SLRUFlushSync Waiting for SLRU data to reach durable storage

during a checkpoint or database shutdown.
SLRURead Waiting for a read of an SLRU page.
SLRUSync Waiting for SLRU data to reach durable storage

following a page write.
SLRUWrite Waiting for a write of an SLRU page.
SnapbuildRead Waiting for a read of a serialized historical catalog

snapshot.
SnapbuildSync Waiting for a serialized historical catalog snapshot

to reach durable storage.
SnapbuildWrite Waiting for a write of a serialized historical

catalog snapshot.
TimelineHistoryFileSync Waiting for a timeline history file received via

streaming replication to reach durable storage.
TimelineHistoryFileWrite Waiting for a write of a timeline history file

received via streaming replication.
TimelineHistoryRead Waiting for a read of a timeline history file.
TimelineHistorySync Waiting for a newly created timeline history file to

reach durable storage.
TimelineHistoryWrite Waiting for a write of a newly created timeline

history file.
TwophaseFileRead Waiting for a read of a two phase state file.
TwophaseFileSync Waiting for a two phase state file to reach durable

storage.
TwophaseFileWrite Waiting for a write of a two phase state file.
WALBootstrapSync Waiting for WAL to reach durable storage during

bootstrapping.
WALBootstrapWrite Waiting for a write of a WAL page during

bootstrapping.
WALCopyRead Waiting for a read when creating a new WAL

segment by copying an existing one.

649

Monitoring Database Activity

IO Wait Event Description
WALCopySync Waiting for a new WAL segment created by

copying an existing one to reach durable storage.
WALCopyWrite Waiting for a write when creating a new WAL

segment by copying an existing one.
WALInitSync Waiting for a newly initialized WAL file to reach

durable storage.
WALInitWrite Waiting for a write while initializing a new WAL

file.
WALRead Waiting for a read from a WAL file.
WALSenderTimelineHistoryRead Waiting for a read from a timeline history file

during a walsender timeline command.
WALSync Waiting for a WAL file to reach durable storage.
WALSyncMethodAssign Waiting for data to reach durable storage while

assigning a new WAL sync method.
WALWrite Waiting for a write to a WAL file.

Table 26.10. Wait Events of Type IPC

IPC Wait Event Description
BackupWaitWalArchive Waiting for WAL files required for a backup to be

successfully archived.
BgWorkerShutdown Waiting for background worker to shut down.
BgWorkerStartup Waiting for background worker to start up.
BtreePage Waiting for the page number needed to continue a

parallel B-tree scan to become available.
CheckpointDone Waiting for a checkpoint to complete.
CheckpointStart Waiting for a checkpoint to start.
ExecuteGather Waiting for activity from a child process while

executing a Gather plan node.
HashBatchAllocate Waiting for an elected Parallel Hash participant to

allocate a hash table.
HashBatchElect Waiting to elect a Parallel Hash participant to

allocate a hash table.
HashBatchLoad Waiting for other Parallel Hash participants to

finish loading a hash table.
HashBuildAllocate Waiting for an elected Parallel Hash participant to

allocate the initial hash table.
HashBuildElect Waiting to elect a Parallel Hash participant to

allocate the initial hash table.
HashBuildHashInner Waiting for other Parallel Hash participants to

finish hashing the inner relation.
HashBuildHashOuter Waiting for other Parallel Hash participants to

finish partitioning the outer relation.
HashGrowBatchesAllocate Waiting for an elected Parallel Hash participant to

allocate more batches.
HashGrowBatchesDecide Waiting to elect a Parallel Hash participant to

decide on future batch growth.

650

Monitoring Database Activity

IPC Wait Event Description
HashGrowBatchesElect Waiting to elect a Parallel Hash participant to

allocate more batches.
HashGrowBatchesFinish Waiting for an elected Parallel Hash participant to

decide on future batch growth.
HashGrowBatchesRepartition Waiting for other Parallel Hash participants to

finish repartitioning.
HashGrowBucketsAllocate Waiting for an elected Parallel Hash participant to

finish allocating more buckets.
HashGrowBucketsElect Waiting to elect a Parallel Hash participant to

allocate more buckets.
HashGrowBucketsReinsert Waiting for other Parallel Hash participants to

finish inserting tuples into new buckets.
LogicalSyncData Waiting for a logical replication remote server to

send data for initial table synchronization.
LogicalSyncStateChange Waiting for a logical replication remote server to

change state.
MessageQueueInternal Waiting for another process to be attached to a

shared message queue.
MessageQueuePutMessage Waiting to write a protocol message to a shared

message queue.
MessageQueueReceive Waiting to receive bytes from a shared message

queue.
MessageQueueSend Waiting to send bytes to a shared message queue.
ParallelBitmapScan Waiting for parallel bitmap scan to become

initialized.
ParallelCreateIndexScan Waiting for parallel CREATE INDEX workers to

finish heap scan.
ParallelFinish Waiting for parallel workers to finish computing.
ProcArrayGroupUpdate Waiting for the group leader to clear the

transaction ID at end of a parallel operation.
ProcSignalBarrier Waiting for a barrier event to be processed by all

backends.
Promote Waiting for standby promotion.
RecoveryConflictSnapshot Waiting for recovery conflict resolution for a

vacuum cleanup.
RecoveryConflictTablespace Waiting for recovery conflict resolution for

dropping a tablespace.
RecoveryPause Waiting for recovery to be resumed.
ReplicationOriginDrop Waiting for a replication origin to become inactive

so it can be dropped.
ReplicationSlotDrop Waiting for a replication slot to become inactive

so it can be dropped.
SafeSnapshot Waiting to obtain a valid snapshot for a READ ONLY

DEFERRABLE transaction.
SyncRep Waiting for confirmation from a remote server

during synchronous replication.

651

Monitoring Database Activity

IPC Wait Event Description
XactGroupUpdate Waiting for the group leader to update transaction

status at end of a parallel operation.

Table 26.11. Wait Events of Type Lock

Lock Wait Event Description
advisory Waiting to acquire an advisory user lock.
extend Waiting to extend a relation.
frozenid Waiting to update pg_database .datfrozenxid

and pg_database .datminmxid.
object Waiting to acquire a lock on a non-relation

database object.
page Waiting to acquire a lock on a page of a relation.
relation Waiting to acquire a lock on a relation.
spectoken Waiting to acquire a speculative insertion lock.
transactionid Waiting for a transaction to finish.
tuple Waiting to acquire a lock on a tuple.
userlock Waiting to acquire a user lock.
virtualxid Waiting to acquire a virtual transaction ID lock.

Table 26.12. Wait Events of Type LWLock

LWLock Wait Event Description
AddinShmemInit Waiting to manage an extension's space allocation

in shared memory.
AutoFile Waiting to update the postgresql.auto.conf file.
Autovacuum Waiting to read or update the current state of

autovacuum workers.
AutovacuumSchedule Waiting to ensure that a table selected for

autovacuum still needs vacuuming.
BackgroundWorker Waiting to read or update background worker

state.
BtreeVacuum Waiting to read or update vacuum-related

information for a B-tree index.
BufferContent Waiting to access a data page in memory.
BufferIO Waiting for I/O on a data page.
BufferMapping Waiting to associate a data block with a buffer in

the buffer pool.
Checkpoint Waiting to begin a checkpoint.
CheckpointerComm Waiting to manage fsync requests.
CommitTs Waiting to read or update the last value set for a

transaction commit timestamp.
CommitTsBuffer Waiting for I/O on a commit timestamp SLRU

buffer.
CommitTsSLRU Waiting to access the commit timestamp SLRU

cache.

652

Monitoring Database Activity

LWLock Wait Event Description
ControlFile Waiting to read or update the pg_control file or

create a new WAL file.
DynamicSharedMemoryControl Waiting to read or update dynamic shared

memory allocation information.
LockFastPath Waiting to read or update a process' fast-path lock

information.
LockManager Waiting to read or update information about

“heavyweight” locks.
LogicalRepWorker Waiting to read or update the state of logical

replication workers.
MultiXactGen Waiting to read or update shared multixact state.
MultiXactMemberBuffer Waiting for I/O on a multixact member SLRU

buffer.
MultiXactMemberSLRU Waiting to access the multixact member SLRU

cache.
MultiXactOffsetBuffer Waiting for I/O on a multixact offset SLRU buffer.
MultiXactOffsetSLRU Waiting to access the multixact offset SLRU

cache.
MultiXactTruncation Waiting to read or truncate multixact information.
NotifyBuffer Waiting for I/O on a NOTIFY message SLRU buffer.
NotifyQueue Waiting to read or update NOTIFY messages.
NotifyQueueTail Waiting to update limit on NOTIFY message

storage.
NotifySLRU Waiting to access the NOTIFY message SLRU

cache.
OidGen Waiting to allocate a new OID.
OldSnapshotTimeMap Waiting to read or update old snapshot control

information.
ParallelAppend Waiting to choose the next subplan during Parallel

Append plan execution.
ParallelHashJoin Waiting to synchronize workers during Parallel

Hash Join plan execution.
ParallelQueryDSA Waiting for parallel query dynamic shared

memory allocation.
PerSessionDSA Waiting for parallel query dynamic shared

memory allocation.
PerSessionRecordType Waiting to access a parallel query's information

about composite types.
PerSessionRecordTypmod Waiting to access a parallel query's information

about type modifiers that identify anonymous
record types.

PerXactPredicateList Waiting to access the list of predicate locks held
by the current serializable transaction during a
parallel query.

PredicateLockManager Waiting to access predicate lock information used
by serializable transactions.

653

Monitoring Database Activity

LWLock Wait Event Description
ProcArray Waiting to access the shared per-process data

structures (typically, to get a snapshot or report a
session's transaction ID).

RelationMapping Waiting to read or update a pg_filenode.map
file (used to track the filenode assignments of
certain system catalogs).

RelCacheInit Waiting to read or update a pg_internal.init
relation cache initialization file.

ReplicationOrigin Waiting to create, drop or use a replication origin.
ReplicationOriginState Waiting to read or update the progress of one

replication origin.
ReplicationSlotAllocation Waiting to allocate or free a replication slot.
ReplicationSlotControl Waiting to read or update replication slot state.
ReplicationSlotIO Waiting for I/O on a replication slot.
SerialBuffer Waiting for I/O on a serializable transaction

conflict SLRU buffer.
SerializableFinishedList Waiting to access the list of finished serializable

transactions.
SerializablePredicateList Waiting to access the list of predicate locks held

by serializable transactions.
SerializableXactHash Waiting to read or update information about

serializable transactions.
SerialSLRU Waiting to access the serializable transaction

conflict SLRU cache.
SharedTidBitmap Waiting to access a shared TID bitmap during a

parallel bitmap index scan.
SharedTupleStore Waiting to access a shared tuple store during

parallel query.
ShmemIndex Waiting to find or allocate space in shared

memory.
SInvalRead Waiting to retrieve messages from the shared

catalog invalidation queue.
SInvalWrite Waiting to add a message to the shared catalog

invalidation queue.
SubtransBuffer Waiting for I/O on a sub-transaction SLRU buffer.
SubtransSLRU Waiting to access the sub-transaction SLRU

cache.
SyncRep Waiting to read or update information about the

state of synchronous replication.
SyncScan Waiting to select the starting location of a

synchronized table scan.
TablespaceCreate Waiting to create or drop a tablespace.
TwoPhaseState Waiting to read or update the state of prepared

transactions.
WALBufMapping Waiting to replace a page in WAL buffers.
WALInsert Waiting to insert WAL data into a memory buffer.

654

Monitoring Database Activity

LWLock Wait Event Description
WALWrite Waiting for WAL buffers to be written to disk.
WrapLimitsVacuum Waiting to update limits on transaction id and

multixact consumption.
XactBuffer Waiting for I/O on a transaction status SLRU

buffer.
XactSLRU Waiting to access the transaction status SLRU

cache.
XactTruncation Waiting to execute pg_xact_status or update

the oldest transaction ID available to it.
XidGen Waiting to allocate a new transaction ID.

Note
Extensions can add LWLock types to the list shown in Table 26.12. In some cases, the name assigned
by an extension will not be available in all server processes; so an LWLock wait event might be
reported as just “extension” rather than the extension-assigned name.

Table 26.13. Wait Events of Type Timeout

Timeout Wait Event Description
BaseBackupThrottle Waiting during base backup when throttling

activity.
PgSleep Waiting due to a call to pg_sleep or a sibling

function.
RecoveryApplyDelay Waiting to apply WAL during recovery because of

a delay setting.
RecoveryRetrieveRetryInterval Waiting during recovery when WAL data is not

available from any source (pg_wal , archive or
stream).

RegisterSyncRequest Waiting while sending synchronization requests
to the checkpointer, because the request queue is
full.

VacuumDelay Waiting in a cost-based vacuum delay point.

Here is an example of how wait events can be viewed:

SELECT pid, wait_event_type, wait_event FROM pg_stat_activity WHERE wait_event is NOT
 NULL;
 pid | wait_event_type | wait_event
------+-----------------+------------
 2540 | Lock | relation
 6644 | LWLock | ProcArray
(2 rows)

26.2.4. pg_stat_replication
The pg_stat_replication view will contain one row per WAL sender process, showing statistics about
replication to that sender's connected standby server. Only directly connected standbys are listed; no
information is available about downstream standby servers.

655

Monitoring Database Activity

Table 26.14. pg_stat_replication View

Column Type
Description

pid integer
Process ID of a WAL sender process

usesysid oid
OID of the user logged into this WAL sender process

usename name
Name of the user logged into this WAL sender process

application_name text
Name of the application that is connected to this WAL sender

client_addr inet
IP address of the client connected to this WAL sender. If this field is null, it indicates that the
client is connected via a Unix socket on the server machine.

client_hostname text
Host name of the connected client, as reported by a reverse DNS lookup of client_addr .
This field will only be non-null for IP connections, and only when log_hostname is enabled.

client_port integer
TCP port number that the client is using for communication with this WAL sender, or -1 if a
Unix socket is used

backend_start timestamp with time zone
Time when this process was started, i.e., when the client connected to this WAL sender

backend_xmin xid
This standby's xmin horizon reported by hot_standby_feedback.

state text
Current WAL sender state. Possible values are:
• startup: This WAL sender is starting up.
• catchup: This WAL sender's connected standby is catching up with the primary.
• streaming: This WAL sender is streaming changes after its connected standby server has

caught up with the primary.
• backup: This WAL sender is sending a backup.
• stopping: This WAL sender is stopping.

sent_lsn pg_lsn
Last write-ahead log location sent on this connection

write_lsn pg_lsn
Last write-ahead log location written to disk by this standby server

flush_lsn pg_lsn
Last write-ahead log location flushed to disk by this standby server

replay_lsn pg_lsn
Last write-ahead log location replayed into the database on this standby server

write_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this standby
server has written it (but not yet flushed it or applied it). This can be used to gauge the delay
that synchronous_commit level remote_write incurred while committing if this server was
configured as a synchronous standby.

flush_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this standby
server has written and flushed it (but not yet applied it). This can be used to gauge the delay

656

Monitoring Database Activity

Column Type
Description
that synchronous_commit level on incurred while committing if this server was configured
as a synchronous standby.

replay_lag interval
Time elapsed between flushing recent WAL locally and receiving notification that this
standby server has written, flushed and applied it. This can be used to gauge the delay that
synchronous_commit level remote_apply incurred while committing if this server was
configured as a synchronous standby.

sync_priority integer
Priority of this standby server for being chosen as the synchronous standby in a priority-
based synchronous replication. This has no effect in a quorum-based synchronous replication.

sync_state text
Synchronous state of this standby server. Possible values are:
• async: This standby server is asynchronous.
• potential: This standby server is now asynchronous, but can potentially become

synchronous if one of current synchronous ones fails.
• sync: This standby server is synchronous.
• quorum: This standby server is considered as a candidate for quorum standbys.

reply_time timestamp with time zone
Send time of last reply message received from standby server

The lag times reported in the pg_stat_replication view are measurements of the time taken for recent
WAL to be written, flushed and replayed and for the sender to know about it. These times represent the
commit delay that was (or would have been) introduced by each synchronous commit level, if the remote
server was configured as a synchronous standby. For an asynchronous standby, the replay_lag column
approximates the delay before recent transactions became visible to queries. If the standby server has
entirely caught up with the sending server and there is no more WAL activity, the most recently measured
lag times will continue to be displayed for a short time and then show NULL.

Lag times work automatically for physical replication. Logical decoding plugins may optionally emit
tracking messages; if they do not, the tracking mechanism will simply display NULL lag.

Note
The reported lag times are not predictions of how long it will take for the standby to catch up with
the sending server assuming the current rate of replay. Such a system would show similar times
while new WAL is being generated, but would differ when the sender becomes idle. In particular,
when the standby has caught up completely, pg_stat_replication shows the time taken to write,
flush and replay the most recent reported WAL location rather than zero as some users might
expect. This is consistent with the goal of measuring synchronous commit and transaction visibility
delays for recent write transactions. To reduce confusion for users expecting a different model of
lag, the lag columns revert to NULL after a short time on a fully replayed idle system. Monitoring
systems should choose whether to represent this as missing data, zero or continue to display the
last known value.

26.2.5. pg_stat_wal_receiver
The pg_stat_wal_receiver view will contain only one row, showing statistics about the WAL receiver
from that receiver's connected server.

657

Monitoring Database Activity

Table 26.15. pg_stat_wal_receiver View

Column Type
Description

pid integer
Process ID of the WAL receiver process

status text
Activity status of the WAL receiver process

receive_start_lsn pg_lsn
First write-ahead log location used when WAL receiver is started

receive_start_tli integer
First timeline number used when WAL receiver is started

written_lsn pg_lsn
Last write-ahead log location already received and written to disk, but not flushed. This
should not be used for data integrity checks.

flushed_lsn pg_lsn
Last write-ahead log location already received and flushed to disk, the initial value of this
field being the first log location used when WAL receiver is started

received_tli integer
Timeline number of last write-ahead log location received and flushed to disk, the initial value
of this field being the timeline number of the first log location used when WAL receiver is
started

last_msg_send_time timestamp with time zone
Send time of last message received from origin WAL sender

last_msg_receipt_time timestamp with time zone
Receipt time of last message received from origin WAL sender

latest_end_lsn pg_lsn
Last write-ahead log location reported to origin WAL sender

latest_end_time timestamp with time zone
Time of last write-ahead log location reported to origin WAL sender

slot_name text
Replication slot name used by this WAL receiver

sender_host text
Host of the Postgres Pro instance this WAL receiver is connected to. This can be a host name,
 an IP address, or a directory path if the connection is via Unix socket. (The path case can be
distinguished because it will always be an absolute path, beginning with /.)

sender_port integer
Port number of the Postgres Pro instance this WAL receiver is connected to.

conninfo text
Connection string used by this WAL receiver, with security-sensitive fields obfuscated.

26.2.6. pg_stat_subscription
The pg_stat_subscription view will contain one row per subscription for main worker (with null PID
if the worker is not running), and additional rows for workers handling the initial data copy of the
subscribed tables.

Table 26.16. pg_stat_subscription View

Column Type
Description

subid oid

658

Monitoring Database Activity

Column Type
Description
OID of the subscription

subname name
Name of the subscription

pid integer
Process ID of the subscription worker process

relid oid
OID of the relation that the worker is synchronizing; null for the main apply worker

received_lsn pg_lsn
Last write-ahead log location received, the initial value of this field being 0

last_msg_send_time timestamp with time zone
Send time of last message received from origin WAL sender

last_msg_receipt_time timestamp with time zone
Receipt time of last message received from origin WAL sender

latest_end_lsn pg_lsn
Last write-ahead log location reported to origin WAL sender

latest_end_time timestamp with time zone
Time of last write-ahead log location reported to origin WAL sender

26.2.7. pg_stat_ssl
The pg_stat_ssl view will contain one row per backend or WAL sender process, showing statistics about
SSL usage on this connection. It can be joined to pg_stat_activity or pg_stat_replication on the
pid column to get more details about the connection.

Table 26.17. pg_stat_ssl View

Column Type
Description

pid integer
Process ID of a backend or WAL sender process

ssl boolean
True if SSL is used on this connection

version text
Version of SSL in use, or NULL if SSL is not in use on this connection

cipher text
Name of SSL cipher in use, or NULL if SSL is not in use on this connection

bits integer
Number of bits in the encryption algorithm used, or NULL if SSL is not used on this
connection

compression boolean
True if SSL compression is in use, false if not, or NULL if SSL is not in use on this connection

client_dn text
Distinguished Name (DN) field from the client certificate used, or NULL if no client certificate
was supplied or if SSL is not in use on this connection. This field is truncated if the DN field is
longer than NAMEDATALEN (64 characters in a standard build).

client_serial numeric
Serial number of the client certificate, or NULL if no client certificate was supplied or if SSL
is not in use on this connection. The combination of certificate serial number and certificate
issuer uniquely identifies a certificate (unless the issuer erroneously reuses serial numbers).

659

Monitoring Database Activity

Column Type
Description

issuer_dn text
DN of the issuer of the client certificate, or NULL if no client certificate was supplied or if
SSL is not in use on this connection. This field is truncated like client_dn .

26.2.8. pg_stat_gssapi
The pg_stat_gssapi view will contain one row per backend, showing information about GSSAPI usage
on this connection. It can be joined to pg_stat_activity or pg_stat_replication on the pid column
to get more details about the connection.

Table 26.18. pg_stat_gssapi View

Column Type
Description

pid integer
Process ID of a backend

gss_authenticated boolean
True if GSSAPI authentication was used for this connection

principal text
Principal used to authenticate this connection, or NULL if GSSAPI was not used to
authenticate this connection. This field is truncated if the principal is longer than
NAMEDATALEN (64 characters in a standard build).

encrypted boolean
True if GSSAPI encryption is in use on this connection

26.2.9. pg_stat_archiver
The pg_stat_archiver view will always have a single row, containing data about the archiver process
of the cluster.

Table 26.19. pg_stat_archiver View

Column Type
Description

archived_count bigint
Number of WAL files that have been successfully archived

last_archived_wal text
Name of the last WAL file successfully archived

last_archived_time timestamp with time zone
Time of the last successful archive operation

failed_count bigint
Number of failed attempts for archiving WAL files

last_failed_wal text
Name of the WAL file of the last failed archival operation

last_failed_time timestamp with time zone
Time of the last failed archival operation

stats_reset timestamp with time zone
Time at which these statistics were last reset

26.2.10. pg_stat_bgwriter
The pg_stat_bgwriter view will always have a single row, containing global data for the cluster.

660

Monitoring Database Activity

Table 26.20. pg_stat_bgwriter View

Column Type
Description

checkpoints_timed bigint
Number of scheduled checkpoints that have been performed

checkpoints_req bigint
Number of requested checkpoints that have been performed

checkpoint_write_time double precision
Total amount of time that has been spent in the portion of checkpoint processing where files
are written to disk, in milliseconds

checkpoint_sync_time double precision
Total amount of time that has been spent in the portion of checkpoint processing where files
are synchronized to disk, in milliseconds

buffers_checkpoint bigint
Number of buffers written during checkpoints

buffers_clean bigint
Number of buffers written by the background writer

maxwritten_clean bigint
Number of times the background writer stopped a cleaning scan because it had written too
many buffers

buffers_backend bigint
Number of buffers written directly by a backend

buffers_backend_fsync bigint
Number of times a backend had to execute its own fsync call (normally the background
writer handles those even when the backend does its own write)

buffers_alloc bigint
Number of buffers allocated

stats_reset timestamp with time zone
Time at which these statistics were last reset

26.2.11. pg_stat_database
The pg_stat_database view will contain one row for each database in the cluster, plus one for shared
objects, showing database-wide statistics.

Table 26.21. pg_stat_database View

Column Type
Description

datid oid
OID of this database, or 0 for objects belonging to a shared relation

datname name
Name of this database, or NULL for shared objects.

numbackends integer
Number of backends currently connected to this database, or NULL for shared objects. This is
the only column in this view that returns a value reflecting current state; all other columns
return the accumulated values since the last reset.

xact_commit bigint
Number of transactions in this database that have been committed

xact_rollback bigint
Number of transactions in this database that have been rolled back

661

Monitoring Database Activity

Column Type
Description

blks_read bigint
Number of disk blocks read in this database

blks_hit bigint
Number of times disk blocks were found already in the buffer cache, so that a read was not
necessary (this only includes hits in the Postgres Pro buffer cache, not the operating system's
file system cache)

tup_returned bigint
Number of rows returned by queries in this database

tup_fetched bigint
Number of rows fetched by queries in this database

tup_inserted bigint
Number of rows inserted by queries in this database

tup_updated bigint
Number of rows updated by queries in this database

tup_deleted bigint
Number of rows deleted by queries in this database

conflicts bigint
Number of queries canceled due to conflicts with recovery in this database. (Conflicts occur
only on standby servers; see pg_stat_database_conflicts for details.)

temp_files bigint
Number of temporary files created by queries in this database. All temporary files are
counted, regardless of why the temporary file was created (e.g., sorting or hashing), and
regardless of the log_temp_files setting.

temp_bytes bigint
Total amount of data written to temporary files by queries in this database. All temporary files
are counted, regardless of why the temporary file was created, and regardless of the log_
temp_files setting.

deadlocks bigint
Number of deadlocks detected in this database

checksum_failures bigint
Number of data page checksum failures detected in this database (or on a shared object), or
NULL if data checksums are not enabled.

checksum_last_failure timestamp with time zone
Time at which the last data page checksum failure was detected in this database (or on a
shared object), or NULL if data checksums are not enabled.

blk_read_time double precision
Time spent reading data file blocks by backends in this database, in milliseconds (if track_io_
timing is enabled, otherwise zero)

blk_write_time double precision
Time spent writing data file blocks by backends in this database, in milliseconds (if track_io_
timing is enabled, otherwise zero)

stats_reset timestamp with time zone
Time at which these statistics were last reset

26.2.12. pg_stat_database_conflicts
The pg_stat_database_conflicts view will contain one row per database, showing database-wide
statistics about query cancels occurring due to conflicts with recovery on standby servers. This view will
only contain information on standby servers, since conflicts do not occur on master servers.

662

Monitoring Database Activity

Table 26.22. pg_stat_database_conflicts View

Column Type
Description

datid oid
OID of a database

datname name
Name of this database

confl_tablespace bigint
Number of queries in this database that have been canceled due to dropped tablespaces

confl_lock bigint
Number of queries in this database that have been canceled due to lock timeouts

confl_snapshot bigint
Number of queries in this database that have been canceled due to old snapshots

confl_bufferpin bigint
Number of queries in this database that have been canceled due to pinned buffers

confl_deadlock bigint
Number of queries in this database that have been canceled due to deadlocks

26.2.13. pg_stat_all_tables
The pg_stat_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about accesses to that specific table. The pg_stat_user_tables and
pg_stat_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 26.23. pg_stat_all_tables View

Column Type
Description

relid oid
OID of a table

schemaname name
Name of the schema that this table is in

relname name
Name of this table

seq_scan bigint
Number of sequential scans initiated on this table

seq_tup_read bigint
Number of live rows fetched by sequential scans

idx_scan bigint
Number of index scans initiated on this table

idx_tup_fetch bigint
Number of live rows fetched by index scans

n_tup_ins bigint
Number of rows inserted

n_tup_upd bigint
Number of rows updated (includes HOT updated rows)

n_tup_del bigint
Number of rows deleted

n_tup_hot_upd bigint

663

Monitoring Database Activity

Column Type
Description
Number of rows HOT updated (i.e., with no separate index update required)

n_live_tup bigint
Estimated number of live rows

n_dead_tup bigint
Estimated number of dead rows

n_mod_since_analyze bigint
Estimated number of rows modified since this table was last analyzed

n_ins_since_vacuum bigint
Estimated number of rows inserted since this table was last vacuumed

last_vacuum timestamp with time zone
Last time at which this table was manually vacuumed (not counting VACUUM FULL)

last_autovacuum timestamp with time zone
Last time at which this table was vacuumed by the autovacuum daemon

last_analyze timestamp with time zone
Last time at which this table was manually analyzed

last_autoanalyze timestamp with time zone
Last time at which this table was analyzed by the autovacuum daemon

vacuum_count bigint
Number of times this table has been manually vacuumed (not counting VACUUM FULL)

autovacuum_count bigint
Number of times this table has been vacuumed by the autovacuum daemon

analyze_count bigint
Number of times this table has been manually analyzed

autoanalyze_count bigint
Number of times this table has been analyzed by the autovacuum daemon

26.2.14. pg_stat_all_indexes
The pg_stat_all_indexes view will contain one row for each index in the current database, showing
statistics about accesses to that specific index. The pg_stat_user_indexes and pg_stat_sys_indexes
views contain the same information, but filtered to only show user and system indexes respectively.

Table 26.24. pg_stat_all_indexes View

Column Type
Description

relid oid
OID of the table for this index

indexrelid oid
OID of this index

schemaname name
Name of the schema this index is in

relname name
Name of the table for this index

indexrelname name
Name of this index

idx_scan bigint
Number of index scans initiated on this index

664

Monitoring Database Activity

Column Type
Description

idx_tup_read bigint
Number of index entries returned by scans on this index

idx_tup_fetch bigint
Number of live table rows fetched by simple index scans using this index

Indexes can be used by simple index scans, “bitmap” index scans, and the optimizer. In a bitmap
scan the output of several indexes can be combined via AND or OR rules, so it is difficult to
associate individual heap row fetches with specific indexes when a bitmap scan is used. Therefore,
a bitmap scan increments the pg_stat_all_indexes.idx_tup_read count(s) for the index(es) it uses,
and it increments the pg_stat_all_tables.idx_tup_fetch count for the table, but it does not affect
pg_stat_all_indexes.idx_tup_fetch. The optimizer also accesses indexes to check for supplied
constants whose values are outside the recorded range of the optimizer statistics because the optimizer
statistics might be stale.

Note
The idx_tup_read and idx_tup_fetch counts can be different even without any use of bitmap
scans, because idx_tup_read counts index entries retrieved from the index while idx_tup_fetch
counts live rows fetched from the table. The latter will be less if any dead or not-yet-committed
rows are fetched using the index, or if any heap fetches are avoided by means of an index-only scan.

26.2.15. pg_statio_all_tables
The pg_statio_all_tables view will contain one row for each table in the current database (including
TOAST tables), showing statistics about I/O on that specific table. The pg_statio_user_tables and
pg_statio_sys_tables views contain the same information, but filtered to only show user and system
tables respectively.

Table 26.25. pg_statio_all_tables View

Column Type
Description

relid oid
OID of a table

schemaname name
Name of the schema that this table is in

relname name
Name of this table

heap_blks_read bigint
Number of disk blocks read from this table

heap_blks_hit bigint
Number of buffer hits in this table

idx_blks_read bigint
Number of disk blocks read from all indexes on this table

idx_blks_hit bigint
Number of buffer hits in all indexes on this table

toast_blks_read bigint
Number of disk blocks read from this table's TOAST table (if any)

toast_blks_hit bigint

665

Monitoring Database Activity

Column Type
Description
Number of buffer hits in this table's TOAST table (if any)

tidx_blks_read bigint
Number of disk blocks read from this table's TOAST table indexes (if any)

tidx_blks_hit bigint
Number of buffer hits in this table's TOAST table indexes (if any)

26.2.16. pg_statio_all_indexes
The pg_statio_all_indexes view will contain one row for each index in the current database, showing
statistics about I/O on that specific index. The pg_statio_user_indexes and pg_statio_sys_indexes
views contain the same information, but filtered to only show user and system indexes respectively.

Table 26.26. pg_statio_all_indexes View

Column Type
Description

relid oid
OID of the table for this index

indexrelid oid
OID of this index

schemaname name
Name of the schema this index is in

relname name
Name of the table for this index

indexrelname name
Name of this index

idx_blks_read bigint
Number of disk blocks read from this index

idx_blks_hit bigint
Number of buffer hits in this index

26.2.17. pg_statio_all_sequences
The pg_statio_all_sequences view will contain one row for each sequence in the current database,
showing statistics about I/O on that specific sequence.

Table 26.27. pg_statio_all_sequences View

Column Type
Description

relid oid
OID of a sequence

schemaname name
Name of the schema this sequence is in

relname name
Name of this sequence

blks_read bigint
Number of disk blocks read from this sequence

blks_hit bigint
Number of buffer hits in this sequence

666

Monitoring Database Activity

26.2.18. pg_stat_user_functions
The pg_stat_user_functions view will contain one row for each tracked function, showing statistics
about executions of that function. The track_functions parameter controls exactly which functions are
tracked.

Table 26.28. pg_stat_user_functions View

Column Type
Description

funcid oid
OID of a function

schemaname name
Name of the schema this function is in

funcname name
Name of this function

calls bigint
Number of times this function has been called

total_time double precision
Total time spent in this function and all other functions called by it, in milliseconds

self_time double precision
Total time spent in this function itself, not including other functions called by it, in
milliseconds

26.2.19. pg_stat_slru
PostgreSQL accesses certain on-disk information via SLRU (simple least-recently-used) caches. The
pg_stat_slru view will contain one row for each tracked SLRU cache, showing statistics about access
to cached pages.

Table 26.29. pg_stat_slru View

Column Type
Description

name text
Name of the SLRU

blks_zeroed bigint
Number of blocks zeroed during initializations

blks_hit bigint
Number of times disk blocks were found already in the SLRU, so that a read was not
necessary (this only includes hits in the SLRU, not the operating system's file system cache)

blks_read bigint
Number of disk blocks read for this SLRU

blks_written bigint
Number of disk blocks written for this SLRU

blks_exists bigint
Number of blocks checked for existence for this SLRU

flushes bigint
Number of flushes of dirty data for this SLRU

truncates bigint
Number of truncates for this SLRU

stats_reset timestamp with time zone

667

Monitoring Database Activity

Column Type
Description
Time at which these statistics were last reset

26.2.20. Statistics Functions
Other ways of looking at the statistics can be set up by writing queries that use the same underlying
statistics access functions used by the standard views shown above. For details such as the functions'
names, consult the definitions of the standard views. (For example, in psql you could issue \d+
pg_stat_activity.) The access functions for per-database statistics take a database OID as an argument
to identify which database to report on. The per-table and per-index functions take a table or index OID.
The functions for per-function statistics take a function OID. Note that only tables, indexes, and functions
in the current database can be seen with these functions.

Additional functions related to statistics collection are listed in Table 26.30.

Table 26.30. Additional Statistics Functions

Function
Description

pg_backend_pid () → integer
Returns the process ID of the server process attached to the current session.

pg_stat_get_activity (integer) → setof record
Returns a record of information about the backend with the specified process ID, or one
record for each active backend in the system if NULL is specified. The fields returned are a
subset of those in the pg_stat_activity view.

pg_stat_get_snapshot_timestamp () → timestamp with time zone
Returns the timestamp of the current statistics snapshot.

pg_stat_clear_snapshot () → void
Discards the current statistics snapshot.

pg_stat_reset () → void
Resets all statistics counters for the current database to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_shared (text) → void
Resets some cluster-wide statistics counters to zero, depending on the argument. The
argument can be bgwriter to reset all the counters shown in the pg_stat_bgwriter view,
 or archiver to reset all the counters shown in the pg_stat_archiver view.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_single_table_counters (oid) → void
Resets statistics for a single table or index in the current database to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_single_function_counters (oid) → void
Resets statistics for a single function in the current database to zero.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_reset_slru (text) → void
Resets statistics to zero for a single SLRU cache, or for all SLRUs in the cluster. If the
argument is NULL, all counters shown in the pg_stat_slru view for all SLRU caches are
reset. The argument can be one of CommitTs, MultiXactMember, MultiXactOffset, Notify,

668

Monitoring Database Activity

Function
Description
 Serial, Subtrans, or Xact to reset the counters for only that entry. If the argument is other
(or indeed, any unrecognized name), then the counters for all other SLRU caches, such as
extension-defined caches, are reset.
This function is restricted to superusers by default, but other users can be granted EXECUTE
to run the function.

pg_stat_get_activity, the underlying function of the pg_stat_activity view, returns a set of records
containing all the available information about each backend process. Sometimes it may be more
convenient to obtain just a subset of this information. In such cases, an older set of per-backend
statistics access functions can be used; these are shown in Table 26.31. These access functions use a
backend ID number, which ranges from one to the number of currently active backends. The function
pg_stat_get_backend_idset provides a convenient way to generate one row for each active backend
for invoking these functions. For example, to show the PIDs and current queries of all backends:

SELECT pg_stat_get_backend_pid(s.backendid) AS pid,
 pg_stat_get_backend_activity(s.backendid) AS query
 FROM (SELECT pg_stat_get_backend_idset() AS backendid) AS s;

Table 26.31. Per-Backend Statistics Functions

Function
Description

pg_stat_get_backend_idset () → setof integer
Returns the set of currently active backend ID numbers (from 1 to the number of active
backends).

pg_stat_get_backend_activity (integer) → text
Returns the text of this backend's most recent query.

pg_stat_get_backend_activity_start (integer) → timestamp with time zone
Returns the time when the backend's most recent query was started.

pg_stat_get_backend_client_addr (integer) → inet
Returns the IP address of the client connected to this backend.

pg_stat_get_backend_client_port (integer) → integer
Returns the TCP port number that the client is using for communication.

pg_stat_get_backend_dbid (integer) → oid
Returns the OID of the database this backend is connected to.

pg_stat_get_backend_pid (integer) → integer
Returns the process ID of this backend.

pg_stat_get_backend_start (integer) → timestamp with time zone
Returns the time when this process was started.

pg_stat_get_backend_userid (integer) → oid
Returns the OID of the user logged into this backend.

pg_stat_get_backend_wait_event_type (integer) → text
Returns the wait event type name if this backend is currently waiting, otherwise NULL. See
Table 26.4 for details.

pg_stat_get_backend_wait_event (integer) → text
Returns the wait event name if this backend is currently waiting, otherwise NULL. See
Table 26.5 through Table 26.13.

pg_stat_get_backend_xact_start (integer) → timestamp with time zone

669

Monitoring Database Activity

Function
Description
Returns the time when the backend's current transaction was started.

26.3. Viewing Locks
Another useful tool for monitoring database activity is the pg_locks system table. It allows the database
administrator to view information about the outstanding locks in the lock manager. For example, this
capability can be used to:

• View all the locks currently outstanding, all the locks on relations in a particular database, all the
locks on a particular relation, or all the locks held by a particular Postgres Pro session.

• Determine the relation in the current database with the most ungranted locks (which might be a
source of contention among database clients).

• Determine the effect of lock contention on overall database performance, as well as the extent to
which contention varies with overall database traffic.

Details of the pg_locks view appear in Section 49.73. For more information on locking and managing
concurrency with Postgres Pro, refer to Chapter 13.

26.4. Progress Reporting
Postgres Pro has the ability to report the progress of certain commands during command execution.
Currently, the only commands which support progress reporting are ANALYZE, CLUSTER, CREATE INDEX,
VACUUM, and BASE_BACKUP (i.e., replication command that pg_basebackup issues to take a base
backup). This may be expanded in the future.

26.4.1. ANALYZE Progress Reporting
Whenever ANALYZE is running, the pg_stat_progress_analyze view will contain a row for each backend
that is currently running that command. The tables below describe the information that will be reported
and provide information about how to interpret it.

Table 26.32. pg_stat_progress_analyze View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being analyzed.

phase text
Current processing phase. See Table 26.33.

sample_blks_total bigint
Total number of heap blocks that will be sampled.

sample_blks_scanned bigint
Number of heap blocks scanned.

ext_stats_total bigint
Number of extended statistics.

ext_stats_computed bigint

670

Monitoring Database Activity

Column Type
Description
Number of extended statistics computed. This counter only advances when the phase is
computing extended statistics.

child_tables_total bigint
Number of child tables.

child_tables_done bigint
Number of child tables scanned. This counter only advances when the phase is acquiring
inherited sample rows.

current_child_table_relid oid
OID of the child table currently being scanned. This field is only valid when the phase is
acquiring inherited sample rows.

Table 26.33. ANALYZE phases

Phase Description
initializing The command is preparing to begin scanning the heap. This phase

is expected to be very brief.
acquiring sample rows The command is currently scanning the table given by relid to

obtain sample rows.
acquiring inherited sample
rows

The command is currently scanning child tables to obtain sample
rows. Columns child_tables_total , child_tables_done , and
current_child_table_relid contain the progress information
for this phase.

computing statistics The command is computing statistics from the sample rows
obtained during the table scan.

computing extended
statistics

The command is computing extended statistics from the sample
rows obtained during the table scan.

finalizing analyze The command is updating pg_class . When this phase is
completed, ANALYZE will end.

Note
Note that when ANALYZE is run on a partitioned table, all of its partitions are also recursively
analyzed as also mentioned in ANALYZE. In that case, ANALYZE progress is reported first for the
parent table, whereby its inheritance statistics are collected, followed by that for each partition.

26.4.2. CREATE INDEX Progress Reporting
Whenever CREATE INDEX or REINDEX is running, the pg_stat_progress_create_index view will contain
one row for each backend that is currently creating indexes. The tables below describe the information
that will be reported and provide information about how to interpret it.

Table 26.34. pg_stat_progress_create_index View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name

671

Monitoring Database Activity

Column Type
Description
Name of the database to which this backend is connected.

relid oid
OID of the table on which the index is being created.

index_relid oid
OID of the index being created or reindexed. During a non-concurrent CREATE INDEX, this is
0.

command text
The command that is running: CREATE INDEX, CREATE INDEX CONCURRENTLY, REINDEX, or
REINDEX CONCURRENTLY.

phase text
Current processing phase of index creation. See Table 26.35.

lockers_total bigint
Total number of lockers to wait for, when applicable.

lockers_done bigint
Number of lockers already waited for.

current_locker_pid bigint
Process ID of the locker currently being waited for.

blocks_total bigint
Total number of blocks to be processed in the current phase.

blocks_done bigint
Number of blocks already processed in the current phase.

tuples_total bigint
Total number of tuples to be processed in the current phase.

tuples_done bigint
Number of tuples already processed in the current phase.

partitions_total bigint
When creating an index on a partitioned table, this column is set to the total number of
partitions on which the index is to be created.

partitions_done bigint
When creating an index on a partitioned table, this column is set to the number of partitions
on which the index has been completed.

Table 26.35. CREATE INDEX Phases

Phase Description
initializing CREATE INDEX or REINDEX is preparing to create the index. This

phase is expected to be very brief.
waiting for writers before
build

CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting
for transactions with write locks that can potentially see the table
to finish. This phase is skipped when not in concurrent mode.
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

building index The index is being built by the access method-specific code. In this
phase, access methods that support progress reporting fill in their
own progress data, and the subphase is indicated in this column.
Typically, blocks_total and blocks_done will contain progress
data, as well as potentially tuples_total and tuples_done .

waiting for writers before
validation

CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting
for transactions with write locks that can potentially write into the

672

Monitoring Database Activity

Phase Description
table to finish. This phase is skipped when not in concurrent mode.
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

index validation: scanning
index

CREATE INDEX CONCURRENTLY is scanning the index searching for
tuples that need to be validated. This phase is skipped when not in
concurrent mode. Columns blocks_total (set to the total size of
the index) and blocks_done contain the progress information for
this phase.

index validation: sorting
tuples

CREATE INDEX CONCURRENTLY is sorting the output of the index
scanning phase.

index validation: scanning
table

CREATE INDEX CONCURRENTLY is scanning the table to validate the
index tuples collected in the previous two phases. This phase is
skipped when not in concurrent mode. Columns blocks_total
(set to the total size of the table) and blocks_done contain the
progress information for this phase.

waiting for old snapshots CREATE INDEX CONCURRENTLY or REINDEX CONCURRENTLY is waiting
for transactions that can potentially see the table to release their
snapshots. This phase is skipped when not in concurrent mode.
Columns lockers_total , lockers_done and current_locker_
pid contain the progress information for this phase.

waiting for readers before
marking dead

REINDEX CONCURRENTLY is waiting for transactions with read locks
on the table to finish, before marking the old index dead. This
phase is skipped when not in concurrent mode. Columns lockers_
total , lockers_done and current_locker_pid contain the
progress information for this phase.

waiting for readers before
dropping

REINDEX CONCURRENTLY is waiting for transactions with read locks
on the table to finish, before dropping the old index. This phase is
skipped when not in concurrent mode. Columns lockers_total ,
 lockers_done and current_locker_pid contain the progress
information for this phase.

26.4.3. VACUUM Progress Reporting
Whenever VACUUM is running, the pg_stat_progress_vacuum view will contain one row for each backend
(including autovacuum worker processes) that is currently vacuuming. The tables below describe the
information that will be reported and provide information about how to interpret it. Progress for VACUUM
FULL commands is reported via pg_stat_progress_cluster because both VACUUM FULL and CLUSTER
rewrite the table, while regular VACUUM only modifies it in place. See Section 26.4.4.

Table 26.36. pg_stat_progress_vacuum View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being vacuumed.

phase text

673

Monitoring Database Activity

Column Type
Description
Current processing phase of vacuum. See Table 26.37.

heap_blks_total bigint
Total number of heap blocks in the table. This number is reported as of the beginning of the
scan; blocks added later will not be (and need not be) visited by this VACUUM.

heap_blks_scanned bigint
Number of heap blocks scanned. Because the visibility map is used to optimize scans, some
blocks will be skipped without inspection; skipped blocks are included in this total, so
that this number will eventually become equal to heap_blks_total when the vacuum is
complete. This counter only advances when the phase is scanning heap.

heap_blks_vacuumed bigint
Number of heap blocks vacuumed. Unless the table has no indexes, this counter only
advances when the phase is vacuuming heap. Blocks that contain no dead tuples are skipped,
 so the counter may sometimes skip forward in large increments.

index_vacuum_count bigint
Number of completed index vacuum cycles.

max_dead_tuples bigint
Number of dead tuples that we can store before needing to perform an index vacuum cycle,
 based on maintenance_work_mem.

num_dead_tuples bigint
Number of dead tuples collected since the last index vacuum cycle.

Table 26.37. VACUUM Phases

Phase Description
initializing VACUUM is preparing to begin scanning the heap. This phase is

expected to be very brief.
scanning heap VACUUM is currently scanning the heap. It will prune and

defragment each page if required, and possibly perform freezing
activity. The heap_blks_scanned column can be used to monitor
the progress of the scan.

vacuuming indexes VACUUM is currently vacuuming the indexes. If a table has any
indexes, this will happen at least once per vacuum, after the heap
has been completely scanned. It may happen multiple times per
vacuum if maintenance_work_mem (or, in the case of autovacuum,
autovacuum_work_mem if set) is insufficient to store the number of
dead tuples found.

vacuuming heap VACUUM is currently vacuuming the heap. Vacuuming the heap is
distinct from scanning the heap, and occurs after each instance
of vacuuming indexes. If heap_blks_scanned is less than heap_
blks_total , the system will return to scanning the heap after
this phase is completed; otherwise, it will begin cleaning up
indexes after this phase is completed.

cleaning up indexes VACUUM is currently cleaning up indexes. This occurs after the heap
has been completely scanned and all vacuuming of the indexes and
the heap has been completed.

truncating heap VACUUM is currently truncating the heap so as to return empty
pages at the end of the relation to the operating system. This
occurs after cleaning up indexes.

performing final cleanup VACUUM is performing final cleanup. During this phase, VACUUM
will vacuum the free space map, update statistics in pg_class ,

674

Monitoring Database Activity

Phase Description
 and report statistics to the statistics collector. When this phase is
completed, VACUUM will end.

26.4.4. CLUSTER Progress Reporting
Whenever CLUSTER or VACUUM FULL is running, the pg_stat_progress_cluster view will contain a row
for each backend that is currently running either command. The tables below describe the information
that will be reported and provide information about how to interpret it.

Table 26.38. pg_stat_progress_cluster View

Column Type
Description

pid integer
Process ID of backend.

datid oid
OID of the database to which this backend is connected.

datname name
Name of the database to which this backend is connected.

relid oid
OID of the table being clustered.

command text
The command that is running. Either CLUSTER or VACUUM FULL.

phase text
Current processing phase. See Table 26.39.

cluster_index_relid oid
If the table is being scanned using an index, this is the OID of the index being used;
otherwise, it is zero.

heap_tuples_scanned bigint
Number of heap tuples scanned. This counter only advances when the phase is seq scanning
heap, index scanning heap or writing new heap.

heap_tuples_written bigint
Number of heap tuples written. This counter only advances when the phase is seq scanning
heap, index scanning heap or writing new heap.

heap_blks_total bigint
Total number of heap blocks in the table. This number is reported as of the beginning of seq
scanning heap.

heap_blks_scanned bigint
Number of heap blocks scanned. This counter only advances when the phase is seq scanning
heap.

index_rebuild_count bigint
Number of indexes rebuilt. This counter only advances when the phase is rebuilding index.

Table 26.39. CLUSTER and VACUUM FULL Phases

Phase Description
initializing The command is preparing to begin scanning the heap. This phase

is expected to be very brief.
seq scanning heap The command is currently scanning the table using a sequential

scan.
index scanning heap CLUSTER is currently scanning the table using an index scan.

675

Monitoring Database Activity

Phase Description
sorting tuples CLUSTER is currently sorting tuples.
writing new heap CLUSTER is currently writing the new heap.
swapping relation files The command is currently swapping newly-built files into place.
rebuilding index The command is currently rebuilding an index.
performing final cleanup The command is performing final cleanup. When this phase is

completed, CLUSTER or VACUUM FULL will end.

26.4.5. Base Backup Progress Reporting
Whenever an application like pg_basebackup is taking a base backup, the
pg_stat_progress_basebackup view will contain a row for each WAL sender process that is currently
running the BASE_BACKUP replication command and streaming the backup. The tables below describe
the information that will be reported and provide information about how to interpret it.

Table 26.40. pg_stat_progress_basebackup View

Column Type
Description

pid integer
Process ID of a WAL sender process.

phase text
Current processing phase. See Table 26.41.

backup_total bigint
Total amount of data that will be streamed. This is estimated and reported as of the beginning
of streaming database files phase. Note that this is only an approximation since the
database may change during streaming database files phase and WAL log may be
included in the backup later. This is always the same value as backup_streamed once the
amount of data streamed exceeds the estimated total size. If the estimation is disabled in pg_
basebackup (i.e., --no-estimate-size option is specified), this is NULL.

backup_streamed bigint
Amount of data streamed. This counter only advances when the phase is streaming database
files or transferring wal files.

tablespaces_total bigint
Total number of tablespaces that will be streamed.

tablespaces_streamed bigint
Number of tablespaces streamed. This counter only advances when the phase is streaming
database files.

Table 26.41. Base backup phases

Phase Description
initializing The WAL sender process is preparing to begin the backup. This

phase is expected to be very brief.
waiting for checkpoint to
finish

The WAL sender process is currently performing pg_start_
backup to prepare to take a base backup, and waiting for the
start-of-backup checkpoint to finish.

estimating backup size The WAL sender process is currently estimating the total amount of
database files that will be streamed as a base backup.

streaming database files The WAL sender process is currently streaming database files as a
base backup.

waiting for wal archiving to
finish

The WAL sender process is currently performing pg_stop_
backup to finish the backup, and waiting for all the WAL files

676

Monitoring Database Activity

Phase Description
required for the base backup to be successfully archived. If either
--wal-method=none or --wal-method=stream is specified in pg_
basebackup, the backup will end when this phase is completed.

transferring wal files The WAL sender process is currently transferring all WAL logs
generated during the backup. This phase occurs after waiting
for wal archiving to finish phase if --wal-method=fetch is
specified in pg_basebackup. The backup will end when this phase is
completed.

677

Chapter 27. Monitoring Disk Usage
This chapter discusses how to monitor the disk usage of a Postgres Pro database system.

27.1. Determining Disk Usage
Each table has a primary heap disk file where most of the data is stored. If the table has any columns
with potentially-wide values, there also might be a TOAST file associated with the table, which is used
to store values too wide to fit comfortably in the main table (see Section 65.2). There will be one valid
index on the TOAST table, if present. There also might be indexes associated with the base table. Each
table and index is stored in a separate disk file — possibly more than one file, if the file would exceed
one gigabyte. Naming conventions for these files are described in Section 65.1.

You can monitor disk space in three ways: using the SQL functions listed in Table 9.90, using the
oid2name module, or using manual inspection of the system catalogs. The SQL functions are the easiest
to use and are generally recommended. The remainder of this section shows how to do it by inspection
of the system catalogs.

Using psql on a recently vacuumed or analyzed database, you can issue queries to see the disk usage
of any table:

SELECT pg_relation_filepath(oid), relpages FROM pg_class WHERE relname = 'customer';

 pg_relation_filepath | relpages
----------------------+----------
 base/16384/16806 | 60
(1 row)

Each page is typically 8 kilobytes. (Remember, relpages is only updated by VACUUM, ANALYZE, and a few
DDL commands such as CREATE INDEX.) The file path name is of interest if you want to examine the
table's disk file directly.

To show the space used by TOAST tables, use a query like the following:

SELECT relname, relpages
FROM pg_class,
 (SELECT reltoastrelid
 FROM pg_class
 WHERE relname = 'customer') AS ss
WHERE oid = ss.reltoastrelid OR
 oid = (SELECT indexrelid
 FROM pg_index
 WHERE indrelid = ss.reltoastrelid)
ORDER BY relname;

 relname | relpages
----------------------+----------
 pg_toast_16806 | 0
 pg_toast_16806_index | 1

You can easily display index sizes, too:

SELECT c2.relname, c2.relpages
FROM pg_class c, pg_class c2, pg_index i
WHERE c.relname = 'customer' AND
 c.oid = i.indrelid AND
 c2.oid = i.indexrelid
ORDER BY c2.relname;

 relname | relpages

678

Monitoring Disk Usage

-------------------+----------
 customer_id_index | 26

It is easy to find your largest tables and indexes using this information:

SELECT relname, relpages
FROM pg_class
ORDER BY relpages DESC;

 relname | relpages
----------------------+----------
 bigtable | 3290
 customer | 3144

27.2. Disk Full Failure
The most important disk monitoring task of a database administrator is to make sure the disk doesn't
become full. A filled data disk will not result in data corruption, but it might prevent useful activity from
occurring. If the disk holding the WAL files grows full, database server panic and consequent shutdown
might occur.

If you cannot free up additional space on the disk by deleting other things, you can move some of the
database files to other file systems by making use of tablespaces. See Section 21.6 for more information
about that.

Tip
Some file systems perform badly when they are almost full, so do not wait until the disk is
completely full to take action.

If your system supports per-user disk quotas, then the database will naturally be subject to whatever
quota is placed on the user the server runs as. Exceeding the quota will have the same bad effects as
running out of disk space entirely.

679

Chapter 28. Reliability and the Write-Ahead
Log

This chapter explains how the Write-Ahead Log is used to obtain efficient, reliable operation.

28.1. Reliability
Reliability is an important property of any serious database system, and Postgres Pro does everything
possible to guarantee reliable operation. One aspect of reliable operation is that all data recorded by
a committed transaction should be stored in a nonvolatile area that is safe from power loss, operating
system failure, and hardware failure (except failure of the nonvolatile area itself, of course). Successfully
writing the data to the computer's permanent storage (disk drive or equivalent) ordinarily meets this
requirement. In fact, even if a computer is fatally damaged, if the disk drives survive they can be moved
to another computer with similar hardware and all committed transactions will remain intact.

While forcing data to the disk platters periodically might seem like a simple operation, it is not. Because
disk drives are dramatically slower than main memory and CPUs, several layers of caching exist between
the computer's main memory and the disk platters. First, there is the operating system's buffer cache,
which caches frequently requested disk blocks and combines disk writes. Fortunately, all operating
systems give applications a way to force writes from the buffer cache to disk, and Postgres Pro uses
those features. (See the wal_sync_method parameter to adjust how this is done.)

Next, there might be a cache in the disk drive controller; this is particularly common on RAID controller
cards. Some of these caches are write-through, meaning writes are sent to the drive as soon as they
arrive. Others are write-back, meaning data is sent to the drive at some later time. Such caches can be
a reliability hazard because the memory in the disk controller cache is volatile, and will lose its contents
in a power failure. Better controller cards have battery-backup units (BBUs), meaning the card has a
battery that maintains power to the cache in case of system power loss. After power is restored the data
will be written to the disk drives.

And finally, most disk drives have caches. Some are write-through while some are write-back, and the
same concerns about data loss exist for write-back drive caches as for disk controller caches. Consumer-
grade IDE and SATA drives are particularly likely to have write-back caches that will not survive a power
failure. Many solid-state drives (SSD) also have volatile write-back caches.

These caches can typically be disabled; however, the method for doing this varies by operating system
and drive type:

• On Linux, IDE and SATA drives can be queried using hdparm -I; write caching is enabled if there
is a * next to Write cache. hdparm -W 0 can be used to turn off write caching. SCSI drives can be
queried using sdparm. Use sdparm --get=WCE to check whether the write cache is enabled and
sdparm --clear=WCE to disable it.

• On FreeBSD, IDE drives can be queried using atacontrol and write caching turned off using
hw.ata.wc=0 in /boot/loader.conf; SCSI drives can be queried using camcontrol identify, and
the write cache both queried and changed using sdparm when available.

• On Solaris, the disk write cache is controlled by format -e. (The Solaris ZFS file system is safe
with disk write-cache enabled because it issues its own disk cache flush commands.)

• On Windows, if wal_sync_method is open_datasync (the default), write caching can be disabled
by unchecking My Computer\Open\disk drive\Properties\Hardware\Properties\Policies
\Enable write caching on the disk. Alternatively, set wal_sync_method to fsync or
fsync_writethrough, which prevent write caching.

• On macOS, write caching can be prevented by setting wal_sync_method to fsync_writethrough.
Recent SATA drives (those following ATAPI-6 or later) offer a drive cache flush command (FLUSH
CACHE EXT), while SCSI drives have long supported a similar command SYNCHRONIZE CACHE. These
commands are not directly accessible to Postgres Pro, but some file systems (e.g., ZFS, ext4) can

680

http://sg.danny.cz/sg/sdparm.html

Reliability and the Write-Ahead Log

use them to flush data to the platters on write-back-enabled drives. Unfortunately, such file systems
behave suboptimally when combined with battery-backup unit (BBU) disk controllers. In such setups,
the synchronize command forces all data from the controller cache to the disks, eliminating much of the
benefit of the BBU. You can run the pg_test_fsync program to see if you are affected. If you are affected,
the performance benefits of the BBU can be regained by turning off write barriers in the file system
or reconfiguring the disk controller, if that is an option. If write barriers are turned off, make sure the
battery remains functional; a faulty battery can potentially lead to data loss. Hopefully file system and
disk controller designers will eventually address this suboptimal behavior.

When the operating system sends a write request to the storage hardware, there is little it can do to
make sure the data has arrived at a truly non-volatile storage area. Rather, it is the administrator's
responsibility to make certain that all storage components ensure integrity for both data and file-system
metadata. Avoid disk controllers that have non-battery-backed write caches. At the drive level, disable
write-back caching if the drive cannot guarantee the data will be written before shutdown. If you use
SSDs, be aware that many of these do not honor cache flush commands by default. You can test for
reliable I/O subsystem behavior using diskchecker.pl.

Another risk of data loss is posed by the disk platter write operations themselves. Disk platters are
divided into sectors, commonly 512 bytes each. Every physical read or write operation processes a whole
sector. When a write request arrives at the drive, it might be for some multiple of 512 bytes (Postgres
Pro typically writes 8192 bytes, or 16 sectors, at a time), and the process of writing could fail due to
power loss at any time, meaning some of the 512-byte sectors were written while others were not. To
guard against such failures, Postgres Pro periodically writes full page images to permanent WAL storage
before modifying the actual page on disk. By doing this, during crash recovery Postgres Pro can restore
partially-written pages from WAL. If you have file-system software that prevents partial page writes
(e.g., ZFS), you can turn off this page imaging by turning off the full_page_writes parameter. Battery-
Backed Unit (BBU) disk controllers do not prevent partial page writes unless they guarantee that data
is written to the BBU as full (8kB) pages.

Postgres Pro also protects against some kinds of data corruption on storage devices that may occur
because of hardware errors or media failure over time, such as reading/writing garbage data.

• Each individual record in a WAL file is protected by a CRC-32 (32-bit) check that allows us to tell
if record contents are correct. The CRC value is set when we write each WAL record and checked
during crash recovery, archive recovery and replication.

• Data pages are not currently checksummed by default, though full page images recorded in WAL
records will be protected; see initdb for details about enabling data page checksums.

• Internal data structures such as pg_xact, pg_subtrans, pg_multixact, pg_serial, pg_notify,
pg_stat, pg_snapshots are not directly checksummed, nor are pages protected by full page
writes. However, where such data structures are persistent, WAL records are written that allow
recent changes to be accurately rebuilt at crash recovery and those WAL records are protected as
discussed above.

• Individual state files in pg_twophase are protected by CRC-32.

• Temporary data files used in larger SQL queries for sorts, materializations and intermediate results
are not currently checksummed, nor will WAL records be written for changes to those files.

Postgres Pro does not protect against correctable memory errors and it is assumed you will operate
using RAM that uses industry standard Error Correcting Codes (ECC) or better protection.

28.2. Write-Ahead Logging (WAL)
Write-Ahead Logging (WAL) is a standard method for ensuring data integrity. A detailed description can
be found in most (if not all) books about transaction processing. Briefly, WAL's central concept is that
changes to data files (where tables and indexes reside) must be written only after those changes have
been logged, that is, after log records describing the changes have been flushed to permanent storage.
If we follow this procedure, we do not need to flush data pages to disk on every transaction commit,
because we know that in the event of a crash we will be able to recover the database using the log: any

681

https://brad.livejournal.com/2116715.html

Reliability and the Write-Ahead Log

changes that have not been applied to the data pages can be redone from the log records. (This is roll-
forward recovery, also known as REDO.)

Tip
Because WAL restores database file contents after a crash, journaled file systems are not necessary
for reliable storage of the data files or WAL files. In fact, journaling overhead can reduce
performance, especially if journaling causes file system data to be flushed to disk. Fortunately,
data flushing during journaling can often be disabled with a file system mount option, e.g.,
data=writeback on a Linux ext3 file system. Journaled file systems do improve boot speed after
a crash.

Using WAL results in a significantly reduced number of disk writes, because only the log file needs to
be flushed to disk to guarantee that a transaction is committed, rather than every data file changed by
the transaction. The log file is written sequentially, and so the cost of syncing the log is much less than
the cost of flushing the data pages. This is especially true for servers handling many small transactions
touching different parts of the data store. Furthermore, when the server is processing many small
concurrent transactions, one fsync of the log file may suffice to commit many transactions.

WAL also makes it possible to support on-line backup and point-in-time recovery, as described in
Section 24.3. By archiving the WAL data we can support reverting to any time instant covered by the
available WAL data: we simply install a prior physical backup of the database, and replay the WAL log
just as far as the desired time. What's more, the physical backup doesn't have to be an instantaneous
snapshot of the database state — if it is made over some period of time, then replaying the WAL log for
that period will fix any internal inconsistencies.

28.3. Asynchronous Commit
Asynchronous commit is an option that allows transactions to complete more quickly, at the cost that
the most recent transactions may be lost if the database should crash. In many applications this is an
acceptable trade-off.

As described in the previous section, transaction commit is normally synchronous: the server waits for
the transaction's WAL records to be flushed to permanent storage before returning a success indication
to the client. The client is therefore guaranteed that a transaction reported to be committed will be
preserved, even in the event of a server crash immediately after. However, for short transactions this
delay is a major component of the total transaction time. Selecting asynchronous commit mode means
that the server returns success as soon as the transaction is logically completed, before the WAL records
it generated have actually made their way to disk. This can provide a significant boost in throughput
for small transactions.

Asynchronous commit introduces the risk of data loss. There is a short time window between the report
of transaction completion to the client and the time that the transaction is truly committed (that is, it
is guaranteed not to be lost if the server crashes). Thus asynchronous commit should not be used if the
client will take external actions relying on the assumption that the transaction will be remembered. As
an example, a bank would certainly not use asynchronous commit for a transaction recording an ATM's
dispensing of cash. But in many scenarios, such as event logging, there is no need for a strong guarantee
of this kind.

The risk that is taken by using asynchronous commit is of data loss, not data corruption. If the database
should crash, it will recover by replaying WAL up to the last record that was flushed. The database will
therefore be restored to a self-consistent state, but any transactions that were not yet flushed to disk
will not be reflected in that state. The net effect is therefore loss of the last few transactions. Because
the transactions are replayed in commit order, no inconsistency can be introduced — for example, if
transaction B made changes relying on the effects of a previous transaction A, it is not possible for A's
effects to be lost while B's effects are preserved.

The user can select the commit mode of each transaction, so that it is possible to have both synchronous
and asynchronous commit transactions running concurrently. This allows flexible trade-offs between

682

Reliability and the Write-Ahead Log

performance and certainty of transaction durability. The commit mode is controlled by the user-settable
parameter synchronous_commit, which can be changed in any of the ways that a configuration parameter
can be set. The mode used for any one transaction depends on the value of synchronous_commit when
transaction commit begins.

Certain utility commands, for instance DROP TABLE, are forced to commit synchronously regardless
of the setting of synchronous_commit. This is to ensure consistency between the server's file system
and the logical state of the database. The commands supporting two-phase commit, such as PREPARE
TRANSACTION, are also always synchronous.

If the database crashes during the risk window between an asynchronous commit and the writing of
the transaction's WAL records, then changes made during that transaction will be lost. The duration
of the risk window is limited because a background process (the “WAL writer”) flushes unwritten WAL
records to disk every wal_writer_delay milliseconds. The actual maximum duration of the risk window
is three times wal_writer_delay because the WAL writer is designed to favor writing whole pages at
a time during busy periods.

Caution
An immediate-mode shutdown is equivalent to a server crash, and will therefore cause loss of any
unflushed asynchronous commits.

Asynchronous commit provides behavior different from setting fsync = off. fsync is a server-wide setting
that will alter the behavior of all transactions. It disables all logic within Postgres Pro that attempts
to synchronize writes to different portions of the database, and therefore a system crash (that is, a
hardware or operating system crash, not a failure of Postgres Pro itself) could result in arbitrarily
bad corruption of the database state. In many scenarios, asynchronous commit provides most of the
performance improvement that could be obtained by turning off fsync, but without the risk of data
corruption.

commit_delay also sounds very similar to asynchronous commit, but it is actually a synchronous commit
method (in fact, commit_delay is ignored during an asynchronous commit). commit_delay causes a delay
just before a transaction flushes WAL to disk, in the hope that a single flush executed by one such
transaction can also serve other transactions committing at about the same time. The setting can be
thought of as a way of increasing the time window in which transactions can join a group about to
participate in a single flush, to amortize the cost of the flush among multiple transactions.

28.4. WAL Configuration
There are several WAL-related configuration parameters that affect database performance. This section
explains their use. Consult Chapter 18 for general information about setting server configuration
parameters.

Checkpointsare points in the sequence of transactions at which it is guaranteed that the heap and index
data files have been updated with all information written before that checkpoint. At checkpoint time,
all dirty data pages are flushed to disk and a special checkpoint record is written to the log file. (The
change records were previously flushed to the WAL files.) In the event of a crash, the crash recovery
procedure looks at the latest checkpoint record to determine the point in the log (known as the redo
record) from which it should start the REDO operation. Any changes made to data files before that
point are guaranteed to be already on disk. Hence, after a checkpoint, log segments preceding the one
containing the redo record are no longer needed and can be recycled or removed. (When WAL archiving
is being done, the log segments must be archived before being recycled or removed.)

The checkpoint requirement of flushing all dirty data pages to disk can cause a significant I/O load. For
this reason, checkpoint activity is throttled so that I/O begins at checkpoint start and completes before
the next checkpoint is due to start; this minimizes performance degradation during checkpoints.

The server's checkpointer process automatically performs a checkpoint every so often. A checkpoint is
begun every checkpoint_timeout seconds, or if max_wal_size is about to be exceeded, whichever comes

683

Reliability and the Write-Ahead Log

first. The default settings are 5 minutes and 1 GB, respectively. If no WAL has been written since the
previous checkpoint, new checkpoints will be skipped even if checkpoint_timeout has passed. (If WAL
archiving is being used and you want to put a lower limit on how often files are archived in order to
bound potential data loss, you should adjust the archive_timeout parameter rather than the checkpoint
parameters.) It is also possible to force a checkpoint by using the SQL command CHECKPOINT.

Reducing checkpoint_timeout and/or max_wal_size causes checkpoints to occur more often. This
allows faster after-crash recovery, since less work will need to be redone. However, one must balance
this against the increased cost of flushing dirty data pages more often. If full_page_writes is set (as is
the default), there is another factor to consider. To ensure data page consistency, the first modification
of a data page after each checkpoint results in logging the entire page content. In that case, a smaller
checkpoint interval increases the volume of output to the WAL log, partially negating the goal of using
a smaller interval, and in any case causing more disk I/O.

Checkpoints are fairly expensive, first because they require writing out all currently dirty buffers, and
second because they result in extra subsequent WAL traffic as discussed above. It is therefore wise
to set the checkpointing parameters high enough so that checkpoints don't happen too often. As a
simple sanity check on your checkpointing parameters, you can set the checkpoint_warning parameter.
If checkpoints happen closer together than checkpoint_warning seconds, a message will be output to
the server log recommending increasing max_wal_size. Occasional appearance of such a message is
not cause for alarm, but if it appears often then the checkpoint control parameters should be increased.
Bulk operations such as large COPY transfers might cause a number of such warnings to appear if you
have not set max_wal_size high enough.

To avoid flooding the I/O system with a burst of page writes, writing dirty buffers during a checkpoint
is spread over a period of time. That period is controlled by checkpoint_completion_target, which
is given as a fraction of the checkpoint interval. The I/O rate is adjusted so that the checkpoint
finishes when the given fraction of checkpoint_timeout seconds have elapsed, or before max_wal_size
is exceeded, whichever is sooner. With the default value of 0.5, Postgres Pro can be expected to
complete each checkpoint in about half the time before the next checkpoint starts. On a system
that's very close to maximum I/O throughput during normal operation, you might want to increase
checkpoint_completion_target to reduce the I/O load from checkpoints. The disadvantage of this is
that prolonging checkpoints affects recovery time, because more WAL segments will need to be kept
around for possible use in recovery. Although checkpoint_completion_target can be set as high as 1.0,
it is best to keep it less than that (perhaps 0.9 at most) since checkpoints include some other activities
besides writing dirty buffers. A setting of 1.0 is quite likely to result in checkpoints not being completed
on time, which would result in performance loss due to unexpected variation in the number of WAL
segments needed.

On Linux and POSIX platforms checkpoint_flush_after allows to force the OS that pages written by the
checkpoint should be flushed to disk after a configurable number of bytes. Otherwise, these pages may be
kept in the OS's page cache, inducing a stall when fsync is issued at the end of a checkpoint. This setting
will often help to reduce transaction latency, but it also can have an adverse effect on performance;
particularly for workloads that are bigger than shared_buffers, but smaller than the OS's page cache.

The number of WAL segment files in pg_wal directory depends on min_wal_size, max_wal_size and
the amount of WAL generated in previous checkpoint cycles. When old log segment files are no longer
needed, they are removed or recycled (that is, renamed to become future segments in the numbered
sequence). If, due to a short-term peak of log output rate, max_wal_size is exceeded, the unneeded
segment files will be removed until the system gets back under this limit. Below that limit, the system
recycles enough WAL files to cover the estimated need until the next checkpoint, and removes the rest.
The estimate is based on a moving average of the number of WAL files used in previous checkpoint
cycles. The moving average is increased immediately if the actual usage exceeds the estimate, so it
accommodates peak usage rather than average usage to some extent. min_wal_size puts a minimum
on the amount of WAL files recycled for future usage; that much WAL is always recycled for future use,
even if the system is idle and the WAL usage estimate suggests that little WAL is needed.

Independently of max_wal_size, the most recent wal_keep_size megabytes of WAL files plus one
additional WAL file are kept at all times. Also, if WAL archiving is used, old segments cannot be removed

684

Reliability and the Write-Ahead Log

or recycled until they are archived. If WAL archiving cannot keep up with the pace that WAL is generated,
or if archive_command fails repeatedly, old WAL files will accumulate in pg_wal until the situation is
resolved. A slow or failed standby server that uses a replication slot will have the same effect (see
Section 25.2.6).

In archive recovery or standby mode, the server periodically performs restartpoints, which are similar
to checkpoints in normal operation: the server forces all its state to disk, updates the pg_control
file to indicate that the already-processed WAL data need not be scanned again, and then recycles
any old log segment files in the pg_wal directory. Restartpoints can't be performed more frequently
than checkpoints in the master because restartpoints can only be performed at checkpoint records. A
restartpoint is triggered when a checkpoint record is reached if at least checkpoint_timeout seconds
have passed since the last restartpoint, or if WAL size is about to exceed max_wal_size. However,
because of limitations on when a restartpoint can be performed, max_wal_size is often exceeded during
recovery, by up to one checkpoint cycle's worth of WAL. (max_wal_size is never a hard limit anyway, so
you should always leave plenty of headroom to avoid running out of disk space.)

There are two commonly used internal WAL functions: XLogInsertRecord and XLogFlush.
XLogInsertRecord is used to place a new record into the WAL buffers in shared memory. If there is no
space for the new record, XLogInsertRecord will have to write (move to kernel cache) a few filled WAL
buffers. This is undesirable because XLogInsertRecord is used on every database low level modification
(for example, row insertion) at a time when an exclusive lock is held on affected data pages, so the
operation needs to be as fast as possible. What is worse, writing WAL buffers might also force the
creation of a new log segment, which takes even more time. Normally, WAL buffers should be written and
flushed by an XLogFlush request, which is made, for the most part, at transaction commit time to ensure
that transaction records are flushed to permanent storage. On systems with high log output, XLogFlush
requests might not occur often enough to prevent XLogInsertRecord from having to do writes. On such
systems one should increase the number of WAL buffers by modifying the wal_buffers parameter. When
full_page_writes is set and the system is very busy, setting wal_buffers higher will help smooth response
times during the period immediately following each checkpoint.

The commit_delay parameter defines for how many microseconds a group commit leader process will
sleep after acquiring a lock within XLogFlush, while group commit followers queue up behind the leader.
This delay allows other server processes to add their commit records to the WAL buffers so that all of
them will be flushed by the leader's eventual sync operation. No sleep will occur if fsync is not enabled,
or if fewer than commit_siblings other sessions are currently in active transactions; this avoids sleeping
when it's unlikely that any other session will commit soon. Note that on some platforms, the resolution
of a sleep request is ten milliseconds, so that any nonzero commit_delay setting between 1 and 10000
microseconds would have the same effect. Note also that on some platforms, sleep operations may take
slightly longer than requested by the parameter.

Since the purpose of commit_delay is to allow the cost of each flush operation to be amortized across
concurrently committing transactions (potentially at the expense of transaction latency), it is necessary
to quantify that cost before the setting can be chosen intelligently. The higher that cost is, the more
effective commit_delay is expected to be in increasing transaction throughput, up to a point. The
pg_test_fsync program can be used to measure the average time in microseconds that a single WAL flush
operation takes. A value of half of the average time the program reports it takes to flush after a single
8kB write operation is often the most effective setting for commit_delay, so this value is recommended
as the starting point to use when optimizing for a particular workload. While tuning commit_delay is
particularly useful when the WAL log is stored on high-latency rotating disks, benefits can be significant
even on storage media with very fast sync times, such as solid-state drives or RAID arrays with a battery-
backed write cache; but this should definitely be tested against a representative workload. Higher values
of commit_siblings should be used in such cases, whereas smaller commit_siblings values are often
helpful on higher latency media. Note that it is quite possible that a setting of commit_delay that is too
high can increase transaction latency by so much that total transaction throughput suffers.

When commit_delay is set to zero (the default), it is still possible for a form of group commit to occur,
but each group will consist only of sessions that reach the point where they need to flush their commit
records during the window in which the previous flush operation (if any) is occurring. At higher client

685

Reliability and the Write-Ahead Log

counts a “gangway effect” tends to occur, so that the effects of group commit become significant
even when commit_delay is zero, and thus explicitly setting commit_delay tends to help less. Setting
commit_delay can only help when (1) there are some concurrently committing transactions, and (2)
throughput is limited to some degree by commit rate; but with high rotational latency this setting can
be effective in increasing transaction throughput with as few as two clients (that is, a single committing
client with one sibling transaction).

The wal_sync_method parameter determines how Postgres Pro will ask the kernel to force WAL
updates out to disk. All the options should be the same in terms of reliability, with the exception of
fsync_writethrough, which can sometimes force a flush of the disk cache even when other options do
not do so. However, it's quite platform-specific which one will be the fastest. You can test the speeds of
different options using the pg_test_fsync program. Note that this parameter is irrelevant if fsync has
been turned off.

Enabling the wal_debug configuration parameter (provided that Postgres Pro has been compiled with
support for it) will result in each XLogInsertRecord and XLogFlush WAL call being logged to the server
log. This option might be replaced by a more general mechanism in the future.

28.5. WAL Internals
WAL is automatically enabled; no action is required from the administrator except ensuring that the disk-
space requirements for the WAL logs are met, and that any necessary tuning is done (see Section 28.4).

WAL records are appended to the WAL logs as each new record is written. The insert position is described
by a Log Sequence Number (LSN) that is a byte offset into the logs, increasing monotonically with each
new record. LSN values are returned as the datatype pg_lsn. Values can be compared to calculate the
volume of WAL data that separates them, so they are used to measure the progress of replication and
recovery.

WAL logs are stored in the directory pg_wal under the data directory, as a set of segment files, normally
each 16 MB in size (but the size can be changed by altering the --wal-segsize initdb option). Each
segment is divided into pages, normally 8 kB each. The log record content is dependent on the type
of event that is being logged. Segment files are given ever-increasing numbers as names, starting at
000000010000000000000001. The numbers do not wrap, but it will take a very, very long time to exhaust
the available stock of numbers.

It is advantageous if the log is located on a different disk from the main database files. This can be
achieved by moving the pg_wal directory to another location (while the server is shut down, of course)
and creating a symbolic link from the original location in the main data directory to the new location.

The aim of WAL is to ensure that the log is written before database records are altered, but this can
be subverted by disk drives that falsely report a successful write to the kernel, when in fact they have
only cached the data and not yet stored it on the disk. A power failure in such a situation might lead
to irrecoverable data corruption. Administrators should try to ensure that disks holding Postgres Pro's
WAL log files do not make such false reports. (See Section 28.1.)

After a checkpoint has been made and the log flushed, the checkpoint's position is saved in the
file pg_control. Therefore, at the start of recovery, the server first reads pg_control and then the
checkpoint record; then it performs the REDO operation by scanning forward from the log location
indicated in the checkpoint record. Because the entire content of data pages is saved in the log on the
first page modification after a checkpoint (assuming full_page_writes is not disabled), all pages changed
since the checkpoint will be restored to a consistent state.

To deal with the case where pg_control is corrupt, we should support the possibility of scanning existing
log segments in reverse order — newest to oldest — in order to find the latest checkpoint. This has not
been implemented yet. pg_control is small enough (less than one disk page) that it is not subject to
partial-write problems, and as of this writing there have been no reports of database failures due solely
to the inability to read pg_control itself. So while it is theoretically a weak spot, pg_control does not
seem to be a problem in practice.

686

Chapter 29. Logical Replication
Logical replication is a method of replicating data objects and their changes, based upon their replication
identity (usually a primary key). We use the term logical in contrast to physical replication, which
uses exact block addresses and byte-by-byte replication. Postgres Pro supports both mechanisms
concurrently, see Chapter 25. Logical replication allows fine-grained control over both data replication
and security.

Logical replication uses a publish and subscribe model with one or more subscribers subscribing to one
or more publications on a publisher node. Subscribers pull data from the publications they subscribe to
and may subsequently re-publish data to allow cascading replication or more complex configurations.

Logical replication of a table typically starts with taking a snapshot of the data on the publisher database
and copying that to the subscriber. Once that is done, the changes on the publisher are sent to the
subscriber as they occur in real-time. The subscriber applies the data in the same order as the publisher
so that transactional consistency is guaranteed for publications within a single subscription. This method
of data replication is sometimes referred to as transactional replication.

The typical use-cases for logical replication are:
• Sending incremental changes in a single database or a subset of a database to subscribers as they

occur.
• Firing triggers for individual changes as they arrive on the subscriber.
• Consolidating multiple databases into a single one (for example for analytical purposes).
• Replicating between different major versions of Postgres Pro.
• Replicating between Postgres Pro instances on different platforms (for example Linux to Windows)
• Giving access to replicated data to different groups of users.
• Sharing a subset of the database between multiple databases.

The subscriber database behaves in the same way as any other Postgres Pro instance and can be used
as a publisher for other databases by defining its own publications. When the subscriber is treated as
read-only by application, there will be no conflicts from a single subscription. On the other hand, if there
are other writes done either by an application or by other subscribers to the same set of tables, conflicts
can arise.

29.1. Publication
A publication can be defined on any physical replication master. The node where a publication is defined
is referred to as publisher. A publication is a set of changes generated from a table or a group of tables,
and might also be described as a change set or replication set. Each publication exists in only one
database.

Publications are different from schemas and do not affect how the table is accessed. Each table can be
added to multiple publications if needed. Publications may currently only contain tables. Objects must
be added explicitly, except when a publication is created for ALL TABLES.

Publications can choose to limit the changes they produce to any combination of INSERT, UPDATE, DELETE,
and TRUNCATE, similar to how triggers are fired by particular event types. By default, all operation types
are replicated.

A published table must have a “replica identity” configured in order to be able to replicate UPDATE and
DELETE operations, so that appropriate rows to update or delete can be identified on the subscriber
side. By default, this is the primary key, if there is one. Another unique index (with certain additional
requirements) can also be set to be the replica identity. If the table does not have any suitable key, then
it can be set to replica identity “full”, which means the entire row becomes the key. This, however, is
very inefficient and should only be used as a fallback if no other solution is possible. If a replica identity
other than “full” is set on the publisher side, a replica identity comprising the same or fewer columns

687

Logical Replication

must also be set on the subscriber side. See REPLICA IDENTITY for details on how to set the replica
identity. If a table without a replica identity is added to a publication that replicates UPDATE or DELETE
operations then subsequent UPDATE or DELETE operations will cause an error on the publisher. INSERT
operations can proceed regardless of any replica identity.

Every publication can have multiple subscribers.

A publication is created using the CREATE PUBLICATION command and may later be altered or dropped
using corresponding commands.

The individual tables can be added and removed dynamically using ALTER PUBLICATION. Both the ADD
TABLE and DROP TABLE operations are transactional; so the table will start or stop replicating at the
correct snapshot once the transaction has committed.

29.2. Subscription
A subscription is the downstream side of logical replication. The node where a subscription is defined
is referred to as the subscriber. A subscription defines the connection to another database and set of
publications (one or more) to which it wants to subscribe.

The subscriber database behaves in the same way as any other Postgres Pro instance and can be used
as a publisher for other databases by defining its own publications.

A subscriber node may have multiple subscriptions if desired. It is possible to define multiple
subscriptions between a single publisher-subscriber pair, in which case care must be taken to ensure
that the subscribed publication objects don't overlap.

Each subscription will receive changes via one replication slot (see Section 25.2.6). Additional temporary
replication slots may be required for the initial data synchronization of pre-existing table data.

A logical replication subscription can be a standby for synchronous replication (see Section 25.2.8).
The standby name is by default the subscription name. An alternative name can be specified as
application_name in the connection information of the subscription.

Subscriptions are dumped by pg_dump if the current user is a superuser. Otherwise a warning is written
and subscriptions are skipped, because non-superusers cannot read all subscription information from
the pg_subscription catalog.

The subscription is added using CREATE SUBSCRIPTION and can be stopped/resumed at any time using
the ALTER SUBSCRIPTION command and removed using DROP SUBSCRIPTION.

When a subscription is dropped and recreated, the synchronization information is lost. This means that
the data has to be resynchronized afterwards.

The schema definitions are not replicated, and the published tables must exist on the subscriber. Only
regular tables may be the target of replication. For example, you can't replicate to a view.

The tables are matched between the publisher and the subscriber using the fully qualified table name.
Replication to differently-named tables on the subscriber is not supported.

Columns of a table are also matched by name. The order of columns in the subscriber table does not
need to match that of the publisher. The data types of the columns do not need to match, as long as the
text representation of the data can be converted to the target type. For example, you can replicate from
a column of type integer to a column of type bigint. The target table can also have additional columns
not provided by the published table. Any such columns will be filled with the default value as specified
in the definition of the target table.

29.2.1. Replication Slot Management
As mentioned earlier, each (active) subscription receives changes from a replication slot on the remote
(publishing) side. Normally, the remote replication slot is created automatically when the subscription is
created using CREATE SUBSCRIPTION and it is dropped automatically when the subscription is dropped

688

Logical Replication

using DROP SUBSCRIPTION. In some situations, however, it can be useful or necessary to manipulate the
subscription and the underlying replication slot separately. Here are some scenarios:
• When creating a subscription, the replication slot already exists. In that case, the subscription can

be created using the create_slot = false option to associate with the existing slot.
• When creating a subscription, the remote host is not reachable or in an unclear state. In that case,

the subscription can be created using the connect = false option. The remote host will then not
be contacted at all. This is what pg_dump uses. The remote replication slot will then have to be
created manually before the subscription can be activated.

• When dropping a subscription, the replication slot should be kept. This could be useful when the
subscriber database is being moved to a different host and will be activated from there. In that
case, disassociate the slot from the subscription using ALTER SUBSCRIPTION before attempting to
drop the subscription.

• When dropping a subscription, the remote host is not reachable. In that case, disassociate the slot
from the subscription using ALTER SUBSCRIPTION before attempting to drop the subscription. If
the remote database instance no longer exists, no further action is then necessary. If, however,
the remote database instance is just unreachable, the replication slot should then be dropped
manually; otherwise it would continue to reserve WAL and might eventually cause the disk to fill
up. Such cases should be carefully investigated.

29.3. Conflicts
Logical replication behaves similarly to normal DML operations in that the data will be updated even if
it was changed locally on the subscriber node. If incoming data violates any constraints the replication
will stop. This is referred to as a conflict. When replicating UPDATE or DELETE operations, missing data
will not produce a conflict and such operations will simply be skipped.

A conflict will produce an error and will stop the replication; it must be resolved manually by the user.
Details about the conflict can be found in the subscriber's server log.

The resolution can be done either by changing data on the subscriber so that it does not conflict
with the incoming change or by skipping the transaction that conflicts with the existing data.
The transaction can be skipped by calling the pg_replication_origin_advance() function with a
node_name corresponding to the subscription name, and a position. The current position of origins can
be seen in the pg_replication_origin_status system view.

29.4. Restrictions
Logical replication currently has the following restrictions or missing functionality. These might be
addressed in future releases.

• The database schema and DDL commands are not replicated. The initial schema can be copied by
hand using pg_dump --schema-only. Subsequent schema changes would need to be kept in sync
manually. (Note, however, that there is no need for the schemas to be absolutely the same on both
sides.) Logical replication is robust when schema definitions change in a live database: When the
schema is changed on the publisher and replicated data starts arriving at the subscriber but does
not fit into the table schema, replication will error until the schema is updated. In many cases,
intermittent errors can be avoided by applying additive schema changes to the subscriber first.

• Sequence data is not replicated. The data in serial or identity columns backed by sequences will of
course be replicated as part of the table, but the sequence itself would still show the start value on
the subscriber. If the subscriber is used as a read-only database, then this should typically not be
a problem. If, however, some kind of switchover or failover to the subscriber database is intended,
then the sequences would need to be updated to the latest values, either by copying the current
data from the publisher (perhaps using pg_dump) or by determining a sufficiently high value from
the tables themselves.

• Replication of TRUNCATE commands is supported, but some care must be taken when truncating
groups of tables connected by foreign keys. When replicating a truncate action, the subscriber will

689

Logical Replication

truncate the same group of tables that was truncated on the publisher, either explicitly specified
or implicitly collected via CASCADE, minus tables that are not part of the subscription. This will
work correctly if all affected tables are part of the same subscription. But if some tables to be
truncated on the subscriber have foreign-key links to tables that are not part of the same (or any)
subscription, then the application of the truncate action on the subscriber will fail.

• Large objects (see Chapter 32) are not replicated. There is no workaround for that, other than
storing data in normal tables.

• Replication is only supported by tables, including partitioned tables. Attempts to replicate other
types of relations, such as views, materialized views, or foreign tables, will result in an error.

• When replicating between partitioned tables, the actual replication originates, by default, from
the leaf partitions on the publisher, so partitions on the publisher must also exist on the subscriber
as valid target tables. (They could either be leaf partitions themselves, or they could be further
subpartitioned, or they could even be independent tables.) Publications can also specify that
changes are to be replicated using the identity and schema of the partitioned root table instead
of that of the individual leaf partitions in which the changes actually originate (see CREATE
PUBLICATION).

29.5. Architecture
Logical replication starts by copying a snapshot of the data on the publisher database. Once that is done,
changes on the publisher are sent to the subscriber as they occur in real time. The subscriber applies
data in the order in which commits were made on the publisher so that transactional consistency is
guaranteed for the publications within any single subscription.

Logical replication is built with an architecture similar to physical streaming replication (see
Section 25.2.5). It is implemented by “walsender” and “apply” processes. The walsender process starts
logical decoding (described in Chapter 46) of the WAL and loads the standard logical decoding plugin
(pgoutput). The plugin transforms the changes read from WAL to the logical replication protocol (see
Section 50.5) and filters the data according to the publication specification. The data is then continuously
transferred using the streaming replication protocol to the apply worker, which maps the data to local
tables and applies the individual changes as they are received, in correct transactional order.

The apply process on the subscriber database always runs with session_replication_role set to
replica, which produces the usual effects on triggers and constraints.

The logical replication apply process currently only fires row triggers, not statement triggers. The
initial table synchronization, however, is implemented like a COPY command and thus fires both row and
statement triggers for INSERT.

29.5.1. Initial Snapshot
The initial data in existing subscribed tables are snapshotted and copied in a parallel instance of a
special kind of apply process. This process will create its own temporary replication slot and copy the
existing data. Once existing data is copied, the worker enters synchronization mode, which ensures that
the table is brought up to a synchronized state with the main apply process by streaming any changes
that happened during the initial data copy using standard logical replication. Once the synchronization
is done, the control of the replication of the table is given back to the main apply process where the
replication continues as normal.

29.6. Monitoring
Because logical replication is based on a similar architecture as physical streaming replication,
the monitoring on a publication node is similar to monitoring of a physical replication master (see
Section 25.2.5.2).

The monitoring information about subscription is visible in pg_stat_subscription. This view contains
one row for every subscription worker. A subscription can have zero or more active subscription workers
depending on its state.

690

Logical Replication

Normally, there is a single apply process running for an enabled subscription. A disabled subscription
or a crashed subscription will have zero rows in this view. If the initial data synchronization of any table
is in progress, there will be additional workers for the tables being synchronized.

29.7. Security
A user able to modify the schema of subscriber-side tables can execute arbitrary code as a superuser.
Limit ownership and TRIGGER privilege on such tables to roles that superusers trust. Moreover, if
untrusted users can create tables, use only publications that list tables explicitly. That is to say, create
a subscription FOR ALL TABLES only when superusers trust every user permitted to create a non-temp
table on the publisher or the subscriber.

The role used for the replication connection must have the REPLICATION attribute (or be a superuser). If
the role lacks SUPERUSER and BYPASSRLS, publisher row security policies can execute. If the role does not
trust all table owners, include options=-crow_security=off in the connection string; if a table owner
then adds a row security policy, that setting will cause replication to halt rather than execute the policy.
Access for the role must be configured in pg_hba.conf and it must have the LOGIN attribute.

In order to be able to copy the initial table data, the role used for the replication connection must have
the SELECT privilege on a published table (or be a superuser).

To create a publication, the user must have the CREATE privilege in the database.

To add tables to a publication, the user must have ownership rights on the table. To create a publication
that publishes all tables automatically, the user must be a superuser.

To create a subscription, the user must be a superuser.

The subscription apply process will run in the local database with the privileges of a superuser.

Privileges are only checked once at the start of a replication connection. They are not re-checked as
each change record is read from the publisher, nor are they re-checked for each change when applied.

29.8. Configuration Settings
Logical replication requires several configuration options to be set.

On the publisher side, wal_level must be set to logical, and max_replication_slots must be set to
at least the number of subscriptions expected to connect, plus some reserve for table synchronization.
And max_wal_senders should be set to at least the same as max_replication_slots plus the number
of physical replicas that are connected at the same time.

The subscriber also requires the max_replication_slots be set to configure how many replication
origins can be tracked. In this case it should be set to at least the number of subscriptions that
will be added to the subscriber. max_logical_replication_workers must be set to at least the
number of subscriptions, again plus some reserve for the table synchronization. Additionally the
max_worker_processes may need to be adjusted to accommodate for replication workers, at least
(max_logical_replication_workers + 1). Note that some extensions and parallel queries also take
worker slots from max_worker_processes.

29.9. Quick Setup
First set the configuration options in postgresql.conf:

wal_level = logical

The other required settings have default values that are sufficient for a basic setup.

pg_hba.conf needs to be adjusted to allow replication (the values here depend on your actual network
configuration and user you want to use for connecting):

691

Logical Replication

host all repuser 0.0.0.0/0 md5

Then on the publisher database:

CREATE PUBLICATION mypub FOR TABLE users, departments;

And on the subscriber database:

CREATE SUBSCRIPTION mysub CONNECTION 'dbname=foo host=bar user=repuser' PUBLICATION
 mypub;

The above will start the replication process, which synchronizes the initial table contents of the tables
users and departments and then starts replicating incremental changes to those tables.

692

Chapter 30. Just-in-Time Compilation (JIT)
This chapter explains what just-in-time compilation is, and how it can be configured in Postgres Pro.

30.1. What Is JIT compilation?
Just-in-Time (JIT) compilation is the process of turning some form of interpreted program evaluation into
a native program, and doing so at run time. For example, instead of using general-purpose code that
can evaluate arbitrary SQL expressions to evaluate a particular SQL predicate like WHERE a.col = 3,
it is possible to generate a function that is specific to that expression and can be natively executed by
the CPU, yielding a speedup.

Postgres Pro has builtin support to perform JIT compilation using LLVM when Postgres Pro is built with
--with-llvm.

30.1.1. JIT Accelerated Operations
Currently Postgres Pro's JIT implementation has support for accelerating expression evaluation and
tuple deforming. Several other operations could be accelerated in the future.

Expression evaluation is used to evaluate WHERE clauses, target lists, aggregates and projections. It can
be accelerated by generating code specific to each case.

Tuple deforming is the process of transforming an on-disk tuple (see Section 65.6.1) into its in-memory
representation. It can be accelerated by creating a function specific to the table layout and the number
of columns to be extracted.

30.1.2. Inlining
Postgres Pro is very extensible and allows new data types, functions, operators and other database
objects to be defined; see Chapter 35. In fact the built-in objects are implemented using nearly the
same mechanisms. This extensibility implies some overhead, for example due to function calls (see
Section 35.3). To reduce that overhead, JIT compilation can inline the bodies of small functions into the
expressions using them. That allows a significant percentage of the overhead to be optimized away.

30.1.3. Optimization
LLVM has support for optimizing generated code. Some of the optimizations are cheap enough to be
performed whenever JIT is used, while others are only beneficial for longer-running queries. See https://
llvm.org/docs/Passes.html#transform-passes for more details about optimizations.

30.2. When to JIT?
JIT compilation is beneficial primarily for long-running CPU-bound queries. Frequently these will be
analytical queries. For short queries the added overhead of performing JIT compilation will often be
higher than the time it can save.

To determine whether JIT compilation should be used, the total estimated cost of a query (see Chapter 66
and Section 18.7.2) is used. The estimated cost of the query will be compared with the setting of
jit_above_cost. If the cost is higher, JIT compilation will be performed. Two further decisions are then
needed. Firstly, if the estimated cost is more than the setting of jit_inline_above_cost, short functions
and operators used in the query will be inlined. Secondly, if the estimated cost is more than the setting
of jit_optimize_above_cost, expensive optimizations are applied to improve the generated code. Each of
these options increases the JIT compilation overhead, but can reduce query execution time considerably.

These cost-based decisions will be made at plan time, not execution time. This means that when prepared
statements are in use, and a generic plan is used (see PREPARE), the values of the configuration
parameters in effect at prepare time control the decisions, not the settings at execution time.

693

https://llvm.org/
https://llvm.org/docs/Passes.html#transform-passes
https://llvm.org/docs/Passes.html#transform-passes

Just-in-Time Compilation (JIT)

Note
If jit is set to off, or if no JIT implementation is available (for example because the server was
compiled without --with-llvm), JIT will not be performed, even if it would be beneficial based on
the above criteria. Setting jit to off has effects at both plan and execution time.

EXPLAIN can be used to see whether JIT is used or not. As an example, here is a query that is not using
JIT:

=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=0.303..0.303 rows=1
 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual
 time=0.017..0.111 rows=356 loops=1)
 Planning Time: 0.116 ms
 Execution Time: 0.365 ms
(4 rows)

Given the cost of the plan, it is entirely reasonable that no JIT was used; the cost of JIT would have been
bigger than the potential savings. Adjusting the cost limits will lead to JIT use:

=# SET jit_above_cost = 10;
SET
=# EXPLAIN ANALYZE SELECT SUM(relpages) FROM pg_class;
 QUERY PLAN

--
 Aggregate (cost=16.27..16.29 rows=1 width=8) (actual time=6.049..6.049 rows=1
 loops=1)
 -> Seq Scan on pg_class (cost=0.00..15.42 rows=342 width=4) (actual
 time=0.019..0.052 rows=356 loops=1)
 Planning Time: 0.133 ms
 JIT:
 Functions: 3
 Options: Inlining false, Optimization false, Expressions true, Deforming true
 Timing: Generation 1.259 ms, Inlining 0.000 ms, Optimization 0.797 ms, Emission
 5.048 ms, Total 7.104 ms
 Execution Time: 7.416 ms

As visible here, JIT was used, but inlining and expensive optimization were not. If jit_inline_above_cost
or jit_optimize_above_cost were also lowered, that would change.

30.3. Configuration
The configuration variable jit determines whether JIT compilation is enabled or disabled. If it is enabled,
the configuration variables jit_above_cost, jit_inline_above_cost, and jit_optimize_above_cost determine
whether JIT compilation is performed for a query, and how much effort is spent doing so.

jit_provider determines which JIT implementation is used. It is rarely required to be changed. See
Section 30.4.2.

For development and debugging purposes a few additional configuration parameters exist, as described
in Section 18.17.

694

Just-in-Time Compilation (JIT)

30.4. Extensibility
30.4.1. Inlining Support for Extensions

If you would like to build Postgres Pro extensions that support JIT inlining, make sure to set up your
development environment as explained in Section 16.1.4.

Postgres Pro's JIT implementation can inline the bodies of functions of types C and internal, as well as
operators based on such functions. To do so for functions in extensions, the definitions of those functions
need to be made available. When using PGXS to build an extension against a server that has been
compiled with LLVM JIT support, the relevant files will be built and installed automatically.

The relevant files have to be installed into $pkglibdir/bitcode/$extension/ and a summary of
them into $pkglibdir/bitcode/$extension.index.bc, where $pkglibdir is the directory returned by
pg_config --pkglibdir and $extension is the base name of the extension's shared library.

Note
For functions built into Postgres Pro itself, the bitcode is installed into $pkglibdir/bitcode/
postgres.

30.4.2. Pluggable JIT Providers
Postgres Pro provides a JIT implementation based on LLVM. The interface to the JIT provider is pluggable
and the provider can be changed without recompiling (although currently, the build process only provides
inlining support data for LLVM). The active provider is chosen via the setting jit_provider.

30.4.2.1. JIT Provider Interface
A JIT provider is loaded by dynamically loading the named shared library. The normal library search path
is used to locate the library. To provide the required JIT provider callbacks and to indicate that the library
is actually a JIT provider, it needs to provide a C function named _PG_jit_provider_init. This function
is passed a struct that needs to be filled with the callback function pointers for individual actions:

struct JitProviderCallbacks
{
 JitProviderResetAfterErrorCB reset_after_error;
 JitProviderReleaseContextCB release_context;
 JitProviderCompileExprCB compile_expr;
};

extern void _PG_jit_provider_init(JitProviderCallbacks *cb);

695

Part IV. Client Interfaces
This part describes the client programming interfaces distributed with Postgres Pro. Each of these
chapters can be read independently. Note that there are many other programming interfaces for client
programs that are distributed separately and contain their own documentation (Appendix H lists some of
the more popular ones). Readers of this part should be familiar with using SQL commands to manipulate
and query the database (see Part II) and of course with the programming language that the interface uses.

Chapter 31. libpq — C Library
libpq is the C application programmer's interface to Postgres Pro. libpq is a set of library functions that
allow client programs to pass queries to the Postgres Pro backend server and to receive the results of
these queries.

libpq is also the underlying engine for several other Postgres Pro application interfaces, including those
written for C++, Perl, Python, Tcl and ECPG. So some aspects of libpq's behavior will be important to you
if you use one of those packages. In particular, Section 31.14, Section 31.15 and Section 31.18 describe
behavior that is visible to the user of any application that uses libpq.

Some short programs are included at the end of this chapter (Section 31.21) to show how to write
programs that use libpq.

Client programs that use libpq must include the header file libpq-fe.hand must link with the libpq
library.

31.1. Database Connection Control Functions
The following functions deal with making a connection to a Postgres Pro backend server. An application
program can have several backend connections open at one time. (One reason to do that is to access
more than one database.) Each connection is represented by a PGconnobject, which is obtained from
the function PQconnectdb, PQconnectdbParams, or PQsetdbLogin. Note that these functions will always
return a non-null object pointer, unless perhaps there is too little memory even to allocate the PGconn
object. The PQstatus function should be called to check the return value for a successful connection
before queries are sent via the connection object.

Warning
If untrusted users have access to a database that has not adopted a secure schema usage
pattern, begin each session by removing publicly-writable schemas from search_path. One can set
parameter key word options to value -csearch_path=. Alternately, one can issue PQexec(conn,
"SELECT pg_catalog.set_config('search_path', '', false)") after connecting. This
consideration is not specific to libpq; it applies to every interface for executing arbitrary SQL
commands.

Warning
On Unix, forking a process with open libpq connections can lead to unpredictable results because
the parent and child processes share the same sockets and operating system resources. For this
reason, such usage is not recommended, though doing an exec from the child process to load a
new executable is safe.

PQconnectdbParams

Makes a new connection to the database server.

PGconn *PQconnectdbParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

This function opens a new database connection using the parameters taken from two NULL-terminated
arrays. The first, keywords, is defined as an array of strings, each one being a key word. The second,
values, gives the value for each key word. Unlike PQsetdbLogin below, the parameter set can be
extended without changing the function signature, so use of this function (or its nonblocking analogs
PQconnectStartParams and PQconnectPoll) is preferred for new application programming.

697

libpq — C Library

The currently recognized parameter key words are listed in Section 31.1.2.

The passed arrays can be empty to use all default parameters, or can contain one or more parameter
settings. They must be matched in length. Processing will stop at the first NULL entry in the keywords
array. Also, if the values entry associated with a non-NULL keywords entry is NULL or an empty string,
that entry is ignored and processing continues with the next pair of array entries.

When expand_dbname is non-zero, the value for the first dbname key word is checked to see if it is a
connection string. If so, it is “expanded” into the individual connection parameters extracted from
the string. The value is considered to be a connection string, rather than just a database name, if it
contains an equal sign (=) or it begins with a URI scheme designator. (More details on connection
string formats appear in Section 31.1.1.) Only the first occurrence of dbname is treated in this way;
any subsequent dbname parameter is processed as a plain database name.

In general the parameter arrays are processed from start to end. If any key word is repeated, the
last value (that is not NULL or empty) is used. This rule applies in particular when a key word found in
a connection string conflicts with one appearing in the keywords array. Thus, the programmer may
determine whether array entries can override or be overridden by values taken from a connection
string. Array entries appearing before an expanded dbname entry can be overridden by fields of the
connection string, and in turn those fields are overridden by array entries appearing after dbname
(but, again, only if those entries supply non-empty values).

After processing all the array entries and any expanded connection string, any connection parameters
that remain unset are filled with default values. If an unset parameter's corresponding environment
variable (see Section 31.14) is set, its value is used. If the environment variable is not set either, then
the parameter's built-in default value is used.

PQconnectdb

Makes a new connection to the database server.
PGconn *PQconnectdb(const char *conninfo);

This function opens a new database connection using the parameters taken from the string conninfo.

The passed string can be empty to use all default parameters, or it can contain one or more parameter
settings separated by whitespace, or it can contain a URI. See Section 31.1.1 for details.

PQsetdbLogin

Makes a new connection to the database server.
PGconn *PQsetdbLogin(const char *pghost,
 const char *pgport,
 const char *pgoptions,
 const char *pgtty,
 const char *dbName,
 const char *login,
 const char *pwd);

This is the predecessor of PQconnectdb with a fixed set of parameters. It has the same functionality
except that the missing parameters will always take on default values. Write NULL or an empty string
for any one of the fixed parameters that is to be defaulted.

If the dbName contains an = sign or has a valid connection URI prefix, it is taken as a conninfo string
in exactly the same way as if it had been passed to PQconnectdb, and the remaining parameters are
then applied as specified for PQconnectdbParams.

PQsetdb

Makes a new connection to the database server.
PGconn *PQsetdb(char *pghost,
 char *pgport,

698

libpq — C Library

 char *pgoptions,
 char *pgtty,
 char *dbName);

This is a macro that calls PQsetdbLogin with null pointers for the login and pwd parameters. It is
provided for backward compatibility with very old programs.

PQconnectStartParams
PQconnectStart
PQconnectPoll

Make a connection to the database server in a nonblocking manner.
PGconn *PQconnectStartParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

PGconn *PQconnectStart(const char *conninfo);

PostgresPollingStatusType PQconnectPoll(PGconn *conn);

These three functions are used to open a connection to a database server such that your application's
thread of execution is not blocked on remote I/O whilst doing so. The point of this approach is that
the waits for I/O to complete can occur in the application's main loop, rather than down inside
PQconnectdbParams or PQconnectdb, and so the application can manage this operation in parallel
with other activities.

With PQconnectStartParams, the database connection is made using the parameters taken from
the keywords and values arrays, and controlled by expand_dbname, as described above for
PQconnectdbParams.

With PQconnectStart, the database connection is made using the parameters taken from the string
conninfo as described above for PQconnectdb.

Neither PQconnectStartParams nor PQconnectStart nor PQconnectPoll will block, so long as a
number of restrictions are met:
• The hostaddr parameter must be used appropriately to prevent DNS queries from being made.

See the documentation of this parameter in Section 31.1.2 for details.
• If you call PQtrace, ensure that the stream object into which you trace will not block.
• You must ensure that the socket is in the appropriate state before calling PQconnectPoll, as

described below.

To begin a nonblocking connection request, call PQconnectStart or PQconnectStartParams. If the
result is null, then libpq has been unable to allocate a new PGconn structure. Otherwise, a valid
PGconn pointer is returned (though not yet representing a valid connection to the database). Next
call PQstatus(conn). If the result is CONNECTION_BAD, the connection attempt has already failed,
typically because of invalid connection parameters.

If PQconnectStart or PQconnectStartParams succeeds, the next stage is to poll libpq so that it can
proceed with the connection sequence. Use PQsocket(conn) to obtain the descriptor of the socket
underlying the database connection. (Caution: do not assume that the socket remains the same across
PQconnectPoll calls.) Loop thus: If PQconnectPoll(conn) last returned PGRES_POLLING_READING,
wait until the socket is ready to read (as indicated by select(), poll(), or similar system
function). Then call PQconnectPoll(conn) again. Conversely, if PQconnectPoll(conn) last returned
PGRES_POLLING_WRITING, wait until the socket is ready to write, then call PQconnectPoll(conn)
again. On the first iteration, i.e., if you have yet to call PQconnectPoll, behave as if it
last returned PGRES_POLLING_WRITING. Continue this loop until PQconnectPoll(conn) returns
PGRES_POLLING_FAILED, indicating the connection procedure has failed, or PGRES_POLLING_OK,
indicating the connection has been successfully made.

699

libpq — C Library

At any time during connection, the status of the connection can be checked by calling PQstatus.
If this call returns CONNECTION_BAD, then the connection procedure has failed; if the call returns
CONNECTION_OK, then the connection is ready. Both of these states are equally detectable from the
return value of PQconnectPoll, described above. Other states might also occur during (and only
during) an asynchronous connection procedure. These indicate the current stage of the connection
procedure and might be useful to provide feedback to the user for example. These statuses are:
CONNECTION_STARTED

Waiting for connection to be made.

CONNECTION_MADE

Connection OK; waiting to send.

CONNECTION_AWAITING_RESPONSE

Waiting for a response from the server.

CONNECTION_AUTH_OK

Received authentication; waiting for backend start-up to finish.

CONNECTION_SSL_STARTUP

Negotiating SSL encryption.

CONNECTION_SETENV

Negotiating environment-driven parameter settings.

CONNECTION_CHECK_WRITABLE

Checking if connection is able to handle write transactions.

CONNECTION_CONSUME

Consuming any remaining response messages on connection.

Note that, although these constants will remain (in order to maintain compatibility), an application
should never rely upon these occurring in a particular order, or at all, or on the status always being
one of these documented values. An application might do something like this:
switch(PQstatus(conn))
{
 case CONNECTION_STARTED:
 feedback = "Connecting...";
 break;

 case CONNECTION_MADE:
 feedback = "Connected to server...";
 break;
.
.
.
 default:
 feedback = "Connecting...";
}

The connect_timeout connection parameter is ignored when using PQconnectPoll; it is the
application's responsibility to decide whether an excessive amount of time has elapsed. Otherwise,
PQconnectStart followed by a PQconnectPoll loop is equivalent to PQconnectdb.

Note that when PQconnectStart or PQconnectStartParams returns a non-null pointer, you must call
PQfinish when you are finished with it, in order to dispose of the structure and any associated
memory blocks. This must be done even if the connection attempt fails or is abandoned.

700

libpq — C Library

PQconndefaults

Returns the default connection options.
PQconninfoOption *PQconndefaults(void);

typedef struct
{
 char *keyword; /* The keyword of the option */
 char *envvar; /* Fallback environment variable name */
 char *compiled; /* Fallback compiled in default value */
 char *val; /* Option's current value, or NULL */
 char *label; /* Label for field in connect dialog */
 char *dispchar; /* Indicates how to display this field
 in a connect dialog. Values are:
 "" Display entered value as is
 "*" Password field - hide value
 "D" Debug option - don't show by default */
 int dispsize; /* Field size in characters for dialog */
} PQconninfoOption;

Returns a connection options array. This can be used to determine all possible PQconnectdb options
and their current default values. The return value points to an array of PQconninfoOption structures,
which ends with an entry having a null keyword pointer. The null pointer is returned if memory
could not be allocated. Note that the current default values (val fields) will depend on environment
variables and other context. A missing or invalid service file will be silently ignored. Callers must
treat the connection options data as read-only.

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, a small
amount of memory is leaked for each call to PQconndefaults.

PQconninfo

Returns the connection options used by a live connection.
PQconninfoOption *PQconninfo(PGconn *conn);

Returns a connection options array. This can be used to determine all possible PQconnectdb options
and the values that were used to connect to the server. The return value points to an array of
PQconninfoOption structures, which ends with an entry having a null keyword pointer. All notes
above for PQconndefaults also apply to the result of PQconninfo.

PQconninfoParse

Returns parsed connection options from the provided connection string.
PQconninfoOption *PQconninfoParse(const char *conninfo, char **errmsg);

Parses a connection string and returns the resulting options as an array; or returns NULL if there is a
problem with the connection string. This function can be used to extract the PQconnectdb options in
the provided connection string. The return value points to an array of PQconninfoOption structures,
which ends with an entry having a null keyword pointer.

All legal options will be present in the result array, but the PQconninfoOption for any option not
present in the connection string will have val set to NULL; default values are not inserted.

If errmsg is not NULL, then *errmsg is set to NULL on success, else to a malloc'd error string explaining
the problem. (It is also possible for *errmsg to be set to NULL and the function to return NULL; this
indicates an out-of-memory condition.)

After processing the options array, free it by passing it to PQconninfoFree. If this is not done, some
memory is leaked for each call to PQconninfoParse. Conversely, if an error occurs and errmsg is not
NULL, be sure to free the error string using PQfreemem.

701

libpq — C Library

PQfinish

Closes the connection to the server. Also frees memory used by the PGconn object.

void PQfinish(PGconn *conn);

Note that even if the server connection attempt fails (as indicated by PQstatus), the application
should call PQfinish to free the memory used by the PGconn object. The PGconn pointer must not be
used again after PQfinish has been called.

PQreset

Resets the communication channel to the server.

void PQreset(PGconn *conn);

This function will close the connection to the server and attempt to establish a new connection,
using all the same parameters previously used. This might be useful for error recovery if a working
connection is lost.

PQresetStart
PQresetPoll

Reset the communication channel to the server, in a nonblocking manner.

int PQresetStart(PGconn *conn);

PostgresPollingStatusType PQresetPoll(PGconn *conn);

These functions will close the connection to the server and attempt to establish a new connection,
using all the same parameters previously used. This can be useful for error recovery if a working
connection is lost. They differ from PQreset (above) in that they act in a nonblocking manner.
These functions suffer from the same restrictions as PQconnectStartParams, PQconnectStart and
PQconnectPoll.

To initiate a connection reset, call PQresetStart. If it returns 0, the reset has failed. If it returns 1,
poll the reset using PQresetPoll in exactly the same way as you would create the connection using
PQconnectPoll.

PQpingParams

PQpingParams reports the status of the server. It accepts connection parameters identical to those
of PQconnectdbParams, described above. It is not necessary to supply correct user name, password,
or database name values to obtain the server status; however, if incorrect values are provided, the
server will log a failed connection attempt.

PGPing PQpingParams(const char * const *keywords,
 const char * const *values,
 int expand_dbname);

The function returns one of the following values:

PQPING_OK

The server is running and appears to be accepting connections.

PQPING_REJECT

The server is running but is in a state that disallows connections (startup, shutdown, or crash
recovery).

PQPING_NO_RESPONSE

The server could not be contacted. This might indicate that the server is not running, or that there
is something wrong with the given connection parameters (for example, wrong port number),

702

libpq — C Library

or that there is a network connectivity problem (for example, a firewall blocking the connection
request).

PQPING_NO_ATTEMPT

No attempt was made to contact the server, because the supplied parameters were obviously
incorrect or there was some client-side problem (for example, out of memory).

PQping

PQping reports the status of the server. It accepts connection parameters identical to those of
PQconnectdb, described above. It is not necessary to supply correct user name, password, or
database name values to obtain the server status; however, if incorrect values are provided, the
server will log a failed connection attempt.
PGPing PQping(const char *conninfo);

The return values are the same as for PQpingParams.

PQsetSSLKeyPassHook_OpenSSL

PQsetSSLKeyPassHook_OpenSSL lets an application override libpq's default handling of encrypted
client certificate key files using sslpassword or interactive prompting.
void PQsetSSLKeyPassHook_OpenSSL(PQsslKeyPassHook_OpenSSL_type hook);

The application passes a pointer to a callback function with signature:
int callback_fn(char *buf, int size, PGconn *conn);

which libpq will then call instead of its default PQdefaultSSLKeyPassHook_OpenSSL handler. The
callback should determine the password for the key and copy it to result-buffer buf of size size. The
string in buf must be null-terminated. The callback must return the length of the password stored in
buf excluding the null terminator. On failure, the callback should set buf[0] = '\0' and return 0.
See PQdefaultSSLKeyPassHook_OpenSSL in libpq's source code for an example.

If the user specified an explicit key location, its path will be in conn->sslkey when the callback is
invoked. This will be empty if the default key path is being used. For keys that are engine specifiers,
it is up to engine implementations whether they use the OpenSSL password callback or define their
own handling.

The app callback may choose to delegate unhandled cases to PQdefaultSSLKeyPassHook_OpenSSL,
or call it first and try something else if it returns 0, or completely override it.

The callback must not escape normal flow control with exceptions, longjmp(...), etc. It must return
normally.

PQgetSSLKeyPassHook_OpenSSL

PQgetSSLKeyPassHook_OpenSSL returns the current client certificate key password hook, or NULL if
none has been set.
PQsslKeyPassHook_OpenSSL_type PQgetSSLKeyPassHook_OpenSSL(void);

31.1.1. Connection Strings
Several libpq functions parse a user-specified string to obtain connection parameters. There are two
accepted formats for these strings: plain keyword/value strings and URIs. URIs generally follow RFC
3986, except that multi-host connection strings are allowed as further described below.

31.1.1.1. Keyword/Value Connection Strings
In the keyword/value format, each parameter setting is in the form keyword = value, with space(s)
between settings. Spaces around a setting's equal sign are optional. To write an empty value, or a value
containing spaces, surround it with single quotes, for example keyword = 'a value'. Single quotes and
backslashes within a value must be escaped with a backslash, i.e., \' and \\.

703

https://tools.ietf.org/html/rfc3986
https://tools.ietf.org/html/rfc3986

libpq — C Library

Example:

host=localhost port=5432 dbname=mydb connect_timeout=10

The recognized parameter key words are listed in Section 31.1.2.

31.1.1.2. Connection URIs
The general form for a connection URI is:

postgresql://[userspec@][hostspec][/dbname][?paramspec]

where userspec is:

user[:password]

and hostspec is:

[host][:port][,...]

and paramspec is:

name=value[&...]

The URI scheme designator can be either postgresql:// or postgres://. Each of the remaining URI
parts is optional. The following examples illustrate valid URI syntax:

postgresql://
postgresql://localhost
postgresql://localhost:5433
postgresql://localhost/mydb
postgresql://user@localhost
postgresql://user:secret@localhost
postgresql://other@localhost/otherdb?connect_timeout=10&application_name=myapp
postgresql://host1:123,host2:456/somedb?target_session_attrs=any&application_name=myapp

Values that would normally appear in the hierarchical part of the URI can alternatively be given as
named parameters. For example:

postgresql:///mydb?host=localhost&port=5433

All named parameters must match key words listed in Section 31.1.2, except that for compatibility with
JDBC connection URIs, instances of ssl=true are translated into sslmode=require.

The connection URI needs to be encoded with percent-encoding if it includes symbols with special
meaning in any of its parts. Here is an example where the equal sign (=) is replaced with %3D and the
space character with %20:

postgresql://user@localhost:5433/mydb?options=-c%20synchronous_commit%3Doff

The host part may be either a host name or an IP address. To specify an IPv6 address, enclose it in
square brackets:

postgresql://[2001:db8::1234]/database

The host part is interpreted as described for the parameter host. In particular, a Unix-domain socket
connection is chosen if the host part is either empty or looks like an absolute path name, otherwise a TCP/
IP connection is initiated. Note, however, that the slash is a reserved character in the hierarchical part
of the URI. So, to specify a non-standard Unix-domain socket directory, either omit the host part of the
URI and specify the host as a named parameter, or percent-encode the path in the host part of the URI:

postgresql:///dbname?host=/var/lib/postgresql
postgresql://%2Fvar%2Flib%2Fpostgresql/dbname

704

https://tools.ietf.org/html/rfc3986#section-2.1

libpq — C Library

It is possible to specify multiple host components, each with an optional port component, in a single
URI. A URI of the form postgresql://host1:port1,host2:port2,host3:port3/ is equivalent to a
connection string of the form host=host1,host2,host3 port=port1,port2,port3. As further described
below, each host will be tried in turn until a connection is successfully established.

31.1.1.3. Specifying Multiple Hosts
It is possible to specify multiple hosts to connect to, so that they are tried in the given order. In the
Keyword/Value format, the host, hostaddr, and port options accept comma-separated lists of values.
The same number of elements must be given in each option that is specified, such that e.g., the first
hostaddr corresponds to the first host name, the second hostaddr corresponds to the second host name,
and so forth. As an exception, if only one port is specified, it applies to all the hosts.

In the connection URI format, you can list multiple host:port pairs separated by commas in the host
component of the URI.

In either format, a single host name can translate to multiple network addresses. A common example of
this is a host that has both an IPv4 and an IPv6 address.

When multiple hosts are specified, or when a single host name is translated to multiple addresses, all
the hosts and addresses will be tried in order, until one succeeds. If none of the hosts can be reached,
the connection fails. If a connection is established successfully, but authentication fails, the remaining
hosts in the list are not tried.

If a password file is used, you can have different passwords for different hosts. All the other connection
options are the same for every host in the list; it is not possible to e.g., specify different usernames for
different hosts.

31.1.2. Parameter Key Words
The currently recognized parameter key words are:
host

Name of host to connect to. If a host name looks like an absolute path name, it specifies Unix-domain
communication rather than TCP/IP communication; the value is the name of the directory in which
the socket file is stored. (On Unix, an absolute path name begins with a slash. On Windows, paths
starting with drive letters are also recognized.) The default behavior when host is not specified, or
is empty, is to connect to a Unix-domain socket in /tmp (or whatever socket directory was specified
when Postgres Pro was built). On Windows and on machines without Unix-domain sockets, the default
is to connect to localhost.

A comma-separated list of host names is also accepted, in which case each host name in the list
is tried in order; an empty item in the list selects the default behavior as explained above. See
Section 31.1.1.3 for details.

hostaddr

Numeric IP address of host to connect to. This should be in the standard IPv4 address format,
e.g., 172.28.40.9. If your machine supports IPv6, you can also use those addresses. TCP/IP
communication is always used when a nonempty string is specified for this parameter. If this
parameter is not specified, the value of host will be looked up to find the corresponding IP address
— or, if host specifies an IP address, that value will be used directly.

Using hostaddr allows the application to avoid a host name look-up, which might be important
in applications with time constraints. However, a host name is required for GSSAPI or SSPI
authentication methods, as well as for verify-full SSL certificate verification. The following rules
are used:
• If host is specified without hostaddr, a host name lookup occurs. (When using PQconnectPoll,

the lookup occurs when PQconnectPoll first considers this host name, and it may cause
PQconnectPoll to block for a significant amount of time.)

705

libpq — C Library

• If hostaddr is specified without host, the value for hostaddr gives the server network address.
The connection attempt will fail if the authentication method requires a host name.

• If both host and hostaddr are specified, the value for hostaddr gives the server network
address. The value for host is ignored unless the authentication method requires it, in which
case it will be used as the host name.

Note that authentication is likely to fail if host is not the name of the server at network address
hostaddr. Also, when both host and hostaddr are specified, host is used to identify the connection
in a password file (see Section 31.15).

A comma-separated list of hostaddr values is also accepted, in which case each host in the list is
tried in order. An empty item in the list causes the corresponding host name to be used, or the default
host name if that is empty as well. See Section 31.1.1.3 for details.

Without either a host name or host address, libpq will connect using a local Unix-domain socket; or
on Windows and on machines without Unix-domain sockets, it will attempt to connect to localhost.

port

Port number to connect to at the server host, or socket file name extension for Unix-domain
connections. If multiple hosts were given in the host or hostaddr parameters, this parameter may
specify a comma-separated list of ports of the same length as the host list, or it may specify a single
port number to be used for all hosts. An empty string, or an empty item in a comma-separated list,
specifies the default port number established when Postgres Pro was built.

dbname

The database name. Defaults to be the same as the user name. In certain contexts, the value is
checked for extended formats; see Section 31.1.1 for more details on those.

user

Postgres Pro user name to connect as. Defaults to be the same as the operating system name of the
user running the application.

password

Password to be used if the server demands password authentication.

passfile

Specifies the name of the file used to store passwords (see Section 31.15). Defaults to ~/.pgpass, or
%APPDATA%\postgresql\pgpass.conf on Microsoft Windows. (No error is reported if this file does
not exist.)

channel_binding

This option controls the client's use of channel binding. A setting of require means that the
connection must employ channel binding, prefer means that the client will choose channel binding
if available, and disable prevents the use of channel binding. The default is prefer if PostgreSQL
is compiled with SSL support; otherwise the default is disable.

Channel binding is a method for the server to authenticate itself to the client. It is only supported
over SSL connections with PostgreSQL 11 or later servers using the SCRAM authentication method.

connect_timeout

Maximum time to wait while connecting, in seconds (write as a decimal integer, e.g., 10). Zero,
negative, or not specified means wait indefinitely. The minimum allowed timeout is 2 seconds,
therefore a value of 1 is interpreted as 2. This timeout applies separately to each host name or IP
address. For example, if you specify two hosts and connect_timeout is 5, each host will time out
if no connection is made within 5 seconds, so the total time spent waiting for a connection might
be up to 10 seconds.

706

libpq — C Library

client_encoding

This sets the client_encoding configuration parameter for this connection. In addition to the values
accepted by the corresponding server option, you can use auto to determine the right encoding from
the current locale in the client (LC_CTYPE environment variable on Unix systems).

options

Specifies command-line options to send to the server at connection start. For example, setting this
to -c geqo=off sets the session's value of the geqo parameter to off. Spaces within this string are
considered to separate command-line arguments, unless escaped with a backslash (\); write \\ to
represent a literal backslash. For a detailed discussion of the available options, consult Chapter 18.

application_name

Specifies a value for the application_name configuration parameter.

fallback_application_name

Specifies a fallback value for the application_name configuration parameter. This value will be used
if no value has been given for application_name via a connection parameter or the PGAPPNAME
environment variable. Specifying a fallback name is useful in generic utility programs that wish to
set a default application name but allow it to be overridden by the user.

keepalives

Controls whether client-side TCP keepalives are used. The default value is 1, meaning on, but you can
change this to 0, meaning off, if keepalives are not wanted. This parameter is ignored for connections
made via a Unix-domain socket.

keepalives_idle

Controls the number of seconds of inactivity after which TCP should send a keepalive message
to the server. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
TCP_KEEPIDLE or an equivalent socket option is available, and on Windows; on other systems, it has
no effect.

keepalives_interval

Controls the number of seconds after which a TCP keepalive message that is not acknowledged by
the server should be retransmitted. A value of zero uses the system default. This parameter is ignored
for connections made via a Unix-domain socket, or if keepalives are disabled. It is only supported
on systems where TCP_KEEPINTVL or an equivalent socket option is available, and on Windows; on
other systems, it has no effect.

keepalives_count

Controls the number of TCP keepalives that can be lost before the client's connection to the server is
considered dead. A value of zero uses the system default. This parameter is ignored for connections
made via a Unix-domain socket, or if keepalives are disabled. It is only supported on systems where
TCP_KEEPCNT or an equivalent socket option is available; on other systems, it has no effect.

tcp_user_timeout

Controls the number of milliseconds that transmitted data may remain unacknowledged before
a connection is forcibly closed. A value of zero uses the system default. This parameter is
ignored for connections made via a Unix-domain socket. It is only supported on systems where
TCP_USER_TIMEOUT is available; on other systems, it has no effect.

tty

Ignored (formerly, this specified where to send server debug output).

707

libpq — C Library

replication

This option determines whether the connection should use the replication protocol instead of
the normal protocol. This is what Postgres Pro replication connections as well as tools such as
pg_basebackup use internally, but it can also be used by third-party applications. For a description
of the replication protocol, consult Section 50.4.

The following values, which are case-insensitive, are supported:

true, on, yes, 1
The connection goes into physical replication mode.

database

The connection goes into logical replication mode, connecting to the database specified in the
dbname parameter.

false, off, no, 0
The connection is a regular one, which is the default behavior.

In physical or logical replication mode, only the simple query protocol can be used.

gssencmode

This option determines whether or with what priority a secure GSS TCP/IP connection will be
negotiated with the server. There are three modes:

disable

only try a non-GSSAPI-encrypted connection

prefer (default)
if there are GSSAPI credentials present (i.e., in a credentials cache), first try a GSSAPI-encrypted
connection; if that fails or there are no credentials, try a non-GSSAPI-encrypted connection. This
is the default when Postgres Pro has been compiled with GSSAPI support.

require

only try a GSSAPI-encrypted connection

gssencmode is ignored for Unix domain socket communication. If Postgres Pro is compiled without
GSSAPI support, using the require option will cause an error, while prefer will be accepted but
libpq will not actually attempt a GSSAPI-encrypted connection.

sslmode

This option determines whether or with what priority a secure SSL TCP/IP connection will be
negotiated with the server. There are six modes:

disable

only try a non-SSL connection

allow

first try a non-SSL connection; if that fails, try an SSL connection

prefer (default)
first try an SSL connection; if that fails, try a non-SSL connection

require

only try an SSL connection. If a root CA file is present, verify the certificate in the same way as
if verify-ca was specified

708

libpq — C Library

verify-ca

only try an SSL connection, and verify that the server certificate is issued by a trusted certificate
authority (CA)

verify-full

only try an SSL connection, verify that the server certificate is issued by a trusted CA and that
the requested server host name matches that in the certificate

See Section 31.18 for a detailed description of how these options work.

sslmode is ignored for Unix domain socket communication. If Postgres Pro is compiled without SSL
support, using options require, verify-ca, or verify-full will cause an error, while options allow
and prefer will be accepted but libpq will not actually attempt an SSL connection.

Note that if GSSAPI encryption is possible, that will be used in preference to SSL encryption,
regardless of the value of sslmode. To force use of SSL encryption in an environment that has working
GSSAPI infrastructure (such as a Kerberos server), also set gssencmode to disable.

requiressl

This option is deprecated in favor of the sslmode setting.

If set to 1, an SSL connection to the server is required (this is equivalent to sslmode require). libpq
will then refuse to connect if the server does not accept an SSL connection. If set to 0 (default), libpq
will negotiate the connection type with the server (equivalent to sslmode prefer). This option is only
available if Postgres Pro is compiled with SSL support.

sslcompression

If set to 1, data sent over SSL connections will be compressed. If set to 0, compression will be
disabled. The default is 0. This parameter is ignored if a connection without SSL is made.

SSL compression is nowadays considered insecure and its use is no longer recommended. OpenSSL
1.1.0 disables compression by default, and many operating system distributions disable it in prior
versions as well, so setting this parameter to on will not have any effect if the server does not accept
compression.

If security is not a primary concern, compression can improve throughput if the network is the
bottleneck. Disabling compression can improve response time and throughput if CPU performance
is the limiting factor.

sslcert

This parameter specifies the file name of the client SSL certificate, replacing the default
~/.postgresql/postgresql.crt. This parameter is ignored if an SSL connection is not made.

sslkey

This parameter specifies the location for the secret key used for the client certificate. It can either
specify a file name that will be used instead of the default ~/.postgresql/postgresql.key, or it
can specify a key obtained from an external “engine” (engines are OpenSSL loadable modules). An
external engine specification should consist of a colon-separated engine name and an engine-specific
key identifier. This parameter is ignored if an SSL connection is not made.

sslpassword

This parameter specifies the password for the secret key specified in sslkey, allowing client
certificate private keys to be stored in encrypted form on disk even when interactive passphrase
input is not practical.

Specifying this parameter with any non-empty value suppresses the Enter PEM pass phrase: prompt
that OpenSSL will emit by default when an encrypted client certificate key is provided to libpq.

709

libpq — C Library

If the key is not encrypted this parameter is ignored. The parameter has no effect on keys specified by
OpenSSL engines unless the engine uses the OpenSSL password callback mechanism for prompts.

There is no environment variable equivalent to this option, and no facility for looking it up in .pgpass.
It can be used in a service file connection definition. Users with more sophisticated uses should
consider using openssl engines and tools like PKCS#11 or USB crypto offload devices.

sslrootcert

This parameter specifies the name of a file containing SSL certificate authority (CA) certificate(s). If
the file exists, the server's certificate will be verified to be signed by one of these authorities. The
default is ~/.postgresql/root.crt.

sslcrl

This parameter specifies the file name of the SSL server certificate revocation list (CRL). Certificates
listed in this file, if it exists, will be rejected while attempting to authenticate the server's certificate.
The default is ~/.postgresql/root.crl.

requirepeer

This parameter specifies the operating-system user name of the server, for example
requirepeer=postgres. When making a Unix-domain socket connection, if this parameter is set, the
client checks at the beginning of the connection that the server process is running under the specified
user name; if it is not, the connection is aborted with an error. This parameter can be used to provide
server authentication similar to that available with SSL certificates on TCP/IP connections. (Note
that if the Unix-domain socket is in /tmp or another publicly writable location, any user could start
a server listening there. Use this parameter to ensure that you are connected to a server run by a
trusted user.) This option is only supported on platforms for which the peer authentication method
is implemented; see Section 19.9.

ssl_min_protocol_version

This parameter specifies the minimum SSL/TLS protocol version to allow for the connection. Valid
values are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. The supported protocols depend on the version of
OpenSSL used, older versions not supporting the most modern protocol versions. If not specified,
the default is TLSv1.2, which satisfies industry best practices as of this writing.

ssl_max_protocol_version

This parameter specifies the maximum SSL/TLS protocol version to allow for the connection. Valid
values are TLSv1, TLSv1.1, TLSv1.2 and TLSv1.3. The supported protocols depend on the version
of OpenSSL used, older versions not supporting the most modern protocol versions. If not set, this
parameter is ignored and the connection will use the maximum bound defined by the backend, if set.
Setting the maximum protocol version is mainly useful for testing or if some component has issues
working with a newer protocol.

krbsrvname

Kerberos service name to use when authenticating with GSSAPI. This must match the service name
specified in the server configuration for Kerberos authentication to succeed. (See also Section 19.6.)
The default value is normally postgres, but that can be changed when building PostgreSQL via the
--with-krb-srvnam option of configure. In most environments, this parameter never needs to be
changed. Some Kerberos implementations might require a different service name, such as Microsoft
Active Directory which requires the service name to be in upper case (POSTGRES).

gsslib

GSS library to use for GSSAPI authentication. Currently this is disregarded except on Windows builds
that include both GSSAPI and SSPI support. In that case, set this to gssapi to cause libpq to use the
GSSAPI library for authentication instead of the default SSPI.

710

libpq — C Library

service

Service name to use for additional parameters. It specifies a service name in pg_service.conf that
holds additional connection parameters. This allows applications to specify only a service name so
connection parameters can be centrally maintained. See Section 31.16.

target_session_attrs

If this parameter is set to read-write, only a connection in which read-write transactions are
accepted by default is considered acceptable. The query SHOW transaction_read_only will be sent
upon any successful connection; if it returns on, the connection will be closed. If multiple hosts were
specified in the connection string, any remaining servers will be tried just as if the connection attempt
had failed. The default value of this parameter, any, regards all connections as acceptable.

31.2. Connection Status Functions
These functions can be used to interrogate the status of an existing database connection object.

Tip
libpq application programmers should be careful to maintain the PGconn abstraction. Use the
accessor functions described below to get at the contents of PGconn. Reference to internal PGconn
fields using libpq-int.h is not recommended because they are subject to change in the future.

The following functions return parameter values established at connection. These values are fixed for
the life of the connection. If a multi-host connection string is used, the values of PQhost, PQport, and
PQpass can change if a new connection is established using the same PGconn object. Other values are
fixed for the lifetime of the PGconn object.
PQdb

Returns the database name of the connection.
char *PQdb(const PGconn *conn);

PQuser

Returns the user name of the connection.
char *PQuser(const PGconn *conn);

PQpass

Returns the password of the connection.
char *PQpass(const PGconn *conn);

PQpass will return either the password specified in the connection parameters, or if there was none
and the password was obtained from the password file, it will return that. In the latter case, if multiple
hosts were specified in the connection parameters, it is not possible to rely on the result of PQpass
until the connection is established. The status of the connection can be checked using the function
PQstatus.

PQhost

Returns the server host name of the active connection. This can be a host name, an IP address, or
a directory path if the connection is via Unix socket. (The path case can be distinguished because it
will always be an absolute path, beginning with /.)
char *PQhost(const PGconn *conn);

If the connection parameters specified both host and hostaddr, then PQhost will return the host
information. If only hostaddr was specified, then that is returned. If multiple hosts were specified in
the connection parameters, PQhost returns the host actually connected to.

711

libpq — C Library

PQhost returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
host information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

If multiple hosts were specified in the connection parameters, it is not possible to rely on the result
of PQhost until the connection is established. The status of the connection can be checked using the
function PQstatus.

PQhostaddr

Returns the server IP address of the active connection. This can be the address that a host name
resolved to, or an IP address provided through the hostaddr parameter.
char *PQhostaddr(const PGconn *conn);

PQhostaddr returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
host information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

PQport

Returns the port of the active connection.
char *PQport(const PGconn *conn);

If multiple ports were specified in the connection parameters, PQport returns the port actually
connected to.

PQport returns NULL if the conn argument is NULL. Otherwise, if there is an error producing the
port information (perhaps if the connection has not been fully established or there was an error),
it returns an empty string.

If multiple ports were specified in the connection parameters, it is not possible to rely on the result
of PQport until the connection is established. The status of the connection can be checked using the
function PQstatus.

PQtty

Returns the debug TTY of the connection. (This is obsolete, since the server no longer pays attention
to the TTY setting, but the function remains for backward compatibility.)
char *PQtty(const PGconn *conn);

PQoptions

Returns the command-line options passed in the connection request.
char *PQoptions(const PGconn *conn);

The following functions return status data that can change as operations are executed on the PGconn
object.
PQstatus

Returns the status of the connection.
ConnStatusType PQstatus(const PGconn *conn);

The status can be one of a number of values. However, only two of these are seen outside of
an asynchronous connection procedure: CONNECTION_OK and CONNECTION_BAD. A good connection
to the database has the status CONNECTION_OK. A failed connection attempt is signaled by status
CONNECTION_BAD. Ordinarily, an OK status will remain so until PQfinish, but a communications failure
might result in the status changing to CONNECTION_BAD prematurely. In that case the application
could try to recover by calling PQreset.

See the entry for PQconnectStartParams, PQconnectStart and PQconnectPoll with regards to other
status codes that might be returned.

712

libpq — C Library

PQtransactionStatus

Returns the current in-transaction status of the server.

PGTransactionStatusType PQtransactionStatus(const PGconn *conn);

The status can be PQTRANS_IDLE (currently idle), PQTRANS_ACTIVE (a command is in progress),
PQTRANS_INTRANS (idle, in a valid transaction block), or PQTRANS_INERROR (idle, in a failed transaction
block). PQTRANS_UNKNOWN is reported if the connection is bad. PQTRANS_ACTIVE is reported only when
a query has been sent to the server and not yet completed.

PQparameterStatus

Looks up a current parameter setting of the server.

const char *PQparameterStatus(const PGconn *conn, const char *paramName);

Certain parameter values are reported by the server automatically at connection startup or whenever
their values change. PQparameterStatus can be used to interrogate these settings. It returns the
current value of a parameter if known, or NULL if the parameter is not known.

Parameters reported as of the current release include server_version,
server_encoding, client_encoding, application_name, is_superuser, session_authorization,
DateStyle, IntervalStyle, TimeZone, integer_datetimes, and standard_conforming_strings.
(server_encoding, TimeZone, and integer_datetimes were not reported by releases before 8.0;
standard_conforming_strings was not reported by releases before 8.1; IntervalStyle was not
reported by releases before 8.4; application_name was not reported by releases before 9.0.) Note
that server_version, server_encoding and integer_datetimes cannot change after startup.

Pre-3.0-protocol servers do not report parameter settings, but libpq includes logic to obtain
values for server_version and client_encoding anyway. Applications are encouraged to use
PQparameterStatus rather than ad hoc code to determine these values. (Beware however that
on a pre-3.0 connection, changing client_encoding via SET after connection startup will not be
reflected by PQparameterStatus.) For server_version, see also PQserverVersion, which returns
the information in a numeric form that is much easier to compare against.

If no value for standard_conforming_strings is reported, applications can assume it is off, that
is, backslashes are treated as escapes in string literals. Also, the presence of this parameter can be
taken as an indication that the escape string syntax (E'...') is accepted.

Although the returned pointer is declared const, it in fact points to mutable storage associated with
the PGconn structure. It is unwise to assume the pointer will remain valid across queries.

PQprotocolVersion

Interrogates the frontend/backend protocol being used.

int PQprotocolVersion(const PGconn *conn);

Applications might wish to use this function to determine whether certain features are supported.
Currently, the possible values are 2 (2.0 protocol), 3 (3.0 protocol), or zero (connection bad). The
protocol version will not change after connection startup is complete, but it could theoretically
change during a connection reset. The 3.0 protocol will normally be used when communicating with
PostgreSQL 7.4 or later servers; pre-7.4 servers support only protocol 2.0. (Protocol 1.0 is obsolete
and not supported by libpq.)

PQserverVersion

Returns an integer representing the server version.

int PQserverVersion(const PGconn *conn);

Applications might use this function to determine the version of the database server they are
connected to. The result is formed by multiplying the server's major version number by 10000 and

713

libpq — C Library

adding the minor version number. For example, version 10.1 will be returned as 100001, and version
11.0 will be returned as 110000. Zero is returned if the connection is bad.

Prior to major version 10, Postgres Pro used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQserverVersion uses two digits for
each part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned
as 90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result
of PQserverVersion by 100 not 10000 to determine a logical major version number. In all release
series, only the last two digits differ between minor releases (bug-fix releases).

PQerrorMessage

Returns the error message most recently generated by an operation on the connection.
char *PQerrorMessage(const PGconn *conn);

Nearly all libpq functions will set a message for PQerrorMessage if they fail. Note that by libpq
convention, a nonempty PQerrorMessage result can consist of multiple lines, and will include a
trailing newline. The caller should not free the result directly. It will be freed when the associated
PGconn handle is passed to PQfinish. The result string should not be expected to remain the same
across operations on the PGconn structure.

PQsocket

Obtains the file descriptor number of the connection socket to the server. A valid descriptor will be
greater than or equal to 0; a result of -1 indicates that no server connection is currently open. (This
will not change during normal operation, but could change during connection setup or reset.)
int PQsocket(const PGconn *conn);

PQbackendPID

Returns the process ID (PID) of the backend process handling this connection.
int PQbackendPID(const PGconn *conn);

The backend PID is useful for debugging purposes and for comparison to NOTIFY messages (which
include the PID of the notifying backend process). Note that the PID belongs to a process executing
on the database server host, not the local host!

PQconnectionNeedsPassword

Returns true (1) if the connection authentication method required a password, but none was
available. Returns false (0) if not.
int PQconnectionNeedsPassword(const PGconn *conn);

This function can be applied after a failed connection attempt to decide whether to prompt the user
for a password.

PQconnectionUsedPassword

Returns true (1) if the connection authentication method used a password. Returns false (0) if not.
int PQconnectionUsedPassword(const PGconn *conn);

This function can be applied after either a failed or successful connection attempt to detect whether
the server demanded a password.

The following functions return information related to SSL. This information usually doesn't change after
a connection is established.
PQsslInUse

Returns true (1) if the connection uses SSL, false (0) if not.

714

libpq — C Library

int PQsslInUse(const PGconn *conn);

PQsslAttribute

Returns SSL-related information about the connection.
const char *PQsslAttribute(const PGconn *conn, const char *attribute_name);

The list of available attributes varies depending on the SSL library being used, and the type of
connection. If an attribute is not available, returns NULL.

The following attributes are commonly available:
library

Name of the SSL implementation in use. (Currently, only "OpenSSL" is implemented)

protocol

SSL/TLS version in use. Common values are "TLSv1", "TLSv1.1" and "TLSv1.2", but an
implementation may return other strings if some other protocol is used.

key_bits

Number of key bits used by the encryption algorithm.

cipher

A short name of the ciphersuite used, e.g., "DHE-RSA-DES-CBC3-SHA". The names are specific to
each SSL implementation.

compression

If SSL compression is in use, returns the name of the compression algorithm, or "on" if
compression is used but the algorithm is not known. If compression is not in use, returns "off".

PQsslAttributeNames

Return an array of SSL attribute names available. The array is terminated by a NULL pointer.
const char * const * PQsslAttributeNames(const PGconn *conn);

PQsslStruct

Return a pointer to an SSL-implementation-specific object describing the connection.
void *PQsslStruct(const PGconn *conn, const char *struct_name);

The struct(s) available depend on the SSL implementation in use. For OpenSSL, there is one struct,
available under the name "OpenSSL", and it returns a pointer to the OpenSSL SSL struct. To use this
function, code along the following lines could be used:
#include <libpq-fe.h>
#include <openssl/ssl.h>

...

 SSL *ssl;

 dbconn = PQconnectdb(...);
 ...

 ssl = PQsslStruct(dbconn, "OpenSSL");
 if (ssl)
 {
 /* use OpenSSL functions to access ssl */
 }

715

libpq — C Library

This structure can be used to verify encryption levels, check server certificates, and more. Refer to
the OpenSSL documentation for information about this structure.

PQgetssl

Returns the SSL structure used in the connection, or null if SSL is not in use.
void *PQgetssl(const PGconn *conn);

This function is equivalent to PQsslStruct(conn, "OpenSSL"). It should not be used in new
applications, because the returned struct is specific to OpenSSL and will not be available if another
SSL implementation is used. To check if a connection uses SSL, call PQsslInUse instead, and for
more details about the connection, use PQsslAttribute.

31.3. Command Execution Functions
Once a connection to a database server has been successfully established, the functions described here
are used to perform SQL queries and commands.

31.3.1. Main Functions
PQexec

Submits a command to the server and waits for the result.
PGresult *PQexec(PGconn *conn, const char *command);

Returns a PGresult pointer or possibly a null pointer. A non-null pointer will generally be returned
except in out-of-memory conditions or serious errors such as inability to send the command to
the server. The PQresultStatus function should be called to check the return value for any
errors (including the value of a null pointer, in which case it will return PGRES_FATAL_ERROR). Use
PQerrorMessage to get more information about such errors.

The command string can include multiple SQL commands (separated by semicolons). Multiple queries
sent in a single PQexec call are processed in a single transaction, unless there are explicit BEGIN/COMMIT
commands included in the query string to divide it into multiple transactions. (See Section 50.2.2.1
for more details about how the server handles multi-query strings.) Note however that the returned
PGresult structure describes only the result of the last command executed from the string. Should one
of the commands fail, processing of the string stops with it and the returned PGresult describes the
error condition.

PQexecParams

Submits a command to the server and waits for the result, with the ability to pass parameters
separately from the SQL command text.
PGresult *PQexecParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecParams is like PQexec, but offers additional functionality: parameter values can be specified
separately from the command string proper, and query results can be requested in either text or
binary format. PQexecParams is supported only in protocol 3.0 and later connections; it will fail when
using protocol 2.0.

The function arguments are:
conn

The connection object to send the command through.

716

libpq — C Library

command

The SQL command string to be executed. If parameters are used, they are referred to in the
command string as $1, $2, etc.

nParams

The number of parameters supplied; it is the length of the arrays paramTypes[], paramValues[],
paramLengths[], and paramFormats[]. (The array pointers can be NULL when nParams is zero.)

paramTypes[]

Specifies, by OID, the data types to be assigned to the parameter symbols. If paramTypes is NULL,
or any particular element in the array is zero, the server infers a data type for the parameter
symbol in the same way it would do for an untyped literal string.

paramValues[]

Specifies the actual values of the parameters. A null pointer in this array means the corresponding
parameter is null; otherwise the pointer points to a zero-terminated text string (for text format)
or binary data in the format expected by the server (for binary format).

paramLengths[]

Specifies the actual data lengths of binary-format parameters. It is ignored for null parameters
and text-format parameters. The array pointer can be null when there are no binary parameters.

paramFormats[]

Specifies whether parameters are text (put a zero in the array entry for the corresponding
parameter) or binary (put a one in the array entry for the corresponding parameter). If the array
pointer is null then all parameters are presumed to be text strings.

Values passed in binary format require knowledge of the internal representation expected by the
backend. For example, integers must be passed in network byte order. Passing numeric values
requires knowledge of the server storage format.

resultFormat

Specify zero to obtain results in text format, or one to obtain results in binary format. (There is
not currently a provision to obtain different result columns in different formats, although that is
possible in the underlying protocol.)

The primary advantage of PQexecParams over PQexec is that parameter values can be separated from
the command string, thus avoiding the need for tedious and error-prone quoting and escaping.

Unlike PQexec, PQexecParams allows at most one SQL command in the given string. (There can be
semicolons in it, but not more than one nonempty command.) This is a limitation of the underlying
protocol, but has some usefulness as an extra defense against SQL-injection attacks.

Tip
Specifying parameter types via OIDs is tedious, particularly if you prefer not to hard-wire
particular OID values into your program. However, you can avoid doing so even in cases where
the server by itself cannot determine the type of the parameter, or chooses a different type than
you want. In the SQL command text, attach an explicit cast to the parameter symbol to show what
data type you will send. For example:

SELECT * FROM mytable WHERE x = $1::bigint;

This forces parameter $1 to be treated as bigint, whereas by default it would be assigned the
same type as x. Forcing the parameter type decision, either this way or by specifying a numeric
type OID, is strongly recommended when sending parameter values in binary format, because

717

libpq — C Library

binary format has less redundancy than text format and so there is less chance that the server
will detect a type mismatch mistake for you.

PQprepare

Submits a request to create a prepared statement with the given parameters, and waits for
completion.
PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

PQprepare creates a prepared statement for later execution with PQexecPrepared. This feature
allows commands to be executed repeatedly without being parsed and planned each time; see
PREPARE for details. PQprepare is supported only in protocol 3.0 and later connections; it will fail
when using protocol 2.0.

The function creates a prepared statement named stmtName from the query string, which must
contain a single SQL command. stmtName can be "" to create an unnamed statement, in which
case any pre-existing unnamed statement is automatically replaced; otherwise it is an error if the
statement name is already defined in the current session. If any parameters are used, they are
referred to in the query as $1, $2, etc. nParams is the number of parameters for which types
are pre-specified in the array paramTypes[]. (The array pointer can be NULL when nParams is
zero.) paramTypes[] specifies, by OID, the data types to be assigned to the parameter symbols. If
paramTypes is NULL, or any particular element in the array is zero, the server assigns a data type
to the parameter symbol in the same way it would do for an untyped literal string. Also, the query
can use parameter symbols with numbers higher than nParams; data types will be inferred for these
symbols as well. (See PQdescribePrepared for a means to find out what data types were inferred.)

As with PQexec, the result is normally a PGresult object whose contents indicate server-side success
or failure. A null result indicates out-of-memory or inability to send the command at all. Use
PQerrorMessage to get more information about such errors.

Prepared statements for use with PQexecPrepared can also be created by executing SQL PREPARE
statements. Also, although there is no libpq function for deleting a prepared statement, the SQL
DEALLOCATE statement can be used for that purpose.

PQexecPrepared

Sends a request to execute a prepared statement with given parameters, and waits for the result.
PGresult *PQexecPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

PQexecPrepared is like PQexecParams, but the command to be executed is specified by naming
a previously-prepared statement, instead of giving a query string. This feature allows commands
that will be used repeatedly to be parsed and planned just once, rather than each time they are
executed. The statement must have been prepared previously in the current session. PQexecPrepared
is supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

The parameters are identical to PQexecParams, except that the name of a prepared statement is given
instead of a query string, and the paramTypes[] parameter is not present (it is not needed since the
prepared statement's parameter types were determined when it was created).

718

libpq — C Library

PQdescribePrepared

Submits a request to obtain information about the specified prepared statement, and waits for
completion.

PGresult *PQdescribePrepared(PGconn *conn, const char *stmtName);

PQdescribePrepared allows an application to obtain information about a previously prepared
statement. PQdescribePrepared is supported only in protocol 3.0 and later connections; it will fail
when using protocol 2.0.

stmtName can be "" or NULL to reference the unnamed statement, otherwise it must be the name of
an existing prepared statement. On success, a PGresult with status PGRES_COMMAND_OK is returned.
The functions PQnparams and PQparamtype can be applied to this PGresult to obtain information
about the parameters of the prepared statement, and the functions PQnfields, PQfname, PQftype,
etc provide information about the result columns (if any) of the statement.

PQdescribePortal

Submits a request to obtain information about the specified portal, and waits for completion.

PGresult *PQdescribePortal(PGconn *conn, const char *portalName);

PQdescribePortal allows an application to obtain information about a previously created portal.
(libpq does not provide any direct access to portals, but you can use this function to inspect
the properties of a cursor created with a DECLARE CURSOR SQL command.) PQdescribePortal is
supported only in protocol 3.0 and later connections; it will fail when using protocol 2.0.

portalName can be "" or NULL to reference the unnamed portal, otherwise it must be the name of
an existing portal. On success, a PGresult with status PGRES_COMMAND_OK is returned. The functions
PQnfields, PQfname, PQftype, etc can be applied to the PGresult to obtain information about the
result columns (if any) of the portal.

The PGresultstructure encapsulates the result returned by the server. libpq application programmers
should be careful to maintain the PGresult abstraction. Use the accessor functions below to get at the
contents of PGresult. Avoid directly referencing the fields of the PGresult structure because they are
subject to change in the future.

PQresultStatus

Returns the result status of the command.

ExecStatusType PQresultStatus(const PGresult *res);

PQresultStatus can return one of the following values:

PGRES_EMPTY_QUERY

The string sent to the server was empty.

PGRES_COMMAND_OK

Successful completion of a command returning no data.

PGRES_TUPLES_OK

Successful completion of a command returning data (such as a SELECT or SHOW).

PGRES_COPY_OUT

Copy Out (from server) data transfer started.

PGRES_COPY_IN

Copy In (to server) data transfer started.

719

libpq — C Library

PGRES_BAD_RESPONSE

The server's response was not understood.

PGRES_NONFATAL_ERROR

A nonfatal error (a notice or warning) occurred.

PGRES_FATAL_ERROR

A fatal error occurred.

PGRES_COPY_BOTH

Copy In/Out (to and from server) data transfer started. This feature is currently used only for
streaming replication, so this status should not occur in ordinary applications.

PGRES_SINGLE_TUPLE

The PGresult contains a single result tuple from the current command. This status occurs only
when single-row mode has been selected for the query (see Section 31.5).

If the result status is PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE, then the functions described below
can be used to retrieve the rows returned by the query. Note that a SELECT command that happens to
retrieve zero rows still shows PGRES_TUPLES_OK. PGRES_COMMAND_OK is for commands that can never
return rows (INSERT or UPDATE without a RETURNING clause, etc.). A response of PGRES_EMPTY_QUERY
might indicate a bug in the client software.

A result of status PGRES_NONFATAL_ERROR will never be returned directly by PQexec or other
query execution functions; results of this kind are instead passed to the notice processor (see
Section 31.12).

PQresStatus

Converts the enumerated type returned by PQresultStatus into a string constant describing the
status code. The caller should not free the result.
char *PQresStatus(ExecStatusType status);

PQresultErrorMessage

Returns the error message associated with the command, or an empty string if there was no error.
char *PQresultErrorMessage(const PGresult *res);

If there was an error, the returned string will include a trailing newline. The caller should not free
the result directly. It will be freed when the associated PGresult handle is passed to PQclear.

Immediately following a PQexec or PQgetResult call, PQerrorMessage (on the connection) will return
the same string as PQresultErrorMessage (on the result). However, a PGresult will retain its error
message until destroyed, whereas the connection's error message will change when subsequent
operations are done. Use PQresultErrorMessage when you want to know the status associated with a
particular PGresult; use PQerrorMessage when you want to know the status from the latest operation
on the connection.

PQresultVerboseErrorMessage

Returns a reformatted version of the error message associated with a PGresult object.
char *PQresultVerboseErrorMessage(const PGresult *res,
 PGVerbosity verbosity,
 PGContextVisibility show_context);

In some situations a client might wish to obtain a more detailed version of a previously-reported
error. PQresultVerboseErrorMessage addresses this need by computing the message that would
have been produced by PQresultErrorMessage if the specified verbosity settings had been in effect

720

libpq — C Library

for the connection when the given PGresult was generated. If the PGresult is not an error result,
“PGresult is not an error result” is reported instead. The returned string includes a trailing newline.

Unlike most other functions for extracting data from a PGresult, the result of this function is a freshly
allocated string. The caller must free it using PQfreemem() when the string is no longer needed.

A NULL return is possible if there is insufficient memory.

PQresultErrorField

Returns an individual field of an error report.
char *PQresultErrorField(const PGresult *res, int fieldcode);

fieldcode is an error field identifier; see the symbols listed below. NULL is returned if the PGresult
is not an error or warning result, or does not include the specified field. Field values will normally
not include a trailing newline. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

The following field codes are available:
PG_DIAG_SEVERITY

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these.
Always present.

PG_DIAG_SEVERITY_NONLOCALIZED

The severity; the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING,
NOTICE, DEBUG, INFO, or LOG (in a notice message). This is identical to the PG_DIAG_SEVERITY field
except that the contents are never localized. This is present only in reports generated by Postgres
Pro versions 9.6 and later.

PG_DIAG_SQLSTATE

The SQLSTATE code for the error. The SQLSTATE code identifies the type of error that has
occurred; it can be used by front-end applications to perform specific operations (such as error
handling) in response to a particular database error. For a list of the possible SQLSTATE codes,
see Appendix A. This field is not localizable, and is always present.

PG_DIAG_MESSAGE_PRIMARY

The primary human-readable error message (typically one line). Always present.

PG_DIAG_MESSAGE_DETAIL

Detail: an optional secondary error message carrying more detail about the problem. Might run
to multiple lines.

PG_DIAG_MESSAGE_HINT

Hint: an optional suggestion what to do about the problem. This is intended to differ from detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

PG_DIAG_STATEMENT_POSITION

A string containing a decimal integer indicating an error cursor position as an index into
the original statement string. The first character has index 1, and positions are measured in
characters not bytes.

PG_DIAG_INTERNAL_POSITION

This is defined the same as the PG_DIAG_STATEMENT_POSITION field, but it is used when the cursor
position refers to an internally generated command rather than the one submitted by the client.
The PG_DIAG_INTERNAL_QUERY field will always appear when this field appears.

721

libpq — C Library

PG_DIAG_INTERNAL_QUERY

The text of a failed internally-generated command. This could be, for example, a SQL query issued
by a PL/pgSQL function.

PG_DIAG_CONTEXT

An indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is
one entry per line, most recent first.

PG_DIAG_SCHEMA_NAME

If the error was associated with a specific database object, the name of the schema containing
that object, if any.

PG_DIAG_TABLE_NAME

If the error was associated with a specific table, the name of the table. (Refer to the schema name
field for the name of the table's schema.)

PG_DIAG_COLUMN_NAME

If the error was associated with a specific table column, the name of the column. (Refer to the
schema and table name fields to identify the table.)

PG_DIAG_DATATYPE_NAME

If the error was associated with a specific data type, the name of the data type. (Refer to the
schema name field for the name of the data type's schema.)

PG_DIAG_CONSTRAINT_NAME

If the error was associated with a specific constraint, the name of the constraint. Refer to
fields listed above for the associated table or domain. (For this purpose, indexes are treated as
constraints, even if they weren't created with constraint syntax.)

PG_DIAG_SOURCE_FILE

The file name of the source-code location where the error was reported.

PG_DIAG_SOURCE_LINE

The line number of the source-code location where the error was reported.

PG_DIAG_SOURCE_FUNCTION

The name of the source-code function reporting the error.

Note
The fields for schema name, table name, column name, data type name, and constraint name
are supplied only for a limited number of error types; see Appendix A. Do not assume that the
presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in
other ways. In the same vein, do not assume that these fields denote contemporary objects in
the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be
treated as paragraph breaks, not line breaks.

Errors generated internally by libpq will have severity and primary message, but typically no other
fields. Errors returned by a pre-3.0-protocol server will include severity and primary message, and
sometimes a detail message, but no other fields.

722

libpq — C Library

Note that error fields are only available from PGresult objects, not PGconn objects; there is no
PQerrorField function.

PQclear

Frees the storage associated with a PGresult. Every command result should be freed via PQclear
when it is no longer needed.
void PQclear(PGresult *res);

You can keep a PGresult object around for as long as you need it; it does not go away when you issue
a new command, nor even if you close the connection. To get rid of it, you must call PQclear. Failure
to do this will result in memory leaks in your application.

31.3.2. Retrieving Query Result Information
These functions are used to extract information from a PGresult object that represents a successful
query result (that is, one that has status PGRES_TUPLES_OK or PGRES_SINGLE_TUPLE). They can also be
used to extract information from a successful Describe operation: a Describe's result has all the same
column information that actual execution of the query would provide, but it has zero rows. For objects
with other status values, these functions will act as though the result has zero rows and zero columns.

PQntuples

Returns the number of rows (tuples) in the query result. (Note that PGresult objects are limited to
no more than INT_MAX rows, so an int result is sufficient.)
int PQntuples(const PGresult *res);

PQnfields

Returns the number of columns (fields) in each row of the query result.
int PQnfields(const PGresult *res);

PQfname

Returns the column name associated with the given column number. Column numbers start at 0.
The caller should not free the result directly. It will be freed when the associated PGresult handle
is passed to PQclear.
char *PQfname(const PGresult *res,
 int column_number);

NULL is returned if the column number is out of range.

PQfnumber

Returns the column number associated with the given column name.
int PQfnumber(const PGresult *res,
 const char *column_name);

-1 is returned if the given name does not match any column.

The given name is treated like an identifier in an SQL command, that is, it is downcased unless
double-quoted. For example, given a query result generated from the SQL command:
SELECT 1 AS FOO, 2 AS "BAR";

we would have the results:
PQfname(res, 0) foo
PQfname(res, 1) BAR
PQfnumber(res, "FOO") 0
PQfnumber(res, "foo") 0
PQfnumber(res, "BAR") -1

723

libpq — C Library

PQfnumber(res, "\"BAR\"") 1

PQftable

Returns the OID of the table from which the given column was fetched. Column numbers start at 0.
Oid PQftable(const PGresult *res,
 int column_number);

InvalidOid is returned if the column number is out of range, or if the specified column is not a
simple reference to a table column, or when using pre-3.0 protocol. You can query the system table
pg_class to determine exactly which table is referenced.

The type Oid and the constant InvalidOid will be defined when you include the libpq header file.
They will both be some integer type.

PQftablecol

Returns the column number (within its table) of the column making up the specified query result
column. Query-result column numbers start at 0, but table columns have nonzero numbers.
int PQftablecol(const PGresult *res,
 int column_number);

Zero is returned if the column number is out of range, or if the specified column is not a simple
reference to a table column, or when using pre-3.0 protocol.

PQfformat

Returns the format code indicating the format of the given column. Column numbers start at 0.
int PQfformat(const PGresult *res,
 int column_number);

Format code zero indicates textual data representation, while format code one indicates binary
representation. (Other codes are reserved for future definition.)

PQftype

Returns the data type associated with the given column number. The integer returned is the internal
OID number of the type. Column numbers start at 0.
Oid PQftype(const PGresult *res,
 int column_number);

You can query the system table pg_type to obtain the names and properties of the various data types.
The OIDs of the built-in data types are defined in the file include/server/catalog/pg_type_d.h in
the install directory.

PQfmod

Returns the type modifier of the column associated with the given column number. Column numbers
start at 0.
int PQfmod(const PGresult *res,
 int column_number);

The interpretation of modifier values is type-specific; they typically indicate precision or size limits.
The value -1 is used to indicate “no information available”. Most data types do not use modifiers, in
which case the value is always -1.

PQfsize

Returns the size in bytes of the column associated with the given column number. Column numbers
start at 0.
int PQfsize(const PGresult *res,

724

libpq — C Library

 int column_number);

PQfsize returns the space allocated for this column in a database row, in other words the size of the
server's internal representation of the data type. (Accordingly, it is not really very useful to clients.)
A negative value indicates the data type is variable-length.

PQbinaryTuples

Returns 1 if the PGresult contains binary data and 0 if it contains text data.
int PQbinaryTuples(const PGresult *res);

This function is deprecated (except for its use in connection with COPY), because it is possible for
a single PGresult to contain text data in some columns and binary data in others. PQfformat is
preferred. PQbinaryTuples returns 1 only if all columns of the result are binary (format 1).

PQgetvalue

Returns a single field value of one row of a PGresult. Row and column numbers start at 0. The caller
should not free the result directly. It will be freed when the associated PGresult handle is passed
to PQclear.
char *PQgetvalue(const PGresult *res,
 int row_number,
 int column_number);

For data in text format, the value returned by PQgetvalue is a null-terminated character string
representation of the field value. For data in binary format, the value is in the binary representation
determined by the data type's typsend and typreceive functions. (The value is actually followed
by a zero byte in this case too, but that is not ordinarily useful, since the value is likely to contain
embedded nulls.)

An empty string is returned if the field value is null. See PQgetisnull to distinguish null values from
empty-string values.

The pointer returned by PQgetvalue points to storage that is part of the PGresult structure. One
should not modify the data it points to, and one must explicitly copy the data into other storage if it
is to be used past the lifetime of the PGresult structure itself.

PQgetisnull

Tests a field for a null value. Row and column numbers start at 0.
int PQgetisnull(const PGresult *res,
 int row_number,
 int column_number);

This function returns 1 if the field is null and 0 if it contains a non-null value. (Note that PQgetvalue
will return an empty string, not a null pointer, for a null field.)

PQgetlength

Returns the actual length of a field value in bytes. Row and column numbers start at 0.
int PQgetlength(const PGresult *res,
 int row_number,
 int column_number);

This is the actual data length for the particular data value, that is, the size of the object pointed to
by PQgetvalue. For text data format this is the same as strlen(). For binary format this is essential
information. Note that one should not rely on PQfsize to obtain the actual data length.

PQnparams

Returns the number of parameters of a prepared statement.

725

libpq — C Library

int PQnparams(const PGresult *res);

This function is only useful when inspecting the result of PQdescribePrepared. For other types of
queries it will return zero.

PQparamtype

Returns the data type of the indicated statement parameter. Parameter numbers start at 0.
Oid PQparamtype(const PGresult *res, int param_number);

This function is only useful when inspecting the result of PQdescribePrepared. For other types of
queries it will return zero.

PQprint

Prints out all the rows and, optionally, the column names to the specified output stream.
void PQprint(FILE *fout, /* output stream */
 const PGresult *res,
 const PQprintOpt *po);
typedef struct
{
 pqbool header; /* print output field headings and row count */
 pqbool align; /* fill align the fields */
 pqbool standard; /* old brain dead format */
 pqbool html3; /* output HTML tables */
 pqbool expanded; /* expand tables */
 pqbool pager; /* use pager for output if needed */
 char *fieldSep; /* field separator */
 char *tableOpt; /* attributes for HTML table element */
 char *caption; /* HTML table caption */
 char **fieldName; /* null-terminated array of replacement field names */
} PQprintOpt;

This function was formerly used by psql to print query results, but this is no longer the case. Note
that it assumes all the data is in text format.

31.3.3. Retrieving Other Result Information
These functions are used to extract other information from PGresult objects.

PQcmdStatus

Returns the command status tag from the SQL command that generated the PGresult.
char *PQcmdStatus(PGresult *res);

Commonly this is just the name of the command, but it might include additional data such as the
number of rows processed. The caller should not free the result directly. It will be freed when the
associated PGresult handle is passed to PQclear.

PQcmdTuples

Returns the number of rows affected by the SQL command.
char *PQcmdTuples(PGresult *res);

This function returns a string containing the number of rows affected by the SQL statement that
generated the PGresult. This function can only be used following the execution of a SELECT, CREATE
TABLE AS, INSERT, UPDATE, DELETE, MOVE, FETCH, or COPY statement, or an EXECUTE of a prepared
query that contains an INSERT, UPDATE, or DELETE statement. If the command that generated the
PGresult was anything else, PQcmdTuples returns an empty string. The caller should not free the
return value directly. It will be freed when the associated PGresult handle is passed to PQclear.

726

libpq — C Library

PQoidValue

Returns the OID of the inserted row, if the SQL command was an INSERT that inserted exactly one row
into a table that has OIDs, or a EXECUTE of a prepared query containing a suitable INSERT statement.
Otherwise, this function returns InvalidOid. This function will also return InvalidOid if the table
affected by the INSERT statement does not contain OIDs.
Oid PQoidValue(const PGresult *res);

PQoidStatus

This function is deprecated in favor of PQoidValue and is not thread-safe. It returns a string with the
OID of the inserted row, while PQoidValue returns the OID value.
char *PQoidStatus(const PGresult *res);

31.3.4. Escaping Strings for Inclusion in SQL Commands
PQescapeLiteral

char *PQescapeLiteral(PGconn *conn, const char *str, size_t length);

PQescapeLiteral escapes a string for use within an SQL command. This is useful when inserting
data values as literal constants in SQL commands. Certain characters (such as quotes and
backslashes) must be escaped to prevent them from being interpreted specially by the SQL parser.
PQescapeLiteral performs this operation.

PQescapeLiteral returns an escaped version of the str parameter in memory allocated with
malloc(). This memory should be freed using PQfreemem() when the result is no longer needed. A
terminating zero byte is not required, and should not be counted in length. (If a terminating zero
byte is found before length bytes are processed, PQescapeLiteral stops at the zero; the behavior is
thus rather like strncpy.) The return string has all special characters replaced so that they can be
properly processed by the Postgres Pro string literal parser. A terminating zero byte is also added.
The single quotes that must surround Postgres Pro string literals are included in the result string.

On error, PQescapeLiteral returns NULL and a suitable message is stored in the conn object.

Tip
It is especially important to do proper escaping when handling strings that were received
from an untrustworthy source. Otherwise there is a security risk: you are vulnerable to “SQL
injection” attacks wherein unwanted SQL commands are fed to your database.

Note that it is neither necessary nor correct to do escaping when a data value is passed as a separate
parameter in PQexecParams or its sibling routines.

PQescapeIdentifier

char *PQescapeIdentifier(PGconn *conn, const char *str, size_t length);

PQescapeIdentifier escapes a string for use as an SQL identifier, such as a table, column, or function
name. This is useful when a user-supplied identifier might contain special characters that would
otherwise not be interpreted as part of the identifier by the SQL parser, or when the identifier might
contain upper case characters whose case should be preserved.

PQescapeIdentifier returns a version of the str parameter escaped as an SQL identifier in memory
allocated with malloc(). This memory must be freed using PQfreemem() when the result is no
longer needed. A terminating zero byte is not required, and should not be counted in length. (If a
terminating zero byte is found before length bytes are processed, PQescapeIdentifier stops at the
zero; the behavior is thus rather like strncpy.) The return string has all special characters replaced
so that it will be properly processed as an SQL identifier. A terminating zero byte is also added. The
return string will also be surrounded by double quotes.

727

libpq — C Library

On error, PQescapeIdentifier returns NULL and a suitable message is stored in the conn object.

Tip
As with string literals, to prevent SQL injection attacks, SQL identifiers must be escaped when
they are received from an untrustworthy source.

PQescapeStringConn

size_t PQescapeStringConn(PGconn *conn,
 char *to, const char *from, size_t length,
 int *error);

PQescapeStringConn escapes string literals, much like PQescapeLiteral. Unlike PQescapeLiteral,
the caller is responsible for providing an appropriately sized buffer. Furthermore,
PQescapeStringConn does not generate the single quotes that must surround Postgres Pro string
literals; they should be provided in the SQL command that the result is inserted into. The parameter
from points to the first character of the string that is to be escaped, and the length parameter
gives the number of bytes in this string. A terminating zero byte is not required, and should not
be counted in length. (If a terminating zero byte is found before length bytes are processed,
PQescapeStringConn stops at the zero; the behavior is thus rather like strncpy.) to shall point to
a buffer that is able to hold at least one more byte than twice the value of length, otherwise the
behavior is undefined. Behavior is likewise undefined if the to and from strings overlap.

If the error parameter is not NULL, then *error is set to zero on success, nonzero on error. Presently
the only possible error conditions involve invalid multibyte encoding in the source string. The output
string is still generated on error, but it can be expected that the server will reject it as malformed.
On error, a suitable message is stored in the conn object, whether or not error is NULL.

PQescapeStringConn returns the number of bytes written to to, not including the terminating zero
byte.

PQescapeString

PQescapeString is an older, deprecated version of PQescapeStringConn.

size_t PQescapeString (char *to, const char *from, size_t length);

The only difference from PQescapeStringConn is that PQescapeString does not take PGconn or error
parameters. Because of this, it cannot adjust its behavior depending on the connection properties
(such as character encoding) and therefore it might give the wrong results. Also, it has no way to
report error conditions.

PQescapeString can be used safely in client programs that work with only one Postgres Pro
connection at a time (in this case it can find out what it needs to know “behind the scenes”). In other
contexts it is a security hazard and should be avoided in favor of PQescapeStringConn.

PQescapeByteaConn

Escapes binary data for use within an SQL command with the type bytea. As with
PQescapeStringConn, this is only used when inserting data directly into an SQL command string.

unsigned char *PQescapeByteaConn(PGconn *conn,
 const unsigned char *from,
 size_t from_length,
 size_t *to_length);

Certain byte values must be escaped when used as part of a bytea literal in an SQL statement.
PQescapeByteaConn escapes bytes using either hex encoding or backslash escaping. See Section 8.4
for more information.

728

libpq — C Library

The from parameter points to the first byte of the string that is to be escaped, and the from_length
parameter gives the number of bytes in this binary string. (A terminating zero byte is neither
necessary nor counted.) The to_length parameter points to a variable that will hold the resultant
escaped string length. This result string length includes the terminating zero byte of the result.

PQescapeByteaConn returns an escaped version of the from parameter binary string in memory
allocated with malloc(). This memory should be freed using PQfreemem() when the result is no
longer needed. The return string has all special characters replaced so that they can be properly
processed by the Postgres Pro string literal parser, and the bytea input function. A terminating zero
byte is also added. The single quotes that must surround Postgres Pro string literals are not part
of the result string.

On error, a null pointer is returned, and a suitable error message is stored in the conn object.
Currently, the only possible error is insufficient memory for the result string.

PQescapeBytea

PQescapeBytea is an older, deprecated version of PQescapeByteaConn.
unsigned char *PQescapeBytea(const unsigned char *from,
 size_t from_length,
 size_t *to_length);

The only difference from PQescapeByteaConn is that PQescapeBytea does not take a PGconn
parameter. Because of this, PQescapeBytea can only be used safely in client programs that use a
single Postgres Pro connection at a time (in this case it can find out what it needs to know “behind the
scenes”). It might give the wrong results if used in programs that use multiple database connections
(use PQescapeByteaConn in such cases).

PQunescapeBytea

Converts a string representation of binary data into binary data — the reverse of PQescapeBytea.
This is needed when retrieving bytea data in text format, but not when retrieving it in binary format.
unsigned char *PQunescapeBytea(const unsigned char *from, size_t *to_length);

The from parameter points to a string such as might be returned by PQgetvalue when applied to a
bytea column. PQunescapeBytea converts this string representation into its binary representation.
It returns a pointer to a buffer allocated with malloc(), or NULL on error, and puts the size of the
buffer in to_length. The result must be freed using PQfreemem when it is no longer needed.

This conversion is not exactly the inverse of PQescapeBytea, because the string is not expected to
be “escaped” when received from PQgetvalue. In particular this means there is no need for string
quoting considerations, and so no need for a PGconn parameter.

31.4. Asynchronous Command Processing
The PQexec function is adequate for submitting commands in normal, synchronous applications. It has
a few deficiencies, however, that can be of importance to some users:
• PQexec waits for the command to be completed. The application might have other work to do (such

as maintaining a user interface), in which case it won't want to block waiting for the response.
• Since the execution of the client application is suspended while it waits for the result, it is hard for

the application to decide that it would like to try to cancel the ongoing command. (It can be done
from a signal handler, but not otherwise.)

• PQexec can return only one PGresult structure. If the submitted command string contains multiple
SQL commands, all but the last PGresult are discarded by PQexec.

• PQexec always collects the command's entire result, buffering it in a single PGresult. While this
simplifies error-handling logic for the application, it can be impractical for results containing many
rows.

729

libpq — C Library

Applications that do not like these limitations can instead use the underlying functions that PQexec
is built from: PQsendQuery and PQgetResult. There are also PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, and PQsendDescribePortal, which can be used
with PQgetResult to duplicate the functionality of PQexecParams, PQprepare, PQexecPrepared,
PQdescribePrepared, and PQdescribePortal respectively.

PQsendQuery

Submits a command to the server without waiting for the result(s). 1 is returned if the command was
successfully dispatched and 0 if not (in which case, use PQerrorMessage to get more information
about the failure).

int PQsendQuery(PGconn *conn, const char *command);

After successfully calling PQsendQuery, call PQgetResult one or more times to obtain the results.
PQsendQuery cannot be called again (on the same connection) until PQgetResult has returned a null
pointer, indicating that the command is done.

PQsendQueryParams

Submits a command and separate parameters to the server without waiting for the result(s).

int PQsendQueryParams(PGconn *conn,
 const char *command,
 int nParams,
 const Oid *paramTypes,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

This is equivalent to PQsendQuery except that query parameters can be specified separately from the
query string. The function's parameters are handled identically to PQexecParams. Like PQexecParams,
it will not work on 2.0-protocol connections, and it allows only one command in the query string.

PQsendPrepare

Sends a request to create a prepared statement with the given parameters, without waiting for
completion.

int PQsendPrepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

This is an asynchronous version of PQprepare: it returns 1 if it was able to dispatch the request,
and 0 if not. After a successful call, call PQgetResult to determine whether the server successfully
created the prepared statement. The function's parameters are handled identically to PQprepare.
Like PQprepare, it will not work on 2.0-protocol connections.

PQsendQueryPrepared

Sends a request to execute a prepared statement with given parameters, without waiting for the
result(s).

int PQsendQueryPrepared(PGconn *conn,
 const char *stmtName,
 int nParams,
 const char * const *paramValues,
 const int *paramLengths,
 const int *paramFormats,
 int resultFormat);

730

libpq — C Library

This is similar to PQsendQueryParams, but the command to be executed is specified by naming
a previously-prepared statement, instead of giving a query string. The function's parameters are
handled identically to PQexecPrepared. Like PQexecPrepared, it will not work on 2.0-protocol
connections.

PQsendDescribePrepared

Submits a request to obtain information about the specified prepared statement, without waiting for
completion.

int PQsendDescribePrepared(PGconn *conn, const char *stmtName);

This is an asynchronous version of PQdescribePrepared: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePrepared. Like PQdescribePrepared, it will not
work on 2.0-protocol connections.

PQsendDescribePortal

Submits a request to obtain information about the specified portal, without waiting for completion.

int PQsendDescribePortal(PGconn *conn, const char *portalName);

This is an asynchronous version of PQdescribePortal: it returns 1 if it was able to dispatch the
request, and 0 if not. After a successful call, call PQgetResult to obtain the results. The function's
parameters are handled identically to PQdescribePortal. Like PQdescribePortal, it will not work
on 2.0-protocol connections.

PQgetResult

Waits for the next result from a prior PQsendQuery, PQsendQueryParams, PQsendPrepare,
PQsendQueryPrepared, PQsendDescribePrepared, or PQsendDescribePortal call, and returns it. A
null pointer is returned when the command is complete and there will be no more results.

PGresult *PQgetResult(PGconn *conn);

PQgetResult must be called repeatedly until it returns a null pointer, indicating that the command is
done. (If called when no command is active, PQgetResult will just return a null pointer at once.) Each
non-null result from PQgetResult should be processed using the same PGresult accessor functions
previously described. Don't forget to free each result object with PQclear when done with it. Note
that PQgetResult will block only if a command is active and the necessary response data has not
yet been read by PQconsumeInput .

Note
Even when PQresultStatus indicates a fatal error, PQgetResult should be called until it
returns a null pointer, to allow libpq to process the error information completely.

Using PQsendQuery and PQgetResult solves one of PQexec's problems: If a command string contains
multiple SQL commands, the results of those commands can be obtained individually. (This allows a
simple form of overlapped processing, by the way: the client can be handling the results of one command
while the server is still working on later queries in the same command string.)

Another frequently-desired feature that can be obtained with PQsendQuery and PQgetResult is retrieving
large query results a row at a time. This is discussed in Section 31.5.

By itself, calling PQgetResult will still cause the client to block until the server completes the next SQL
command. This can be avoided by proper use of two more functions:

PQconsumeInput

If input is available from the server, consume it.

731

libpq — C Library

int PQconsumeInput(PGconn *conn);

PQconsumeInput normally returns 1 indicating “no error”, but returns 0 if there was some kind of
trouble (in which case PQerrorMessage can be consulted). Note that the result does not say whether
any input data was actually collected. After calling PQconsumeInput , the application can check
PQisBusy and/or PQnotifies to see if their state has changed.

PQconsumeInput can be called even if the application is not prepared to deal with a result or
notification just yet. The function will read available data and save it in a buffer, thereby causing a
select() read-ready indication to go away. The application can thus use PQconsumeInput to clear
the select() condition immediately, and then examine the results at leisure.

PQisBusy

Returns 1 if a command is busy, that is, PQgetResult would block waiting for input. A 0 return
indicates that PQgetResult can be called with assurance of not blocking.

int PQisBusy(PGconn *conn);

PQisBusy will not itself attempt to read data from the server; therefore PQconsumeInput must be
invoked first, or the busy state will never end.

A typical application using these functions will have a main loop that uses select() or poll() to wait for
all the conditions that it must respond to. One of the conditions will be input available from the server,
which in terms of select() means readable data on the file descriptor identified by PQsocket. When
the main loop detects input ready, it should call PQconsumeInput to read the input. It can then call
PQisBusy, followed by PQgetResult if PQisBusy returns false (0). It can also call PQnotifies to detect
NOTIFY messages (see Section 31.8).

A client that uses PQsendQuery/PQgetResult can also attempt to cancel a command that is still being
processed by the server; see Section 31.6. But regardless of the return value of PQcancel, the application
must continue with the normal result-reading sequence using PQgetResult. A successful cancellation
will simply cause the command to terminate sooner than it would have otherwise.

By using the functions described above, it is possible to avoid blocking while waiting for input from the
database server. However, it is still possible that the application will block waiting to send output to the
server. This is relatively uncommon but can happen if very long SQL commands or data values are sent.
(It is much more probable if the application sends data via COPY IN, however.) To prevent this possibility
and achieve completely nonblocking database operation, the following additional functions can be used.

PQsetnonblocking

Sets the nonblocking status of the connection.

int PQsetnonblocking(PGconn *conn, int arg);

Sets the state of the connection to nonblocking if arg is 1, or blocking if arg is 0. Returns 0 if OK,
-1 if error.

In the nonblocking state, calls to PQsendQuery, PQputline, PQputnbytes, PQputCopyData, and
PQendcopy will not block but instead return an error if they need to be called again.

Note that PQexec does not honor nonblocking mode; if it is called, it will act in blocking fashion
anyway.

PQisnonblocking

Returns the blocking status of the database connection.

int PQisnonblocking(const PGconn *conn);

Returns 1 if the connection is set to nonblocking mode and 0 if blocking.

732

libpq — C Library

PQflush

Attempts to flush any queued output data to the server. Returns 0 if successful (or if the send queue
is empty), -1 if it failed for some reason, or 1 if it was unable to send all the data in the send queue
yet (this case can only occur if the connection is nonblocking).
int PQflush(PGconn *conn);

After sending any command or data on a nonblocking connection, call PQflush. If it returns 1, wait for the
socket to become read- or write-ready. If it becomes write-ready, call PQflush again. If it becomes read-
ready, call PQconsumeInput , then call PQflush again. Repeat until PQflush returns 0. (It is necessary to
check for read-ready and drain the input with PQconsumeInput , because the server can block trying to
send us data, e.g., NOTICE messages, and won't read our data until we read its.) Once PQflush returns
0, wait for the socket to be read-ready and then read the response as described above.

31.5. Retrieving Query Results Row-by-Row
Ordinarily, libpq collects a SQL command's entire result and returns it to the application as a single
PGresult. This can be unworkable for commands that return a large number of rows. For such cases,
applications can use PQsendQuery and PQgetResult in single-row mode. In this mode, the result row(s)
are returned to the application one at a time, as they are received from the server.

To enter single-row mode, call PQsetSingleRowMode immediately after a successful call of PQsendQuery
(or a sibling function). This mode selection is effective only for the currently executing query. Then call
PQgetResult repeatedly, until it returns null, as documented in Section 31.4. If the query returns any
rows, they are returned as individual PGresult objects, which look like normal query results except for
having status code PGRES_SINGLE_TUPLE instead of PGRES_TUPLES_OK. After the last row, or immediately
if the query returns zero rows, a zero-row object with status PGRES_TUPLES_OK is returned; this is the
signal that no more rows will arrive. (But note that it is still necessary to continue calling PQgetResult
until it returns null.) All of these PGresult objects will contain the same row description data (column
names, types, etc) that an ordinary PGresult object for the query would have. Each object should be
freed with PQclear as usual.

PQsetSingleRowMode

Select single-row mode for the currently-executing query.
int PQsetSingleRowMode(PGconn *conn);

This function can only be called immediately after PQsendQuery or one of its sibling functions, before
any other operation on the connection such as PQconsumeInput or PQgetResult. If called at the
correct time, the function activates single-row mode for the current query and returns 1. Otherwise
the mode stays unchanged and the function returns 0. In any case, the mode reverts to normal after
completion of the current query.

Caution
While processing a query, the server may return some rows and then encounter an error,
causing the query to be aborted. Ordinarily, libpq discards any such rows and reports only the
error. But in single-row mode, those rows will have already been returned to the application.
Hence, the application will see some PGRES_SINGLE_TUPLE PGresult objects followed by a
PGRES_FATAL_ERROR object. For proper transactional behavior, the application must be designed
to discard or undo whatever has been done with the previously-processed rows, if the query
ultimately fails.

31.6. Canceling Queries in Progress
A client application can request cancellation of a command that is still being processed by the server,
using the functions described in this section.

733

libpq — C Library

PQgetCancel

Creates a data structure containing the information needed to cancel a command issued through a
particular database connection.
PGcancel *PQgetCancel(PGconn *conn);

PQgetCancel creates a PGcancelobject given a PGconn connection object. It will return NULL if the
given conn is NULL or an invalid connection. The PGcancel object is an opaque structure that is not
meant to be accessed directly by the application; it can only be passed to PQcancel or PQfreeCancel.

PQfreeCancel

Frees a data structure created by PQgetCancel.
void PQfreeCancel(PGcancel *cancel);

PQfreeCancel frees a data object previously created by PQgetCancel.

PQcancel

Requests that the server abandon processing of the current command.
int PQcancel(PGcancel *cancel, char *errbuf, int errbufsize);

The return value is 1 if the cancel request was successfully dispatched and 0 if not. If not, errbuf
is filled with an explanatory error message. errbuf must be a char array of size errbufsize (the
recommended size is 256 bytes).

Successful dispatch is no guarantee that the request will have any effect, however. If the cancellation
is effective, the current command will terminate early and return an error result. If the cancellation
fails (say, because the server was already done processing the command), then there will be no visible
result at all.

PQcancel can safely be invoked from a signal handler, if the errbuf is a local variable in the signal
handler. The PGcancel object is read-only as far as PQcancel is concerned, so it can also be invoked
from a thread that is separate from the one manipulating the PGconn object.

PQrequestCancel

PQrequestCancel is a deprecated variant of PQcancel.
int PQrequestCancel(PGconn *conn);

Requests that the server abandon processing of the current command. It operates directly on the
PGconn object, and in case of failure stores the error message in the PGconn object (whence it can be
retrieved by PQerrorMessage). Although the functionality is the same, this approach creates hazards
for multiple-thread programs and signal handlers, since it is possible that overwriting the PGconn's
error message will mess up the operation currently in progress on the connection.

31.7. The Fast-Path Interface
Postgres Pro provides a fast-path interface to send simple function calls to the server.

Tip
This interface is somewhat obsolete, as one can achieve similar performance and greater
functionality by setting up a prepared statement to define the function call. Then, executing the
statement with binary transmission of parameters and results substitutes for a fast-path function
call.

The function PQfnrequests execution of a server function via the fast-path interface:
PGresult *PQfn(PGconn *conn,

734

libpq — C Library

 int fnid,
 int *result_buf,
 int *result_len,
 int result_is_int,
 const PQArgBlock *args,
 int nargs);

typedef struct
{
 int len;
 int isint;
 union
 {
 int *ptr;
 int integer;
 } u;
} PQArgBlock;

The fnid argument is the OID of the function to be executed. args and nargs define the parameters to
be passed to the function; they must match the declared function argument list. When the isint field
of a parameter structure is true, the u.integer value is sent to the server as an integer of the indicated
length (this must be 2 or 4 bytes); proper byte-swapping occurs. When isint is false, the indicated
number of bytes at *u.ptr are sent with no processing; the data must be in the format expected by the
server for binary transmission of the function's argument data type. (The declaration of u.ptr as being
of type int * is historical; it would be better to consider it void *.) result_buf points to the buffer in
which to place the function's return value. The caller must have allocated sufficient space to store the
return value. (There is no check!) The actual result length in bytes will be returned in the integer pointed
to by result_len. If a 2- or 4-byte integer result is expected, set result_is_int to 1, otherwise set it to
0. Setting result_is_int to 1 causes libpq to byte-swap the value if necessary, so that it is delivered as
a proper int value for the client machine; note that a 4-byte integer is delivered into *result_buf for
either allowed result size. When result_is_int is 0, the binary-format byte string sent by the server is
returned unmodified. (In this case it's better to consider result_buf as being of type void *.)

PQfn always returns a valid PGresult pointer, with status PGRES_COMMAND_OK for success or
PGRES_FATAL_ERROR if some problem was encountered. The result status should be checked before the
result is used. The caller is responsible for freeing the PGresult with PQclear when it is no longer
needed.

To pass a NULL argument to the function, set the len field of that parameter structure to -1; the isint
and u fields are then irrelevant. (But this works only in protocol 3.0 and later connections.)

If the function returns NULL, *result_len is set to -1, and *result_buf is not modified. (This works
only in protocol 3.0 and later connections; in protocol 2.0, neither *result_len nor *result_buf are
modified.)

Note that it is not possible to handle set-valued results when using this interface. Also, the function must
be a plain function, not an aggregate, window function, or procedure.

31.8. Asynchronous Notification
Postgres Pro offers asynchronous notification via the LISTEN and NOTIFY commands. A client session
registers its interest in a particular notification channel with the LISTEN command (and can stop
listening with the UNLISTEN command). All sessions listening on a particular channel will be notified
asynchronously when a NOTIFY command with that channel name is executed by any session. A “payload”
string can be passed to communicate additional data to the listeners.

libpq applications submit LISTEN, UNLISTEN, and NOTIFY commands as ordinary SQL commands. The
arrival of NOTIFY messages can subsequently be detected by calling PQnotifies.

735

libpq — C Library

The function PQnotifies returns the next notification from a list of unhandled notification messages
received from the server. It returns a null pointer if there are no pending notifications. Once a notification
is returned from PQnotifies, it is considered handled and will be removed from the list of notifications.

PGnotify *PQnotifies(PGconn *conn);

typedef struct pgNotify
{
 char *relname; /* notification channel name */
 int be_pid; /* process ID of notifying server process */
 char *extra; /* notification payload string */
} PGnotify;

After processing a PGnotify object returned by PQnotifies, be sure to free it with PQfreemem. It
is sufficient to free the PGnotify pointer; the relname and extra fields do not represent separate
allocations. (The names of these fields are historical; in particular, channel names need not have anything
to do with relation names.)

Example 31.2 gives a sample program that illustrates the use of asynchronous notification.

PQnotifies does not actually read data from the server; it just returns messages previously absorbed
by another libpq function. In ancient releases of libpq, the only way to ensure timely receipt of NOTIFY
messages was to constantly submit commands, even empty ones, and then check PQnotifies after each
PQexec. While this still works, it is deprecated as a waste of processing power.

A better way to check for NOTIFY messages when you have no useful commands to execute is to
call PQconsumeInput , then check PQnotifies. You can use select() to wait for data to arrive from
the server, thereby using no CPU power unless there is something to do. (See PQsocket to obtain
the file descriptor number to use with select().) Note that this will work OK whether you submit
commands with PQsendQuery/PQgetResult or simply use PQexec. You should, however, remember to
check PQnotifies after each PQgetResult or PQexec, to see if any notifications came in during the
processing of the command.

31.9. Functions Associated with the COPY Command
The COPY command in Postgres Pro has options to read from or write to the network connection used
by libpq. The functions described in this section allow applications to take advantage of this capability
by supplying or consuming copied data.

The overall process is that the application first issues the SQL COPY command via PQexec or one of the
equivalent functions. The response to this (if there is no error in the command) will be a PGresult object
bearing a status code of PGRES_COPY_OUT or PGRES_COPY_IN (depending on the specified copy direction).
The application should then use the functions of this section to receive or transmit data rows. When
the data transfer is complete, another PGresult object is returned to indicate success or failure of the
transfer. Its status will be PGRES_COMMAND_OK for success or PGRES_FATAL_ERROR if some problem was
encountered. At this point further SQL commands can be issued via PQexec. (It is not possible to execute
other SQL commands using the same connection while the COPY operation is in progress.)

If a COPY command is issued via PQexec in a string that could contain additional commands, the
application must continue fetching results via PQgetResult after completing the COPY sequence. Only
when PQgetResult returns NULL is it certain that the PQexec command string is done and it is safe to
issue more commands.

The functions of this section should be executed only after obtaining a result status of PGRES_COPY_OUT
or PGRES_COPY_IN from PQexec or PQgetResult.

A PGresult object bearing one of these status values carries some additional data about the COPY
operation that is starting. This additional data is available using functions that are also used in connection
with query results:

736

libpq — C Library

PQnfields

Returns the number of columns (fields) to be copied.

PQbinaryTuples

0 indicates the overall copy format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary. See COPY for more
information.

PQfformat

Returns the format code (0 for text, 1 for binary) associated with each column of the copy operation.
The per-column format codes will always be zero when the overall copy format is textual, but the
binary format can support both text and binary columns. (However, as of the current implementation
of COPY, only binary columns appear in a binary copy; so the per-column formats always match the
overall format at present.)

Note
These additional data values are only available when using protocol 3.0. When using protocol 2.0,
all these functions will return 0.

31.9.1. Functions for Sending COPY Data
These functions are used to send data during COPY FROM STDIN. They will fail if called when the
connection is not in COPY_IN state.

PQputCopyData

Sends data to the server during COPY_IN state.

int PQputCopyData(PGconn *conn,
 const char *buffer,
 int nbytes);

Transmits the COPY data in the specified buffer, of length nbytes, to the server. The result is 1
if the data was queued, zero if it was not queued because of full buffers (this will only happen in
nonblocking mode), or -1 if an error occurred. (Use PQerrorMessage to retrieve details if the return
value is -1. If the value is zero, wait for write-ready and try again.)

The application can divide the COPY data stream into buffer loads of any convenient size. Buffer-load
boundaries have no semantic significance when sending. The contents of the data stream must match
the data format expected by the COPY command; see COPY for details.

PQputCopyEnd

Sends end-of-data indication to the server during COPY_IN state.

int PQputCopyEnd(PGconn *conn,
 const char *errormsg);

Ends the COPY_IN operation successfully if errormsg is NULL. If errormsg is not NULL then the COPY
is forced to fail, with the string pointed to by errormsg used as the error message. (One should not
assume that this exact error message will come back from the server, however, as the server might
have already failed the COPY for its own reasons. Also note that the option to force failure does not
work when using pre-3.0-protocol connections.)

The result is 1 if the termination message was sent; or in nonblocking mode, this may only indicate
that the termination message was successfully queued. (In nonblocking mode, to be certain that
the data has been sent, you should next wait for write-ready and call PQflush, repeating until it

737

libpq — C Library

returns zero.) Zero indicates that the function could not queue the termination message because of
full buffers; this will only happen in nonblocking mode. (In this case, wait for write-ready and try
the PQputCopyEnd call again.) If a hard error occurs, -1 is returned; you can use PQerrorMessage
to retrieve details.

After successfully calling PQputCopyEnd, call PQgetResult to obtain the final result status of the
COPY command. One can wait for this result to be available in the usual way. Then return to normal
operation.

31.9.2. Functions for Receiving COPY Data
These functions are used to receive data during COPY TO STDOUT. They will fail if called when the
connection is not in COPY_OUT state.

PQgetCopyData

Receives data from the server during COPY_OUT state.

int PQgetCopyData(PGconn *conn,
 char **buffer,
 int async);

Attempts to obtain another row of data from the server during a COPY. Data is always returned one
data row at a time; if only a partial row is available, it is not returned. Successful return of a data row
involves allocating a chunk of memory to hold the data. The buffer parameter must be non-NULL.
*buffer is set to point to the allocated memory, or to NULL in cases where no buffer is returned. A
non-NULL result buffer should be freed using PQfreemem when no longer needed.

When a row is successfully returned, the return value is the number of data bytes in the row (this will
always be greater than zero). The returned string is always null-terminated, though this is probably
only useful for textual COPY. A result of zero indicates that the COPY is still in progress, but no row is
yet available (this is only possible when async is true). A result of -1 indicates that the COPY is done.
A result of -2 indicates that an error occurred (consult PQerrorMessage for the reason).

When async is true (not zero), PQgetCopyData will not block waiting for input; it will return zero
if the COPY is still in progress but no complete row is available. (In this case wait for read-ready
and then call PQconsumeInput before calling PQgetCopyData again.) When async is false (zero),
PQgetCopyData will block until data is available or the operation completes.

After PQgetCopyData returns -1, call PQgetResult to obtain the final result status of the COPY
command. One can wait for this result to be available in the usual way. Then return to normal
operation.

31.9.3. Obsolete Functions for COPY
These functions represent older methods of handling COPY. Although they still work, they are deprecated
due to poor error handling, inconvenient methods of detecting end-of-data, and lack of support for binary
or nonblocking transfers.

PQgetline

Reads a newline-terminated line of characters (transmitted by the server) into a buffer string of size
length.

int PQgetline(PGconn *conn,
 char *buffer,
 int length);

This function copies up to length-1 characters into the buffer and converts the terminating newline
into a zero byte. PQgetline returns EOF at the end of input, 0 if the entire line has been read, and 1
if the buffer is full but the terminating newline has not yet been read.

738

libpq — C Library

Note that the application must check to see if a new line consists of the two characters \., which
indicates that the server has finished sending the results of the COPY command. If the application
might receive lines that are more than length-1 characters long, care is needed to be sure it
recognizes the \. line correctly (and does not, for example, mistake the end of a long data line for
a terminator line).

PQgetlineAsync

Reads a row of COPY data (transmitted by the server) into a buffer without blocking.

int PQgetlineAsync(PGconn *conn,
 char *buffer,
 int bufsize);

This function is similar to PQgetline, but it can be used by applications that must read COPY
data asynchronously, that is, without blocking. Having issued the COPY command and gotten a
PGRES_COPY_OUT response, the application should call PQconsumeInput and PQgetlineAsync until
the end-of-data signal is detected.

Unlike PQgetline, this function takes responsibility for detecting end-of-data.

On each call, PQgetlineAsync will return data if a complete data row is available in libpq's input
buffer. Otherwise, no data is returned until the rest of the row arrives. The function returns -1 if
the end-of-copy-data marker has been recognized, or 0 if no data is available, or a positive number
giving the number of bytes of data returned. If -1 is returned, the caller must next call PQendcopy,
and then return to normal processing.

The data returned will not extend beyond a data-row boundary. If possible a whole row will be
returned at one time. But if the buffer offered by the caller is too small to hold a row sent by the
server, then a partial data row will be returned. With textual data this can be detected by testing
whether the last returned byte is \n or not. (In a binary COPY, actual parsing of the COPY data format
will be needed to make the equivalent determination.) The returned string is not null-terminated. (If
you want to add a terminating null, be sure to pass a bufsize one smaller than the room actually
available.)

PQputline

Sends a null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputline(PGconn *conn,
 const char *string);

The COPY data stream sent by a series of calls to PQputline has the same format as that returned by
PQgetlineAsync, except that applications are not obliged to send exactly one data row per PQputline
call; it is okay to send a partial line or multiple lines per call.

Note
Before Postgres Pro protocol 3.0, it was necessary for the application to explicitly send the two
characters \. as a final line to indicate to the server that it had finished sending COPY data.
While this still works, it is deprecated and the special meaning of \. can be expected to be
removed in a future release. It is sufficient to call PQendcopy after having sent the actual data.

PQputnbytes

Sends a non-null-terminated string to the server. Returns 0 if OK and EOF if unable to send the string.

int PQputnbytes(PGconn *conn,
 const char *buffer,
 int nbytes);

739

libpq — C Library

This is exactly like PQputline, except that the data buffer need not be null-terminated since the
number of bytes to send is specified directly. Use this procedure when sending binary data.

PQendcopy

Synchronizes with the server.

int PQendcopy(PGconn *conn);

This function waits until the server has finished the copying. It should either be issued when the last
string has been sent to the server using PQputline or when the last string has been received from
the server using PQgetline. It must be issued or the server will get “out of sync” with the client.
Upon return from this function, the server is ready to receive the next SQL command. The return
value is 0 on successful completion, nonzero otherwise. (Use PQerrorMessage to retrieve details if
the return value is nonzero.)

When using PQgetResult, the application should respond to a PGRES_COPY_OUT result by executing
PQgetline repeatedly, followed by PQendcopy after the terminator line is seen. It should then return
to the PQgetResult loop until PQgetResult returns a null pointer. Similarly a PGRES_COPY_IN result
is processed by a series of PQputline calls followed by PQendcopy, then return to the PQgetResult
loop. This arrangement will ensure that a COPY command embedded in a series of SQL commands
will be executed correctly.

Older applications are likely to submit a COPY via PQexec and assume that the transaction is done after
PQendcopy. This will work correctly only if the COPY is the only SQL command in the command string.

31.10. Control Functions
These functions control miscellaneous details of libpq's behavior.

PQclientEncoding

Returns the client encoding.

int PQclientEncoding(const PGconn *conn);

Note that it returns the encoding ID, not a symbolic string such as EUC_JP. If unsuccessful, it returns
-1. To convert an encoding ID to an encoding name, you can use:

char *pg_encoding_to_char(int encoding_id);

PQsetClientEncoding

Sets the client encoding.

int PQsetClientEncoding(PGconn *conn, const char *encoding);

conn is a connection to the server, and encoding is the encoding you want to use. If the function
successfully sets the encoding, it returns 0, otherwise -1. The current encoding for this connection
can be determined by using PQclientEncoding.

PQsetErrorVerbosity

Determines the verbosity of messages returned by PQerrorMessage and PQresultErrorMessage.

typedef enum
{
 PQERRORS_TERSE,
 PQERRORS_DEFAULT,
 PQERRORS_VERBOSE,
 PQERRORS_SQLSTATE
} PGVerbosity;

740

libpq — C Library

PGVerbosity PQsetErrorVerbosity(PGconn *conn, PGVerbosity verbosity);

PQsetErrorVerbosity sets the verbosity mode, returning the connection's previous setting. In
TERSE mode, returned messages include severity, primary text, and position only; this will normally
fit on a single line. The DEFAULT mode produces messages that include the above plus any detail,
hint, or context fields (these might span multiple lines). The VERBOSE mode includes all available
fields. The SQLSTATE mode includes only the error severity and the SQLSTATE error code, if one is
available (if not, the output is like TERSE mode).

Changing the verbosity setting does not affect the messages available from already-existing PGresult
objects, only subsequently-created ones. (But see PQresultVerboseErrorMessage if you want to print
a previous error with a different verbosity.)

PQsetErrorContextVisibility

Determines the handling of CONTEXT fields in messages returned by PQerrorMessage and
PQresultErrorMessage.

typedef enum
{
 PQSHOW_CONTEXT_NEVER,
 PQSHOW_CONTEXT_ERRORS,
 PQSHOW_CONTEXT_ALWAYS
} PGContextVisibility;

PGContextVisibility PQsetErrorContextVisibility(PGconn *conn, PGContextVisibility
 show_context);

PQsetErrorContextVisibility sets the context display mode, returning the connection's previous
setting. This mode controls whether the CONTEXT field is included in messages. The NEVER mode
never includes CONTEXT, while ALWAYS always includes it if available. In ERRORS mode (the default),
CONTEXT fields are included only in error messages, not in notices and warnings. (However, if the
verbosity setting is TERSE or SQLSTATE, CONTEXT fields are omitted regardless of the context display
mode.)

Changing this mode does not affect the messages available from already-existing PGresult objects,
only subsequently-created ones. (But see PQresultVerboseErrorMessage if you want to print a
previous error with a different display mode.)

PQtrace

Enables tracing of the client/server communication to a debugging file stream.

void PQtrace(PGconn *conn, FILE *stream);

Note
On Windows, if the libpq library and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE pointers
differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic flags
should be the same for the library and all applications using that library.

PQuntrace

Disables tracing started by PQtrace.

void PQuntrace(PGconn *conn);

31.11. Miscellaneous Functions
As always, there are some functions that just don't fit anywhere.

741

libpq — C Library

PQfreemem

Frees memory allocated by libpq.
void PQfreemem(void *ptr);

Frees memory allocated by libpq, particularly PQescapeByteaConn, PQescapeBytea,
PQunescapeBytea, and PQnotifies. It is particularly important that this function, rather than free(),
be used on Microsoft Windows. This is because allocating memory in a DLL and releasing it in the
application works only if multithreaded/single-threaded, release/debug, and static/dynamic flags are
the same for the DLL and the application. On non-Microsoft Windows platforms, this function is the
same as the standard library function free().

PQconninfoFree

Frees the data structures allocated by PQconndefaults or PQconninfoParse.
void PQconninfoFree(PQconninfoOption *connOptions);

A simple PQfreemem will not do for this, since the array contains references to subsidiary strings.

PQencryptPasswordConn

Prepares the encrypted form of a Postgres Pro password.
char *PQencryptPasswordConn(PGconn *conn, const char *passwd, const char *user,
 const char *algorithm);

This function is intended to be used by client applications that wish to send commands like ALTER
USER joe PASSWORD 'pwd'. It is good practice not to send the original cleartext password in such a
command, because it might be exposed in command logs, activity displays, and so on. Instead, use
this function to convert the password to encrypted form before it is sent.

The passwd and user arguments are the cleartext password, and the SQL name of the user it
is for. algorithm specifies the encryption algorithm to use to encrypt the password. Currently
supported algorithms are md5 and scram-sha-256 (on and off are also accepted as aliases for md5,
for compatibility with older server versions). Note that support for scram-sha-256 was introduced in
Postgres Pro version 10, and will not work correctly with older server versions. If algorithm is NULL,
this function will query the server for the current value of the password_encryption setting. That
can block, and will fail if the current transaction is aborted, or if the connection is busy executing
another query. If you wish to use the default algorithm for the server but want to avoid blocking,
query password_encryption yourself before calling PQencryptPasswordConn, and pass that value
as the algorithm.

The return value is a string allocated by malloc. The caller can assume the string doesn't contain any
special characters that would require escaping. Use PQfreemem to free the result when done with it.
On error, returns NULL, and a suitable message is stored in the connection object.

PQencryptPassword

Prepares the md5-encrypted form of a Postgres Pro password.
char *PQencryptPassword(const char *passwd, const char *user);

PQencryptPassword is an older, deprecated version of PQencryptPasswordConn. The difference is
that PQencryptPassword does not require a connection object, and md5 is always used as the
encryption algorithm.

PQmakeEmptyPGresult

Constructs an empty PGresult object with the given status.
PGresult *PQmakeEmptyPGresult(PGconn *conn, ExecStatusType status);

This is libpq's internal function to allocate and initialize an empty PGresult object. This function
returns NULL if memory could not be allocated. It is exported because some applications find it useful

742

libpq — C Library

to generate result objects (particularly objects with error status) themselves. If conn is not null and
status indicates an error, the current error message of the specified connection is copied into the
PGresult. Also, if conn is not null, any event procedures registered in the connection are copied
into the PGresult. (They do not get PGEVT_RESULTCREATE calls, but see PQfireResultCreateEvents.)
Note that PQclear should eventually be called on the object, just as with a PGresult returned by
libpq itself.

PQfireResultCreateEvents

Fires a PGEVT_RESULTCREATE event (see Section 31.13) for each event procedure registered in the
PGresult object. Returns non-zero for success, zero if any event procedure fails.

int PQfireResultCreateEvents(PGconn *conn, PGresult *res);

The conn argument is passed through to event procedures but not used directly. It can be NULL if
the event procedures won't use it.

Event procedures that have already received a PGEVT_RESULTCREATE or PGEVT_RESULTCOPY event for
this object are not fired again.

The main reason that this function is separate from PQmakeEmptyPGresult is that it is often
appropriate to create a PGresult and fill it with data before invoking the event procedures.

PQcopyResult

Makes a copy of a PGresult object. The copy is not linked to the source result in any way and PQclear
must be called when the copy is no longer needed. If the function fails, NULL is returned.

PGresult *PQcopyResult(const PGresult *src, int flags);

This is not intended to make an exact copy. The returned result is always put into PGRES_TUPLES_OK
status, and does not copy any error message in the source. (It does copy the command
status string, however.) The flags argument determines what else is copied. It is a bitwise
OR of several flags. PG_COPYRES_ATTRS specifies copying the source result's attributes (column
definitions). PG_COPYRES_TUPLES specifies copying the source result's tuples. (This implies copying
the attributes, too.) PG_COPYRES_NOTICEHOOKS specifies copying the source result's notify hooks.
PG_COPYRES_EVENTS specifies copying the source result's events. (But any instance data associated
with the source is not copied.)

PQsetResultAttrs

Sets the attributes of a PGresult object.

int PQsetResultAttrs(PGresult *res, int numAttributes, PGresAttDesc *attDescs);

The provided attDescs are copied into the result. If the attDescs pointer is NULL or numAttributes
is less than one, the request is ignored and the function succeeds. If res already contains attributes,
the function will fail. If the function fails, the return value is zero. If the function succeeds, the return
value is non-zero.

PQsetvalue

Sets a tuple field value of a PGresult object.

int PQsetvalue(PGresult *res, int tup_num, int field_num, char *value, int len);

The function will automatically grow the result's internal tuples array as needed. However, the
tup_num argument must be less than or equal to PQntuples, meaning this function can only grow
the tuples array one tuple at a time. But any field of any existing tuple can be modified in any order.
If a value at field_num already exists, it will be overwritten. If len is -1 or value is NULL, the field
value will be set to an SQL null value. The value is copied into the result's private storage, thus is no
longer needed after the function returns. If the function fails, the return value is zero. If the function
succeeds, the return value is non-zero.

743

libpq — C Library

PQresultAlloc

Allocate subsidiary storage for a PGresult object.

void *PQresultAlloc(PGresult *res, size_t nBytes);

Any memory allocated with this function will be freed when res is cleared. If the function fails, the
return value is NULL. The result is guaranteed to be adequately aligned for any type of data, just
as for malloc.

PQresultMemorySize

Retrieves the number of bytes allocated for a PGresult object.

size_t PQresultMemorySize(const PGresult *res);

This value is the sum of all malloc requests associated with the PGresult object, that is, all the space
that will be freed by PQclear. This information can be useful for managing memory consumption.

PQlibVersion

Return the version of libpq that is being used.

int PQlibVersion(void);

The result of this function can be used to determine, at run time, whether specific functionality is
available in the currently loaded version of libpq. The function can be used, for example, to determine
which connection options are available in PQconnectdb.

The result is formed by multiplying the library's major version number by 10000 and adding the
minor version number. For example, version 10.1 will be returned as 100001, and version 11.0 will
be returned as 110000.

Prior to major version 10, Postgres Pro used three-part version numbers in which the first two parts
together represented the major version. For those versions, PQlibVersion uses two digits for each
part; for example version 9.1.5 will be returned as 90105, and version 9.2.0 will be returned as 90200.

Therefore, for purposes of determining feature compatibility, applications should divide the result of
PQlibVersion by 100 not 10000 to determine a logical major version number. In all release series,
only the last two digits differ between minor releases (bug-fix releases).

Note
This function appeared in PostgreSQL version 9.1, so it cannot be used to detect required
functionality in earlier versions, since calling it will create a link dependency on version 9.1
or later.

31.12. Notice Processing
Notice and warning messages generated by the server are not returned by the query execution functions,
since they do not imply failure of the query. Instead they are passed to a notice handling function,
and execution continues normally after the handler returns. The default notice handling function prints
the message on stderr, but the application can override this behavior by supplying its own handling
function.

For historical reasons, there are two levels of notice handling, called the notice receiver and notice
processor. The default behavior is for the notice receiver to format the notice and pass a string to the
notice processor for printing. However, an application that chooses to provide its own notice receiver
will typically ignore the notice processor layer and just do all the work in the notice receiver.

744

libpq — C Library

The function PQsetNoticeReceiver sets or examines the current notice receiver for a connection object.
Similarly, PQsetNoticeProcessor sets or examines the current notice processor.

typedef void (*PQnoticeReceiver) (void *arg, const PGresult *res);

PQnoticeReceiver
PQsetNoticeReceiver(PGconn *conn,
 PQnoticeReceiver proc,
 void *arg);

typedef void (*PQnoticeProcessor) (void *arg, const char *message);

PQnoticeProcessor
PQsetNoticeProcessor(PGconn *conn,
 PQnoticeProcessor proc,
 void *arg);

Each of these functions returns the previous notice receiver or processor function pointer, and sets the
new value. If you supply a null function pointer, no action is taken, but the current pointer is returned.

When a notice or warning message is received from the server, or generated internally by libpq, the
notice receiver function is called. It is passed the message in the form of a PGRES_NONFATAL_ERROR
PGresult. (This allows the receiver to extract individual fields using PQresultErrorField, or obtain a
complete preformatted message using PQresultErrorMessage or PQresultVerboseErrorMessage.) The
same void pointer passed to PQsetNoticeReceiver is also passed. (This pointer can be used to access
application-specific state if needed.)

The default notice receiver simply extracts the message (using PQresultErrorMessage) and passes it
to the notice processor.

The notice processor is responsible for handling a notice or warning message given in text form. It is
passed the string text of the message (including a trailing newline), plus a void pointer that is the same
one passed to PQsetNoticeProcessor. (This pointer can be used to access application-specific state if
needed.)

The default notice processor is simply:

static void
defaultNoticeProcessor(void *arg, const char *message)
{
 fprintf(stderr, "%s", message);
}

Once you have set a notice receiver or processor, you should expect that that function could be called
as long as either the PGconn object or PGresult objects made from it exist. At creation of a PGresult,
the PGconn's current notice handling pointers are copied into the PGresult for possible use by functions
like PQgetvalue.

31.13. Event System
libpq's event system is designed to notify registered event handlers about interesting libpq events, such
as the creation or destruction of PGconn and PGresult objects. A principal use case is that this allows
applications to associate their own data with a PGconn or PGresult and ensure that that data is freed
at an appropriate time.

Each registered event handler is associated with two pieces of data, known to libpq only as opaque
void * pointers. There is a passthrough pointer that is provided by the application when the
event handler is registered with a PGconn. The passthrough pointer never changes for the life of
the PGconn and all PGresults generated from it; so if used, it must point to long-lived data. In
addition there is an instance data pointer, which starts out NULL in every PGconn and PGresult. This

745

libpq — C Library

pointer can be manipulated using the PQinstanceData, PQsetInstanceData, PQresultInstanceData
and PQsetResultInstanceData functions. Note that unlike the passthrough pointer, instance data
of a PGconn is not automatically inherited by PGresults created from it. libpq does not know what
passthrough and instance data pointers point to (if anything) and will never attempt to free them — that
is the responsibility of the event handler.

31.13.1. Event Types
The enum PGEventId names the types of events handled by the event system. All its values have names
beginning with PGEVT. For each event type, there is a corresponding event info structure that carries
the parameters passed to the event handlers. The event types are:

PGEVT_REGISTER

The register event occurs when PQregisterEventProc is called. It is the ideal time to initialize any
instanceData an event procedure may need. Only one register event will be fired per event handler
per connection. If the event procedure fails, the registration is aborted.

typedef struct
{
 PGconn *conn;
} PGEventRegister;

When a PGEVT_REGISTER event is received, the evtInfo pointer should be cast to a PGEventRegister
*. This structure contains a PGconn that should be in the CONNECTION_OK status; guaranteed if one
calls PQregisterEventProc right after obtaining a good PGconn. When returning a failure code, all
cleanup must be performed as no PGEVT_CONNDESTROY event will be sent.

PGEVT_CONNRESET

The connection reset event is fired on completion of PQreset or PQresetPoll. In both cases,
the event is only fired if the reset was successful. If the event procedure fails, the entire
connection reset will fail; the PGconn is put into CONNECTION_BAD status and PQresetPoll will return
PGRES_POLLING_FAILED.

typedef struct
{
 PGconn *conn;
} PGEventConnReset;

When a PGEVT_CONNRESET event is received, the evtInfo pointer should be cast to a
PGEventConnReset *. Although the contained PGconn was just reset, all event data remains
unchanged. This event should be used to reset/reload/requery any associated instanceData.
Note that even if the event procedure fails to process PGEVT_CONNRESET, it will still receive a
PGEVT_CONNDESTROY event when the connection is closed.

PGEVT_CONNDESTROY

The connection destroy event is fired in response to PQfinish. It is the event procedure's
responsibility to properly clean up its event data as libpq has no ability to manage this memory.
Failure to clean up will lead to memory leaks.

typedef struct
{
 PGconn *conn;
} PGEventConnDestroy;

When a PGEVT_CONNDESTROY event is received, the evtInfo pointer should be cast to a
PGEventConnDestroy *. This event is fired prior to PQfinish performing any other cleanup. The
return value of the event procedure is ignored since there is no way of indicating a failure from
PQfinish. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

746

libpq — C Library

PGEVT_RESULTCREATE

The result creation event is fired in response to any query execution function that generates a result,
including PQgetResult. This event will only be fired after the result has been created successfully.
typedef struct
{
 PGconn *conn;
 PGresult *result;
} PGEventResultCreate;

When a PGEVT_RESULTCREATE event is received, the evtInfo pointer should be cast to a
PGEventResultCreate *. The conn is the connection used to generate the result. This is the ideal
place to initialize any instanceData that needs to be associated with the result. If the event procedure
fails, the result will be cleared and the failure will be propagated. The event procedure must not try
to PQclear the result object for itself. When returning a failure code, all cleanup must be performed
as no PGEVT_RESULTDESTROY event will be sent.

PGEVT_RESULTCOPY

The result copy event is fired in response to PQcopyResult. This event will only be fired after the
copy is complete. Only event procedures that have successfully handled the PGEVT_RESULTCREATE or
PGEVT_RESULTCOPY event for the source result will receive PGEVT_RESULTCOPY events.
typedef struct
{
 const PGresult *src;
 PGresult *dest;
} PGEventResultCopy;

When a PGEVT_RESULTCOPY event is received, the evtInfo pointer should be cast to a
PGEventResultCopy *. The src result is what was copied while the dest result is the copy destination.
This event can be used to provide a deep copy of instanceData, since PQcopyResult cannot do that.
If the event procedure fails, the entire copy operation will fail and the dest result will be cleared.
When returning a failure code, all cleanup must be performed as no PGEVT_RESULTDESTROY event
will be sent for the destination result.

PGEVT_RESULTDESTROY

The result destroy event is fired in response to a PQclear. It is the event procedure's responsibility
to properly clean up its event data as libpq has no ability to manage this memory. Failure to clean
up will lead to memory leaks.
typedef struct
{
 PGresult *result;
} PGEventResultDestroy;

When a PGEVT_RESULTDESTROY event is received, the evtInfo pointer should be cast to a
PGEventResultDestroy *. This event is fired prior to PQclear performing any other cleanup. The
return value of the event procedure is ignored since there is no way of indicating a failure from
PQclear. Also, an event procedure failure should not abort the process of cleaning up unwanted
memory.

31.13.2. Event Callback Procedure
PGEventProc

PGEventProc is a typedef for a pointer to an event procedure, that is, the user callback function that
receives events from libpq. The signature of an event procedure must be
int eventproc(PGEventId evtId, void *evtInfo, void *passThrough)

The evtId parameter indicates which PGEVT event occurred. The evtInfo pointer must be cast
to the appropriate structure type to obtain further information about the event. The passThrough

747

libpq — C Library

parameter is the pointer provided to PQregisterEventProc when the event procedure was
registered. The function should return a non-zero value if it succeeds and zero if it fails.

A particular event procedure can be registered only once in any PGconn. This is because the address
of the procedure is used as a lookup key to identify the associated instance data.

Caution
On Windows, functions can have two different addresses: one visible from outside a DLL and
another visible from inside the DLL. One should be careful that only one of these addresses
is used with libpq's event-procedure functions, else confusion will result. The simplest rule
for writing code that will work is to ensure that event procedures are declared static. If the
procedure's address must be available outside its own source file, expose a separate function
to return the address.

31.13.3. Event Support Functions
PQregisterEventProc

Registers an event callback procedure with libpq.
int PQregisterEventProc(PGconn *conn, PGEventProc proc,
 const char *name, void *passThrough);

An event procedure must be registered once on each PGconn you want to receive events about. There
is no limit, other than memory, on the number of event procedures that can be registered with a
connection. The function returns a non-zero value if it succeeds and zero if it fails.

The proc argument will be called when a libpq event is fired. Its memory address is also used to
lookup instanceData. The name argument is used to refer to the event procedure in error messages.
This value cannot be NULL or a zero-length string. The name string is copied into the PGconn, so what
is passed need not be long-lived. The passThrough pointer is passed to the proc whenever an event
occurs. This argument can be NULL.

PQsetInstanceData

Sets the connection conn's instanceData for procedure proc to data. This returns non-zero for
success and zero for failure. (Failure is only possible if proc has not been properly registered in conn.)
int PQsetInstanceData(PGconn *conn, PGEventProc proc, void *data);

PQinstanceData

Returns the connection conn's instanceData associated with procedure proc, or NULL if there is none.
void *PQinstanceData(const PGconn *conn, PGEventProc proc);

PQresultSetInstanceData

Sets the result's instanceData for proc to data. This returns non-zero for success and zero for failure.
(Failure is only possible if proc has not been properly registered in the result.)
int PQresultSetInstanceData(PGresult *res, PGEventProc proc, void *data);

Beware that any storage represented by data will not be accounted for by PQresultMemorySize,
unless it is allocated using PQresultAlloc. (Doing so is recommendable because it eliminates the
need to free such storage explicitly when the result is destroyed.)

PQresultInstanceData

Returns the result's instanceData associated with proc, or NULL if there is none.
void *PQresultInstanceData(const PGresult *res, PGEventProc proc);

748

libpq — C Library

31.13.4. Event Example
Here is a skeleton example of managing private data associated with libpq connections and results.

/* required header for libpq events (note: includes libpq-fe.h) */
#include <libpq-events.h>

/* The instanceData */
typedef struct
{
 int n;
 char *str;
} mydata;

/* PGEventProc */
static int myEventProc(PGEventId evtId, void *evtInfo, void *passThrough);

int
main(void)
{
 mydata *data;
 PGresult *res;
 PGconn *conn =
 PQconnectdb("dbname=postgres options=-csearch_path=");

 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 PQfinish(conn);
 return 1;
 }

 /* called once on any connection that should receive events.
 * Sends a PGEVT_REGISTER to myEventProc.
 */
 if (!PQregisterEventProc(conn, myEventProc, "mydata_proc", NULL))
 {
 fprintf(stderr, "Cannot register PGEventProc\n");
 PQfinish(conn);
 return 1;
 }

 /* conn instanceData is available */
 data = PQinstanceData(conn, myEventProc);

 /* Sends a PGEVT_RESULTCREATE to myEventProc */
 res = PQexec(conn, "SELECT 1 + 1");

 /* result instanceData is available */
 data = PQresultInstanceData(res, myEventProc);

 /* If PG_COPYRES_EVENTS is used, sends a PGEVT_RESULTCOPY to myEventProc */
 res_copy = PQcopyResult(res, PG_COPYRES_TUPLES | PG_COPYRES_EVENTS);

 /* result instanceData is available if PG_COPYRES_EVENTS was
 * used during the PQcopyResult call.

749

libpq — C Library

 */
 data = PQresultInstanceData(res_copy, myEventProc);

 /* Both clears send a PGEVT_RESULTDESTROY to myEventProc */
 PQclear(res);
 PQclear(res_copy);

 /* Sends a PGEVT_CONNDESTROY to myEventProc */
 PQfinish(conn);

 return 0;
}

static int
myEventProc(PGEventId evtId, void *evtInfo, void *passThrough)
{
 switch (evtId)
 {
 case PGEVT_REGISTER:
 {
 PGEventRegister *e = (PGEventRegister *)evtInfo;
 mydata *data = get_mydata(e->conn);

 /* associate app specific data with connection */
 PQsetInstanceData(e->conn, myEventProc, data);
 break;
 }

 case PGEVT_CONNRESET:
 {
 PGEventConnReset *e = (PGEventConnReset *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 if (data)
 memset(data, 0, sizeof(mydata));
 break;
 }

 case PGEVT_CONNDESTROY:
 {
 PGEventConnDestroy *e = (PGEventConnDestroy *)evtInfo;
 mydata *data = PQinstanceData(e->conn, myEventProc);

 /* free instance data because the conn is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 case PGEVT_RESULTCREATE:
 {
 PGEventResultCreate *e = (PGEventResultCreate *)evtInfo;
 mydata *conn_data = PQinstanceData(e->conn, myEventProc);
 mydata *res_data = dup_mydata(conn_data);

 /* associate app specific data with result (copy it from conn) */
 PQsetResultInstanceData(e->result, myEventProc, res_data);
 break;

750

libpq — C Library

 }

 case PGEVT_RESULTCOPY:
 {
 PGEventResultCopy *e = (PGEventResultCopy *)evtInfo;
 mydata *src_data = PQresultInstanceData(e->src, myEventProc);
 mydata *dest_data = dup_mydata(src_data);

 /* associate app specific data with result (copy it from a result) */
 PQsetResultInstanceData(e->dest, myEventProc, dest_data);
 break;
 }

 case PGEVT_RESULTDESTROY:
 {
 PGEventResultDestroy *e = (PGEventResultDestroy *)evtInfo;
 mydata *data = PQresultInstanceData(e->result, myEventProc);

 /* free instance data because the result is being destroyed */
 if (data)
 free_mydata(data);
 break;
 }

 /* unknown event ID, just return true. */
 default:
 break;
 }

 return true; /* event processing succeeded */
}

31.14. Environment Variables
The following environment variables can be used to select default connection parameter values, which
will be used by PQconnectdb, PQsetdbLogin and PQsetdb if no value is directly specified by the
calling code. These are useful to avoid hard-coding database connection information into simple client
applications, for example.
• PGHOST behaves the same as the host connection parameter.
• PGHOSTADDR behaves the same as the hostaddr connection parameter. This can be set instead of or

in addition to PGHOST to avoid DNS lookup overhead.
• PGPORT behaves the same as the port connection parameter.
• PGDATABASE behaves the same as the dbname connection parameter.
• PGUSER behaves the same as the user connection parameter.
• PGPASSWORD behaves the same as the password connection parameter. Use of this environment

variable is not recommended for security reasons, as some operating systems allow non-root
users to see process environment variables via ps; instead consider using a password file (see
Section 31.15).

• PGPASSFILE behaves the same as the passfile connection parameter.
• PGCHANNELBINDING behaves the same as the channel_binding connection parameter.
• PGSERVICE behaves the same as the service connection parameter.
• PGSERVICEFILE specifies the name of the per-user connection service file. If not set, it defaults to

~/.pg_service.conf (see Section 31.16).

751

libpq — C Library

• PGOPTIONS behaves the same as the options connection parameter.

• PGAPPNAME behaves the same as the application_name connection parameter.

• PGSSLMODE behaves the same as the sslmode connection parameter.

• PGREQUIRESSL behaves the same as the requiressl connection parameter. This environment variable
is deprecated in favor of the PGSSLMODE variable; setting both variables suppresses the effect of this
one.

• PGSSLCOMPRESSION behaves the same as the sslcompression connection parameter.

• PGSSLCERT behaves the same as the sslcert connection parameter.

• PGSSLKEY behaves the same as the sslkey connection parameter.

• PGSSLROOTCERT behaves the same as the sslrootcert connection parameter.

• PGSSLCRL behaves the same as the sslcrl connection parameter.

• PGREQUIREPEER behaves the same as the requirepeer connection parameter.

• PGSSLMINPROTOCOLVERSION behaves the same as the ssl_min_protocol_version connection
parameter.

• PGSSLMAXPROTOCOLVERSION behaves the same as the ssl_max_protocol_version connection
parameter.

• PGGSSENCMODE behaves the same as the gssencmode connection parameter.

• PGKRBSRVNAME behaves the same as the krbsrvname connection parameter.

• PGGSSLIB behaves the same as the gsslib connection parameter.

• PGCONNECT_TIMEOUT behaves the same as the connect_timeout connection parameter.

• PGCLIENTENCODING behaves the same as the client_encoding connection parameter.

• PGTARGETSESSIONATTRS behaves the same as the target_session_attrs connection parameter.

The following environment variables can be used to specify default behavior for each Postgres Pro
session. (See also the ALTER ROLE and ALTER DATABASE commands for ways to set default behavior
on a per-user or per-database basis.)

• PGDATESTYLE sets the default style of date/time representation. (Equivalent to SET datestyle
TO)

• PGTZ sets the default time zone. (Equivalent to SET timezone TO)

• PGGEQO sets the default mode for the genetic query optimizer. (Equivalent to SET geqo TO)

Refer to the SQL command SET for information on correct values for these environment variables.

The following environment variables determine internal behavior of libpq; they override compiled-in
defaults.

• PGSYSCONFDIR sets the directory containing the pg_service.conf file and in a future version
possibly other system-wide configuration files.

• PGLOCALEDIR sets the directory containing the locale files for message localization.

31.15. The Password File
The file .pgpass in a user's home directory can contain passwords to be used if the connection requires
a password (and no password has been specified otherwise). On Microsoft Windows the file is named
%APPDATA%\postgresql\pgpass.conf (where %APPDATA% refers to the Application Data subdirectory in
the user's profile). Alternatively, a password file can be specified using the connection parameter passfile
or the environment variable PGPASSFILE.

752

libpq — C Library

This file should contain lines of the following format:

hostname:port:database:username:password

(You can add a reminder comment to the file by copying the line above and preceding it with #.) Each
of the first four fields can be a literal value, or *, which matches anything. The password field from the
first line that matches the current connection parameters will be used. (Therefore, put more-specific
entries first when you are using wildcards.) If an entry needs to contain : or \, escape this character
with \. The host name field is matched to the host connection parameter if that is specified, otherwise
to the hostaddr parameter if that is specified; if neither are given then the host name localhost is
searched for. The host name localhost is also searched for when the connection is a Unix-domain socket
connection and the host parameter matches libpq's default socket directory path. In a standby server,
a database field of replication matches streaming replication connections made to the master server.
The database field is of limited usefulness otherwise, because users have the same password for all
databases in the same cluster.

On Unix systems, the permissions on a password file must disallow any access to world or group; achieve
this by a command such as chmod 0600 ~/.pgpass. If the permissions are less strict than this, the file
will be ignored. On Microsoft Windows, it is assumed that the file is stored in a directory that is secure,
so no special permissions check is made.

31.16. The Connection Service File
The connection service file allows libpq connection parameters to be associated with a single service
name. That service name can then be specified by a libpq connection, and the associated settings will
be used. This allows connection parameters to be modified without requiring a recompile of the libpq
application. The service name can also be specified using the PGSERVICE environment variable.

The connection service file can be a per-user service file at ~/.pg_service.conf or the location
specified by the environment variable PGSERVICEFILE, or it can be a system-wide file at `pg_config --
sysconfdir`/pg_service.conf or in the directory specified by the environment variable PGSYSCONFDIR.
If service definitions with the same name exist in the user and the system file, the user file takes
precedence.

The file uses an “INI file” format where the section name is the service name and the parameters are
connection parameters; see Section 31.1.2 for a list. For example:

comment
[mydb]
host=somehost
port=5433
user=admin

An example file is provided at share/pg_service.conf.sample.

31.17. LDAP Lookup of Connection Parameters
If libpq has been compiled with LDAP support (option --with-ldap for configure) it is possible to
retrieve connection options like host or dbname via LDAP from a central server. The advantage is that if
the connection parameters for a database change, the connection information doesn't have to be updated
on all client machines.

LDAP connection parameter lookup uses the connection service file pg_service.conf (see
Section 31.16). A line in a pg_service.conf stanza that starts with ldap:// will be recognized as an
LDAP URL and an LDAP query will be performed. The result must be a list of keyword = value pairs
which will be used to set connection options. The URL must conform to RFC 1959 and be of the form

ldap://[hostname[:port]]/search_base?attribute?search_scope?filter

where hostname defaults to localhost and port defaults to 389.

753

libpq — C Library

Processing of pg_service.conf is terminated after a successful LDAP lookup, but is continued if the
LDAP server cannot be contacted. This is to provide a fallback with further LDAP URL lines that point
to different LDAP servers, classical keyword = value pairs, or default connection options. If you would
rather get an error message in this case, add a syntactically incorrect line after the LDAP URL.

A sample LDAP entry that has been created with the LDIF file

version:1
dn:cn=mydatabase,dc=mycompany,dc=com
changetype:add
objectclass:top
objectclass:device
cn:mydatabase
description:host=dbserver.mycompany.com
description:port=5439
description:dbname=mydb
description:user=mydb_user
description:sslmode=require

might be queried with the following LDAP URL:

ldap://ldap.mycompany.com/dc=mycompany,dc=com?description?one?(cn=mydatabase)

You can also mix regular service file entries with LDAP lookups. A complete example for a stanza in
pg_service.conf would be:

only host and port are stored in LDAP, specify dbname and user explicitly
[customerdb]
dbname=customer
user=appuser
ldap://ldap.acme.com/cn=dbserver,cn=hosts?pgconnectinfo?base?(objectclass=*)

31.18. SSL Support
Postgres Pro has native support for using SSL connections to encrypt client/server communications for
increased security. See Section 17.9 for details about the server-side SSL functionality.

libpq reads the system-wide OpenSSL configuration file. By default, this file is named openssl.cnf and
is located in the directory reported by openssl version -d. This default can be overridden by setting
environment variable OPENSSL_CONF to the name of the desired configuration file.

31.18.1. Client Verification of Server Certificates
By default, Postgres Pro will not perform any verification of the server certificate. This means that it
is possible to spoof the server identity (for example by modifying a DNS record or by taking over the
server IP address) without the client knowing. In order to prevent spoofing, the client must be able to
verify the server's identity via a chain of trust. A chain of trust is established by placing a root (self-
signed) certificate authority (CA) certificate on one computer and a leaf certificate signed by the root
certificate on another computer. It is also possible to use an “intermediate” certificate which is signed
by the root certificate and signs leaf certificates.

To allow the client to verify the identity of the server, place a root certificate on the client and a leaf
certificate signed by the root certificate on the server. To allow the server to verify the identity of the
client, place a root certificate on the server and a leaf certificate signed by the root certificate on the
client. One or more intermediate certificates (usually stored with the leaf certificate) can also be used
to link the leaf certificate to the root certificate.

Once a chain of trust has been established, there are two ways for the client to validate the leaf certificate
sent by the server. If the parameter sslmode is set to verify-ca, libpq will verify that the server is
trustworthy by checking the certificate chain up to the root certificate stored on the client. If sslmode

754

libpq — C Library

is set to verify-full, libpq will also verify that the server host name matches the name stored in the
server certificate. The SSL connection will fail if the server certificate cannot be verified. verify-full
is recommended in most security-sensitive environments.

In verify-full mode, the host name is matched against the certificate's Subject Alternative Name
attribute(s), or against the Common Name attribute if no Subject Alternative Name of type dNSName is
present. If the certificate's name attribute starts with an asterisk (*), the asterisk will be treated as a
wildcard, which will match all characters except a dot (.). This means the certificate will not match
subdomains. If the connection is made using an IP address instead of a host name, the IP address will
be matched (without doing any DNS lookups).

To allow server certificate verification, one or more root certificates must be placed in the file
~/.postgresql/root.crt in the user's home directory. (On Microsoft Windows the file is named
%APPDATA%\postgresql\root.crt.) Intermediate certificates should also be added to the file if they are
needed to link the certificate chain sent by the server to the root certificates stored on the client.

Certificate Revocation List (CRL) entries are also checked if the file ~/.postgresql/root.crl exists
(%APPDATA%\postgresql\root.crl on Microsoft Windows).

The location of the root certificate file and the CRL can be changed by setting the connection parameters
sslrootcert and sslcrl or the environment variables PGSSLROOTCERT and PGSSLCRL.

Note
For backwards compatibility with earlier versions of Postgres Pro, if a root CA file exists, the
behavior of sslmode=require will be the same as that of verify-ca, meaning the server certificate
is validated against the CA. Relying on this behavior is discouraged, and applications that need
certificate validation should always use verify-ca or verify-full.

31.18.2. Client Certificates
If the server attempts to verify the identity of the client by requesting the client's leaf certificate, libpq
will send the certificate(s) stored in file ~/.postgresql/postgresql.crt in the user's home directory.
The certificates must chain to the root certificate trusted by the server. A matching private key file
~/.postgresql/postgresql.key must also be present. On Microsoft Windows these files are named
%APPDATA%\postgresql\postgresql.crt and %APPDATA%\postgresql\postgresql.key. The location of
the certificate and key files can be overridden by the connection parameters sslcert and sslkey, or by
the environment variables PGSSLCERT and PGSSLKEY.

On Unix systems, the permissions on the private key file must disallow any access to world or group;
achieve this by a command such as chmod 0600 ~/.postgresql/postgresql.key. Alternatively, the file
can be owned by root and have group read access (that is, 0640 permissions). That setup is intended
for installations where certificate and key files are managed by the operating system. The user of libpq
should then be made a member of the group that has access to those certificate and key files. (On
Microsoft Windows, there is no file permissions check, since the %APPDATA%\postgresql directory is
presumed secure.)

The first certificate in postgresql.crt must be the client's certificate because it must match the client's
private key. “Intermediate” certificates can be optionally appended to the file — doing so avoids requiring
storage of intermediate certificates on the server (ssl_ca_file).

The certificate and key may be in PEM or ASN.1 DER format.

The key may be stored in cleartext or encrypted with a passphrase using any algorithm supported
by OpenSSL, like AES-128. If the key is stored encrypted, then the passphrase may be provided
in the sslpassword connection option. If an encrypted key is supplied and the sslpassword option
is absent or blank, a password will be prompted for interactively by OpenSSL with a Enter PEM

755

libpq — C Library

pass phrase: prompt if a TTY is available. Applications can override the client certificate prompt
and the handling of the sslpassword parameter by supplying their own key password callback; see
PQsetSSLKeyPassHook_OpenSSL.

For instructions on creating certificates, see Section 17.9.5.

31.18.3. Protection Provided in Different Modes
The different values for the sslmode parameter provide different levels of protection. SSL can provide
protection against three types of attacks:

Eavesdropping

If a third party can examine the network traffic between the client and the server, it can read both
connection information (including the user name and password) and the data that is passed. SSL
uses encryption to prevent this.

Man in the middle (MITM)

If a third party can modify the data while passing between the client and server, it can pretend to
be the server and therefore see and modify data even if it is encrypted. The third party can then
forward the connection information and data to the original server, making it impossible to detect
this attack. Common vectors to do this include DNS poisoning and address hijacking, whereby the
client is directed to a different server than intended. There are also several other attack methods that
can accomplish this. SSL uses certificate verification to prevent this, by authenticating the server
to the client.

Impersonation

If a third party can pretend to be an authorized client, it can simply access data it should not
have access to. Typically this can happen through insecure password management. SSL uses client
certificates to prevent this, by making sure that only holders of valid certificates can access the server.

For a connection to be known SSL-secured, SSL usage must be configured on both the client and the
server before the connection is made. If it is only configured on the server, the client may end up sending
sensitive information (e.g., passwords) before it knows that the server requires high security. In libpq,
secure connections can be ensured by setting the sslmode parameter to verify-full or verify-ca, and
providing the system with a root certificate to verify against. This is analogous to using an https URL
for encrypted web browsing.

Once the server has been authenticated, the client can pass sensitive data. This means that up until this
point, the client does not need to know if certificates will be used for authentication, making it safe to
specify that only in the server configuration.

All SSL options carry overhead in the form of encryption and key-exchange, so there is a trade-off that
has to be made between performance and security. Table 31.1 illustrates the risks the different sslmode
values protect against, and what statement they make about security and overhead.

Table 31.1. SSL Mode Descriptions

sslmode Eavesdropping
protection

MITM protection Statement

disable No No I don't care about security, and I don't
want to pay the overhead of encryption.

allow Maybe No I don't care about security, but I will
pay the overhead of encryption if the
server insists on it.

prefer Maybe No I don't care about encryption, but I wish
to pay the overhead of encryption if the
server supports it.

756

libpq — C Library

sslmode Eavesdropping
protection

MITM protection Statement

require Yes No I want my data to be encrypted, and
I accept the overhead. I trust that
the network will make sure I always
connect to the server I want.

verify-ca Yes Depends on CA
policy

I want my data encrypted, and I accept
the overhead. I want to be sure that I
connect to a server that I trust.

verify-full Yes Yes I want my data encrypted, and I accept
the overhead. I want to be sure that I
connect to a server I trust, and that it's
the one I specify.

The difference between verify-ca and verify-full depends on the policy of the root CA. If a public CA
is used, verify-ca allows connections to a server that somebody else may have registered with the CA.
In this case, verify-full should always be used. If a local CA is used, or even a self-signed certificate,
using verify-ca often provides enough protection.

The default value for sslmode is prefer. As is shown in the table, this makes no sense from a security
point of view, and it only promises performance overhead if possible. It is only provided as the default
for backward compatibility, and is not recommended in secure deployments.

31.18.4. SSL Client File Usage
Table 31.2 summarizes the files that are relevant to the SSL setup on the client.

Table 31.2. Libpq/Client SSL File Usage

File Contents Effect
~/.postgresql/postgresql.crt client certificate sent to server
~/.postgresql/postgresql.key client private key proves client certificate sent

by owner; does not indicate
certificate owner is trustworthy

~/.postgresql/root.crt trusted certificate authorities checks that server certificate is
signed by a trusted certificate
authority

~/.postgresql/root.crl certificates revoked by
certificate authorities

server certificate must not be on
this list

31.18.5. SSL Library Initialization
If your application initializes libssl and/or libcrypto libraries and libpq is built with SSL support, you
should call PQinitOpenSSL to tell libpq that the libssl and/or libcrypto libraries have been initialized
by your application, so that libpq will not also initialize those libraries.

PQinitOpenSSL

Allows applications to select which security libraries to initialize.

void PQinitOpenSSL(int do_ssl, int do_crypto);

When do_ssl is non-zero, libpq will initialize the OpenSSL library before first opening a database
connection. When do_crypto is non-zero, the libcrypto library will be initialized. By default (if
PQinitOpenSSL is not called), both libraries are initialized. When SSL support is not compiled in, this
function is present but does nothing.

757

libpq — C Library

If your application uses and initializes either OpenSSL or its underlying libcrypto library, you
must call this function with zeroes for the appropriate parameter(s) before first opening a database
connection. Also be sure that you have done that initialization before opening a database connection.

PQinitSSL

Allows applications to select which security libraries to initialize.

void PQinitSSL(int do_ssl);

This function is equivalent to PQinitOpenSSL(do_ssl, do_ssl). It is sufficient for applications that
initialize both or neither of OpenSSL and libcrypto.

PQinitSSL has been present since PostgreSQL 8.0, while PQinitOpenSSL was added in PostgreSQL
8.4, so PQinitSSL might be preferable for applications that need to work with older versions of libpq.

31.19. Behavior in Threaded Programs
libpq is reentrant and thread-safe by default. You might need to use special compiler command-line
options when you compile your application code. Refer to your system's documentation for information
about how to build thread-enabled applications. This function allows the querying of libpq's thread-safe
status:

PQisthreadsafe

Returns the thread safety status of the libpq library.

int PQisthreadsafe();

Returns 1 if the libpq is thread-safe and 0 if it is not.

One thread restriction is that no two threads attempt to manipulate the same PGconn object at the same
time. In particular, you cannot issue concurrent commands from different threads through the same
connection object. (If you need to run concurrent commands, use multiple connections.)

PGresult objects are normally read-only after creation, and so can be passed around freely between
threads. However, if you use any of the PGresult-modifying functions described in Section 31.11 or
Section 31.13, it's up to you to avoid concurrent operations on the same PGresult, too.

The deprecated functions PQrequestCancel and PQoidStatus are not thread-safe and should not be used
in multithread programs. PQrequestCancel can be replaced by PQcancel. PQoidStatus can be replaced
by PQoidValue.

If you are using Kerberos inside your application (in addition to inside libpq), you will need to
do locking around Kerberos calls because Kerberos functions are not thread-safe. See function
PQregisterThreadLock in the libpq source code for a way to do cooperative locking between libpq and
your application.

31.20. Building libpq Programs
To build (i.e., compile and link) a program using libpq you need to do all of the following things:
• Include the libpq-fe.h header file:

#include <libpq-fe.h>

If you failed to do that then you will normally get error messages from your compiler similar to:

foo.c: In function `main':
foo.c:34: `PGconn' undeclared (first use in this function)
foo.c:35: `PGresult' undeclared (first use in this function)
foo.c:54: `CONNECTION_BAD' undeclared (first use in this function)
foo.c:68: `PGRES_COMMAND_OK' undeclared (first use in this function)

758

libpq — C Library

foo.c:95: `PGRES_TUPLES_OK' undeclared (first use in this function)

• Point your compiler to the directory where the Postgres Pro header files were installed, by
supplying the -Idirectory option to your compiler. (In some cases the compiler will look into the
directory in question by default, so you can omit this option.) For instance, your compile command
line could look like:

cc -c -I/usr/local/pgsql/include testprog.c

If you are using makefiles then add the option to the CPPFLAGS variable:

CPPFLAGS += -I/usr/local/pgsql/include

If there is any chance that your program might be compiled by other users then you should not
hardcode the directory location like that. Instead, you can run the utility pg_configto find out
where the header files are on the local system:

$ pg_config --includedir
/usr/local/include

If you have pkg-configinstalled, you can run instead:

$ pkg-config --cflags libpq
-I/usr/local/include

Note that this will already include the -I in front of the path.

Failure to specify the correct option to the compiler will result in an error message such as:

testlibpq.c:8:22: libpq-fe.h: No such file or directory

• When linking the final program, specify the option -lpq so that the libpq library gets pulled in,
as well as the option -Ldirectory to point the compiler to the directory where the libpq library
resides. (Again, the compiler will search some directories by default.) For maximum portability, put
the -L option before the -lpq option. For example:

cc -o testprog testprog1.o testprog2.o -L/usr/local/pgsql/lib -lpq

You can find out the library directory using pg_config as well:

$ pg_config --libdir
/usr/local/pgsql/lib

Or again use pkg-config:

$ pkg-config --libs libpq
-L/usr/local/pgsql/lib -lpq

Note again that this prints the full options, not only the path.

Error messages that point to problems in this area could look like the following:

testlibpq.o: In function `main':
testlibpq.o(.text+0x60): undefined reference to `PQsetdbLogin'
testlibpq.o(.text+0x71): undefined reference to `PQstatus'
testlibpq.o(.text+0xa4): undefined reference to `PQerrorMessage'

This means you forgot -lpq.

/usr/bin/ld: cannot find -lpq

This means you forgot the -L option or did not specify the right directory.

31.21. Example Programs
These examples and others can be found in the directory src/test/examples in the source code
distribution.

759

libpq — C Library

Example 31.1. libpq Example Program 1

/*
 * src/test/examples/testlibpq.c
 *
 *
 * testlibpq.c
 *
 * Test the C version of libpq, the PostgreSQL frontend library.
 */
#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 int nFields;
 int i,
 j;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {

760

libpq — C Library

 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */
 PQclear(res);

 /*
 * Our test case here involves using a cursor, for which we must be inside
 * a transaction block. We could do the whole thing with a single
 * PQexec() of "select * from pg_database", but that's too trivial to make
 * a good example.
 */

 /* Start a transaction block */
 res = PQexec(conn, "BEGIN");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "BEGIN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * Fetch rows from pg_database, the system catalog of databases
 */
 res = PQexec(conn, "DECLARE myportal CURSOR FOR select * from pg_database");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "DECLARE CURSOR failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "FETCH ALL in myportal");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "FETCH ALL failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /* first, print out the attribute names */
 nFields = PQnfields(res);
 for (i = 0; i < nFields; i++)
 printf("%-15s", PQfname(res, i));
 printf("\n\n");

 /* next, print out the rows */
 for (i = 0; i < PQntuples(res); i++)
 {
 for (j = 0; j < nFields; j++)

761

libpq — C Library

 printf("%-15s", PQgetvalue(res, i, j));
 printf("\n");
 }

 PQclear(res);

 /* close the portal ... we don't bother to check for errors ... */
 res = PQexec(conn, "CLOSE myportal");
 PQclear(res);

 /* end the transaction */
 res = PQexec(conn, "END");
 PQclear(res);

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

Example 31.2. libpq Example Program 2

/*
 * src/test/examples/testlibpq2.c
 *
 *
 * testlibpq2.c
 * Test of the asynchronous notification interface
 *
 * Start this program, then from psql in another window do
 * NOTIFY TBL2;
 * Repeat four times to get this program to exit.
 *
 * Or, if you want to get fancy, try this:
 * populate a database with the following commands
 * (provided in src/test/examples/testlibpq2.sql):
 *
 * CREATE SCHEMA TESTLIBPQ2;
 * SET search_path = TESTLIBPQ2;
 * CREATE TABLE TBL1 (i int4);
 * CREATE TABLE TBL2 (i int4);
 * CREATE RULE r1 AS ON INSERT TO TBL1 DO
 * (INSERT INTO TBL2 VALUES (new.i); NOTIFY TBL2);
 *
 * Start this program, then from psql do this four times:
 *
 * INSERT INTO TESTLIBPQ2.TBL1 VALUES (10);
 */

#ifdef WIN32
#include <windows.h>
#endif
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <errno.h>
#include <sys/time.h>

762

libpq — C Library

#include <sys/types.h>
#ifdef HAVE_SYS_SELECT_H
#include <sys/select.h>
#endif

#include "libpq-fe.h"

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 PGnotify *notify;
 int nnotifies;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 /*
 * Should PQclear PGresult whenever it is no longer needed to avoid memory
 * leaks
 */

763

libpq — C Library

 PQclear(res);

 /*
 * Issue LISTEN command to enable notifications from the rule's NOTIFY.
 */
 res = PQexec(conn, "LISTEN TBL2");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "LISTEN command failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /* Quit after four notifies are received. */
 nnotifies = 0;
 while (nnotifies < 4)
 {
 /*
 * Sleep until something happens on the connection. We use select(2)
 * to wait for input, but you could also use poll() or similar
 * facilities.
 */
 int sock;
 fd_set input_mask;

 sock = PQsocket(conn);

 if (sock < 0)
 break; /* shouldn't happen */

 FD_ZERO(&input_mask);
 FD_SET(sock, &input_mask);

 if (select(sock + 1, &input_mask, NULL, NULL, NULL) < 0)
 {
 fprintf(stderr, "select() failed: %s\n", strerror(errno));
 exit_nicely(conn);
 }

 /* Now check for input */
 PQconsumeInput(conn);
 while ((notify = PQnotifies(conn)) != NULL)
 {
 fprintf(stderr,
 "ASYNC NOTIFY of '%s' received from backend PID %d\n",
 notify->relname, notify->be_pid);
 PQfreemem(notify);
 nnotifies++;
 PQconsumeInput(conn);
 }
 }

 fprintf(stderr, "Done.\n");

 /* close the connection to the database and cleanup */
 PQfinish(conn);

764

libpq — C Library

 return 0;
}

Example 31.3. libpq Example Program 3

/*
 * src/test/examples/testlibpq3.c
 *
 *
 * testlibpq3.c
 * Test out-of-line parameters and binary I/O.
 *
 * Before running this, populate a database with the following commands
 * (provided in src/test/examples/testlibpq3.sql):
 *
 * CREATE SCHEMA testlibpq3;
 * SET search_path = testlibpq3;
 * SET standard_conforming_strings = ON;
 * CREATE TABLE test1 (i int4, t text, b bytea);
 * INSERT INTO test1 values (1, 'joe''s place', '\000\001\002\003\004');
 * INSERT INTO test1 values (2, 'ho there', '\004\003\002\001\000');
 *
 * The expected output is:
 *
 * tuple 0: got
 * i = (4 bytes) 1
 * t = (11 bytes) 'joe's place'
 * b = (5 bytes) \000\001\002\003\004
 *
 * tuple 0: got
 * i = (4 bytes) 2
 * t = (8 bytes) 'ho there'
 * b = (5 bytes) \004\003\002\001\000
 */

#ifdef WIN32
#include <windows.h>
#endif

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <sys/types.h>
#include "libpq-fe.h"

/* for ntohl/htonl */
#include <netinet/in.h>
#include <arpa/inet.h>

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

765

libpq — C Library

/*
 * This function prints a query result that is a binary-format fetch from
 * a table defined as in the comment above. We split it out because the
 * main() function uses it twice.
 */
static void
show_binary_results(PGresult *res)
{
 int i,
 j;
 int i_fnum,
 t_fnum,
 b_fnum;

 /* Use PQfnumber to avoid assumptions about field order in result */
 i_fnum = PQfnumber(res, "i");
 t_fnum = PQfnumber(res, "t");
 b_fnum = PQfnumber(res, "b");

 for (i = 0; i < PQntuples(res); i++)
 {
 char *iptr;
 char *tptr;
 char *bptr;
 int blen;
 int ival;

 /* Get the field values (we ignore possibility they are null!) */
 iptr = PQgetvalue(res, i, i_fnum);
 tptr = PQgetvalue(res, i, t_fnum);
 bptr = PQgetvalue(res, i, b_fnum);

 /*
 * The binary representation of INT4 is in network byte order, which
 * we'd better coerce to the local byte order.
 */
 ival = ntohl(*((uint32_t *) iptr));

 /*
 * The binary representation of TEXT is, well, text, and since libpq
 * was nice enough to append a zero byte to it, it'll work just fine
 * as a C string.
 *
 * The binary representation of BYTEA is a bunch of bytes, which could
 * include embedded nulls so we have to pay attention to field length.
 */
 blen = PQgetlength(res, i, b_fnum);

 printf("tuple %d: got\n", i);
 printf(" i = (%d bytes) %d\n",
 PQgetlength(res, i, i_fnum), ival);
 printf(" t = (%d bytes) '%s'\n",
 PQgetlength(res, i, t_fnum), tptr);
 printf(" b = (%d bytes) ", blen);
 for (j = 0; j < blen; j++)
 printf("\\%03o", bptr[j]);
 printf("\n\n");

766

libpq — C Library

 }
}

int
main(int argc, char **argv)
{
 const char *conninfo;
 PGconn *conn;
 PGresult *res;
 const char *paramValues[1];
 int paramLengths[1];
 int paramFormats[1];
 uint32_t binaryIntVal;

 /*
 * If the user supplies a parameter on the command line, use it as the
 * conninfo string; otherwise default to setting dbname=postgres and using
 * environment variables or defaults for all other connection parameters.
 */
 if (argc > 1)
 conninfo = argv[1];
 else
 conninfo = "dbname = postgres";

 /* Make a connection to the database */
 conn = PQconnectdb(conninfo);

 /* Check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn, "SET search_path = testlibpq3");
 if (PQresultStatus(res) != PGRES_COMMAND_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 /*
 * The point of this program is to illustrate use of PQexecParams() with
 * out-of-line parameters, as well as binary transmission of data.
 *
 * This first example transmits the parameters as text, but receives the
 * results in binary format. By using out-of-line parameters we can avoid
 * a lot of tedious mucking about with quoting and escaping, even though
 * the data is text. Notice how we don't have to do anything special with
 * the quote mark in the parameter value.
 */

 /* Here is our out-of-line parameter value */
 paramValues[0] = "joe's place";

767

libpq — C Library

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE t = $1",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 NULL, /* don't need param lengths since text */
 NULL, /* default to all text params */
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

 /*
 * In this second example we transmit an integer parameter in binary form,
 * and again retrieve the results in binary form.
 *
 * Although we tell PQexecParams we are letting the backend deduce
 * parameter type, we really force the decision by casting the parameter
 * symbol in the query text. This is a good safety measure when sending
 * binary parameters.
 */

 /* Convert integer value "2" to network byte order */
 binaryIntVal = htonl((uint32_t) 2);

 /* Set up parameter arrays for PQexecParams */
 paramValues[0] = (char *) &binaryIntVal;
 paramLengths[0] = sizeof(binaryIntVal);
 paramFormats[0] = 1; /* binary */

 res = PQexecParams(conn,
 "SELECT * FROM test1 WHERE i = $1::int4",
 1, /* one param */
 NULL, /* let the backend deduce param type */
 paramValues,
 paramLengths,
 paramFormats,
 1); /* ask for binary results */

 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SELECT failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }

 show_binary_results(res);

 PQclear(res);

768

libpq — C Library

 /* close the connection to the database and cleanup */
 PQfinish(conn);

 return 0;
}

769

Chapter 32. Large Objects
Postgres Pro has a large object facility, which provides stream-style access to user data that is stored
in a special large-object structure. Streaming access is useful when working with data values that are
too large to manipulate conveniently as a whole.

This chapter describes the implementation and the programming and query language interfaces to
Postgres Pro large object data. We use the libpq C library for the examples in this chapter, but most
programming interfaces native to Postgres Pro support equivalent functionality. Other interfaces might
use the large object interface internally to provide generic support for large values. This is not described
here.

32.1. Introduction
All large objects are stored in a single system table named pg_largeobject. Each large object also has
an entry in the system table pg_largeobject_metadata. Large objects can be created, modified, and
deleted using a read/write API that is similar to standard operations on files.

Postgres Pro also supports a storage system called “TOAST”, which automatically stores values larger
than a single database page into a secondary storage area per table. This makes the large object facility
partially obsolete. One remaining advantage of the large object facility is that it allows values up to 4
TB in size, whereas TOASTed fields can be at most 1 GB. Also, reading and updating portions of a large
object can be done efficiently, while most operations on a TOASTed field will read or write the whole
value as a unit.

32.2. Implementation Features
The large object implementation breaks large objects up into “chunks” and stores the chunks in rows in
the database. A B-tree index guarantees fast searches for the correct chunk number when doing random
access reads and writes.

The chunks stored for a large object do not have to be contiguous. For example, if an application opens a
new large object, seeks to offset 1000000, and writes a few bytes there, this does not result in allocation
of 1000000 bytes worth of storage; only of chunks covering the range of data bytes actually written. A
read operation will, however, read out zeroes for any unallocated locations preceding the last existing
chunk. This corresponds to the common behavior of “sparsely allocated” files in Unix file systems.

As of PostgreSQL 9.0, large objects have an owner and a set of access permissions, which can be managed
using GRANT and REVOKE. SELECT privileges are required to read a large object, and UPDATE privileges
are required to write or truncate it. Only the large object's owner (or a database superuser) can delete,
comment on, or change the owner of a large object. To adjust this behavior for compatibility with prior
releases, see the lo_compat_privileges run-time parameter.

32.3. Client Interfaces
This section describes the facilities that Postgres Pro's libpq client interface library provides for
accessing large objects. The Postgres Pro large object interface is modeled after the Unix file-system
interface, with analogues of open, read, write, lseek, etc.

All large object manipulation using these functions must take place within an SQL transaction block,
since large object file descriptors are only valid for the duration of a transaction.

If an error occurs while executing any one of these functions, the function will return an otherwise-
impossible value, typically 0 or -1. A message describing the error is stored in the connection object and
can be retrieved with PQerrorMessage.

Client applications that use these functions should include the header file libpq/libpq-fs.h and link
with the libpq library.

770

Large Objects

32.3.1. Creating a Large Object
The function
Oid lo_creat(PGconn *conn, int mode);

creates a new large object. The return value is the OID that was assigned to the new large object, or
InvalidOid (zero) on failure. mode is unused and ignored as of PostgreSQL 8.1; however, for backward
compatibility with earlier releases it is best to set it to INV_READ, INV_WRITE, or INV_READ | INV_WRITE.
(These symbolic constants are defined in the header file libpq/libpq-fs.h.)

An example:
inv_oid = lo_creat(conn, INV_READ|INV_WRITE);

The function
Oid lo_create(PGconn *conn, Oid lobjId);

also creates a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs if
that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_create assigns
an unused OID (this is the same behavior as lo_creat). The return value is the OID that was assigned
to the new large object, or InvalidOid (zero) on failure.

lo_create is new as of PostgreSQL 8.1; if this function is run against an older server version, it will
fail and return InvalidOid.

An example:
inv_oid = lo_create(conn, desired_oid);

32.3.2. Importing a Large Object
To import an operating system file as a large object, call
Oid lo_import(PGconn *conn, const char *filename);

filename specifies the operating system name of the file to be imported as a large object. The return
value is the OID that was assigned to the new large object, or InvalidOid (zero) on failure. Note that
the file is read by the client interface library, not by the server; so it must exist in the client file system
and be readable by the client application.

The function
Oid lo_import_with_oid(PGconn *conn, const char *filename, Oid lobjId);

also imports a new large object. The OID to be assigned can be specified by lobjId; if so, failure occurs if
that OID is already in use for some large object. If lobjId is InvalidOid (zero) then lo_import_with_oid
assigns an unused OID (this is the same behavior as lo_import). The return value is the OID that was
assigned to the new large object, or InvalidOid (zero) on failure.

lo_import_with_oid is new as of PostgreSQL 8.4 and uses lo_create internally which is new in 8.1; if
this function is run against 8.0 or before, it will fail and return InvalidOid.

32.3.3. Exporting a Large Object
To export a large object into an operating system file, call
int lo_export(PGconn *conn, Oid lobjId, const char *filename);

The lobjId argument specifies the OID of the large object to export and the filename argument specifies
the operating system name of the file. Note that the file is written by the client interface library, not by
the server. Returns 1 on success, -1 on failure.

32.3.4. Opening an Existing Large Object
To open an existing large object for reading or writing, call
int lo_open(PGconn *conn, Oid lobjId, int mode);

771

Large Objects

The lobjId argument specifies the OID of the large object to open. The mode bits control whether
the object is opened for reading (INV_READ), writing (INV_WRITE), or both. (These symbolic constants
are defined in the header file libpq/libpq-fs.h.) lo_open returns a (non-negative) large object
descriptor for later use in lo_read, lo_write, lo_lseek, lo_lseek64, lo_tell, lo_tell64, lo_truncate,
lo_truncate64, and lo_close. The descriptor is only valid for the duration of the current transaction.
On failure, -1 is returned.

The server currently does not distinguish between modes INV_WRITE and INV_READ | INV_WRITE: you
are allowed to read from the descriptor in either case. However there is a significant difference between
these modes and INV_READ alone: with INV_READ you cannot write on the descriptor, and the data read
from it will reflect the contents of the large object at the time of the transaction snapshot that was active
when lo_open was executed, regardless of later writes by this or other transactions. Reading from a
descriptor opened with INV_WRITE returns data that reflects all writes of other committed transactions
as well as writes of the current transaction. This is similar to the behavior of REPEATABLE READ versus
READ COMMITTED transaction modes for ordinary SQL SELECT commands.

lo_open will fail if SELECT privilege is not available for the large object, or if INV_WRITE is specified and
UPDATE privilege is not available. (Prior to PostgreSQL 11, these privilege checks were instead performed
at the first actual read or write call using the descriptor.) These privilege checks can be disabled with
the lo_compat_privileges run-time parameter.

An example:
inv_fd = lo_open(conn, inv_oid, INV_READ|INV_WRITE);

32.3.5. Writing Data to a Large Object
The function
int lo_write(PGconn *conn, int fd, const char *buf, size_t len);

writes len bytes from buf (which must be of size len) to large object descriptor fd. The fd argument
must have been returned by a previous lo_open. The number of bytes actually written is returned (in
the current implementation, this will always equal len unless there is an error). In the event of an error,
the return value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

32.3.6. Reading Data from a Large Object
The function
int lo_read(PGconn *conn, int fd, char *buf, size_t len);

reads up to len bytes from large object descriptor fd into buf (which must be of size len). The fd
argument must have been returned by a previous lo_open. The number of bytes actually read is returned;
this will be less than len if the end of the large object is reached first. In the event of an error, the
return value is -1.

Although the len parameter is declared as size_t, this function will reject length values larger than
INT_MAX. In practice, it's best to transfer data in chunks of at most a few megabytes anyway.

32.3.7. Seeking in a Large Object
To change the current read or write location associated with a large object descriptor, call
int lo_lseek(PGconn *conn, int fd, int offset, int whence);

This function moves the current location pointer for the large object descriptor identified by fd to the
new location specified by offset. The valid values for whence are SEEK_SET (seek from object start),
SEEK_CUR (seek from current position), and SEEK_END (seek from object end). The return value is the
new location pointer, or -1 on error.

When dealing with large objects that might exceed 2GB in size, instead use

772

Large Objects

pg_int64 lo_lseek64(PGconn *conn, int fd, pg_int64 offset, int whence);

This function has the same behavior as lo_lseek, but it can accept an offset larger than 2GB and/
or deliver a result larger than 2GB. Note that lo_lseek will fail if the new location pointer would be
greater than 2GB.

lo_lseek64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

32.3.8. Obtaining the Seek Position of a Large Object
To obtain the current read or write location of a large object descriptor, call
int lo_tell(PGconn *conn, int fd);

If there is an error, the return value is -1.

When dealing with large objects that might exceed 2GB in size, instead use
pg_int64 lo_tell64(PGconn *conn, int fd);

This function has the same behavior as lo_tell, but it can deliver a result larger than 2GB. Note that
lo_tell will fail if the current read/write location is greater than 2GB.

lo_tell64 is new as of PostgreSQL 9.3. If this function is run against an older server version, it will
fail and return -1.

32.3.9. Truncating a Large Object
To truncate a large object to a given length, call
int lo_truncate(PGconn *conn, int fd, size_t len);

This function truncates the large object descriptor fd to length len. The fd argument must have been
returned by a previous lo_open. If len is greater than the large object's current length, the large object
is extended to the specified length with null bytes ('\0'). On success, lo_truncate returns zero. On error,
the return value is -1.

The read/write location associated with the descriptor fd is not changed.

Although the len parameter is declared as size_t, lo_truncate will reject length values larger than
INT_MAX.

When dealing with large objects that might exceed 2GB in size, instead use
int lo_truncate64(PGconn *conn, int fd, pg_int64 len);

This function has the same behavior as lo_truncate, but it can accept a len value exceeding 2GB.

lo_truncate is new as of PostgreSQL 8.3; if this function is run against an older server version, it will
fail and return -1.

lo_truncate64 is new as of PostgreSQL 9.3; if this function is run against an older server version, it
will fail and return -1.

32.3.10. Closing a Large Object Descriptor
A large object descriptor can be closed by calling
int lo_close(PGconn *conn, int fd);

where fd is a large object descriptor returned by lo_open. On success, lo_close returns zero. On error,
the return value is -1.

Any large object descriptors that remain open at the end of a transaction will be closed automatically.

32.3.11. Removing a Large Object
To remove a large object from the database, call

773

Large Objects

int lo_unlink(PGconn *conn, Oid lobjId);

The lobjId argument specifies the OID of the large object to remove. Returns 1 if successful, -1 on
failure.

32.4. Server-Side Functions
Server-side functions tailored for manipulating large objects from SQL are listed in Table 32.1.

Table 32.1. SQL-Oriented Large Object Functions

Function
Description
Example(s)

lo_from_bytea (loid oid, data bytea) → oid
Creates a large object and stores data in it. If loid is zero then the system will choose a free
OID, otherwise that OID is used (with an error if some large object already has that OID). On
success, the large object's OID is returned.
lo_from_bytea(0, '\xffffff00') → 24528

lo_put (loid oid, offset bigint, data bytea) → void
Writes data starting at the given offset within the large object; the large object is enlarged if
necessary.
lo_put(24528, 1, '\xaa') →

lo_get (loid oid [, offset bigint, length integer]) → bytea
Extracts the large object's contents, or a substring thereof.
lo_get(24528, 0, 3) → \xffaaff

There are additional server-side functions corresponding to each of the client-side functions described
earlier; indeed, for the most part the client-side functions are simply interfaces to the equivalent
server-side functions. The ones just as convenient to call via SQL commands are lo_creat, lo_create,
lo_unlink, lo_import, and lo_export. Here are examples of their use:
CREATE TABLE image (
 name text,
 raster oid
);

SELECT lo_creat(-1); -- returns OID of new, empty large object

SELECT lo_create(43213); -- attempts to create large object with OID 43213

SELECT lo_unlink(173454); -- deletes large object with OID 173454

INSERT INTO image (name, raster)
 VALUES ('beautiful image', lo_import('/etc/motd'));

INSERT INTO image (name, raster) -- same as above, but specify OID to use
 VALUES ('beautiful image', lo_import('/etc/motd', 68583));

SELECT lo_export(image.raster, '/tmp/motd') FROM image
 WHERE name = 'beautiful image';

The server-side lo_import and lo_export functions behave considerably differently from their client-
side analogs. These two functions read and write files in the server's file system, using the permissions
of the database's owning user. Therefore, by default their use is restricted to superusers. In contrast,
the client-side import and export functions read and write files in the client's file system, using the
permissions of the client program. The client-side functions do not require any database privileges,
except the privilege to read or write the large object in question.

774

Large Objects

Caution
It is possible to GRANT use of the server-side lo_import and lo_export functions to non-
superusers, but careful consideration of the security implications is required. A malicious user of
such privileges could easily parlay them into becoming superuser (for example by rewriting server
configuration files), or could attack the rest of the server's file system without bothering to obtain
database superuser privileges as such. Access to roles having such privilege must therefore be
guarded just as carefully as access to superuser roles. Nonetheless, if use of server-side lo_import
or lo_export is needed for some routine task, it's safer to use a role with such privileges than one
with full superuser privileges, as that helps to reduce the risk of damage from accidental errors.

The functionality of lo_read and lo_write is also available via server-side calls, but the names of the
server-side functions differ from the client side interfaces in that they do not contain underscores. You
must call these functions as loread and lowrite.

32.5. Example Program
Example 32.1 is a sample program which shows how the large object interface in libpq can be used.
Parts of the program are commented out for the reader's benefit.

Example 32.1. Large Objects with libpq Example Program
/*---
 *
 * testlo.c
 * test using large objects with libpq
 *
 * Portions Copyright (c) 1996-2020, PostgreSQL Global Development Group
 * Portions Copyright (c) 1994, Regents of the University of California
 * Portions Copyright (c) 2020-2022, Postgres Professional
 *
 *
 * IDENTIFICATION
 * src/test/examples/testlo.c
 *
 *---
 */
#include <stdio.h>
#include <stdlib.h>

#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <unistd.h>

#include "libpq-fe.h"
#include "libpq/libpq-fs.h"

#define BUFSIZE 1024

/*
 * importFile -
 * import file "in_filename" into database as large object "lobjOid"
 *
 */
static Oid
importFile(PGconn *conn, char *filename)
{

775

Large Objects

 Oid lobjId;
 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the file to be read in
 */
 fd = open(filename, O_RDONLY, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"\n", filename);
 }

 /*
 * create the large object
 */
 lobjId = lo_creat(conn, INV_READ | INV_WRITE);
 if (lobjId == 0)
 fprintf(stderr, "cannot create large object");

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);

 /*
 * read in from the Unix file and write to the inversion file
 */
 while ((nbytes = read(fd, buf, BUFSIZE)) > 0)
 {
 tmp = lo_write(conn, lobj_fd, buf, nbytes);
 if (tmp < nbytes)
 fprintf(stderr, "error while reading \"%s\"", filename);
 }

 close(fd);
 lo_close(conn, lobj_fd);

 return lobjId;
}

static void
pickout(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nread;

 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 nread = 0;
 while (len - nread > 0)

776

Large Objects

 {
 nbytes = lo_read(conn, lobj_fd, buf, len - nread);
 buf[nbytes] = '\0';
 fprintf(stderr, ">>> %s", buf);
 nread += nbytes;
 if (nbytes <= 0)
 break; /* no more data? */
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

static void
overwrite(PGconn *conn, Oid lobjId, int start, int len)
{
 int lobj_fd;
 char *buf;
 int nbytes;
 int nwritten;
 int i;

 lobj_fd = lo_open(conn, lobjId, INV_WRITE);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 lo_lseek(conn, lobj_fd, start, SEEK_SET);
 buf = malloc(len + 1);

 for (i = 0; i < len; i++)
 buf[i] = 'X';
 buf[i] = '\0';

 nwritten = 0;
 while (len - nwritten > 0)
 {
 nbytes = lo_write(conn, lobj_fd, buf + nwritten, len - nwritten);
 nwritten += nbytes;
 if (nbytes <= 0)
 {
 fprintf(stderr, "\nWRITE FAILED!\n");
 break;
 }
 }
 free(buf);
 fprintf(stderr, "\n");
 lo_close(conn, lobj_fd);
}

/*
 * exportFile -
 * export large object "lobjOid" to file "out_filename"
 *
 */
static void
exportFile(PGconn *conn, Oid lobjId, char *filename)
{

777

Large Objects

 int lobj_fd;
 char buf[BUFSIZE];
 int nbytes,
 tmp;
 int fd;

 /*
 * open the large object
 */
 lobj_fd = lo_open(conn, lobjId, INV_READ);
 if (lobj_fd < 0)
 fprintf(stderr, "cannot open large object %u", lobjId);

 /*
 * open the file to be written to
 */
 fd = open(filename, O_CREAT | O_WRONLY | O_TRUNC, 0666);
 if (fd < 0)
 { /* error */
 fprintf(stderr, "cannot open unix file\"%s\"",
 filename);
 }

 /*
 * read in from the inversion file and write to the Unix file
 */
 while ((nbytes = lo_read(conn, lobj_fd, buf, BUFSIZE)) > 0)
 {
 tmp = write(fd, buf, nbytes);
 if (tmp < nbytes)
 {
 fprintf(stderr, "error while writing \"%s\"",
 filename);
 }
 }

 lo_close(conn, lobj_fd);
 close(fd);

 return;
}

static void
exit_nicely(PGconn *conn)
{
 PQfinish(conn);
 exit(1);
}

int
main(int argc, char **argv)
{
 char *in_filename,
 *out_filename;
 char *database;
 Oid lobjOid;
 PGconn *conn;
 PGresult *res;

778

Large Objects

 if (argc != 4)
 {
 fprintf(stderr, "Usage: %s database_name in_filename out_filename\n",
 argv[0]);
 exit(1);
 }

 database = argv[1];
 in_filename = argv[2];
 out_filename = argv[3];

 /*
 * set up the connection
 */
 conn = PQsetdb(NULL, NULL, NULL, NULL, database);

 /* check to see that the backend connection was successfully made */
 if (PQstatus(conn) != CONNECTION_OK)
 {
 fprintf(stderr, "Connection to database failed: %s",
 PQerrorMessage(conn));
 exit_nicely(conn);
 }

 /* Set always-secure search path, so malicious users can't take control. */
 res = PQexec(conn,
 "SELECT pg_catalog.set_config('search_path', '', false)");
 if (PQresultStatus(res) != PGRES_TUPLES_OK)
 {
 fprintf(stderr, "SET failed: %s", PQerrorMessage(conn));
 PQclear(res);
 exit_nicely(conn);
 }
 PQclear(res);

 res = PQexec(conn, "begin");
 PQclear(res);
 printf("importing file \"%s\" ...\n", in_filename);
/* lobjOid = importFile(conn, in_filename); */
 lobjOid = lo_import(conn, in_filename);
 if (lobjOid == 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 else
 {
 printf("\tas large object %u.\n", lobjOid);

 printf("picking out bytes 1000-2000 of the large object\n");
 pickout(conn, lobjOid, 1000, 1000);

 printf("overwriting bytes 1000-2000 of the large object with X's\n");
 overwrite(conn, lobjOid, 1000, 1000);

 printf("exporting large object to file \"%s\" ...\n", out_filename);
/* exportFile(conn, lobjOid, out_filename); */
 if (lo_export(conn, lobjOid, out_filename) < 0)
 fprintf(stderr, "%s\n", PQerrorMessage(conn));
 }

779

Large Objects

 res = PQexec(conn, "end");
 PQclear(res);
 PQfinish(conn);
 return 0;
}

780

Chapter 33. ECPG — Embedded SQL in C
This chapter describes the embedded SQL package for Postgres Pro. It was written by Linus Tolke
(<linus@epact.se>) and Michael Meskes (<meskes@postgresql.org>). Originally it was written to work
with C. It also works with C++, but it does not recognize all C++ constructs yet.

This documentation is quite incomplete. But since this interface is standardized, additional information
can be found in many resources about SQL.

33.1. The Concept
An embedded SQL program consists of code written in an ordinary programming language, in this case C,
mixed with SQL commands in specially marked sections. To build the program, the source code (*.pgc) is
first passed through the embedded SQL preprocessor, which converts it to an ordinary C program (*.c),
and afterwards it can be processed by a C compiler. (For details about the compiling and linking see
Section 33.10). Converted ECPG applications call functions in the libpq library through the embedded
SQL library (ecpglib), and communicate with the Postgres Pro server using the normal frontend-backend
protocol.

Embedded SQL has advantages over other methods for handling SQL commands from C code. First, it
takes care of the tedious passing of information to and from variables in your C program. Second, the
SQL code in the program is checked at build time for syntactical correctness. Third, embedded SQL in
C is specified in the SQL standard and supported by many other SQL database systems. The Postgres
Pro implementation is designed to match this standard as much as possible, and it is usually possible to
port embedded SQL programs written for other SQL databases to Postgres Pro with relative ease.

As already stated, programs written for the embedded SQL interface are normal C programs with special
code inserted to perform database-related actions. This special code always has the form:

EXEC SQL ...;

These statements syntactically take the place of a C statement. Depending on the particular statement,
they can appear at the global level or within a function. Embedded SQL statements follow the case-
sensitivity rules of normal SQL code, and not those of C. Also they allow nested C-style comments that are
part of the SQL standard. The C part of the program, however, follows the C standard of not accepting
nested comments.

The following sections explain all the embedded SQL statements.

33.2. Managing Database Connections
This section describes how to open, close, and switch database connections.

33.2.1. Connecting to the Database Server
One connects to a database using the following statement:

EXEC SQL CONNECT TO target [AS connection-name] [USER user-name];

The target can be specified in the following ways:

• dbname[@hostname][:port]

• tcp:postgresql://hostname[:port][/dbname][?options]

• unix:postgresql://hostname[:port][/dbname][?options]

• an SQL string literal containing one of the above forms

• a reference to a character variable containing one of the above forms (see examples)

• DEFAULT

781

ECPG — Embedded SQL in C

If you specify the connection target literally (that is, not through a variable reference) and you don't
quote the value, then the case-insensitivity rules of normal SQL are applied. In that case you can also
double-quote the individual parameters separately as needed. In practice, it is probably less error-prone
to use a (single-quoted) string literal or a variable reference. The connection target DEFAULT initiates a
connection to the default database under the default user name. No separate user name or connection
name can be specified in that case.

There are also different ways to specify the user name:

• username

• username/password

• username IDENTIFIED BY password

• username USING password

As above, the parameters username and password can be an SQL identifier, an SQL string literal, or a
reference to a character variable.

If the connection target includes any options, those consist of keyword=value specifications separated
by ampersands (&). The allowed key words are the same ones recognized by libpq (see Section 31.1.2).
Spaces are ignored before any keyword or value, though not within or after one. Note that there is no
way to write & within a value.

The connection-name is used to handle multiple connections in one program. It can be omitted if
a program uses only one connection. The most recently opened connection becomes the current
connection, which is used by default when an SQL statement is to be executed (see later in this chapter).

If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin
each session by removing publicly-writable schemas from search_path. For example, add options=-c
search_path= to options, or issue EXEC SQL SELECT pg_catalog.set_config('search_path', '',
false); after connecting. This consideration is not specific to ECPG; it applies to every interface for
executing arbitrary SQL commands.

Here are some examples of CONNECT statements:

EXEC SQL CONNECT TO mydb@sql.mydomain.com;

EXEC SQL CONNECT TO unix:postgresql://sql.mydomain.com/mydb AS myconnection USER john;

EXEC SQL BEGIN DECLARE SECTION;
const char *target = "mydb@sql.mydomain.com";
const char *user = "john";
const char *passwd = "secret";
EXEC SQL END DECLARE SECTION;
 ...
EXEC SQL CONNECT TO :target USER :user USING :passwd;
/* or EXEC SQL CONNECT TO :target USER :user/:passwd; */

The last form makes use of the variant referred to above as character variable reference. You will see in
later sections how C variables can be used in SQL statements when you prefix them with a colon.

Be advised that the format of the connection target is not specified in the SQL standard. So if you want
to develop portable applications, you might want to use something based on the last example above to
encapsulate the connection target string somewhere.

33.2.2. Choosing a Connection
SQL statements in embedded SQL programs are by default executed on the current connection, that is,
the most recently opened one. If an application needs to manage multiple connections, then there are
two ways to handle this.

782

ECPG — Embedded SQL in C

The first option is to explicitly choose a connection for each SQL statement, for example:

EXEC SQL AT connection-name SELECT ...;

This option is particularly suitable if the application needs to use several connections in mixed order.

If your application uses multiple threads of execution, they cannot share a connection concurrently. You
must either explicitly control access to the connection (using mutexes) or use a connection for each
thread.

The second option is to execute a statement to switch the current connection. That statement is:

EXEC SQL SET CONNECTION connection-name;

This option is particularly convenient if many statements are to be executed on the same connection.

Here is an example program managing multiple database connections:

#include <stdio.h>

EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
EXEC SQL END DECLARE SECTION;

int
main()
{
 EXEC SQL CONNECT TO testdb1 AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb2 AS con2 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL CONNECT TO testdb3 AS con3 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* This query would be executed in the last opened database "testdb3". */
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb3)\n", dbname);

 /* Using "AT" to run a query in "testdb2" */
 EXEC SQL AT con2 SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb2)\n", dbname);

 /* Switch the current connection to "testdb1". */
 EXEC SQL SET CONNECTION con1;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current=%s (should be testdb1)\n", dbname);

 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example would produce this output:

current=testdb3 (should be testdb3)
current=testdb2 (should be testdb2)
current=testdb1 (should be testdb1)

33.2.3. Closing a Connection
To close a connection, use the following statement:

EXEC SQL DISCONNECT [connection];

783

ECPG — Embedded SQL in C

The connection can be specified in the following ways:

• connection-name

• DEFAULT

• CURRENT

• ALL

If no connection name is specified, the current connection is closed.

It is good style that an application always explicitly disconnect from every connection it opened.

33.3. Running SQL Commands
Any SQL command can be run from within an embedded SQL application. Below are some examples
of how to do that.

33.3.1. Executing SQL Statements
Creating a table:

EXEC SQL CREATE TABLE foo (number integer, ascii char(16));
EXEC SQL CREATE UNIQUE INDEX num1 ON foo(number);
EXEC SQL COMMIT;

Inserting rows:

EXEC SQL INSERT INTO foo (number, ascii) VALUES (9999, 'doodad');
EXEC SQL COMMIT;

Deleting rows:

EXEC SQL DELETE FROM foo WHERE number = 9999;
EXEC SQL COMMIT;

Updates:

EXEC SQL UPDATE foo
 SET ascii = 'foobar'
 WHERE number = 9999;
EXEC SQL COMMIT;

SELECT statements that return a single result row can also be executed using EXEC SQL directly. To handle
result sets with multiple rows, an application has to use a cursor; see Section 33.3.2 below. (As a special
case, an application can fetch multiple rows at once into an array host variable; see Section 33.4.4.3.1.)

Single-row select:

EXEC SQL SELECT foo INTO :FooBar FROM table1 WHERE ascii = 'doodad';

Also, a configuration parameter can be retrieved with the SHOW command:

EXEC SQL SHOW search_path INTO :var;

The tokens of the form :something are host variables, that is, they refer to variables in the C program.
They are explained in Section 33.4.

33.3.2. Using Cursors
To retrieve a result set holding multiple rows, an application has to declare a cursor and fetch each row
from the cursor. The steps to use a cursor are the following: declare a cursor, open it, fetch a row from
the cursor, repeat, and finally close it.

784

ECPG — Embedded SQL in C

Select using cursors:

EXEC SQL DECLARE foo_bar CURSOR FOR
 SELECT number, ascii FROM foo
 ORDER BY ascii;
EXEC SQL OPEN foo_bar;
EXEC SQL FETCH foo_bar INTO :FooBar, DooDad;
...
EXEC SQL CLOSE foo_bar;
EXEC SQL COMMIT;

For more details about declaration of the cursor, see DECLARE, and see FETCH for FETCH command
details.

Note
The ECPG DECLARE command does not actually cause a statement to be sent to the Postgres Pro
backend. The cursor is opened in the backend (using the backend's DECLARE command) at the
point when the OPEN command is executed.

33.3.3. Managing Transactions
In the default mode, statements are committed only when EXEC SQL COMMIT is issued. The embedded
SQL interface also supports autocommit of transactions (similar to psql's default behavior) via the -t
command-line option to ecpg (see ecpg) or via the EXEC SQL SET AUTOCOMMIT TO ON statement. In
autocommit mode, each command is automatically committed unless it is inside an explicit transaction
block. This mode can be explicitly turned off using EXEC SQL SET AUTOCOMMIT TO OFF.

The following transaction management commands are available:

EXEC SQL COMMIT

Commit an in-progress transaction.

EXEC SQL ROLLBACK

Roll back an in-progress transaction.

EXEC SQL PREPARE TRANSACTION transaction_id

Prepare the current transaction for two-phase commit.

EXEC SQL COMMIT PREPARED transaction_id

Commit a transaction that is in prepared state.

EXEC SQL ROLLBACK PREPARED transaction_id

Roll back a transaction that is in prepared state.

EXEC SQL SET AUTOCOMMIT TO ON

Enable autocommit mode.

EXEC SQL SET AUTOCOMMIT TO OFF

Disable autocommit mode. This is the default.

33.3.4. Prepared Statements
When the values to be passed to an SQL statement are not known at compile time, or the same statement
is going to be used many times, then prepared statements can be useful.

785

ECPG — Embedded SQL in C

The statement is prepared using the command PREPARE. For the values that are not known yet, use the
placeholder “?”:

EXEC SQL PREPARE stmt1 FROM "SELECT oid, datname FROM pg_database WHERE oid = ?";

If a statement returns a single row, the application can call EXECUTE after PREPARE to execute the
statement, supplying the actual values for the placeholders with a USING clause:

EXEC SQL EXECUTE stmt1 INTO :dboid, :dbname USING 1;

If a statement returns multiple rows, the application can use a cursor declared based on the prepared
statement. To bind input parameters, the cursor must be opened with a USING clause:

EXEC SQL PREPARE stmt1 FROM "SELECT oid,datname FROM pg_database WHERE oid > ?";
EXEC SQL DECLARE foo_bar CURSOR FOR stmt1;

/* when end of result set reached, break out of while loop */
EXEC SQL WHENEVER NOT FOUND DO BREAK;

EXEC SQL OPEN foo_bar USING 100;
...
while (1)
{
 EXEC SQL FETCH NEXT FROM foo_bar INTO :dboid, :dbname;
 ...
}
EXEC SQL CLOSE foo_bar;

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

For more details about PREPARE, see PREPARE. Also see Section 33.5 for more details about using
placeholders and input parameters.

33.4. Using Host Variables
In Section 33.3 you saw how you can execute SQL statements from an embedded SQL program. Some
of those statements only used fixed values and did not provide a way to insert user-supplied values into
statements or have the program process the values returned by the query. Those kinds of statements
are not really useful in real applications. This section explains in detail how you can pass data between
your C program and the embedded SQL statements using a simple mechanism called host variables. In
an embedded SQL program we consider the SQL statements to be guests in the C program code which
is the host language. Therefore the variables of the C program are called host variables.

Another way to exchange values between Postgres Pro backends and ECPG applications is the use of
SQL descriptors, described in Section 33.7.

33.4.1. Overview
Passing data between the C program and the SQL statements is particularly simple in embedded SQL.
Instead of having the program paste the data into the statement, which entails various complications,
such as properly quoting the value, you can simply write the name of a C variable into the SQL statement,
prefixed by a colon. For example:

EXEC SQL INSERT INTO sometable VALUES (:v1, 'foo', :v2);

This statement refers to two C variables named v1 and v2 and also uses a regular SQL string literal, to
illustrate that you are not restricted to use one kind of data or the other.

This style of inserting C variables in SQL statements works anywhere a value expression is expected
in an SQL statement.

786

ECPG — Embedded SQL in C

33.4.2. Declare Sections
To pass data from the program to the database, for example as parameters in a query, or to pass data
from the database back to the program, the C variables that are intended to contain this data need to
be declared in specially marked sections, so the embedded SQL preprocessor is made aware of them.

This section starts with:
EXEC SQL BEGIN DECLARE SECTION;

and ends with:
EXEC SQL END DECLARE SECTION;

Between those lines, there must be normal C variable declarations, such as:
int x = 4;
char foo[16], bar[16];

As you can see, you can optionally assign an initial value to the variable. The variable's scope is
determined by the location of its declaring section within the program. You can also declare variables
with the following syntax which implicitly creates a declare section:
EXEC SQL int i = 4;

You can have as many declare sections in a program as you like.

The declarations are also echoed to the output file as normal C variables, so there's no need to declare
them again. Variables that are not intended to be used in SQL commands can be declared normally
outside these special sections.

The definition of a structure or union also must be listed inside a DECLARE section. Otherwise the
preprocessor cannot handle these types since it does not know the definition.

33.4.3. Retrieving Query Results
Now you should be able to pass data generated by your program into an SQL command. But how do
you retrieve the results of a query? For that purpose, embedded SQL provides special variants of the
usual commands SELECT and FETCH. These commands have a special INTO clause that specifies which
host variables the retrieved values are to be stored in. SELECT is used for a query that returns only single
row, and FETCH is used for a query that returns multiple rows, using a cursor.

Here is an example:
/*
 * assume this table:
 * CREATE TABLE test1 (a int, b varchar(50));
 */

EXEC SQL BEGIN DECLARE SECTION;
int v1;
VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL SELECT a, b INTO :v1, :v2 FROM test;

So the INTO clause appears between the select list and the FROM clause. The number of elements in the
select list and the list after INTO (also called the target list) must be equal.

Here is an example using the command FETCH:
EXEC SQL BEGIN DECLARE SECTION;
int v1;

787

ECPG — Embedded SQL in C

VARCHAR v2;
EXEC SQL END DECLARE SECTION;

 ...

EXEC SQL DECLARE foo CURSOR FOR SELECT a, b FROM test;

 ...

do
{
 ...
 EXEC SQL FETCH NEXT FROM foo INTO :v1, :v2;
 ...
} while (...);

Here the INTO clause appears after all the normal clauses.

33.4.4. Type Mapping
When ECPG applications exchange values between the Postgres Pro server and the C application, such
as when retrieving query results from the server or executing SQL statements with input parameters,
the values need to be converted between Postgres Pro data types and host language variable types (C
language data types, concretely). One of the main points of ECPG is that it takes care of this automatically
in most cases.

In this respect, there are two kinds of data types: Some simple Postgres Pro data types, such as integer
and text, can be read and written by the application directly. Other Postgres Pro data types, such as
timestamp and numeric can only be accessed through special library functions; see Section 33.4.4.2.

Table 33.1 shows which Postgres Pro data types correspond to which C data types. When you wish to send
or receive a value of a given Postgres Pro data type, you should declare a C variable of the corresponding
C data type in the declare section.

Table 33.1. Mapping Between Postgres Pro Data Types and C Variable Types

Postgres Pro data type Host variable type
smallint short

integer int

bigint long long int

decimal decimal
a

numeric numeric
a

real float

double precision double

smallserial short

serial int

bigserial long long int

oid unsigned int

character(n), varchar(n), text char[n+1], VARCHAR[n+1]
name char[NAMEDATALEN]

timestamp timestamp
a

interval interval
a

date date
a

788

ECPG — Embedded SQL in C

Postgres Pro data type Host variable type
boolean bool

b

bytea char *, bytea[n]
aThis type can only be accessed through special library functions; see Section 33.4.4.2.
bdeclared in ecpglib.h if not native

33.4.4.1. Handling Character Strings
To handle SQL character string data types, such as varchar and text, there are two possible ways to
declare the host variables.

One way is using char[], an array of char, which is the most common way to handle character data in C.
EXEC SQL BEGIN DECLARE SECTION;
 char str[50];
EXEC SQL END DECLARE SECTION;

Note that you have to take care of the length yourself. If you use this host variable as the target variable
of a query which returns a string with more than 49 characters, a buffer overflow occurs.

The other way is using the VARCHAR type, which is a special type provided by ECPG. The definition on an
array of type VARCHAR is converted into a named struct for every variable. A declaration like:
VARCHAR var[180];

is converted into:
struct varchar_var { int len; char arr[180]; } var;

The member arr hosts the string including a terminating zero byte. Thus, to store a string in a VARCHAR
host variable, the host variable has to be declared with the length including the zero byte terminator.
The member len holds the length of the string stored in the arr without the terminating zero byte. When
a host variable is used as input for a query, if strlen(arr) and len are different, the shorter one is used.

VARCHAR can be written in upper or lower case, but not in mixed case.

char and VARCHAR host variables can also hold values of other SQL types, which will be stored in their
string forms.

33.4.4.2. Accessing Special Data Types
ECPG contains some special types that help you to interact easily with some special data types from the
Postgres Pro server. In particular, it has implemented support for the numeric, decimal, date, timestamp,
and interval types. These data types cannot usefully be mapped to primitive host variable types (such
as int, long long int, or char[]), because they have a complex internal structure. Applications deal
with these types by declaring host variables in special types and accessing them using functions in the
pgtypes library. The pgtypes library, described in detail in Section 33.6 contains basic functions to deal
with those types, such that you do not need to send a query to the SQL server just for adding an interval
to a time stamp for example.

The follow subsections describe these special data types. For more details about pgtypes library
functions, see Section 33.6.

33.4.4.2.1. timestamp, date

Here is a pattern for handling timestamp variables in the ECPG host application.

First, the program has to include the header file for the timestamp type:
#include <pgtypes_timestamp.h>

Next, declare a host variable as type timestamp in the declare section:
EXEC SQL BEGIN DECLARE SECTION;
timestamp ts;

789

ECPG — Embedded SQL in C

EXEC SQL END DECLARE SECTION;

And after reading a value into the host variable, process it using pgtypes library functions. In following
example, the timestamp value is converted into text (ASCII) form with the PGTYPEStimestamp_to_asc()
function:
EXEC SQL SELECT now()::timestamp INTO :ts;

printf("ts = %s\n", PGTYPEStimestamp_to_asc(ts));

This example will show some result like following:
ts = 2010-06-27 18:03:56.949343

In addition, the DATE type can be handled in the same way. The program has to include pgtypes_date.h,
declare a host variable as the date type and convert a DATE value into a text form using
PGTYPESdate_to_asc() function. For more details about the pgtypes library functions, see Section 33.6.

33.4.4.2.2. interval

The handling of the interval type is also similar to the timestamp and date types. It is required, however,
to allocate memory for an interval type value explicitly. In other words, the memory space for the
variable has to be allocated in the heap memory, not in the stack memory.

Here is an example program:
#include <stdio.h>
#include <stdlib.h>
#include <pgtypes_interval.h>

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 interval *in;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 in = PGTYPESinterval_new();
 EXEC SQL SELECT '1 min'::interval INTO :in;
 printf("interval = %s\n", PGTYPESinterval_to_asc(in));
 PGTYPESinterval_free(in);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

33.4.4.2.3. numeric, decimal

The handling of the numeric and decimal types is similar to the interval type: It requires defining a
pointer, allocating some memory space on the heap, and accessing the variable using the pgtypes library
functions. For more details about the pgtypes library functions, see Section 33.6.

No functions are provided specifically for the decimal type. An application has to convert it to a numeric
variable using a pgtypes library function to do further processing.

Here is an example program handling numeric and decimal type variables.
#include <stdio.h>
#include <stdlib.h>

790

ECPG — Embedded SQL in C

#include <pgtypes_numeric.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 numeric *num;
 numeric *num2;
 decimal *dec;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 num = PGTYPESnumeric_new();
 dec = PGTYPESdecimal_new();

 EXEC SQL SELECT 12.345::numeric(4,2), 23.456::decimal(4,2) INTO :num, :dec;

 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 0));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 1));
 printf("numeric = %s\n", PGTYPESnumeric_to_asc(num, 2));

 /* Convert decimal to numeric to show a decimal value. */
 num2 = PGTYPESnumeric_new();
 PGTYPESnumeric_from_decimal(dec, num2);

 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 0));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 1));
 printf("decimal = %s\n", PGTYPESnumeric_to_asc(num2, 2));

 PGTYPESnumeric_free(num2);
 PGTYPESdecimal_free(dec);
 PGTYPESnumeric_free(num);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

33.4.4.2.4. bytea

The handling of the bytea type is similar to that of VARCHAR. The definition on an array of type bytea is
converted into a named struct for every variable. A declaration like:

bytea var[180];

is converted into:

struct bytea_var { int len; char arr[180]; } var;

The member arr hosts binary format data. It can also handle '\0' as part of data, unlike VARCHAR. The
data is converted from/to hex format and sent/received by ecpglib.

Note
bytea variable can be used only when bytea_output is set to hex.

791

ECPG — Embedded SQL in C

33.4.4.3. Host Variables with Nonprimitive Types
As a host variable you can also use arrays, typedefs, structs, and pointers.

33.4.4.3.1. Arrays

There are two use cases for arrays as host variables. The first is a way to store some text string in char[]
or VARCHAR[], as explained in Section 33.4.4.1. The second use case is to retrieve multiple rows from a
query result without using a cursor. Without an array, to process a query result consisting of multiple
rows, it is required to use a cursor and the FETCH command. But with array host variables, multiple rows
can be received at once. The length of the array has to be defined to be able to accommodate all rows,
otherwise a buffer overflow will likely occur.

Following example scans the pg_database system table and shows all OIDs and names of the available
databases:
int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 int dbid[8];
 char dbname[8][16];
 int i;
EXEC SQL END DECLARE SECTION;

 memset(dbname, 0, sizeof(char)* 16 * 8);
 memset(dbid, 0, sizeof(int) * 8);

 EXEC SQL CONNECT TO testdb;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 /* Retrieve multiple rows into arrays at once. */
 EXEC SQL SELECT oid,datname INTO :dbid, :dbname FROM pg_database;

 for (i = 0; i < 8; i++)
 printf("oid=%d, dbname=%s\n", dbid[i], dbname[i]);

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

This example shows following result. (The exact values depend on local circumstances.)
oid=1, dbname=template1
oid=11510, dbname=template0
oid=11511, dbname=postgres
oid=313780, dbname=testdb
oid=0, dbname=
oid=0, dbname=
oid=0, dbname=

33.4.4.3.2. Structures
A structure whose member names match the column names of a query result, can be used to retrieve
multiple columns at once. The structure enables handling multiple column values in a single host
variable.

The following example retrieves OIDs, names, and sizes of the available databases from the pg_database
system table and using the pg_database_size() function. In this example, a structure variable dbinfo_t
with members whose names match each column in the SELECT result is used to retrieve one result row
without putting multiple host variables in the FETCH statement.

792

ECPG — Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 long long int size;
 } dbinfo_t;

 dbinfo_t dbval;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size
 FROM pg_database;
 EXEC SQL OPEN cur1;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname,
 dbval.size);
 }

 EXEC SQL CLOSE cur1;

This example shows following result. (The exact values depend on local circumstances.)

oid=1, datname=template1, size=4324580
oid=11510, datname=template0, size=4243460
oid=11511, datname=postgres, size=4324580
oid=313780, datname=testdb, size=8183012

Structure host variables “absorb” as many columns as the structure as fields. Additional columns can be
assigned to other host variables. For example, the above program could also be restructured like this,
with the size variable outside the structure:

EXEC SQL BEGIN DECLARE SECTION;
 typedef struct
 {
 int oid;
 char datname[65];
 } dbinfo_t;

 dbinfo_t dbval;
 long long int size;
EXEC SQL END DECLARE SECTION;

 memset(&dbval, 0, sizeof(dbinfo_t));

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT oid, datname, pg_database_size(oid) AS size
 FROM pg_database;
 EXEC SQL OPEN cur1;

793

ECPG — Embedded SQL in C

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 /* Fetch multiple columns into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :dbval, :size;

 /* Print members of the structure. */
 printf("oid=%d, datname=%s, size=%lld\n", dbval.oid, dbval.datname, size);
 }

 EXEC SQL CLOSE cur1;

33.4.4.3.3. Typedefs

Use the typedef keyword to map new types to already existing types.

EXEC SQL BEGIN DECLARE SECTION;
 typedef char mychartype[40];
 typedef long serial_t;
EXEC SQL END DECLARE SECTION;

Note that you could also use:

EXEC SQL TYPE serial_t IS long;

This declaration does not need to be part of a declare section.

33.4.4.3.4. Pointers

You can declare pointers to the most common types. Note however that you cannot use pointers as target
variables of queries without auto-allocation. See Section 33.7 for more information on auto-allocation.

EXEC SQL BEGIN DECLARE SECTION;
 int *intp;
 char **charp;
EXEC SQL END DECLARE SECTION;

33.4.5. Handling Nonprimitive SQL Data Types
This section contains information on how to handle nonscalar and user-defined SQL-level data types in
ECPG applications. Note that this is distinct from the handling of host variables of nonprimitive types,
described in the previous section.

33.4.5.1. Arrays
Multi-dimensional SQL-level arrays are not directly supported in ECPG. One-dimensional SQL-level
arrays can be mapped into C array host variables and vice-versa. However, when creating a statement
ecpg does not know the types of the columns, so that it cannot check if a C array is input into a
corresponding SQL-level array. When processing the output of a SQL statement, ecpg has the necessary
information and thus checks if both are arrays.

If a query accesses elements of an array separately, then this avoids the use of arrays in ECPG. Then,
a host variable with a type that can be mapped to the element type should be used. For example, if a
column type is array of integer, a host variable of type int can be used. Also if the element type is
varchar or text, a host variable of type char[] or VARCHAR[] can be used.

Here is an example. Assume the following table:

CREATE TABLE t3 (
 ii integer[]

794

ECPG — Embedded SQL in C

);

testdb=> SELECT * FROM t3;
 ii

 {1,2,3,4,5}
(1 row)

The following example program retrieves the 4th element of the array and stores it into a host variable
of type int:

EXEC SQL BEGIN DECLARE SECTION;
int ii;
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii ;
 printf("ii=%d\n", ii);
}

EXEC SQL CLOSE cur1;

This example shows the following result:

ii=4

To map multiple array elements to the multiple elements in an array type host variables each element of
array column and each element of the host variable array have to be managed separately, for example:

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii[1], ii[2], ii[3], ii[4] FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH FROM cur1 INTO :ii_a[0], :ii_a[1], :ii_a[2], :ii_a[3];
 ...
}

Note again that

EXEC SQL BEGIN DECLARE SECTION;
int ii_a[8];
EXEC SQL END DECLARE SECTION;

EXEC SQL DECLARE cur1 CURSOR FOR SELECT ii FROM t3;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

795

ECPG — Embedded SQL in C

while (1)
{
 /* WRONG */
 EXEC SQL FETCH FROM cur1 INTO :ii_a;
 ...
}

would not work correctly in this case, because you cannot map an array type column to an array host
variable directly.

Another workaround is to store arrays in their external string representation in host variables of type
char[] or VARCHAR[]. For more details about this representation, see Section 8.15.2. Note that this
means that the array cannot be accessed naturally as an array in the host program (without further
processing that parses the text representation).

33.4.5.2. Composite Types
Composite types are not directly supported in ECPG, but an easy workaround is possible. The available
workarounds are similar to the ones described for arrays above: Either access each attribute separately
or use the external string representation.

For the following examples, assume the following type and table:
CREATE TYPE comp_t AS (intval integer, textval varchar(32));
CREATE TABLE t4 (compval comp_t);
INSERT INTO t4 VALUES ((256, 'Postgres Pro'));

The most obvious solution is to access each attribute separately. The following program retrieves data
from the example table by selecting each attribute of the type comp_t separately:
EXEC SQL BEGIN DECLARE SECTION;
int intval;
varchar textval[33];
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Fetch each element of the composite type column into host variables. */
 EXEC SQL FETCH FROM cur1 INTO :intval, :textval;

 printf("intval=%d, textval=%s\n", intval, textval.arr);
}

EXEC SQL CLOSE cur1;

To enhance this example, the host variables to store values in the FETCH command can be gathered into
one structure. For more details about the host variable in the structure form, see Section 33.4.4.3.2.
To switch to the structure, the example can be modified as below. The two host variables, intval and
textval, become members of the comp_t structure, and the structure is specified on the FETCH command.
EXEC SQL BEGIN DECLARE SECTION;
typedef struct
{
 int intval;
 varchar textval[33];
} comp_t;

796

ECPG — Embedded SQL in C

comp_t compval;
EXEC SQL END DECLARE SECTION;

/* Put each element of the composite type column in the SELECT list. */
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).intval, (compval).textval FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}

EXEC SQL CLOSE cur1;

Although a structure is used in the FETCH command, the attribute names in the SELECT clause are
specified one by one. This can be enhanced by using a * to ask for all attributes of the composite type
value.
...
EXEC SQL DECLARE cur1 CURSOR FOR SELECT (compval).* FROM t4;
EXEC SQL OPEN cur1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 /* Put all values in the SELECT list into one structure. */
 EXEC SQL FETCH FROM cur1 INTO :compval;

 printf("intval=%d, textval=%s\n", compval.intval, compval.textval.arr);
}
...

This way, composite types can be mapped into structures almost seamlessly, even though ECPG does
not understand the composite type itself.

Finally, it is also possible to store composite type values in their external string representation in host
variables of type char[] or VARCHAR[]. But that way, it is not easily possible to access the fields of the
value from the host program.

33.4.5.3. User-Defined Base Types
New user-defined base types are not directly supported by ECPG. You can use the external string
representation and host variables of type char[] or VARCHAR[], and this solution is indeed appropriate
and sufficient for many types.

Here is an example using the data type complex from the example in Section 35.13. The external
string representation of that type is (%f,%f), which is defined in the functions complex_in() and
complex_out() functions in Section 35.13. The following example inserts the complex type values (1,1)
and (3,3) into the columns a and b, and select them from the table after that.
EXEC SQL BEGIN DECLARE SECTION;
 varchar a[64];
 varchar b[64];
EXEC SQL END DECLARE SECTION;

797

ECPG — Embedded SQL in C

 EXEC SQL INSERT INTO test_complex VALUES ('(1,1)', '(3,3)');

 EXEC SQL DECLARE cur1 CURSOR FOR SELECT a, b FROM test_complex;
 EXEC SQL OPEN cur1;

 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH FROM cur1 INTO :a, :b;
 printf("a=%s, b=%s\n", a.arr, b.arr);
 }

 EXEC SQL CLOSE cur1;

This example shows following result:
a=(1,1), b=(3,3)

Another workaround is avoiding the direct use of the user-defined types in ECPG and instead create a
function or cast that converts between the user-defined type and a primitive type that ECPG can handle.
Note, however, that type casts, especially implicit ones, should be introduced into the type system very
carefully.

For example,
CREATE FUNCTION create_complex(r double, i double) RETURNS complex
LANGUAGE SQL
IMMUTABLE
AS $$ SELECT $1 * complex '(1,0')' + $2 * complex '(0,1)' $$;

After this definition, the following
EXEC SQL BEGIN DECLARE SECTION;
double a, b, c, d;
EXEC SQL END DECLARE SECTION;

a = 1;
b = 2;
c = 3;
d = 4;

EXEC SQL INSERT INTO test_complex VALUES (create_complex(:a, :b),
 create_complex(:c, :d));

has the same effect as
EXEC SQL INSERT INTO test_complex VALUES ('(1,2)', '(3,4)');

33.4.6. Indicators
The examples above do not handle null values. In fact, the retrieval examples will raise an error if they
fetch a null value from the database. To be able to pass null values to the database or retrieve null values
from the database, you need to append a second host variable specification to each host variable that
contains data. This second host variable is called the indicator and contains a flag that tells whether
the datum is null, in which case the value of the real host variable is ignored. Here is an example that
handles the retrieval of null values correctly:
EXEC SQL BEGIN DECLARE SECTION;
VARCHAR val;
int val_ind;
EXEC SQL END DECLARE SECTION:

798

ECPG — Embedded SQL in C

 ...

EXEC SQL SELECT b INTO :val :val_ind FROM test1;

The indicator variable val_ind will be zero if the value was not null, and it will be negative if the value
was null.

The indicator has another function: if the indicator value is positive, it means that the value is not null,
but it was truncated when it was stored in the host variable.

If the argument -r no_indicator is passed to the preprocessor ecpg, it works in “no-indicator” mode.
In no-indicator mode, if no indicator variable is specified, null values are signaled (on input and output)
for character string types as empty string and for integer types as the lowest possible value for type
(for example, INT_MIN for int).

33.5. Dynamic SQL
In many cases, the particular SQL statements that an application has to execute are known at the time
the application is written. In some cases, however, the SQL statements are composed at run time or
provided by an external source. In these cases you cannot embed the SQL statements directly into the
C source code, but there is a facility that allows you to call arbitrary SQL statements that you provide
in a string variable.

33.5.1. Executing Statements without a Result Set
The simplest way to execute an arbitrary SQL statement is to use the command EXECUTE IMMEDIATE.
For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "CREATE TABLE test1 (...);";
EXEC SQL END DECLARE SECTION;

EXEC SQL EXECUTE IMMEDIATE :stmt;

EXECUTE IMMEDIATE can be used for SQL statements that do not return a result set (e.g., DDL, INSERT,
UPDATE, DELETE). You cannot execute statements that retrieve data (e.g., SELECT) this way. The next
section describes how to do that.

33.5.2. Executing a Statement with Input Parameters
A more powerful way to execute arbitrary SQL statements is to prepare them once and execute the
prepared statement as often as you like. It is also possible to prepare a generalized version of a statement
and then execute specific versions of it by substituting parameters. When preparing the statement, write
question marks where you want to substitute parameters later. For example:

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "INSERT INTO test1 VALUES(?, ?);";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt USING 42, 'foobar';

When you don't need the prepared statement anymore, you should deallocate it:

EXEC SQL DEALLOCATE PREPARE name;

33.5.3. Executing a Statement with a Result Set
To execute an SQL statement with a single result row, EXECUTE can be used. To save the result, add an
INTO clause.

799

ECPG — Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
const char *stmt = "SELECT a, b, c FROM test1 WHERE a > ?";
int v1, v2;
VARCHAR v3[50];
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE mystmt FROM :stmt;
 ...
EXEC SQL EXECUTE mystmt INTO :v1, :v2, :v3 USING 37;

An EXECUTE command can have an INTO clause, a USING clause, both, or neither.

If a query is expected to return more than one result row, a cursor should be used, as in the following
example. (See Section 33.3.2 for more details about the cursor.)
EXEC SQL BEGIN DECLARE SECTION;
char dbaname[128];
char datname[128];
char *stmt = "SELECT u.usename as dbaname, d.datname "
 " FROM pg_database d, pg_user u "
 " WHERE d.datdba = u.usesysid";
EXEC SQL END DECLARE SECTION;

EXEC SQL CONNECT TO testdb AS con1 USER testuser;
EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

EXEC SQL PREPARE stmt1 FROM :stmt;

EXEC SQL DECLARE cursor1 CURSOR FOR stmt1;
EXEC SQL OPEN cursor1;

EXEC SQL WHENEVER NOT FOUND DO BREAK;

while (1)
{
 EXEC SQL FETCH cursor1 INTO :dbaname,:datname;
 printf("dbaname=%s, datname=%s\n", dbaname, datname);
}

EXEC SQL CLOSE cursor1;

EXEC SQL COMMIT;
EXEC SQL DISCONNECT ALL;

33.6. pgtypes Library
The pgtypes library maps Postgres Pro database types to C equivalents that can be used in C programs.
It also offers functions to do basic calculations with those types within C, i.e., without the help of the
Postgres Pro server. See the following example:
EXEC SQL BEGIN DECLARE SECTION;
 date date1;
 timestamp ts1, tsout;
 interval iv1;
 char *out;
EXEC SQL END DECLARE SECTION;

PGTYPESdate_today(&date1);
EXEC SQL SELECT started, duration INTO :ts1, :iv1 FROM datetbl WHERE d=:date1;

800

ECPG — Embedded SQL in C

PGTYPEStimestamp_add_interval(&ts1, &iv1, &tsout);
out = PGTYPEStimestamp_to_asc(&tsout);
printf("Started + duration: %s\n", out);
PGTYPESchar_free(out);

33.6.1. Character Strings
Some functions such as PGTYPESnumeric_to_asc return a pointer to a freshly allocated character string.
These results should be freed with PGTYPESchar_free instead of free. (This is important only on
Windows, where memory allocation and release sometimes need to be done by the same library.)

33.6.2. The numeric Type
The numeric type offers to do calculations with arbitrary precision. See Section 8.1 for the equivalent
type in the Postgres Pro server. Because of the arbitrary precision this variable needs to be able to
expand and shrink dynamically. That's why you can only create numeric variables on the heap, by means
of the PGTYPESnumeric_new and PGTYPESnumeric_free functions. The decimal type, which is similar but
limited in precision, can be created on the stack as well as on the heap.

The following functions can be used to work with the numeric type:

PGTYPESnumeric_new

Request a pointer to a newly allocated numeric variable.

numeric *PGTYPESnumeric_new(void);

PGTYPESnumeric_free

Free a numeric type, release all of its memory.

void PGTYPESnumeric_free(numeric *var);

PGTYPESnumeric_from_asc

Parse a numeric type from its string notation.

numeric *PGTYPESnumeric_from_asc(char *str, char **endptr);

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4. If the value could be parsed
successfully, a valid pointer is returned, else the NULL pointer. At the moment ECPG always parses
the complete string and so it currently does not support to store the address of the first invalid
character in *endptr. You can safely set endptr to NULL.

PGTYPESnumeric_to_asc

Returns a pointer to a string allocated by malloc that contains the string representation of the
numeric type num.

char *PGTYPESnumeric_to_asc(numeric *num, int dscale);

The numeric value will be printed with dscale decimal digits, with rounding applied if necessary.
The result must be freed with PGTYPESchar_free().

PGTYPESnumeric_add

Add two numeric variables into a third one.

int PGTYPESnumeric_add(numeric *var1, numeric *var2, numeric *result);

The function adds the variables var1 and var2 into the result variable result. The function returns
0 on success and -1 in case of error.

PGTYPESnumeric_sub

Subtract two numeric variables and return the result in a third one.

801

ECPG — Embedded SQL in C

int PGTYPESnumeric_sub(numeric *var1, numeric *var2, numeric *result);

The function subtracts the variable var2 from the variable var1. The result of the operation is stored
in the variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_mul

Multiply two numeric variables and return the result in a third one.

int PGTYPESnumeric_mul(numeric *var1, numeric *var2, numeric *result);

The function multiplies the variables var1 and var2. The result of the operation is stored in the
variable result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_div

Divide two numeric variables and return the result in a third one.

int PGTYPESnumeric_div(numeric *var1, numeric *var2, numeric *result);

The function divides the variables var1 by var2. The result of the operation is stored in the variable
result. The function returns 0 on success and -1 in case of error.

PGTYPESnumeric_cmp

Compare two numeric variables.

int PGTYPESnumeric_cmp(numeric *var1, numeric *var2)

This function compares two numeric variables. In case of error, INT_MAX is returned. On success, the
function returns one of three possible results:

• 1, if var1 is bigger than var2

• -1, if var1 is smaller than var2

• 0, if var1 and var2 are equal

PGTYPESnumeric_from_int

Convert an int variable to a numeric variable.

int PGTYPESnumeric_from_int(signed int int_val, numeric *var);

This function accepts a variable of type signed int and stores it in the numeric variable var. Upon
success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_from_long

Convert a long int variable to a numeric variable.

int PGTYPESnumeric_from_long(signed long int long_val, numeric *var);

This function accepts a variable of type signed long int and stores it in the numeric variable var.
Upon success, 0 is returned and -1 in case of a failure.

PGTYPESnumeric_copy

Copy over one numeric variable into another one.

int PGTYPESnumeric_copy(numeric *src, numeric *dst);

This function copies over the value of the variable that src points to into the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_from_double

Convert a variable of type double to a numeric.

802

ECPG — Embedded SQL in C

int PGTYPESnumeric_from_double(double d, numeric *dst);

This function accepts a variable of type double and stores the result in the variable that dst points
to. It returns 0 on success and -1 if an error occurs.

PGTYPESnumeric_to_double

Convert a variable of type numeric to double.

int PGTYPESnumeric_to_double(numeric *nv, double *dp)

The function converts the numeric value from the variable that nv points to into the double variable
that dp points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_int

Convert a variable of type numeric to int.

int PGTYPESnumeric_to_int(numeric *nv, int *ip);

The function converts the numeric value from the variable that nv points to into the integer variable
that ip points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_long

Convert a variable of type numeric to long.

int PGTYPESnumeric_to_long(numeric *nv, long *lp);

The function converts the numeric value from the variable that nv points to into the long integer
variable that lp points to. It returns 0 on success and -1 if an error occurs, including overflow. On
overflow, the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_to_decimal

Convert a variable of type numeric to decimal.

int PGTYPESnumeric_to_decimal(numeric *src, decimal *dst);

The function converts the numeric value from the variable that src points to into the decimal variable
that dst points to. It returns 0 on success and -1 if an error occurs, including overflow. On overflow,
the global variable errno will be set to PGTYPES_NUM_OVERFLOW additionally.

PGTYPESnumeric_from_decimal

Convert a variable of type decimal to numeric.

int PGTYPESnumeric_from_decimal(decimal *src, numeric *dst);

The function converts the decimal value from the variable that src points to into the numeric variable
that dst points to. It returns 0 on success and -1 if an error occurs. Since the decimal type is
implemented as a limited version of the numeric type, overflow cannot occur with this conversion.

33.6.3. The date Type
The date type in C enables your programs to deal with data of the SQL type date. See Section 8.5 for
the equivalent type in the Postgres Pro server.

The following functions can be used to work with the date type:

PGTYPESdate_from_timestamp

Extract the date part from a timestamp.

date PGTYPESdate_from_timestamp(timestamp dt);

803

ECPG — Embedded SQL in C

The function receives a timestamp as its only argument and returns the extracted date part from
this timestamp.

PGTYPESdate_from_asc

Parse a date from its textual representation.
date PGTYPESdate_from_asc(char *str, char **endptr);

The function receives a C char* string str and a pointer to a C char* string endptr. At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

Note that the function always assumes MDY-formatted dates and there is currently no variable to
change that within ECPG.

Table 33.2 shows the allowed input formats.

Table 33.2. Valid Input Formats for PGTYPESdate_from_asc

Input Result
January 8, 1999 January 8, 1999

1999-01-08 January 8, 1999

1/8/1999 January 8, 1999

1/18/1999 January 18, 1999

01/02/03 February 1, 2003

1999-Jan-08 January 8, 1999

Jan-08-1999 January 8, 1999

08-Jan-1999 January 8, 1999

99-Jan-08 January 8, 1999

08-Jan-99 January 8, 1999

08-Jan-06 January 8, 2006

Jan-08-99 January 8, 1999

19990108 ISO 8601; January 8, 1999

990108 ISO 8601; January 8, 1999

1999.008 year and day of year

J2451187 Julian day

January 8, 99 BC year 99 before the Common Era

PGTYPESdate_to_asc

Return the textual representation of a date variable.
char *PGTYPESdate_to_asc(date dDate);

The function receives the date dDate as its only parameter. It will output the date in the form
1999-01-18, i.e., in the YYYY-MM-DD format. The result must be freed with PGTYPESchar_free().

PGTYPESdate_julmdy

Extract the values for the day, the month and the year from a variable of type date.
void PGTYPESdate_julmdy(date d, int *mdy);

The function receives the date d and a pointer to an array of 3 integer values mdy. The variable name
indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1] will
be set to the value of the day and mdy[2] will contain the year.

804

ECPG — Embedded SQL in C

PGTYPESdate_mdyjul

Create a date value from an array of 3 integers that specify the day, the month and the year of the
date.

void PGTYPESdate_mdyjul(int *mdy, date *jdate);

The function receives the array of the 3 integers (mdy) as its first argument and as its second argument
a pointer to a variable of type date that should hold the result of the operation.

PGTYPESdate_dayofweek

Return a number representing the day of the week for a date value.

int PGTYPESdate_dayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.

• 0 - Sunday

• 1 - Monday

• 2 - Tuesday

• 3 - Wednesday

• 4 - Thursday

• 5 - Friday

• 6 - Saturday

PGTYPESdate_today

Get the current date.

void PGTYPESdate_today(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

PGTYPESdate_fmt_asc

Convert a variable of type date to its textual representation using a format mask.

int PGTYPESdate_fmt_asc(date dDate, char *fmtstring, char *outbuf);

The function receives the date to convert (dDate), the format mask (fmtstring) and the string that
will hold the textual representation of the date (outbuf).

On success, 0 is returned and a negative value if an error occurred.

The following literals are the field specifiers you can use:

• dd - The number of the day of the month.

• mm - The number of the month of the year.

• yy - The number of the year as a two digit number.

• yyyy - The number of the year as a four digit number.

• ddd - The name of the day (abbreviated).

• mmm - The name of the month (abbreviated).

All other characters are copied 1:1 to the output string.

Table 33.3 indicates a few possible formats. This will give you an idea of how to use this function. All
output lines are based on the same date: November 23, 1959.

805

ECPG — Embedded SQL in C

Table 33.3. Valid Input Formats for PGTYPESdate_fmt_asc

Format Result
mmddyy 112359

ddmmyy 231159

yymmdd 591123

yy/mm/dd 59/11/23

yy mm dd 59 11 23

yy.mm.dd 59.11.23

.mm.yyyy.dd. .11.1959.23.

mmm. dd, yyyy Nov. 23, 1959

mmm dd yyyy Nov 23 1959

yyyy dd mm 1959 23 11

ddd, mmm. dd, yyyy Mon, Nov. 23, 1959

(ddd) mmm. dd, yyyy (Mon) Nov. 23, 1959

PGTYPESdate_defmt_asc

Use a format mask to convert a C char* string to a value of type date.

int PGTYPESdate_defmt_asc(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

Table 33.4 indicates a few possible formats. This will give you an idea of how to use this function.

Table 33.4. Valid Input Formats for rdefmtdate

Format String Result
ddmmyy 21-2-54 1954-02-21

ddmmyy 2-12-54 1954-12-02

ddmmyy 20111954 1954-11-20

ddmmyy 130464 1964-04-13

mmm.dd.yyyy MAR-12-1967 1967-03-12

yy/mm/dd 1954, February 3rd 1954-02-03

mmm.dd.yyyy 041269 1969-04-12

yy/mm/dd In the year 2525, in the
month of July, mankind
will be alive on the 28th
day

2525-07-28

dd-mm-yy I said on the 28th of July
in the year 2525

2525-07-28

mmm.dd.yyyy 9/14/58 1958-09-14

yy/mm/dd 47/03/29 1947-03-29

mmm.dd.yyyy oct 28 1975 1975-10-28

806

ECPG — Embedded SQL in C

Format String Result
mmddyy Nov 14th, 1985 1985-11-14

33.6.4. The timestamp Type
The timestamp type in C enables your programs to deal with data of the SQL type timestamp. See
Section 8.5 for the equivalent type in the Postgres Pro server.

The following functions can be used to work with the timestamp type:
PGTYPEStimestamp_from_asc

Parse a timestamp from its textual representation into a timestamp variable.
timestamp PGTYPEStimestamp_from_asc(char *str, char **endptr);

The function receives the string to parse (str) and a pointer to a C char* (endptr). At the moment
ECPG always parses the complete string and so it currently does not support to store the address of
the first invalid character in *endptr. You can safely set endptr to NULL.

The function returns the parsed timestamp on success. On error, PGTYPESInvalidTimestamp
is returned and errno is set to PGTYPES_TS_BAD_TIMESTAMP. See PGTYPESInvalidTimestamp for
important notes on this value.

In general, the input string can contain any combination of an allowed date specification, a
whitespace character and an allowed time specification. Note that time zones are not supported
by ECPG. It can parse them but does not apply any calculation as the Postgres Pro server does for
example. Timezone specifiers are silently discarded.

Table 33.5 contains a few examples for input strings.

Table 33.5. Valid Input Formats for PGTYPEStimestamp_from_asc

Input Result
1999-01-08 04:05:06 1999-01-08 04:05:06

January 8 04:05:06 1999 PST 1999-01-08 04:05:06

1999-Jan-08 04:05:06.789-8 1999-01-08 04:05:06.789 (time zone
specifier ignored)

J2451187 04:05-08:00 1999-01-08 04:05:00 (time zone specifier
ignored)

PGTYPEStimestamp_to_asc

Converts a date to a C char* string.
char *PGTYPEStimestamp_to_asc(timestamp tstamp);

The function receives the timestamp tstamp as its only argument and returns an allocated
string that contains the textual representation of the timestamp. The result must be freed with
PGTYPESchar_free().

PGTYPEStimestamp_current

Retrieve the current timestamp.
void PGTYPEStimestamp_current(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

PGTYPEStimestamp_fmt_asc

Convert a timestamp variable to a C char* using a format mask.

807

ECPG — Embedded SQL in C

int PGTYPEStimestamp_fmt_asc(timestamp *ts, char *output, int str_len, char
 *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

You can use the following format specifiers for the format mask. The format specifiers are the same
ones that are used in the strftime function in libc. Any non-format specifier will be copied into the
output buffer.

• %A - is replaced by national representation of the full weekday name.

• %a - is replaced by national representation of the abbreviated weekday name.

• %B - is replaced by national representation of the full month name.

• %b - is replaced by national representation of the abbreviated month name.

• %C - is replaced by (year / 100) as decimal number; single digits are preceded by a zero.

• %c - is replaced by national representation of time and date.

• %D - is equivalent to %m/%d/%y.

• %d - is replaced by the day of the month as a decimal number (01–31).

• %E* %O* - POSIX locale extensions. The sequences %Ec %EC %Ex %EX %Ey %EY %Od %Oe %OH %OI %Om
%OM %OS %Ou %OU %OV %Ow %OW %Oy are supposed to provide alternative representations.

Additionally %OB implemented to represent alternative months names (used standalone, without
day mentioned).

• %e - is replaced by the day of month as a decimal number (1–31); single digits are preceded by a
blank.

• %F - is equivalent to %Y-%m-%d.

• %G - is replaced by a year as a decimal number with century. This year is the one that contains
the greater part of the week (Monday as the first day of the week).

• %g - is replaced by the same year as in %G, but as a decimal number without century (00–99).

• %H - is replaced by the hour (24-hour clock) as a decimal number (00–23).

• %h - the same as %b.

• %I - is replaced by the hour (12-hour clock) as a decimal number (01–12).

• %j - is replaced by the day of the year as a decimal number (001–366).

• %k - is replaced by the hour (24-hour clock) as a decimal number (0–23); single digits are
preceded by a blank.

• %l - is replaced by the hour (12-hour clock) as a decimal number (1–12); single digits are
preceded by a blank.

• %M - is replaced by the minute as a decimal number (00–59).

• %m - is replaced by the month as a decimal number (01–12).

• %n - is replaced by a newline.

• %O* - the same as %E*.

• %p - is replaced by national representation of either “ante meridiem” or “post meridiem” as
appropriate.

808

ECPG — Embedded SQL in C

• %R - is equivalent to %H:%M.

• %r - is equivalent to %I:%M:%S %p.

• %S - is replaced by the second as a decimal number (00–60).

• %s - is replaced by the number of seconds since the Epoch, UTC.

• %T - is equivalent to %H:%M:%S

• %t - is replaced by a tab.

• %U - is replaced by the week number of the year (Sunday as the first day of the week) as a
decimal number (00–53).

• %u - is replaced by the weekday (Monday as the first day of the week) as a decimal number (1–
7).

• %V - is replaced by the week number of the year (Monday as the first day of the week) as a
decimal number (01–53). If the week containing January 1 has four or more days in the new
year, then it is week 1; otherwise it is the last week of the previous year, and the next week is
week 1.

• %v - is equivalent to %e-%b-%Y.

• %W - is replaced by the week number of the year (Monday as the first day of the week) as a
decimal number (00–53).

• %w - is replaced by the weekday (Sunday as the first day of the week) as a decimal number (0–6).

• %X - is replaced by national representation of the time.

• %x - is replaced by national representation of the date.

• %Y - is replaced by the year with century as a decimal number.

• %y - is replaced by the year without century as a decimal number (00–99).

• %Z - is replaced by the time zone name.

• %z - is replaced by the time zone offset from UTC; a leading plus sign stands for east of UTC,
a minus sign for west of UTC, hours and minutes follow with two digits each and no delimiter
between them (common form for RFC 822 date headers).

• %+ - is replaced by national representation of the date and time.

• %-* - GNU libc extension. Do not do any padding when performing numerical outputs.

• $_* - GNU libc extension. Explicitly specify space for padding.

• %0* - GNU libc extension. Explicitly specify zero for padding.

• %% - is replaced by %.

PGTYPEStimestamp_sub

Subtract one timestamp from another one and save the result in a variable of type interval.

int PGTYPEStimestamp_sub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_defmt_asc

Parse a timestamp value from its textual representation using a formatting mask.

int PGTYPEStimestamp_defmt_asc(char *str, char *fmt, timestamp *d);

809

ECPG — Embedded SQL in C

The function receives the textual representation of a timestamp in the variable str as well as the
formatting mask to use in the variable fmt. The result will be stored in the variable that d points to.

If the formatting mask fmt is NULL, the function will fall back to the default formatting mask which
is %Y-%m-%d %H:%M:%S.

This is the reverse function to PGTYPEStimestamp_fmt_asc. See the documentation there in order to
find out about the possible formatting mask entries.

PGTYPEStimestamp_add_interval

Add an interval variable to a timestamp variable.

int PGTYPEStimestamp_add_interval(timestamp *tin, interval *span, timestamp *tout);

The function receives a pointer to a timestamp variable tin and a pointer to an interval variable
span. It adds the interval to the timestamp and saves the resulting timestamp in the variable that
tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

PGTYPEStimestamp_sub_interval

Subtract an interval variable from a timestamp variable.

int PGTYPEStimestamp_sub_interval(timestamp *tin, interval *span, timestamp *tout);

The function subtracts the interval variable that span points to from the timestamp variable that tin
points to and saves the result into the variable that tout points to.

Upon success, the function returns 0 and a negative value if an error occurred.

33.6.5. The interval Type
The interval type in C enables your programs to deal with data of the SQL type interval. See Section 8.5
for the equivalent type in the Postgres Pro server.

The following functions can be used to work with the interval type:

PGTYPESinterval_new

Return a pointer to a newly allocated interval variable.

interval *PGTYPESinterval_new(void);

PGTYPESinterval_free

Release the memory of a previously allocated interval variable.

void PGTYPESinterval_free(interval *intvl);

PGTYPESinterval_from_asc

Parse an interval from its textual representation.

interval *PGTYPESinterval_from_asc(char *str, char **endptr);

The function parses the input string str and returns a pointer to an allocated interval variable. At
the moment ECPG always parses the complete string and so it currently does not support to store
the address of the first invalid character in *endptr. You can safely set endptr to NULL.

PGTYPESinterval_to_asc

Convert a variable of type interval to its textual representation.

char *PGTYPESinterval_to_asc(interval *span);

810

ECPG — Embedded SQL in C

The function converts the interval variable that span points to into a C char*. The output looks like this
example: @ 1 day 12 hours 59 mins 10 secs. The result must be freed with PGTYPESchar_free().

PGTYPESinterval_copy

Copy a variable of type interval.

int PGTYPESinterval_copy(interval *intvlsrc, interval *intvldest);

The function copies the interval variable that intvlsrc points to into the variable that intvldest
points to. Note that you need to allocate the memory for the destination variable before.

33.6.6. The decimal Type
The decimal type is similar to the numeric type. However it is limited to a maximum precision of 30
significant digits. In contrast to the numeric type which can be created on the heap only, the decimal
type can be created either on the stack or on the heap (by means of the functions PGTYPESdecimal_new
and PGTYPESdecimal_free). There are a lot of other functions that deal with the decimal type in the
Informix compatibility mode described in Section 33.15.

The following functions can be used to work with the decimal type and are not only contained in the
libcompat library.

PGTYPESdecimal_new

Request a pointer to a newly allocated decimal variable.

decimal *PGTYPESdecimal_new(void);

PGTYPESdecimal_free

Free a decimal type, release all of its memory.

void PGTYPESdecimal_free(decimal *var);

33.6.7. errno Values of pgtypeslib
PGTYPES_NUM_BAD_NUMERIC

An argument should contain a numeric variable (or point to a numeric variable) but in fact its in-
memory representation was invalid.

PGTYPES_NUM_OVERFLOW

An overflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause overflow.

PGTYPES_NUM_UNDERFLOW

An underflow occurred. Since the numeric type can deal with almost arbitrary precision, converting
a numeric variable into other types might cause underflow.

PGTYPES_NUM_DIVIDE_ZERO

A division by zero has been attempted.

PGTYPES_DATE_BAD_DATE

An invalid date string was passed to the PGTYPESdate_from_asc function.

PGTYPES_DATE_ERR_EARGS

Invalid arguments were passed to the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_ERR_ENOSHORTDATE

An invalid token in the input string was found by the PGTYPESdate_defmt_asc function.

811

ECPG — Embedded SQL in C

PGTYPES_INTVL_BAD_INTERVAL

An invalid interval string was passed to the PGTYPESinterval_from_asc function, or an invalid
interval value was passed to the PGTYPESinterval_to_asc function.

PGTYPES_DATE_ERR_ENOTDMY

There was a mismatch in the day/month/year assignment in the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_DAY

An invalid day of the month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_DATE_BAD_MONTH

An invalid month value was found by the PGTYPESdate_defmt_asc function.

PGTYPES_TS_BAD_TIMESTAMP

An invalid timestamp string pass passed to the PGTYPEStimestamp_from_asc function, or an invalid
timestamp value was passed to the PGTYPEStimestamp_to_asc function.

PGTYPES_TS_ERR_EINFTIME

An infinite timestamp value was encountered in a context that cannot handle it.

33.6.8. Special Constants of pgtypeslib
PGTYPESInvalidTimestamp

A value of type timestamp representing an invalid time stamp. This is returned by the function
PGTYPEStimestamp_from_asc on parse error. Note that due to the internal representation of the
timestamp data type, PGTYPESInvalidTimestamp is also a valid timestamp at the same time. It is set to
1899-12-31 23:59:59. In order to detect errors, make sure that your application does not only test for
PGTYPESInvalidTimestamp but also for errno != 0 after each call to PGTYPEStimestamp_from_asc.

33.7. Using Descriptor Areas
An SQL descriptor area is a more sophisticated method for processing the result of a SELECT, FETCH
or a DESCRIBE statement. An SQL descriptor area groups the data of one row of data together with
metadata items into one data structure. The metadata is particularly useful when executing dynamic
SQL statements, where the nature of the result columns might not be known ahead of time. Postgres
Pro provides two ways to use Descriptor Areas: the named SQL Descriptor Areas and the C-structure
SQLDAs.

33.7.1. Named SQL Descriptor Areas
A named SQL descriptor area consists of a header, which contains information concerning the entire
descriptor, and one or more item descriptor areas, which basically each describe one column in the
result row.

Before you can use an SQL descriptor area, you need to allocate one:

EXEC SQL ALLOCATE DESCRIPTOR identifier;

The identifier serves as the “variable name” of the descriptor area. When you don't need the descriptor
anymore, you should deallocate it:

EXEC SQL DEALLOCATE DESCRIPTOR identifier;

To use a descriptor area, specify it as the storage target in an INTO clause, instead of listing host
variables:

EXEC SQL FETCH NEXT FROM mycursor INTO SQL DESCRIPTOR mydesc;

812

ECPG — Embedded SQL in C

If the result set is empty, the Descriptor Area will still contain the metadata from the query, i.e., the
field names.

For not yet executed prepared queries, the DESCRIBE statement can be used to get the metadata of the
result set:

EXEC SQL BEGIN DECLARE SECTION;
char *sql_stmt = "SELECT * FROM table1";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;

Before PostgreSQL 9.0, the SQL keyword was optional, so using DESCRIPTOR and SQL DESCRIPTOR
produced named SQL Descriptor Areas. Now it is mandatory, omitting the SQL keyword produces SQLDA
Descriptor Areas, see Section 33.7.2.

In DESCRIBE and FETCH statements, the INTO and USING keywords can be used to similarly: they produce
the result set and the metadata in a Descriptor Area.

Now how do you get the data out of the descriptor area? You can think of the descriptor area as a
structure with named fields. To retrieve the value of a field from the header and store it into a host
variable, use the following command:

EXEC SQL GET DESCRIPTOR name :hostvar = field;

Currently, there is only one header field defined: COUNT, which tells how many item descriptor areas exist
(that is, how many columns are contained in the result). The host variable needs to be of an integer type.
To get a field from the item descriptor area, use the following command:

EXEC SQL GET DESCRIPTOR name VALUE num :hostvar = field;

num can be a literal integer or a host variable containing an integer. Possible fields are:

CARDINALITY (integer)

number of rows in the result set

DATA

actual data item (therefore, the data type of this field depends on the query)

DATETIME_INTERVAL_CODE (integer)

When TYPE is 9, DATETIME_INTERVAL_CODE will have a value of 1 for DATE, 2 for TIME, 3 for TIMESTAMP,
4 for TIME WITH TIME ZONE, or 5 for TIMESTAMP WITH TIME ZONE.

DATETIME_INTERVAL_PRECISION (integer)

not implemented

INDICATOR (integer)

the indicator (indicating a null value or a value truncation)

KEY_MEMBER (integer)

not implemented

LENGTH (integer)

length of the datum in characters

NAME (string)

name of the column

813

ECPG — Embedded SQL in C

NULLABLE (integer)

not implemented

OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

PRECISION (integer)

precision (for type numeric)

RETURNED_LENGTH (integer)

length of the datum in characters

RETURNED_OCTET_LENGTH (integer)

length of the character representation of the datum in bytes

SCALE (integer)

scale (for type numeric)

TYPE (integer)

numeric code of the data type of the column

In EXECUTE, DECLARE and OPEN statements, the effect of the INTO and USING keywords are different. A
Descriptor Area can also be manually built to provide the input parameters for a query or a cursor and
USING SQL DESCRIPTOR name is the way to pass the input parameters into a parameterized query. The
statement to build a named SQL Descriptor Area is below:

EXEC SQL SET DESCRIPTOR name VALUE num field = :hostvar;

Postgres Pro supports retrieving more that one record in one FETCH statement and storing the data in
host variables in this case assumes that the variable is an array. E.g.:

EXEC SQL BEGIN DECLARE SECTION;
int id[5];
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH 5 FROM mycursor INTO SQL DESCRIPTOR mydesc;

EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :id = DATA;

33.7.2. SQLDA Descriptor Areas
An SQLDA Descriptor Area is a C language structure which can be also used to get the result set and
the metadata of a query. One structure stores one record from the result set.

EXEC SQL include sqlda.h;
sqlda_t *mysqlda;

EXEC SQL FETCH 3 FROM mycursor INTO DESCRIPTOR mysqlda;

Note that the SQL keyword is omitted. The paragraphs about the use cases of the INTO and USING
keywords in Section 33.7.1 also apply here with an addition. In a DESCRIBE statement the DESCRIPTOR
keyword can be completely omitted if the INTO keyword is used:

EXEC SQL DESCRIBE prepared_statement INTO mysqlda;

The general flow of a program that uses SQLDA is:

1. Prepare a query, and declare a cursor for it.

814

ECPG — Embedded SQL in C

2. Declare an SQLDA for the result rows.
3. Declare an SQLDA for the input parameters, and initialize them (memory allocation, parameter

settings).
4. Open a cursor with the input SQLDA.
5. Fetch rows from the cursor, and store them into an output SQLDA.
6. Read values from the output SQLDA into the host variables (with conversion if necessary).
7. Close the cursor.
8. Free the memory area allocated for the input SQLDA.

33.7.2.1. SQLDA Data Structure
SQLDA uses three data structure types: sqlda_t, sqlvar_t, and struct sqlname.

Tip
Postgres Pro's SQLDA has a similar data structure to the one in IBM DB2 Universal Database, so
some technical information on DB2's SQLDA could help understanding Postgres Pro's one better.

33.7.2.1.1. sqlda_t Structure

The structure type sqlda_t is the type of the actual SQLDA. It holds one record. And two or more sqlda_t
structures can be connected in a linked list with the pointer in the desc_next field, thus representing
an ordered collection of rows. So, when two or more rows are fetched, the application can read them
by following the desc_next pointer in each sqlda_t node.

The definition of sqlda_t is:

struct sqlda_struct
{
 char sqldaid[8];
 long sqldabc;
 short sqln;
 short sqld;
 struct sqlda_struct *desc_next;
 struct sqlvar_struct sqlvar[1];
};

typedef struct sqlda_struct sqlda_t;

The meaning of the fields is:

sqldaid

It contains the literal string "SQLDA ".

sqldabc

It contains the size of the allocated space in bytes.

sqln

It contains the number of input parameters for a parameterized query in case it's passed into OPEN,
DECLARE or EXECUTE statements using the USING keyword. In case it's used as output of SELECT,
EXECUTE or FETCH statements, its value is the same as sqld statement

sqld

It contains the number of fields in a result set.

815

ECPG — Embedded SQL in C

desc_next

If the query returns more than one record, multiple linked SQLDA structures are returned, and
desc_next holds a pointer to the next entry in the list.

sqlvar

This is the array of the columns in the result set.

33.7.2.1.2. sqlvar_t Structure

The structure type sqlvar_t holds a column value and metadata such as type and length. The definition
of the type is:
struct sqlvar_struct
{
 short sqltype;
 short sqllen;
 char *sqldata;
 short *sqlind;
 struct sqlname sqlname;
};

typedef struct sqlvar_struct sqlvar_t;

The meaning of the fields is:
sqltype

Contains the type identifier of the field. For values, see enum ECPGttype in ecpgtype.h.

sqllen

Contains the binary length of the field. e.g., 4 bytes for ECPGt_int.

sqldata

Points to the data. The format of the data is described in Section 33.4.4.

sqlind

Points to the null indicator. 0 means not null, -1 means null.

sqlname

The name of the field.

33.7.2.1.3. struct sqlname Structure

A struct sqlname structure holds a column name. It is used as a member of the sqlvar_t structure.
The definition of the structure is:
#define NAMEDATALEN 64

struct sqlname
{
 short length;
 char data[NAMEDATALEN];
};

The meaning of the fields is:
length

Contains the length of the field name.

data

Contains the actual field name.

816

ECPG — Embedded SQL in C

33.7.2.2. Retrieving a Result Set Using an SQLDA
The general steps to retrieve a query result set through an SQLDA are:

1. Declare an sqlda_t structure to receive the result set.

2. Execute FETCH/EXECUTE/DESCRIBE commands to process a query specifying the declared SQLDA.

3. Check the number of records in the result set by looking at sqln, a member of the sqlda_t structure.

4. Get the values of each column from sqlvar[0], sqlvar[1], etc., members of the sqlda_t structure.

5. Go to next row (sqlda_t structure) by following the desc_next pointer, a member of the sqlda_t
structure.

6. Repeat above as you need.

Here is an example retrieving a result set through an SQLDA.

First, declare a sqlda_t structure to receive the result set.

sqlda_t *sqlda1;

Next, specify the SQLDA in a command. This is a FETCH command example.

EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Run a loop following the linked list to retrieve the rows.

sqlda_t *cur_sqlda;

for (cur_sqlda = sqlda1;
 cur_sqlda != NULL;
 cur_sqlda = cur_sqlda->desc_next)
{
 ...
}

Inside the loop, run another loop to retrieve each column data (sqlvar_t structure) of the row.

for (i = 0; i < cur_sqlda->sqld; i++)
{
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;
 ...
}

To get a column value, check the sqltype value, a member of the sqlvar_t structure. Then, switch to
an appropriate way, depending on the column type, to copy data from the sqlvar field to a host variable.

char var_buf[1024];

switch (v.sqltype)
{
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ? sizeof(var_buf) - 1 :
 sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);

817

ECPG — Embedded SQL in C

 break;

 ...
}

33.7.2.3. Passing Query Parameters Using an SQLDA
The general steps to use an SQLDA to pass input parameters to a prepared query are:

1. Create a prepared query (prepared statement)

2. Declare a sqlda_t structure as an input SQLDA.

3. Allocate memory area (as sqlda_t structure) for the input SQLDA.

4. Set (copy) input values in the allocated memory.

5. Open a cursor with specifying the input SQLDA.

Here is an example.

First, create a prepared statement.

EXEC SQL BEGIN DECLARE SECTION;
char query[1024] = "SELECT d.oid, * FROM pg_database d, pg_stat_database s WHERE d.oid
 = s.datid AND (d.datname = ? OR d.oid = ?)";
EXEC SQL END DECLARE SECTION;

EXEC SQL PREPARE stmt1 FROM :query;

Next, allocate memory for an SQLDA, and set the number of input parameters in sqln, a member variable
of the sqlda_t structure. When two or more input parameters are required for the prepared query,
the application has to allocate additional memory space which is calculated by (nr. of params - 1) *
sizeof(sqlvar_t). The example shown here allocates memory space for two input parameters.

sqlda_t *sqlda2;

sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));

sqlda2->sqln = 2; /* number of input variables */

After memory allocation, store the parameter values into the sqlvar[] array. (This is same array used for
retrieving column values when the SQLDA is receiving a result set.) In this example, the input parameters
are "postgres", having a string type, and 1, having an integer type.

sqlda2->sqlvar[0].sqltype = ECPGt_char;
sqlda2->sqlvar[0].sqldata = "postgres";
sqlda2->sqlvar[0].sqllen = 8;

int intval = 1;
sqlda2->sqlvar[1].sqltype = ECPGt_int;
sqlda2->sqlvar[1].sqldata = (char *) &intval;
sqlda2->sqlvar[1].sqllen = sizeof(intval);

By opening a cursor and specifying the SQLDA that was set up beforehand, the input parameters are
passed to the prepared statement.

EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Finally, after using input SQLDAs, the allocated memory space must be freed explicitly, unlike SQLDAs
used for receiving query results.

free(sqlda2);

818

ECPG — Embedded SQL in C

33.7.2.4. A Sample Application Using SQLDA
Here is an example program, which describes how to fetch access statistics of the databases, specified
by the input parameters, from the system catalogs.

This application joins two system tables, pg_database and pg_stat_database on the database OID, and
also fetches and shows the database statistics which are retrieved by two input parameters (a database
postgres, and OID 1).

First, declare an SQLDA for input and an SQLDA for output.

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* an output descriptor */
sqlda_t *sqlda2; /* an input descriptor */

Next, connect to the database, prepare a statement, and declare a cursor for the prepared statement.

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE
 d.oid=s.datid AND (d.datname=? OR d.oid=?)";
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Next, put some values in the input SQLDA for the input parameters. Allocate memory for the input
SQLDA, and set the number of input parameters to sqln. Store type, value, and value length into sqltype,
sqldata, and sqllen in the sqlvar structure.

 /* Create SQLDA structure for input parameters. */
 sqlda2 = (sqlda_t *) malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *)&intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

After setting up the input SQLDA, open a cursor with the input SQLDA.

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

Fetch rows into the output SQLDA from the opened cursor. (Generally, you have to call FETCH repeatedly
in the loop, to fetch all rows in the result set.)

 while (1)
 {
 sqlda_t *cur_sqlda;

819

ECPG — Embedded SQL in C

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

Next, retrieve the fetched records from the SQLDA, by following the linked list of the sqlda_t structure.
 for (cur_sqlda = sqlda1 ;
 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 ...

Read each columns in the first record. The number of columns is stored in sqld, the actual data of the
first column is stored in sqlvar[0], both members of the sqlda_t structure.
 /* Print every column in a row. */
 for (i = 0; i < sqlda1->sqld; i++)
 {
 sqlvar_t v = sqlda1->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

Now, the column data is stored in the variable v. Copy every datum into host variables, looking at
v.sqltype for the type of the column.
 switch (v.sqltype) {
 int intval;
 double doubleval;
 unsigned long long int longlongval;

 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf) <= sqllen ?
 sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 ...

 default:
 ...
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

Close the cursor after processing all of records, and disconnect from the database.
 EXEC SQL CLOSE cur1;
 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

The whole program is shown in Example 33.1.

820

ECPG — Embedded SQL in C

Example 33.1. Example SQLDA Program

#include <stdlib.h>
#include <string.h>
#include <stdlib.h>
#include <stdio.h>
#include <unistd.h>

EXEC SQL include sqlda.h;

sqlda_t *sqlda1; /* descriptor for output */
sqlda_t *sqlda2; /* descriptor for input */

EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char query[1024] = "SELECT d.oid,* FROM pg_database d, pg_stat_database s WHERE
 d.oid=s.datid AND (d.datname=? OR d.oid=?)";

 int intval;
 unsigned long long int longlongval;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO uptimedb AS con1 USER uptime;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL PREPARE stmt1 FROM :query;
 EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

 /* Create a SQLDA structure for an input parameter */
 sqlda2 = (sqlda_t *)malloc(sizeof(sqlda_t) + sizeof(sqlvar_t));
 memset(sqlda2, 0, sizeof(sqlda_t) + sizeof(sqlvar_t));
 sqlda2->sqln = 2; /* a number of input variables */

 sqlda2->sqlvar[0].sqltype = ECPGt_char;
 sqlda2->sqlvar[0].sqldata = "postgres";
 sqlda2->sqlvar[0].sqllen = 8;

 intval = 1;
 sqlda2->sqlvar[1].sqltype = ECPGt_int;
 sqlda2->sqlvar[1].sqldata = (char *) &intval;
 sqlda2->sqlvar[1].sqllen = sizeof(intval);

 /* Open a cursor with input parameters. */
 EXEC SQL OPEN cur1 USING DESCRIPTOR sqlda2;

 while (1)
 {
 sqlda_t *cur_sqlda;

 /* Assign descriptor to the cursor */
 EXEC SQL FETCH NEXT FROM cur1 INTO DESCRIPTOR sqlda1;

 for (cur_sqlda = sqlda1 ;

821

ECPG — Embedded SQL in C

 cur_sqlda != NULL ;
 cur_sqlda = cur_sqlda->desc_next)
 {
 int i;
 char name_buf[1024];
 char var_buf[1024];

 /* Print every column in a row. */
 for (i=0 ; i<cur_sqlda->sqld ; i++)
 {
 sqlvar_t v = cur_sqlda->sqlvar[i];
 char *sqldata = v.sqldata;
 short sqllen = v.sqllen;

 strncpy(name_buf, v.sqlname.data, v.sqlname.length);
 name_buf[v.sqlname.length] = '\0';

 switch (v.sqltype)
 {
 case ECPGt_char:
 memset(&var_buf, 0, sizeof(var_buf));
 memcpy(&var_buf, sqldata, (sizeof(var_buf)<=sqllen ?
 sizeof(var_buf)-1 : sqllen));
 break;

 case ECPGt_int: /* integer */
 memcpy(&intval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%d", intval);
 break;

 case ECPGt_long_long: /* bigint */
 memcpy(&longlongval, sqldata, sqllen);
 snprintf(var_buf, sizeof(var_buf), "%lld", longlongval);
 break;

 default:
 {
 int i;
 memset(var_buf, 0, sizeof(var_buf));
 for (i = 0; i < sqllen; i++)
 {
 char tmpbuf[16];
 snprintf(tmpbuf, sizeof(tmpbuf), "%02x ", (unsigned char)
 sqldata[i]);
 strncat(var_buf, tmpbuf, sizeof(var_buf));
 }
 }
 break;
 }

 printf("%s = %s (type: %d)\n", name_buf, var_buf, v.sqltype);
 }

 printf("\n");
 }
 }

 EXEC SQL CLOSE cur1;

822

ECPG — Embedded SQL in C

 EXEC SQL COMMIT;

 EXEC SQL DISCONNECT ALL;

 return 0;
}

The output of this example should look something like the following (some numbers will vary).

oid = 1 (type: 1)
datname = template1 (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = t (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = {=c/uptime,uptime=CTc/uptime} (type: 1)
datid = 1 (type: 1)
datname = template1 (type: 1)
numbackends = 0 (type: 5)
xact_commit = 113606 (type: 9)
xact_rollback = 0 (type: 9)
blks_read = 130 (type: 9)
blks_hit = 7341714 (type: 9)
tup_returned = 38262679 (type: 9)
tup_fetched = 1836281 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

oid = 11511 (type: 1)
datname = postgres (type: 1)
datdba = 10 (type: 1)
encoding = 0 (type: 5)
datistemplate = f (type: 1)
datallowconn = t (type: 1)
datconnlimit = -1 (type: 5)
datlastsysoid = 11510 (type: 1)
datfrozenxid = 379 (type: 1)
dattablespace = 1663 (type: 1)
datconfig = (type: 1)
datacl = (type: 1)
datid = 11511 (type: 1)
datname = postgres (type: 1)
numbackends = 0 (type: 5)
xact_commit = 221069 (type: 9)
xact_rollback = 18 (type: 9)
blks_read = 1176 (type: 9)
blks_hit = 13943750 (type: 9)
tup_returned = 77410091 (type: 9)
tup_fetched = 3253694 (type: 9)
tup_inserted = 0 (type: 9)
tup_updated = 0 (type: 9)
tup_deleted = 0 (type: 9)

823

ECPG — Embedded SQL in C

33.8. Error Handling
This section describes how you can handle exceptional conditions and warnings in an embedded SQL
program. There are two nonexclusive facilities for this.

• Callbacks can be configured to handle warning and error conditions using the WHENEVER command.

• Detailed information about the error or warning can be obtained from the sqlca variable.

33.8.1. Setting Callbacks
One simple method to catch errors and warnings is to set a specific action to be executed whenever a
particular condition occurs. In general:

EXEC SQL WHENEVER condition action;

condition can be one of the following:

SQLERROR

The specified action is called whenever an error occurs during the execution of an SQL statement.

SQLWARNING

The specified action is called whenever a warning occurs during the execution of an SQL statement.

NOT FOUND

The specified action is called whenever an SQL statement retrieves or affects zero rows. (This
condition is not an error, but you might be interested in handling it specially.)

action can be one of the following:

CONTINUE

This effectively means that the condition is ignored. This is the default.

GOTO label
GO TO label

Jump to the specified label (using a C goto statement).

SQLPRINT

Print a message to standard error. This is useful for simple programs or during prototyping. The
details of the message cannot be configured.

STOP

Call exit(1), which will terminate the program.

DO BREAK

Execute the C statement break. This should only be used in loops or switch statements.

DO CONTINUE

Execute the C statement continue. This should only be used in loops statements. if executed, will
cause the flow of control to return to the top of the loop.

CALL name (args)
DO name (args)

Call the specified C functions with the specified arguments. (This use is different from the meaning
of CALL and DO in the normal Postgres Pro grammar.)

824

ECPG — Embedded SQL in C

The SQL standard only provides for the actions CONTINUE and GOTO (and GO TO).

Here is an example that you might want to use in a simple program. It prints a simple message when a
warning occurs and aborts the program when an error happens:
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

The statement EXEC SQL WHENEVER is a directive of the SQL preprocessor, not a C statement. The
error or warning actions that it sets apply to all embedded SQL statements that appear below the point
where the handler is set, unless a different action was set for the same condition between the first EXEC
SQL WHENEVER and the SQL statement causing the condition, regardless of the flow of control in the C
program. So neither of the two following C program excerpts will have the desired effect:
/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 if (verbose) {
 EXEC SQL WHENEVER SQLWARNING SQLPRINT;
 }
 ...
 EXEC SQL SELECT ...;
 ...
}

/*
 * WRONG
 */
int main(int argc, char *argv[])
{
 ...
 set_error_handler();
 ...
 EXEC SQL SELECT ...;
 ...
}

static void set_error_handler(void)
{
 EXEC SQL WHENEVER SQLERROR STOP;
}

33.8.2. sqlca
For more powerful error handling, the embedded SQL interface provides a global variable with the name
sqlca (SQL communication area) that has the following structure:
struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];

825

ECPG — Embedded SQL in C

 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];
} sqlca;

(In a multithreaded program, every thread automatically gets its own copy of sqlca. This works similarly
to the handling of the standard C global variable errno.)

sqlca covers both warnings and errors. If multiple warnings or errors occur during the execution of a
statement, then sqlca will only contain information about the last one.

If no error occurred in the last SQL statement, sqlca.sqlcode will be 0 and sqlca.sqlstate will be
"00000". If a warning or error occurred, then sqlca.sqlcode will be negative and sqlca.sqlstate will
be different from "00000". A positive sqlca.sqlcode indicates a harmless condition, such as that the
last query returned zero rows. sqlcode and sqlstate are two different error code schemes; details
appear below.

If the last SQL statement was successful, then sqlca.sqlerrd[1] contains the OID of the processed row,
if applicable, and sqlca.sqlerrd[2] contains the number of processed or returned rows, if applicable
to the command.

In case of an error or warning, sqlca.sqlerrm.sqlerrmc will contain a string that describes the
error. The field sqlca.sqlerrm.sqlerrml contains the length of the error message that is stored in
sqlca.sqlerrm.sqlerrmc (the result of strlen(), not really interesting for a C programmer). Note that
some messages are too long to fit in the fixed-size sqlerrmc array; they will be truncated.

In case of a warning, sqlca.sqlwarn[2] is set to W. (In all other cases, it is set to something different
from W.) If sqlca.sqlwarn[1] is set to W, then a value was truncated when it was stored in a host variable.
sqlca.sqlwarn[0] is set to W if any of the other elements are set to indicate a warning.

The fields sqlcaid, sqlabc, sqlerrp, and the remaining elements of sqlerrd and sqlwarn currently
contain no useful information.

The structure sqlca is not defined in the SQL standard, but is implemented in several other SQL database
systems. The definitions are similar at the core, but if you want to write portable applications, then you
should investigate the different implementations carefully.

Here is one example that combines the use of WHENEVER and sqlca, printing out the contents of sqlca
when an error occurs. This is perhaps useful for debugging or prototyping applications, before installing
a more “user-friendly” error handler.
EXEC SQL WHENEVER SQLERROR CALL print_sqlca();

void
print_sqlca()
{
 fprintf(stderr, "==== sqlca ====\n");
 fprintf(stderr, "sqlcode: %ld\n", sqlca.sqlcode);
 fprintf(stderr, "sqlerrm.sqlerrml: %d\n", sqlca.sqlerrm.sqlerrml);
 fprintf(stderr, "sqlerrm.sqlerrmc: %s\n", sqlca.sqlerrm.sqlerrmc);
 fprintf(stderr, "sqlerrd: %ld %ld %ld %ld %ld %ld\n",
 sqlca.sqlerrd[0],sqlca.sqlerrd[1],sqlca.sqlerrd[2],

 sqlca.sqlerrd[3],sqlca.sqlerrd[4],sqlca.sqlerrd[5]);
 fprintf(stderr, "sqlwarn: %d %d %d %d %d %d %d %d\n", sqlca.sqlwarn[0],
 sqlca.sqlwarn[1], sqlca.sqlwarn[2],
 sqlca.sqlwarn[3],
 sqlca.sqlwarn[4], sqlca.sqlwarn[5],
 sqlca.sqlwarn[6],
 sqlca.sqlwarn[7]);

826

ECPG — Embedded SQL in C

 fprintf(stderr, "sqlstate: %5s\n", sqlca.sqlstate);
 fprintf(stderr, "===============\n");
}

The result could look as follows (here an error due to a misspelled table name):
==== sqlca ====
sqlcode: -400
sqlerrm.sqlerrml: 49
sqlerrm.sqlerrmc: relation "pg_databasep" does not exist on line 38
sqlerrd: 0 0 0 0 0 0
sqlwarn: 0 0 0 0 0 0 0 0
sqlstate: 42P01
===============

33.8.3. SQLSTATE vs. SQLCODE
The fields sqlca.sqlstate and sqlca.sqlcode are two different schemes that provide error codes. Both
are derived from the SQL standard, but SQLCODE has been marked deprecated in the SQL-92 edition of the
standard and has been dropped in later editions. Therefore, new applications are strongly encouraged
to use SQLSTATE.

SQLSTATE is a five-character array. The five characters contain digits or upper-case letters that represent
codes of various error and warning conditions. SQLSTATE has a hierarchical scheme: the first two
characters indicate the general class of the condition, the last three characters indicate a subclass of
the general condition. A successful state is indicated by the code 00000. The SQLSTATE codes are for the
most part defined in the SQL standard. The Postgres Pro server natively supports SQLSTATE error codes;
therefore a high degree of consistency can be achieved by using this error code scheme throughout all
applications. For further information see Appendix A.

SQLCODE, the deprecated error code scheme, is a simple integer. A value of 0 indicates success, a
positive value indicates success with additional information, a negative value indicates an error. The
SQL standard only defines the positive value +100, which indicates that the last command returned
or affected zero rows, and no specific negative values. Therefore, this scheme can only achieve poor
portability and does not have a hierarchical code assignment. Historically, the embedded SQL processor
for Postgres Pro has assigned some specific SQLCODE values for its use, which are listed below with
their numeric value and their symbolic name. Remember that these are not portable to other SQL
implementations. To simplify the porting of applications to the SQLSTATE scheme, the corresponding
SQLSTATE is also listed. There is, however, no one-to-one or one-to-many mapping between the two
schemes (indeed it is many-to-many), so you should consult the global SQLSTATE listing in Appendix A
in each case.

These are the assigned SQLCODE values:
0 (ECPG_NO_ERROR)

Indicates no error. (SQLSTATE 00000)

100 (ECPG_NOT_FOUND)
This is a harmless condition indicating that the last command retrieved or processed zero rows, or
that you are at the end of the cursor. (SQLSTATE 02000)

When processing a cursor in a loop, you could use this code as a way to detect when to abort the
loop, like this:
while (1)
{
 EXEC SQL FETCH ... ;
 if (sqlca.sqlcode == ECPG_NOT_FOUND)
 break;
}

827

ECPG — Embedded SQL in C

But WHENEVER NOT FOUND DO BREAK effectively does this internally, so there is usually no advantage
in writing this out explicitly.

-12 (ECPG_OUT_OF_MEMORY)

Indicates that your virtual memory is exhausted. The numeric value is defined as -ENOMEM.
(SQLSTATE YE001)

-200 (ECPG_UNSUPPORTED)
Indicates the preprocessor has generated something that the library does not know about. Perhaps
you are running incompatible versions of the preprocessor and the library. (SQLSTATE YE002)

-201 (ECPG_TOO_MANY_ARGUMENTS)
This means that the command specified more host variables than the command expected. (SQLSTATE
07001 or 07002)

-202 (ECPG_TOO_FEW_ARGUMENTS)
This means that the command specified fewer host variables than the command expected.
(SQLSTATE 07001 or 07002)

-203 (ECPG_TOO_MANY_MATCHES)
This means a query has returned multiple rows but the statement was only prepared to store one
result row (for example, because the specified variables are not arrays). (SQLSTATE 21000)

-204 (ECPG_INT_FORMAT)

The host variable is of type int and the datum in the database is of a different type and contains a
value that cannot be interpreted as an int. The library uses strtol() for this conversion. (SQLSTATE
42804)

-205 (ECPG_UINT_FORMAT)

The host variable is of type unsigned int and the datum in the database is of a different type and
contains a value that cannot be interpreted as an unsigned int. The library uses strtoul() for this
conversion. (SQLSTATE 42804)

-206 (ECPG_FLOAT_FORMAT)

The host variable is of type float and the datum in the database is of another type and contains
a value that cannot be interpreted as a float. The library uses strtod() for this conversion.
(SQLSTATE 42804)

-207 (ECPG_NUMERIC_FORMAT)

The host variable is of type numeric and the datum in the database is of another type and contains
a value that cannot be interpreted as a numeric value. (SQLSTATE 42804)

-208 (ECPG_INTERVAL_FORMAT)

The host variable is of type interval and the datum in the database is of another type and contains
a value that cannot be interpreted as an interval value. (SQLSTATE 42804)

-209 (ECPG_DATE_FORMAT)

The host variable is of type date and the datum in the database is of another type and contains a
value that cannot be interpreted as a date value. (SQLSTATE 42804)

-210 (ECPG_TIMESTAMP_FORMAT)

The host variable is of type timestamp and the datum in the database is of another type and contains
a value that cannot be interpreted as a timestamp value. (SQLSTATE 42804)

828

ECPG — Embedded SQL in C

-211 (ECPG_CONVERT_BOOL)
This means the host variable is of type bool and the datum in the database is neither 't' nor 'f'.
(SQLSTATE 42804)

-212 (ECPG_EMPTY)
The statement sent to the Postgres Pro server was empty. (This cannot normally happen in an
embedded SQL program, so it might point to an internal error.) (SQLSTATE YE002)

-213 (ECPG_MISSING_INDICATOR)
A null value was returned and no null indicator variable was supplied. (SQLSTATE 22002)

-214 (ECPG_NO_ARRAY)
An ordinary variable was used in a place that requires an array. (SQLSTATE 42804)

-215 (ECPG_DATA_NOT_ARRAY)
The database returned an ordinary variable in a place that requires array value. (SQLSTATE 42804)

-216 (ECPG_ARRAY_INSERT)
The value could not be inserted into the array. (SQLSTATE 42804)

-220 (ECPG_NO_CONN)
The program tried to access a connection that does not exist. (SQLSTATE 08003)

-221 (ECPG_NOT_CONN)
The program tried to access a connection that does exist but is not open. (This is an internal error.)
(SQLSTATE YE002)

-230 (ECPG_INVALID_STMT)
The statement you are trying to use has not been prepared. (SQLSTATE 26000)

-239 (ECPG_INFORMIX_DUPLICATE_KEY)
Duplicate key error, violation of unique constraint (Informix compatibility mode). (SQLSTATE 23505)

-240 (ECPG_UNKNOWN_DESCRIPTOR)
The descriptor specified was not found. The statement you are trying to use has not been prepared.
(SQLSTATE 33000)

-241 (ECPG_INVALID_DESCRIPTOR_INDEX)
The descriptor index specified was out of range. (SQLSTATE 07009)

-242 (ECPG_UNKNOWN_DESCRIPTOR_ITEM)
An invalid descriptor item was requested. (This is an internal error.) (SQLSTATE YE002)

-243 (ECPG_VAR_NOT_NUMERIC)
During the execution of a dynamic statement, the database returned a numeric value and the host
variable was not numeric. (SQLSTATE 07006)

-244 (ECPG_VAR_NOT_CHAR)
During the execution of a dynamic statement, the database returned a non-numeric value and the
host variable was numeric. (SQLSTATE 07006)

-284 (ECPG_INFORMIX_SUBSELECT_NOT_ONE)
A result of the subquery is not single row (Informix compatibility mode). (SQLSTATE 21000)

829

ECPG — Embedded SQL in C

-400 (ECPG_PGSQL)

Some error caused by the Postgres Pro server. The message contains the error message from the
Postgres Pro server.

-401 (ECPG_TRANS)

The Postgres Pro server signaled that we cannot start, commit, or rollback the transaction.
(SQLSTATE 08007)

-402 (ECPG_CONNECT)

The connection attempt to the database did not succeed. (SQLSTATE 08001)

-403 (ECPG_DUPLICATE_KEY)

Duplicate key error, violation of unique constraint. (SQLSTATE 23505)

-404 (ECPG_SUBSELECT_NOT_ONE)

A result for the subquery is not single row. (SQLSTATE 21000)

-602 (ECPG_WARNING_UNKNOWN_PORTAL)

An invalid cursor name was specified. (SQLSTATE 34000)

-603 (ECPG_WARNING_IN_TRANSACTION)

Transaction is in progress. (SQLSTATE 25001)

-604 (ECPG_WARNING_NO_TRANSACTION)

There is no active (in-progress) transaction. (SQLSTATE 25P01)

-605 (ECPG_WARNING_PORTAL_EXISTS)

An existing cursor name was specified. (SQLSTATE 42P03)

33.9. Preprocessor Directives
Several preprocessor directives are available that modify how the ecpg preprocessor parses and
processes a file.

33.9.1. Including Files
To include an external file into your embedded SQL program, use:

EXEC SQL INCLUDE filename;
EXEC SQL INCLUDE <filename>;
EXEC SQL INCLUDE "filename";

The embedded SQL preprocessor will look for a file named filename.h, preprocess it, and include it in
the resulting C output. Thus, embedded SQL statements in the included file are handled correctly.

The ecpg preprocessor will search a file at several directories in following order:

• current directory

• /usr/local/include

• Postgres Pro include directory, defined at build time (e.g., /usr/local/pgsql/include)

• /usr/include

But when EXEC SQL INCLUDE "filename" is used, only the current directory is searched.

830

ECPG — Embedded SQL in C

In each directory, the preprocessor will first look for the file name as given, and if not found will append
.h to the file name and try again (unless the specified file name already has that suffix).

Note that EXEC SQL INCLUDE is not the same as:

#include <filename.h>

because this file would not be subject to SQL command preprocessing. Naturally, you can continue to
use the C #include directive to include other header files.

Note
The include file name is case-sensitive, even though the rest of the EXEC SQL INCLUDE command
follows the normal SQL case-sensitivity rules.

33.9.2. The define and undef Directives
Similar to the directive #define that is known from C, embedded SQL has a similar concept:

EXEC SQL DEFINE name;
EXEC SQL DEFINE name value;

So you can define a name:

EXEC SQL DEFINE HAVE_FEATURE;

And you can also define constants:

EXEC SQL DEFINE MYNUMBER 12;
EXEC SQL DEFINE MYSTRING 'abc';

Use undef to remove a previous definition:

EXEC SQL UNDEF MYNUMBER;

Of course you can continue to use the C versions #define and #undef in your embedded SQL program.
The difference is where your defined values get evaluated. If you use EXEC SQL DEFINE then the ecpg
preprocessor evaluates the defines and substitutes the values. For example if you write:

EXEC SQL DEFINE MYNUMBER 12;
...
EXEC SQL UPDATE Tbl SET col = MYNUMBER;

then ecpg will already do the substitution and your C compiler will never see any name or identifier
MYNUMBER. Note that you cannot use #define for a constant that you are going to use in an embedded
SQL query because in this case the embedded SQL precompiler is not able to see this declaration.

33.9.3. ifdef, ifndef, elif, else, and endif Directives
You can use the following directives to compile code sections conditionally:

EXEC SQL ifdef name;

Checks a name and processes subsequent lines if name has been defined via EXEC SQL define name.

EXEC SQL ifndef name;

Checks a name and processes subsequent lines if name has not been defined via EXEC SQL define
name.

EXEC SQL elif name;

Begins an optional alternative section after an EXEC SQL ifdef name or EXEC SQL ifndef name
directive. Any number of elif sections can appear. Lines following an elif will be processed if

831

ECPG — Embedded SQL in C

name has been defined and no previous section of the same ifdef/ifndef...endif construct has been
processed.

EXEC SQL else;

Begins an optional, final alternative section after an EXEC SQL ifdef name or EXEC SQL ifndef name
directive. Subsequent lines will be processed if no previous section of the same ifdef/ifndef...endif
construct has been processed.

EXEC SQL endif;

Ends an ifdef/ifndef...endif construct. Subsequent lines are processed normally.

ifdef/ifndef...endif constructs can be nested, up to 127 levels deep.

This example will compile exactly one of the three SET TIMEZONE commands:

EXEC SQL ifdef TZVAR;
EXEC SQL SET TIMEZONE TO TZVAR;
EXEC SQL elif TZNAME;
EXEC SQL SET TIMEZONE TO TZNAME;
EXEC SQL else;
EXEC SQL SET TIMEZONE TO 'GMT';
EXEC SQL endif;

33.10. Processing Embedded SQL Programs
Now that you have an idea how to form embedded SQL C programs, you probably want to know how
to compile them. Before compiling you run the file through the embedded SQL C preprocessor, which
converts the SQL statements you used to special function calls. After compiling, you must link with a
special library that contains the needed functions. These functions fetch information from the arguments,
perform the SQL command using the libpq interface, and put the result in the arguments specified for
output.

The preprocessor program is called ecpg and is included in a normal Postgres Pro installation. Embedded
SQL programs are typically named with an extension .pgc. If you have a program file called prog1.pgc,
you can preprocess it by simply calling:

ecpg prog1.pgc

This will create a file called prog1.c. If your input files do not follow the suggested naming pattern, you
can specify the output file explicitly using the -o option.

The preprocessed file can be compiled normally, for example:

cc -c prog1.c

The generated C source files include header files from the Postgres Pro installation, so if you installed
Postgres Pro in a location that is not searched by default, you have to add an option such as -I/usr/
local/pgsql/include to the compilation command line.

To link an embedded SQL program, you need to include the libecpg library, like so:

cc -o myprog prog1.o prog2.o ... -lecpg

Again, you might have to add an option like -L/usr/local/pgsql/lib to that command line.

You can use pg_configor pkg-configwith package name libecpg to get the paths for your installation.

If you manage the build process of a larger project using make, it might be convenient to include the
following implicit rule to your makefiles:

ECPG = ecpg

832

ECPG — Embedded SQL in C

%.c: %.pgc
 $(ECPG) $<

The complete syntax of the ecpg command is detailed in ecpg.

The ecpg library is thread-safe by default. However, you might need to use some threading command-
line options to compile your client code.

33.11. Library Functions
The libecpg library primarily contains “hidden” functions that are used to implement the functionality
expressed by the embedded SQL commands. But there are some functions that can usefully be called
directly. Note that this makes your code unportable.

• ECPGdebug(int on, FILE *stream) turns on debug logging if called with the first argument non-
zero. Debug logging is done on stream. The log contains all SQL statements with all the input
variables inserted, and the results from the Postgres Pro server. This can be very useful when
searching for errors in your SQL statements.

Note
On Windows, if the ecpg libraries and an application are compiled with different flags, this
function call will crash the application because the internal representation of the FILE
pointers differ. Specifically, multithreaded/single-threaded, release/debug, and static/dynamic
flags should be the same for the library and all applications using that library.

• ECPGget_PGconn(const char *connection_name) returns the library database connection handle
identified by the given name. If connection_name is set to NULL, the current connection handle
is returned. If no connection handle can be identified, the function returns NULL. The returned
connection handle can be used to call any other functions from libpq, if necessary.

Note
It is a bad idea to manipulate database connection handles made from ecpg directly with
libpq routines.

• ECPGtransactionStatus(const char *connection_name) returns the current transaction
status of the given connection identified by connection_name. See Section 31.2 and libpq's
PQtransactionStatus for details about the returned status codes.

• ECPGstatus(int lineno, const char* connection_name) returns true if you are connected to a
database and false if not. connection_name can be NULL if a single connection is being used.

33.12. Large Objects
Large objects are not directly supported by ECPG, but ECPG application can manipulate large
objects through the libpq large object functions, obtaining the necessary PGconn object by calling the
ECPGget_PGconn() function. (However, use of the ECPGget_PGconn() function and touching PGconn
objects directly should be done very carefully and ideally not mixed with other ECPG database access
calls.)

For more details about the ECPGget_PGconn(), see Section 33.11. For information about the large object
function interface, see Chapter 32.

Large object functions have to be called in a transaction block, so when autocommit is off, BEGIN
commands have to be issued explicitly.

833

ECPG — Embedded SQL in C

Example 33.2 shows an example program that illustrates how to create, write, and read a large object
in an ECPG application.

Example 33.2. ECPG Program Accessing Large Objects
#include <stdio.h>
#include <stdlib.h>
#include <libpq-fe.h>
#include <libpq/libpq-fs.h>

EXEC SQL WHENEVER SQLERROR STOP;

int
main(void)
{
 PGconn *conn;
 Oid loid;
 int fd;
 char buf[256];
 int buflen = 256;
 char buf2[256];
 int rc;

 memset(buf, 1, buflen);

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 conn = ECPGget_PGconn("con1");
 printf("conn = %p\n", conn);

 /* create */
 loid = lo_create(conn, 0);
 if (loid < 0)
 printf("lo_create() failed: %s", PQerrorMessage(conn));

 printf("loid = %d\n", loid);

 /* write test */
 fd = lo_open(conn, loid, INV_READ|INV_WRITE);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

 rc = lo_write(conn, fd, buf, buflen);
 if (rc < 0)
 printf("lo_write() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* read test */
 fd = lo_open(conn, loid, INV_READ);
 if (fd < 0)
 printf("lo_open() failed: %s", PQerrorMessage(conn));

 printf("fd = %d\n", fd);

834

ECPG — Embedded SQL in C

 rc = lo_read(conn, fd, buf2, buflen);
 if (rc < 0)
 printf("lo_read() failed\n");

 rc = lo_close(conn, fd);
 if (rc < 0)
 printf("lo_close() failed: %s", PQerrorMessage(conn));

 /* check */
 rc = memcmp(buf, buf2, buflen);
 printf("memcmp() = %d\n", rc);

 /* cleanup */
 rc = lo_unlink(conn, loid);
 if (rc < 0)
 printf("lo_unlink() failed: %s", PQerrorMessage(conn));

 EXEC SQL COMMIT;
 EXEC SQL DISCONNECT ALL;
 return 0;
}

33.13. C++ Applications
ECPG has some limited support for C++ applications. This section describes some caveats.

The ecpg preprocessor takes an input file written in C (or something like C) and embedded SQL
commands, converts the embedded SQL commands into C language chunks, and finally generates a
.c file. The header file declarations of the library functions used by the C language chunks that ecpg
generates are wrapped in extern "C" { ... } blocks when used under C++, so they should work
seamlessly in C++.

In general, however, the ecpg preprocessor only understands C; it does not handle the special syntax
and reserved words of the C++ language. So, some embedded SQL code written in C++ application
code that uses complicated features specific to C++ might fail to be preprocessed correctly or might
not work as expected.

A safe way to use the embedded SQL code in a C++ application is hiding the ECPG calls in a C module,
which the C++ application code calls into to access the database, and linking that together with the rest
of the C++ code. See Section 33.13.2 about that.

33.13.1. Scope for Host Variables
The ecpg preprocessor understands the scope of variables in C. In the C language, this is rather simple
because the scopes of variables is based on their code blocks. In C++, however, the class member
variables are referenced in a different code block from the declared position, so the ecpg preprocessor
will not understand the scope of the class member variables.

For example, in the following case, the ecpg preprocessor cannot find any declaration for the variable
dbname in the test method, so an error will occur.

class TestCpp
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 public:

835

ECPG — Embedded SQL in C

 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
}

void Test::test()
{
 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

TestCpp::~TestCpp()
{
 EXEC SQL DISCONNECT ALL;
}

This code will result in an error like this:
ecpg test_cpp.pgc
test_cpp.pgc:28: ERROR: variable "dbname" is not declared

To avoid this scope issue, the test method could be modified to use a local variable as intermediate
storage. But this approach is only a poor workaround, because it uglifies the code and reduces
performance.
void TestCpp::test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char tmp[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :tmp;
 strlcpy(dbname, tmp, sizeof(tmp));

 printf("current_database = %s\n", dbname);
}

33.13.2. C++ Application Development with External C Module
If you understand these technical limitations of the ecpg preprocessor in C++, you might come to the
conclusion that linking C objects and C++ objects at the link stage to enable C++ applications to use
ECPG features could be better than writing some embedded SQL commands in C++ code directly. This
section describes a way to separate some embedded SQL commands from C++ application code with
a simple example. In this example, the application is implemented in C++, while C and ECPG is used
to connect to the Postgres Pro server.

Three kinds of files have to be created: a C file (*.pgc), a header file, and a C++ file:
test_mod.pgc

A sub-routine module to execute SQL commands embedded in C. It is going to be converted into
test_mod.c by the preprocessor.
#include "test_mod.h"
#include <stdio.h>

836

ECPG — Embedded SQL in C

void
db_connect()
{
 EXEC SQL CONNECT TO testdb1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL
 COMMIT;
}

void
db_test()
{
 EXEC SQL BEGIN DECLARE SECTION;
 char dbname[1024];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL SELECT current_database() INTO :dbname;
 printf("current_database = %s\n", dbname);
}

void
db_disconnect()
{
 EXEC SQL DISCONNECT ALL;
}

test_mod.h

A header file with declarations of the functions in the C module (test_mod.pgc). It is included by
test_cpp.cpp. This file has to have an extern "C" block around the declarations, because it will
be linked from the C++ module.

#ifdef __cplusplus
extern "C" {
#endif

void db_connect();
void db_test();
void db_disconnect();

#ifdef __cplusplus
}
#endif

test_cpp.cpp

The main code for the application, including the main routine, and in this example a C++ class.

#include "test_mod.h"

class TestCpp
{
 public:
 TestCpp();
 void test();
 ~TestCpp();
};

TestCpp::TestCpp()
{
 db_connect();

837

ECPG — Embedded SQL in C

}

void
TestCpp::test()
{
 db_test();
}

TestCpp::~TestCpp()
{
 db_disconnect();
}

int
main(void)
{
 TestCpp *t = new TestCpp();

 t->test();
 return 0;
}

To build the application, proceed as follows. Convert test_mod.pgc into test_mod.c by running ecpg,
and generate test_mod.o by compiling test_mod.c with the C compiler:

ecpg -o test_mod.c test_mod.pgc
cc -c test_mod.c -o test_mod.o

Next, generate test_cpp.o by compiling test_cpp.cpp with the C++ compiler:

c++ -c test_cpp.cpp -o test_cpp.o

Finally, link these object files, test_cpp.o and test_mod.o, into one executable, using the C++ compiler
driver:

c++ test_cpp.o test_mod.o -lecpg -o test_cpp

33.14. Embedded SQL Commands
This section describes all SQL commands that are specific to embedded SQL. Also refer to the SQL
commands listed in SQL Commands, which can also be used in embedded SQL, unless stated otherwise.

838

ECPG — Embedded SQL in C

ALLOCATE DESCRIPTOR
ALLOCATE DESCRIPTOR — allocate an SQL descriptor area

Synopsis
ALLOCATE DESCRIPTOR name

Description
ALLOCATE DESCRIPTOR allocates a new named SQL descriptor area, which can be used to exchange data
between the Postgres Pro server and the host program.

Descriptor areas should be freed after use using the DEALLOCATE DESCRIPTOR command.

Parameters
name

A name of SQL descriptor, case sensitive. This can be an SQL identifier or a host variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;

Compatibility
ALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
DEALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

839

ECPG — Embedded SQL in C

CONNECT
CONNECT — establish a database connection

Synopsis
CONNECT TO connection_target [AS connection_name] [USER connection_user]
CONNECT TO DEFAULT
CONNECT connection_user
DATABASE connection_target

Description
The CONNECT command establishes a connection between the client and the Postgres Pro server.

Parameters
connection_target

connection_target specifies the target server of the connection on one of several forms.

[database_name] [@host] [:port]

Connect over TCP/IP

unix:postgresql://host [:port] / [database_name] [?connection_option]

Connect over Unix-domain sockets

tcp:postgresql://host [:port] / [database_name] [?connection_option]

Connect over TCP/IP

SQL string constant

containing a value in one of the above forms

host variable

host variable of type char[] or VARCHAR[] containing a value in one of the above forms

connection_name

An optional identifier for the connection, so that it can be referred to in other commands. This can
be an SQL identifier or a host variable.

connection_user

The user name for the database connection.

This parameter can also specify user name and password, using one the forms user_name/password,
user_name IDENTIFIED BY password, or user_name USING password.

User name and password can be SQL identifiers, string constants, or host variables.

DEFAULT

Use all default connection parameters, as defined by libpq.

Examples
Here a several variants for specifying connection parameters:

EXEC SQL CONNECT TO "connectdb" AS main;
EXEC SQL CONNECT TO "connectdb" AS second;

840

ECPG — Embedded SQL in C

EXEC SQL CONNECT TO "unix:postgresql://200.46.204.71/connectdb" AS main USER
 connectuser;
EXEC SQL CONNECT TO "unix:postgresql://localhost/connectdb" AS main USER connectuser;
EXEC SQL CONNECT TO 'connectdb' AS main;
EXEC SQL CONNECT TO 'unix:postgresql://localhost/connectdb' AS main USER :user;
EXEC SQL CONNECT TO :db AS :id;
EXEC SQL CONNECT TO :db USER connectuser USING :pw;
EXEC SQL CONNECT TO @localhost AS main USER connectdb;
EXEC SQL CONNECT TO REGRESSDB1 as main;
EXEC SQL CONNECT TO AS main USER connectdb;
EXEC SQL CONNECT TO connectdb AS :id;
EXEC SQL CONNECT TO connectdb AS main USER connectuser/connectdb;
EXEC SQL CONNECT TO connectdb AS main;
EXEC SQL CONNECT TO connectdb@localhost AS main;
EXEC SQL CONNECT TO tcp:postgresql://localhost/ USER connectdb;
EXEC SQL CONNECT TO tcp:postgresql://localhost/connectdb USER connectuser IDENTIFIED BY
 connectpw;
EXEC SQL CONNECT TO tcp:postgresql://localhost:20/connectdb USER connectuser IDENTIFIED
 BY connectpw;
EXEC SQL CONNECT TO unix:postgresql://localhost/ AS main USER connectdb;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb AS main USER connectuser;
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser IDENTIFIED
 BY "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb USER connectuser USING
 "connectpw";
EXEC SQL CONNECT TO unix:postgresql://localhost/connectdb?connect_timeout=14 USER
 connectuser;

Here is an example program that illustrates the use of host variables to specify connection parameters:
int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 char *dbname = "testdb"; /* database name */
 char *user = "testuser"; /* connection user name */
 char *connection = "tcp:postgresql://localhost:5432/testdb";
 /* connection string */
 char ver[256]; /* buffer to store the version string */
EXEC SQL END DECLARE SECTION;

 ECPGdebug(1, stderr);

 EXEC SQL CONNECT TO :dbname USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT pgpro_version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 EXEC SQL CONNECT TO :connection USER :user;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL SELECT pgpro_version() INTO :ver;
 EXEC SQL DISCONNECT;

 printf("version: %s\n", ver);

 return 0;
}

841

ECPG — Embedded SQL in C

Compatibility
CONNECT is specified in the SQL standard, but the format of the connection parameters is implementation-
specific.

See Also
DISCONNECT, SET CONNECTION

842

ECPG — Embedded SQL in C

DEALLOCATE DESCRIPTOR
DEALLOCATE DESCRIPTOR — deallocate an SQL descriptor area

Synopsis
DEALLOCATE DESCRIPTOR name

Description
DEALLOCATE DESCRIPTOR deallocates a named SQL descriptor area.

Parameters
name

The name of the descriptor which is going to be deallocated. It is case sensitive. This can be an SQL
identifier or a host variable.

Examples
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DEALLOCATE DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR, SET DESCRIPTOR

843

ECPG — Embedded SQL in C

DECLARE
DECLARE — define a cursor

Synopsis
DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH |
 WITHOUT } HOLD] FOR prepared_name
DECLARE cursor_name [BINARY] [INSENSITIVE] [[NO] SCROLL] CURSOR [{ WITH |
 WITHOUT } HOLD] FOR query

Description
DECLARE declares a cursor for iterating over the result set of a prepared statement. This command has
slightly different semantics from the direct SQL command DECLARE: Whereas the latter executes a query
and prepares the result set for retrieval, this embedded SQL command merely declares a name as a
“loop variable” for iterating over the result set of a query; the actual execution happens when the cursor
is opened with the OPEN command.

Parameters
cursor_name

A cursor name, case sensitive. This can be an SQL identifier or a host variable.

prepared_name

The name of a prepared query, either as an SQL identifier or a host variable.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

For the meaning of the cursor options, see DECLARE.

Examples
Examples declaring a cursor for a query:

EXEC SQL DECLARE C CURSOR FOR SELECT * FROM My_Table;
EXEC SQL DECLARE C CURSOR FOR SELECT Item1 FROM T;
EXEC SQL DECLARE cur1 CURSOR FOR SELECT pgpro_version();

An example declaring a cursor for a prepared statement:

EXEC SQL PREPARE stmt1 AS SELECT pgpro_version();
EXEC SQL DECLARE cur1 CURSOR FOR stmt1;

Compatibility
DECLARE is specified in the SQL standard.

See Also
OPEN, CLOSE, DECLARE

844

ECPG — Embedded SQL in C

DESCRIBE
DESCRIBE — obtain information about a prepared statement or result set

Synopsis
DESCRIBE [OUTPUT] prepared_name USING [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO [SQL] DESCRIPTOR descriptor_name
DESCRIBE [OUTPUT] prepared_name INTO sqlda_name

Description
DESCRIBE retrieves metadata information about the result columns contained in a prepared statement,
without actually fetching a row.

Parameters
prepared_name

The name of a prepared statement. This can be an SQL identifier or a host variable.

descriptor_name

A descriptor name. It is case sensitive. It can be an SQL identifier or a host variable.

sqlda_name

The name of an SQLDA variable.

Examples
EXEC SQL ALLOCATE DESCRIPTOR mydesc;
EXEC SQL PREPARE stmt1 FROM :sql_stmt;
EXEC SQL DESCRIBE stmt1 INTO SQL DESCRIPTOR mydesc;
EXEC SQL GET DESCRIPTOR mydesc VALUE 1 :charvar = NAME;
EXEC SQL DEALLOCATE DESCRIPTOR mydesc;

Compatibility
DESCRIBE is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

845

ECPG — Embedded SQL in C

DISCONNECT
DISCONNECT — terminate a database connection

Synopsis
DISCONNECT connection_name
DISCONNECT [CURRENT]
DISCONNECT DEFAULT
DISCONNECT ALL

Description
DISCONNECT closes a connection (or all connections) to the database.

Parameters
connection_name

A database connection name established by the CONNECT command.

CURRENT

Close the “current” connection, which is either the most recently opened connection, or the
connection set by the SET CONNECTION command. This is also the default if no argument is given to
the DISCONNECT command.

DEFAULT

Close the default connection.

ALL

Close all open connections.

Examples
int
main(void)
{
 EXEC SQL CONNECT TO testdb AS DEFAULT USER testuser;
 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL CONNECT TO testdb AS con2 USER testuser;
 EXEC SQL CONNECT TO testdb AS con3 USER testuser;

 EXEC SQL DISCONNECT CURRENT; /* close con3 */
 EXEC SQL DISCONNECT DEFAULT; /* close DEFAULT */
 EXEC SQL DISCONNECT ALL; /* close con2 and con1 */

 return 0;
}

Compatibility
DISCONNECT is specified in the SQL standard.

See Also
CONNECT, SET CONNECTION

846

ECPG — Embedded SQL in C

EXECUTE IMMEDIATE
EXECUTE IMMEDIATE — dynamically prepare and execute a statement

Synopsis
EXECUTE IMMEDIATE string

Description
EXECUTE IMMEDIATE immediately prepares and executes a dynamically specified SQL statement, without
retrieving result rows.

Parameters
string

A literal C string or a host variable containing the SQL statement to be executed.

Examples
Here is an example that executes an INSERT statement using EXECUTE IMMEDIATE and a host variable
named command:

sprintf(command, "INSERT INTO test (name, amount, letter) VALUES ('db: ''r1''', 1,
 'f')");
EXEC SQL EXECUTE IMMEDIATE :command;

Compatibility
EXECUTE IMMEDIATE is specified in the SQL standard.

847

ECPG — Embedded SQL in C

GET DESCRIPTOR
GET DESCRIPTOR — get information from an SQL descriptor area

Synopsis
GET DESCRIPTOR descriptor_name :cvariable = descriptor_header_item [, ...]
GET DESCRIPTOR descriptor_name VALUE column_number :cvariable = descriptor_item
 [, ...]

Description
GET DESCRIPTOR retrieves information about a query result set from an SQL descriptor area and stores
it into host variables. A descriptor area is typically populated using FETCH or SELECT before using this
command to transfer the information into host language variables.

This command has two forms: The first form retrieves descriptor “header” items, which apply to the
result set in its entirety. One example is the row count. The second form, which requires the column
number as additional parameter, retrieves information about a particular column. Examples are the
column name and the actual column value.

Parameters
descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to retrieve. Only COUNT, to get the number of
columns in the result set, is currently supported.

column_number

The number of the column about which information is to be retrieved. The count starts at 1.

descriptor_item

A token identifying which item of information about a column to retrieve. See Section 33.7.1 for a
list of supported items.

cvariable

A host variable that will receive the data retrieved from the descriptor area.

Examples
An example to retrieve the number of columns in a result set:

EXEC SQL GET DESCRIPTOR d :d_count = COUNT;

An example to retrieve a data length in the first column:

EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;

An example to retrieve the data body of the second column as a string:

EXEC SQL GET DESCRIPTOR d VALUE 2 :d_data = DATA;

Here is an example for a whole procedure of executing SELECT current_database(); and showing the
number of columns, the column data length, and the column data:

int
main(void)
{

848

ECPG — Embedded SQL in C

EXEC SQL BEGIN DECLARE SECTION;
 int d_count;
 char d_data[1024];
 int d_returned_octet_length;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1 USER testuser;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;

 /* Declare, open a cursor, and assign a descriptor to the cursor */
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database();
 EXEC SQL OPEN cur;
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;

 /* Get a number of total columns */
 EXEC SQL GET DESCRIPTOR d :d_count = COUNT;
 printf("d_count = %d\n", d_count);

 /* Get length of a returned column */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_returned_octet_length = RETURNED_OCTET_LENGTH;
 printf("d_returned_octet_length = %d\n", d_returned_octet_length);

 /* Fetch the returned column as a string */
 EXEC SQL GET DESCRIPTOR d VALUE 1 :d_data = DATA;
 printf("d_data = %s\n", d_data);

 /* Closing */
 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

When the example is executed, the result will look like this:

d_count = 1
d_returned_octet_length = 6
d_data = testdb

Compatibility
GET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, SET DESCRIPTOR

849

ECPG — Embedded SQL in C

OPEN
OPEN — open a dynamic cursor

Synopsis
OPEN cursor_name
OPEN cursor_name USING value [, ...]
OPEN cursor_name USING SQL DESCRIPTOR descriptor_name

Description
OPEN opens a cursor and optionally binds actual values to the placeholders in the cursor's declaration.
The cursor must previously have been declared with the DECLARE command. The execution of OPEN causes
the query to start executing on the server.

Parameters
cursor_name

The name of the cursor to be opened. This can be an SQL identifier or a host variable.

value

A value to be bound to a placeholder in the cursor. This can be an SQL constant, a host variable, or
a host variable with indicator.

descriptor_name

The name of a descriptor containing values to be bound to the placeholders in the cursor. This can
be an SQL identifier or a host variable.

Examples
EXEC SQL OPEN a;
EXEC SQL OPEN d USING 1, 'test';
EXEC SQL OPEN c1 USING SQL DESCRIPTOR mydesc;
EXEC SQL OPEN :curname1;

Compatibility
OPEN is specified in the SQL standard.

See Also
DECLARE, CLOSE

850

ECPG — Embedded SQL in C

PREPARE
PREPARE — prepare a statement for execution

Synopsis
PREPARE name FROM string

Description
PREPARE prepares a statement dynamically specified as a string for execution. This is different from
the direct SQL statement PREPARE, which can also be used in embedded programs. The EXECUTE
command is used to execute either kind of prepared statement.

Parameters
prepared_name

An identifier for the prepared query.

string

A literal C string or a host variable containing a preparable statement, one of the SELECT, INSERT,
UPDATE, or DELETE.

Examples
char *stmt = "SELECT * FROM test1 WHERE a = ? AND b = ?";

EXEC SQL ALLOCATE DESCRIPTOR outdesc;
EXEC SQL PREPARE foo FROM :stmt;

EXEC SQL EXECUTE foo USING SQL DESCRIPTOR indesc INTO SQL DESCRIPTOR outdesc;

Compatibility
PREPARE is specified in the SQL standard.

See Also
EXECUTE

851

ECPG — Embedded SQL in C

SET AUTOCOMMIT
SET AUTOCOMMIT — set the autocommit behavior of the current session

Synopsis
SET AUTOCOMMIT { = | TO } { ON | OFF }

Description
SET AUTOCOMMIT sets the autocommit behavior of the current database session. By default, embedded
SQL programs are not in autocommit mode, so COMMIT needs to be issued explicitly when desired. This
command can change the session to autocommit mode, where each individual statement is committed
implicitly.

Compatibility
SET AUTOCOMMIT is an extension of Postgres Pro ECPG.

852

ECPG — Embedded SQL in C

SET CONNECTION
SET CONNECTION — select a database connection

Synopsis
SET CONNECTION [TO | =] connection_name

Description
SET CONNECTION sets the “current” database connection, which is the one that all commands use unless
overridden.

Parameters
connection_name

A database connection name established by the CONNECT command.

DEFAULT

Set the connection to the default connection.

Examples
EXEC SQL SET CONNECTION TO con2;
EXEC SQL SET CONNECTION = con1;

Compatibility
SET CONNECTION is specified in the SQL standard.

See Also
CONNECT, DISCONNECT

853

ECPG — Embedded SQL in C

SET DESCRIPTOR
SET DESCRIPTOR — set information in an SQL descriptor area

Synopsis
SET DESCRIPTOR descriptor_name descriptor_header_item = value [, ...]
SET DESCRIPTOR descriptor_name VALUE number descriptor_item = value [, ...]

Description
SET DESCRIPTOR populates an SQL descriptor area with values. The descriptor area is then typically
used to bind parameters in a prepared query execution.

This command has two forms: The first form applies to the descriptor “header”, which is independent of
a particular datum. The second form assigns values to particular datums, identified by number.

Parameters
descriptor_name

A descriptor name.

descriptor_header_item

A token identifying which header information item to set. Only COUNT, to set the number of descriptor
items, is currently supported.

number

The number of the descriptor item to set. The count starts at 1.

descriptor_item

A token identifying which item of information to set in the descriptor. See Section 33.7.1 for a list
of supported items.

value

A value to store into the descriptor item. This can be an SQL constant or a host variable.

Examples
EXEC SQL SET DESCRIPTOR indesc COUNT = 1;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = 2;
EXEC SQL SET DESCRIPTOR indesc VALUE 1 DATA = :val1;
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val1, DATA = 'some string';
EXEC SQL SET DESCRIPTOR indesc VALUE 2 INDICATOR = :val2null, DATA = :val2;

Compatibility
SET DESCRIPTOR is specified in the SQL standard.

See Also
ALLOCATE DESCRIPTOR, GET DESCRIPTOR

854

ECPG — Embedded SQL in C

TYPE
TYPE — define a new data type

Synopsis
TYPE type_name IS ctype

Description
The TYPE command defines a new C type. It is equivalent to putting a typedef into a declare section.

This command is only recognized when ecpg is run with the -c option.

Parameters
type_name

The name for the new type. It must be a valid C type name.

ctype

A C type specification.

Examples
EXEC SQL TYPE customer IS
 struct
 {
 varchar name[50];
 int phone;
 };

EXEC SQL TYPE cust_ind IS
 struct ind
 {
 short name_ind;
 short phone_ind;
 };

EXEC SQL TYPE c IS char reference;
EXEC SQL TYPE ind IS union { int integer; short smallint; };
EXEC SQL TYPE intarray IS int[AMOUNT];
EXEC SQL TYPE str IS varchar[BUFFERSIZ];
EXEC SQL TYPE string IS char[11];

Here is an example program that uses EXEC SQL TYPE:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

EXEC SQL TYPE tt IS
 struct
 {
 varchar v[256];
 int i;
 };

EXEC SQL TYPE tt_ind IS
 struct ind {
 short v_ind;
 short i_ind;
 };

855

ECPG — Embedded SQL in C

int
main(void)
{
EXEC SQL BEGIN DECLARE SECTION;
 tt t;
 tt_ind t_ind;
EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;

 EXEC SQL SELECT current_database(), 256 INTO :t:t_ind LIMIT 1;

 printf("t.v = %s\n", t.v.arr);
 printf("t.i = %d\n", t.i);

 printf("t_ind.v_ind = %d\n", t_ind.v_ind);
 printf("t_ind.i_ind = %d\n", t_ind.i_ind);

 EXEC SQL DISCONNECT con1;

 return 0;
}

The output from this program looks like this:

t.v = testdb
t.i = 256
t_ind.v_ind = 0
t_ind.i_ind = 0

Compatibility
The TYPE command is a Postgres Pro extension.

856

ECPG — Embedded SQL in C

VAR
VAR — define a variable

Synopsis
VAR varname IS ctype

Description
The VAR command assigns a new C data type to a host variable. The host variable must be previously
declared in a declare section.

Parameters
varname

A C variable name.

ctype

A C type specification.

Examples
Exec sql begin declare section;
short a;
exec sql end declare section;
EXEC SQL VAR a IS int;

Compatibility
The VAR command is a Postgres Pro extension.

857

ECPG — Embedded SQL in C

WHENEVER
WHENEVER — specify the action to be taken when an SQL statement causes a specific class condition
to be raised

Synopsis
WHENEVER { NOT FOUND | SQLERROR | SQLWARNING } action

Description
Define a behavior which is called on the special cases (Rows not found, SQL warnings or errors) in the
result of SQL execution.

Parameters
See Section 33.8.1 for a description of the parameters.

Examples
EXEC SQL WHENEVER NOT FOUND CONTINUE;
EXEC SQL WHENEVER NOT FOUND DO BREAK;
EXEC SQL WHENEVER NOT FOUND DO CONTINUE;
EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLWARNING DO warn();
EXEC SQL WHENEVER SQLERROR sqlprint;
EXEC SQL WHENEVER SQLERROR CALL print2();
EXEC SQL WHENEVER SQLERROR DO handle_error("select");
EXEC SQL WHENEVER SQLERROR DO sqlnotice(NULL, NONO);
EXEC SQL WHENEVER SQLERROR DO sqlprint();
EXEC SQL WHENEVER SQLERROR GOTO error_label;
EXEC SQL WHENEVER SQLERROR STOP;

A typical application is the use of WHENEVER NOT FOUND BREAK to handle looping through result sets:
int
main(void)
{
 EXEC SQL CONNECT TO testdb AS con1;
 EXEC SQL SELECT pg_catalog.set_config('search_path', '', false); EXEC SQL COMMIT;
 EXEC SQL ALLOCATE DESCRIPTOR d;
 EXEC SQL DECLARE cur CURSOR FOR SELECT current_database(), 'hoge', 256;
 EXEC SQL OPEN cur;

 /* when end of result set reached, break out of while loop */
 EXEC SQL WHENEVER NOT FOUND DO BREAK;

 while (1)
 {
 EXEC SQL FETCH NEXT FROM cur INTO SQL DESCRIPTOR d;
 ...
 }

 EXEC SQL CLOSE cur;
 EXEC SQL COMMIT;

 EXEC SQL DEALLOCATE DESCRIPTOR d;
 EXEC SQL DISCONNECT ALL;

 return 0;
}

858

ECPG — Embedded SQL in C

Compatibility
WHENEVER is specified in the SQL standard, but most of the actions are Postgres Pro extensions.

33.15. Informix Compatibility Mode
ecpg can be run in a so-called Informix compatibility mode. If this mode is active, it tries to behave as
if it were the Informix precompiler for Informix E/SQL. Generally spoken this will allow you to use the
dollar sign instead of the EXEC SQL primitive to introduce embedded SQL commands:

$int j = 3;
$CONNECT TO :dbname;
$CREATE TABLE test(i INT PRIMARY KEY, j INT);
$INSERT INTO test(i, j) VALUES (7, :j);
$COMMIT;

Note
There must not be any white space between the $ and a following preprocessor directive, that is,
include, define, ifdef, etc. Otherwise, the preprocessor will parse the token as a host variable.

There are two compatibility modes: INFORMIX, INFORMIX_SE

When linking programs that use this compatibility mode, remember to link against libcompat that is
shipped with ECPG.

Besides the previously explained syntactic sugar, the Informix compatibility mode ports some functions
for input, output and transformation of data as well as embedded SQL statements known from E/SQL
to ECPG.

Informix compatibility mode is closely connected to the pgtypeslib library of ECPG. pgtypeslib maps SQL
data types to data types within the C host program and most of the additional functions of the Informix
compatibility mode allow you to operate on those C host program types. Note however that the extent
of the compatibility is limited. It does not try to copy Informix behavior; it allows you to do more or less
the same operations and gives you functions that have the same name and the same basic behavior but
it is no drop-in replacement if you are using Informix at the moment. Moreover, some of the data types
are different. For example, Postgres Pro's datetime and interval types do not know about ranges like for
example YEAR TO MINUTE so you won't find support in ECPG for that either.

33.15.1. Additional Types
The Informix-special "string" pseudo-type for storing right-trimmed character string data is now
supported in Informix-mode without using typedef. In fact, in Informix-mode, ECPG refuses to process
source files that contain typedef sometype string;

EXEC SQL BEGIN DECLARE SECTION;
string userid; /* this variable will contain trimmed data */
EXEC SQL END DECLARE SECTION;

EXEC SQL FETCH MYCUR INTO :userid;

33.15.2. Additional/Missing Embedded SQL Statements
CLOSE DATABASE

This statement closes the current connection. In fact, this is a synonym for ECPG's DISCONNECT
CURRENT:

$CLOSE DATABASE; /* close the current connection */
EXEC SQL CLOSE DATABASE;

859

ECPG — Embedded SQL in C

FREE cursor_name

Due to the differences how ECPG works compared to Informix's ESQL/C (i.e., which steps are purely
grammar transformations and which steps rely on the underlying run-time library) there is no FREE
cursor_name statement in ECPG. This is because in ECPG, DECLARE CURSOR doesn't translate to a
function call into the run-time library that uses to the cursor name. This means that there's no run-
time bookkeeping of SQL cursors in the ECPG run-time library, only in the Postgres Pro server.

FREE statement_name

FREE statement_name is a synonym for DEALLOCATE PREPARE statement_name.

33.15.3. Informix-compatible SQLDA Descriptor Areas
Informix-compatible mode supports a different structure than the one described in Section 33.7.2. See
below:
struct sqlvar_compat
{
 short sqltype;
 int sqllen;
 char *sqldata;
 short *sqlind;
 char *sqlname;
 char *sqlformat;
 short sqlitype;
 short sqlilen;
 char *sqlidata;
 int sqlxid;
 char *sqltypename;
 short sqltypelen;
 short sqlownerlen;
 short sqlsourcetype;
 char *sqlownername;
 int sqlsourceid;
 char *sqlilongdata;
 int sqlflags;
 void *sqlreserved;
};

struct sqlda_compat
{
 short sqld;
 struct sqlvar_compat *sqlvar;
 char desc_name[19];
 short desc_occ;
 struct sqlda_compat *desc_next;
 void *reserved;
};

typedef struct sqlvar_compat sqlvar_t;
typedef struct sqlda_compat sqlda_t;

The global properties are:
sqld

The number of fields in the SQLDA descriptor.

sqlvar

Pointer to the per-field properties.

860

ECPG — Embedded SQL in C

desc_name

Unused, filled with zero-bytes.

desc_occ

Size of the allocated structure.

desc_next

Pointer to the next SQLDA structure if the result set contains more than one record.

reserved

Unused pointer, contains NULL. Kept for Informix-compatibility.

The per-field properties are below, they are stored in the sqlvar array:

sqltype

Type of the field. Constants are in sqltypes.h

sqllen

Length of the field data.

sqldata

Pointer to the field data. The pointer is of char * type, the data pointed by it is in a binary format.
Example:

int intval;

switch (sqldata->sqlvar[i].sqltype)
{
 case SQLINTEGER:
 intval = *(int *)sqldata->sqlvar[i].sqldata;
 break;
 ...
}

sqlind

Pointer to the NULL indicator. If returned by DESCRIBE or FETCH then it's always a valid pointer.
If used as input for EXECUTE ... USING sqlda; then NULL-pointer value means that the value for
this field is non-NULL. Otherwise a valid pointer and sqlitype has to be properly set. Example:

if (*(int2 *)sqldata->sqlvar[i].sqlind != 0)
 printf("value is NULL\n");

sqlname

Name of the field. 0-terminated string.

sqlformat

Reserved in Informix, value of PQfformat for the field.

sqlitype

Type of the NULL indicator data. It's always SQLSMINT when returning data from the server. When
the SQLDA is used for a parameterized query, the data is treated according to the set type.

sqlilen

Length of the NULL indicator data.

861

ECPG — Embedded SQL in C

sqlxid

Extended type of the field, result of PQftype.

sqltypename
sqltypelen
sqlownerlen
sqlsourcetype
sqlownername
sqlsourceid
sqlflags
sqlreserved

Unused.

sqlilongdata

It equals to sqldata if sqllen is larger than 32kB.

Example:

EXEC SQL INCLUDE sqlda.h;

 sqlda_t *sqlda; /* This doesn't need to be under embedded DECLARE SECTION */

 EXEC SQL BEGIN DECLARE SECTION;
 char *prep_stmt = "select * from table1";
 int i;
 EXEC SQL END DECLARE SECTION;

 ...

 EXEC SQL PREPARE mystmt FROM :prep_stmt;

 EXEC SQL DESCRIBE mystmt INTO sqlda;

 printf("# of fields: %d\n", sqlda->sqld);
 for (i = 0; i < sqlda->sqld; i++)
 printf("field %d: \"%s\"\n", sqlda->sqlvar[i]->sqlname);

 EXEC SQL DECLARE mycursor CURSOR FOR mystmt;
 EXEC SQL OPEN mycursor;
 EXEC SQL WHENEVER NOT FOUND GOTO out;

 while (1)
 {
 EXEC SQL FETCH mycursor USING sqlda;
 }

 EXEC SQL CLOSE mycursor;

 free(sqlda); /* The main structure is all to be free(),
 * sqlda and sqlda->sqlvar is in one allocated area */

33.15.4. Additional Functions
decadd

Add two decimal type values.

int decadd(decimal *arg1, decimal *arg2, decimal *sum);

862

ECPG — Embedded SQL in C

The function receives a pointer to the first operand of type decimal (arg1), a pointer to the second
operand of type decimal (arg2) and a pointer to a value of type decimal that will contain the sum (sum).
On success, the function returns 0. ECPG_INFORMIX_NUM_OVERFLOW is returned in case of overflow
and ECPG_INFORMIX_NUM_UNDERFLOW in case of underflow. -1 is returned for other failures and errno
is set to the respective errno number of the pgtypeslib.

deccmp

Compare two variables of type decimal.

int deccmp(decimal *arg1, decimal *arg2);

The function receives a pointer to the first decimal value (arg1), a pointer to the second decimal
value (arg2) and returns an integer value that indicates which is the bigger value.
• 1, if the value that arg1 points to is bigger than the value that var2 points to
• -1, if the value that arg1 points to is smaller than the value that arg2 points to
• 0, if the value that arg1 points to and the value that arg2 points to are equal

deccopy

Copy a decimal value.

void deccopy(decimal *src, decimal *target);

The function receives a pointer to the decimal value that should be copied as the first argument (src)
and a pointer to the target structure of type decimal (target) as the second argument.

deccvasc

Convert a value from its ASCII representation into a decimal type.

int deccvasc(char *cp, int len, decimal *np);

The function receives a pointer to string that contains the string representation of the number to be
converted (cp) as well as its length len. np is a pointer to the decimal value that saves the result
of the operation.

Valid formats are for example: -2, .794, +3.44, 592.49E07 or -32.84e-4.

The function returns 0 on success. If overflow or underflow occurred, ECPG_INFORMIX_NUM_OVERFLOW
or ECPG_INFORMIX_NUM_UNDERFLOW is returned. If the ASCII representation could not be parsed,
ECPG_INFORMIX_BAD_NUMERIC is returned or ECPG_INFORMIX_BAD_EXPONENT if this problem occurred
while parsing the exponent.

deccvdbl

Convert a value of type double to a value of type decimal.

int deccvdbl(double dbl, decimal *np);

The function receives the variable of type double that should be converted as its first argument (dbl).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

deccvint

Convert a value of type int to a value of type decimal.

int deccvint(int in, decimal *np);

The function receives the variable of type int that should be converted as its first argument (in). As
the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

863

ECPG — Embedded SQL in C

The function returns 0 on success and a negative value if the conversion failed.

deccvlong

Convert a value of type long to a value of type decimal.

int deccvlong(long lng, decimal *np);

The function receives the variable of type long that should be converted as its first argument (lng).
As the second argument (np), the function receives a pointer to the decimal variable that should hold
the result of the operation.

The function returns 0 on success and a negative value if the conversion failed.

decdiv

Divide two variables of type decimal.

int decdiv(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1/n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the division fails. If overflow or underflow occurred,
the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW respectively.
If an attempt to divide by zero is observed, the function returns ECPG_INFORMIX_DIVIDE_ZERO.

decmul

Multiply two decimal values.

int decmul(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1*n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the multiplication fails. If overflow or underflow
occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW
respectively.

decsub

Subtract one decimal value from another.

int decsub(decimal *n1, decimal *n2, decimal *result);

The function receives pointers to the variables that are the first (n1) and the second (n2) operands
and calculates n1-n2. result is a pointer to the variable that should hold the result of the operation.

On success, 0 is returned and a negative value if the subtraction fails. If overflow or underflow
occurred, the function returns ECPG_INFORMIX_NUM_OVERFLOW or ECPG_INFORMIX_NUM_UNDERFLOW
respectively.

dectoasc

Convert a variable of type decimal to its ASCII representation in a C char* string.

int dectoasc(decimal *np, char *cp, int len, int right)

The function receives a pointer to a variable of type decimal (np) that it converts to its textual
representation. cp is the buffer that should hold the result of the operation. The parameter right
specifies, how many digits right of the decimal point should be included in the output. The result will
be rounded to this number of decimal digits. Setting right to -1 indicates that all available decimal
digits should be included in the output. If the length of the output buffer, which is indicated by len
is not sufficient to hold the textual representation including the trailing zero byte, only a single *
character is stored in the result and -1 is returned.

864

ECPG — Embedded SQL in C

The function returns either -1 if the buffer cp was too small or ECPG_INFORMIX_OUT_OF_MEMORY if
memory was exhausted.

dectodbl

Convert a variable of type decimal to a double.

int dectodbl(decimal *np, double *dblp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the double
variable that should hold the result of the operation (dblp).

On success, 0 is returned and a negative value if the conversion failed.

dectoint

Convert a variable to type decimal to an integer.

int dectoint(decimal *np, int *ip);

The function receives a pointer to the decimal value to convert (np) and a pointer to the integer
variable that should hold the result of the operation (ip).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits an
integer to the range from -32767 to 32767, while the limits in the ECPG implementation depend on
the architecture (INT_MIN .. INT_MAX).

dectolong

Convert a variable to type decimal to a long integer.

int dectolong(decimal *np, long *lngp);

The function receives a pointer to the decimal value to convert (np) and a pointer to the long variable
that should hold the result of the operation (lngp).

On success, 0 is returned and a negative value if the conversion failed. If an overflow occurred,
ECPG_INFORMIX_NUM_OVERFLOW is returned.

Note that the ECPG implementation differs from the Informix implementation. Informix limits a
long integer to the range from -2,147,483,647 to 2,147,483,647, while the limits in the ECPG
implementation depend on the architecture (-LONG_MAX .. LONG_MAX).

rdatestr

Converts a date to a C char* string.

int rdatestr(date d, char *str);

The function receives two arguments, the first one is the date to convert (d) and the second one is a
pointer to the target string. The output format is always yyyy-mm-dd, so you need to allocate at least
11 bytes (including the zero-byte terminator) for the string.

The function returns 0 on success and a negative value in case of error.

Note that ECPG's implementation differs from the Informix implementation. In Informix the format
can be influenced by setting environment variables. In ECPG however, you cannot change the output
format.

rstrdate

Parse the textual representation of a date.

int rstrdate(char *str, date *d);

865

ECPG — Embedded SQL in C

The function receives the textual representation of the date to convert (str) and a pointer to a
variable of type date (d). This function does not allow you to specify a format mask. It uses the
default format mask of Informix which is mm/dd/yyyy. Internally, this function is implemented by
means of rdefmtdate. Therefore, rstrdate is not faster and if you have the choice you should opt
for rdefmtdate which allows you to specify the format mask explicitly.

The function returns the same values as rdefmtdate.

rtoday

Get the current date.

void rtoday(date *d);

The function receives a pointer to a date variable (d) that it sets to the current date.

Internally this function uses the PGTYPESdate_today function.

rjulmdy

Extract the values for the day, the month and the year from a variable of type date.

int rjulmdy(date d, short mdy[3]);

The function receives the date d and a pointer to an array of 3 short integer values mdy. The variable
name indicates the sequential order: mdy[0] will be set to contain the number of the month, mdy[1]
will be set to the value of the day and mdy[2] will contain the year.

The function always returns 0 at the moment.

Internally the function uses the PGTYPESdate_julmdy function.

rdefmtdate

Use a format mask to convert a character string to a value of type date.

int rdefmtdate(date *d, char *fmt, char *str);

The function receives a pointer to the date value that should hold the result of the operation (d),
the format mask to use for parsing the date (fmt) and the C char* string containing the textual
representation of the date (str). The textual representation is expected to match the format mask.
However you do not need to have a 1:1 mapping of the string to the format mask. The function only
analyzes the sequential order and looks for the literals yy or yyyy that indicate the position of the
year, mm to indicate the position of the month and dd to indicate the position of the day.

The function returns the following values:
• 0 - The function terminated successfully.
• ECPG_INFORMIX_ENOSHORTDATE - The date does not contain delimiters between day, month and

year. In this case the input string must be exactly 6 or 8 bytes long but isn't.
• ECPG_INFORMIX_ENOTDMY - The format string did not correctly indicate the sequential order of

year, month and day.
• ECPG_INFORMIX_BAD_DAY - The input string does not contain a valid day.
• ECPG_INFORMIX_BAD_MONTH - The input string does not contain a valid month.
• ECPG_INFORMIX_BAD_YEAR - The input string does not contain a valid year.

Internally this function is implemented to use the PGTYPESdate_defmt_asc function. See the
reference there for a table of example input.

rfmtdate

Convert a variable of type date to its textual representation using a format mask.

866

ECPG — Embedded SQL in C

int rfmtdate(date d, char *fmt, char *str);

The function receives the date to convert (d), the format mask (fmt) and the string that will hold the
textual representation of the date (str).

On success, 0 is returned and a negative value if an error occurred.

Internally this function uses the PGTYPESdate_fmt_asc function, see the reference there for
examples.

rmdyjul

Create a date value from an array of 3 short integers that specify the day, the month and the year
of the date.
int rmdyjul(short mdy[3], date *d);

The function receives the array of the 3 short integers (mdy) and a pointer to a variable of type date
that should hold the result of the operation.

Currently the function returns always 0.

Internally the function is implemented to use the function PGTYPESdate_mdyjul.

rdayofweek

Return a number representing the day of the week for a date value.
int rdayofweek(date d);

The function receives the date variable d as its only argument and returns an integer that indicates
the day of the week for this date.
• 0 - Sunday
• 1 - Monday
• 2 - Tuesday
• 3 - Wednesday
• 4 - Thursday
• 5 - Friday
• 6 - Saturday

Internally the function is implemented to use the function PGTYPESdate_dayofweek.

dtcurrent

Retrieve the current timestamp.
void dtcurrent(timestamp *ts);

The function retrieves the current timestamp and saves it into the timestamp variable that ts points
to.

dtcvasc

Parses a timestamp from its textual representation into a timestamp variable.
int dtcvasc(char *str, timestamp *ts);

The function receives the string to parse (str) and a pointer to the timestamp variable that should
hold the result of the operation (ts).

The function returns 0 on success and a negative value in case of error.

Internally this function uses the PGTYPEStimestamp_from_asc function. See the reference there for
a table with example inputs.

867

ECPG — Embedded SQL in C

dtcvfmtasc

Parses a timestamp from its textual representation using a format mask into a timestamp variable.

dtcvfmtasc(char *inbuf, char *fmtstr, timestamp *dtvalue)

The function receives the string to parse (inbuf), the format mask to use (fmtstr) and a pointer to
the timestamp variable that should hold the result of the operation (dtvalue).

This function is implemented by means of the PGTYPEStimestamp_defmt_asc function. See the
documentation there for a list of format specifiers that can be used.

The function returns 0 on success and a negative value in case of error.

dtsub

Subtract one timestamp from another and return a variable of type interval.

int dtsub(timestamp *ts1, timestamp *ts2, interval *iv);

The function will subtract the timestamp variable that ts2 points to from the timestamp variable that
ts1 points to and will store the result in the interval variable that iv points to.

Upon success, the function returns 0 and a negative value if an error occurred.

dttoasc

Convert a timestamp variable to a C char* string.

int dttoasc(timestamp *ts, char *output);

The function receives a pointer to the timestamp variable to convert (ts) and the string that should
hold the result of the operation (output). It converts ts to its textual representation according to the
SQL standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

dttofmtasc

Convert a timestamp variable to a C char* using a format mask.

int dttofmtasc(timestamp *ts, char *output, int str_len, char *fmtstr);

The function receives a pointer to the timestamp to convert as its first argument (ts), a pointer to the
output buffer (output), the maximal length that has been allocated for the output buffer (str_len)
and the format mask to use for the conversion (fmtstr).

Upon success, the function returns 0 and a negative value if an error occurred.

Internally, this function uses the PGTYPEStimestamp_fmt_asc function. See the reference there for
information on what format mask specifiers can be used.

intoasc

Convert an interval variable to a C char* string.

int intoasc(interval *i, char *str);

The function receives a pointer to the interval variable to convert (i) and the string that should hold
the result of the operation (str). It converts i to its textual representation according to the SQL
standard, which is be YYYY-MM-DD HH:MM:SS.

Upon success, the function returns 0 and a negative value if an error occurred.

rfmtlong

Convert a long integer value to its textual representation using a format mask.

868

ECPG — Embedded SQL in C

int rfmtlong(long lng_val, char *fmt, char *outbuf);

The function receives the long value lng_val, the format mask fmt and a pointer to the output buffer
outbuf. It converts the long value according to the format mask to its textual representation.

The format mask can be composed of the following format specifying characters:
• * (asterisk) - if this position would be blank otherwise, fill it with an asterisk.
• & (ampersand) - if this position would be blank otherwise, fill it with a zero.
• # - turn leading zeroes into blanks.
• < - left-justify the number in the string.
• , (comma) - group numbers of four or more digits into groups of three digits separated by a

comma.
• . (period) - this character separates the whole-number part of the number from the fractional

part.
• - (minus) - the minus sign appears if the number is a negative value.
• + (plus) - the plus sign appears if the number is a positive value.
• (- this replaces the minus sign in front of the negative number. The minus sign will not appear.
•) - this character replaces the minus and is printed behind the negative value.
• $ - the currency symbol.

rupshift

Convert a string to upper case.

void rupshift(char *str);

The function receives a pointer to the string and transforms every lower case character to upper case.

byleng

Return the number of characters in a string without counting trailing blanks.

int byleng(char *str, int len);

The function expects a fixed-length string as its first argument (str) and its length as its second
argument (len). It returns the number of significant characters, that is the length of the string without
trailing blanks.

ldchar

Copy a fixed-length string into a null-terminated string.

void ldchar(char *src, int len, char *dest);

The function receives the fixed-length string to copy (src), its length (len) and a pointer to the
destination memory (dest). Note that you need to reserve at least len+1 bytes for the string that
dest points to. The function copies at most len bytes to the new location (less if the source string
has trailing blanks) and adds the null-terminator.

rgetmsg

int rgetmsg(int msgnum, char *s, int maxsize);

This function exists but is not implemented at the moment!

rtypalign

int rtypalign(int offset, int type);

This function exists but is not implemented at the moment!

869

ECPG — Embedded SQL in C

rtypmsize

int rtypmsize(int type, int len);

This function exists but is not implemented at the moment!

rtypwidth

int rtypwidth(int sqltype, int sqllen);

This function exists but is not implemented at the moment!

rsetnull

Set a variable to NULL.

int rsetnull(int t, char *ptr);

The function receives an integer that indicates the type of the variable and a pointer to the variable
itself that is cast to a C char* pointer.

The following types exist:
• CCHARTYPE - For a variable of type char or char*
• CSHORTTYPE - For a variable of type short int
• CINTTYPE - For a variable of type int
• CBOOLTYPE - For a variable of type boolean
• CFLOATTYPE - For a variable of type float
• CLONGTYPE - For a variable of type long
• CDOUBLETYPE - For a variable of type double
• CDECIMALTYPE - For a variable of type decimal
• CDATETYPE - For a variable of type date
• CDTIMETYPE - For a variable of type timestamp

Here is an example of a call to this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

rsetnull(CCHARTYPE, (char *) c);
rsetnull(CSHORTTYPE, (char *) &s);
rsetnull(CINTTYPE, (char *) &i);

risnull

Test if a variable is NULL.

int risnull(int t, char *ptr);

The function receives the type of the variable to test (t) as well a pointer to this variable (ptr). Note
that the latter needs to be cast to a char*. See the function rsetnull for a list of possible variable
types.

Here is an example of how to use this function:

$char c[] = "abc ";
$short s = 17;
$int i = -74874;

870

ECPG — Embedded SQL in C

risnull(CCHARTYPE, (char *) c);
risnull(CSHORTTYPE, (char *) &s);
risnull(CINTTYPE, (char *) &i);

33.15.5. Additional Constants
Note that all constants here describe errors and all of them are defined to represent negative values.
In the descriptions of the different constants you can also find the value that the constants represent in
the current implementation. However you should not rely on this number. You can however rely on the
fact all of them are defined to represent negative values.

ECPG_INFORMIX_NUM_OVERFLOW

Functions return this value if an overflow occurred in a calculation. Internally it is defined as -1200
(the Informix definition).

ECPG_INFORMIX_NUM_UNDERFLOW

Functions return this value if an underflow occurred in a calculation. Internally it is defined as -1201
(the Informix definition).

ECPG_INFORMIX_DIVIDE_ZERO

Functions return this value if an attempt to divide by zero is observed. Internally it is defined as
-1202 (the Informix definition).

ECPG_INFORMIX_BAD_YEAR

Functions return this value if a bad value for a year was found while parsing a date. Internally it is
defined as -1204 (the Informix definition).

ECPG_INFORMIX_BAD_MONTH

Functions return this value if a bad value for a month was found while parsing a date. Internally it
is defined as -1205 (the Informix definition).

ECPG_INFORMIX_BAD_DAY

Functions return this value if a bad value for a day was found while parsing a date. Internally it is
defined as -1206 (the Informix definition).

ECPG_INFORMIX_ENOSHORTDATE

Functions return this value if a parsing routine needs a short date representation but did not get the
date string in the right length. Internally it is defined as -1209 (the Informix definition).

ECPG_INFORMIX_DATE_CONVERT

Functions return this value if an error occurred during date formatting. Internally it is defined as
-1210 (the Informix definition).

ECPG_INFORMIX_OUT_OF_MEMORY

Functions return this value if memory was exhausted during their operation. Internally it is defined
as -1211 (the Informix definition).

ECPG_INFORMIX_ENOTDMY

Functions return this value if a parsing routine was supposed to get a format mask (like mmddyy) but
not all fields were listed correctly. Internally it is defined as -1212 (the Informix definition).

ECPG_INFORMIX_BAD_NUMERIC

Functions return this value either if a parsing routine cannot parse the textual representation for
a numeric value because it contains errors or if a routine cannot complete a calculation involving

871

ECPG — Embedded SQL in C

numeric variables because at least one of the numeric variables is invalid. Internally it is defined as
-1213 (the Informix definition).

ECPG_INFORMIX_BAD_EXPONENT

Functions return this value if a parsing routine cannot parse an exponent. Internally it is defined as
-1216 (the Informix definition).

ECPG_INFORMIX_BAD_DATE

Functions return this value if a parsing routine cannot parse a date. Internally it is defined as -1218
(the Informix definition).

ECPG_INFORMIX_EXTRA_CHARS

Functions return this value if a parsing routine is passed extra characters it cannot parse. Internally
it is defined as -1264 (the Informix definition).

33.16. Internals
This section explains how ECPG works internally. This information can occasionally be useful to help
users understand how to use ECPG.

The first four lines written by ecpg to the output are fixed lines. Two are comments and two are include
lines necessary to interface to the library. Then the preprocessor reads through the file and writes output.
Normally it just echoes everything to the output.

When it sees an EXEC SQL statement, it intervenes and changes it. The command starts with EXEC SQL and
ends with ;. Everything in between is treated as an SQL statement and parsed for variable substitution.

Variable substitution occurs when a symbol starts with a colon (:). The variable with that name is looked
up among the variables that were previously declared within a EXEC SQL DECLARE section.

The most important function in the library is ECPGdo, which takes care of executing most commands. It
takes a variable number of arguments. This can easily add up to 50 or so arguments, and we hope this
will not be a problem on any platform.

The arguments are:
A line number

This is the line number of the original line; used in error messages only.

A string
This is the SQL command that is to be issued. It is modified by the input variables, i.e., the variables
that where not known at compile time but are to be entered in the command. Where the variables
should go the string contains ?.

Input variables
Every input variable causes ten arguments to be created. (See below.)

ECPGt_EOIT

An enum telling that there are no more input variables.

Output variables
Every output variable causes ten arguments to be created. (See below.) These variables are filled
by the function.

ECPGt_EORT

An enum telling that there are no more variables.

872

ECPG — Embedded SQL in C

For every variable that is part of the SQL command, the function gets ten arguments:
1. The type as a special symbol.
2. A pointer to the value or a pointer to the pointer.
3. The size of the variable if it is a char or varchar.
4. The number of elements in the array (for array fetches).
5. The offset to the next element in the array (for array fetches).
6. The type of the indicator variable as a special symbol.
7. A pointer to the indicator variable.
8. 0
9. The number of elements in the indicator array (for array fetches).
10.The offset to the next element in the indicator array (for array fetches).

Note that not all SQL commands are treated in this way. For instance, an open cursor statement like:

EXEC SQL OPEN cursor;

is not copied to the output. Instead, the cursor's DECLARE command is used at the position of the OPEN
command because it indeed opens the cursor.

Here is a complete example describing the output of the preprocessor of a file foo.pgc (details might
change with each particular version of the preprocessor):

EXEC SQL BEGIN DECLARE SECTION;
int index;
int result;
EXEC SQL END DECLARE SECTION;
...
EXEC SQL SELECT res INTO :result FROM mytable WHERE index = :index;

is translated into:

/* Processed by ecpg (2.6.0) */
/* These two include files are added by the preprocessor */
#include <ecpgtype.h>;
#include <ecpglib.h>;

/* exec sql begin declare section */

#line 1 "foo.pgc"

 int index;
 int result;
/* exec sql end declare section */
...
ECPGdo(__LINE__, NULL, "SELECT res FROM mytable WHERE index = ? ",
 ECPGt_int,&(index),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EOIT,
 ECPGt_int,&(result),1L,1L,sizeof(int),
 ECPGt_NO_INDICATOR, NULL , 0L, 0L, 0L, ECPGt_EORT);
#line 147 "foo.pgc"

(The indentation here is added for readability and not something the preprocessor does.)

873

Chapter 34. The Information Schema
The information schema consists of a set of views that contain information about the objects defined
in the current database. The information schema is defined in the SQL standard and can therefore be
expected to be portable and remain stable — unlike the system catalogs, which are specific to Postgres
Pro and are modeled after implementation concerns. The information schema views do not, however,
contain information about Postgres Pro-specific features; to inquire about those you need to query the
system catalogs or other Postgres Pro-specific views.

Note
When querying the database for constraint information, it is possible for a standard-compliant
query that expects to return one row to return several. This is because the SQL standard requires
constraint names to be unique within a schema, but Postgres Pro does not enforce this restriction.
Postgres Pro automatically-generated constraint names avoid duplicates in the same schema, but
users can specify such duplicate names.

This problem can appear when querying information schema views such
as check_constraint_routine_usage, check_constraints, domain_constraints, and
referential_constraints. Some other views have similar issues but contain the table name
to help distinguish duplicate rows, e.g., constraint_column_usage, constraint_table_usage,
table_constraints.

34.1. The Schema
The information schema itself is a schema named information_schema. This schema automatically exists
in all databases. The owner of this schema is the initial database user in the cluster, and that user
naturally has all the privileges on this schema, including the ability to drop it (but the space savings
achieved by that are minuscule).

By default, the information schema is not in the schema search path, so you need to access all objects in
it through qualified names. Since the names of some of the objects in the information schema are generic
names that might occur in user applications, you should be careful if you want to put the information
schema in the path.

34.2. Data Types
The columns of the information schema views use special data types that are defined in the information
schema. These are defined as simple domains over ordinary built-in types. You should not use these
types for work outside the information schema, but your applications must be prepared for them if they
select from the information schema.

These types are:
cardinal_number

A nonnegative integer.

character_data

A character string (without specific maximum length).

sql_identifier

A character string. This type is used for SQL identifiers, the type character_data is used for any
other kind of text data.

time_stamp

A domain over the type timestamp with time zone

874

The Information Schema

yes_or_no

A character string domain that contains either YES or NO. This is used to represent Boolean (true/
false) data in the information schema. (The information schema was invented before the type boolean
was added to the SQL standard, so this convention is necessary to keep the information schema
backward compatible.)

Every column in the information schema has one of these five types.

34.3. information_schema_catalog_name
information_schema_catalog_name is a table that always contains one row and one column containing
the name of the current database (current catalog, in SQL terminology).

Table 34.1. information_schema_catalog_name Columns

Column Type
Description

catalog_name sql_identifier
Name of the database that contains this information schema

34.4. administrable_role_authorizations
The view administrable_role_authorizations identifies all roles that the current user has the admin
option for.

Table 34.2. administrable_role_authorizations Columns

Column Type
Description

grantee sql_identifier
Name of the role to which this role membership was granted (can be the current user, or a
different role in case of nested role memberships)

role_name sql_identifier
Name of a role

is_grantable yes_or_no
Always YES

34.5. applicable_roles
The view applicable_roles identifies all roles whose privileges the current user can use. This means
there is some chain of role grants from the current user to the role in question. The current user itself
is also an applicable role. The set of applicable roles is generally used for permission checking.

Table 34.3. applicable_roles Columns

Column Type
Description

grantee sql_identifier
Name of the role to which this role membership was granted (can be the current user, or a
different role in case of nested role memberships)

role_name sql_identifier
Name of a role

is_grantable yes_or_no
YES if the grantee has the admin option on the role, NO if not

875

The Information Schema

34.6. attributes
The view attributes contains information about the attributes of composite data types defined in the
database. (Note that the view does not give information about table columns, which are sometimes called
attributes in Postgres Pro contexts.) Only those attributes are shown that the current user has access
to (by way of being the owner of or having some privilege on the type).

Table 34.4. attributes Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database containing the data type (always the current database)

udt_schema sql_identifier
Name of the schema containing the data type

udt_name sql_identifier
Name of the data type

attribute_name sql_identifier
Name of the attribute

ordinal_position cardinal_number
Ordinal position of the attribute within the data type (count starts at 1)

attribute_default character_data
Default expression of the attribute

is_nullable yes_or_no
YES if the attribute is possibly nullable, NO if it is known not nullable.

data_type character_data
Data type of the attribute, if it is a built-in type, or ARRAY if it is some array (in that case,
 see the view element_types), else USER-DEFINED (in that case, the type is identified in
attribute_udt_name and associated columns).

character_maximum_length cardinal_number
If data_type identifies a character or bit string type, the declared maximum length; null for
all other data types or if no maximum length was declared.

character_octet_length cardinal_number
If data_type identifies a character type, the maximum possible length in octets (bytes) of
a datum; null for all other data types. The maximum octet length depends on the declared
character maximum length (see above) and the server encoding.

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Name of the database containing the collation of the attribute (always the current database),
 null if default or the data type of the attribute is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the attribute, null if default or the data type of
the attribute is not collatable

collation_name sql_identifier
Name of the collation of the attribute, null if default or the data type of the attribute is not
collatable

876

The Information Schema

Column Type
Description

numeric_precision cardinal_number
If data_type identifies a numeric type, this column contains the (declared or implicit)
precision of the type for this attribute. The precision indicates the number of significant
digits. It can be expressed in decimal (base 10) or binary (base 2) terms, as specified in the
column numeric_precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If data_type identifies a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If data_type identifies an exact numeric type, this column contains the (declared or implicit)
scale of the type for this attribute. The scale indicates the number of significant digits to the
right of the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms,
 as specified in the column numeric_precision_radix . For all other data types, this column
is null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the
(declared or implicit) fractional seconds precision of the type for this attribute, that is, the
number of decimal digits maintained following the decimal point in the seconds value. For all
other data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this attribute, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field
restrictions were specified (that is, the interval accepts all fields), and for all other data types,
 this field is null.

interval_precision cardinal_number
Applies to a feature not available in Postgres Pro (see datetime_precision for the fractional
seconds precision of interval type attributes)

attribute_udt_catalog sql_identifier
Name of the database that the attribute data type is defined in (always the current database)

attribute_udt_schema sql_identifier
Name of the schema that the attribute data type is defined in

attribute_udt_name sql_identifier
Name of the attribute data type

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the column, unique among the data type
descriptors pertaining to the table. This is mainly useful for joining with other instances of
such identifiers. (The specific format of the identifier is not defined and not guaranteed to
remain the same in future versions.)

is_derived_reference_attribute yes_or_no
Applies to a feature not available in Postgres Pro

877

The Information Schema

See also under Section 34.17, a similarly structured view, for further information on some of the columns.

34.7. character_sets
The view character_sets identifies the character sets available in the current database. Since Postgres
Pro does not support multiple character sets within one database, this view only shows one, which is
the database encoding.

Take note of how the following terms are used in the SQL standard:

character repertoire

An abstract collection of characters, for example UNICODE, UCS, or LATIN1. Not exposed as an SQL
object, but visible in this view.

character encoding form

An encoding of some character repertoire. Most older character repertoires only use one encoding
form, and so there are no separate names for them (e.g., LATIN1 is an encoding form applicable to
the LATIN1 repertoire). But for example Unicode has the encoding forms UTF8, UTF16, etc. (not all
supported by Postgres Pro). Encoding forms are not exposed as an SQL object, but are visible in
this view.

character set

A named SQL object that identifies a character repertoire, a character encoding, and a default
collation. A predefined character set would typically have the same name as an encoding form, but
users could define other names. For example, the character set UTF8 would typically identify the
character repertoire UCS, encoding form UTF8, and some default collation.

You can think of an “encoding” in Postgres Pro either as a character set or a character encoding form.
They will have the same name, and there can only be one in one database.

Table 34.5. character_sets Columns

Column Type
Description

character_set_catalog sql_identifier
Character sets are currently not implemented as schema objects, so this column is null.

character_set_schema sql_identifier
Character sets are currently not implemented as schema objects, so this column is null.

character_set_name sql_identifier
Name of the character set, currently implemented as showing the name of the database
encoding

character_repertoire sql_identifier
Character repertoire, showing UCS if the encoding is UTF8, else just the encoding name

form_of_use sql_identifier
Character encoding form, same as the database encoding

default_collate_catalog sql_identifier
Name of the database containing the default collation (always the current database, if any
collation is identified)

default_collate_schema sql_identifier
Name of the schema containing the default collation

default_collate_name sql_identifier
Name of the default collation. The default collation is identified as the collation that matches
the COLLATE and CTYPE settings of the current database. If there is no such collation, then this
column and the associated schema and catalog columns are null.

878

The Information Schema

34.8. check_constraint_routine_usage
The view check_constraint_routine_usage identifies routines (functions and procedures) that are
used by a check constraint. Only those routines are shown that are owned by a currently enabled role.

Table 34.6. check_constraint_routine_usage Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

34.9. check_constraints
The view check_constraints contains all check constraints, either defined on a table or on a domain,
that are owned by a currently enabled role. (The owner of the table or domain is the owner of the
constraint.)

Table 34.7. check_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

check_clause character_data
The check expression of the check constraint

34.10. collations
The view collations contains the collations available in the current database.

Table 34.8. collations Columns

Column Type
Description

collation_catalog sql_identifier
Name of the database containing the collation (always the current database)

collation_schema sql_identifier
Name of the schema containing the collation

collation_name sql_identifier

879

The Information Schema

Column Type
Description
Name of the default collation

pad_attribute character_data
Always NO PAD (The alternative PAD SPACE is not supported by Postgres Pro.)

34.11. collation_character_set_applicability
The view collation_character_set_applicability identifies which character set the available
collations are applicable to. In Postgres Pro, there is only one character set per database (see explanation
in Section 34.7), so this view does not provide much useful information.

Table 34.9. collation_character_set_applicability Columns

Column Type
Description

collation_catalog sql_identifier
Name of the database containing the collation (always the current database)

collation_schema sql_identifier
Name of the schema containing the collation

collation_name sql_identifier
Name of the default collation

character_set_catalog sql_identifier
Character sets are currently not implemented as schema objects, so this column is null

character_set_schema sql_identifier
Character sets are currently not implemented as schema objects, so this column is null

character_set_name sql_identifier
Name of the character set

34.12. column_column_usage
The view column_column_usage identifies all generated columns that depend on another base column
in the same table. Only tables owned by a currently enabled role are included.

Table 34.10. column_column_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the base column that a generated column depends on

dependent_column sql_identifier
Name of the generated column

34.13. column_domain_usage
The view column_domain_usage identifies all columns (of a table or a view) that make use of some domain
defined in the current database and owned by a currently enabled role.

880

The Information Schema

Table 34.11. column_domain_usage Columns

Column Type
Description

domain_catalog sql_identifier
Name of the database containing the domain (always the current database)

domain_schema sql_identifier
Name of the schema containing the domain

domain_name sql_identifier
Name of the domain

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

34.14. column_options
The view column_options contains all the options defined for foreign table columns in the current
database. Only those foreign table columns are shown that the current user has access to (by way of
being the owner or having some privilege).

Table 34.12. column_options Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the foreign table (always the current database)

table_schema sql_identifier
Name of the schema that contains the foreign table

table_name sql_identifier
Name of the foreign table

column_name sql_identifier
Name of the column

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

34.15. column_privileges
The view column_privileges identifies all privileges granted on columns to a currently enabled role or
by a currently enabled role. There is one row for each combination of column, grantor, and grantee.

If a privilege has been granted on an entire table, it will show up in this view as a grant for each
column, but only for the privilege types where column granularity is possible: SELECT, INSERT, UPDATE,
REFERENCES.

881

The Information Schema

Table 34.13. column_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table that contains the column (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column

table_name sql_identifier
Name of the table that contains the column

column_name sql_identifier
Name of the column

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, or REFERENCES

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.16. column_udt_usage
The view column_udt_usage identifies all columns that use data types owned by a currently enabled
role. Note that in Postgres Pro, built-in data types behave like user-defined types, so they are included
here as well. See also Section 34.17 for details.

Table 34.14. column_udt_usage Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that the column data type (the underlying type of the domain, if
applicable) is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the column data type (the underlying type of the domain, if
applicable) is defined in

udt_name sql_identifier
Name of the column data type (the underlying type of the domain, if applicable)

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

882

The Information Schema

34.17. columns
The view columns contains information about all table columns (or view columns) in the database. System
columns (ctid, etc.) are not included. Only those columns are shown that the current user has access
to (by way of being the owner or having some privilege).

Table 34.15. columns Columns

Column Type
Description

table_catalog sql_identifier
Name of the database containing the table (always the current database)

table_schema sql_identifier
Name of the schema containing the table

table_name sql_identifier
Name of the table

column_name sql_identifier
Name of the column

ordinal_position cardinal_number
Ordinal position of the column within the table (count starts at 1)

column_default character_data
Default expression of the column

is_nullable yes_or_no
YES if the column is possibly nullable, NO if it is known not nullable. A not-null constraint is
one way a column can be known not nullable, but there can be others.

data_type character_data
Data type of the column, if it is a built-in type, or ARRAY if it is some array (in that case, see
the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns). If the column is based on a domain, this column refers to the
type underlying the domain (and the domain is identified in domain_name and associated
columns).

character_maximum_length cardinal_number
If data_type identifies a character or bit string type, the declared maximum length; null for
all other data types or if no maximum length was declared.

character_octet_length cardinal_number
If data_type identifies a character type, the maximum possible length in octets (bytes) of
a datum; null for all other data types. The maximum octet length depends on the declared
character maximum length (see above) and the server encoding.

numeric_precision cardinal_number
If data_type identifies a numeric type, this column contains the (declared or implicit)
precision of the type for this column. The precision indicates the number of significant digits.
It can be expressed in decimal (base 10) or binary (base 2) terms, as specified in the column
numeric_precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If data_type identifies a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If data_type identifies an exact numeric type, this column contains the (declared or implicit)
scale of the type for this column. The scale indicates the number of significant digits to the
right of the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms,

883

The Information Schema

Column Type
Description
 as specified in the column numeric_precision_radix . For all other data types, this column
is null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the
(declared or implicit) fractional seconds precision of the type for this column, that is, the
number of decimal digits maintained following the decimal point in the seconds value. For all
other data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this column, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field
restrictions were specified (that is, the interval accepts all fields), and for all other data types,
 this field is null.

interval_precision cardinal_number
Applies to a feature not available in Postgres Pro (see datetime_precision for the fractional
seconds precision of interval type columns)

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Name of the database containing the collation of the column (always the current database),
 null if default or the data type of the column is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the column, null if default or the data type of
the column is not collatable

collation_name sql_identifier
Name of the collation of the column, null if default or the data type of the column is not
collatable

domain_catalog sql_identifier
If the column has a domain type, the name of the database that the domain is defined in (
always the current database), else null.

domain_schema sql_identifier
If the column has a domain type, the name of the schema that the domain is defined in, else
null.

domain_name sql_identifier
If the column has a domain type, the name of the domain, else null.

udt_catalog sql_identifier
Name of the database that the column data type (the underlying type of the domain, if
applicable) is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the column data type (the underlying type of the domain, if
applicable) is defined in

udt_name sql_identifier
Name of the column data type (the underlying type of the domain, if applicable)

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

884

The Information Schema

Column Type
Description

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the column, unique among the data type
descriptors pertaining to the table. This is mainly useful for joining with other instances of
such identifiers. (The specific format of the identifier is not defined and not guaranteed to
remain the same in future versions.)

is_self_referencing yes_or_no
Applies to a feature not available in Postgres Pro

is_identity yes_or_no
If the column is an identity column, then YES, else NO.

identity_generation character_data
If the column is an identity column, then ALWAYS or BY DEFAULT, reflecting the definition of
the column.

identity_start character_data
If the column is an identity column, then the start value of the internal sequence, else null.

identity_increment character_data
If the column is an identity column, then the increment of the internal sequence, else null.

identity_maximum character_data
If the column is an identity column, then the maximum value of the internal sequence, else
null.

identity_minimum character_data
If the column is an identity column, then the minimum value of the internal sequence, else
null.

identity_cycle yes_or_no
If the column is an identity column, then YES if the internal sequence cycles or NO if it does
not; otherwise null.

is_generated character_data
If the column is a generated column, then ALWAYS, else NEVER.

generation_expression character_data
If the column is a generated column, then the generation expression, else null.

is_updatable yes_or_no
YES if the column is updatable, NO if not (Columns in base tables are always updatable,
 columns in views not necessarily)

Since data types can be defined in a variety of ways in SQL, and Postgres Pro contains additional ways
to define data types, their representation in the information schema can be somewhat difficult. The
column data_type is supposed to identify the underlying built-in type of the column. In Postgres Pro, this
means that the type is defined in the system catalog schema pg_catalog. This column might be useful
if the application can handle the well-known built-in types specially (for example, format the numeric
types differently or use the data in the precision columns). The columns udt_name, udt_schema, and
udt_catalog always identify the underlying data type of the column, even if the column is based on a
domain. (Since Postgres Pro treats built-in types like user-defined types, built-in types appear here as
well. This is an extension of the SQL standard.) These columns should be used if an application wants to
process data differently according to the type, because in that case it wouldn't matter if the column is

885

The Information Schema

really based on a domain. If the column is based on a domain, the identity of the domain is stored in the
columns domain_name, domain_schema, and domain_catalog. If you want to pair up columns with their
associated data types and treat domains as separate types, you could write coalesce(domain_name,
udt_name), etc.

34.18. constraint_column_usage
The view constraint_column_usage identifies all columns in the current database that are used by some
constraint. Only those columns are shown that are contained in a table owned by a currently enabled
role. For a check constraint, this view identifies the columns that are used in the check expression. For
a foreign key constraint, this view identifies the columns that the foreign key references. For a unique
or primary key constraint, this view identifies the constrained columns.

Table 34.16. constraint_column_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is used by some
constraint (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is used by some
constraint

table_name sql_identifier
Name of the table that contains the column that is used by some constraint

column_name sql_identifier
Name of the column that is used by some constraint

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

34.19. constraint_table_usage
The view constraint_table_usage identifies all tables in the current database that are used by
some constraint and are owned by a currently enabled role. (This is different from the view
table_constraints, which identifies all table constraints along with the table they are defined on.) For
a foreign key constraint, this view identifies the table that the foreign key references. For a unique or
primary key constraint, this view simply identifies the table the constraint belongs to. Check constraints
and not-null constraints are not included in this view.

Table 34.17. constraint_table_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table that is used by some constraint (always the
current database)

table_schema sql_identifier
Name of the schema that contains the table that is used by some constraint

table_name sql_identifier
Name of the table that is used by some constraint

886

The Information Schema

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

34.20. data_type_privileges
The view data_type_privileges identifies all data type descriptors that the current user has access to,
by way of being the owner of the described object or having some privilege for it. A data type descriptor
is generated whenever a data type is used in the definition of a table column, a domain, or a function (as
parameter or return type) and stores some information about how the data type is used in that instance
(for example, the declared maximum length, if applicable). Each data type descriptor is assigned an
arbitrary identifier that is unique among the data type descriptor identifiers assigned for one object
(table, domain, function). This view is probably not useful for applications, but it is used to define some
other views in the information schema.

Table 34.18. data_type_privileges Columns

Column Type
Description

object_catalog sql_identifier
Name of the database that contains the described object (always the current database)

object_schema sql_identifier
Name of the schema that contains the described object

object_name sql_identifier
Name of the described object

object_type character_data
The type of the described object: one of TABLE (the data type descriptor pertains to a column
of that table), DOMAIN (the data type descriptors pertains to that domain), ROUTINE (the data
type descriptor pertains to a parameter or the return data type of that function).

dtd_identifier sql_identifier
The identifier of the data type descriptor, which is unique among the data type descriptors for
that same object.

34.21. domain_constraints
The view domain_constraints contains all constraints belonging to domains defined in the current
database. Only those domains are shown that the current user has access to (by way of being the owner
or having some privilege).

Table 34.19. domain_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

887

The Information Schema

Column Type
Description

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

is_deferrable yes_or_no
YES if the constraint is deferrable, NO if not

initially_deferred yes_or_no
YES if the constraint is deferrable and initially deferred, NO if not

34.22. domain_udt_usage
The view domain_udt_usage identifies all domains that are based on data types owned by a currently
enabled role. Note that in Postgres Pro, built-in data types behave like user-defined types, so they are
included here as well.

Table 34.20. domain_udt_usage Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that the domain data type is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the domain data type is defined in

udt_name sql_identifier
Name of the domain data type

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

34.23. domains
The view domains contains all domains defined in the current database. Only those domains are shown
that the current user has access to (by way of being the owner or having some privilege).

Table 34.21. domains Columns

Column Type
Description

domain_catalog sql_identifier
Name of the database that contains the domain (always the current database)

domain_schema sql_identifier
Name of the schema that contains the domain

domain_name sql_identifier
Name of the domain

data_type character_data

888

The Information Schema

Column Type
Description
Data type of the domain, if it is a built-in type, or ARRAY if it is some array (in that case, see
the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns).

character_maximum_length cardinal_number
If the domain has a character or bit string type, the declared maximum length; null for all
other data types or if no maximum length was declared.

character_octet_length cardinal_number
If the domain has a character type, the maximum possible length in octets (bytes) of a datum;
null for all other data types. The maximum octet length depends on the declared character
maximum length (see above) and the server encoding.

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Name of the database containing the collation of the domain (always the current database),
 null if default or the data type of the domain is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the domain, null if default or the data type of
the domain is not collatable

collation_name sql_identifier
Name of the collation of the domain, null if default or the data type of the domain is not
collatable

numeric_precision cardinal_number
If the domain has a numeric type, this column contains the (declared or implicit) precision of
the type for this domain. The precision indicates the number of significant digits. It can be
expressed in decimal (base 10) or binary (base 2) terms, as specified in the column numeric_
precision_radix . For all other data types, this column is null.

numeric_precision_radix cardinal_number
If the domain has a numeric type, this column indicates in which base the values in the
columns numeric_precision and numeric_scale are expressed. The value is either 2 or
10. For all other data types, this column is null.

numeric_scale cardinal_number
If the domain has an exact numeric type, this column contains the (declared or implicit) scale
of the type for this domain. The scale indicates the number of significant digits to the right
of the decimal point. It can be expressed in decimal (base 10) or binary (base 2) terms, as
specified in the column numeric_precision_radix . For all other data types, this column is
null.

datetime_precision cardinal_number
If data_type identifies a date, time, timestamp, or interval type, this column contains the
(declared or implicit) fractional seconds precision of the type for this domain, that is, the
number of decimal digits maintained following the decimal point in the seconds value. For all
other data types, this column is null.

interval_type character_data
If data_type identifies an interval type, this column contains the specification which fields
the intervals include for this domain, e.g., YEAR TO MONTH, DAY TO SECOND, etc. If no field

889

The Information Schema

Column Type
Description
restrictions were specified (that is, the interval accepts all fields), and for all other data types,
 this field is null.

interval_precision cardinal_number
Applies to a feature not available in Postgres Pro (see datetime_precision for the fractional
seconds precision of interval type domains)

domain_default character_data
Default expression of the domain

udt_catalog sql_identifier
Name of the database that the domain data type is defined in (always the current database)

udt_schema sql_identifier
Name of the schema that the domain data type is defined in

udt_name sql_identifier
Name of the domain data type

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the domain, unique among the data type
descriptors pertaining to the domain (which is trivial, because a domain only contains one
data type descriptor). This is mainly useful for joining with other instances of such identifiers.
(The specific format of the identifier is not defined and not guaranteed to remain the same in
future versions.)

34.24. element_types
The view element_types contains the data type descriptors of the elements of arrays. When a table
column, composite-type attribute, domain, function parameter, or function return value is defined to be
of an array type, the respective information schema view only contains ARRAY in the column data_type.
To obtain information on the element type of the array, you can join the respective view with this view.
For example, to show the columns of a table with data types and array element types, if applicable, you
could do:
SELECT c.column_name, c.data_type, e.data_type AS element_type
FROM information_schema.columns c LEFT JOIN information_schema.element_types e
 ON ((c.table_catalog, c.table_schema, c.table_name, 'TABLE', c.dtd_identifier)
 = (e.object_catalog, e.object_schema, e.object_name, e.object_type,
 e.collection_type_identifier))
WHERE c.table_schema = '...' AND c.table_name = '...'
ORDER BY c.ordinal_position;

This view only includes objects that the current user has access to, by way of being the owner or having
some privilege.

Table 34.22. element_types Columns

Column Type
Description

object_catalog sql_identifier

890

The Information Schema

Column Type
Description
Name of the database that contains the object that uses the array being described (always the
current database)

object_schema sql_identifier
Name of the schema that contains the object that uses the array being described

object_name sql_identifier
Name of the object that uses the array being described

object_type character_data
The type of the object that uses the array being described: one of TABLE (the array is used
by a column of that table), USER-DEFINED TYPE (the array is used by an attribute of that
composite type), DOMAIN (the array is used by that domain), ROUTINE (the array is used by a
parameter or the return data type of that function).

collection_type_identifier sql_identifier
The identifier of the data type descriptor of the array being described. Use this to join with
the dtd_identifier columns of other information schema views.

data_type character_data
Data type of the array elements, if it is a built-in type, else USER-DEFINED (in that case, the
type is identified in udt_name and associated columns).

character_maximum_length cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

character_octet_length cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Name of the database containing the collation of the element type (always the current
database), null if default or the data type of the element is not collatable

collation_schema sql_identifier
Name of the schema containing the collation of the element type, null if default or the data
type of the element is not collatable

collation_name sql_identifier
Name of the collation of the element type, null if default or the data type of the element is not
collatable

numeric_precision cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

numeric_precision_radix cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

numeric_scale cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

datetime_precision cardinal_number
Always null, since this information is not applied to array element data types in Postgres Pro

interval_type character_data
Always null, since this information is not applied to array element data types in Postgres Pro

interval_precision cardinal_number

891

The Information Schema

Column Type
Description
Always null, since this information is not applied to array element data types in Postgres Pro

domain_default character_data
Not yet implemented

udt_catalog sql_identifier
Name of the database that the data type of the elements is defined in (always the current
database)

udt_schema sql_identifier
Name of the schema that the data type of the elements is defined in

udt_name sql_identifier
Name of the data type of the elements

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the element. This is currently not useful.

34.25. enabled_roles
The view enabled_roles identifies the currently “enabled roles”. The enabled roles are recursively
defined as the current user together with all roles that have been granted to the enabled roles with
automatic inheritance. In other words, these are all roles that the current user has direct or indirect,
automatically inheriting membership in.

For permission checking, the set of “applicable roles” is applied, which can be broader than the set
of enabled roles. So generally, it is better to use the view applicable_roles instead of this one; See
Section 34.5 for details on applicable_roles view.

Table 34.23. enabled_roles Columns

Column Type
Description

role_name sql_identifier
Name of a role

34.26. foreign_data_wrapper_options
The view foreign_data_wrapper_options contains all the options defined for foreign-data wrappers in
the current database. Only those foreign-data wrappers are shown that the current user has access to
(by way of being the owner or having some privilege).

Table 34.24. foreign_data_wrapper_options Columns

Column Type
Description

foreign_data_wrapper_catalog sql_identifier
Name of the database that the foreign-data wrapper is defined in (always the current
database)

892

The Information Schema

Column Type
Description

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

34.27. foreign_data_wrappers
The view foreign_data_wrappers contains all foreign-data wrappers defined in the current database.
Only those foreign-data wrappers are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34.25. foreign_data_wrappers Columns

Column Type
Description

foreign_data_wrapper_catalog sql_identifier
Name of the database that contains the foreign-data wrapper (always the current database)

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper

authorization_identifier sql_identifier
Name of the owner of the foreign server

library_name character_data
File name of the library that implementing this foreign-data wrapper

foreign_data_wrapper_language character_data
Language used to implement this foreign-data wrapper

34.28. foreign_server_options
The view foreign_server_options contains all the options defined for foreign servers in the current
database. Only those foreign servers are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34.26. foreign_server_options Columns

Column Type
Description

foreign_server_catalog sql_identifier
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

34.29. foreign_servers
The view foreign_servers contains all foreign servers defined in the current database. Only those
foreign servers are shown that the current user has access to (by way of being the owner or having
some privilege).

893

The Information Schema

Table 34.27. foreign_servers Columns

Column Type
Description

foreign_server_catalog sql_identifier
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

foreign_data_wrapper_catalog sql_identifier
Name of the database that contains the foreign-data wrapper used by the foreign server (
always the current database)

foreign_data_wrapper_name sql_identifier
Name of the foreign-data wrapper used by the foreign server

foreign_server_type character_data
Foreign server type information, if specified upon creation

foreign_server_version character_data
Foreign server version information, if specified upon creation

authorization_identifier sql_identifier
Name of the owner of the foreign server

34.30. foreign_table_options
The view foreign_table_options contains all the options defined for foreign tables in the current
database. Only those foreign tables are shown that the current user has access to (by way of being the
owner or having some privilege).

Table 34.28. foreign_table_options Columns

Column Type
Description

foreign_table_catalog sql_identifier
Name of the database that contains the foreign table (always the current database)

foreign_table_schema sql_identifier
Name of the schema that contains the foreign table

foreign_table_name sql_identifier
Name of the foreign table

option_name sql_identifier
Name of an option

option_value character_data
Value of the option

34.31. foreign_tables
The view foreign_tables contains all foreign tables defined in the current database. Only those foreign
tables are shown that the current user has access to (by way of being the owner or having some privilege).

Table 34.29. foreign_tables Columns

Column Type
Description

foreign_table_catalog sql_identifier
Name of the database that the foreign table is defined in (always the current database)

foreign_table_schema sql_identifier
Name of the schema that contains the foreign table

894

The Information Schema

Column Type
Description

foreign_table_name sql_identifier
Name of the foreign table

foreign_server_catalog sql_identifier
Name of the database that the foreign server is defined in (always the current database)

foreign_server_name sql_identifier
Name of the foreign server

34.32. key_column_usage
The view key_column_usage identifies all columns in the current database that are restricted by some
unique, primary key, or foreign key constraint. Check constraints are not included in this view. Only
those columns are shown that the current user has access to, by way of being the owner or having some
privilege.

Table 34.30. key_column_usage Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

constraint_name sql_identifier
Name of the constraint

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is restricted by
this constraint (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is restricted by this
constraint

table_name sql_identifier
Name of the table that contains the column that is restricted by this constraint

column_name sql_identifier
Name of the column that is restricted by this constraint

ordinal_position cardinal_number
Ordinal position of the column within the constraint key (count starts at 1)

position_in_unique_constraint cardinal_number
For a foreign-key constraint, ordinal position of the referenced column within its unique
constraint (count starts at 1); otherwise null

34.33. parameters
The view parameters contains information about the parameters (arguments) of all functions in the
current database. Only those functions are shown that the current user has access to (by way of being
the owner or having some privilege).

Table 34.31. parameters Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

895

The Information Schema

Column Type
Description

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

ordinal_position cardinal_number
Ordinal position of the parameter in the argument list of the function (count starts at 1)

parameter_mode character_data
IN for input parameter, OUT for output parameter, and INOUT for input/output parameter.

is_result yes_or_no
Applies to a feature not available in Postgres Pro

as_locator yes_or_no
Applies to a feature not available in Postgres Pro

parameter_name sql_identifier
Name of the parameter, or null if the parameter has no name

data_type character_data
Data type of the parameter, if it is a built-in type, or ARRAY if it is some array (in that case,
 see the view element_types), else USER-DEFINED (in that case, the type is identified in udt_
name and associated columns).

character_maximum_length cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

character_octet_length cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Always null, since this information is not applied to parameter data types in Postgres Pro

collation_schema sql_identifier
Always null, since this information is not applied to parameter data types in Postgres Pro

collation_name sql_identifier
Always null, since this information is not applied to parameter data types in Postgres Pro

numeric_precision cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

numeric_precision_radix cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

numeric_scale cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

datetime_precision cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

interval_type character_data
Always null, since this information is not applied to parameter data types in Postgres Pro

interval_precision cardinal_number
Always null, since this information is not applied to parameter data types in Postgres Pro

896

The Information Schema

Column Type
Description

udt_catalog sql_identifier
Name of the database that the data type of the parameter is defined in (always the current
database)

udt_schema sql_identifier
Name of the schema that the data type of the parameter is defined in

udt_name sql_identifier
Name of the data type of the parameter

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the parameter, unique among the data type
descriptors pertaining to the function. This is mainly useful for joining with other instances
of such identifiers. (The specific format of the identifier is not defined and not guaranteed to
remain the same in future versions.)

parameter_default character_data
The default expression of the parameter, or null if none or if the function is not owned by a
currently enabled role.

34.34. referential_constraints
The view referential_constraints contains all referential (foreign key) constraints in the current
database. Only those constraints are shown for which the current user has write access to the referencing
table (by way of being the owner or having some privilege other than SELECT).

Table 34.32. referential_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database containing the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema containing the constraint

constraint_name sql_identifier
Name of the constraint

unique_constraint_catalog sql_identifier
Name of the database that contains the unique or primary key constraint that the foreign key
constraint references (always the current database)

unique_constraint_schema sql_identifier
Name of the schema that contains the unique or primary key constraint that the foreign key
constraint references

unique_constraint_name sql_identifier
Name of the unique or primary key constraint that the foreign key constraint references

match_option character_data
Match option of the foreign key constraint: FULL, PARTIAL, or NONE.

897

The Information Schema

Column Type
Description

update_rule character_data
Update rule of the foreign key constraint: CASCADE, SET NULL, SET DEFAULT, RESTRICT, or NO
ACTION.

delete_rule character_data
Delete rule of the foreign key constraint: CASCADE, SET NULL, SET DEFAULT, RESTRICT, or NO
ACTION.

34.35. role_column_grants
The view role_column_grants identifies all privileges granted on columns where the grantor or grantee
is a currently enabled role. Further information can be found under column_privileges. The only
effective difference between this view and column_privileges is that this view omits columns that have
been made accessible to the current user by way of a grant to PUBLIC.

Table 34.33. role_column_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table that contains the column (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column

table_name sql_identifier
Name of the table that contains the column

column_name sql_identifier
Name of the column

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, or REFERENCES

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.36. role_routine_grants
The view role_routine_grants identifies all privileges granted on functions where the grantor or
grantee is a currently enabled role. Further information can be found under routine_privileges. The
only effective difference between this view and routine_privileges is that this view omits functions
that have been made accessible to the current user by way of a grant to PUBLIC.

Table 34.34. role_routine_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

specific_catalog sql_identifier

898

The Information Schema

Column Type
Description
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

privilege_type character_data
Always EXECUTE (the only privilege type for functions)

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.37. role_table_grants
The view role_table_grants identifies all privileges granted on tables or views where the grantor or
grantee is a currently enabled role. Further information can be found under table_privileges. The
only effective difference between this view and table_privileges is that this view omits tables that
have been made accessible to the current user by way of a grant to PUBLIC.

Table 34.35. role_table_grants Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

with_hierarchy yes_or_no
In the SQL standard, WITH HIERARCHY OPTION is a separate (sub-)privilege allowing certain
operations on table inheritance hierarchies. In Postgres Pro, this is included in the SELECT
privilege, so this column shows YES if the privilege is SELECT, else NO.

34.38. role_udt_grants
The view role_udt_grants is intended to identify USAGE privileges granted on user-defined types
where the grantor or grantee is a currently enabled role. Further information can be found under

899

The Information Schema

udt_privileges. The only effective difference between this view and udt_privileges is that this view
omits objects that have been made accessible to the current user by way of a grant to PUBLIC. Since data
types do not have real privileges in Postgres Pro, but only an implicit grant to PUBLIC, this view is empty.

Table 34.36. role_udt_grants Columns

Column Type
Description

grantor sql_identifier
The name of the role that granted the privilege

grantee sql_identifier
The name of the role that the privilege was granted to

udt_catalog sql_identifier
Name of the database containing the type (always the current database)

udt_schema sql_identifier
Name of the schema containing the type

udt_name sql_identifier
Name of the type

privilege_type character_data
Always TYPE USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.39. role_usage_grants
The view role_usage_grants identifies USAGE privileges granted on various kinds of objects where
the grantor or grantee is a currently enabled role. Further information can be found under
usage_privileges. The only effective difference between this view and usage_privileges is that this
view omits objects that have been made accessible to the current user by way of a grant to PUBLIC.

Table 34.37. role_usage_grants Columns

Column Type
Description

grantor sql_identifier
The name of the role that granted the privilege

grantee sql_identifier
The name of the role that the privilege was granted to

object_catalog sql_identifier
Name of the database containing the object (always the current database)

object_schema sql_identifier
Name of the schema containing the object, if applicable, else an empty string

object_name sql_identifier
Name of the object

object_type character_data
COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

privilege_type character_data
Always USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

900

The Information Schema

34.40. routine_privileges
The view routine_privileges identifies all privileges granted on functions to a currently enabled role
or by a currently enabled role. There is one row for each combination of function, grantor, and grantee.

Table 34.38. routine_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

privilege_type character_data
Always EXECUTE (the only privilege type for functions)

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.41. routines
The view routines contains all functions and procedures in the current database. Only those functions
and procedures are shown that the current user has access to (by way of being the owner or having
some privilege).

Table 34.39. routines Columns

Column Type
Description

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. This is a name that uniquely identifies the function in
the schema, even if the real name of the function is overloaded. The format of the specific
name is not defined, it should only be used to compare it to other instances of specific routine
names.

routine_catalog sql_identifier
Name of the database containing the function (always the current database)

routine_schema sql_identifier
Name of the schema containing the function

901

The Information Schema

Column Type
Description

routine_name sql_identifier
Name of the function (might be duplicated in case of overloading)

routine_type character_data
FUNCTION for a function, PROCEDURE for a procedure

module_catalog sql_identifier
Applies to a feature not available in Postgres Pro

module_schema sql_identifier
Applies to a feature not available in Postgres Pro

module_name sql_identifier
Applies to a feature not available in Postgres Pro

udt_catalog sql_identifier
Applies to a feature not available in Postgres Pro

udt_schema sql_identifier
Applies to a feature not available in Postgres Pro

udt_name sql_identifier
Applies to a feature not available in Postgres Pro

data_type character_data
Return data type of the function, if it is a built-in type, or ARRAY if it is some array (in that
case, see the view element_types), else USER-DEFINED (in that case, the type is identified in
type_udt_name and associated columns). Null for a procedure.

character_maximum_length cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

character_octet_length cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Always null, since this information is not applied to return data types in Postgres Pro

collation_schema sql_identifier
Always null, since this information is not applied to return data types in Postgres Pro

collation_name sql_identifier
Always null, since this information is not applied to return data types in Postgres Pro

numeric_precision cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

numeric_precision_radix cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

numeric_scale cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

datetime_precision cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

interval_type character_data
Always null, since this information is not applied to return data types in Postgres Pro

902

The Information Schema

Column Type
Description

interval_precision cardinal_number
Always null, since this information is not applied to return data types in Postgres Pro

type_udt_catalog sql_identifier
Name of the database that the return data type of the function is defined in (always the
current database). Null for a procedure.

type_udt_schema sql_identifier
Name of the schema that the return data type of the function is defined in. Null for a
procedure.

type_udt_name sql_identifier
Name of the return data type of the function. Null for a procedure.

scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

scope_name sql_identifier
Applies to a feature not available in Postgres Pro

maximum_cardinality cardinal_number
Always null, because arrays always have unlimited maximum cardinality in Postgres Pro

dtd_identifier sql_identifier
An identifier of the data type descriptor of the return data type of this function, unique among
the data type descriptors pertaining to the function. This is mainly useful for joining with
other instances of such identifiers. (The specific format of the identifier is not defined and not
guaranteed to remain the same in future versions.)

routine_body character_data
If the function is an SQL function, then SQL, else EXTERNAL.

routine_definition character_data
The source text of the function (null if the function is not owned by a currently enabled role).
(According to the SQL standard, this column is only applicable if routine_body is SQL, but
in Postgres Pro it will contain whatever source text was specified when the function was
created.)

external_name character_data
If this function is a C function, then the external name (link symbol) of the function; else null.
(This works out to be the same value that is shown in routine_definition .)

external_language character_data
The language the function is written in

parameter_style character_data
Always GENERAL (The SQL standard defines other parameter styles, which are not available in
Postgres Pro.)

is_deterministic yes_or_no
If the function is declared immutable (called deterministic in the SQL standard), then YES,
 else NO. (You cannot query the other volatility levels available in Postgres Pro through the
information schema.)

sql_data_access character_data
Always MODIFIES, meaning that the function possibly modifies SQL data. This information is
not useful for Postgres Pro.

is_null_call yes_or_no
If the function automatically returns null if any of its arguments are null, then YES, else NO.
Null for a procedure.

903

The Information Schema

Column Type
Description

sql_path character_data
Applies to a feature not available in Postgres Pro

schema_level_routine yes_or_no
Always YES (The opposite would be a method of a user-defined type, which is a feature not
available in Postgres Pro.)

max_dynamic_result_sets cardinal_number
Applies to a feature not available in Postgres Pro

is_user_defined_cast yes_or_no
Applies to a feature not available in Postgres Pro

is_implicitly_invocable yes_or_no
Applies to a feature not available in Postgres Pro

security_type character_data
If the function runs with the privileges of the current user, then INVOKER, if the function runs
with the privileges of the user who defined it, then DEFINER.

to_sql_specific_catalog sql_identifier
Applies to a feature not available in Postgres Pro

to_sql_specific_schema sql_identifier
Applies to a feature not available in Postgres Pro

to_sql_specific_name sql_identifier
Applies to a feature not available in Postgres Pro

as_locator yes_or_no
Applies to a feature not available in Postgres Pro

created time_stamp
Applies to a feature not available in Postgres Pro

last_altered time_stamp
Applies to a feature not available in Postgres Pro

new_savepoint_level yes_or_no
Applies to a feature not available in Postgres Pro

is_udt_dependent yes_or_no
Currently always NO. The alternative YES applies to a feature not available in Postgres Pro.

result_cast_from_data_type character_data
Applies to a feature not available in Postgres Pro

result_cast_as_locator yes_or_no
Applies to a feature not available in Postgres Pro

result_cast_char_max_length cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_char_octet_length cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_char_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_char_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_char_set_name sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_collation_catalog sql_identifier
Applies to a feature not available in Postgres Pro

904

The Information Schema

Column Type
Description

result_cast_collation_schema sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_collation_name sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_numeric_precision cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_numeric_precision_radix cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_numeric_scale cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_datetime_precision cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_interval_type character_data
Applies to a feature not available in Postgres Pro

result_cast_interval_precision cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_type_udt_catalog sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_type_udt_schema sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_type_udt_name sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_scope_catalog sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_scope_schema sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_scope_name sql_identifier
Applies to a feature not available in Postgres Pro

result_cast_maximum_cardinality cardinal_number
Applies to a feature not available in Postgres Pro

result_cast_dtd_identifier sql_identifier
Applies to a feature not available in Postgres Pro

34.42. schemata
The view schemata contains all schemas in the current database that the current user has access to (by
way of being the owner or having some privilege).

Table 34.40. schemata Columns

Column Type
Description

catalog_name sql_identifier
Name of the database that the schema is contained in (always the current database)

schema_name sql_identifier
Name of the schema

schema_owner sql_identifier
Name of the owner of the schema

905

The Information Schema

Column Type
Description

default_character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

default_character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

default_character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

sql_path character_data
Applies to a feature not available in Postgres Pro

34.43. sequences
The view sequences contains all sequences defined in the current database. Only those sequences are
shown that the current user has access to (by way of being the owner or having some privilege).

Table 34.41. sequences Columns

Column Type
Description

sequence_catalog sql_identifier
Name of the database that contains the sequence (always the current database)

sequence_schema sql_identifier
Name of the schema that contains the sequence

sequence_name sql_identifier
Name of the sequence

data_type character_data
The data type of the sequence.

numeric_precision cardinal_number
This column contains the (declared or implicit) precision of the sequence data type (see
above). The precision indicates the number of significant digits. It can be expressed in
decimal (base 10) or binary (base 2) terms, as specified in the column numeric_precision_
radix .

numeric_precision_radix cardinal_number
This column indicates in which base the values in the columns numeric_precision and
numeric_scale are expressed. The value is either 2 or 10.

numeric_scale cardinal_number
This column contains the (declared or implicit) scale of the sequence data type (see above).
The scale indicates the number of significant digits to the right of the decimal point. It can be
expressed in decimal (base 10) or binary (base 2) terms, as specified in the column numeric_
precision_radix .

start_value character_data
The start value of the sequence

minimum_value character_data
The minimum value of the sequence

maximum_value character_data
The maximum value of the sequence

increment character_data
The increment of the sequence

cycle_option yes_or_no
YES if the sequence cycles, else NO

906

The Information Schema

Note that in accordance with the SQL standard, the start, minimum, maximum, and increment values
are returned as character strings.

34.44. sql_features
The table sql_features contains information about which formal features defined in the SQL standard
are supported by Postgres Pro. This is the same information that is presented in Appendix D. There you
can also find some additional background information.

Table 34.42. sql_features Columns

Column Type
Description

feature_id character_data
Identifier string of the feature

feature_name character_data
Descriptive name of the feature

sub_feature_id character_data
Identifier string of the subfeature, or a zero-length string if not a subfeature

sub_feature_name character_data
Descriptive name of the subfeature, or a zero-length string if not a subfeature

is_supported yes_or_no
YES if the feature is fully supported by the current version of Postgres Pro, NO if not

is_verified_by character_data
Always null, since the Postgres Pro development group does not perform formal testing of
feature conformance

comments character_data
Possibly a comment about the supported status of the feature

34.45. sql_implementation_info
The table sql_implementation_info contains information about various aspects that are left
implementation-defined by the SQL standard. This information is primarily intended for use in the
context of the ODBC interface; users of other interfaces will probably find this information to be of little
use. For this reason, the individual implementation information items are not described here; you will
find them in the description of the ODBC interface.

Table 34.43. sql_implementation_info Columns

Column Type
Description

implementation_info_id character_data
Identifier string of the implementation information item

implementation_info_name character_data
Descriptive name of the implementation information item

integer_value cardinal_number
Value of the implementation information item, or null if the value is contained in the column
character_value

character_value character_data
Value of the implementation information item, or null if the value is contained in the column
integer_value

comments character_data
Possibly a comment pertaining to the implementation information item

907

The Information Schema

34.46. sql_parts
The table sql_parts contains information about which of the several parts of the SQL standard are
supported by Postgres Pro.

Table 34.44. sql_parts Columns

Column Type
Description

feature_id character_data
An identifier string containing the number of the part

feature_name character_data
Descriptive name of the part

is_supported yes_or_no
YES if the part is fully supported by the current version of Postgres Pro, NO if not

is_verified_by character_data
Always null, since the Postgres Pro development group does not perform formal testing of
feature conformance

comments character_data
Possibly a comment about the supported status of the part

34.47. sql_sizing
The table sql_sizing contains information about various size limits and maximum values in Postgres
Pro. This information is primarily intended for use in the context of the ODBC interface; users of other
interfaces will probably find this information to be of little use. For this reason, the individual sizing
items are not described here; you will find them in the description of the ODBC interface.

Table 34.45. sql_sizing Columns

Column Type
Description

sizing_id cardinal_number
Identifier of the sizing item

sizing_name character_data
Descriptive name of the sizing item

supported_value cardinal_number
Value of the sizing item, or 0 if the size is unlimited or cannot be determined, or null if the
features for which the sizing item is applicable are not supported

comments character_data
Possibly a comment pertaining to the sizing item

34.48. table_constraints
The view table_constraints contains all constraints belonging to tables that the current user owns or
has some privilege other than SELECT on.

Table 34.46. table_constraints Columns

Column Type
Description

constraint_catalog sql_identifier
Name of the database that contains the constraint (always the current database)

constraint_schema sql_identifier
Name of the schema that contains the constraint

908

The Information Schema

Column Type
Description

constraint_name sql_identifier
Name of the constraint

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

constraint_type character_data
Type of the constraint: CHECK, FOREIGN KEY, PRIMARY KEY, or UNIQUE

is_deferrable yes_or_no
YES if the constraint is deferrable, NO if not

initially_deferred yes_or_no
YES if the constraint is deferrable and initially deferred, NO if not

enforced yes_or_no
Applies to a feature not available in Postgres Pro (currently always YES)

34.49. table_privileges
The view table_privileges identifies all privileges granted on tables or views to a currently enabled
role or by a currently enabled role. There is one row for each combination of table, grantor, and grantee.

Table 34.47. table_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

privilege_type character_data
Type of the privilege: SELECT, INSERT, UPDATE, DELETE, TRUNCATE, REFERENCES, or TRIGGER

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

with_hierarchy yes_or_no
In the SQL standard, WITH HIERARCHY OPTION is a separate (sub-)privilege allowing certain
operations on table inheritance hierarchies. In Postgres Pro, this is included in the SELECT
privilege, so this column shows YES if the privilege is SELECT, else NO.

34.50. tables
The view tables contains all tables and views defined in the current database. Only those tables and
views are shown that the current user has access to (by way of being the owner or having some privilege).

909

The Information Schema

Table 34.48. tables Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the table (always the current database)

table_schema sql_identifier
Name of the schema that contains the table

table_name sql_identifier
Name of the table

table_type character_data
Type of the table: BASE TABLE for a persistent base table (the normal table type), VIEW for a
view, FOREIGN for a foreign table, or LOCAL TEMPORARY for a temporary table

self_referencing_column_name sql_identifier
Applies to a feature not available in Postgres Pro

reference_generation character_data
Applies to a feature not available in Postgres Pro

user_defined_type_catalog sql_identifier
If the table is a typed table, the name of the database that contains the underlying data type (
always the current database), else null.

user_defined_type_schema sql_identifier
If the table is a typed table, the name of the schema that contains the underlying data type,
 else null.

user_defined_type_name sql_identifier
If the table is a typed table, the name of the underlying data type, else null.

is_insertable_into yes_or_no
YES if the table is insertable into, NO if not (Base tables are always insertable into, views not
necessarily.)

is_typed yes_or_no
YES if the table is a typed table, NO if not

commit_action character_data
Not yet implemented

34.51. transforms
The view transforms contains information about the transforms defined in the current database. More
precisely, it contains a row for each function contained in a transform (the “from SQL” or “to SQL”
function).

Table 34.49. transforms Columns

Column Type
Description

udt_catalog sql_identifier
Name of the database that contains the type the transform is for (always the current
database)

udt_schema sql_identifier
Name of the schema that contains the type the transform is for

udt_name sql_identifier
Name of the type the transform is for

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

910

The Information Schema

Column Type
Description

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

group_name sql_identifier
The SQL standard allows defining transforms in “groups”, and selecting a group at run time.
Postgres Pro does not support this. Instead, transforms are specific to a language. As a
compromise, this field contains the language the transform is for.

transform_type character_data
FROM SQL or TO SQL

34.52. triggered_update_columns
For triggers in the current database that specify a column list (like UPDATE OF column1, column2), the
view triggered_update_columns identifies these columns. Triggers that do not specify a column list
are not included in this view. Only those columns are shown that the current user owns or has some
privilege other than SELECT on.

Table 34.50. triggered_update_columns Columns

Column Type
Description

trigger_catalog sql_identifier
Name of the database that contains the trigger (always the current database)

trigger_schema sql_identifier
Name of the schema that contains the trigger

trigger_name sql_identifier
Name of the trigger

event_object_catalog sql_identifier
Name of the database that contains the table that the trigger is defined on (always the
current database)

event_object_schema sql_identifier
Name of the schema that contains the table that the trigger is defined on

event_object_table sql_identifier
Name of the table that the trigger is defined on

event_object_column sql_identifier
Name of the column that the trigger is defined on

34.53. triggers
The view triggers contains all triggers defined in the current database on tables and views that the
current user owns or has some privilege other than SELECT on.

Table 34.51. triggers Columns

Column Type
Description

trigger_catalog sql_identifier
Name of the database that contains the trigger (always the current database)

trigger_schema sql_identifier

911

The Information Schema

Column Type
Description
Name of the schema that contains the trigger

trigger_name sql_identifier
Name of the trigger

event_manipulation character_data
Event that fires the trigger (INSERT, UPDATE, or DELETE)

event_object_catalog sql_identifier
Name of the database that contains the table that the trigger is defined on (always the
current database)

event_object_schema sql_identifier
Name of the schema that contains the table that the trigger is defined on

event_object_table sql_identifier
Name of the table that the trigger is defined on

action_order cardinal_number
Firing order among triggers on the same table having the same event_manipulation ,
 action_timing , and action_orientation . In Postgres Pro, triggers are fired in name
order, so this column reflects that.

action_condition character_data
WHEN condition of the trigger, null if none (also null if the table is not owned by a currently
enabled role)

action_statement character_data
Statement that is executed by the trigger (currently always EXECUTE FUNCTION function(
...))

action_orientation character_data
Identifies whether the trigger fires once for each processed row or once for each statement (
ROW or STATEMENT)

action_timing character_data
Time at which the trigger fires (BEFORE, AFTER, or INSTEAD OF)

action_reference_old_table sql_identifier
Name of the “old” transition table, or null if none

action_reference_new_table sql_identifier
Name of the “new” transition table, or null if none

action_reference_old_row sql_identifier
Applies to a feature not available in Postgres Pro

action_reference_new_row sql_identifier
Applies to a feature not available in Postgres Pro

created time_stamp
Applies to a feature not available in Postgres Pro

Triggers in Postgres Pro have two incompatibilities with the SQL standard that affect the representation
in the information schema. First, trigger names are local to each table in Postgres Pro, rather than being
independent schema objects. Therefore there can be duplicate trigger names defined in one schema,
so long as they belong to different tables. (trigger_catalog and trigger_schema are really the values
pertaining to the table that the trigger is defined on.) Second, triggers can be defined to fire on multiple
events in Postgres Pro (e.g., ON INSERT OR UPDATE), whereas the SQL standard only allows one. If
a trigger is defined to fire on multiple events, it is represented as multiple rows in the information
schema, one for each type of event. As a consequence of these two issues, the primary key of the
view triggers is really (trigger_catalog, trigger_schema, event_object_table, trigger_name,
event_manipulation) instead of (trigger_catalog, trigger_schema, trigger_name), which is what
the SQL standard specifies. Nonetheless, if you define your triggers in a manner that conforms with

912

The Information Schema

the SQL standard (trigger names unique in the schema and only one event type per trigger), this will
not affect you.

Note
Prior to PostgreSQL 9.1, this view's columns action_timing,
action_reference_old_table, action_reference_new_table, action_reference_old_row, and
action_reference_new_row were named condition_timing, condition_reference_old_table,
condition_reference_new_table, condition_reference_old_row, and
condition_reference_new_row respectively. That was how they were named in the SQL:1999
standard. The new naming conforms to SQL:2003 and later.

34.54. udt_privileges
The view udt_privileges identifies USAGE privileges granted on user-defined types to a currently
enabled role or by a currently enabled role. There is one row for each combination of type, grantor, and
grantee. This view shows only composite types (see under Section 34.56 for why); see Section 34.55
for domain privileges.

Table 34.52. udt_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

udt_catalog sql_identifier
Name of the database containing the type (always the current database)

udt_schema sql_identifier
Name of the schema containing the type

udt_name sql_identifier
Name of the type

privilege_type character_data
Always TYPE USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.55. usage_privileges
The view usage_privileges identifies USAGE privileges granted on various kinds of objects to a currently
enabled role or by a currently enabled role. In Postgres Pro, this currently applies to collations, domains,
foreign-data wrappers, foreign servers, and sequences. There is one row for each combination of object,
grantor, and grantee.

Since collations do not have real privileges in Postgres Pro, this view shows implicit non-grantable USAGE
privileges granted by the owner to PUBLIC for all collations. The other object types, however, show real
privileges.

In Postgres Pro, sequences also support SELECT and UPDATE privileges in addition to the USAGE privilege.
These are nonstandard and therefore not visible in the information schema.

913

The Information Schema

Table 34.53. usage_privileges Columns

Column Type
Description

grantor sql_identifier
Name of the role that granted the privilege

grantee sql_identifier
Name of the role that the privilege was granted to

object_catalog sql_identifier
Name of the database containing the object (always the current database)

object_schema sql_identifier
Name of the schema containing the object, if applicable, else an empty string

object_name sql_identifier
Name of the object

object_type character_data
COLLATION or DOMAIN or FOREIGN DATA WRAPPER or FOREIGN SERVER or SEQUENCE

privilege_type character_data
Always USAGE

is_grantable yes_or_no
YES if the privilege is grantable, NO if not

34.56. user_defined_types
The view user_defined_types currently contains all composite types defined in the current database.
Only those types are shown that the current user has access to (by way of being the owner or having
some privilege).

SQL knows about two kinds of user-defined types: structured types (also known as composite types in
Postgres Pro) and distinct types (not implemented in Postgres Pro). To be future-proof, use the column
user_defined_type_category to differentiate between these. Other user-defined types such as base
types and enums, which are Postgres Pro extensions, are not shown here. For domains, see Section 34.23
instead.

Table 34.54. user_defined_types Columns

Column Type
Description

user_defined_type_catalog sql_identifier
Name of the database that contains the type (always the current database)

user_defined_type_schema sql_identifier
Name of the schema that contains the type

user_defined_type_name sql_identifier
Name of the type

user_defined_type_category character_data
Currently always STRUCTURED

is_instantiable yes_or_no
Applies to a feature not available in Postgres Pro

is_final yes_or_no
Applies to a feature not available in Postgres Pro

ordering_form character_data
Applies to a feature not available in Postgres Pro

ordering_category character_data

914

The Information Schema

Column Type
Description
Applies to a feature not available in Postgres Pro

ordering_routine_catalog sql_identifier
Applies to a feature not available in Postgres Pro

ordering_routine_schema sql_identifier
Applies to a feature not available in Postgres Pro

ordering_routine_name sql_identifier
Applies to a feature not available in Postgres Pro

reference_type character_data
Applies to a feature not available in Postgres Pro

data_type character_data
Applies to a feature not available in Postgres Pro

character_maximum_length cardinal_number
Applies to a feature not available in Postgres Pro

character_octet_length cardinal_number
Applies to a feature not available in Postgres Pro

character_set_catalog sql_identifier
Applies to a feature not available in Postgres Pro

character_set_schema sql_identifier
Applies to a feature not available in Postgres Pro

character_set_name sql_identifier
Applies to a feature not available in Postgres Pro

collation_catalog sql_identifier
Applies to a feature not available in Postgres Pro

collation_schema sql_identifier
Applies to a feature not available in Postgres Pro

collation_name sql_identifier
Applies to a feature not available in Postgres Pro

numeric_precision cardinal_number
Applies to a feature not available in Postgres Pro

numeric_precision_radix cardinal_number
Applies to a feature not available in Postgres Pro

numeric_scale cardinal_number
Applies to a feature not available in Postgres Pro

datetime_precision cardinal_number
Applies to a feature not available in Postgres Pro

interval_type character_data
Applies to a feature not available in Postgres Pro

interval_precision cardinal_number
Applies to a feature not available in Postgres Pro

source_dtd_identifier sql_identifier
Applies to a feature not available in Postgres Pro

ref_dtd_identifier sql_identifier
Applies to a feature not available in Postgres Pro

915

The Information Schema

34.57. user_mapping_options
The view user_mapping_options contains all the options defined for user mappings in the current
database. Only those user mappings are shown where the current user has access to the corresponding
foreign server (by way of being the owner or having some privilege).

Table 34.55. user_mapping_options Columns

Column Type
Description

authorization_identifier sql_identifier
Name of the user being mapped, or PUBLIC if the mapping is public

foreign_server_catalog sql_identifier
Name of the database that the foreign server used by this mapping is defined in (always the
current database)

foreign_server_name sql_identifier
Name of the foreign server used by this mapping

option_name sql_identifier
Name of an option

option_value character_data
Value of the option. This column will show as null unless the current user is the user being
mapped, or the mapping is for PUBLIC and the current user is the server owner, or the current
user is a superuser. The intent is to protect password information stored as user mapping
option.

34.58. user_mappings
The view user_mappings contains all user mappings defined in the current database. Only those user
mappings are shown where the current user has access to the corresponding foreign server (by way of
being the owner or having some privilege).

Table 34.56. user_mappings Columns

Column Type
Description

authorization_identifier sql_identifier
Name of the user being mapped, or PUBLIC if the mapping is public

foreign_server_catalog sql_identifier
Name of the database that the foreign server used by this mapping is defined in (always the
current database)

foreign_server_name sql_identifier
Name of the foreign server used by this mapping

34.59. view_column_usage
The view view_column_usage identifies all columns that are used in the query expression of a view (the
SELECT statement that defines the view). A column is only included if the table that contains the column
is owned by a currently enabled role.

Note
Columns of system tables are not included. This should be fixed sometime.

916

The Information Schema

Table 34.57. view_column_usage Columns

Column Type
Description

view_catalog sql_identifier
Name of the database that contains the view (always the current database)

view_schema sql_identifier
Name of the schema that contains the view

view_name sql_identifier
Name of the view

table_catalog sql_identifier
Name of the database that contains the table that contains the column that is used by the
view (always the current database)

table_schema sql_identifier
Name of the schema that contains the table that contains the column that is used by the view

table_name sql_identifier
Name of the table that contains the column that is used by the view

column_name sql_identifier
Name of the column that is used by the view

34.60. view_routine_usage
The view view_routine_usage identifies all routines (functions and procedures) that are used in the
query expression of a view (the SELECT statement that defines the view). A routine is only included if
that routine is owned by a currently enabled role.

Table 34.58. view_routine_usage Columns

Column Type
Description

table_catalog sql_identifier
Name of the database containing the view (always the current database)

table_schema sql_identifier
Name of the schema containing the view

table_name sql_identifier
Name of the view

specific_catalog sql_identifier
Name of the database containing the function (always the current database)

specific_schema sql_identifier
Name of the schema containing the function

specific_name sql_identifier
The “specific name” of the function. See Section 34.41 for more information.

34.61. view_table_usage
The view view_table_usage identifies all tables that are used in the query expression of a view (the
SELECT statement that defines the view). A table is only included if that table is owned by a currently
enabled role.

Note
System tables are not included. This should be fixed sometime.

917

The Information Schema

Table 34.59. view_table_usage Columns

Column Type
Description

view_catalog sql_identifier
Name of the database that contains the view (always the current database)

view_schema sql_identifier
Name of the schema that contains the view

view_name sql_identifier
Name of the view

table_catalog sql_identifier
Name of the database that contains the table that is used by the view (always the current
database)

table_schema sql_identifier
Name of the schema that contains the table that is used by the view

table_name sql_identifier
Name of the table that is used by the view

34.62. views
The view views contains all views defined in the current database. Only those views are shown that the
current user has access to (by way of being the owner or having some privilege).

Table 34.60. views Columns

Column Type
Description

table_catalog sql_identifier
Name of the database that contains the view (always the current database)

table_schema sql_identifier
Name of the schema that contains the view

table_name sql_identifier
Name of the view

view_definition character_data
Query expression defining the view (null if the view is not owned by a currently enabled role)

check_option character_data
CASCADED or LOCAL if the view has a CHECK OPTION defined on it, NONE if not

is_updatable yes_or_no
YES if the view is updatable (allows UPDATE and DELETE), NO if not

is_insertable_into yes_or_no
YES if the view is insertable into (allows INSERT), NO if not

is_trigger_updatable yes_or_no
YES if the view has an INSTEAD OF UPDATE trigger defined on it, NO if not

is_trigger_deletable yes_or_no
YES if the view has an INSTEAD OF DELETE trigger defined on it, NO if not

is_trigger_insertable_into yes_or_no
YES if the view has an INSTEAD OF INSERT trigger defined on it, NO if not

918

Part V. Server Programming
This part is about extending the server functionality with user-defined functions, data types, triggers,
etc. These are advanced topics which should probably be approached only after all the other user
documentation about Postgres Pro has been understood. Later chapters in this part describe the
server-side programming languages available in the Postgres Pro distribution as well as general issues
concerning server-side programming languages. It is essential to read at least the earlier sections of
Chapter 35 (covering functions) before diving into the material about server-side programming languages.

Chapter 35. Extending SQL
In the sections that follow, we will discuss how you can extend the Postgres Pro SQL query language
by adding:
• functions (starting in Section 35.3)
• aggregates (starting in Section 35.12)
• data types (starting in Section 35.13)
• operators (starting in Section 35.14)
• operator classes for indexes (starting in Section 35.16)
• packages of related objects (starting in Section 35.17)

35.1. How Extensibility Works
Postgres Pro is extensible because its operation is catalog-driven. If you are familiar with standard
relational database systems, you know that they store information about databases, tables, columns,
etc., in what are commonly known as system catalogs. (Some systems call this the data dictionary.) The
catalogs appear to the user as tables like any other, but the DBMS stores its internal bookkeeping in
them. One key difference between Postgres Pro and standard relational database systems is that Postgres
Pro stores much more information in its catalogs: not only information about tables and columns, but
also information about data types, functions, access methods, and so on. These tables can be modified
by the user, and since Postgres Pro bases its operation on these tables, this means that Postgres Pro can
be extended by users. By comparison, conventional database systems can only be extended by changing
hardcoded procedures in the source code or by loading modules specially written by the DBMS vendor.

The Postgres Pro server can moreover incorporate user-written code into itself through dynamic loading.
That is, the user can specify an object code file (e.g., a shared library) that implements a new type or
function, and Postgres Pro will load it as required. Code written in SQL is even more trivial to add to
the server. This ability to modify its operation “on the fly” makes Postgres Pro uniquely suited for rapid
prototyping of new applications and storage structures.

35.2. The Postgres Pro Type System
Postgres Pro data types can be divided into base types, container types, domains, and pseudo-types.

35.2.1. Base Types
Base types are those, like integer, that are implemented below the level of the SQL language (typically
in a low-level language such as C). They generally correspond to what are often known as abstract data
types. Postgres Pro can only operate on such types through functions provided by the user and only
understands the behavior of such types to the extent that the user describes them. The built-in base
types are described in Chapter 8.

Enumerated (enum) types can be considered as a subcategory of base types. The main difference is that
they can be created using just SQL commands, without any low-level programming. Refer to Section 8.7
for more information.

35.2.2. Container Types
Postgres Pro has three kinds of “container” types, which are types that contain multiple values of other
types. These are arrays, composites, and ranges.

Arrays can hold multiple values that are all of the same type. An array type is automatically created
for each base type, composite type, range type, and domain type. But there are no arrays of arrays. So
far as the type system is concerned, multi-dimensional arrays are the same as one-dimensional arrays.
Refer to Section 8.15 for more information.

Composite types, or row types, are created whenever the user creates a table. It is also possible to use
CREATE TYPE to define a “stand-alone” composite type with no associated table. A composite type is

920

Extending SQL

simply a list of types with associated field names. A value of a composite type is a row or record of field
values. Refer to Section 8.16 for more information.

A range type can hold two values of the same type, which are the lower and upper bounds of the
range. Range types are user-created, although a few built-in ones exist. Refer to Section 8.17 for more
information.

35.2.3. Domains
A domain is based on a particular underlying type and for many purposes is interchangeable with its
underlying type. However, a domain can have constraints that restrict its valid values to a subset of what
the underlying type would allow. Domains are created using the SQL command CREATE DOMAIN. Refer
to Section 8.18 for more information.

35.2.4. Pseudo-Types
There are a few “pseudo-types” for special purposes. Pseudo-types cannot appear as columns of tables
or components of container types, but they can be used to declare the argument and result types of
functions. This provides a mechanism within the type system to identify special classes of functions.
Table 8.27 lists the existing pseudo-types.

35.2.5. Polymorphic Types
Some pseudo-types of special interest are the polymorphic types, which are used to declare polymorphic
functions. This powerful feature allows a single function definition to operate on many different data
types, with the specific data type(s) being determined by the data types actually passed to it in a
particular call. The polymorphic types are shown in Table 35.1. Some examples of their use appear in
Section 35.5.10.

Table 35.1. Polymorphic Types

Name Family Description
anyelement Simple Indicates that a function accepts any

data type
anyarray Simple Indicates that a function accepts any

array data type
anynonarray Simple Indicates that a function accepts any

non-array data type
anyenum Simple Indicates that a function accepts any

enum data type (see Section 8.7)
anyrange Simple Indicates that a function accepts any

range data type (see Section 8.17)
anycompatible Common Indicates that a function accepts any

data type, with automatic promotion of
multiple arguments to a common data
type

anycompatiblearray Common Indicates that a function accepts
any array data type, with automatic
promotion of multiple arguments to a
common data type

anycompatiblenonarray Common Indicates that a function accepts any
non-array data type, with automatic
promotion of multiple arguments to a
common data type

anycompatiblerange Common Indicates that a function accepts
any range data type, with automatic

921

Extending SQL

Name Family Description
promotion of multiple arguments to a
common data type

Polymorphic arguments and results are tied to each other and are resolved to specific data types when
a query calling a polymorphic function is parsed. When there is more than one polymorphic argument,
the actual data types of the input values must match up as described below. If the function's result type
is polymorphic, or it has output parameters of polymorphic types, the types of those results are deduced
from the actual types of the polymorphic inputs as described below.

For the “simple” family of polymorphic types, the matching and deduction rules work like this:

Each position (either argument or return value) declared as anyelement is allowed to have any specific
actual data type, but in any given call they must all be the same actual type. Each position declared
as anyarray can have any array data type, but similarly they must all be the same type. And similarly,
positions declared as anyrange must all be the same range type. Furthermore, if there are positions
declared anyarray and others declared anyelement, the actual array type in the anyarray positions must
be an array whose elements are the same type appearing in the anyelement positions. Similarly, if there
are positions declared anyrange and others declared anyelement or anyarray, the actual range type in
the anyrange positions must be a range whose subtype is the same type appearing in the anyelement
positions and the same as the element type of the anyarray positions. anynonarray is treated exactly
the same as anyelement, but adds the additional constraint that the actual type must not be an array
type. anyenum is treated exactly the same as anyelement, but adds the additional constraint that the
actual type must be an enum type.

Thus, when more than one argument position is declared with a polymorphic type, the net effect is that
only certain combinations of actual argument types are allowed. For example, a function declared as
equal(anyelement, anyelement) will take any two input values, so long as they are of the same data
type.

When the return value of a function is declared as a polymorphic type, there must be at least one
argument position that is also polymorphic, and the actual data type(s) supplied for the polymorphic
arguments determine the actual result type for that call. For example, if there were not already
an array subscripting mechanism, one could define a function that implements subscripting as
subscript(anyarray, integer) returns anyelement. This declaration constrains the actual first
argument to be an array type, and allows the parser to infer the correct result type from the actual first
argument's type. Another example is that a function declared as f(anyarray) returns anyenum will
only accept arrays of enum types.

In most cases, the parser can infer the actual data type for a polymorphic result type from arguments
that are of a different polymorphic type in the same family; for example anyarray can be deduced
from anyelement or vice versa. An exception is that a polymorphic result of type anyrange requires
an argument of type anyrange; it cannot be deduced from anyarray or anyelement arguments. This is
because there could be multiple range types with the same subtype.

Note that anynonarray and anyenum do not represent separate type variables; they are the same type
as anyelement, just with an additional constraint. For example, declaring a function as f(anyelement,
anyenum) is equivalent to declaring it as f(anyenum, anyenum): both actual arguments have to be the
same enum type.

For the “common” family of polymorphic types, the matching and deduction rules work approximately
the same as for the “simple” family, with one major difference: the actual types of the arguments need
not be identical, so long as they can be implicitly cast to a single common type. The common type is
selected following the same rules as for UNION and related constructs (see Section 10.5). Selection of
the common type considers the actual types of anycompatible and anycompatiblenonarray inputs, the
array element types of anycompatiblearray inputs, and the range subtypes of anycompatiblerange
inputs. If anycompatiblenonarray is present then the common type is required to be a non-array type.
Once a common type is identified, arguments in anycompatible and anycompatiblenonarray positions

922

Extending SQL

are automatically cast to that type, and arguments in anycompatiblearray positions are automatically
cast to the array type for that type.

Since there is no way to select a range type knowing only its subtype, use of anycompatiblerange
requires that all arguments declared with that type have the same actual range type, and that that
type's subtype agree with the selected common type, so that no casting of the range values is required.
As with anyrange, use of anycompatiblerange as a function result type requires that there be an
anycompatiblerange argument.

Notice that there is no anycompatibleenum type. Such a type would not be very useful, since there
normally are not any implicit casts to enum types, meaning that there would be no way to resolve a
common type for dissimilar enum inputs.

The “simple” and “common” polymorphic families represent two independent sets of type variables.
Consider for example

CREATE FUNCTION myfunc(a anyelement, b anyelement,
 c anycompatible, d anycompatible)
RETURNS anycompatible AS ...

In an actual call of this function, the first two inputs must have exactly the same type. The last two inputs
must be promotable to a common type, but this type need not have anything to do with the type of the
first two inputs. The result will have the common type of the last two inputs.

A variadic function (one taking a variable number of arguments, as in Section 35.5.5) can be
polymorphic: this is accomplished by declaring its last parameter as VARIADIC anyarray or VARIADIC
anycompatiblearray. For purposes of argument matching and determining the actual result type,
such a function behaves the same as if you had written the appropriate number of anynonarray or
anycompatiblenonarray parameters.

35.3. User-Defined Functions
Postgres Pro provides four kinds of functions:

• query language functions (functions written in SQL) (Section 35.5)

• procedural language functions (functions written in, for example, PL/pgSQL or PL/Tcl)
(Section 35.8)

• internal functions (Section 35.9)

• C-language functions (Section 35.10)

Every kind of function can take base types, composite types, or combinations of these as arguments
(parameters). In addition, every kind of function can return a base type or a composite type. Functions
can also be defined to return sets of base or composite values.

Many kinds of functions can take or return certain pseudo-types (such as polymorphic types), but the
available facilities vary. Consult the description of each kind of function for more details.

It's easiest to define SQL functions, so we'll start by discussing those. Most of the concepts presented
for SQL functions will carry over to the other types of functions.

Throughout this chapter, it can be useful to look at the reference page of the CREATE FUNCTION
command to understand the examples better.

35.4. User-Defined Procedures
A procedure is a database object similar to a function. The key differences are:

• Procedures are defined with the CREATE PROCEDURE command, not CREATE FUNCTION.

923

Extending SQL

• Procedures do not return a function value; hence CREATE PROCEDURE lacks a RETURNS clause.
However, procedures can instead return data to their callers via output parameters.

• While a function is called as part of a query or DML command, a procedure is called in isolation
using the CALL command.

• A procedure can commit or roll back transactions during its execution (then automatically
beginning a new transaction), so long as the invoking CALL command is not part of an explicit
transaction block. A function cannot do that.

• Certain function attributes, such as strictness, don't apply to procedures. Those attributes control
how the function is used in a query, which isn't relevant to procedures.

The explanations in the following sections about how to define user-defined functions apply to procedures
as well, except for the points made above.

Collectively, functions and procedures are also known as routines. There are commands such as ALTER
ROUTINE and DROP ROUTINE that can operate on functions and procedures without having to know
which kind it is. Note, however, that there is no CREATE ROUTINE command.

35.5. Query Language (SQL) Functions
SQL functions execute an arbitrary list of SQL statements, returning the result of the last query in the
list. In the simple (non-set) case, the first row of the last query's result will be returned. (Bear in mind
that “the first row” of a multirow result is not well-defined unless you use ORDER BY.) If the last query
happens to return no rows at all, the null value will be returned.

Alternatively, an SQL function can be declared to return a set (that is, multiple rows) by specifying the
function's return type as SETOF sometype, or equivalently by declaring it as RETURNS TABLE(columns).
In this case all rows of the last query's result are returned. Further details appear below.

The body of an SQL function must be a list of SQL statements separated by semicolons. A semicolon
after the last statement is optional. Unless the function is declared to return void, the last statement
must be a SELECT, or an INSERT, UPDATE, or DELETE that has a RETURNING clause.

Any collection of commands in the SQL language can be packaged together and defined as a function.
Besides SELECT queries, the commands can include data modification queries (INSERT, UPDATE, and
DELETE), as well as other SQL commands. (You cannot use transaction control commands, e.g., COMMIT,
SAVEPOINT, and some utility commands, e.g., VACUUM, in SQL functions.) However, the final command
must be a SELECT or have a RETURNING clause that returns whatever is specified as the function's return
type. Alternatively, if you want to define a SQL function that performs actions but has no useful value
to return, you can define it as returning void. For example, this function removes rows with negative
salaries from the emp table:

CREATE FUNCTION clean_emp() RETURNS void AS '
 DELETE FROM emp
 WHERE salary < 0;
' LANGUAGE SQL;

SELECT clean_emp();

 clean_emp

(1 row)

Note
The entire body of a SQL function is parsed before any of it is executed. While a SQL function
can contain commands that alter the system catalogs (e.g., CREATE TABLE), the effects of such

924

Extending SQL

commands will not be visible during parse analysis of later commands in the function. Thus, for
example, CREATE TABLE foo (...); INSERT INTO foo VALUES(...); will not work as desired
if packaged up into a single SQL function, since foo won't exist yet when the INSERT command is
parsed. It's recommended to use PL/pgSQL instead of a SQL function in this type of situation.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant.
If you choose to use regular single-quoted string constant syntax, you must double single quote marks
(') and backslashes (\) (assuming escape string syntax) in the body of the function (see Section 4.1.2.1).

35.5.1. Arguments for SQL Functions
Arguments of a SQL function can be referenced in the function body using either names or numbers.
Examples of both methods appear below.

To use a name, declare the function argument as having a name, and then just write that name in the
function body. If the argument name is the same as any column name in the current SQL command
within the function, the column name will take precedence. To override this, qualify the argument name
with the name of the function itself, that is function_name.argument_name. (If this would conflict with a
qualified column name, again the column name wins. You can avoid the ambiguity by choosing a different
alias for the table within the SQL command.)

In the older numeric approach, arguments are referenced using the syntax $n: $1 refers to the first
input argument, $2 to the second, and so on. This will work whether or not the particular argument was
declared with a name.

If an argument is of a composite type, then the dot notation, e.g., argname.fieldname or $1.fieldname,
can be used to access attributes of the argument. Again, you might need to qualify the argument's name
with the function name to make the form with an argument name unambiguous.

SQL function arguments can only be used as data values, not as identifiers. Thus for example this is
reasonable:

INSERT INTO mytable VALUES ($1);

but this will not work:

INSERT INTO $1 VALUES (42);

Note
The ability to use names to reference SQL function arguments was added in PostgreSQL 9.2.
Functions to be used in older servers must use the $n notation.

35.5.2. SQL Functions on Base Types
The simplest possible SQL function has no arguments and simply returns a base type, such as integer:

CREATE FUNCTION one() RETURNS integer AS $$
 SELECT 1 AS result;
$$ LANGUAGE SQL;

-- Alternative syntax for string literal:
CREATE FUNCTION one() RETURNS integer AS '
 SELECT 1 AS result;
' LANGUAGE SQL;

925

Extending SQL

SELECT one();

 one

 1

Notice that we defined a column alias within the function body for the result of the function (with the
name result), but this column alias is not visible outside the function. Hence, the result is labeled one
instead of result.

It is almost as easy to define SQL functions that take base types as arguments:

CREATE FUNCTION add_em(x integer, y integer) RETURNS integer AS $$
 SELECT x + y;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Alternatively, we could dispense with names for the arguments and use numbers:

CREATE FUNCTION add_em(integer, integer) RETURNS integer AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

SELECT add_em(1, 2) AS answer;

 answer

 3

Here is a more useful function, which might be used to debit a bank account:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT 1;
$$ LANGUAGE SQL;

A user could execute this function to debit account 17 by $100.00 as follows:

SELECT tf1(17, 100.0);

In this example, we chose the name accountno for the first argument, but this is the same as the name of a
column in the bank table. Within the UPDATE command, accountno refers to the column bank.accountno,
so tf1.accountno must be used to refer to the argument. We could of course avoid this by using a
different name for the argument.

In practice one would probably like a more useful result from the function than a constant 1, so a more
likely definition is:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno;
 SELECT balance FROM bank WHERE accountno = tf1.accountno;

926

Extending SQL

$$ LANGUAGE SQL;

which adjusts the balance and returns the new balance. The same thing could be done in one command
using RETURNING:

CREATE FUNCTION tf1 (accountno integer, debit numeric) RETURNS numeric AS $$
 UPDATE bank
 SET balance = balance - debit
 WHERE accountno = tf1.accountno
 RETURNING balance;
$$ LANGUAGE SQL;

If the final SELECT or RETURNING clause in a SQL function does not return exactly the function's declared
result type, PostgreSQL will automatically cast the value to the required type, if that is possible with an
implicit or assignment cast. Otherwise, you must write an explicit cast. For example, suppose we wanted
the previous add_em function to return type float8 instead. It's sufficient to write

CREATE FUNCTION add_em(integer, integer) RETURNS float8 AS $$
 SELECT $1 + $2;
$$ LANGUAGE SQL;

since the integer sum can be implicitly cast to float8. (See Chapter 10 or CREATE CAST for more
about casts.)

35.5.3. SQL Functions on Composite Types
When writing functions with arguments of composite types, we must not only specify which argument
we want but also the desired attribute (field) of that argument. For example, suppose that emp is a table
containing employee data, and therefore also the name of the composite type of each row of the table.
Here is a function double_salary that computes what someone's salary would be if it were doubled:

CREATE TABLE emp (
 name text,
 salary numeric,
 age integer,
 cubicle point
);

INSERT INTO emp VALUES ('Bill', 4200, 45, '(2,1)');

CREATE FUNCTION double_salary(emp) RETURNS numeric AS $$
 SELECT $1.salary * 2 AS salary;
$$ LANGUAGE SQL;

SELECT name, double_salary(emp.*) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

 name | dream
------+-------
 Bill | 8400

Notice the use of the syntax $1.salary to select one field of the argument row value. Also notice how the
calling SELECT command uses table_name.* to select the entire current row of a table as a composite
value. The table row can alternatively be referenced using just the table name, like this:

SELECT name, double_salary(emp) AS dream
 FROM emp
 WHERE emp.cubicle ~= point '(2,1)';

but this usage is deprecated since it's easy to get confused. (See Section 8.16.5 for details about these
two notations for the composite value of a table row.)

927

Extending SQL

Sometimes it is handy to construct a composite argument value on-the-fly. This can be done with the ROW
construct. For example, we could adjust the data being passed to the function:

SELECT name, double_salary(ROW(name, salary*1.1, age, cubicle)) AS dream
 FROM emp;

It is also possible to build a function that returns a composite type. This is an example of a function that
returns a single emp row:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT text 'None' AS name,
 1000.0 AS salary,
 25 AS age,
 point '(2,2)' AS cubicle;
$$ LANGUAGE SQL;

In this example we have specified each of the attributes with a constant value, but any computation
could have been substituted for these constants.

Note two important things about defining the function:

• The select list order in the query must be exactly the same as that in which the columns appear in
the composite type. (Naming the columns, as we did above, is irrelevant to the system.)

• We must ensure each expression's type can be cast to that of the corresponding column of the
composite type. Otherwise we'll get errors like this:

ERROR: return type mismatch in function declared to return emp
DETAIL: Final statement returns text instead of point at column 4.

As with the base-type case, the system will not insert explicit casts automatically, only implicit or
assignment casts.

A different way to define the same function is:

CREATE FUNCTION new_emp() RETURNS emp AS $$
 SELECT ROW('None', 1000.0, 25, '(2,2)')::emp;
$$ LANGUAGE SQL;

Here we wrote a SELECT that returns just a single column of the correct composite type. This isn't really
better in this situation, but it is a handy alternative in some cases — for example, if we need to compute
the result by calling another function that returns the desired composite value. Another example is that
if we are trying to write a function that returns a domain over composite, rather than a plain composite
type, it is always necessary to write it as returning a single column, since there is no way to cause a
coercion of the whole row result.

We could call this function directly either by using it in a value expression:

SELECT new_emp();

 new_emp

 (None,1000.0,25,"(2,2)")

or by calling it as a table function:

SELECT * FROM new_emp();

 name | salary | age | cubicle
------+--------+-----+---------
 None | 1000.0 | 25 | (2,2)

928

Extending SQL

The second way is described more fully in Section 35.5.7.

When you use a function that returns a composite type, you might want only one field (attribute) from
its result. You can do that with syntax like this:

SELECT (new_emp()).name;

 name

 None

The extra parentheses are needed to keep the parser from getting confused. If you try to do it without
them, you get something like this:

SELECT new_emp().name;
ERROR: syntax error at or near "."
LINE 1: SELECT new_emp().name;
 ^

Another option is to use functional notation for extracting an attribute:

SELECT name(new_emp());

 name

 None

As explained in Section 8.16.5, the field notation and functional notation are equivalent.

Another way to use a function returning a composite type is to pass the result to another function that
accepts the correct row type as input:

CREATE FUNCTION getname(emp) RETURNS text AS $$
 SELECT $1.name;
$$ LANGUAGE SQL;

SELECT getname(new_emp());
 getname

 None
(1 row)

35.5.4. SQL Functions with Output Parameters
An alternative way of describing a function's results is to define it with output parameters, as in this
example:

CREATE FUNCTION add_em (IN x int, IN y int, OUT sum int)
AS 'SELECT x + y'
LANGUAGE SQL;

SELECT add_em(3,7);
 add_em

 10
(1 row)

This is not essentially different from the version of add_em shown in Section 35.5.2. The real value
of output parameters is that they provide a convenient way of defining functions that return several
columns. For example,

CREATE FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int)

929

Extending SQL

AS 'SELECT x + y, x * y'
LANGUAGE SQL;

 SELECT * FROM sum_n_product(11,42);
 sum | product
-----+---------
 53 | 462
(1 row)

What has essentially happened here is that we have created an anonymous composite type for the result
of the function. The above example has the same end result as

CREATE TYPE sum_prod AS (sum int, product int);

CREATE FUNCTION sum_n_product (int, int) RETURNS sum_prod
AS 'SELECT $1 + $2, $1 * $2'
LANGUAGE SQL;

but not having to bother with the separate composite type definition is often handy. Notice that the
names attached to the output parameters are not just decoration, but determine the column names of
the anonymous composite type. (If you omit a name for an output parameter, the system will choose a
name on its own.)

Notice that output parameters are not included in the calling argument list when invoking such a function
from SQL. This is because Postgres Pro considers only the input parameters to define the function's
calling signature. That means also that only the input parameters matter when referencing the function
for purposes such as dropping it. We could drop the above function with either of

DROP FUNCTION sum_n_product (x int, y int, OUT sum int, OUT product int);
DROP FUNCTION sum_n_product (int, int);

Parameters can be marked as IN (the default), OUT, INOUT, or VARIADIC. An INOUT parameter serves as
both an input parameter (part of the calling argument list) and an output parameter (part of the result
record type). VARIADIC parameters are input parameters, but are treated specially as described next.

35.5.5. SQL Functions with Variable Numbers of Arguments
SQL functions can be declared to accept variable numbers of arguments, so long as all the “optional”
arguments are of the same data type. The optional arguments will be passed to the function as an array.
The function is declared by marking the last parameter as VARIADIC; this parameter must be declared
as being of an array type. For example:

CREATE FUNCTION mleast(VARIADIC arr numeric[]) RETURNS numeric AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT mleast(10, -1, 5, 4.4);
 mleast

 -1
(1 row)

Effectively, all the actual arguments at or beyond the VARIADIC position are gathered up into a one-
dimensional array, as if you had written

SELECT mleast(ARRAY[10, -1, 5, 4.4]); -- doesn't work

You can't actually write that, though — or at least, it will not match this function definition. A parameter
marked VARIADIC matches one or more occurrences of its element type, not of its own type.

Sometimes it is useful to be able to pass an already-constructed array to a variadic function; this is
particularly handy when one variadic function wants to pass on its array parameter to another one. Also,

930

Extending SQL

this is the only secure way to call a variadic function found in a schema that permits untrusted users to
create objects; see Section 10.3. You can do this by specifying VARIADIC in the call:

SELECT mleast(VARIADIC ARRAY[10, -1, 5, 4.4]);

This prevents expansion of the function's variadic parameter into its element type, thereby allowing the
array argument value to match normally. VARIADIC can only be attached to the last actual argument of
a function call.

Specifying VARIADIC in the call is also the only way to pass an empty array to a variadic function, for
example:

SELECT mleast(VARIADIC ARRAY[]::numeric[]);

Simply writing SELECT mleast() does not work because a variadic parameter must match at least one
actual argument. (You could define a second function also named mleast, with no parameters, if you
wanted to allow such calls.)

The array element parameters generated from a variadic parameter are treated as not having any names
of their own. This means it is not possible to call a variadic function using named arguments (Section 4.3),
except when you specify VARIADIC. For example, this will work:

SELECT mleast(VARIADIC arr => ARRAY[10, -1, 5, 4.4]);

but not these:

SELECT mleast(arr => 10);
SELECT mleast(arr => ARRAY[10, -1, 5, 4.4]);

35.5.6. SQL Functions with Default Values for Arguments
Functions can be declared with default values for some or all input arguments. The default values are
inserted whenever the function is called with insufficiently many actual arguments. Since arguments can
only be omitted from the end of the actual argument list, all parameters after a parameter with a default
value have to have default values as well. (Although the use of named argument notation could allow this
restriction to be relaxed, it's still enforced so that positional argument notation works sensibly.) Whether
or not you use it, this capability creates a need for precautions when calling functions in databases where
some users mistrust other users; see Section 10.3.

For example:

CREATE FUNCTION foo(a int, b int DEFAULT 2, c int DEFAULT 3)
RETURNS int
LANGUAGE SQL
AS $$
 SELECT $1 + $2 + $3;
$$;

SELECT foo(10, 20, 30);
 foo

 60
(1 row)

SELECT foo(10, 20);
 foo

 33
(1 row)

SELECT foo(10);
 foo

931

Extending SQL

 15
(1 row)

SELECT foo(); -- fails since there is no default for the first argument
ERROR: function foo() does not exist

The = sign can also be used in place of the key word DEFAULT.

35.5.7. SQL Functions as Table Sources
All SQL functions can be used in the FROM clause of a query, but it is particularly useful for functions
returning composite types. If the function is defined to return a base type, the table function produces
a one-column table. If the function is defined to return a composite type, the table function produces a
column for each attribute of the composite type.

Here is an example:

CREATE TABLE foo (fooid int, foosubid int, fooname text);
INSERT INTO foo VALUES (1, 1, 'Joe');
INSERT INTO foo VALUES (1, 2, 'Ed');
INSERT INTO foo VALUES (2, 1, 'Mary');

CREATE FUNCTION getfoo(int) RETURNS foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT *, upper(fooname) FROM getfoo(1) AS t1;

 fooid | foosubid | fooname | upper
-------+----------+---------+-------
 1 | 1 | Joe | JOE
(1 row)

As the example shows, we can work with the columns of the function's result just the same as if they
were columns of a regular table.

Note that we only got one row out of the function. This is because we did not use SETOF. That is described
in the next section.

35.5.8. SQL Functions Returning Sets
When an SQL function is declared as returning SETOF sometype, the function's final query is executed
to completion, and each row it outputs is returned as an element of the result set.

This feature is normally used when calling the function in the FROM clause. In this case each row returned
by the function becomes a row of the table seen by the query. For example, assume that table foo has
the same contents as above, and we say:

CREATE FUNCTION getfoo(int) RETURNS SETOF foo AS $$
 SELECT * FROM foo WHERE fooid = $1;
$$ LANGUAGE SQL;

SELECT * FROM getfoo(1) AS t1;

Then we would get:

 fooid | foosubid | fooname
-------+----------+---------
 1 | 1 | Joe
 1 | 2 | Ed

932

Extending SQL

(2 rows)

It is also possible to return multiple rows with the columns defined by output parameters, like this:
CREATE TABLE tab (y int, z int);
INSERT INTO tab VALUES (1, 2), (3, 4), (5, 6), (7, 8);

CREATE FUNCTION sum_n_product_with_tab (x int, OUT sum int, OUT product int)
RETURNS SETOF record
AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

SELECT * FROM sum_n_product_with_tab(10);
 sum | product
-----+---------
 11 | 10
 13 | 30
 15 | 50
 17 | 70
(4 rows)

The key point here is that you must write RETURNS SETOF record to indicate that the function returns
multiple rows instead of just one. If there is only one output parameter, write that parameter's type
instead of record.

It is frequently useful to construct a query's result by invoking a set-returning function multiple times,
with the parameters for each invocation coming from successive rows of a table or subquery. The
preferred way to do this is to use the LATERAL key word, which is described in Section 7.2.1.5. Here is
an example using a set-returning function to enumerate elements of a tree structure:
SELECT * FROM nodes;
 name | parent
-----------+--------
 Top |
 Child1 | Top
 Child2 | Top
 Child3 | Top
 SubChild1 | Child1
 SubChild2 | Child1
(6 rows)

CREATE FUNCTION listchildren(text) RETURNS SETOF text AS $$
 SELECT name FROM nodes WHERE parent = $1
$$ LANGUAGE SQL STABLE;

SELECT * FROM listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, child FROM nodes, LATERAL listchildren(name) AS child;
 name | child
--------+-----------
 Top | Child1
 Top | Child2
 Top | Child3

933

Extending SQL

 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

This example does not do anything that we couldn't have done with a simple join, but in more complex
calculations the option to put some of the work into a function can be quite convenient.

Functions returning sets can also be called in the select list of a query. For each row that the query
generates by itself, the set-returning function is invoked, and an output row is generated for each element
of the function's result set. The previous example could also be done with queries like these:

SELECT listchildren('Top');
 listchildren

 Child1
 Child2
 Child3
(3 rows)

SELECT name, listchildren(name) FROM nodes;
 name | listchildren
--------+--------------
 Top | Child1
 Top | Child2
 Top | Child3
 Child1 | SubChild1
 Child1 | SubChild2
(5 rows)

In the last SELECT, notice that no output row appears for Child2, Child3, etc. This happens because
listchildren returns an empty set for those arguments, so no result rows are generated. This is the
same behavior as we got from an inner join to the function result when using the LATERAL syntax.

Postgres Pro's behavior for a set-returning function in a query's select list is almost exactly the same as
if the set-returning function had been written in a LATERAL FROM-clause item instead. For example,

SELECT x, generate_series(1,5) AS g FROM tab;

is almost equivalent to

SELECT x, g FROM tab, LATERAL generate_series(1,5) AS g;

It would be exactly the same, except that in this specific example, the planner could choose to put g on
the outside of the nested-loop join, since g has no actual lateral dependency on tab. That would result
in a different output row order. Set-returning functions in the select list are always evaluated as though
they are on the inside of a nested-loop join with the rest of the FROM clause, so that the function(s) are
run to completion before the next row from the FROM clause is considered.

If there is more than one set-returning function in the query's select list, the behavior is similar to what
you get from putting the functions into a single LATERAL ROWS FROM(...) FROM-clause item. For
each row from the underlying query, there is an output row using the first result from each function,
then an output row using the second result, and so on. If some of the set-returning functions produce
fewer outputs than others, null values are substituted for the missing data, so that the total number of
rows emitted for one underlying row is the same as for the set-returning function that produced the
most outputs. Thus the set-returning functions run “in lockstep” until they are all exhausted, and then
execution continues with the next underlying row.

Set-returning functions can be nested in a select list, although that is not allowed in FROM-clause items.
In such cases, each level of nesting is treated separately, as though it were a separate LATERAL ROWS
FROM(...) item. For example, in

SELECT srf1(srf2(x), srf3(y)), srf4(srf5(z)) FROM tab;

934

Extending SQL

the set-returning functions srf2, srf3, and srf5 would be run in lockstep for each row of tab, and then
srf1 and srf4 would be applied in lockstep to each row produced by the lower functions.

Set-returning functions cannot be used within conditional-evaluation constructs, such as CASE or
COALESCE. For example, consider

SELECT x, CASE WHEN x > 0 THEN generate_series(1, 5) ELSE 0 END FROM tab;

It might seem that this should produce five repetitions of input rows that have x > 0, and a single
repetition of those that do not; but actually, because generate_series(1, 5) would be run in an implicit
LATERAL FROM item before the CASE expression is ever evaluated, it would produce five repetitions of
every input row. To reduce confusion, such cases produce a parse-time error instead.

Note
If a function's last command is INSERT, UPDATE, or DELETE with RETURNING, that command will
always be executed to completion, even if the function is not declared with SETOF or the calling
query does not fetch all the result rows. Any extra rows produced by the RETURNING clause are
silently dropped, but the commanded table modifications still happen (and are all completed before
returning from the function).

Note
Before Postgres Pro 10, putting more than one set-returning function in the same select list did
not behave very sensibly unless they always produced equal numbers of rows. Otherwise, what
you got was a number of output rows equal to the least common multiple of the numbers of
rows produced by the set-returning functions. Also, nested set-returning functions did not work as
described above; instead, a set-returning function could have at most one set-returning argument,
and each nest of set-returning functions was run independently. Also, conditional execution (set-
returning functions inside CASE etc) was previously allowed, complicating things even more. Use
of the LATERAL syntax is recommended when writing queries that need to work in older Postgres
Pro versions, because that will give consistent results across different versions. If you have a query
that is relying on conditional execution of a set-returning function, you may be able to fix it by
moving the conditional test into a custom set-returning function. For example,

SELECT x, CASE WHEN y > 0 THEN generate_series(1, z) ELSE 5 END FROM tab;

could become

CREATE FUNCTION case_generate_series(cond bool, start int, fin int, els int)
 RETURNS SETOF int AS $$
BEGIN
 IF cond THEN
 RETURN QUERY SELECT generate_series(start, fin);
 ELSE
 RETURN QUERY SELECT els;
 END IF;
END$$ LANGUAGE plpgsql;

SELECT x, case_generate_series(y > 0, 1, z, 5) FROM tab;

This formulation will work the same in all versions of Postgres Pro.

35.5.9. SQL Functions Returning TABLE
There is another way to declare a function as returning a set, which is to use the syntax RETURNS
TABLE(columns). This is equivalent to using one or more OUT parameters plus marking the function as

935

Extending SQL

returning SETOF record (or SETOF a single output parameter's type, as appropriate). This notation is
specified in recent versions of the SQL standard, and thus may be more portable than using SETOF.

For example, the preceding sum-and-product example could also be done this way:

CREATE FUNCTION sum_n_product_with_tab (x int)
RETURNS TABLE(sum int, product int) AS $$
 SELECT $1 + tab.y, $1 * tab.y FROM tab;
$$ LANGUAGE SQL;

It is not allowed to use explicit OUT or INOUT parameters with the RETURNS TABLE notation — you must
put all the output columns in the TABLE list.

35.5.10. Polymorphic SQL Functions
SQL functions can be declared to accept and return the polymorphic types described in Section 35.2.5.
Here is a polymorphic function make_array that builds up an array from two arbitrary data type elements:

CREATE FUNCTION make_array(anyelement, anyelement) RETURNS anyarray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array(1, 2) AS intarray, make_array('a'::text, 'b') AS textarray;
 intarray | textarray
----------+-----------
 {1,2} | {a,b}
(1 row)

Notice the use of the typecast 'a'::text to specify that the argument is of type text. This is required
if the argument is just a string literal, since otherwise it would be treated as type unknown, and array of
unknown is not a valid type. Without the typecast, you will get errors like this:

ERROR: could not determine polymorphic type because input has type unknown

With make_array declared as above, you must provide two arguments that are of exactly the same data
type; the system will not attempt to resolve any type differences. Thus for example this does not work:

SELECT make_array(1, 2.5) AS numericarray;
ERROR: function make_array(integer, numeric) does not exist

An alternative approach is to use the “common” family of polymorphic types, which allows the system
to try to identify a suitable common type:

CREATE FUNCTION make_array2(anycompatible, anycompatible)
RETURNS anycompatiblearray AS $$
 SELECT ARRAY[$1, $2];
$$ LANGUAGE SQL;

SELECT make_array2(1, 2.5) AS numericarray;
 numericarray

 {1,2.5}
(1 row)

Because the rules for common type resolution default to choosing type text when all inputs are of
unknown types, this also works:

SELECT make_array2('a', 'b') AS textarray;
 textarray

 {a,b}
(1 row)

936

Extending SQL

It is permitted to have polymorphic arguments with a fixed return type, but the converse is not. For
example:
CREATE FUNCTION is_greater(anyelement, anyelement) RETURNS boolean AS $$
 SELECT $1 > $2;
$$ LANGUAGE SQL;

SELECT is_greater(1, 2);
 is_greater

 f
(1 row)

CREATE FUNCTION invalid_func() RETURNS anyelement AS $$
 SELECT 1;
$$ LANGUAGE SQL;
ERROR: cannot determine result data type
DETAIL: A result of type anyelement requires at least one input of type anyelement,
 anyarray, anynonarray, anyenum, or anyrange.

Polymorphism can be used with functions that have output arguments. For example:
CREATE FUNCTION dup (f1 anyelement, OUT f2 anyelement, OUT f3 anyarray)
AS 'select $1, array[$1,$1]' LANGUAGE SQL;

SELECT * FROM dup(22);
 f2 | f3
----+---------
 22 | {22,22}
(1 row)

Polymorphism can also be used with variadic functions. For example:
CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i]) FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

SELECT anyleast(10, -1, 5, 4);
 anyleast

 -1
(1 row)

SELECT anyleast('abc'::text, 'def');
 anyleast

 abc
(1 row)

CREATE FUNCTION concat_values(text, VARIADIC anyarray) RETURNS text AS $$
 SELECT array_to_string($2, $1);
$$ LANGUAGE SQL;

SELECT concat_values('|', 1, 4, 2);
 concat_values

 1|4|2
(1 row)

35.5.11. SQL Functions with Collations

937

Extending SQL

When a SQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in
Section 22.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations
among the arguments) then all the collatable parameters are treated as having that collation implicitly.
This will affect the behavior of collation-sensitive operations within the function. For example, using the
anyleast function described above, the result of

SELECT anyleast('abc'::text, 'ABC');

will depend on the database's default collation. In C locale the result will be ABC, but in many other locales
it will be abc. The collation to use can be forced by adding a COLLATE clause to any of the arguments,
for example

SELECT anyleast('abc'::text, 'ABC' COLLATE "C");

Alternatively, if you wish a function to operate with a particular collation regardless of what it is called
with, insert COLLATE clauses as needed in the function definition. This version of anyleast would always
use en_US locale to compare strings:

CREATE FUNCTION anyleast (VARIADIC anyarray) RETURNS anyelement AS $$
 SELECT min($1[i] COLLATE "en_US") FROM generate_subscripts($1, 1) g(i);
$$ LANGUAGE SQL;

But note that this will throw an error if applied to a non-collatable data type.

If no common collation can be identified among the actual arguments, then a SQL function treats its
parameters as having their data types' default collation (which is usually the database's default collation,
but could be different for parameters of domain types).

The behavior of collatable parameters can be thought of as a limited form of polymorphism, applicable
only to textual data types.

35.6. Function Overloading
More than one function can be defined with the same SQL name, so long as the arguments they take are
different. In other words, function names can be overloaded. Whether or not you use it, this capability
entails security precautions when calling functions in databases where some users mistrust other users;
see Section 10.3. When a query is executed, the server will determine which function to call from the data
types and the number of the provided arguments. Overloading can also be used to simulate functions
with a variable number of arguments, up to a finite maximum number.

When creating a family of overloaded functions, one should be careful not to create ambiguities. For
instance, given the functions:

CREATE FUNCTION test(int, real) RETURNS ...
CREATE FUNCTION test(smallint, double precision) RETURNS ...

it is not immediately clear which function would be called with some trivial input like test(1, 1.5).
The currently implemented resolution rules are described in Chapter 10, but it is unwise to design a
system that subtly relies on this behavior.

A function that takes a single argument of a composite type should generally not have the same
name as any attribute (field) of that type. Recall that attribute(table) is considered equivalent to
table.attribute. In the case that there is an ambiguity between a function on a composite type and an
attribute of the composite type, the attribute will always be used. It is possible to override that choice by
schema-qualifying the function name (that is, schema.func(table)) but it's better to avoid the problem
by not choosing conflicting names.

Another possible conflict is between variadic and non-variadic functions. For instance, it is possible to
create both foo(numeric) and foo(VARIADIC numeric[]). In this case it is unclear which one should be
matched to a call providing a single numeric argument, such as foo(10.1). The rule is that the function

938

Extending SQL

appearing earlier in the search path is used, or if the two functions are in the same schema, the non-
variadic one is preferred.

When overloading C-language functions, there is an additional constraint: The C name of each function
in the family of overloaded functions must be different from the C names of all other functions, either
internal or dynamically loaded. If this rule is violated, the behavior is not portable. You might get a run-
time linker error, or one of the functions will get called (usually the internal one). The alternative form
of the AS clause for the SQL CREATE FUNCTION command decouples the SQL function name from the
function name in the C source code. For instance:

CREATE FUNCTION test(int) RETURNS int
 AS 'filename', 'test_1arg'
 LANGUAGE C;
CREATE FUNCTION test(int, int) RETURNS int
 AS 'filename', 'test_2arg'
 LANGUAGE C;

The names of the C functions here reflect one of many possible conventions.

35.7. Function Volatility Categories
Every function has a volatility classification, with the possibilities being VOLATILE, STABLE, or IMMUTABLE.
VOLATILE is the default if the CREATE FUNCTION command does not specify a category. The volatility
category is a promise to the optimizer about the behavior of the function:

• A VOLATILE function can do anything, including modifying the database. It can return different
results on successive calls with the same arguments. The optimizer makes no assumptions about
the behavior of such functions. A query using a volatile function will re-evaluate the function at
every row where its value is needed.

• A STABLE function cannot modify the database and is guaranteed to return the same results given
the same arguments for all rows within a single statement. This category allows the optimizer to
optimize multiple calls of the function to a single call. In particular, it is safe to use an expression
containing such a function in an index scan condition. (Since an index scan will evaluate the
comparison value only once, not once at each row, it is not valid to use a VOLATILE function in an
index scan condition.)

• An IMMUTABLE function cannot modify the database and is guaranteed to return the same results
given the same arguments forever. This category allows the optimizer to pre-evaluate the function
when a query calls it with constant arguments. For example, a query like SELECT ... WHERE x =
2 + 2 can be simplified on sight to SELECT ... WHERE x = 4, because the function underlying the
integer addition operator is marked IMMUTABLE.

For best optimization results, you should label your functions with the strictest volatility category that
is valid for them.

Any function with side-effects must be labeled VOLATILE, so that calls to it cannot be optimized away.
Even a function with no side-effects needs to be labeled VOLATILE if its value can change within a single
query; some examples are random(), currval(), timeofday().

Another important example is that the current_timestamp family of functions qualify as STABLE, since
their values do not change within a transaction.

There is relatively little difference between STABLE and IMMUTABLE categories when considering simple
interactive queries that are planned and immediately executed: it doesn't matter a lot whether a function
is executed once during planning or once during query execution startup. But there is a big difference
if the plan is saved and reused later. Labeling a function IMMUTABLE when it really isn't might allow it
to be prematurely folded to a constant during planning, resulting in a stale value being re-used during
subsequent uses of the plan. This is a hazard when using prepared statements or when using function
languages that cache plans (such as PL/pgSQL).

939

Extending SQL

For functions written in SQL or in any of the standard procedural languages, there is a second important
property determined by the volatility category, namely the visibility of any data changes that have been
made by the SQL command that is calling the function. A VOLATILE function will see such changes, a
STABLE or IMMUTABLE function will not. This behavior is implemented using the snapshotting behavior
of MVCC (see Chapter 13): STABLE and IMMUTABLE functions use a snapshot established as of the start
of the calling query, whereas VOLATILE functions obtain a fresh snapshot at the start of each query they
execute.

Note
Functions written in C can manage snapshots however they want, but it's usually a good idea to
make C functions work this way too.

Because of this snapshotting behavior, a function containing only SELECT commands can safely be
marked STABLE, even if it selects from tables that might be undergoing modifications by concurrent
queries. Postgres Pro will execute all commands of a STABLE function using the snapshot established for
the calling query, and so it will see a fixed view of the database throughout that query.

The same snapshotting behavior is used for SELECT commands within IMMUTABLE functions. It is generally
unwise to select from database tables within an IMMUTABLE function at all, since the immutability will be
broken if the table contents ever change. However, Postgres Pro does not enforce that you do not do that.

A common error is to label a function IMMUTABLE when its results depend on a configuration parameter.
For example, a function that manipulates timestamps might well have results that depend on the
TimeZone setting. For safety, such functions should be labeled STABLE instead.

Note
Postgres Pro requires that STABLE and IMMUTABLE functions contain no SQL commands other than
SELECT to prevent data modification. (This is not a completely bulletproof test, since such functions
could still call VOLATILE functions that modify the database. If you do that, you will find that the
STABLE or IMMUTABLE function does not notice the database changes applied by the called function,
since they are hidden from its snapshot.)

35.8. Procedural Language Functions
Postgres Pro allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). Procedural languages aren't built
into the Postgres Pro server; they are offered by loadable modules. See Chapter 39 and following
chapters for more information.

35.9. Internal Functions
Internal functions are functions written in C that have been statically linked into the Postgres Pro server.
The “body” of the function definition specifies the C-language name of the function, which need not be
the same as the name being declared for SQL use. (For reasons of backward compatibility, an empty
body is accepted as meaning that the C-language function name is the same as the SQL name.)

Normally, all internal functions present in the server are declared during the initialization of the database
cluster (see Section 17.2), but a user could use CREATE FUNCTION to create additional alias names for an
internal function. Internal functions are declared in CREATE FUNCTION with language name internal.
For instance, to create an alias for the sqrt function:

CREATE FUNCTION square_root(double precision) RETURNS double precision
 AS 'dsqrt'

940

Extending SQL

 LANGUAGE internal
 STRICT;

(Most internal functions expect to be declared “strict”.)

Note
Not all “predefined” functions are “internal” in the above sense. Some predefined functions are
written in SQL.

35.10. C-Language Functions
User-defined functions can be written in C (or a language that can be made compatible with C, such as
C++). Such functions are compiled into dynamically loadable objects (also called shared libraries) and
are loaded by the server on demand. The dynamic loading feature is what distinguishes “C language”
functions from “internal” functions — the actual coding conventions are essentially the same for both.
(Hence, the standard internal function library is a rich source of coding examples for user-defined C
functions.)

Currently only one calling convention is used for C functions (“version 1”). Support for that calling
convention is indicated by writing a PG_FUNCTION_INFO_V1() macro call for the function, as illustrated
below.

35.10.1. Dynamic Loading
The first time a user-defined function in a particular loadable object file is called in a session, the dynamic
loader loads that object file into memory so that the function can be called. The CREATE FUNCTION for a
user-defined C function must therefore specify two pieces of information for the function: the name of
the loadable object file, and the C name (link symbol) of the specific function to call within that object
file. If the C name is not explicitly specified then it is assumed to be the same as the SQL function name.

The following algorithm is used to locate the shared object file based on the name given in the CREATE
FUNCTION command:

1. If the name is an absolute path, the given file is loaded.

2. If the name starts with the string $libdir, that part is replaced by the Postgres Pro package library
directory name, which is determined at build time.

3. If the name does not contain a directory part, the file is searched for in the path specified by the
configuration variable dynamic_library_path.

4. Otherwise (the file was not found in the path, or it contains a non-absolute directory part), the dynamic
loader will try to take the name as given, which will most likely fail. (It is unreliable to depend on
the current working directory.)

If this sequence does not work, the platform-specific shared library file name extension (often .so) is
appended to the given name and this sequence is tried again. If that fails as well, the load will fail.

It is recommended to locate shared libraries either relative to $libdir or through the dynamic library
path. This simplifies version upgrades if the new installation is at a different location. The actual directory
that $libdir stands for can be found out with the command pg_config --pkglibdir.

The user ID the Postgres Pro server runs as must be able to traverse the path to the file you intend to
load. Making the file or a higher-level directory not readable and/or not executable by the postgres user
is a common mistake.

In any case, the file name that is given in the CREATE FUNCTION command is recorded literally in the
system catalogs, so if the file needs to be loaded again the same procedure is applied.

941

Extending SQL

Note
Postgres Pro will not compile a C function automatically. The object file must be compiled before
it is referenced in a CREATE FUNCTION command. See Section 35.10.5 for additional information.

To ensure that a dynamically loaded object file is not loaded into an incompatible server, Postgres Pro
checks that the file contains a “magic block” with the appropriate contents. This allows the server to
detect obvious incompatibilities, such as code compiled for a different major version of Postgres Pro. To
include a magic block, write this in one (and only one) of the module source files, after having included
the header fmgr.h:

PG_MODULE_MAGIC;

After it is used for the first time, a dynamically loaded object file is retained in memory. Future calls in
the same session to the function(s) in that file will only incur the small overhead of a symbol table lookup.
If you need to force a reload of an object file, for example after recompiling it, begin a fresh session.

Optionally, a dynamically loaded file can contain initialization and finalization functions. If the file
includes a function named _PG_init, that function will be called immediately after loading the file. The
function receives no parameters and should return void. If the file includes a function named _PG_fini,
that function will be called immediately before unloading the file. Likewise, the function receives no
parameters and should return void. Note that _PG_fini will only be called during an unload of the
file, not during process termination. (Presently, unloads are disabled and will never occur, but this may
change in the future.)

35.10.2. Base Types in C-Language Functions
To know how to write C-language functions, you need to know how Postgres Pro internally represents
base data types and how they can be passed to and from functions. Internally, Postgres Pro regards a
base type as a “blob of memory”. The user-defined functions that you define over a type in turn define
the way that Postgres Pro can operate on it. That is, Postgres Pro will only store and retrieve the data
from disk and use your user-defined functions to input, process, and output the data.

Base types can have one of three internal formats:

• pass by value, fixed-length

• pass by reference, fixed-length

• pass by reference, variable-length

By-value types can only be 1, 2, or 4 bytes in length (also 8 bytes, if sizeof(Datum) is 8 on your
machine). You should be careful to define your types such that they will be the same size (in bytes) on
all architectures. For example, the long type is dangerous because it is 4 bytes on some machines and
8 bytes on others, whereas int type is 4 bytes on most Unix machines. A reasonable implementation of
the int4 type on Unix machines might be:

/* 4-byte integer, passed by value */
typedef int int4;

(The actual Postgres Pro C code calls this type int32, because it is a convention in C that intXX means
XX bits. Note therefore also that the C type int8 is 1 byte in size. The SQL type int8 is called int64
in C. See also Table 35.2.)

On the other hand, fixed-length types of any size can be passed by-reference. For example, here is a
sample implementation of a Postgres Pro type:

/* 16-byte structure, passed by reference */
typedef struct

942

Extending SQL

{
 double x, y;
} Point;

Only pointers to such types can be used when passing them in and out of Postgres Pro functions. To
return a value of such a type, allocate the right amount of memory with palloc, fill in the allocated
memory, and return a pointer to it. (Also, if you just want to return the same value as one of your input
arguments that's of the same data type, you can skip the extra palloc and just return the pointer to
the input value.)

Finally, all variable-length types must also be passed by reference. All variable-length types must begin
with an opaque length field of exactly 4 bytes, which will be set by SET_VARSIZE; never set this field
directly! All data to be stored within that type must be located in the memory immediately following
that length field. The length field contains the total length of the structure, that is, it includes the size
of the length field itself.

Another important point is to avoid leaving any uninitialized bits within data type values; for example,
take care to zero out any alignment padding bytes that might be present in structs. Without this, logically-
equivalent constants of your data type might be seen as unequal by the planner, leading to inefficient
(though not incorrect) plans.

Warning
Never modify the contents of a pass-by-reference input value. If you do so you are likely to corrupt
on-disk data, since the pointer you are given might point directly into a disk buffer. The sole
exception to this rule is explained in Section 35.12.

As an example, we can define the type text as follows:

typedef struct {
 int32 length;
 char data[FLEXIBLE_ARRAY_MEMBER];
} text;

The [FLEXIBLE_ARRAY_MEMBER] notation means that the actual length of the data part is not specified
by this declaration.

When manipulating variable-length types, we must be careful to allocate the correct amount of memory
and set the length field correctly. For example, if we wanted to store 40 bytes in a text structure, we
might use a code fragment like this:

#include "postgres.h"
...
char buffer[40]; /* our source data */
...
text *destination = (text *) palloc(VARHDRSZ + 40);
SET_VARSIZE(destination, VARHDRSZ + 40);
memcpy(destination->data, buffer, 40);
...

VARHDRSZ is the same as sizeof(int32), but it's considered good style to use the macro VARHDRSZ to
refer to the size of the overhead for a variable-length type. Also, the length field must be set using the
SET_VARSIZE macro, not by simple assignment.

Table 35.2 shows the C types corresponding to many of the built-in SQL data types of Postgres Pro. The
“Defined In” column gives the header file that needs to be included to get the type definition. (The actual
definition might be in a different file that is included by the listed file. It is recommended that users
stick to the defined interface.) Note that you should always include postgres.h first in any source file

943

Extending SQL

of server code, because it declares a number of things that you will need anyway, and because including
other headers first can cause portability issues.

Table 35.2. Equivalent C Types for Built-in SQL Types

SQL Type C Type Defined In
boolean bool postgres.h (maybe compiler built-in)
box BOX* utils/geo_decls.h

bytea bytea* postgres.h

"char" char (compiler built-in)
character BpChar* postgres.h

cid CommandId postgres.h

date DateADT utils/date.h

float4 (real) float4 postgres.h

float8 (double
precision)

float8 postgres.h

int2 (smallint) int16 postgres.h

int4 (integer) int32 postgres.h

int8 (bigint) int64 postgres.h

interval Interval* datatype/timestamp.h

lseg LSEG* utils/geo_decls.h

name Name postgres.h

numeric Numeric utils/numeric.h

oid Oid postgres.h

oidvector oidvector* postgres.h

path PATH* utils/geo_decls.h

point POINT* utils/geo_decls.h

regproc RegProcedure postgres.h

text text* postgres.h

tid ItemPointer storage/itemptr.h

time TimeADT utils/date.h

time with time zone TimeTzADT utils/date.h

timestamp Timestamp datatype/timestamp.h

timestamp with time
zone

TimestampTz datatype/timestamp.h

varchar VarChar* postgres.h

xid TransactionId postgres.h

Now that we've gone over all of the possible structures for base types, we can show some examples of
real functions.

35.10.3. Version 1 Calling Conventions
The version-1 calling convention relies on macros to suppress most of the complexity of passing
arguments and results. The C declaration of a version-1 function is always:

Datum funcname(PG_FUNCTION_ARGS)

944

Extending SQL

In addition, the macro call:
PG_FUNCTION_INFO_V1(funcname);

must appear in the same source file. (Conventionally, it's written just before the function itself.) This
macro call is not needed for internal-language functions, since Postgres Pro assumes that all internal
functions use the version-1 convention. It is, however, required for dynamically-loaded functions.

In a version-1 function, each actual argument is fetched using a PG_GETARG_xxx() macro that
corresponds to the argument's data type. (In non-strict functions there needs to be a previous
check about argument null-ness using PG_ARGISNULL(); see below.) The result is returned using a
PG_RETURN_xxx() macro for the return type. PG_GETARG_xxx() takes as its argument the number of the
function argument to fetch, where the count starts at 0. PG_RETURN_xxx() takes as its argument the
actual value to return.

Here are some examples using the version-1 calling convention:

#include "postgres.h"
#include <string.h>
#include "fmgr.h"
#include "utils/geo_decls.h"

PG_MODULE_MAGIC;

/* by value */

PG_FUNCTION_INFO_V1(add_one);

Datum
add_one(PG_FUNCTION_ARGS)
{
 int32 arg = PG_GETARG_INT32(0);

 PG_RETURN_INT32(arg + 1);
}

/* by reference, fixed length */

PG_FUNCTION_INFO_V1(add_one_float8);

Datum
add_one_float8(PG_FUNCTION_ARGS)
{
 /* The macros for FLOAT8 hide its pass-by-reference nature. */
 float8 arg = PG_GETARG_FLOAT8(0);

 PG_RETURN_FLOAT8(arg + 1.0);
}

PG_FUNCTION_INFO_V1(makepoint);

Datum
makepoint(PG_FUNCTION_ARGS)
{
 /* Here, the pass-by-reference nature of Point is not hidden. */
 Point *pointx = PG_GETARG_POINT_P(0);
 Point *pointy = PG_GETARG_POINT_P(1);
 Point *new_point = (Point *) palloc(sizeof(Point));

 new_point->x = pointx->x;

945

Extending SQL

 new_point->y = pointy->y;

 PG_RETURN_POINT_P(new_point);
}

/* by reference, variable length */

PG_FUNCTION_INFO_V1(copytext);

Datum
copytext(PG_FUNCTION_ARGS)
{
 text *t = PG_GETARG_TEXT_PP(0);

 /*
 * VARSIZE_ANY_EXHDR is the size of the struct in bytes, minus the
 * VARHDRSZ or VARHDRSZ_SHORT of its header. Construct the copy with a
 * full-length header.
 */
 text *new_t = (text *) palloc(VARSIZE_ANY_EXHDR(t) + VARHDRSZ);
 SET_VARSIZE(new_t, VARSIZE_ANY_EXHDR(t) + VARHDRSZ);

 /*
 * VARDATA is a pointer to the data region of the new struct. The source
 * could be a short datum, so retrieve its data through VARDATA_ANY.
 */
 memcpy((void *) VARDATA(new_t), /* destination */
 (void *) VARDATA_ANY(t), /* source */
 VARSIZE_ANY_EXHDR(t)); /* how many bytes */
 PG_RETURN_TEXT_P(new_t);
}

PG_FUNCTION_INFO_V1(concat_text);

Datum
concat_text(PG_FUNCTION_ARGS)
{
 text *arg1 = PG_GETARG_TEXT_PP(0);
 text *arg2 = PG_GETARG_TEXT_PP(1);
 int32 arg1_size = VARSIZE_ANY_EXHDR(arg1);
 int32 arg2_size = VARSIZE_ANY_EXHDR(arg2);
 int32 new_text_size = arg1_size + arg2_size + VARHDRSZ;
 text *new_text = (text *) palloc(new_text_size);

 SET_VARSIZE(new_text, new_text_size);
 memcpy(VARDATA(new_text), VARDATA_ANY(arg1), arg1_size);
 memcpy(VARDATA(new_text) + arg1_size, VARDATA_ANY(arg2), arg2_size);
 PG_RETURN_TEXT_P(new_text);
}

Supposing that the above code has been prepared in file funcs.c and compiled into a shared object, we
could define the functions to Postgres Pro with commands like this:

CREATE FUNCTION add_one(integer) RETURNS integer
 AS 'DIRECTORY/funcs', 'add_one'
 LANGUAGE C STRICT;

-- note overloading of SQL function name "add_one"

946

Extending SQL

CREATE FUNCTION add_one(double precision) RETURNS double precision
 AS 'DIRECTORY/funcs', 'add_one_float8'
 LANGUAGE C STRICT;

CREATE FUNCTION makepoint(point, point) RETURNS point
 AS 'DIRECTORY/funcs', 'makepoint'
 LANGUAGE C STRICT;

CREATE FUNCTION copytext(text) RETURNS text
 AS 'DIRECTORY/funcs', 'copytext'
 LANGUAGE C STRICT;

CREATE FUNCTION concat_text(text, text) RETURNS text
 AS 'DIRECTORY/funcs', 'concat_text'
 LANGUAGE C STRICT;

Here, DIRECTORY stands for the directory of the shared library file (for instance the Postgres Pro tutorial
directory, which contains the code for the examples used in this section). (Better style would be to use
just 'funcs' in the AS clause, after having added DIRECTORY to the search path. In any case, we can omit
the system-specific extension for a shared library, commonly .so.)

Notice that we have specified the functions as “strict”, meaning that the system should automatically
assume a null result if any input value is null. By doing this, we avoid having to check for null inputs in
the function code. Without this, we'd have to check for null values explicitly, using PG_ARGISNULL().

The macro PG_ARGISNULL(n) allows a function to test whether each input is null. (Of course, doing this
is only necessary in functions not declared “strict”.) As with the PG_GETARG_xxx() macros, the input
arguments are counted beginning at zero. Note that one should refrain from executing PG_GETARG_xxx()
until one has verified that the argument isn't null. To return a null result, execute PG_RETURN_NULL();
this works in both strict and nonstrict functions.

At first glance, the version-1 coding conventions might appear to be just pointless obscurantism,
compared to using plain C calling conventions. They do however allow us to deal with NULLable
arguments/return values, and “toasted” (compressed or out-of-line) values.

Other options provided by the version-1 interface are two variants of the PG_GETARG_xxx() macros. The
first of these, PG_GETARG_xxx_COPY(), guarantees to return a copy of the specified argument that is
safe for writing into. (The normal macros will sometimes return a pointer to a value that is physically
stored in a table, which must not be written to. Using the PG_GETARG_xxx_COPY() macros guarantees
a writable result.) The second variant consists of the PG_GETARG_xxx_SLICE() macros which take three
arguments. The first is the number of the function argument (as above). The second and third are the
offset and length of the segment to be returned. Offsets are counted from zero, and a negative length
requests that the remainder of the value be returned. These macros provide more efficient access to
parts of large values in the case where they have storage type “external”. (The storage type of a column
can be specified using ALTER TABLE tablename ALTER COLUMN colname SET STORAGE storagetype.
storagetype is one of plain, external, extended, or main.)

Finally, the version-1 function call conventions make it possible to return set results (Section 35.10.8)
and implement trigger functions (Chapter 36) and procedural-language call handlers (Chapter 51).

35.10.4. Writing Code
Before we turn to the more advanced topics, we should discuss some coding rules for Postgres Pro C-
language functions. While it might be possible to load functions written in languages other than C into
Postgres Pro, this is usually difficult (when it is possible at all) because other languages, such as C++,
FORTRAN, or Pascal often do not follow the same calling convention as C. That is, other languages do
not pass argument and return values between functions in the same way. For this reason, we will assume
that your C-language functions are actually written in C.

The basic rules for writing and building C functions are as follows:

947

Extending SQL

• Use pg_config --includedir-serverto find out where the Postgres Pro server header files are
installed on your system (or the system that your users will be running on).

• Compiling and linking your code so that it can be dynamically loaded into Postgres Pro always
requires special flags. See Section 35.10.5 for a detailed explanation of how to do it for your
particular operating system.

• Remember to define a “magic block” for your shared library, as described in Section 35.10.1.
• When allocating memory, use the Postgres Pro functions pallocand pfreeinstead of the

corresponding C library functions malloc and free. The memory allocated by palloc will be freed
automatically at the end of each transaction, preventing memory leaks.

• Always zero the bytes of your structures using memset (or allocate them with palloc0 in the first
place). Even if you assign to each field of your structure, there might be alignment padding (holes
in the structure) that contain garbage values. Without this, it's difficult to support hash indexes
or hash joins, as you must pick out only the significant bits of your data structure to compute a
hash. The planner also sometimes relies on comparing constants via bitwise equality, so you can get
undesirable planning results if logically-equivalent values aren't bitwise equal.

• Most of the internal Postgres Pro types are declared in postgres.h, while the function manager
interfaces (PG_FUNCTION_ARGS, etc.) are in fmgr.h, so you will need to include at least these two
files. For portability reasons it's best to include postgres.h first, before any other system or user
header files. Including postgres.h will also include elog.h and palloc.h for you.

• Symbol names defined within object files must not conflict with each other or with symbols defined
in the Postgres Pro server executable. You will have to rename your functions or variables if you get
error messages to this effect.

35.10.5. Compiling and Linking Dynamically-Loaded Functions
Before you are able to use your Postgres Pro extension functions written in C, they must be compiled
and linked in a special way to produce a file that can be dynamically loaded by the server. To be precise,
a shared library needs to be created.

For information beyond what is contained in this section you should read the documentation of your
operating system, in particular the manual pages for the C compiler, cc, and the link editor, ld. In
addition, the Postgres Pro source code contains several working examples in the contrib directory. If
you rely on these examples you will make your modules dependent on the availability of the Postgres
Pro source code, however.

Creating shared libraries is generally analogous to linking executables: first the source files are compiled
into object files, then the object files are linked together. The object files need to be created as position-
independent code (PIC), which conceptually means that they can be placed at an arbitrary location in
memory when they are loaded by the executable. (Object files intended for executables are usually not
compiled that way.) The command to link a shared library contains special flags to distinguish it from
linking an executable (at least in theory — on some systems the practice is much uglier).

In the following examples we assume that your source code is in a file foo.c and we will create a shared
library foo.so. The intermediate object file will be called foo.o unless otherwise noted. A shared library
can contain more than one object file, but we only use one here.

FreeBSD
The compiler flag to create PIC is -fPIC. To create shared libraries the compiler flag is -shared.
gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

This is applicable as of version 3.0 of FreeBSD.

HP-UX
The compiler flag of the system compiler to create PIC is +z. When using GCC it's -fPIC. The linker
flag for shared libraries is -b. So:

948

Extending SQL

cc +z -c foo.c

or:

gcc -fPIC -c foo.c

and then:

ld -b -o foo.sl foo.o

HP-UX uses the extension .sl for shared libraries, unlike most other systems.

Linux

The compiler flag to create PIC is -fPIC. The compiler flag to create a shared library is -shared. A
complete example looks like this:

cc -fPIC -c foo.c
cc -shared -o foo.so foo.o

macOS
Here is an example. It assumes the developer tools are installed.

cc -c foo.c
cc -bundle -flat_namespace -undefined suppress -o foo.so foo.o

NetBSD

The compiler flag to create PIC is -fPIC. For ELF systems, the compiler with the flag -shared is used
to link shared libraries. On the older non-ELF systems, ld -Bshareable is used.

gcc -fPIC -c foo.c
gcc -shared -o foo.so foo.o

OpenBSD

The compiler flag to create PIC is -fPIC. ld -Bshareable is used to link shared libraries.

gcc -fPIC -c foo.c
ld -Bshareable -o foo.so foo.o

Solaris

The compiler flag to create PIC is -KPIC with the Sun compiler and -fPIC with GCC. To link shared
libraries, the compiler option is -G with either compiler or alternatively -shared with GCC.

cc -KPIC -c foo.c
cc -G -o foo.so foo.o

or

gcc -fPIC -c foo.c
gcc -G -o foo.so foo.o

Tip
If this is too complicated for you, you should consider using GNU Libtool, which hides the platform
differences behind a uniform interface.

The resulting shared library file can then be loaded into Postgres Pro. When specifying the file name to
the CREATE FUNCTION command, one must give it the name of the shared library file, not the intermediate
object file. Note that the system's standard shared-library extension (usually .so or .sl) can be omitted
from the CREATE FUNCTION command, and normally should be omitted for best portability.

Refer back to Section 35.10.1 about where the server expects to find the shared library files.

949

https://www.gnu.org/software/libtool/

Extending SQL

35.10.6. Composite-Type Arguments
Composite types do not have a fixed layout like C structures. Instances of a composite type can contain
null fields. In addition, composite types that are part of an inheritance hierarchy can have different
fields than other members of the same inheritance hierarchy. Therefore, Postgres Pro provides a function
interface for accessing fields of composite types from C.

Suppose we want to write a function to answer the query:
SELECT name, c_overpaid(emp, 1500) AS overpaid
 FROM emp
 WHERE name = 'Bill' OR name = 'Sam';

Using the version-1 calling conventions, we can define c_overpaid as:
#include "postgres.h"
#include "executor/executor.h" /* for GetAttributeByName() */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(c_overpaid);

Datum
c_overpaid(PG_FUNCTION_ARGS)
{
 HeapTupleHeader t = PG_GETARG_HEAPTUPLEHEADER(0);
 int32 limit = PG_GETARG_INT32(1);
 bool isnull;
 Datum salary;

 salary = GetAttributeByName(t, "salary", &isnull);
 if (isnull)
 PG_RETURN_BOOL(false);
 /* Alternatively, we might prefer to do PG_RETURN_NULL() for null salary. */

 PG_RETURN_BOOL(DatumGetInt32(salary) > limit);
}

GetAttributeByName is the Postgres Pro system function that returns attributes out of the specified
row. It has three arguments: the argument of type HeapTupleHeader passed into the function, the
name of the desired attribute, and a return parameter that tells whether the attribute is null.
GetAttributeByName returns a Datum value that you can convert to the proper data type by using the
appropriate DatumGetXXX() macro. Note that the return value is meaningless if the null flag is set; always
check the null flag before trying to do anything with the result.

There is also GetAttributeByNum, which selects the target attribute by column number instead of name.

The following command declares the function c_overpaid in SQL:
CREATE FUNCTION c_overpaid(emp, integer) RETURNS boolean
 AS 'DIRECTORY/funcs', 'c_overpaid'
 LANGUAGE C STRICT;

Notice we have used STRICT so that we did not have to check whether the input arguments were NULL.

35.10.7. Returning Rows (Composite Types)
To return a row or composite-type value from a C-language function, you can use a special API that
provides macros and functions to hide most of the complexity of building composite data types. To use
this API, the source file must include:
#include "funcapi.h"

950

Extending SQL

There are two ways you can build a composite data value (henceforth a “tuple”): you can build it from
an array of Datum values, or from an array of C strings that can be passed to the input conversion
functions of the tuple's column data types. In either case, you first need to obtain or construct a
TupleDesc descriptor for the tuple structure. When working with Datums, you pass the TupleDesc to
BlessTupleDesc, and then call heap_form_tuple for each row. When working with C strings, you pass
the TupleDesc to TupleDescGetAttInMetadata, and then call BuildTupleFromCStrings for each row.
In the case of a function returning a set of tuples, the setup steps can all be done once during the first
call of the function.

Several helper functions are available for setting up the needed TupleDesc. The recommended way to
do this in most functions returning composite values is to call:
TypeFuncClass get_call_result_type(FunctionCallInfo fcinfo,
 Oid *resultTypeId,
 TupleDesc *resultTupleDesc)

passing the same fcinfo struct passed to the calling function itself. (This of course requires that you
use the version-1 calling conventions.) resultTypeId can be specified as NULL or as the address of a
local variable to receive the function's result type OID. resultTupleDesc should be the address of a local
TupleDesc variable. Check that the result is TYPEFUNC_COMPOSITE; if so, resultTupleDesc has been filled
with the needed TupleDesc. (If it is not, you can report an error along the lines of “function returning
record called in context that cannot accept type record”.)

Tip
get_call_result_type can resolve the actual type of a polymorphic function result; so it is useful
in functions that return scalar polymorphic results, not only functions that return composites. The
resultTypeId output is primarily useful for functions returning polymorphic scalars.

Note
get_call_result_type has a sibling get_expr_result_type, which can be used to resolve
the expected output type for a function call represented by an expression tree. This can
be used when trying to determine the result type from outside the function itself. There is
also get_func_result_type, which can be used when only the function's OID is available.
However these functions are not able to deal with functions declared to return record, and
get_func_result_type cannot resolve polymorphic types, so you should preferentially use
get_call_result_type.

Older, now-deprecated functions for obtaining TupleDescs are:
TupleDesc RelationNameGetTupleDesc(const char *relname)

to get a TupleDesc for the row type of a named relation, and:
TupleDesc TypeGetTupleDesc(Oid typeoid, List *colaliases)

to get a TupleDesc based on a type OID. This can be used to get a TupleDesc for a base or composite type.
It will not work for a function that returns record, however, and it cannot resolve polymorphic types.

Once you have a TupleDesc, call:
TupleDesc BlessTupleDesc(TupleDesc tupdesc)

if you plan to work with Datums, or:
AttInMetadata *TupleDescGetAttInMetadata(TupleDesc tupdesc)

if you plan to work with C strings. If you are writing a function returning set, you can save the results of
these functions in the FuncCallContext structure — use the tuple_desc or attinmeta field respectively.

When working with Datums, use:

951

Extending SQL

HeapTuple heap_form_tuple(TupleDesc tupdesc, Datum *values, bool *isnull)

to build a HeapTuple given user data in Datum form.

When working with C strings, use:
HeapTuple BuildTupleFromCStrings(AttInMetadata *attinmeta, char **values)

to build a HeapTuple given user data in C string form. values is an array of C strings, one for each
attribute of the return row. Each C string should be in the form expected by the input function of the
attribute data type. In order to return a null value for one of the attributes, the corresponding pointer in
the values array should be set to NULL. This function will need to be called again for each row you return.

Once you have built a tuple to return from your function, it must be converted into a Datum. Use:
HeapTupleGetDatum(HeapTuple tuple)

to convert a HeapTuple into a valid Datum. This Datum can be returned directly if you intend to return
just a single row, or it can be used as the current return value in a set-returning function.

An example appears in the next section.

35.10.8. Returning Sets
C-language functions have two options for returning sets (multiple rows). In one method, called
ValuePerCall mode, a set-returning function is called repeatedly (passing the same arguments each time)
and it returns one new row on each call, until it has no more rows to return and signals that by returning
NULL. The set-returning function (SRF) must therefore save enough state across calls to remember
what it was doing and return the correct next item on each call. In the other method, called Materialize
mode, a SRF fills and returns a tuplestore object containing its entire result; then only one call occurs
for the whole result, and no inter-call state is needed.

When using ValuePerCall mode, it is important to remember that the query is not guaranteed to be
run to completion; that is, due to options such as LIMIT, the executor might stop making calls to the
set-returning function before all rows have been fetched. This means it is not safe to perform cleanup
activities in the last call, because that might not ever happen. It's recommended to use Materialize mode
for functions that need access to external resources, such as file descriptors.

The remainder of this section documents a set of helper macros that are commonly used (though not
required to be used) for SRFs using ValuePerCall mode.

To use the ValuePerCall support macros described here, include funcapi.h. These macros work with a
structure FuncCallContext that contains the state that needs to be saved across calls. Within the calling
SRF, fcinfo->flinfo->fn_extra is used to hold a pointer to FuncCallContext across calls. The macros
automatically fill that field on first use, and expect to find the same pointer there on subsequent uses.
typedef struct FuncCallContext
{
 /*
 * Number of times we've been called before
 *
 * call_cntr is initialized to 0 for you by SRF_FIRSTCALL_INIT(), and
 * incremented for you every time SRF_RETURN_NEXT() is called.
 */
 uint64 call_cntr;

 /*
 * OPTIONAL maximum number of calls
 *
 * max_calls is here for convenience only and setting it is optional.
 * If not set, you must provide alternative means to know when the
 * function is done.
 */
 uint64 max_calls;

952

Extending SQL

 /*
 * OPTIONAL pointer to miscellaneous user-provided context information
 *
 * user_fctx is for use as a pointer to your own data to retain
 * arbitrary context information between calls of your function.
 */
 void *user_fctx;

 /*
 * OPTIONAL pointer to struct containing attribute type input metadata
 *
 * attinmeta is for use when returning tuples (i.e., composite data types)
 * and is not used when returning base data types. It is only needed
 * if you intend to use BuildTupleFromCStrings() to create the return
 * tuple.
 */
 AttInMetadata *attinmeta;

 /*
 * memory context used for structures that must live for multiple calls
 *
 * multi_call_memory_ctx is set by SRF_FIRSTCALL_INIT() for you, and used
 * by SRF_RETURN_DONE() for cleanup. It is the most appropriate memory
 * context for any memory that is to be reused across multiple calls
 * of the SRF.
 */
 MemoryContext multi_call_memory_ctx;

 /*
 * OPTIONAL pointer to struct containing tuple description
 *
 * tuple_desc is for use when returning tuples (i.e., composite data types)
 * and is only needed if you are going to build the tuples with
 * heap_form_tuple() rather than with BuildTupleFromCStrings(). Note that
 * the TupleDesc pointer stored here should usually have been run through
 * BlessTupleDesc() first.
 */
 TupleDesc tuple_desc;

} FuncCallContext;

The macros to be used by an SRF using this infrastructure are:
SRF_IS_FIRSTCALL()

Use this to determine if your function is being called for the first or a subsequent time. On the first
call (only), call:
SRF_FIRSTCALL_INIT()

to initialize the FuncCallContext. On every function call, including the first, call:
SRF_PERCALL_SETUP()

to set up for using the FuncCallContext.

If your function has data to return in the current call, use:
SRF_RETURN_NEXT(funcctx, result)

to return it to the caller. (result must be of type Datum, either a single value or a tuple prepared as
described above.) Finally, when your function is finished returning data, use:

953

Extending SQL

SRF_RETURN_DONE(funcctx)

to clean up and end the SRF.

The memory context that is current when the SRF is called is a transient context that will be cleared
between calls. This means that you do not need to call pfree on everything you allocated using palloc;
it will go away anyway. However, if you want to allocate any data structures to live across calls, you
need to put them somewhere else. The memory context referenced by multi_call_memory_ctx is a
suitable location for any data that needs to survive until the SRF is finished running. In most cases,
this means that you should switch into multi_call_memory_ctx while doing the first-call setup. Use
funcctx->user_fctx to hold a pointer to any such cross-call data structures. (Data you allocate in
multi_call_memory_ctx will go away automatically when the query ends, so it is not necessary to free
that data manually, either.)

Warning
While the actual arguments to the function remain unchanged between calls, if you detoast
the argument values (which is normally done transparently by the PG_GETARG_xxx macro) in
the transient context then the detoasted copies will be freed on each cycle. Accordingly, if
you keep references to such values in your user_fctx, you must either copy them into the
multi_call_memory_ctx after detoasting, or ensure that you detoast the values only in that
context.

A complete pseudo-code example looks like the following:
Datum
my_set_returning_function(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 Datum result;
 further declarations as needed

 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 funcctx = SRF_FIRSTCALL_INIT();
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);
 /* One-time setup code appears here: */
 user code
 if returning composite
 build TupleDesc, and perhaps AttInMetadata
 endif returning composite
 user code
 MemoryContextSwitchTo(oldcontext);
 }

 /* Each-time setup code appears here: */
 user code
 funcctx = SRF_PERCALL_SETUP();
 user code

 /* this is just one way we might test whether we are done: */
 if (funcctx->call_cntr < funcctx->max_calls)
 {
 /* Here we want to return another item: */
 user code
 obtain result Datum

954

Extending SQL

 SRF_RETURN_NEXT(funcctx, result);
 }
 else
 {
 /* Here we are done returning items, so just report that fact. */
 /* (Resist the temptation to put cleanup code here.) */
 SRF_RETURN_DONE(funcctx);
 }
}

A complete example of a simple SRF returning a composite type looks like:
PG_FUNCTION_INFO_V1(retcomposite);

Datum
retcomposite(PG_FUNCTION_ARGS)
{
 FuncCallContext *funcctx;
 int call_cntr;
 int max_calls;
 TupleDesc tupdesc;
 AttInMetadata *attinmeta;

 /* stuff done only on the first call of the function */
 if (SRF_IS_FIRSTCALL())
 {
 MemoryContext oldcontext;

 /* create a function context for cross-call persistence */
 funcctx = SRF_FIRSTCALL_INIT();

 /* switch to memory context appropriate for multiple function calls */
 oldcontext = MemoryContextSwitchTo(funcctx->multi_call_memory_ctx);

 /* total number of tuples to be returned */
 funcctx->max_calls = PG_GETARG_UINT32(0);

 /* Build a tuple descriptor for our result type */
 if (get_call_result_type(fcinfo, NULL, &tupdesc) != TYPEFUNC_COMPOSITE)
 ereport(ERROR,
 (errcode(ERRCODE_FEATURE_NOT_SUPPORTED),
 errmsg("function returning record called in context "
 "that cannot accept type record")));

 /*
 * generate attribute metadata needed later to produce tuples from raw
 * C strings
 */
 attinmeta = TupleDescGetAttInMetadata(tupdesc);
 funcctx->attinmeta = attinmeta;

 MemoryContextSwitchTo(oldcontext);
 }

 /* stuff done on every call of the function */
 funcctx = SRF_PERCALL_SETUP();

 call_cntr = funcctx->call_cntr;
 max_calls = funcctx->max_calls;

955

Extending SQL

 attinmeta = funcctx->attinmeta;

 if (call_cntr < max_calls) /* do when there is more left to send */
 {
 char **values;
 HeapTuple tuple;
 Datum result;

 /*
 * Prepare a values array for building the returned tuple.
 * This should be an array of C strings which will
 * be processed later by the type input functions.
 */
 values = (char **) palloc(3 * sizeof(char *));
 values[0] = (char *) palloc(16 * sizeof(char));
 values[1] = (char *) palloc(16 * sizeof(char));
 values[2] = (char *) palloc(16 * sizeof(char));

 snprintf(values[0], 16, "%d", 1 * PG_GETARG_INT32(1));
 snprintf(values[1], 16, "%d", 2 * PG_GETARG_INT32(1));
 snprintf(values[2], 16, "%d", 3 * PG_GETARG_INT32(1));

 /* build a tuple */
 tuple = BuildTupleFromCStrings(attinmeta, values);

 /* make the tuple into a datum */
 result = HeapTupleGetDatum(tuple);

 /* clean up (this is not really necessary) */
 pfree(values[0]);
 pfree(values[1]);
 pfree(values[2]);
 pfree(values);

 SRF_RETURN_NEXT(funcctx, result);
 }
 else /* do when there is no more left */
 {
 SRF_RETURN_DONE(funcctx);
 }
}

One way to declare this function in SQL is:
CREATE TYPE __retcomposite AS (f1 integer, f2 integer, f3 integer);

CREATE OR REPLACE FUNCTION retcomposite(integer, integer)
 RETURNS SETOF __retcomposite
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

A different way is to use OUT parameters:
CREATE OR REPLACE FUNCTION retcomposite(IN integer, IN integer,
 OUT f1 integer, OUT f2 integer, OUT f3 integer)
 RETURNS SETOF record
 AS 'filename', 'retcomposite'
 LANGUAGE C IMMUTABLE STRICT;

Notice that in this method the output type of the function is formally an anonymous record type.

956

Extending SQL

35.10.9. Polymorphic Arguments and Return Types
C-language functions can be declared to accept and return the polymorphic types described in
Section 35.2.5. When a function's arguments or return types are defined as polymorphic types, the
function author cannot know in advance what data type it will be called with, or need to return. There
are two routines provided in fmgr.h to allow a version-1 C function to discover the actual data types of its
arguments and the type it is expected to return. The routines are called get_fn_expr_rettype(FmgrInfo
*flinfo) and get_fn_expr_argtype(FmgrInfo *flinfo, int argnum). They return the result or
argument type OID, or InvalidOid if the information is not available. The structure flinfo is normally
accessed as fcinfo->flinfo. The parameter argnum is zero based. get_call_result_type can also be
used as an alternative to get_fn_expr_rettype. There is also get_fn_expr_variadic, which can be
used to find out whether variadic arguments have been merged into an array. This is primarily useful for
VARIADIC "any" functions, since such merging will always have occurred for variadic functions taking
ordinary array types.

For example, suppose we want to write a function to accept a single element of any type, and return a
one-dimensional array of that type:
PG_FUNCTION_INFO_V1(make_array);
Datum
make_array(PG_FUNCTION_ARGS)
{
 ArrayType *result;
 Oid element_type = get_fn_expr_argtype(fcinfo->flinfo, 0);
 Datum element;
 bool isnull;
 int16 typlen;
 bool typbyval;
 char typalign;
 int ndims;
 int dims[MAXDIM];
 int lbs[MAXDIM];

 if (!OidIsValid(element_type))
 elog(ERROR, "could not determine data type of input");

 /* get the provided element, being careful in case it's NULL */
 isnull = PG_ARGISNULL(0);
 if (isnull)
 element = (Datum) 0;
 else
 element = PG_GETARG_DATUM(0);

 /* we have one dimension */
 ndims = 1;
 /* and one element */
 dims[0] = 1;
 /* and lower bound is 1 */
 lbs[0] = 1;

 /* get required info about the element type */
 get_typlenbyvalalign(element_type, &typlen, &typbyval, &typalign);

 /* now build the array */
 result = construct_md_array(&element, &isnull, ndims, dims, lbs,
 element_type, typlen, typbyval, typalign);

 PG_RETURN_ARRAYTYPE_P(result);
}

957

Extending SQL

The following command declares the function make_array in SQL:
CREATE FUNCTION make_array(anyelement) RETURNS anyarray
 AS 'DIRECTORY/funcs', 'make_array'
 LANGUAGE C IMMUTABLE;

There is a variant of polymorphism that is only available to C-language functions: they can be declared
to take parameters of type "any". (Note that this type name must be double-quoted, since it's also
a SQL reserved word.) This works like anyelement except that it does not constrain different "any"
arguments to be the same type, nor do they help determine the function's result type. A C-language
function can also declare its final parameter to be VARIADIC "any". This will match one or more actual
arguments of any type (not necessarily the same type). These arguments will not be gathered into an
array as happens with normal variadic functions; they will just be passed to the function separately. The
PG_NARGS() macro and the methods described above must be used to determine the number of actual
arguments and their types when using this feature. Also, users of such a function might wish to use the
VARIADIC keyword in their function call, with the expectation that the function would treat the array
elements as separate arguments. The function itself must implement that behavior if wanted, after using
get_fn_expr_variadic to detect that the actual argument was marked with VARIADIC.

35.10.10. Shared Memory and LWLocks
Add-ins can reserve LWLocks and an allocation of shared memory on server startup. The add-in's shared
library must be preloaded by specifying it in shared_preload_libraries. Shared memory is reserved by
calling:
void RequestAddinShmemSpace(int size)

from your _PG_init function.

LWLocks are reserved by calling:
void RequestNamedLWLockTranche(const char *tranche_name, int num_lwlocks)

from _PG_init. This will ensure that an array of num_lwlocks LWLocks is available under the name
tranche_name. Use GetNamedLWLockTranche to get a pointer to this array.

To avoid possible race-conditions, each backend should use the LWLock AddinShmemInitLock when
connecting to and initializing its allocation of shared memory, as shown here:
static mystruct *ptr = NULL;

if (!ptr)
{
 bool found;

 LWLockAcquire(AddinShmemInitLock, LW_EXCLUSIVE);
 ptr = ShmemInitStruct("my struct name", size, &found);
 if (!found)
 {
 initialize contents of shmem area;
 acquire any requested LWLocks using:
 ptr->locks = GetNamedLWLockTranche("my tranche name");
 }
 LWLockRelease(AddinShmemInitLock);
}

35.10.11. Using C++ for Extensibility
Although the Postgres Pro backend is written in C, it is possible to write extensions in C++ if these
guidelines are followed:
• All functions accessed by the backend must present a C interface to the backend; these C functions

can then call C++ functions. For example, extern C linkage is required for backend-accessed

958

Extending SQL

functions. This is also necessary for any functions that are passed as pointers between the backend
and C++ code.

• Free memory using the appropriate deallocation method. For example, most backend memory is
allocated using palloc(), so use pfree() to free it. Using C++ delete in such cases will fail.

• Prevent exceptions from propagating into the C code (use a catch-all block at the top level of
all extern C functions). This is necessary even if the C++ code does not explicitly throw any
exceptions, because events like out-of-memory can still throw exceptions. Any exceptions must be
caught and appropriate errors passed back to the C interface. If possible, compile C++ with -fno-
exceptions to eliminate exceptions entirely; in such cases, you must check for failures in your C++
code, e.g., check for NULL returned by new().

• If calling backend functions from C++ code, be sure that the C++ call stack contains only plain old
data structures (POD). This is necessary because backend errors generate a distant longjmp() that
does not properly unroll a C++ call stack with non-POD objects.

In summary, it is best to place C++ code behind a wall of extern C functions that interface to the
backend, and avoid exception, memory, and call stack leakage.

35.11. Function Optimization Information
By default, a function is just a “black box” that the database system knows very little about the behavior
of. However, that means that queries using the function may be executed much less efficiently than they
could be. It is possible to supply additional knowledge that helps the planner optimize function calls.

Some basic facts can be supplied by declarative annotations provided in the CREATE FUNCTION
command. Most important of these is the function's volatility category (IMMUTABLE, STABLE, or VOLATILE);
one should always be careful to specify this correctly when defining a function. The parallel safety
property (PARALLEL UNSAFE, PARALLEL RESTRICTED, or PARALLEL SAFE) must also be specified if you
hope to use the function in parallelized queries. It can also be useful to specify the function's estimated
execution cost, and/or the number of rows a set-returning function is estimated to return. However, the
declarative way of specifying those two facts only allows specifying a constant value, which is often
inadequate.

It is also possible to attach a planner support function to a SQL-callable function (called its target
function), and thereby provide knowledge about the target function that is too complex to be represented
declaratively. Planner support functions have to be written in C (although their target functions might
not be), so this is an advanced feature that relatively few people will use.

A planner support function must have the SQL signature
supportfn(internal) returns internal

It is attached to its target function by specifying the SUPPORT clause when creating the target function.

Here we provide an overview of what planner support functions can do. The set of possible requests to
a support function is extensible, so more things might be possible in future versions.

Some function calls can be simplified during planning based on properties specific to the function. For
example, int4mul(n, 1) could be simplified to just n. This type of transformation can be performed
by a planner support function, by having it implement the SupportRequestSimplify request type. The
support function will be called for each instance of its target function found in a query parse tree. If it
finds that the particular call can be simplified into some other form, it can build and return a parse tree
representing that expression. This will automatically work for operators based on the function, too — in
the example just given, n * 1 would also be simplified to n. (But note that this is just an example; this
particular optimization is not actually performed by standard Postgres Pro.) We make no guarantee that
Postgres Pro will never call the target function in cases that the support function could simplify. Ensure
rigorous equivalence between the simplified expression and an actual execution of the target function.

For target functions that return boolean, it is often useful to estimate the fraction of rows that will be
selected by a WHERE clause using that function. This can be done by a support function that implements
the SupportRequestSelectivity request type.

959

Extending SQL

If the target function's run time is highly dependent on its inputs, it may be useful to provide
a non-constant cost estimate for it. This can be done by a support function that implements the
SupportRequestCost request type.

For target functions that return sets, it is often useful to provide a non-constant estimate for the
number of rows that will be returned. This can be done by a support function that implements the
SupportRequestRows request type.

For target functions that return boolean, it may be possible to convert a function call appearing in WHERE
into an indexable operator clause or clauses. The converted clauses might be exactly equivalent to the
function's condition, or they could be somewhat weaker (that is, they might accept some values that the
function condition does not). In the latter case the index condition is said to be lossy; it can still be used
to scan an index, but the function call will have to be executed for each row returned by the index to
see if it really passes the WHERE condition or not. To create such conditions, the support function must
implement the SupportRequestIndexCondition request type.

35.12. User-Defined Aggregates
Aggregate functions in Postgres Pro are defined in terms of state values and state transition functions.
That is, an aggregate operates using a state value that is updated as each successive input row is
processed. To define a new aggregate function, one selects a data type for the state value, an initial
value for the state, and a state transition function. The state transition function takes the previous state
value and the aggregate's input value(s) for the current row, and returns a new state value. A final
function can also be specified, in case the desired result of the aggregate is different from the data
that needs to be kept in the running state value. The final function takes the ending state value and
returns whatever is wanted as the aggregate result. In principle, the transition and final functions are
just ordinary functions that could also be used outside the context of the aggregate. (In practice, it's
often helpful for performance reasons to create specialized transition functions that can only work when
called as part of an aggregate.)

Thus, in addition to the argument and result data types seen by a user of the aggregate, there is an
internal state-value data type that might be different from both the argument and result types.

If we define an aggregate that does not use a final function, we have an aggregate that computes a
running function of the column values from each row. sum is an example of this kind of aggregate. sum
starts at zero and always adds the current row's value to its running total. For example, if we want to
make a sum aggregate to work on a data type for complex numbers, we only need the addition function
for that data type. The aggregate definition would be:
CREATE AGGREGATE sum (complex)
(
 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)'
);

which we might use like this:
SELECT sum(a) FROM test_complex;

 sum

 (34,53.9)

(Notice that we are relying on function overloading: there is more than one aggregate named sum, but
Postgres Pro can figure out which kind of sum applies to a column of type complex.)

The above definition of sum will return zero (the initial state value) if there are no nonnull input values.
Perhaps we want to return null in that case instead — the SQL standard expects sum to behave that way.
We can do this simply by omitting the initcond phrase, so that the initial state value is null. Ordinarily
this would mean that the sfunc would need to check for a null state-value input. But for sum and some
other simple aggregates like max and min, it is sufficient to insert the first nonnull input value into the

960

Extending SQL

state variable and then start applying the transition function at the second nonnull input value. Postgres
Pro will do that automatically if the initial state value is null and the transition function is marked “strict”
(i.e., not to be called for null inputs).

Another bit of default behavior for a “strict” transition function is that the previous state value is retained
unchanged whenever a null input value is encountered. Thus, null values are ignored. If you need some
other behavior for null inputs, do not declare your transition function as strict; instead code it to test
for null inputs and do whatever is needed.

avg (average) is a more complex example of an aggregate. It requires two pieces of running state: the
sum of the inputs and the count of the number of inputs. The final result is obtained by dividing these
quantities. Average is typically implemented by using an array as the state value. For example, the built-
in implementation of avg(float8) looks like:
CREATE AGGREGATE avg (float8)
(
 sfunc = float8_accum,
 stype = float8[],
 finalfunc = float8_avg,
 initcond = '{0,0,0}'
);

Note
float8_accum requires a three-element array, not just two elements, because it accumulates the
sum of squares as well as the sum and count of the inputs. This is so that it can be used for some
other aggregates as well as avg.

Aggregate function calls in SQL allow DISTINCT and ORDER BY options that control which rows are fed to
the aggregate's transition function and in what order. These options are implemented behind the scenes
and are not the concern of the aggregate's support functions.

For further details see the CREATE AGGREGATE command.

35.12.1. Moving-Aggregate Mode
Aggregate functions can optionally support moving-aggregate mode, which allows substantially faster
execution of aggregate functions within windows with moving frame starting points. (See Section 3.5
and Section 4.2.8 for information about use of aggregate functions as window functions.) The basic idea
is that in addition to a normal “forward” transition function, the aggregate provides an inverse transition
function, which allows rows to be removed from the aggregate's running state value when they exit the
window frame. For example a sum aggregate, which uses addition as the forward transition function,
would use subtraction as the inverse transition function. Without an inverse transition function, the
window function mechanism must recalculate the aggregate from scratch each time the frame starting
point moves, resulting in run time proportional to the number of input rows times the average frame
length. With an inverse transition function, the run time is only proportional to the number of input rows.

The inverse transition function is passed the current state value and the aggregate input value(s) for the
earliest row included in the current state. It must reconstruct what the state value would have been if the
given input row had never been aggregated, but only the rows following it. This sometimes requires that
the forward transition function keep more state than is needed for plain aggregation mode. Therefore,
the moving-aggregate mode uses a completely separate implementation from the plain mode: it has its
own state data type, its own forward transition function, and its own final function if needed. These can
be the same as the plain mode's data type and functions, if there is no need for extra state.

As an example, we could extend the sum aggregate given above to support moving-aggregate mode like
this:
CREATE AGGREGATE sum (complex)
(

961

Extending SQL

 sfunc = complex_add,
 stype = complex,
 initcond = '(0,0)',
 msfunc = complex_add,
 minvfunc = complex_sub,
 mstype = complex,
 minitcond = '(0,0)'
);

The parameters whose names begin with m define the moving-aggregate implementation. Except for the
inverse transition function minvfunc, they correspond to the plain-aggregate parameters without m.

The forward transition function for moving-aggregate mode is not allowed to return null as the new
state value. If the inverse transition function returns null, this is taken as an indication that the inverse
function cannot reverse the state calculation for this particular input, and so the aggregate calculation
will be redone from scratch for the current frame starting position. This convention allows moving-
aggregate mode to be used in situations where there are some infrequent cases that are impractical to
reverse out of the running state value. The inverse transition function can “punt” on these cases, and
yet still come out ahead so long as it can work for most cases. As an example, an aggregate working
with floating-point numbers might choose to punt when a NaN (not a number) input has to be removed
from the running state value.

When writing moving-aggregate support functions, it is important to be sure that the inverse transition
function can reconstruct the correct state value exactly. Otherwise there might be user-visible
differences in results depending on whether the moving-aggregate mode is used. An example of an
aggregate for which adding an inverse transition function seems easy at first, yet where this requirement
cannot be met is sum over float4 or float8 inputs. A naive declaration of sum(float8) could be
CREATE AGGREGATE unsafe_sum (float8)
(
 stype = float8,
 sfunc = float8pl,
 mstype = float8,
 msfunc = float8pl,
 minvfunc = float8mi
);

This aggregate, however, can give wildly different results than it would have without the inverse
transition function. For example, consider
SELECT
 unsafe_sum(x) OVER (ORDER BY n ROWS BETWEEN CURRENT ROW AND 1 FOLLOWING)
FROM (VALUES (1, 1.0e20::float8),
 (2, 1.0::float8)) AS v (n,x);

This query returns 0 as its second result, rather than the expected answer of 1. The cause is the limited
precision of floating-point values: adding 1 to 1e20 results in 1e20 again, and so subtracting 1e20 from
that yields 0, not 1. Note that this is a limitation of floating-point arithmetic in general, not a limitation
of Postgres Pro.

35.12.2. Polymorphic and Variadic Aggregates
Aggregate functions can use polymorphic state transition functions or final functions, so that the
same functions can be used to implement multiple aggregates. See Section 35.2.5 for an explanation
of polymorphic functions. Going a step further, the aggregate function itself can be specified with
polymorphic input type(s) and state type, allowing a single aggregate definition to serve for multiple
input data types. Here is an example of a polymorphic aggregate:
CREATE AGGREGATE array_accum (anyelement)
(
 sfunc = array_append,
 stype = anyarray,

962

Extending SQL

 initcond = '{}'
);

Here, the actual state type for any given aggregate call is the array type having the actual input type
as elements. The behavior of the aggregate is to concatenate all the inputs into an array of that type.
(Note: the built-in aggregate array_agg provides similar functionality, with better performance than this
definition would have.)

Here's the output using two different actual data types as arguments:
SELECT attrelid::regclass, array_accum(attname)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------------------
 pg_tablespace | {spcname,spcowner,spcacl,spcoptions}
(1 row)

SELECT attrelid::regclass, array_accum(atttypid::regtype)
 FROM pg_attribute
 WHERE attnum > 0 AND attrelid = 'pg_tablespace'::regclass
 GROUP BY attrelid;

 attrelid | array_accum
---------------+---------------------------
 pg_tablespace | {name,oid,aclitem[],text[]}
(1 row)

Ordinarily, an aggregate function with a polymorphic result type has a polymorphic state type, as in
the above example. This is necessary because otherwise the final function cannot be declared sensibly:
it would need to have a polymorphic result type but no polymorphic argument type, which CREATE
FUNCTION will reject on the grounds that the result type cannot be deduced from a call. But sometimes it
is inconvenient to use a polymorphic state type. The most common case is where the aggregate support
functions are to be written in C and the state type should be declared as internal because there is
no SQL-level equivalent for it. To address this case, it is possible to declare the final function as taking
extra “dummy” arguments that match the input arguments of the aggregate. Such dummy arguments
are always passed as null values since no specific value is available when the final function is called.
Their only use is to allow a polymorphic final function's result type to be connected to the aggregate's
input type(s). For example, the definition of the built-in aggregate array_agg is equivalent to
CREATE FUNCTION array_agg_transfn(internal, anynonarray)
 RETURNS internal ...;
CREATE FUNCTION array_agg_finalfn(internal, anynonarray)
 RETURNS anyarray ...;

CREATE AGGREGATE array_agg (anynonarray)
(
 sfunc = array_agg_transfn,
 stype = internal,
 finalfunc = array_agg_finalfn,
 finalfunc_extra
);

Here, the finalfunc_extra option specifies that the final function receives, in addition to the state value,
extra dummy argument(s) corresponding to the aggregate's input argument(s). The extra anynonarray
argument allows the declaration of array_agg_finalfn to be valid.

An aggregate function can be made to accept a varying number of arguments by declaring its last
argument as a VARIADIC array, in much the same fashion as for regular functions; see Section 35.5.5. The

963

Extending SQL

aggregate's transition function(s) must have the same array type as their last argument. The transition
function(s) typically would also be marked VARIADIC, but this is not strictly required.

Note
Variadic aggregates are easily misused in connection with the ORDER BY option (see Section 4.2.7),
since the parser cannot tell whether the wrong number of actual arguments have been given in
such a combination. Keep in mind that everything to the right of ORDER BY is a sort key, not an
argument to the aggregate. For example, in
SELECT myaggregate(a ORDER BY a, b, c) FROM ...

the parser will see this as a single aggregate function argument and three sort keys. However,
the user might have intended
SELECT myaggregate(a, b, c ORDER BY a) FROM ...

If myaggregate is variadic, both these calls could be perfectly valid.

For the same reason, it's wise to think twice before creating aggregate functions with the same
names and different numbers of regular arguments.

35.12.3. Ordered-Set Aggregates
The aggregates we have been describing so far are “normal” aggregates. Postgres Pro also supports
ordered-set aggregates, which differ from normal aggregates in two key ways. First, in addition to
ordinary aggregated arguments that are evaluated once per input row, an ordered-set aggregate can
have “direct” arguments that are evaluated only once per aggregation operation. Second, the syntax
for the ordinary aggregated arguments specifies a sort ordering for them explicitly. An ordered-set
aggregate is usually used to implement a computation that depends on a specific row ordering, for
instance rank or percentile, so that the sort ordering is a required aspect of any call. For example, the
built-in definition of percentile_disc is equivalent to:
CREATE FUNCTION ordered_set_transition(internal, anyelement)
 RETURNS internal ...;
CREATE FUNCTION percentile_disc_final(internal, float8, anyelement)
 RETURNS anyelement ...;

CREATE AGGREGATE percentile_disc (float8 ORDER BY anyelement)
(
 sfunc = ordered_set_transition,
 stype = internal,
 finalfunc = percentile_disc_final,
 finalfunc_extra
);

This aggregate takes a float8 direct argument (the percentile fraction) and an aggregated input that
can be of any sortable data type. It could be used to obtain a median household income like this:
SELECT percentile_disc(0.5) WITHIN GROUP (ORDER BY income) FROM households;
 percentile_disc

 50489

Here, 0.5 is a direct argument; it would make no sense for the percentile fraction to be a value varying
across rows.

Unlike the case for normal aggregates, the sorting of input rows for an ordered-set aggregate is not
done behind the scenes, but is the responsibility of the aggregate's support functions. The typical
implementation approach is to keep a reference to a “tuplesort” object in the aggregate's state value,
feed the incoming rows into that object, and then complete the sorting and read out the data in the final
function. This design allows the final function to perform special operations such as injecting additional

964

Extending SQL

“hypothetical” rows into the data to be sorted. While normal aggregates can often be implemented with
support functions written in PL/pgSQL or another PL language, ordered-set aggregates generally have
to be written in C, since their state values aren't definable as any SQL data type. (In the above example,
notice that the state value is declared as type internal — this is typical.) Also, because the final function
performs the sort, it is not possible to continue adding input rows by executing the transition function
again later. This means the final function is not READ_ONLY; it must be declared in CREATE AGGREGATE
as READ_WRITE, or as SHAREABLE if it's possible for additional final-function calls to make use of the
already-sorted state.

The state transition function for an ordered-set aggregate receives the current state value plus
the aggregated input values for each row, and returns the updated state value. This is the same
definition as for normal aggregates, but note that the direct arguments (if any) are not provided.
The final function receives the last state value, the values of the direct arguments if any, and (if
finalfunc_extra is specified) null values corresponding to the aggregated input(s). As with normal
aggregates, finalfunc_extra is only really useful if the aggregate is polymorphic; then the extra dummy
argument(s) are needed to connect the final function's result type to the aggregate's input type(s).

Currently, ordered-set aggregates cannot be used as window functions, and therefore there is no need
for them to support moving-aggregate mode.

35.12.4. Partial Aggregation
Optionally, an aggregate function can support partial aggregation. The idea of partial aggregation is
to run the aggregate's state transition function over different subsets of the input data independently,
and then to combine the state values resulting from those subsets to produce the same state value
that would have resulted from scanning all the input in a single operation. This mode can be used for
parallel aggregation by having different worker processes scan different portions of a table. Each worker
produces a partial state value, and at the end those state values are combined to produce a final state
value. (In the future this mode might also be used for purposes such as combining aggregations over
local and remote tables; but that is not implemented yet.)

To support partial aggregation, the aggregate definition must provide a combine function, which takes
two values of the aggregate's state type (representing the results of aggregating over two subsets of the
input rows) and produces a new value of the state type, representing what the state would have been
after aggregating over the combination of those sets of rows. It is unspecified what the relative order
of the input rows from the two sets would have been. This means that it's usually impossible to define a
useful combine function for aggregates that are sensitive to input row order.

As simple examples, MAX and MIN aggregates can be made to support partial aggregation by specifying
the combine function as the same greater-of-two or lesser-of-two comparison function that is used as
their transition function. SUM aggregates just need an addition function as combine function. (Again, this
is the same as their transition function, unless the state value is wider than the input data type.)

The combine function is treated much like a transition function that happens to take a value of the state
type, not of the underlying input type, as its second argument. In particular, the rules for dealing with
null values and strict functions are similar. Also, if the aggregate definition specifies a non-null initcond,
keep in mind that that will be used not only as the initial state for each partial aggregation run, but
also as the initial state for the combine function, which will be called to combine each partial result
into that state.

If the aggregate's state type is declared as internal, it is the combine function's responsibility that its
result is allocated in the correct memory context for aggregate state values. This means in particular
that when the first input is NULL it's invalid to simply return the second input, as that value will be in
the wrong context and will not have sufficient lifespan.

When the aggregate's state type is declared as internal, it is usually also appropriate for the aggregate
definition to provide a serialization function and a deserialization function, which allow such a state
value to be copied from one process to another. Without these functions, parallel aggregation cannot be
performed, and future applications such as local/remote aggregation will probably not work either.

965

Extending SQL

A serialization function must take a single argument of type internal and return a result of type bytea,
which represents the state value packaged up into a flat blob of bytes. Conversely, a deserialization
function reverses that conversion. It must take two arguments of types bytea and internal, and return
a result of type internal. (The second argument is unused and is always zero, but it is required for
type-safety reasons.) The result of the deserialization function should simply be allocated in the current
memory context, as unlike the combine function's result, it is not long-lived.

Worth noting also is that for an aggregate to be executed in parallel, the aggregate itself must be marked
PARALLEL SAFE. The parallel-safety markings on its support functions are not consulted.

35.12.5. Support Functions for Aggregates
A function written in C can detect that it is being called as an aggregate support function by calling
AggCheckCallContext, for example:
if (AggCheckCallContext(fcinfo, NULL))

One reason for checking this is that when it is true, the first input must be a temporary state value
and can therefore safely be modified in-place rather than allocating a new copy. See int8inc() for an
example. (While aggregate transition functions are always allowed to modify the transition value in-
place, aggregate final functions are generally discouraged from doing so; if they do so, the behavior
must be declared when creating the aggregate. See CREATE AGGREGATE for more detail.)

The second argument of AggCheckCallContext can be used to retrieve the memory context in which
aggregate state values are being kept. This is useful for transition functions that wish to use “expanded”
objects (see Section 35.13.1) as their state values. On first call, the transition function should return an
expanded object whose memory context is a child of the aggregate state context, and then keep returning
the same expanded object on subsequent calls. See array_append() for an example. (array_append()
is not the transition function of any built-in aggregate, but it is written to behave efficiently when used
as transition function of a custom aggregate.)

Another support routine available to aggregate functions written in C is AggGetAggref, which returns
the Aggref parse node that defines the aggregate call. This is mainly useful for ordered-set aggregates,
which can inspect the substructure of the Aggref node to find out what sort ordering they are supposed
to implement. Examples can be found in orderedsetaggs.c in the Postgres Pro source code.

35.13. User-Defined Types
As described in Section 35.2, Postgres Pro can be extended to support new data types. This section
describes how to define new base types, which are data types defined below the level of the SQL
language. Creating a new base type requires implementing functions to operate on the type in a low-
level language, usually C.

A user-defined type must always have input and output functions. These functions determine how the
type appears in strings (for input by the user and output to the user) and how the type is organized in
memory. The input function takes a null-terminated character string as its argument and returns the
internal (in memory) representation of the type. The output function takes the internal representation of
the type as argument and returns a null-terminated character string. If we want to do anything more with
the type than merely store it, we must provide additional functions to implement whatever operations
we'd like to have for the type.

Suppose we want to define a type complex that represents complex numbers. A natural way to represent
a complex number in memory would be the following C structure:
typedef struct Complex {
 double x;
 double y;
} Complex;

We will need to make this a pass-by-reference type, since it's too large to fit into a single Datum value.

As the external string representation of the type, we choose a string of the form (x,y).

966

Extending SQL

The input and output functions are usually not hard to write, especially the output function. But when
defining the external string representation of the type, remember that you must eventually write a
complete and robust parser for that representation as your input function. For instance:

PG_FUNCTION_INFO_V1(complex_in);

Datum
complex_in(PG_FUNCTION_ARGS)
{
 char *str = PG_GETARG_CSTRING(0);
 double x,
 y;
 Complex *result;

 if (sscanf(str, " (%lf , %lf)", &x, &y) != 2)
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_TEXT_REPRESENTATION),
 errmsg("invalid input syntax for type %s: \"%s\"",
 "complex", str)));

 result = (Complex *) palloc(sizeof(Complex));
 result->x = x;
 result->y = y;
 PG_RETURN_POINTER(result);
}

The output function can simply be:

PG_FUNCTION_INFO_V1(complex_out);

Datum
complex_out(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 char *result;

 result = psprintf("(%g,%g)", complex->x, complex->y);
 PG_RETURN_CSTRING(result);
}

You should be careful to make the input and output functions inverses of each other. If you do not, you
will have severe problems when you need to dump your data into a file and then read it back in. This is
a particularly common problem when floating-point numbers are involved.

Optionally, a user-defined type can provide binary input and output routines. Binary I/O is normally faster
but less portable than textual I/O. As with textual I/O, it is up to you to define exactly what the external
binary representation is. Most of the built-in data types try to provide a machine-independent binary
representation. For complex, we will piggy-back on the binary I/O converters for type float8:

PG_FUNCTION_INFO_V1(complex_recv);

Datum
complex_recv(PG_FUNCTION_ARGS)
{
 StringInfo buf = (StringInfo) PG_GETARG_POINTER(0);
 Complex *result;

 result = (Complex *) palloc(sizeof(Complex));

967

Extending SQL

 result->x = pq_getmsgfloat8(buf);
 result->y = pq_getmsgfloat8(buf);
 PG_RETURN_POINTER(result);
}

PG_FUNCTION_INFO_V1(complex_send);

Datum
complex_send(PG_FUNCTION_ARGS)
{
 Complex *complex = (Complex *) PG_GETARG_POINTER(0);
 StringInfoData buf;

 pq_begintypsend(&buf);
 pq_sendfloat8(&buf, complex->x);
 pq_sendfloat8(&buf, complex->y);
 PG_RETURN_BYTEA_P(pq_endtypsend(&buf));
}

Once we have written the I/O functions and compiled them into a shared library, we can define the
complex type in SQL. First we declare it as a shell type:
CREATE TYPE complex;

This serves as a placeholder that allows us to reference the type while defining its I/O functions. Now
we can define the I/O functions:
CREATE FUNCTION complex_in(cstring)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_out(complex)
 RETURNS cstring
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_recv(internal)
 RETURNS complex
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

CREATE FUNCTION complex_send(complex)
 RETURNS bytea
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Finally, we can provide the full definition of the data type:
CREATE TYPE complex (
 internallength = 16,
 input = complex_in,
 output = complex_out,
 receive = complex_recv,
 send = complex_send,
 alignment = double
);

When you define a new base type, Postgres Pro automatically provides support for arrays of that type. The
array type typically has the same name as the base type with the underscore character (_) prepended.

968

Extending SQL

Once the data type exists, we can declare additional functions to provide useful operations on the data
type. Operators can then be defined atop the functions, and if needed, operator classes can be created
to support indexing of the data type. These additional layers are discussed in following sections.

If the internal representation of the data type is variable-length, the internal representation must follow
the standard layout for variable-length data: the first four bytes must be a char[4] field which is never
accessed directly (customarily named vl_len_). You must use the SET_VARSIZE() macro to store the
total size of the datum (including the length field itself) in this field and VARSIZE() to retrieve it. (These
macros exist because the length field may be encoded depending on platform.)

For further details see the description of the CREATE TYPE command.

35.13.1. TOAST Considerations
If the values of your data type vary in size (in internal form), it's usually desirable to make the data
type TOAST-able (see Section 65.2). You should do this even if the values are always too small to be
compressed or stored externally, because TOAST can save space on small data too, by reducing header
overhead.

To support TOAST storage, the C functions operating on the data type must always be careful to unpack
any toasted values they are handed by using PG_DETOAST_DATUM. (This detail is customarily hidden by
defining type-specific GETARG_DATATYPE_P macros.) Then, when running the CREATE TYPE command,
specify the internal length as variable and select some appropriate storage option other than plain.

If data alignment is unimportant (either just for a specific function or because the data type specifies byte
alignment anyway) then it's possible to avoid some of the overhead of PG_DETOAST_DATUM. You can use
PG_DETOAST_DATUM_PACKED instead (customarily hidden by defining a GETARG_DATATYPE_PP macro) and
using the macros VARSIZE_ANY_EXHDR and VARDATA_ANY to access a potentially-packed datum. Again,
the data returned by these macros is not aligned even if the data type definition specifies an alignment.
If the alignment is important you must go through the regular PG_DETOAST_DATUM interface.

Note
Older code frequently declares vl_len_ as an int32 field instead of char[4]. This is OK as long
as the struct definition has other fields that have at least int32 alignment. But it is dangerous to
use such a struct definition when working with a potentially unaligned datum; the compiler may
take it as license to assume the datum actually is aligned, leading to core dumps on architectures
that are strict about alignment.

Another feature that's enabled by TOAST support is the possibility of having an expanded in-memory
data representation that is more convenient to work with than the format that is stored on disk. The
regular or “flat” varlena storage format is ultimately just a blob of bytes; it cannot for example contain
pointers, since it may get copied to other locations in memory. For complex data types, the flat format
may be quite expensive to work with, so Postgres Pro provides a way to “expand” the flat format into
a representation that is more suited to computation, and then pass that format in-memory between
functions of the data type.

To use expanded storage, a data type must define an expanded format that follows the rules given in src/
include/utils/expandeddatum.h, and provide functions to “expand” a flat varlena value into expanded
format and “flatten” the expanded format back to the regular varlena representation. Then ensure that
all C functions for the data type can accept either representation, possibly by converting one into the
other immediately upon receipt. This does not require fixing all existing functions for the data type at
once, because the standard PG_DETOAST_DATUM macro is defined to convert expanded inputs into regular
flat format. Therefore, existing functions that work with the flat varlena format will continue to work,
though slightly inefficiently, with expanded inputs; they need not be converted until and unless better
performance is important.

C functions that know how to work with an expanded representation typically fall into two categories:
those that can only handle expanded format, and those that can handle either expanded or flat varlena

969

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/expandeddatum.h;hb=HEAD
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/expandeddatum.h;hb=HEAD

Extending SQL

inputs. The former are easier to write but may be less efficient overall, because converting a flat input
to expanded form for use by a single function may cost more than is saved by operating on the expanded
format. When only expanded format need be handled, conversion of flat inputs to expanded form can
be hidden inside an argument-fetching macro, so that the function appears no more complex than
one working with traditional varlena input. To handle both types of input, write an argument-fetching
function that will detoast external, short-header, and compressed varlena inputs, but not expanded
inputs. Such a function can be defined as returning a pointer to a union of the flat varlena format and
the expanded format. Callers can use the VARATT_IS_EXPANDED_HEADER() macro to determine which
format they received.

The TOAST infrastructure not only allows regular varlena values to be distinguished from expanded
values, but also distinguishes “read-write” and “read-only” pointers to expanded values. C functions that
only need to examine an expanded value, or will only change it in safe and non-semantically-visible ways,
need not care which type of pointer they receive. C functions that produce a modified version of an input
value are allowed to modify an expanded input value in-place if they receive a read-write pointer, but
must not modify the input if they receive a read-only pointer; in that case they have to copy the value
first, producing a new value to modify. A C function that has constructed a new expanded value should
always return a read-write pointer to it. Also, a C function that is modifying a read-write expanded value
in-place should take care to leave the value in a sane state if it fails partway through.

35.14. User-Defined Operators
Every operator is “syntactic sugar” for a call to an underlying function that does the real work; so you
must first create the underlying function before you can create the operator. However, an operator is not
merely syntactic sugar, because it carries additional information that helps the query planner optimize
queries that use the operator. The next section will be devoted to explaining that additional information.

Postgres Pro supports left unary, right unary, and binary operators. Operators can be overloaded; that
is, the same operator name can be used for different operators that have different numbers and types of
operands. When a query is executed, the system determines the operator to call from the number and
types of the provided operands.

Here is an example of creating an operator for adding two complex numbers. We assume we've already
created the definition of type complex (see Section 35.13). First we need a function that does the work,
then we can define the operator:
CREATE FUNCTION complex_add(complex, complex)
 RETURNS complex
 AS 'filename', 'complex_add'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR + (
 leftarg = complex,
 rightarg = complex,
 function = complex_add,
 commutator = +
);

Now we could execute a query like this:
SELECT (a + b) AS c FROM test_complex;

 c

 (5.2,6.05)
 (133.42,144.95)

We've shown how to create a binary operator here. To create unary operators, just omit one of leftarg
(for left unary) or rightarg (for right unary). The function clause and the argument clauses are the
only required items in CREATE OPERATOR. The commutator clause shown in the example is an optional

970

Extending SQL

hint to the query optimizer. Further details about commutator and other optimizer hints appear in the
next section.

35.15. Operator Optimization Information
A Postgres Pro operator definition can include several optional clauses that tell the system useful things
about how the operator behaves. These clauses should be provided whenever appropriate, because they
can make for considerable speedups in execution of queries that use the operator. But if you provide
them, you must be sure that they are right! Incorrect use of an optimization clause can result in slow
queries, subtly wrong output, or other Bad Things. You can always leave out an optimization clause if
you are not sure about it; the only consequence is that queries might run slower than they need to.

Additional optimization clauses might be added in future versions of Postgres Pro. The ones described
here are all the ones that release 13.7.2 understands.

It is also possible to attach a planner support function to the function that underlies an operator,
providing another way of telling the system about the behavior of the operator. See Section 35.11 for
more information.

35.15.1. COMMUTATOR
The COMMUTATOR clause, if provided, names an operator that is the commutator of the operator being
defined. We say that operator A is the commutator of operator B if (x A y) equals (y B x) for all possible
input values x, y. Notice that B is also the commutator of A. For example, operators < and > for a particular
data type are usually each others' commutators, and operator + is usually commutative with itself. But
operator - is usually not commutative with anything.

The left operand type of a commutable operator is the same as the right operand type of its commutator,
and vice versa. So the name of the commutator operator is all that Postgres Pro needs to be given to
look up the commutator, and that's all that needs to be provided in the COMMUTATOR clause.

It's critical to provide commutator information for operators that will be used in indexes and join clauses,
because this allows the query optimizer to “flip around” such a clause to the forms needed for different
plan types. For example, consider a query with a WHERE clause like tab1.x = tab2.y, where tab1.x and
tab2.y are of a user-defined type, and suppose that tab2.y is indexed. The optimizer cannot generate
an index scan unless it can determine how to flip the clause around to tab2.y = tab1.x, because the
index-scan machinery expects to see the indexed column on the left of the operator it is given. Postgres
Pro will not simply assume that this is a valid transformation — the creator of the = operator must specify
that it is valid, by marking the operator with commutator information.

When you are defining a self-commutative operator, you just do it. When you are defining a pair of
commutative operators, things are a little trickier: how can the first one to be defined refer to the other
one, which you haven't defined yet? There are two solutions to this problem:
• One way is to omit the COMMUTATOR clause in the first operator that you define, and then provide

one in the second operator's definition. Since Postgres Pro knows that commutative operators
come in pairs, when it sees the second definition it will automatically go back and fill in the missing
COMMUTATOR clause in the first definition.

• The other, more straightforward way is just to include COMMUTATOR clauses in both definitions. When
Postgres Pro processes the first definition and realizes that COMMUTATOR refers to a nonexistent
operator, the system will make a dummy entry for that operator in the system catalog. This dummy
entry will have valid data only for the operator name, left and right operand types, and result type,
since that's all that Postgres Pro can deduce at this point. The first operator's catalog entry will link
to this dummy entry. Later, when you define the second operator, the system updates the dummy
entry with the additional information from the second definition. If you try to use the dummy
operator before it's been filled in, you'll just get an error message.

35.15.2. NEGATOR
The NEGATOR clause, if provided, names an operator that is the negator of the operator being defined.
We say that operator A is the negator of operator B if both return Boolean results and (x A y) equals

971

Extending SQL

NOT (x B y) for all possible inputs x, y. Notice that B is also the negator of A. For example, < and >= are
a negator pair for most data types. An operator can never validly be its own negator.

Unlike commutators, a pair of unary operators could validly be marked as each other's negators; that
would mean (A x) equals NOT (B x) for all x, or the equivalent for right unary operators.

An operator's negator must have the same left and/or right operand types as the operator to be defined,
so just as with COMMUTATOR, only the operator name need be given in the NEGATOR clause.

Providing a negator is very helpful to the query optimizer since it allows expressions like NOT (x = y)
to be simplified into x <> y. This comes up more often than you might think, because NOT operations
can be inserted as a consequence of other rearrangements.

Pairs of negator operators can be defined using the same methods explained above for commutator pairs.

35.15.3. RESTRICT
The RESTRICT clause, if provided, names a restriction selectivity estimation function for the operator.
(Note that this is a function name, not an operator name.) RESTRICT clauses only make sense for binary
operators that return boolean. The idea behind a restriction selectivity estimator is to guess what
fraction of the rows in a table will satisfy a WHERE-clause condition of the form:

column OP constant

for the current operator and a particular constant value. This assists the optimizer by giving it some
idea of how many rows will be eliminated by WHERE clauses that have this form. (What happens if the
constant is on the left, you might be wondering? Well, that's one of the things that COMMUTATOR is for...)

Writing new restriction selectivity estimation functions is far beyond the scope of this chapter, but
fortunately you can usually just use one of the system's standard estimators for many of your own
operators. These are the standard restriction estimators:

eqsel for =
neqsel for <>
scalarltsel for <
scalarlesel for <=
scalargtsel for >
scalargesel for >=

You can frequently get away with using either eqsel or neqsel for operators that have very high or very
low selectivity, even if they aren't really equality or inequality. For example, the approximate-equality
geometric operators use eqsel on the assumption that they'll usually only match a small fraction of the
entries in a table.

You can use scalarltsel, scalarlesel, scalargtsel and scalargesel for comparisons on data types
that have some sensible means of being converted into numeric scalars for range comparisons.

Another useful built-in selectivity estimation function is matchingsel, which will work for almost any
binary operator, if standard MCV and/or histogram statistics are collected for the input data type(s).
Its default estimate is set to twice the default estimate used in eqsel, making it most suitable for
comparison operators that are somewhat less strict than equality. (Or you could call the underlying
generic_restriction_selectivity function, providing a different default estimate.)

35.15.4. JOIN
The JOIN clause, if provided, names a join selectivity estimation function for the operator. (Note that
this is a function name, not an operator name.) JOIN clauses only make sense for binary operators that
return boolean. The idea behind a join selectivity estimator is to guess what fraction of the rows in a
pair of tables will satisfy a WHERE-clause condition of the form:

table1.column1 OP table2.column2

972

Extending SQL

for the current operator. As with the RESTRICT clause, this helps the optimizer very substantially by
letting it figure out which of several possible join sequences is likely to take the least work.

As before, this chapter will make no attempt to explain how to write a join selectivity estimator function,
but will just suggest that you use one of the standard estimators if one is applicable:
eqjoinsel for =
neqjoinsel for <>
scalarltjoinsel for <
scalarlejoinsel for <=
scalargtjoinsel for >
scalargejoinsel for >=
matchingjoinsel for generic matching operators
areajoinsel for 2D area-based comparisons
positionjoinsel for 2D position-based comparisons
contjoinsel for 2D containment-based comparisons

35.15.5. HASHES
The HASHES clause, if present, tells the system that it is permissible to use the hash join method for a
join based on this operator. HASHES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

The assumption underlying hash join is that the join operator can only return true for pairs of left and
right values that hash to the same hash code. If two values get put in different hash buckets, the join will
never compare them at all, implicitly assuming that the result of the join operator must be false. So it
never makes sense to specify HASHES for operators that do not represent some form of equality. In most
cases it is only practical to support hashing for operators that take the same data type on both sides.
However, sometimes it is possible to design compatible hash functions for two or more data types; that
is, functions that will generate the same hash codes for “equal” values, even though the values have
different representations. For example, it's fairly simple to arrange this property when hashing integers
of different widths.

To be marked HASHES, the join operator must appear in a hash index operator family. This is not enforced
when you create the operator, since of course the referencing operator family couldn't exist yet. But
attempts to use the operator in hash joins will fail at run time if no such operator family exists. The
system needs the operator family to find the data-type-specific hash function(s) for the operator's input
data type(s). Of course, you must also create suitable hash functions before you can create the operator
family.

Care should be exercised when preparing a hash function, because there are machine-dependent ways in
which it might fail to do the right thing. For example, if your data type is a structure in which there might
be uninteresting pad bits, you cannot simply pass the whole structure to hash_any. (Unless you write your
other operators and functions to ensure that the unused bits are always zero, which is the recommended
strategy.) Another example is that on machines that meet the IEEE floating-point standard, negative zero
and positive zero are different values (different bit patterns) but they are defined to compare equal. If
a float value might contain negative zero then extra steps are needed to ensure it generates the same
hash value as positive zero.

A hash-joinable operator must have a commutator (itself if the two operand data types are the same, or
a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a hash operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note
The function underlying a hash-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a hash join.

973

Extending SQL

Note
If a hash-joinable operator has an underlying function that is marked strict, the function must also
be complete: that is, it should return true or false, never null, for any two nonnull inputs. If this rule
is not followed, hash-optimization of IN operations might generate wrong results. (Specifically, IN
might return false where the correct answer according to the standard would be null; or it might
yield an error complaining that it wasn't prepared for a null result.)

35.15.6. MERGES
The MERGES clause, if present, tells the system that it is permissible to use the merge-join method for a
join based on this operator. MERGES only makes sense for a binary operator that returns boolean, and in
practice the operator must represent equality for some data type or pair of data types.

Merge join is based on the idea of sorting the left- and right-hand tables into order and then scanning
them in parallel. So, both data types must be capable of being fully ordered, and the join operator must
be one that can only succeed for pairs of values that fall at the “same place” in the sort order. In practice
this means that the join operator must behave like equality. But it is possible to merge-join two distinct
data types so long as they are logically compatible. For example, the smallint-versus-integer equality
operator is merge-joinable. We only need sorting operators that will bring both data types into a logically
compatible sequence.

To be marked MERGES, the join operator must appear as an equality member of a btree index operator
family. This is not enforced when you create the operator, since of course the referencing operator family
couldn't exist yet. But the operator will not actually be used for merge joins unless a matching operator
family can be found. The MERGES flag thus acts as a hint to the planner that it's worth looking for a
matching operator family.

A merge-joinable operator must have a commutator (itself if the two operand data types are the same,
or a related equality operator if they are different) that appears in the same operator family. If this is not
the case, planner errors might occur when the operator is used. Also, it is a good idea (but not strictly
required) for a btree operator family that supports multiple data types to provide equality operators for
every combination of the data types; this allows better optimization.

Note
The function underlying a merge-joinable operator must be marked immutable or stable. If it is
volatile, the system will never attempt to use the operator for a merge join.

35.16. Interfacing Extensions to Indexes
The procedures described thus far let you define new types, new functions, and new operators. However,
we cannot yet define an index on a column of a new data type. To do this, we must define an operator
class for the new data type. Later in this section, we will illustrate this concept in an example: a new
operator class for the B-tree index method that stores and sorts complex numbers in ascending absolute
value order.

Operator classes can be grouped into operator families to show the relationships between semantically
compatible classes. When only a single data type is involved, an operator class is sufficient, so we'll focus
on that case first and then return to operator families.

35.16.1. Index Methods and Operator Classes
The pg_am table contains one row for every index method (internally known as access method). Support
for regular access to tables is built into Postgres Pro, but all index methods are described in pg_am. It is
possible to add a new index access method by writing the necessary code and then creating an entry in
pg_am — but that is beyond the scope of this chapter (see Chapter 57).

974

Extending SQL

The routines for an index method do not directly know anything about the data types that the index
method will operate on. Instead, an operator classidentifies the set of operations that the index method
needs to use to work with a particular data type. Operator classes are so called because one thing they
specify is the set of WHERE-clause operators that can be used with an index (i.e., can be converted into an
index-scan qualification). An operator class can also specify some support function that are needed by
the internal operations of the index method, but do not directly correspond to any WHERE-clause operator
that can be used with the index.

It is possible to define multiple operator classes for the same data type and index method. By doing this,
multiple sets of indexing semantics can be defined for a single data type. For example, a B-tree index
requires a sort ordering to be defined for each data type it works on. It might be useful for a complex-
number data type to have one B-tree operator class that sorts the data by complex absolute value,
another that sorts by real part, and so on. Typically, one of the operator classes will be deemed most
commonly useful and will be marked as the default operator class for that data type and index method.

The same operator class name can be used for several different index methods (for example, both B-tree
and hash index methods have operator classes named int4_ops), but each such class is an independent
entity and must be defined separately.

35.16.2. Index Method Strategies
The operators associated with an operator class are identified by “strategy numbers”, which serve to
identify the semantics of each operator within the context of its operator class. For example, B-trees
impose a strict ordering on keys, lesser to greater, and so operators like “less than” and “greater than
or equal to” are interesting with respect to a B-tree. Because Postgres Pro allows the user to define
operators, Postgres Pro cannot look at the name of an operator (e.g., < or >=) and tell what kind of
comparison it is. Instead, the index method defines a set of “strategies”, which can be thought of as
generalized operators. Each operator class specifies which actual operator corresponds to each strategy
for a particular data type and interpretation of the index semantics.

The B-tree index method defines five strategies, shown in Table 35.3.

Table 35.3. B-Tree Strategies

Operation Strategy Number
less than 1
less than or equal 2
equal 3
greater than or equal 4
greater than 5

Hash indexes support only equality comparisons, and so they use only one strategy, shown in Table 35.4.

Table 35.4. Hash Strategies

Operation Strategy Number
equal 1

GiST indexes are more flexible: they do not have a fixed set of strategies at all. Instead, the “consistency”
support routine of each particular GiST operator class interprets the strategy numbers however it likes.
As an example, several of the built-in GiST index operator classes index two-dimensional geometric
objects, providing the “R-tree” strategies shown in Table 35.5. Four of these are true two-dimensional
tests (overlaps, same, contains, contained by); four of them consider only the X direction; and the other
four provide the same tests in the Y direction.

Table 35.5. GiST Two-Dimensional “R-tree” Strategies

Operation Strategy Number
strictly left of 1

975

Extending SQL

Operation Strategy Number
does not extend to right of 2
overlaps 3
does not extend to left of 4
strictly right of 5
same 6
contains 7
contained by 8
does not extend above 9
strictly below 10
strictly above 11
does not extend below 12

SP-GiST indexes are similar to GiST indexes in flexibility: they don't have a fixed set of strategies. Instead
the support routines of each operator class interpret the strategy numbers according to the operator
class's definition. As an example, the strategy numbers used by the built-in operator classes for points
are shown in Table 35.6.

Table 35.6. SP-GiST Point Strategies

Operation Strategy Number
strictly left of 1
strictly right of 5
same 6
contained by 8
strictly below 10
strictly above 11

GIN indexes are similar to GiST and SP-GiST indexes, in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to
the operator class's definition. As an example, the strategy numbers used by the built-in operator class
for arrays are shown in Table 35.7.

Table 35.7. GIN Array Strategies

Operation Strategy Number
overlap 1
contains 2
is contained by 3
equal 4

BRIN indexes are similar to GiST, SP-GiST and GIN indexes in that they don't have a fixed set of strategies
either. Instead the support routines of each operator class interpret the strategy numbers according to
the operator class's definition. As an example, the strategy numbers used by the built-in Minmax operator
classes are shown in Table 35.8.

Table 35.8. BRIN Minmax Strategies

Operation Strategy Number
less than 1
less than or equal 2
equal 3

976

Extending SQL

Operation Strategy Number
greater than or equal 4
greater than 5

Notice that all the operators listed above return Boolean values. In practice, all operators defined as
index method search operators must return type boolean, since they must appear at the top level of a
WHERE clause to be used with an index. (Some index access methods also support ordering operators,
which typically don't return Boolean values; that feature is discussed in Section 35.16.7.)

35.16.3. Index Method Support Routines
Strategies aren't usually enough information for the system to figure out how to use an index. In practice,
the index methods require additional support routines in order to work. For example, the B-tree index
method must be able to compare two keys and determine whether one is greater than, equal to, or less
than the other. Similarly, the hash index method must be able to compute hash codes for key values.
These operations do not correspond to operators used in qualifications in SQL commands; they are
administrative routines used by the index methods, internally.

Just as with strategies, the operator class identifies which specific functions should play each of these
roles for a given data type and semantic interpretation. The index method defines the set of functions it
needs, and the operator class identifies the correct functions to use by assigning them to the “support
function numbers” specified by the index method.

Additionally, some opclasses allow users to specify parameters which control their behavior. Each builtin
index access method has an optional options support function, which defines a set of opclass-specific
parameters.

B-trees require a comparison support function, and allow four additional support functions to be supplied
at the operator class author's option, as shown in Table 35.9. The requirements for these support
functions are explained further in Section 59.3.

Table 35.9. B-Tree Support Functions

Function Support Number
Compare two keys and return an integer less than zero, zero, or greater
than zero, indicating whether the first key is less than, equal to, or greater
than the second

1

Return the addresses of C-callable sort support function(s) (optional) 2
Compare a test value to a base value plus/minus an offset, and return true
or false according to the comparison result (optional)

3

Determine if it is safe for indexes that use the operator class to apply the
btree deduplication optimization (optional)

4

Defines a set of options that are specific to this operator class (optional) 5

Hash indexes require one support function, and allow two additional ones to be supplied at the operator
class author's option, as shown in Table 35.10.

Table 35.10. Hash Support Functions

Function Support Number
Compute the 32-bit hash value for a key 1
Compute the 64-bit hash value for a key given a 64-bit salt; if the salt is 0,
 the low 32 bits of the result must match the value that would have been
computed by function 1 (optional)

2

Defines a set of options that are specific to this operator class (optional) 3

GiST indexes have ten support functions, three of which are optional, as shown in Table 35.11. (For more
information see Chapter 60.)

977

Extending SQL

Table 35.11. GiST Support Functions

Function Description Support
Number

consistent determine whether key satisfies the query
qualifier

1

union compute union of a set of keys 2
compress compute a compressed representation of a key or

value to be indexed
3

decompress compute a decompressed representation of a
compressed key

4

penalty compute penalty for inserting new key into
subtree with given subtree's key

5

picksplit determine which entries of a page are to be
moved to the new page and compute the union
keys for resulting pages

6

equal compare two keys and return true if they are
equal

7

distance determine distance from key to query value (
optional)

8

fetch compute original representation of a compressed
key for index-only scans (optional)

9

options Defines a set of options that are specific to this
operator class (optional)

10

SP-GiST indexes have six support functions, one of which is optional, as shown in Table 35.12. (For more
information see Chapter 61.)

Table 35.12. SP-GiST Support Functions

Function Description Support
Number

config provide basic information about the operator class 1
choose determine how to insert a new value into an inner

tuple
2

picksplit determine how to partition a set of values 3
inner_consistent determine which sub-partitions need to be

searched for a query
4

leaf_consistent determine whether key satisfies the query
qualifier

5

options Defines a set of options that are specific to this
operator class (optional)

6

GIN indexes have seven support functions, four of which are optional, as shown in Table 35.13. (For
more information see Chapter 62.)

Table 35.13. GIN Support Functions

Function Description Support
Number

compare compare two keys and return an integer less
than zero, zero, or greater than zero, indicating
whether the first key is less than, equal to, or
greater than the second

1

978

Extending SQL

Function Description Support
Number

extractValue extract keys from a value to be indexed 2
extractQuery extract keys from a query condition 3
consistent determine whether value matches query condition

(Boolean variant) (optional if support function 6 is
present)

4

comparePartial compare partial key from query and key from
index, and return an integer less than zero, zero,
 or greater than zero, indicating whether GIN
should ignore this index entry, treat the entry as a
match, or stop the index scan (optional)

5

triConsistent determine whether value matches query condition
(ternary variant) (optional if support function 4 is
present)

6

options Defines a set of options that are specific to this
operator class (optional)

7

BRIN indexes have five basic support functions, one of which is optional, as shown in Table 35.14. Some
versions of the basic functions require additional support functions to be provided. (For more information
see Section 63.3.)

Table 35.14. BRIN Support Functions

Function Description Support
Number

opcInfo return internal information describing the indexed
columns' summary data

1

add_value add a new value to an existing summary index
tuple

2

consistent determine whether value matches query condition 3
union compute union of two summary tuples 4
options Defines a set of options that are specific to this

operator class (optional)
5

Unlike search operators, support functions return whichever data type the particular index method
expects; for example in the case of the comparison function for B-trees, a signed integer. The number
and types of the arguments to each support function are likewise dependent on the index method. For
B-tree and hash the comparison and hashing support functions take the same input data types as do
the operators included in the operator class, but this is not the case for most GiST, SP-GiST, GIN, and
BRIN support functions.

35.16.4. An Example
Now that we have seen the ideas, here is the promised example of creating a new operator class. The
operator class encapsulates operators that sort complex numbers in absolute value order, so we choose
the name complex_abs_ops. First, we need a set of operators. The procedure for defining operators was
discussed in Section 35.14. For an operator class on B-trees, the operators we require are:

• absolute-value less-than (strategy 1)
• absolute-value less-than-or-equal (strategy 2)
• absolute-value equal (strategy 3)
• absolute-value greater-than-or-equal (strategy 4)
• absolute-value greater-than (strategy 5)

979

Extending SQL

The least error-prone way to define a related set of comparison operators is to write the B-tree
comparison support function first, and then write the other functions as one-line wrappers around the
support function. This reduces the odds of getting inconsistent results for corner cases. Following this
approach, we first write:

#define Mag(c) ((c)->x*(c)->x + (c)->y*(c)->y)

static int
complex_abs_cmp_internal(Complex *a, Complex *b)
{
 double amag = Mag(a),
 bmag = Mag(b);

 if (amag < bmag)
 return -1;
 if (amag > bmag)
 return 1;
 return 0;
}

Now the less-than function looks like:

PG_FUNCTION_INFO_V1(complex_abs_lt);

Datum
complex_abs_lt(PG_FUNCTION_ARGS)
{
 Complex *a = (Complex *) PG_GETARG_POINTER(0);
 Complex *b = (Complex *) PG_GETARG_POINTER(1);

 PG_RETURN_BOOL(complex_abs_cmp_internal(a, b) < 0);
}

The other four functions differ only in how they compare the internal function's result to zero.

Next we declare the functions and the operators based on the functions to SQL:

CREATE FUNCTION complex_abs_lt(complex, complex) RETURNS bool
 AS 'filename', 'complex_abs_lt'
 LANGUAGE C IMMUTABLE STRICT;

CREATE OPERATOR < (
 leftarg = complex, rightarg = complex, procedure = complex_abs_lt,
 commutator = > , negator = >= ,
 restrict = scalarltsel, join = scalarltjoinsel
);

It is important to specify the correct commutator and negator operators, as well as suitable restriction
and join selectivity functions, otherwise the optimizer will be unable to make effective use of the index.

Other things worth noting are happening here:

• There can only be one operator named, say, = and taking type complex for both operands. In this
case we don't have any other operator = for complex, but if we were building a practical data
type we'd probably want = to be the ordinary equality operation for complex numbers (and not
the equality of the absolute values). In that case, we'd need to use some other operator name for
complex_abs_eq.

• Although Postgres Pro can cope with functions having the same SQL name as long as they have
different argument data types, C can only cope with one global function having a given name. So

980

Extending SQL

we shouldn't name the C function something simple like abs_eq. Usually it's a good practice to
include the data type name in the C function name, so as not to conflict with functions for other
data types.

• We could have made the SQL name of the function abs_eq, relying on Postgres Pro to distinguish
it by argument data types from any other SQL function of the same name. To keep the example
simple, we make the function have the same names at the C level and SQL level.

The next step is the registration of the support routine required by B-trees. The example C code that
implements this is in the same file that contains the operator functions. This is how we declare the
function:

CREATE FUNCTION complex_abs_cmp(complex, complex)
 RETURNS integer
 AS 'filename'
 LANGUAGE C IMMUTABLE STRICT;

Now that we have the required operators and support routine, we can finally create the operator class:

CREATE OPERATOR CLASS complex_abs_ops
 DEFAULT FOR TYPE complex USING btree AS
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 complex_abs_cmp(complex, complex);

And we're done! It should now be possible to create and use B-tree indexes on complex columns.

We could have written the operator entries more verbosely, as in:

 OPERATOR 1 < (complex, complex) ,

but there is no need to do so when the operators take the same data type we are defining the operator
class for.

The above example assumes that you want to make this new operator class the default B-tree operator
class for the complex data type. If you don't, just leave out the word DEFAULT.

35.16.5. Operator Classes and Operator Families
So far we have implicitly assumed that an operator class deals with only one data type. While there
certainly can be only one data type in a particular index column, it is often useful to index operations that
compare an indexed column to a value of a different data type. Also, if there is use for a cross-data-type
operator in connection with an operator class, it is often the case that the other data type has a related
operator class of its own. It is helpful to make the connections between related classes explicit, because
this can aid the planner in optimizing SQL queries (particularly for B-tree operator classes, since the
planner contains a great deal of knowledge about how to work with them).

To handle these needs, Postgres Pro uses the concept of an operator family. An operator family contains
one or more operator classes, and can also contain indexable operators and corresponding support
functions that belong to the family as a whole but not to any single class within the family. We say that
such operators and functions are “loose” within the family, as opposed to being bound into a specific
class. Typically each operator class contains single-data-type operators while cross-data-type operators
are loose in the family.

All the operators and functions in an operator family must have compatible semantics, where the
compatibility requirements are set by the index method. You might therefore wonder why bother to
single out particular subsets of the family as operator classes; and indeed for many purposes the class
divisions are irrelevant and the family is the only interesting grouping. The reason for defining operator

981

Extending SQL

classes is that they specify how much of the family is needed to support any particular index. If there
is an index using an operator class, then that operator class cannot be dropped without dropping the
index — but other parts of the operator family, namely other operator classes and loose operators, could
be dropped. Thus, an operator class should be specified to contain the minimum set of operators and
functions that are reasonably needed to work with an index on a specific data type, and then related but
non-essential operators can be added as loose members of the operator family.

As an example, Postgres Pro has a built-in B-tree operator family integer_ops, which includes operator
classes int8_ops, int4_ops, and int2_ops for indexes on bigint (int8), integer (int4), and smallint
(int2) columns respectively. The family also contains cross-data-type comparison operators allowing
any two of these types to be compared, so that an index on one of these types can be searched using a
comparison value of another type. The family could be duplicated by these definitions:
CREATE OPERATOR FAMILY integer_ops USING btree;

CREATE OPERATOR CLASS int8_ops
DEFAULT FOR TYPE int8 USING btree FAMILY integer_ops AS
 -- standard int8 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint8cmp(int8, int8) ,
 FUNCTION 2 btint8sortsupport(internal) ,
 FUNCTION 3 in_range(int8, int8, int8, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

CREATE OPERATOR CLASS int4_ops
DEFAULT FOR TYPE int4 USING btree FAMILY integer_ops AS
 -- standard int4 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint4cmp(int4, int4) ,
 FUNCTION 2 btint4sortsupport(internal) ,
 FUNCTION 3 in_range(int4, int4, int4, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

CREATE OPERATOR CLASS int2_ops
DEFAULT FOR TYPE int2 USING btree FAMILY integer_ops AS
 -- standard int2 comparisons
 OPERATOR 1 < ,
 OPERATOR 2 <= ,
 OPERATOR 3 = ,
 OPERATOR 4 >= ,
 OPERATOR 5 > ,
 FUNCTION 1 btint2cmp(int2, int2) ,
 FUNCTION 2 btint2sortsupport(internal) ,
 FUNCTION 3 in_range(int2, int2, int2, boolean, boolean) ,
 FUNCTION 4 btequalimage(oid) ;

ALTER OPERATOR FAMILY integer_ops USING btree ADD
 -- cross-type comparisons int8 vs int2
 OPERATOR 1 < (int8, int2) ,
 OPERATOR 2 <= (int8, int2) ,
 OPERATOR 3 = (int8, int2) ,

982

Extending SQL

 OPERATOR 4 >= (int8, int2) ,
 OPERATOR 5 > (int8, int2) ,
 FUNCTION 1 btint82cmp(int8, int2) ,

 -- cross-type comparisons int8 vs int4
 OPERATOR 1 < (int8, int4) ,
 OPERATOR 2 <= (int8, int4) ,
 OPERATOR 3 = (int8, int4) ,
 OPERATOR 4 >= (int8, int4) ,
 OPERATOR 5 > (int8, int4) ,
 FUNCTION 1 btint84cmp(int8, int4) ,

 -- cross-type comparisons int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- cross-type comparisons int4 vs int8
 OPERATOR 1 < (int4, int8) ,
 OPERATOR 2 <= (int4, int8) ,
 OPERATOR 3 = (int4, int8) ,
 OPERATOR 4 >= (int4, int8) ,
 OPERATOR 5 > (int4, int8) ,
 FUNCTION 1 btint48cmp(int4, int8) ,

 -- cross-type comparisons int2 vs int8
 OPERATOR 1 < (int2, int8) ,
 OPERATOR 2 <= (int2, int8) ,
 OPERATOR 3 = (int2, int8) ,
 OPERATOR 4 >= (int2, int8) ,
 OPERATOR 5 > (int2, int8) ,
 FUNCTION 1 btint28cmp(int2, int8) ,

 -- cross-type comparisons int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ,

 -- cross-type in_range functions
 FUNCTION 3 in_range(int4, int4, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int4, int4, int2, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int8, boolean, boolean) ,
 FUNCTION 3 in_range(int2, int2, int4, boolean, boolean) ;

Notice that this definition “overloads” the operator strategy and support function numbers: each number
occurs multiple times within the family. This is allowed so long as each instance of a particular number
has distinct input data types. The instances that have both input types equal to an operator class's input
type are the primary operators and support functions for that operator class, and in most cases should
be declared as part of the operator class rather than as loose members of the family.

In a B-tree operator family, all the operators in the family must sort compatibly, as is specified in detail
in Section 59.2. For each operator in the family there must be a support function having the same two

983

Extending SQL

input data types as the operator. It is recommended that a family be complete, i.e., for each combination
of data types, all operators are included. Each operator class should include just the non-cross-type
operators and support function for its data type.

To build a multiple-data-type hash operator family, compatible hash support functions must be created
for each data type supported by the family. Here compatibility means that the functions are guaranteed
to return the same hash code for any two values that are considered equal by the family's equality
operators, even when the values are of different types. This is usually difficult to accomplish when the
types have different physical representations, but it can be done in some cases. Furthermore, casting a
value from one data type represented in the operator family to another data type also represented in the
operator family via an implicit or binary coercion cast must not change the computed hash value. Notice
that there is only one support function per data type, not one per equality operator. It is recommended
that a family be complete, i.e., provide an equality operator for each combination of data types. Each
operator class should include just the non-cross-type equality operator and the support function for its
data type.

GiST, SP-GiST, and GIN indexes do not have any explicit notion of cross-data-type operations. The set of
operators supported is just whatever the primary support functions for a given operator class can handle.

In BRIN, the requirements depends on the framework that provides the operator classes. For operator
classes based on minmax, the behavior required is the same as for B-tree operator families: all the
operators in the family must sort compatibly, and casts must not change the associated sort ordering.

Note
Prior to PostgreSQL 8.3, there was no concept of operator families, and so any cross-data-type
operators intended to be used with an index had to be bound directly into the index's operator
class. While this approach still works, it is deprecated because it makes an index's dependencies
too broad, and because the planner can handle cross-data-type comparisons more effectively when
both data types have operators in the same operator family.

35.16.6. System Dependencies on Operator Classes
Postgres Pro uses operator classes to infer the properties of operators in more ways than just whether
they can be used with indexes. Therefore, you might want to create operator classes even if you have
no intention of indexing any columns of your data type.

In particular, there are SQL features such as ORDER BY and DISTINCT that require comparison and sorting
of values. To implement these features on a user-defined data type, Postgres Pro looks for the default B-
tree operator class for the data type. The “equals” member of this operator class defines the system's
notion of equality of values for GROUP BY and DISTINCT, and the sort ordering imposed by the operator
class defines the default ORDER BY ordering.

If there is no default B-tree operator class for a data type, the system will look for a default hash operator
class. But since that kind of operator class only provides equality, it is only able to support grouping
not sorting.

When there is no default operator class for a data type, you will get errors like “could not identify an
ordering operator” if you try to use these SQL features with the data type.

Note
In PostgreSQL versions before 7.4, sorting and grouping operations would implicitly use operators
named =, <, and >. The new behavior of relying on default operator classes avoids having to make
any assumption about the behavior of operators with particular names.

984

Extending SQL

Sorting by a non-default B-tree operator class is possible by specifying the class's less-than operator in
a USING option, for example

SELECT * FROM mytable ORDER BY somecol USING ~<~;

Alternatively, specifying the class's greater-than operator in USING selects a descending-order sort.

Comparison of arrays of a user-defined type also relies on the semantics defined by the type's default
B-tree operator class. If there is no default B-tree operator class, but there is a default hash operator
class, then array equality is supported, but not ordering comparisons.

Another SQL feature that requires even more data-type-specific knowledge is the RANGE offset
PRECEDING/FOLLOWING framing option for window functions (see Section 4.2.8). For a query such as

SELECT sum(x) OVER (ORDER BY x RANGE BETWEEN 5 PRECEDING AND 10 FOLLOWING)
 FROM mytable;

it is not sufficient to know how to order by x; the database must also understand how to “subtract
5” or “add 10” to the current row's value of x to identify the bounds of the current window frame.
Comparing the resulting bounds to other rows' values of x is possible using the comparison operators
provided by the B-tree operator class that defines the ORDER BY ordering — but addition and subtraction
operators are not part of the operator class, so which ones should be used? Hard-wiring that choice would
be undesirable, because different sort orders (different B-tree operator classes) might need different
behavior. Therefore, a B-tree operator class can specify an in_range support function that encapsulates
the addition and subtraction behaviors that make sense for its sort order. It can even provide more than
one in_range support function, in case there is more than one data type that makes sense to use as the
offset in RANGE clauses. If the B-tree operator class associated with the window's ORDER BY clause does
not have a matching in_range support function, the RANGE offset PRECEDING/FOLLOWING option is not
supported.

Another important point is that an equality operator that appears in a hash operator family is a candidate
for hash joins, hash aggregation, and related optimizations. The hash operator family is essential here
since it identifies the hash function(s) to use.

35.16.7. Ordering Operators
Some index access methods (currently, only GiST and SP-GiST) support the concept of ordering
operators. What we have been discussing so far are search operators. A search operator is one for which
the index can be searched to find all rows satisfying WHERE indexed_column operator constant. Note
that nothing is promised about the order in which the matching rows will be returned. In contrast,
an ordering operator does not restrict the set of rows that can be returned, but instead determines
their order. An ordering operator is one for which the index can be scanned to return rows in the
order represented by ORDER BY indexed_column operator constant. The reason for defining ordering
operators that way is that it supports nearest-neighbor searches, if the operator is one that measures
distance. For example, a query like

SELECT * FROM places ORDER BY location <-> point '(101,456)' LIMIT 10;

finds the ten places closest to a given target point. A GiST index on the location column can do this
efficiently because <-> is an ordering operator.

While search operators have to return Boolean results, ordering operators usually return some other
type, such as float or numeric for distances. This type is normally not the same as the data type being
indexed. To avoid hard-wiring assumptions about the behavior of different data types, the definition of
an ordering operator is required to name a B-tree operator family that specifies the sort ordering of the
result data type. As was stated in the previous section, B-tree operator families define Postgres Pro's
notion of ordering, so this is a natural representation. Since the point <-> operator returns float8, it
could be specified in an operator class creation command like this:

OPERATOR 15 <-> (point, point) FOR ORDER BY float_ops

985

Extending SQL

where float_ops is the built-in operator family that includes operations on float8. This declaration
states that the index is able to return rows in order of increasing values of the <-> operator.

35.16.8. Special Features of Operator Classes
There are two special features of operator classes that we have not discussed yet, mainly because they
are not useful with the most commonly used index methods.

Normally, declaring an operator as a member of an operator class (or family) means that the index
method can retrieve exactly the set of rows that satisfy a WHERE condition using the operator. For example:

SELECT * FROM table WHERE integer_column < 4;

can be satisfied exactly by a B-tree index on the integer column. But there are cases where an index
is useful as an inexact guide to the matching rows. For example, if a GiST index stores only bounding
boxes for geometric objects, then it cannot exactly satisfy a WHERE condition that tests overlap between
nonrectangular objects such as polygons. Yet we could use the index to find objects whose bounding box
overlaps the bounding box of the target object, and then do the exact overlap test only on the objects
found by the index. If this scenario applies, the index is said to be “lossy” for the operator. Lossy index
searches are implemented by having the index method return a recheck flag when a row might or might
not really satisfy the query condition. The core system will then test the original query condition on the
retrieved row to see whether it should be returned as a valid match. This approach works if the index is
guaranteed to return all the required rows, plus perhaps some additional rows, which can be eliminated
by performing the original operator invocation. The index methods that support lossy searches (currently,
GiST, SP-GiST and GIN) allow the support functions of individual operator classes to set the recheck
flag, and so this is essentially an operator-class feature.

Consider again the situation where we are storing in the index only the bounding box of a complex object
such as a polygon. In this case there's not much value in storing the whole polygon in the index entry
— we might as well store just a simpler object of type box. This situation is expressed by the STORAGE
option in CREATE OPERATOR CLASS: we'd write something like:

CREATE OPERATOR CLASS polygon_ops
 DEFAULT FOR TYPE polygon USING gist AS
 ...
 STORAGE box;

At present, only the GiST, GIN and BRIN index methods support a STORAGE type that's different from
the column data type. The GiST compress and decompress support routines must deal with data-type
conversion when STORAGE is used. In GIN, the STORAGE type identifies the type of the “key” values, which
normally is different from the type of the indexed column — for example, an operator class for integer-
array columns might have keys that are just integers. The GIN extractValue and extractQuery support
routines are responsible for extracting keys from indexed values. BRIN is similar to GIN: the STORAGE
type identifies the type of the stored summary values, and operator classes' support procedures are
responsible for interpreting the summary values correctly.

35.17. Packaging Related Objects into an Extension
A useful extension to Postgres Pro typically includes multiple SQL objects; for example, a new data type
will require new functions, new operators, and probably new index operator classes. It is helpful to
collect all these objects into a single package to simplify database management. Postgres Pro calls such
a package an extension. To define an extension, you need at least a script file that contains the SQL
commands to create the extension's objects, and a control file that specifies a few basic properties of
the extension itself. If the extension includes C code, there will typically also be a shared library file into
which the C code has been built. Once you have these files, a simple CREATE EXTENSION command
loads the objects into your database.

The main advantage of using an extension, rather than just running the SQL script to load a bunch
of “loose” objects into your database, is that Postgres Pro will then understand that the objects of the
extension go together. You can drop all the objects with a single DROP EXTENSION command (no need

986

Extending SQL

to maintain a separate “uninstall” script). Even more useful, pg_dump knows that it should not dump
the individual member objects of the extension — it will just include a CREATE EXTENSION command in
dumps, instead. This vastly simplifies migration to a new version of the extension that might contain
more or different objects than the old version. Note however that you must have the extension's control,
script, and other files available when loading such a dump into a new database.

Postgres Pro will not let you drop an individual object contained in an extension, except by dropping the
whole extension. Also, while you can change the definition of an extension member object (for example,
via CREATE OR REPLACE FUNCTION for a function), bear in mind that the modified definition will not be
dumped by pg_dump. Such a change is usually only sensible if you concurrently make the same change
in the extension's script file. (But there are special provisions for tables containing configuration data;
see Section 35.17.3.) In production situations, it's generally better to create an extension update script
to perform changes to extension member objects.

The extension script may set privileges on objects that are part of the extension, using GRANT and REVOKE
statements. The final set of privileges for each object (if any are set) will be stored in the pg_init_privs
system catalog. When pg_dump is used, the CREATE EXTENSION command will be included in the dump,
followed by the set of GRANT and REVOKE statements necessary to set the privileges on the objects to
what they were at the time the dump was taken.

Postgres Pro does not currently support extension scripts issuing CREATE POLICY or SECURITY LABEL
statements. These are expected to be set after the extension has been created. All RLS policies and
security labels on extension objects will be included in dumps created by pg_dump.

The extension mechanism also has provisions for packaging modification scripts that adjust the
definitions of the SQL objects contained in an extension. For example, if version 1.1 of an extension
adds one function and changes the body of another function compared to 1.0, the extension author can
provide an update script that makes just those two changes. The ALTER EXTENSION UPDATE command
can then be used to apply these changes and track which version of the extension is actually installed
in a given database.

The kinds of SQL objects that can be members of an extension are shown in the description of ALTER
EXTENSION. Notably, objects that are database-cluster-wide, such as databases, roles, and tablespaces,
cannot be extension members since an extension is only known within one database. (Although an
extension script is not prohibited from creating such objects, if it does so they will not be tracked as part
of the extension.) Also notice that while a table can be a member of an extension, its subsidiary objects
such as indexes are not directly considered members of the extension. Another important point is that
schemas can belong to extensions, but not vice versa: an extension as such has an unqualified name and
does not exist “within” any schema. The extension's member objects, however, will belong to schemas
whenever appropriate for their object types. It may or may not be appropriate for an extension to own
the schema(s) its member objects are within.

If an extension's script creates any temporary objects (such as temp tables), those objects are treated as
extension members for the remainder of the current session, but are automatically dropped at session
end, as any temporary object would be. This is an exception to the rule that extension member objects
cannot be dropped without dropping the whole extension.

35.17.1. Extension Files
The CREATE EXTENSION command relies on a control file for each extension, which must be named
the same as the extension with a suffix of .control, and must be placed in the installation's SHAREDIR/
extension directory. There must also be at least one SQL script file, which follows the naming pattern
extension--version.sql (for example, foo--1.0.sql for version 1.0 of extension foo). By default, the
script file(s) are also placed in the SHAREDIR/extension directory; but the control file can specify a
different directory for the script file(s).

The file format for an extension control file is the same as for the postgresql.conf file, namely a list
of parameter_name = value assignments, one per line. Blank lines and comments introduced by # are
allowed. Be sure to quote any value that is not a single word or number.

987

Extending SQL

A control file can set the following parameters:

directory (string)

The directory containing the extension's SQL script file(s). Unless an absolute path is given, the name
is relative to the installation's SHAREDIR directory. The default behavior is equivalent to specifying
directory = 'extension'.

default_version (string)

The default version of the extension (the one that will be installed if no version is specified in CREATE
EXTENSION). Although this can be omitted, that will result in CREATE EXTENSION failing if no VERSION
option appears, so you generally don't want to do that.

comment (string)

A comment (any string) about the extension. The comment is applied when initially creating an
extension, but not during extension updates (since that might override user-added comments).
Alternatively, the extension's comment can be set by writing a COMMENT command in the script file.

encoding (string)

The character set encoding used by the script file(s). This should be specified if the script files contain
any non-ASCII characters. Otherwise the files will be assumed to be in the database encoding.

module_pathname (string)

The value of this parameter will be substituted for each occurrence of MODULE_PATHNAME in the script
file(s). If it is not set, no substitution is made. Typically, this is set to $libdir/shared_library_name
and then MODULE_PATHNAME is used in CREATE FUNCTION commands for C-language functions, so that
the script files do not need to hard-wire the name of the shared library.

requires (string)

A list of names of extensions that this extension depends on, for example requires = 'foo, bar'.
Those extensions must be installed before this one can be installed.

superuser (boolean)

If this parameter is true (which is the default), only superusers can create the extension or update
it to a new version (but see also trusted, below). If it is set to false, just the privileges required
to execute the commands in the installation or update script are required. This should normally be
set to true if any of the script commands require superuser privileges. (Such commands would fail
anyway, but it's more user-friendly to give the error up front.)

trusted (boolean)

This parameter, if set to true (which is not the default), allows some non-superusers to install an
extension that has superuser set to true. Specifically, installation will be permitted for anyone who
has CREATE privilege on the current database. When the user executing CREATE EXTENSION is not
a superuser but is allowed to install by virtue of this parameter, then the installation or update
script is run as the bootstrap superuser, not as the calling user. This parameter is irrelevant if
superuser is false. Generally, this should not be set true for extensions that could allow access to
otherwise-superuser-only abilities, such as file system access. Also, marking an extension trusted
requires significant extra effort to write the extension's installation and update script(s) securely;
see Section 35.17.6.

relocatable (boolean)

An extension is relocatable if it is possible to move its contained objects into a different schema
after initial creation of the extension. The default is false, i.e., the extension is not relocatable. See
Section 35.17.2 for more information.

988

Extending SQL

schema (string)
This parameter can only be set for non-relocatable extensions. It forces the extension to be loaded into
exactly the named schema and not any other. The schema parameter is consulted only when initially
creating an extension, not during extension updates. See Section 35.17.2 for more information.

In addition to the primary control file extension.control, an extension can have secondary control files
named in the style extension--version.control. If supplied, these must be located in the script file
directory. Secondary control files follow the same format as the primary control file. Any parameters set
in a secondary control file override the primary control file when installing or updating to that version of
the extension. However, the parameters directory and default_version cannot be set in a secondary
control file.

An extension's SQL script files can contain any SQL commands, except for transaction control commands
(BEGIN, COMMIT, etc) and commands that cannot be executed inside a transaction block (such as VACUUM).
This is because the script files are implicitly executed within a transaction block.

An extension's SQL script files can also contain lines beginning with \echo, which will be ignored
(treated as comments) by the extension mechanism. This provision is commonly used to throw an error
if the script file is fed to psql rather than being loaded via CREATE EXTENSION (see example script in
Section 35.17.7). Without that, users might accidentally load the extension's contents as “loose” objects
rather than as an extension, a state of affairs that's a bit tedious to recover from.

If the extension script contains the string @extowner@, that string is replaced with the (suitably quoted)
name of the user calling CREATE EXTENSION or ALTER EXTENSION. Typically this feature is used by
extensions that are marked trusted to assign ownership of selected objects to the calling user rather
than the bootstrap superuser. (One should be careful about doing so, however. For example, assigning
ownership of a C-language function to a non-superuser would create a privilege escalation path for that
user.)

While the script files can contain any characters allowed by the specified encoding, control files should
contain only plain ASCII, because there is no way for Postgres Pro to know what encoding a control file
is in. In practice this is only an issue if you want to use non-ASCII characters in the extension's comment.
Recommended practice in that case is to not use the control file comment parameter, but instead use
COMMENT ON EXTENSION within a script file to set the comment.

35.17.2. Extension Relocatability
Users often wish to load the objects contained in an extension into a different schema than the extension's
author had in mind. There are three supported levels of relocatability:

• A fully relocatable extension can be moved into another schema at any time, even after it's been
loaded into a database. This is done with the ALTER EXTENSION SET SCHEMA command, which
automatically renames all the member objects into the new schema. Normally, this is only possible
if the extension contains no internal assumptions about what schema any of its objects are in.
Also, the extension's objects must all be in one schema to begin with (ignoring objects that do not
belong to any schema, such as procedural languages). Mark a fully relocatable extension by setting
relocatable = true in its control file.

• An extension might be relocatable during installation but not afterwards. This is typically the case
if the extension's script file needs to reference the target schema explicitly, for example in setting
search_path properties for SQL functions. For such an extension, set relocatable = false in its
control file, and use @extschema@ to refer to the target schema in the script file. All occurrences of
this string will be replaced by the actual target schema's name before the script is executed. The
user can set the target schema using the SCHEMA option of CREATE EXTENSION.

• If the extension does not support relocation at all, set relocatable = false in its control file, and
also set schema to the name of the intended target schema. This will prevent use of the SCHEMA
option of CREATE EXTENSION, unless it specifies the same schema named in the control file. This
choice is typically necessary if the extension contains internal assumptions about schema names
that can't be replaced by uses of @extschema@. The @extschema@ substitution mechanism is

989

Extending SQL

available in this case too, although it is of limited use since the schema name is determined by the
control file.

In all cases, the script file will be executed with search_path initially set to point to the target schema;
that is, CREATE EXTENSION does the equivalent of this:
SET LOCAL search_path TO @extschema@, pg_temp;

This allows the objects created by the script file to go into the target schema. The script file can change
search_path if it wishes, but that is generally undesirable. search_path is restored to its previous setting
upon completion of CREATE EXTENSION.

The target schema is determined by the schema parameter in the control file if that is given, otherwise
by the SCHEMA option of CREATE EXTENSION if that is given, otherwise the current default object creation
schema (the first one in the caller's search_path). When the control file schema parameter is used, the
target schema will be created if it doesn't already exist, but in the other two cases it must already exist.

If any prerequisite extensions are listed in requires in the control file, their target schemas are added to
the initial setting of search_path, following the new extension's target schema. This allows their objects
to be visible to the new extension's script file.

For security, pg_temp is automatically appended to the end of search_path in all cases.

Although a non-relocatable extension can contain objects spread across multiple schemas, it is usually
desirable to place all the objects meant for external use into a single schema, which is considered
the extension's target schema. Such an arrangement works conveniently with the default setting of
search_path during creation of dependent extensions.

35.17.3. Extension Configuration Tables
Some extensions include configuration tables, which contain data that might be added or changed by
the user after installation of the extension. Ordinarily, if a table is part of an extension, neither the
table's definition nor its content will be dumped by pg_dump. But that behavior is undesirable for a
configuration table; any data changes made by the user need to be included in dumps, or the extension
will behave differently after a dump and reload.

To solve this problem, an extension's script file can mark a table or a sequence it has created as a
configuration relation, which will cause pg_dump to include the table's or the sequence's contents (not
its definition) in dumps. To do that, call the function pg_extension_config_dump(regclass, text) after
creating the table or the sequence, for example
CREATE TABLE my_config (key text, value text);
CREATE SEQUENCE my_config_seq;

SELECT pg_catalog.pg_extension_config_dump('my_config', '');
SELECT pg_catalog.pg_extension_config_dump('my_config_seq', '');

Any number of tables or sequences can be marked this way. Sequences associated with serial or
bigserial columns can be marked as well.

When the second argument of pg_extension_config_dump is an empty string, the entire contents of the
table are dumped by pg_dump. This is usually only correct if the table is initially empty as created by
the extension script. If there is a mixture of initial data and user-provided data in the table, the second
argument of pg_extension_config_dump provides a WHERE condition that selects the data to be dumped.
For example, you might do
CREATE TABLE my_config (key text, value text, standard_entry boolean);

SELECT pg_catalog.pg_extension_config_dump('my_config', 'WHERE NOT standard_entry');

and then make sure that standard_entry is true only in the rows created by the extension's script.

For sequences, the second argument of pg_extension_config_dump has no effect.

990

Extending SQL

More complicated situations, such as initially-provided rows that might be modified by users, can
be handled by creating triggers on the configuration table to ensure that modified rows are marked
correctly.

You can alter the filter condition associated with a configuration table by calling
pg_extension_config_dump again. (This would typically be useful in an extension update script.) The
only way to mark a table as no longer a configuration table is to dissociate it from the extension with
ALTER EXTENSION ... DROP TABLE.

Note that foreign key relationships between these tables will dictate the order in which the tables are
dumped out by pg_dump. Specifically, pg_dump will attempt to dump the referenced-by table before the
referencing table. As the foreign key relationships are set up at CREATE EXTENSION time (prior to
data being loaded into the tables) circular dependencies are not supported. When circular dependencies
exist, the data will still be dumped out but the dump will not be able to be restored directly and user
intervention will be required.

Sequences associated with serial or bigserial columns need to be directly marked to dump their state.
Marking their parent relation is not enough for this purpose.

35.17.4. Extension Updates
One advantage of the extension mechanism is that it provides convenient ways to manage updates to the
SQL commands that define an extension's objects. This is done by associating a version name or number
with each released version of the extension's installation script. In addition, if you want users to be able to
update their databases dynamically from one version to the next, you should provide update scripts that
make the necessary changes to go from one version to the next. Update scripts have names following the
pattern extension--old_version--target_version.sql (for example, foo--1.0--1.1.sql contains
the commands to modify version 1.0 of extension foo into version 1.1).

Given that a suitable update script is available, the command ALTER EXTENSION UPDATE will update an
installed extension to the specified new version. The update script is run in the same environment that
CREATE EXTENSION provides for installation scripts: in particular, search_path is set up in the same way,
and any new objects created by the script are automatically added to the extension. Also, if the script
chooses to drop extension member objects, they are automatically dissociated from the extension.

If an extension has secondary control files, the control parameters that are used for an update script are
those associated with the script's target (new) version.

ALTER EXTENSION is able to execute sequences of update script files to achieve a requested update. For
example, if only foo--1.0--1.1.sql and foo--1.1--2.0.sql are available, ALTER EXTENSION will apply
them in sequence if an update to version 2.0 is requested when 1.0 is currently installed.

Postgres Pro doesn't assume anything about the properties of version names: for example, it does not
know whether 1.1 follows 1.0. It just matches up the available version names and follows the path that
requires applying the fewest update scripts. (A version name can actually be any string that doesn't
contain -- or leading or trailing -.)

Sometimes it is useful to provide “downgrade” scripts, for example foo--1.1--1.0.sql to allow
reverting the changes associated with version 1.1. If you do that, be careful of the possibility that a
downgrade script might unexpectedly get applied because it yields a shorter path. The risky case is
where there is a “fast path” update script that jumps ahead several versions as well as a downgrade
script to the fast path's start point. It might take fewer steps to apply the downgrade and then the fast
path than to move ahead one version at a time. If the downgrade script drops any irreplaceable objects,
this will yield undesirable results.

To check for unexpected update paths, use this command:
SELECT * FROM pg_extension_update_paths('extension_name');

This shows each pair of distinct known version names for the specified extension, together with the
update path sequence that would be taken to get from the source version to the target version, or NULL

991

Extending SQL

if there is no available update path. The path is shown in textual form with -- separators. You can use
regexp_split_to_array(path,'--') if you prefer an array format.

35.17.5. Installing Extensions Using Update Scripts
An extension that has been around for awhile will probably exist in several versions, for which the
author will need to write update scripts. For example, if you have released a foo extension in versions
1.0, 1.1, and 1.2, there should be update scripts foo--1.0--1.1.sql and foo--1.1--1.2.sql. Before
Postgres Pro 10, it was necessary to also create new script files foo--1.1.sql and foo--1.2.sql that
directly build the newer extension versions, or else the newer versions could not be installed directly,
only by installing 1.0 and then updating. That was tedious and duplicative, but now it's unnecessary,
because CREATE EXTENSION can follow update chains automatically. For example, if only the script
files foo--1.0.sql, foo--1.0--1.1.sql, and foo--1.1--1.2.sql are available then a request to install
version 1.2 is honored by running those three scripts in sequence. The processing is the same as if you'd
first installed 1.0 and then updated to 1.2. (As with ALTER EXTENSION UPDATE, if multiple pathways are
available then the shortest is preferred.) Arranging an extension's script files in this style can reduce
the amount of maintenance effort needed to produce small updates.

If you use secondary (version-specific) control files with an extension maintained in this style, keep
in mind that each version needs a control file even if it has no stand-alone installation script, as
that control file will determine how the implicit update to that version is performed. For example, if
foo--1.0.control specifies requires = 'bar' but foo's other control files do not, the extension's
dependency on bar will be dropped when updating from 1.0 to another version.

35.17.6. Security Considerations for Extensions
Widely-distributed extensions should assume little about the database they occupy. Therefore, it's
appropriate to write functions provided by an extension in a secure style that cannot be compromised
by search-path-based attacks.

An extension that has the superuser property set to true must also consider security hazards for the
actions taken within its installation and update scripts. It is not terribly difficult for a malicious user to
create trojan-horse objects that will compromise later execution of a carelessly-written extension script,
allowing that user to acquire superuser privileges.

If an extension is marked trusted, then its installation schema can be selected by the installing user,
who might intentionally use an insecure schema in hopes of gaining superuser privileges. Therefore, a
trusted extension is extremely exposed from a security standpoint, and all its script commands must be
carefully examined to ensure that no compromise is possible.

Advice about writing functions securely is provided in Section 35.17.6.1 below, and advice about writing
installation scripts securely is provided in Section 35.17.6.2.

35.17.6.1. Security Considerations for Extension Functions
SQL-language and PL-language functions provided by extensions are at risk of search-path-based attacks
when they are executed, since parsing of these functions occurs at execution time not creation time.

The CREATE FUNCTION reference page contains advice about writing SECURITY DEFINER functions safely.
It's good practice to apply those techniques for any function provided by an extension, since the function
might be called by a high-privilege user.

If you cannot set the search_path to contain only secure schemas, assume that each unqualified name
could resolve to an object that a malicious user has defined. Beware of constructs that depend on
search_path implicitly; for example, IN and CASE expression WHEN always select an operator using the
search path. In their place, use OPERATOR(schema.=) ANY and CASE WHEN expression.

A general-purpose extension usually should not assume that it's been installed into a secure schema,
which means that even schema-qualified references to its own objects are not entirely risk-free.

992

Extending SQL

For example, if the extension has defined a function myschema.myfunc(bigint) then a call such as
myschema.myfunc(42) could be captured by a hostile function myschema.myfunc(integer). Be careful
that the data types of function and operator parameters exactly match the declared argument types,
using explicit casts where necessary.

35.17.6.2. Security Considerations for Extension Scripts
An extension installation or update script should be written to guard against search-path-based attacks
occurring when the script executes. If an object reference in the script can be made to resolve to some
other object than the script author intended, then a compromise might occur immediately, or later when
the mis-defined extension object is used.

DDL commands such as CREATE FUNCTION and CREATE OPERATOR CLASS are generally secure, but beware
of any command having a general-purpose expression as a component. For example, CREATE VIEW needs
to be vetted, as does a DEFAULT expression in CREATE FUNCTION.

Sometimes an extension script might need to execute general-purpose SQL, for example to make
catalog adjustments that aren't possible via DDL. Be careful to execute such commands with a secure
search_path; do not trust the path provided by CREATE/ALTER EXTENSION to be secure. Best practice
is to temporarily set search_path to 'pg_catalog, pg_temp' and insert references to the extension's
installation schema explicitly where needed. (This practice might also be helpful for creating views.)

Cross-extension references are extremely difficult to make fully secure, partially because of uncertainty
about which schema the other extension is in. The hazards are reduced if both extensions are installed
in the same schema, because then a hostile object cannot be placed ahead of the referenced extension
in the installation-time search_path. However, no mechanism currently exists to require that. For now,
best practice is to not mark an extension trusted if it depends on another one, unless that other one is
always installed in pg_catalog.

Do not use CREATE OR REPLACE FUNCTION, except in an update script that must change the definition of
a function that is known to be an extension member already. (Likewise for other OR REPLACE options.)
Using OR REPLACE unnecessarily not only has a risk of accidentally overwriting someone else's function,
but it creates a security hazard since the overwritten function would still be owned by its original owner,
who could modify it.

35.17.7. Extension Example
Here is a complete example of an SQL-only extension, a two-element composite type that can store any
type of value in its slots, which are named “k” and “v”. Non-text values are automatically coerced to
text for storage.

The script file pair--1.0.sql looks like this:

-- complain if script is sourced in psql, rather than via CREATE EXTENSION
\echo Use "CREATE EXTENSION pair" to load this file. \quit

CREATE TYPE pair AS (k text, v text);

CREATE FUNCTION pair(text, text)
RETURNS pair LANGUAGE SQL AS 'SELECT ROW($1, $2)::@extschema@.pair;';

CREATE OPERATOR ~> (LEFTARG = text, RIGHTARG = text, FUNCTION = pair);

-- "SET search_path" is easy to get right, but qualified names perform better.
CREATE FUNCTION lower(pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW(lower($1.k), lower($1.v))::@extschema@.pair;'
SET search_path = pg_temp;

993

Extending SQL

CREATE FUNCTION pair_concat(pair, pair)
RETURNS pair LANGUAGE SQL
AS 'SELECT ROW($1.k OPERATOR(pg_catalog.||) $2.k,
 $1.v OPERATOR(pg_catalog.||) $2.v)::@extschema@.pair;';

The control file pair.control looks like this:

pair extension
comment = 'A key/value pair data type'
default_version = '1.0'
cannot be relocatable because of use of @extschema@
relocatable = false

While you hardly need a makefile to install these two files into the correct directory, you could use a
Makefile containing this:

EXTENSION = pair
DATA = pair--1.0.sql

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

This makefile relies on PGXS, which is described in Section 35.18. The command make install will
install the control and script files into the correct directory as reported by pg_config.

Once the files are installed, use the CREATE EXTENSION command to load the objects into any particular
database.

35.18. Extension Building Infrastructure
If you are thinking about distributing your Postgres Pro extension modules, setting up a portable
build system for them can be fairly difficult. Therefore the Postgres Pro installation provides a build
infrastructure for extensions, called PGXS, so that simple extension modules can be built simply against
an already installed server. PGXS is mainly intended for extensions that include C code, although it can
be used for pure-SQL extensions too. Note that PGXS is not intended to be a universal build system
framework that can be used to build any software interfacing to Postgres Pro; it simply automates
common build rules for simple server extension modules. For more complicated packages, you might
need to write your own build system.

To use the PGXS infrastructure for your extension, you must write a simple makefile. In the makefile,
you need to set some variables and include the global PGXS makefile. Here is an example that builds an
extension module named isbn_issn, consisting of a shared library containing some C code, an extension
control file, a SQL script, an include file (only needed if other modules might need to access the extension
functions without going via SQL), and a documentation text file:

MODULES = isbn_issn
EXTENSION = isbn_issn
DATA = isbn_issn--1.0.sql
DOCS = README.isbn_issn
HEADERS_isbn_issn = isbn_issn.h

PG_CONFIG = pg_config
PGXS := $(shell $(PG_CONFIG) --pgxs)
include $(PGXS)

The last three lines should always be the same. Earlier in the file, you assign variables or add custom
make rules.

Set one of these three variables to specify what is built:

994

Extending SQL

MODULES

list of shared-library objects to be built from source files with same stem (do not include library
suffixes in this list)

MODULE_big

a shared library to build from multiple source files (list object files in OBJS)

PROGRAM

an executable program to build (list object files in OBJS)

The following variables can also be set:

EXTENSION

extension name(s); for each name you must provide an extension.control file, which will be
installed into prefix/share/extension

MODULEDIR

subdirectory of prefix/share into which DATA and DOCS files should be installed (if not set, default
is extension if EXTENSION is set, or contrib if not)

DATA

random files to install into prefix/share/$MODULEDIR

DATA_built

random files to install into prefix/share/$MODULEDIR, which need to be built first

DATA_TSEARCH

random files to install under prefix/share/tsearch_data

DOCS

random files to install under prefix/doc/$MODULEDIR

HEADERS
HEADERS_built

Files to (optionally build and) install under prefix/include/server/$MODULEDIR/$MODULE_big.

Unlike DATA_built, files in HEADERS_built are not removed by the clean target; if you want them
removed, also add them to EXTRA_CLEAN or add your own rules to do it.

HEADERS_$MODULE
HEADERS_built_$MODULE

Files to install (after building if specified) under prefix/include/server/$MODULEDIR/$MODULE,
where $MODULE must be a module name used in MODULES or MODULE_big.

Unlike DATA_built, files in HEADERS_built_$MODULE are not removed by the clean target; if you want
them removed, also add them to EXTRA_CLEAN or add your own rules to do it.

It is legal to use both variables for the same module, or any combination, unless you have two
module names in the MODULES list that differ only by the presence of a prefix built_, which would
cause ambiguity. In that (hopefully unlikely) case, you should use only the HEADERS_built_$MODULE
variables.

SCRIPTS

script files (not binaries) to install into prefix/bin

995

Extending SQL

SCRIPTS_built

script files (not binaries) to install into prefix/bin, which need to be built first

REGRESS

list of regression test cases (without suffix), see below

REGRESS_OPTS

additional switches to pass to pg_regress

ISOLATION

list of isolation test cases, see below for more details

ISOLATION_OPTS

additional switches to pass to pg_isolation_regress

TAP_TESTS

switch defining if TAP tests need to be run, see below

NO_INSTALLCHECK

don't define an installcheck target, useful e.g., if tests require special configuration, or don't use
pg_regress

EXTRA_CLEAN

extra files to remove in make clean

PG_CPPFLAGS

will be prepended to CPPFLAGS

PG_CFLAGS

will be appended to CFLAGS

PG_CXXFLAGS

will be appended to CXXFLAGS

PG_LDFLAGS

will be prepended to LDFLAGS

PG_LIBS

will be added to PROGRAM link line

SHLIB_LINK

will be added to MODULE_big link line

PG_CONFIG

path to pg_config program for the Postgres Pro installation to build against (typically just pg_config
to use the first one in your PATH)

Put this makefile as Makefile in the directory which holds your extension. Then you can do make to
compile, and then make install to install your module. By default, the extension is compiled and
installed for the Postgres Pro installation that corresponds to the first pg_config program found in your
PATH. You can use a different installation by setting PG_CONFIG to point to its pg_config program, either
within the makefile or on the make command line.

996

Extending SQL

You can also run make in a directory outside the source tree of your extension, if you want to keep the
build directory separate. This procedure is also called a VPATH build. Here's how:

mkdir build_dir
cd build_dir
make -f /path/to/extension/source/tree/Makefile
make -f /path/to/extension/source/tree/Makefile install

Alternatively, you can set up a directory for a VPATH build in a similar way to how it is done for the core
code. One way to do this is using the core script config/prep_buildtree. Once this has been done you
can build by setting the make variable VPATH like this:

make VPATH=/path/to/extension/source/tree
make VPATH=/path/to/extension/source/tree install

This procedure can work with a greater variety of directory layouts.

The scripts listed in the REGRESS variable are used for regression testing of your module, which can be
invoked by make installcheck after doing make install. For this to work you must have a running
Postgres Pro server. The script files listed in REGRESS must appear in a subdirectory named sql/ in
your extension's directory. These files must have extension .sql, which must not be included in the
REGRESS list in the makefile. For each test there should also be a file containing the expected output
in a subdirectory named expected/, with the same stem and extension .out. make installcheck
executes each test script with psql, and compares the resulting output to the matching expected file. Any
differences will be written to the file regression.diffs in diff -c format. Note that trying to run a test
that is missing its expected file will be reported as “trouble”, so make sure you have all expected files.

The scripts listed in the ISOLATION variable are used for tests stressing behavior of concurrent session
with your module, which can be invoked by make installcheck after doing make install. For this
to work you must have a running Postgres Pro server. The script files listed in ISOLATION must appear
in a subdirectory named specs/ in your extension's directory. These files must have extension .spec,
which must not be included in the ISOLATION list in the makefile. For each test there should also be a file
containing the expected output in a subdirectory named expected/, with the same stem and extension
.out. make installcheck executes each test script, and compares the resulting output to the matching
expected file. Any differences will be written to the file output_iso/regression.diffs in diff -c
format. Note that trying to run a test that is missing its expected file will be reported as “trouble”, so
make sure you have all expected files.

TAP_TESTS enables the use of TAP tests. Data from each run is present in a subdirectory named
tmp_check/.

Tip
The easiest way to create the expected files is to create empty files, then do a test run (which will
of course report differences). Inspect the actual result files found in the results/ directory (for
tests in REGRESS), or output_iso/results/ directory (for tests in ISOLATION), then copy them to
expected/ if they match what you expect from the test.

997

Chapter 36. Triggers
This chapter provides general information about writing trigger functions. Trigger functions can
be written in most of the available procedural languages, including PL/pgSQL (Chapter 40), PL/Tcl
(Chapter 41), PL/Perl (Chapter 42), and PL/Python (Chapter 43). After reading this chapter, you should
consult the chapter for your favorite procedural language to find out the language-specific details of
writing a trigger in it.

It is also possible to write a trigger function in C, although most people find it easier to use one of the
procedural languages. It is not currently possible to write a trigger function in the plain SQL function
language.

36.1. Overview of Trigger Behavior
A trigger is a specification that the database should automatically execute a particular function whenever
a certain type of operation is performed. Triggers can be attached to tables (partitioned or not), views,
and foreign tables.

On tables and foreign tables, triggers can be defined to execute either before or after any INSERT, UPDATE,
or DELETE operation, either once per modified row, or once per SQL statement. UPDATE triggers can
moreover be set to fire only if certain columns are mentioned in the SET clause of the UPDATE statement.
Triggers can also fire for TRUNCATE statements. If a trigger event occurs, the trigger's function is called
at the appropriate time to handle the event.

On views, triggers can be defined to execute instead of INSERT, UPDATE, or DELETE operations. Such
INSTEAD OF triggers are fired once for each row that needs to be modified in the view. It is the
responsibility of the trigger's function to perform the necessary modifications to the view's underlying
base table(s) and, where appropriate, return the modified row as it will appear in the view. Triggers on
views can also be defined to execute once per SQL statement, before or after INSERT, UPDATE, or DELETE
operations. However, such triggers are fired only if there is also an INSTEAD OF trigger on the view.
Otherwise, any statement targeting the view must be rewritten into a statement affecting its underlying
base table(s), and then the triggers that will be fired are the ones attached to the base table(s).

The trigger function must be defined before the trigger itself can be created. The trigger function must be
declared as a function taking no arguments and returning type trigger. (The trigger function receives its
input through a specially-passed TriggerData structure, not in the form of ordinary function arguments.)

Once a suitable trigger function has been created, the trigger is established with CREATE TRIGGER.
The same trigger function can be used for multiple triggers.

Postgres Pro offers both per-row triggers and per-statement triggers. With a per-row trigger, the trigger
function is invoked once for each row that is affected by the statement that fired the trigger. In contrast,
a per-statement trigger is invoked only once when an appropriate statement is executed, regardless of
the number of rows affected by that statement. In particular, a statement that affects zero rows will
still result in the execution of any applicable per-statement triggers. These two types of triggers are
sometimes called row-level triggers and statement-level triggers, respectively. Triggers on TRUNCATE
may only be defined at statement level, not per-row.

Triggers are also classified according to whether they fire before, after, or instead of the operation. These
are referred to as BEFORE triggers, AFTER triggers, and INSTEAD OF triggers respectively. Statement-level
BEFORE triggers naturally fire before the statement starts to do anything, while statement-level AFTER
triggers fire at the very end of the statement. These types of triggers may be defined on tables, views, or
foreign tables. Row-level BEFORE triggers fire immediately before a particular row is operated on, while
row-level AFTER triggers fire at the end of the statement (but before any statement-level AFTER triggers).
These types of triggers may only be defined on tables and foreign tables, not views. INSTEAD OF triggers
may only be defined on views, and only at row level; they fire immediately as each row in the view is
identified as needing to be operated on.

998

Triggers

A statement that targets a parent table in an inheritance or partitioning hierarchy does not cause
the statement-level triggers of affected child tables to be fired; only the parent table's statement-level
triggers are fired. However, row-level triggers of any affected child tables will be fired.

If an INSERT contains an ON CONFLICT DO UPDATE clause, it is possible that the effects of row-level BEFORE
INSERT triggers and row-level BEFORE UPDATE triggers can both be applied in a way that is apparent
from the final state of the updated row, if an EXCLUDED column is referenced. There need not be an
EXCLUDED column reference for both sets of row-level BEFORE triggers to execute, though. The possibility
of surprising outcomes should be considered when there are both BEFORE INSERT and BEFORE UPDATE row-
level triggers that change a row being inserted/updated (this can be problematic even if the modifications
are more or less equivalent, if they're not also idempotent). Note that statement-level UPDATE triggers
are executed when ON CONFLICT DO UPDATE is specified, regardless of whether or not any rows were
affected by the UPDATE (and regardless of whether the alternative UPDATE path was ever taken). An
INSERT with an ON CONFLICT DO UPDATE clause will execute statement-level BEFORE INSERT triggers
first, then statement-level BEFORE UPDATE triggers, followed by statement-level AFTER UPDATE triggers
and finally statement-level AFTER INSERT triggers.

If an UPDATE on a partitioned table causes a row to move to another partition, it will be performed as a
DELETE from the original partition followed by an INSERT into the new partition. In this case, all row-level
BEFORE UPDATE triggers and all row-level BEFORE DELETE triggers are fired on the original partition. Then
all row-level BEFORE INSERT triggers are fired on the destination partition. The possibility of surprising
outcomes should be considered when all these triggers affect the row being moved. As far as AFTER ROW
triggers are concerned, AFTER DELETE and AFTER INSERT triggers are applied; but AFTER UPDATE triggers
are not applied because the UPDATE has been converted to a DELETE and an INSERT. As far as statement-
level triggers are concerned, none of the DELETE or INSERT triggers are fired, even if row movement
occurs; only the UPDATE triggers defined on the target table used in the UPDATE statement will be fired.

Trigger functions invoked by per-statement triggers should always return NULL. Trigger functions
invoked by per-row triggers can return a table row (a value of type HeapTuple) to the calling executor,
if they choose. A row-level trigger fired before an operation has the following choices:

• It can return NULL to skip the operation for the current row. This instructs the executor to not
perform the row-level operation that invoked the trigger (the insertion, modification, or deletion of
a particular table row).

• For row-level INSERT and UPDATE triggers only, the returned row becomes the row that will be
inserted or will replace the row being updated. This allows the trigger function to modify the row
being inserted or updated.

A row-level BEFORE trigger that does not intend to cause either of these behaviors must be careful to
return as its result the same row that was passed in (that is, the NEW row for INSERT and UPDATE triggers,
the OLD row for DELETE triggers).

A row-level INSTEAD OF trigger should either return NULL to indicate that it did not modify any data from
the view's underlying base tables, or it should return the view row that was passed in (the NEW row for
INSERT and UPDATE operations, or the OLD row for DELETE operations). A nonnull return value is used to
signal that the trigger performed the necessary data modifications in the view. This will cause the count
of the number of rows affected by the command to be incremented. For INSERT and UPDATE operations
only, the trigger may modify the NEW row before returning it. This will change the data returned by
INSERT RETURNING or UPDATE RETURNING, and is useful when the view will not show exactly the same
data that was provided.

The return value is ignored for row-level triggers fired after an operation, and so they can return NULL.

Some considerations apply for generated columns. Stored generated columns are computed after BEFORE
triggers and before AFTER triggers. Therefore, the generated value can be inspected in AFTER triggers. In
BEFORE triggers, the OLD row contains the old generated value, as one would expect, but the NEW row does
not yet contain the new generated value and should not be accessed. In the C language interface, the
content of the column is undefined at this point; a higher-level programming language should prevent

999

Triggers

access to a stored generated column in the NEW row in a BEFORE trigger. Changes to the value of a
generated column in a BEFORE trigger are ignored and will be overwritten.

If more than one trigger is defined for the same event on the same relation, the triggers will be fired
in alphabetical order by trigger name. In the case of BEFORE and INSTEAD OF triggers, the possibly-
modified row returned by each trigger becomes the input to the next trigger. If any BEFORE or INSTEAD
OF trigger returns NULL, the operation is abandoned for that row and subsequent triggers are not fired
(for that row).

A trigger definition can also specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. (Statement-level triggers can also have WHEN conditions, although the feature is
not so useful for them.) In a BEFORE trigger, the WHEN condition is evaluated just before the function is
or would be executed, so using WHEN is not materially different from testing the same condition at the
beginning of the trigger function. However, in an AFTER trigger, the WHEN condition is evaluated just
after the row update occurs, and it determines whether an event is queued to fire the trigger at the
end of statement. So when an AFTER trigger's WHEN condition does not return true, it is not necessary to
queue an event nor to re-fetch the row at end of statement. This can result in significant speedups in
statements that modify many rows, if the trigger only needs to be fired for a few of the rows. INSTEAD
OF triggers do not support WHEN conditions.

Typically, row-level BEFORE triggers are used for checking or modifying the data that will be inserted
or updated. For example, a BEFORE trigger might be used to insert the current time into a timestamp
column, or to check that two elements of the row are consistent. Row-level AFTER triggers are most
sensibly used to propagate the updates to other tables, or make consistency checks against other tables.
The reason for this division of labor is that an AFTER trigger can be certain it is seeing the final value
of the row, while a BEFORE trigger cannot; there might be other BEFORE triggers firing after it. If you
have no specific reason to make a trigger BEFORE or AFTER, the BEFORE case is more efficient, since the
information about the operation doesn't have to be saved until end of statement.

If a trigger function executes SQL commands then these commands might fire triggers again. This is
known as cascading triggers. There is no direct limitation on the number of cascade levels. It is possible
for cascades to cause a recursive invocation of the same trigger; for example, an INSERT trigger might
execute a command that inserts an additional row into the same table, causing the INSERT trigger to be
fired again. It is the trigger programmer's responsibility to avoid infinite recursion in such scenarios.

When a trigger is being defined, arguments can be specified for it. The purpose of including arguments
in the trigger definition is to allow different triggers with similar requirements to call the same function.
As an example, there could be a generalized trigger function that takes as its arguments two column
names and puts the current user in one and the current time stamp in the other. Properly written, this
trigger function would be independent of the specific table it is triggering on. So the same function
could be used for INSERT events on any table with suitable columns, to automatically track creation of
records in a transaction table for example. It could also be used to track last-update events if defined
as an UPDATE trigger.

Each programming language that supports triggers has its own method for making the trigger input
data available to the trigger function. This input data includes the type of trigger event (e.g., INSERT
or UPDATE) as well as any arguments that were listed in CREATE TRIGGER. For a row-level trigger, the
input data also includes the NEW row for INSERT and UPDATE triggers, and/or the OLD row for UPDATE and
DELETE triggers.

By default, statement-level triggers do not have any way to examine the individual row(s) modified by the
statement. But an AFTER STATEMENT trigger can request that transition tables be created to make the sets
of affected rows available to the trigger. AFTER ROW triggers can also request transition tables, so that
they can see the total changes in the table as well as the change in the individual row they are currently
being fired for. The method for examining the transition tables again depends on the programming
language that is being used, but the typical approach is to make the transition tables act like read-only
temporary tables that can be accessed by SQL commands issued within the trigger function.

1000

Triggers

36.2. Visibility of Data Changes
If you execute SQL commands in your trigger function, and these commands access the table that the
trigger is for, then you need to be aware of the data visibility rules, because they determine whether
these SQL commands will see the data change that the trigger is fired for. Briefly:
• Statement-level triggers follow simple visibility rules: none of the changes made by a statement are

visible to statement-level BEFORE triggers, whereas all modifications are visible to statement-level
AFTER triggers.

• The data change (insertion, update, or deletion) causing the trigger to fire is naturally not visible to
SQL commands executed in a row-level BEFORE trigger, because it hasn't happened yet.

• However, SQL commands executed in a row-level BEFORE trigger will see the effects of data
changes for rows previously processed in the same outer command. This requires caution, since the
ordering of these change events is not in general predictable; a SQL command that affects multiple
rows can visit the rows in any order.

• Similarly, a row-level INSTEAD OF trigger will see the effects of data changes made by previous
firings of INSTEAD OF triggers in the same outer command.

• When a row-level AFTER trigger is fired, all data changes made by the outer command are already
complete, and are visible to the invoked trigger function.

If your trigger function is written in any of the standard procedural languages, then the above statements
apply only if the function is declared VOLATILE. Functions that are declared STABLE or IMMUTABLE will
not see changes made by the calling command in any case.

Further information about data visibility rules can be found in Section 44.5. The example in Section 36.4
contains a demonstration of these rules.

36.3. Writing Trigger Functions in C
This section describes the low-level details of the interface to a trigger function. This information is only
needed when writing trigger functions in C. If you are using a higher-level language then these details
are handled for you. In most cases you should consider using a procedural language before writing your
triggers in C. The documentation of each procedural language explains how to write a trigger in that
language.

Trigger functions must use the “version 1” function manager interface.

When a function is called by the trigger manager, it is not passed any normal arguments, but it is passed
a “context” pointer pointing to a TriggerData structure. C functions can check whether they were called
from the trigger manager or not by executing the macro:
CALLED_AS_TRIGGER(fcinfo)

which expands to:
((fcinfo)->context != NULL && IsA((fcinfo)->context, TriggerData))

If this returns true, then it is safe to cast fcinfo->context to type TriggerData * and make use of
the pointed-to TriggerData structure. The function must not alter the TriggerData structure or any of
the data it points to.

struct TriggerData is defined in commands/trigger.h:
typedef struct TriggerData
{
 NodeTag type;
 TriggerEvent tg_event;
 Relation tg_relation;
 HeapTuple tg_trigtuple;
 HeapTuple tg_newtuple;

1001

Triggers

 Trigger *tg_trigger;
 TupleTableSlot *tg_trigslot;
 TupleTableSlot *tg_newslot;
 Tuplestorestate *tg_oldtable;
 Tuplestorestate *tg_newtable;
 const Bitmapset *tg_updatedcols;
} TriggerData;

where the members are defined as follows:
type

Always T_TriggerData.

tg_event

Describes the event for which the function is called. You can use the following macros to examine
tg_event:
TRIGGER_FIRED_BEFORE(tg_event)

Returns true if the trigger fired before the operation.

TRIGGER_FIRED_AFTER(tg_event)

Returns true if the trigger fired after the operation.

TRIGGER_FIRED_INSTEAD(tg_event)

Returns true if the trigger fired instead of the operation.

TRIGGER_FIRED_FOR_ROW(tg_event)

Returns true if the trigger fired for a row-level event.

TRIGGER_FIRED_FOR_STATEMENT(tg_event)

Returns true if the trigger fired for a statement-level event.

TRIGGER_FIRED_BY_INSERT(tg_event)

Returns true if the trigger was fired by an INSERT command.

TRIGGER_FIRED_BY_UPDATE(tg_event)

Returns true if the trigger was fired by an UPDATE command.

TRIGGER_FIRED_BY_DELETE(tg_event)

Returns true if the trigger was fired by a DELETE command.

TRIGGER_FIRED_BY_TRUNCATE(tg_event)

Returns true if the trigger was fired by a TRUNCATE command.

tg_relation

A pointer to a structure describing the relation that the trigger fired for. Look at utils/rel.h for
details about this structure. The most interesting things are tg_relation->rd_att (descriptor of
the relation tuples) and tg_relation->rd_rel->relname (relation name; the type is not char* but
NameData; use SPI_getrelname(tg_relation) to get a char* if you need a copy of the name).

tg_trigtuple

A pointer to the row for which the trigger was fired. This is the row being inserted, updated, or
deleted. If this trigger was fired for an INSERT or DELETE then this is what you should return from
the function if you don't want to replace the row with a different one (in the case of INSERT) or skip
the operation. For triggers on foreign tables, values of system columns herein are unspecified.

1002

Triggers

tg_newtuple

A pointer to the new version of the row, if the trigger was fired for an UPDATE, and NULL if it is for an
INSERT or a DELETE. This is what you have to return from the function if the event is an UPDATE and
you don't want to replace this row by a different one or skip the operation. For triggers on foreign
tables, values of system columns herein are unspecified.

tg_trigger

A pointer to a structure of type Trigger, defined in utils/reltrigger.h:
typedef struct Trigger
{
 Oid tgoid;
 char *tgname;
 Oid tgfoid;
 int16 tgtype;
 char tgenabled;
 bool tgisinternal;
 Oid tgconstrrelid;
 Oid tgconstrindid;
 Oid tgconstraint;
 bool tgdeferrable;
 bool tginitdeferred;
 int16 tgnargs;
 int16 tgnattr;
 int16 *tgattr;
 char **tgargs;
 char *tgqual;
 char *tgoldtable;
 char *tgnewtable;
} Trigger;

where tgname is the trigger's name, tgnargs is the number of arguments in tgargs, and tgargs is an
array of pointers to the arguments specified in the CREATE TRIGGER statement. The other members
are for internal use only.

tg_trigslot

The slot containing tg_trigtuple, or a NULL pointer if there is no such tuple.

tg_newslot

The slot containing tg_newtuple, or a NULL pointer if there is no such tuple.

tg_oldtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format specified
by tg_relation, or a NULL pointer if there is no OLD TABLE transition relation.

tg_newtable

A pointer to a structure of type Tuplestorestate containing zero or more rows in the format specified
by tg_relation, or a NULL pointer if there is no NEW TABLE transition relation.

tg_updatedcols

For UPDATE triggers, a bitmap set indicating the columns that were updated by the triggering
command. Generic trigger functions can use this to optimize actions by not having to deal with
columns that were not changed.

As an example, to determine whether a column with attribute number attnum (1-based) is a
member of this bitmap set, call bms_is_member(attnum - FirstLowInvalidHeapAttributeNumber,
trigdata->tg_updatedcols)).

1003

Triggers

For triggers other than UPDATE triggers, this will be NULL.

To allow queries issued through SPI to reference transition tables, see SPI_register_trigger_data.

A trigger function must return either a HeapTuple pointer or a NULL pointer (not an SQL null value, that
is, do not set isNull true). Be careful to return either tg_trigtuple or tg_newtuple, as appropriate, if
you don't want to modify the row being operated on.

36.4. A Complete Trigger Example
Here is a very simple example of a trigger function written in C. (Examples of triggers written in
procedural languages can be found in the documentation of the procedural languages.)

The function trigf reports the number of rows in the table ttest and skips the actual operation if the
command attempts to insert a null value into the column x. (So the trigger acts as a not-null constraint
but doesn't abort the transaction.)

First, the table definition:
CREATE TABLE ttest (
 x integer
);

This is the source code of the trigger function:
#include "postgres.h"
#include "fmgr.h"
#include "executor/spi.h" /* this is what you need to work with SPI */
#include "commands/trigger.h" /* ... triggers ... */
#include "utils/rel.h" /* ... and relations */

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(trigf);

Datum
trigf(PG_FUNCTION_ARGS)
{
 TriggerData *trigdata = (TriggerData *) fcinfo->context;
 TupleDesc tupdesc;
 HeapTuple rettuple;
 char *when;
 bool checknull = false;
 bool isnull;
 int ret, i;

 /* make sure it's called as a trigger at all */
 if (!CALLED_AS_TRIGGER(fcinfo))
 elog(ERROR, "trigf: not called by trigger manager");

 /* tuple to return to executor */
 if (TRIGGER_FIRED_BY_UPDATE(trigdata->tg_event))
 rettuple = trigdata->tg_newtuple;
 else
 rettuple = trigdata->tg_trigtuple;

 /* check for null values */
 if (!TRIGGER_FIRED_BY_DELETE(trigdata->tg_event)
 && TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 checknull = true;

1004

Triggers

 if (TRIGGER_FIRED_BEFORE(trigdata->tg_event))
 when = "before";
 else
 when = "after ";

 tupdesc = trigdata->tg_relation->rd_att;

 /* connect to SPI manager */
 if ((ret = SPI_connect()) < 0)
 elog(ERROR, "trigf (fired %s): SPI_connect returned %d", when, ret);

 /* get number of rows in table */
 ret = SPI_exec("SELECT count(*) FROM ttest", 0);

 if (ret < 0)
 elog(ERROR, "trigf (fired %s): SPI_exec returned %d", when, ret);

 /* count(*) returns int8, so be careful to convert */
 i = DatumGetInt64(SPI_getbinval(SPI_tuptable->vals[0],
 SPI_tuptable->tupdesc,
 1,
 &isnull));

 elog (INFO, "trigf (fired %s): there are %d rows in ttest", when, i);

 SPI_finish();

 if (checknull)
 {
 SPI_getbinval(rettuple, tupdesc, 1, &isnull);
 if (isnull)
 rettuple = NULL;
 }

 return PointerGetDatum(rettuple);
}

After you have compiled the source code (see Section 35.10.5), declare the function and the triggers:

CREATE FUNCTION trigf() RETURNS trigger
 AS 'filename'
 LANGUAGE C;

CREATE TRIGGER tbefore BEFORE INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

CREATE TRIGGER tafter AFTER INSERT OR UPDATE OR DELETE ON ttest
 FOR EACH ROW EXECUTE FUNCTION trigf();

Now you can test the operation of the trigger:

=> INSERT INTO ttest VALUES (NULL);
INFO: trigf (fired before): there are 0 rows in ttest
INSERT 0 0

-- Insertion skipped and AFTER trigger is not fired

1005

Triggers

=> SELECT * FROM ttest;
 x

(0 rows)

=> INSERT INTO ttest VALUES (1);
INFO: trigf (fired before): there are 0 rows in ttest
INFO: trigf (fired after): there are 1 rows in ttest
 ^^^^^^^^
 remember what we said about visibility.
INSERT 167793 1
vac=> SELECT * FROM ttest;
 x

 1
(1 row)

=> INSERT INTO ttest SELECT x * 2 FROM ttest;
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
 ^^^^^^
 remember what we said about visibility.
INSERT 167794 1
=> SELECT * FROM ttest;
 x

 1
 2
(2 rows)

=> UPDATE ttest SET x = NULL WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
UPDATE 0
=> UPDATE ttest SET x = 4 WHERE x = 2;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired after): there are 2 rows in ttest
UPDATE 1
vac=> SELECT * FROM ttest;
 x

 1
 4
(2 rows)

=> DELETE FROM ttest;
INFO: trigf (fired before): there are 2 rows in ttest
INFO: trigf (fired before): there are 1 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
INFO: trigf (fired after): there are 0 rows in ttest
 ^^^^^^
 remember what we said about visibility.
DELETE 2
=> SELECT * FROM ttest;
 x

(0 rows)

1006

Chapter 37. Event Triggers
To supplement the trigger mechanism discussed in Chapter 36, Postgres Pro also provides event triggers.
Unlike regular triggers, which are attached to a single table and capture only DML events, event triggers
are global to a particular database and are capable of capturing DDL events.

Like regular triggers, event triggers can be written in any procedural language that includes event
trigger support, or in C, but not in plain SQL.

37.1. Overview of Event Trigger Behavior
An event trigger fires whenever the event with which it is associated occurs in the database in
which it is defined. Currently, the only supported events are ddl_command_start, ddl_command_end,
table_rewrite and sql_drop. Support for additional events may be added in future releases.

The ddl_command_start event occurs just before the execution of a CREATE, ALTER, DROP, SECURITY
LABEL, COMMENT, GRANT or REVOKE command. No check whether the affected object exists or doesn't
exist is performed before the event trigger fires. As an exception, however, this event does not occur
for DDL commands targeting shared objects — databases, roles, and tablespaces — or for commands
targeting event triggers themselves. The event trigger mechanism does not support these object types.
ddl_command_start also occurs just before the execution of a SELECT INTO command, since this is
equivalent to CREATE TABLE AS.

The ddl_command_end event occurs just after the execution of this same set of commands.
To obtain more details on the DDL operations that took place, use the set-returning function
pg_event_trigger_ddl_commands() from the ddl_command_end event trigger code (see Section 9.29).
Note that the trigger fires after the actions have taken place (but before the transaction commits), and
thus the system catalogs can be read as already changed.

The sql_drop event occurs just before the ddl_command_end event trigger for any operation that
drops database objects. To list the objects that have been dropped, use the set-returning function
pg_event_trigger_dropped_objects() from the sql_drop event trigger code (see Section 9.29). Note
that the trigger is executed after the objects have been deleted from the system catalogs, so it's not
possible to look them up anymore.

The table_rewrite event occurs just before a table is rewritten by some actions of the commands ALTER
TABLE and ALTER TYPE. While other control statements are available to rewrite a table, like CLUSTER and
VACUUM, the table_rewrite event is not triggered by them.

Event triggers (like other functions) cannot be executed in an aborted transaction. Thus, if a DDL
command fails with an error, any associated ddl_command_end triggers will not be executed. Conversely,
if a ddl_command_start trigger fails with an error, no further event triggers will fire, and no attempt
will be made to execute the command itself. Similarly, if a ddl_command_end trigger fails with an error,
the effects of the DDL statement will be rolled back, just as they would be in any other case where the
containing transaction aborts.

For a complete list of commands supported by the event trigger mechanism, see Section 37.2.

Event triggers are created using the command CREATE EVENT TRIGGER. In order to create an event
trigger, you must first create a function with the special return type event_trigger. This function need
not (and may not) return a value; the return type serves merely as a signal that the function is to be
invoked as an event trigger.

If more than one event trigger is defined for a particular event, they will fire in alphabetical order by
trigger name.

A trigger definition can also specify a WHEN condition so that, for example, a ddl_command_start trigger
can be fired only for particular commands which the user wishes to intercept. A common use of such
triggers is to restrict the range of DDL operations which users may perform.

1007

Event Triggers

37.2. Event Trigger Firing Matrix
Table 37.1 lists all commands for which event triggers are supported.

Table 37.1. Event Trigger Support by Command Tag

Command Tag ddl_
command_
start

ddl_
command_
end

sql_drop table_
rewrite

Notes

ALTER AGGREGATE X X - -
ALTER COLLATION X X - -
ALTER CONVERSION X X - -
ALTER DOMAIN X X - -
ALTER DEFAULT PRIVILEGES X X - -
ALTER EXTENSION X X - -
ALTER FOREIGN DATA
WRAPPER

X X - -

ALTER FOREIGN TABLE X X X -
ALTER FUNCTION X X - -
ALTER LANGUAGE X X - -
ALTER LARGE OBJECT X X - -
ALTER MATERIALIZED VIEW X X - -
ALTER OPERATOR X X - -
ALTER OPERATOR CLASS X X - -
ALTER OPERATOR FAMILY X X - -
ALTER POLICY X X - -
ALTER PROCEDURE X X - -
ALTER PUBLICATION X X - -
ALTER ROUTINE X X - -
ALTER SCHEMA X X - -
ALTER SEQUENCE X X - -
ALTER SERVER X X - -
ALTER STATISTICS X X - -
ALTER SUBSCRIPTION X X - -
ALTER TABLE X X X X
ALTER TEXT SEARCH
CONFIGURATION

X X - -

ALTER TEXT SEARCH
DICTIONARY

X X - -

ALTER TEXT SEARCH PARSER X X - -
ALTER TEXT SEARCH
TEMPLATE

X X - -

ALTER TRIGGER X X - -
ALTER TYPE X X - X
ALTER USER MAPPING X X - -

1008

Event Triggers

Command Tag ddl_
command_
start

ddl_
command_
end

sql_drop table_
rewrite

Notes

ALTER VIEW X X - -
COMMENT X X - - Only for local

objects
CREATE ACCESS METHOD X X - -
CREATE AGGREGATE X X - -
CREATE CAST X X - -
CREATE COLLATION X X - -
CREATE CONVERSION X X - -
CREATE DOMAIN X X - -
CREATE EXTENSION X X - -
CREATE FOREIGN DATA
WRAPPER

X X - -

CREATE FOREIGN TABLE X X - -
CREATE FUNCTION X X - -
CREATE INDEX X X - -
CREATE LANGUAGE X X - -
CREATE MATERIALIZED VIEW X X - -
CREATE OPERATOR X X - -
CREATE OPERATOR CLASS X X - -
CREATE OPERATOR FAMILY X X - -
CREATE POLICY X X - -
CREATE PROCEDURE X X - -
CREATE PUBLICATION X X - -
CREATE RULE X X - -
CREATE SCHEMA X X - -
CREATE SEQUENCE X X - -
CREATE SERVER X X - -
CREATE STATISTICS X X - -
CREATE SUBSCRIPTION X X - -
CREATE TABLE X X - -
CREATE TABLE AS X X - -
CREATE TEXT SEARCH
CONFIGURATION

X X - -

CREATE TEXT SEARCH
DICTIONARY

X X - -

CREATE TEXT SEARCH
PARSER

X X - -

CREATE TEXT SEARCH
TEMPLATE

X X - -

CREATE TRIGGER X X - -

1009

Event Triggers

Command Tag ddl_
command_
start

ddl_
command_
end

sql_drop table_
rewrite

Notes

CREATE TYPE X X - -
CREATE USER MAPPING X X - -
CREATE VIEW X X - -
DROP ACCESS METHOD X X X -
DROP AGGREGATE X X X -
DROP CAST X X X -
DROP COLLATION X X X -
DROP CONVERSION X X X -
DROP DOMAIN X X X -
DROP EXTENSION X X X -
DROP FOREIGN DATA
WRAPPER

X X X -

DROP FOREIGN TABLE X X X -
DROP FUNCTION X X X -
DROP INDEX X X X -
DROP LANGUAGE X X X -
DROP MATERIALIZED VIEW X X X -
DROP OPERATOR X X X -
DROP OPERATOR CLASS X X X -
DROP OPERATOR FAMILY X X X -
DROP OWNED X X X -
DROP POLICY X X X -
DROP PROCEDURE X X X -
DROP PUBLICATION X X X -
DROP ROUTINE X X X -
DROP RULE X X X -
DROP SCHEMA X X X -
DROP SEQUENCE X X X -
DROP SERVER X X X -
DROP STATISTICS X X X -
DROP SUBSCRIPTION X X X -
DROP TABLE X X X -
DROP TEXT SEARCH
CONFIGURATION

X X X -

DROP TEXT SEARCH
DICTIONARY

X X X -

DROP TEXT SEARCH PARSER X X X -
DROP TEXT SEARCH
TEMPLATE

X X X -

1010

Event Triggers

Command Tag ddl_
command_
start

ddl_
command_
end

sql_drop table_
rewrite

Notes

DROP TRIGGER X X X -
DROP TYPE X X X -
DROP USER MAPPING X X X -
DROP VIEW X X X -
GRANT X X - - Only for local

objects
IMPORT FOREIGN SCHEMA X X - -
REFRESH MATERIALIZED
VIEW

X X - -

REVOKE X X - - Only for local
objects

SECURITY LABEL X X - - Only for local
objects

SELECT INTO X X - -

37.3. Writing Event Trigger Functions in C
This section describes the low-level details of the interface to an event trigger function. This information
is only needed when writing event trigger functions in C. If you are using a higher-level language then
these details are handled for you. In most cases you should consider using a procedural language before
writing your event triggers in C. The documentation of each procedural language explains how to write
an event trigger in that language.

Event trigger functions must use the “version 1” function manager interface.

When a function is called by the event trigger manager, it is not passed any normal arguments, but it
is passed a “context” pointer pointing to a EventTriggerData structure. C functions can check whether
they were called from the event trigger manager or not by executing the macro:

CALLED_AS_EVENT_TRIGGER(fcinfo)

which expands to:

((fcinfo)->context != NULL && IsA((fcinfo)->context, EventTriggerData))

If this returns true, then it is safe to cast fcinfo->context to type EventTriggerData * and make
use of the pointed-to EventTriggerData structure. The function must not alter the EventTriggerData
structure or any of the data it points to.

struct EventTriggerData is defined in commands/event_trigger.h:

typedef struct EventTriggerData
{
 NodeTag type;
 const char *event; /* event name */
 Node *parsetree; /* parse tree */
 CommandTag tag; /* command tag */
} EventTriggerData;

where the members are defined as follows:

type

Always T_EventTriggerData.

1011

Event Triggers

event

Describes the event for which the function is called, one of "ddl_command_start",
"ddl_command_end", "sql_drop", "table_rewrite". See Section 37.1 for the meaning of these
events.

parsetree

A pointer to the parse tree of the command. Check the Postgres Pro source code for details. The
parse tree structure is subject to change without notice.

tag

The command tag associated with the event for which the event trigger is run, for example "CREATE
FUNCTION".

An event trigger function must return a NULL pointer (not an SQL null value, that is, do not set isNull
true).

37.4. A Complete Event Trigger Example
Here is a very simple example of an event trigger function written in C. (Examples of triggers written in
procedural languages can be found in the documentation of the procedural languages.)

The function noddl raises an exception each time it is called. The event trigger definition associated the
function with the ddl_command_start event. The effect is that all DDL commands (with the exceptions
mentioned in Section 37.1) are prevented from running.

This is the source code of the trigger function:

#include "postgres.h"
#include "commands/event_trigger.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(noddl);

Datum
noddl(PG_FUNCTION_ARGS)
{
 EventTriggerData *trigdata;

 if (!CALLED_AS_EVENT_TRIGGER(fcinfo)) /* internal error */
 elog(ERROR, "not fired by event trigger manager");

 trigdata = (EventTriggerData *) fcinfo->context;

 ereport(ERROR,
 (errcode(ERRCODE_INSUFFICIENT_PRIVILEGE),
 errmsg("command \"%s\" denied", trigdata->tag)));

 PG_RETURN_NULL();
}

After you have compiled the source code (see Section 35.10.5), declare the function and the triggers:

CREATE FUNCTION noddl() RETURNS event_trigger
 AS 'noddl' LANGUAGE C;

CREATE EVENT TRIGGER noddl ON ddl_command_start

1012

Event Triggers

 EXECUTE FUNCTION noddl();

Now you can test the operation of the trigger:
=# \dy
 List of event triggers
 Name | Event | Owner | Enabled | Function | Tags
-------+-------------------+-------+---------+----------+------
 noddl | ddl_command_start | dim | enabled | noddl |
(1 row)

=# CREATE TABLE foo(id serial);
ERROR: command "CREATE TABLE" denied

In this situation, in order to be able to run some DDL commands when you need to do so, you have
to either drop the event trigger or disable it. It can be convenient to disable the trigger for only the
duration of a transaction:
BEGIN;
ALTER EVENT TRIGGER noddl DISABLE;
CREATE TABLE foo (id serial);
ALTER EVENT TRIGGER noddl ENABLE;
COMMIT;

(Recall that DDL commands on event triggers themselves are not affected by event triggers.)

37.5. A Table Rewrite Event Trigger Example
Thanks to the table_rewrite event, it is possible to implement a table rewriting policy only allowing
the rewrite in maintenance windows.

Here's an example implementing such a policy.
CREATE OR REPLACE FUNCTION no_rewrite()
 RETURNS event_trigger
 LANGUAGE plpgsql AS
$$

--- Implement local Table Rewriting policy:
--- public.foo is not allowed rewriting, ever
--- other tables are only allowed rewriting between 1am and 6am
--- unless they have more than 100 blocks

DECLARE
 table_oid oid := pg_event_trigger_table_rewrite_oid();
 current_hour integer := extract('hour' from current_time);
 pages integer;
 max_pages integer := 100;
BEGIN
 IF pg_event_trigger_table_rewrite_oid() = 'public.foo'::regclass
 THEN
 RAISE EXCEPTION 'you''re not allowed to rewrite the table %',
 table_oid::regclass;
 END IF;

 SELECT INTO pages relpages FROM pg_class WHERE oid = table_oid;
 IF pages > max_pages
 THEN
 RAISE EXCEPTION 'rewrites only allowed for table with less than % pages',
 max_pages;
 END IF;

1013

Event Triggers

 IF current_hour NOT BETWEEN 1 AND 6
 THEN
 RAISE EXCEPTION 'rewrites only allowed between 1am and 6am';
 END IF;
END;
$$;

CREATE EVENT TRIGGER no_rewrite_allowed
 ON table_rewrite
 EXECUTE FUNCTION no_rewrite();

1014

Chapter 38. The Rule System
This chapter discusses the rule system in Postgres Pro. Production rule systems are conceptually simple,
but there are many subtle points involved in actually using them.

Some other database systems define active database rules, which are usually stored procedures and
triggers. In Postgres Pro, these can be implemented using functions and triggers as well.

The rule system (more precisely speaking, the query rewrite rule system) is totally different from stored
procedures and triggers. It modifies queries to take rules into consideration, and then passes the
modified query to the query planner for planning and execution. It is very powerful, and can be used for
many things such as query language procedures, views, and versions. The theoretical foundations and
the power of this rule system are also discussed in ston90b and ong90.

38.1. The Query Tree
To understand how the rule system works it is necessary to know when it is invoked and what its input
and results are.

The rule system is located between the parser and the planner. It takes the output of the parser, one
query tree, and the user-defined rewrite rules, which are also query trees with some extra information,
and creates zero or more query trees as result. So its input and output are always things the parser itself
could have produced and thus, anything it sees is basically representable as an SQL statement.

Now what is a query tree? It is an internal representation of an SQL statement where the single parts
that it is built from are stored separately. These query trees can be shown in the server log if you set
the configuration parameters debug_print_parse, debug_print_rewritten, or debug_print_plan. The
rule actions are also stored as query trees, in the system catalog pg_rewrite. They are not formatted
like the log output, but they contain exactly the same information.

Reading a raw query tree requires some experience. But since SQL representations of query trees are
sufficient to understand the rule system, this chapter will not teach how to read them.

When reading the SQL representations of the query trees in this chapter it is necessary to be able to
identify the parts the statement is broken into when it is in the query tree structure. The parts of a
query tree are
the command type

This is a simple value telling which command (SELECT, INSERT, UPDATE, DELETE) produced the query
tree.

the range table
The range table is a list of relations that are used in the query. In a SELECT statement these are the
relations given after the FROM key word.

Every range table entry identifies a table or view and tells by which name it is called in the other
parts of the query. In the query tree, the range table entries are referenced by number rather than
by name, so here it doesn't matter if there are duplicate names as it would in an SQL statement.
This can happen after the range tables of rules have been merged in. The examples in this chapter
will not have this situation.

the result relation
This is an index into the range table that identifies the relation where the results of the query go.

SELECT queries don't have a result relation. (The special case of SELECT INTO is mostly identical to
CREATE TABLE followed by INSERT ... SELECT, and is not discussed separately here.)

For INSERT, UPDATE, and DELETE commands, the result relation is the table (or view!) where the
changes are to take effect.

1015

The Rule System

the target list

The target list is a list of expressions that define the result of the query. In the case of a SELECT, these
expressions are the ones that build the final output of the query. They correspond to the expressions
between the key words SELECT and FROM. (* is just an abbreviation for all the column names of a
relation. It is expanded by the parser into the individual columns, so the rule system never sees it.)

DELETE commands don't need a normal target list because they don't produce any result. Instead,
the planner adds a special CTID entry to the empty target list, to allow the executor to find the row
to be deleted. (CTID is added when the result relation is an ordinary table. If it is a view, a whole-
row variable is added instead, by the rule system, as described in Section 38.2.4.)

For INSERT commands, the target list describes the new rows that should go into the result relation.
It consists of the expressions in the VALUES clause or the ones from the SELECT clause in INSERT ...
SELECT. The first step of the rewrite process adds target list entries for any columns that were not
assigned to by the original command but have defaults. Any remaining columns (with neither a given
value nor a default) will be filled in by the planner with a constant null expression.

For UPDATE commands, the target list describes the new rows that should replace the old ones. In
the rule system, it contains just the expressions from the SET column = expression part of the
command. The planner will handle missing columns by inserting expressions that copy the values
from the old row into the new one. Just as for DELETE, a CTID or whole-row variable is added so that
the executor can identify the old row to be updated.

Every entry in the target list contains an expression that can be a constant value, a variable pointing
to a column of one of the relations in the range table, a parameter, or an expression tree made of
function calls, constants, variables, operators, etc.

the qualification
The query's qualification is an expression much like one of those contained in the target list entries.
The result value of this expression is a Boolean that tells whether the operation (INSERT, UPDATE,
DELETE, or SELECT) for the final result row should be executed or not. It corresponds to the WHERE
clause of an SQL statement.

the join tree

The query's join tree shows the structure of the FROM clause. For a simple query like SELECT ...
FROM a, b, c, the join tree is just a list of the FROM items, because we are allowed to join them
in any order. But when JOIN expressions, particularly outer joins, are used, we have to join in the
order shown by the joins. In that case, the join tree shows the structure of the JOIN expressions.
The restrictions associated with particular JOIN clauses (from ON or USING expressions) are stored as
qualification expressions attached to those join-tree nodes. It turns out to be convenient to store the
top-level WHERE expression as a qualification attached to the top-level join-tree item, too. So really
the join tree represents both the FROM and WHERE clauses of a SELECT.

the others

The other parts of the query tree like the ORDER BY clause aren't of interest here. The rule system
substitutes some entries there while applying rules, but that doesn't have much to do with the
fundamentals of the rule system.

38.2. Views and the Rule System
Views in Postgres Pro are implemented using the rule system. In fact, there is essentially no difference
between:

CREATE VIEW myview AS SELECT * FROM mytab;

compared against the two commands:

CREATE TABLE myview (same column list as mytab);

1016

The Rule System

CREATE RULE "_RETURN" AS ON SELECT TO myview DO INSTEAD
 SELECT * FROM mytab;

because this is exactly what the CREATE VIEW command does internally. This has some side effects. One
of them is that the information about a view in the Postgres Pro system catalogs is exactly the same as
it is for a table. So for the parser, there is absolutely no difference between a table and a view. They
are the same thing: relations.

38.2.1. How SELECT Rules Work
Rules ON SELECT are applied to all queries as the last step, even if the command given is an INSERT,
UPDATE or DELETE. And they have different semantics from rules on the other command types in that
they modify the query tree in place instead of creating a new one. So SELECT rules are described first.

Currently, there can be only one action in an ON SELECT rule, and it must be an unconditional SELECT
action that is INSTEAD. This restriction was required to make rules safe enough to open them for ordinary
users, and it restricts ON SELECT rules to act like views.

The examples for this chapter are two join views that do some calculations and some more views using
them in turn. One of the two first views is customized later by adding rules for INSERT, UPDATE, and
DELETE operations so that the final result will be a view that behaves like a real table with some magic
functionality. This is not such a simple example to start from and this makes things harder to get into.
But it's better to have one example that covers all the points discussed step by step rather than having
many different ones that might mix up in mind.

The real tables we need in the first two rule system descriptions are these:
CREATE TABLE shoe_data (
 shoename text, -- primary key
 sh_avail integer, -- available number of pairs
 slcolor text, -- preferred shoelace color
 slminlen real, -- minimum shoelace length
 slmaxlen real, -- maximum shoelace length
 slunit text -- length unit
);

CREATE TABLE shoelace_data (
 sl_name text, -- primary key
 sl_avail integer, -- available number of pairs
 sl_color text, -- shoelace color
 sl_len real, -- shoelace length
 sl_unit text -- length unit
);

CREATE TABLE unit (
 un_name text, -- primary key
 un_fact real -- factor to transform to cm
);

As you can see, they represent shoe-store data.

The views are created as:
CREATE VIEW shoe AS
 SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,

1017

The Rule System

 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name;

CREATE VIEW shoelace AS
 SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

CREATE VIEW shoe_ready AS
 SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm;

The CREATE VIEW command for the shoelace view (which is the simplest one we have) will create a
relation shoelace and an entry in pg_rewrite that tells that there is a rewrite rule that must be applied
whenever the relation shoelace is referenced in a query's range table. The rule has no rule qualification
(discussed later, with the non-SELECT rules, since SELECT rules currently cannot have them) and it is
INSTEAD. Note that rule qualifications are not the same as query qualifications. The action of our rule
has a query qualification. The action of the rule is one query tree that is a copy of the SELECT statement
in the view creation command.

Note
The two extra range table entries for NEW and OLD that you can see in the pg_rewrite entry aren't
of interest for SELECT rules.

Now we populate unit, shoe_data and shoelace_data and run a simple query on a view:
INSERT INTO unit VALUES ('cm', 1.0);
INSERT INTO unit VALUES ('m', 100.0);
INSERT INTO unit VALUES ('inch', 2.54);

INSERT INTO shoe_data VALUES ('sh1', 2, 'black', 70.0, 90.0, 'cm');
INSERT INTO shoe_data VALUES ('sh2', 0, 'black', 30.0, 40.0, 'inch');
INSERT INTO shoe_data VALUES ('sh3', 4, 'brown', 50.0, 65.0, 'cm');
INSERT INTO shoe_data VALUES ('sh4', 3, 'brown', 40.0, 50.0, 'inch');

INSERT INTO shoelace_data VALUES ('sl1', 5, 'black', 80.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl2', 6, 'black', 100.0, 'cm');
INSERT INTO shoelace_data VALUES ('sl3', 0, 'black', 35.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl4', 8, 'black', 40.0 , 'inch');
INSERT INTO shoelace_data VALUES ('sl5', 4, 'brown', 1.0 , 'm');
INSERT INTO shoelace_data VALUES ('sl6', 0, 'brown', 0.9 , 'm');
INSERT INTO shoelace_data VALUES ('sl7', 7, 'brown', 60 , 'cm');
INSERT INTO shoelace_data VALUES ('sl8', 1, 'brown', 40 , 'inch');

1018

The Rule System

SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
-----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 7 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

This is the simplest SELECT you can do on our views, so we take this opportunity to explain the basics of
view rules. The SELECT * FROM shoelace was interpreted by the parser and produced the query tree:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM shoelace shoelace;

and this is given to the rule system. The rule system walks through the range table and checks if there
are rules for any relation. When processing the range table entry for shoelace (the only one up to now)
it finds the _RETURN rule with the query tree:

SELECT s.sl_name, s.sl_avail,
 s.sl_color, s.sl_len, s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name;

To expand the view, the rewriter simply creates a subquery range-table entry containing the rule's action
query tree, and substitutes this range table entry for the original one that referenced the view. The
resulting rewritten query tree is almost the same as if you had typed:

SELECT shoelace.sl_name, shoelace.sl_avail,
 shoelace.sl_color, shoelace.sl_len,
 shoelace.sl_unit, shoelace.sl_len_cm
 FROM (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,
 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) shoelace;

There is one difference however: the subquery's range table has two extra entries shoelace old and
shoelace new. These entries don't participate directly in the query, since they aren't referenced by the
subquery's join tree or target list. The rewriter uses them to store the access privilege check information
that was originally present in the range-table entry that referenced the view. In this way, the executor
will still check that the user has proper privileges to access the view, even though there's no direct use
of the view in the rewritten query.

That was the first rule applied. The rule system will continue checking the remaining range-table entries
in the top query (in this example there are no more), and it will recursively check the range-table entries
in the added subquery to see if any of them reference views. (But it won't expand old or new — otherwise
we'd have infinite recursion!) In this example, there are no rewrite rules for shoelace_data or unit, so
rewriting is complete and the above is the final result given to the planner.

1019

The Rule System

Now we want to write a query that finds out for which shoes currently in the store we have the matching
shoelaces (color and length) and where the total number of exactly matching pairs is greater than or
equal to two.

SELECT * FROM shoe_ready WHERE total_avail >= 2;

 shoename | sh_avail | sl_name | sl_avail | total_avail
----------+----------+---------+----------+-------------
 sh1 | 2 | sl1 | 5 | 2
 sh3 | 4 | sl7 | 7 | 4
(2 rows)

The output of the parser this time is the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM shoe_ready shoe_ready
 WHERE shoe_ready.total_avail >= 2;

The first rule applied will be the one for the shoe_ready view and it results in the query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM shoe rsh, shoelace rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail >= 2;

Similarly, the rules for shoe and shoelace are substituted into the range table of the subquery, leading
to a three-level final query tree:

SELECT shoe_ready.shoename, shoe_ready.sh_avail,
 shoe_ready.sl_name, shoe_ready.sl_avail,
 shoe_ready.total_avail
 FROM (SELECT rsh.shoename,
 rsh.sh_avail,
 rsl.sl_name,
 rsl.sl_avail,
 least(rsh.sh_avail, rsl.sl_avail) AS total_avail
 FROM (SELECT sh.shoename,
 sh.sh_avail,
 sh.slcolor,
 sh.slminlen,
 sh.slminlen * un.un_fact AS slminlen_cm,
 sh.slmaxlen,
 sh.slmaxlen * un.un_fact AS slmaxlen_cm,
 sh.slunit
 FROM shoe_data sh, unit un
 WHERE sh.slunit = un.un_name) rsh,
 (SELECT s.sl_name,
 s.sl_avail,
 s.sl_color,
 s.sl_len,

1020

The Rule System

 s.sl_unit,
 s.sl_len * u.un_fact AS sl_len_cm
 FROM shoelace_data s, unit u
 WHERE s.sl_unit = u.un_name) rsl
 WHERE rsl.sl_color = rsh.slcolor
 AND rsl.sl_len_cm >= rsh.slminlen_cm
 AND rsl.sl_len_cm <= rsh.slmaxlen_cm) shoe_ready
 WHERE shoe_ready.total_avail > 2;

This might look inefficient, but the planner will collapse this into a single-level query tree by “pulling
up” the subqueries, and then it will plan the joins just as if we'd written them out manually. So collapsing
the query tree is an optimization that the rewrite system doesn't have to concern itself with.

38.2.2. View Rules in Non-SELECT Statements
Two details of the query tree aren't touched in the description of view rules above. These are the
command type and the result relation. In fact, the command type is not needed by view rules, but the
result relation may affect the way in which the query rewriter works, because special care needs to be
taken if the result relation is a view.

There are only a few differences between a query tree for a SELECT and one for any other command.
Obviously, they have a different command type and for a command other than a SELECT, the result relation
points to the range-table entry where the result should go. Everything else is absolutely the same. So
having two tables t1 and t2 with columns a and b, the query trees for the two statements:

SELECT t2.b FROM t1, t2 WHERE t1.a = t2.a;

UPDATE t1 SET b = t2.b FROM t2 WHERE t1.a = t2.a;

are nearly identical. In particular:

• The range tables contain entries for the tables t1 and t2.

• The target lists contain one variable that points to column b of the range table entry for table t2.

• The qualification expressions compare the columns a of both range-table entries for equality.

• The join trees show a simple join between t1 and t2.

The consequence is, that both query trees result in similar execution plans: They are both joins over the
two tables. For the UPDATE the missing columns from t1 are added to the target list by the planner and
the final query tree will read as:

UPDATE t1 SET a = t1.a, b = t2.b FROM t2 WHERE t1.a = t2.a;

and thus the executor run over the join will produce exactly the same result set as:

SELECT t1.a, t2.b FROM t1, t2 WHERE t1.a = t2.a;

But there is a little problem in UPDATE: the part of the executor plan that does the join does not care
what the results from the join are meant for. It just produces a result set of rows. The fact that one is a
SELECT command and the other is an UPDATE is handled higher up in the executor, where it knows that
this is an UPDATE, and it knows that this result should go into table t1. But which of the rows that are
there has to be replaced by the new row?

To resolve this problem, another entry is added to the target list in UPDATE (and also in DELETE)
statements: the current tuple ID (CTID). This is a system column containing the file block number and
position in the block for the row. Knowing the table, the CTID can be used to retrieve the original row
of t1 to be updated. After adding the CTID to the target list, the query actually looks like:

SELECT t1.a, t2.b, t1.ctid FROM t1, t2 WHERE t1.a = t2.a;

Now another detail of Postgres Pro enters the stage. Old table rows aren't overwritten, and this is why
ROLLBACK is fast. In an UPDATE, the new result row is inserted into the table (after stripping the CTID)

1021

The Rule System

and in the row header of the old row, which the CTID pointed to, the cmax and xmax entries are set
to the current command counter and current transaction ID. Thus the old row is hidden, and after the
transaction commits the vacuum cleaner can eventually remove the dead row.

Knowing all that, we can simply apply view rules in absolutely the same way to any command. There
is no difference.

38.2.3. The Power of Views in Postgres Pro
The above demonstrates how the rule system incorporates view definitions into the original query tree.
In the second example, a simple SELECT from one view created a final query tree that is a join of 4 tables
(unit was used twice with different names).

The benefit of implementing views with the rule system is that the planner has all the information
about which tables have to be scanned plus the relationships between these tables plus the restrictive
qualifications from the views plus the qualifications from the original query in one single query tree. And
this is still the situation when the original query is already a join over views. The planner has to decide
which is the best path to execute the query, and the more information the planner has, the better this
decision can be. And the rule system as implemented in Postgres Pro ensures that this is all information
available about the query up to that point.

38.2.4. Updating a View
What happens if a view is named as the target relation for an INSERT, UPDATE, or DELETE? Doing the
substitutions described above would give a query tree in which the result relation points at a subquery
range-table entry, which will not work. There are several ways in which Postgres Pro can support the
appearance of updating a view, however.

If the subquery selects from a single base relation and is simple enough, the rewriter can automatically
replace the subquery with the underlying base relation so that the INSERT, UPDATE, or DELETE is applied to
the base relation in the appropriate way. Views that are “simple enough” for this are called automatically
updatable. For detailed information on the kinds of view that can be automatically updated, see CREATE
VIEW.

Alternatively, the operation may be handled by a user-provided INSTEAD OF trigger on the view. Rewriting
works slightly differently in this case. For INSERT, the rewriter does nothing at all with the view, leaving
it as the result relation for the query. For UPDATE and DELETE, it's still necessary to expand the view query
to produce the “old” rows that the command will attempt to update or delete. So the view is expanded
as normal, but another unexpanded range-table entry is added to the query to represent the view in its
capacity as the result relation.

The problem that now arises is how to identify the rows to be updated in the view. Recall that when the
result relation is a table, a special CTID entry is added to the target list to identify the physical locations
of the rows to be updated. This does not work if the result relation is a view, because a view does not
have any CTID, since its rows do not have actual physical locations. Instead, for an UPDATE or DELETE
operation, a special wholerow entry is added to the target list, which expands to include all columns
from the view. The executor uses this value to supply the “old” row to the INSTEAD OF trigger. It is up to
the trigger to work out what to update based on the old and new row values.

Another possibility is for the user to define INSTEAD rules that specify substitute actions for INSERT,
UPDATE, and DELETE commands on a view. These rules will rewrite the command, typically into a command
that updates one or more tables, rather than views. That is the topic of Section 38.4.

Note that rules are evaluated first, rewriting the original query before it is planned and executed.
Therefore, if a view has INSTEAD OF triggers as well as rules on INSERT, UPDATE, or DELETE, then the
rules will be evaluated first, and depending on the result, the triggers may not be used at all.

Automatic rewriting of an INSERT, UPDATE, or DELETE query on a simple view is always tried last.
Therefore, if a view has rules or triggers, they will override the default behavior of automatically
updatable views.

1022

The Rule System

If there are no INSTEAD rules or INSTEAD OF triggers for the view, and the rewriter cannot automatically
rewrite the query as an update on the underlying base relation, an error will be thrown because the
executor cannot update a view as such.

38.3. Materialized Views
Materialized views in Postgres Pro use the rule system like views do, but persist the results in a table-
like form. The main differences between:
CREATE MATERIALIZED VIEW mymatview AS SELECT * FROM mytab;

and:
CREATE TABLE mymatview AS SELECT * FROM mytab;

are that the materialized view cannot subsequently be directly updated and that the query used to create
the materialized view is stored in exactly the same way that a view's query is stored, so that fresh data
can be generated for the materialized view with:
REFRESH MATERIALIZED VIEW mymatview;

The information about a materialized view in the Postgres Pro system catalogs is exactly the same as it
is for a table or view. So for the parser, a materialized view is a relation, just like a table or a view. When
a materialized view is referenced in a query, the data is returned directly from the materialized view,
like from a table; the rule is only used for populating the materialized view.

While access to the data stored in a materialized view is often much faster than accessing the underlying
tables directly or through a view, the data is not always current; yet sometimes current data is not
needed. Consider a table which records sales:
CREATE TABLE invoice (
 invoice_no integer PRIMARY KEY,
 seller_no integer, -- ID of salesperson
 invoice_date date, -- date of sale
 invoice_amt numeric(13,2) -- amount of sale
);

If people want to be able to quickly graph historical sales data, they might want to summarize, and they
may not care about the incomplete data for the current date:
CREATE MATERIALIZED VIEW sales_summary AS
 SELECT
 seller_no,
 invoice_date,
 sum(invoice_amt)::numeric(13,2) as sales_amt
 FROM invoice
 WHERE invoice_date < CURRENT_DATE
 GROUP BY
 seller_no,
 invoice_date;

CREATE UNIQUE INDEX sales_summary_seller
 ON sales_summary (seller_no, invoice_date);

This materialized view might be useful for displaying a graph in the dashboard created for salespeople.
A job could be scheduled to update the statistics each night using this SQL statement:
REFRESH MATERIALIZED VIEW sales_summary;

Another use for a materialized view is to allow faster access to data brought across from a remote system
through a foreign data wrapper. A simple example using file_fdw is below, with timings, but since this
is using cache on the local system the performance difference compared to access to a remote system
would usually be greater than shown here. Notice we are also exploiting the ability to put an index on
the materialized view, whereas file_fdw does not support indexes; this advantage might not apply for
other sorts of foreign data access.

1023

The Rule System

Setup:
CREATE EXTENSION file_fdw;
CREATE SERVER local_file FOREIGN DATA WRAPPER file_fdw;
CREATE FOREIGN TABLE words (word text NOT NULL)
 SERVER local_file
 OPTIONS (filename '/usr/share/dict/words');
CREATE MATERIALIZED VIEW wrd AS SELECT * FROM words;
CREATE UNIQUE INDEX wrd_word ON wrd (word);
CREATE EXTENSION pg_trgm;
CREATE INDEX wrd_trgm ON wrd USING gist (word gist_trgm_ops);
VACUUM ANALYZE wrd;

Now let's spell-check a word. Using file_fdw directly:
SELECT count(*) FROM words WHERE word = 'caterpiler';

 count

 0
(1 row)

With EXPLAIN ANALYZE, we see:
 Aggregate (cost=21763.99..21764.00 rows=1 width=0) (actual time=188.180..188.181
 rows=1 loops=1)
 -> Foreign Scan on words (cost=0.00..21761.41 rows=1032 width=0) (actual
 time=188.177..188.177 rows=0 loops=1)
 Filter: (word = 'caterpiler'::text)
 Rows Removed by Filter: 479829
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.118 ms
 Execution time: 188.273 ms

If the materialized view is used instead, the query is much faster:
 Aggregate (cost=4.44..4.45 rows=1 width=0) (actual time=0.042..0.042 rows=1 loops=1)
 -> Index Only Scan using wrd_word on wrd (cost=0.42..4.44 rows=1 width=0) (actual
 time=0.039..0.039 rows=0 loops=1)
 Index Cond: (word = 'caterpiler'::text)
 Heap Fetches: 0
 Planning time: 0.164 ms
 Execution time: 0.117 ms

Either way, the word is spelled wrong, so let's look for what we might have wanted. Again using file_fdw
and pg_trgm:
SELECT word FROM words ORDER BY word <-> 'caterpiler' LIMIT 10;

 word

 cater
 caterpillar
 Caterpillar
 caterpillars
 caterpillar's
 Caterpillar's
 caterer
 caterer's
 caters
 catered
(10 rows)

1024

The Rule System

 Limit (cost=11583.61..11583.64 rows=10 width=32) (actual time=1431.591..1431.594
 rows=10 loops=1)
 -> Sort (cost=11583.61..11804.76 rows=88459 width=32) (actual
 time=1431.589..1431.591 rows=10 loops=1)
 Sort Key: ((word <-> 'caterpiler'::text))
 Sort Method: top-N heapsort Memory: 25kB
 -> Foreign Scan on words (cost=0.00..9672.05 rows=88459 width=32) (actual
 time=0.057..1286.455 rows=479829 loops=1)
 Foreign File: /usr/share/dict/words
 Foreign File Size: 4953699
 Planning time: 0.128 ms
 Execution time: 1431.679 ms

Using the materialized view:
 Limit (cost=0.29..1.06 rows=10 width=10) (actual time=187.222..188.257 rows=10
 loops=1)
 -> Index Scan using wrd_trgm on wrd (cost=0.29..37020.87 rows=479829 width=10)
 (actual time=187.219..188.252 rows=10 loops=1)
 Order By: (word <-> 'caterpiler'::text)
 Planning time: 0.196 ms
 Execution time: 198.640 ms

If you can tolerate periodic update of the remote data to the local database, the performance benefit
can be substantial.

38.4. Rules on INSERT, UPDATE, and DELETE
Rules that are defined on INSERT, UPDATE, and DELETE are significantly different from the view rules
described in the previous section. First, their CREATE RULE command allows more:
• They are allowed to have no action.
• They can have multiple actions.
• They can be INSTEAD or ALSO (the default).
• The pseudorelations NEW and OLD become useful.
• They can have rule qualifications.
Second, they don't modify the query tree in place. Instead they create zero or more new query trees
and can throw away the original one.

Caution
In many cases, tasks that could be performed by rules on INSERT/UPDATE/DELETE are better done
with triggers. Triggers are notationally a bit more complicated, but their semantics are much
simpler to understand. Rules tend to have surprising results when the original query contains
volatile functions: volatile functions may get executed more times than expected in the process
of carrying out the rules.

Also, there are some cases that are not supported by these types of rules at all, notably including
WITH clauses in the original query and multiple-assignment sub-SELECTs in the SET list of UPDATE
queries. This is because copying these constructs into a rule query would result in multiple
evaluations of the sub-query, contrary to the express intent of the query's author.

38.4.1. How Update Rules Work
Keep the syntax:
CREATE [OR REPLACE] RULE name AS ON event

1025

The Rule System

 TO table [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

in mind. In the following, update rules means rules that are defined on INSERT, UPDATE, or DELETE.

Update rules get applied by the rule system when the result relation and the command type of a query
tree are equal to the object and event given in the CREATE RULE command. For update rules, the rule
system creates a list of query trees. Initially the query-tree list is empty. There can be zero (NOTHING key
word), one, or multiple actions. To simplify, we will look at a rule with one action. This rule can have a
qualification or not and it can be INSTEAD or ALSO (the default).

What is a rule qualification? It is a restriction that tells when the actions of the rule should be done
and when not. This qualification can only reference the pseudorelations NEW and/or OLD, which basically
represent the relation that was given as object (but with a special meaning).

So we have three cases that produce the following query trees for a one-action rule.
No qualification, with either ALSO or INSTEAD

the query tree from the rule action with the original query tree's qualification added

Qualification given and ALSO
the query tree from the rule action with the rule qualification and the original query tree's
qualification added

Qualification given and INSTEAD
the query tree from the rule action with the rule qualification and the original query tree's
qualification; and the original query tree with the negated rule qualification added

Finally, if the rule is ALSO, the unchanged original query tree is added to the list. Since only qualified
INSTEAD rules already add the original query tree, we end up with either one or two output query trees
for a rule with one action.

For ON INSERT rules, the original query (if not suppressed by INSTEAD) is done before any actions added
by rules. This allows the actions to see the inserted row(s). But for ON UPDATE and ON DELETE rules,
the original query is done after the actions added by rules. This ensures that the actions can see the to-
be-updated or to-be-deleted rows; otherwise, the actions might do nothing because they find no rows
matching their qualifications.

The query trees generated from rule actions are thrown into the rewrite system again, and maybe more
rules get applied resulting in additional or fewer query trees. So a rule's actions must have either a
different command type or a different result relation than the rule itself is on, otherwise this recursive
process will end up in an infinite loop. (Recursive expansion of a rule will be detected and reported as
an error.)

The query trees found in the actions of the pg_rewrite system catalog are only templates. Since they can
reference the range-table entries for NEW and OLD, some substitutions have to be made before they can
be used. For any reference to NEW, the target list of the original query is searched for a corresponding
entry. If found, that entry's expression replaces the reference. Otherwise, NEW means the same as OLD
(for an UPDATE) or is replaced by a null value (for an INSERT). Any reference to OLD is replaced by a
reference to the range-table entry that is the result relation.

After the system is done applying update rules, it applies view rules to the produced query tree(s). Views
cannot insert new update actions so there is no need to apply update rules to the output of view rewriting.

38.4.1.1. A First Rule Step by Step
Say we want to trace changes to the sl_avail column in the shoelace_data relation. So we set up a log
table and a rule that conditionally writes a log entry when an UPDATE is performed on shoelace_data.
CREATE TABLE shoelace_log (
 sl_name text, -- shoelace changed

1026

The Rule System

 sl_avail integer, -- new available value
 log_who text, -- who did it
 log_when timestamp -- when
);

CREATE RULE log_shoelace AS ON UPDATE TO shoelace_data
 WHERE NEW.sl_avail <> OLD.sl_avail
 DO INSERT INTO shoelace_log VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 current_user,
 current_timestamp
);

Now someone does:
UPDATE shoelace_data SET sl_avail = 6 WHERE sl_name = 'sl7';

and we look at the log table:
SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who | log_when
---------+----------+---------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 16:14:45 1998 MET DST
(1 row)

That's what we expected. What happened in the background is the following. The parser created the
query tree:
UPDATE shoelace_data SET sl_avail = 6
 FROM shoelace_data shoelace_data
 WHERE shoelace_data.sl_name = 'sl7';

There is a rule log_shoelace that is ON UPDATE with the rule qualification expression:
NEW.sl_avail <> OLD.sl_avail

and the action:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old;

(This looks a little strange since you cannot normally write INSERT ... VALUES ... FROM. The FROM
clause here is just to indicate that there are range-table entries in the query tree for new and old. These
are needed so that they can be referenced by variables in the INSERT command's query tree.)

The rule is a qualified ALSO rule, so the rule system has to return two query trees: the modified rule
action and the original query tree. In step 1, the range table of the original query is incorporated into
the rule's action query tree. This results in:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data;

In step 2, the rule qualification is added to it, so the result set is restricted to rows where sl_avail
changes:
INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)

1027

The Rule System

 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail;

(This looks even stranger, since INSERT ... VALUES doesn't have a WHERE clause either, but the planner
and executor will have no difficulty with it. They need to support this same functionality anyway for
INSERT ... SELECT.)

In step 3, the original query tree's qualification is added, restricting the result set further to only the
rows that would have been touched by the original query:

INSERT INTO shoelace_log VALUES (
 new.sl_name, new.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE new.sl_avail <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 4 replaces references to NEW by the target list entries from the original query tree or by the matching
variable references from the result relation:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> old.sl_avail
 AND shoelace_data.sl_name = 'sl7';

Step 5 changes OLD references into result relation references:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data new, shoelace_data old,
 shoelace_data shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

That's it. Since the rule is ALSO, we also output the original query tree. In short, the output from the rule
system is a list of two query trees that correspond to these statements:

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, 6,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE 6 <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

UPDATE shoelace_data SET sl_avail = 6
 WHERE sl_name = 'sl7';

These are executed in this order, and that is exactly what the rule was meant to do.

The substitutions and the added qualifications ensure that, if the original query would be, say:

UPDATE shoelace_data SET sl_color = 'green'
 WHERE sl_name = 'sl7';

no log entry would get written. In that case, the original query tree does not contain a target list entry
for sl_avail, so NEW.sl_avail will get replaced by shoelace_data.sl_avail. Thus, the extra command
generated by the rule is:

1028

The Rule System

INSERT INTO shoelace_log VALUES (
 shoelace_data.sl_name, shoelace_data.sl_avail,
 current_user, current_timestamp)
 FROM shoelace_data
 WHERE shoelace_data.sl_avail <> shoelace_data.sl_avail
 AND shoelace_data.sl_name = 'sl7';

and that qualification will never be true.

It will also work if the original query modifies multiple rows. So if someone issued the command:
UPDATE shoelace_data SET sl_avail = 0
 WHERE sl_color = 'black';

four rows in fact get updated (sl1, sl2, sl3, and sl4). But sl3 already has sl_avail = 0. In this case,
the original query trees qualification is different and that results in the extra query tree:
INSERT INTO shoelace_log
SELECT shoelace_data.sl_name, 0,
 current_user, current_timestamp
 FROM shoelace_data
 WHERE 0 <> shoelace_data.sl_avail
 AND shoelace_data.sl_color = 'black';

being generated by the rule. This query tree will surely insert three new log entries. And that's absolutely
correct.

Here we can see why it is important that the original query tree is executed last. If the UPDATE had been
executed first, all the rows would have already been set to zero, so the logging INSERT would not find
any row where 0 <> shoelace_data.sl_avail.

38.4.2. Cooperation with Views
A simple way to protect view relations from the mentioned possibility that someone can try to run INSERT,
UPDATE, or DELETE on them is to let those query trees get thrown away. So we could create the rules:
CREATE RULE shoe_ins_protect AS ON INSERT TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_upd_protect AS ON UPDATE TO shoe
 DO INSTEAD NOTHING;
CREATE RULE shoe_del_protect AS ON DELETE TO shoe
 DO INSTEAD NOTHING;

If someone now tries to do any of these operations on the view relation shoe, the rule system will apply
these rules. Since the rules have no actions and are INSTEAD, the resulting list of query trees will be
empty and the whole query will become nothing because there is nothing left to be optimized or executed
after the rule system is done with it.

A more sophisticated way to use the rule system is to create rules that rewrite the query tree into one
that does the right operation on the real tables. To do that on the shoelace view, we create the following
rules:
CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
);

CREATE RULE shoelace_upd AS ON UPDATE TO shoelace

1029

The Rule System

 DO INSTEAD
 UPDATE shoelace_data
 SET sl_name = NEW.sl_name,
 sl_avail = NEW.sl_avail,
 sl_color = NEW.sl_color,
 sl_len = NEW.sl_len,
 sl_unit = NEW.sl_unit
 WHERE sl_name = OLD.sl_name;

CREATE RULE shoelace_del AS ON DELETE TO shoelace
 DO INSTEAD
 DELETE FROM shoelace_data
 WHERE sl_name = OLD.sl_name;

If you want to support RETURNING queries on the view, you need to make the rules include RETURNING
clauses that compute the view rows. This is usually pretty trivial for views on a single table, but it's a bit
tedious for join views such as shoelace. An example for the insert case is:
CREATE RULE shoelace_ins AS ON INSERT TO shoelace
 DO INSTEAD
 INSERT INTO shoelace_data VALUES (
 NEW.sl_name,
 NEW.sl_avail,
 NEW.sl_color,
 NEW.sl_len,
 NEW.sl_unit
)
 RETURNING
 shoelace_data.*,
 (SELECT shoelace_data.sl_len * u.un_fact
 FROM unit u WHERE shoelace_data.sl_unit = u.un_name);

Note that this one rule supports both INSERT and INSERT RETURNING queries on the view — the RETURNING
clause is simply ignored for INSERT.

Now assume that once in a while, a pack of shoelaces arrives at the shop and a big parts list along with
it. But you don't want to manually update the shoelace view every time. Instead we set up two little
tables: one where you can insert the items from the part list, and one with a special trick. The creation
commands for these are:
CREATE TABLE shoelace_arrive (
 arr_name text,
 arr_quant integer
);

CREATE TABLE shoelace_ok (
 ok_name text,
 ok_quant integer
);

CREATE RULE shoelace_ok_ins AS ON INSERT TO shoelace_ok
 DO INSTEAD
 UPDATE shoelace
 SET sl_avail = sl_avail + NEW.ok_quant
 WHERE sl_name = NEW.ok_name;

Now you can fill the table shoelace_arrive with the data from the parts list:
SELECT * FROM shoelace_arrive;

 arr_name | arr_quant

1030

The Rule System

----------+-----------
 sl3 | 10
 sl6 | 20
 sl8 | 20
(3 rows)

Take a quick look at the current data:
SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl3 | 0 | black | 35 | inch | 88.9
 sl4 | 8 | black | 40 | inch | 101.6
 sl8 | 1 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 0 | brown | 0.9 | m | 90
(8 rows)

Now move the arrived shoelaces in:
INSERT INTO shoelace_ok SELECT * FROM shoelace_arrive;

and check the results:
SELECT * FROM shoelace ORDER BY sl_name;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
----------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(8 rows)

SELECT * FROM shoelace_log;

 sl_name | sl_avail | log_who| log_when
---------+----------+--------+----------------------------------
 sl7 | 6 | Al | Tue Oct 20 19:14:45 1998 MET DST
 sl3 | 10 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl6 | 20 | Al | Tue Oct 20 19:25:16 1998 MET DST
 sl8 | 21 | Al | Tue Oct 20 19:25:16 1998 MET DST
(4 rows)

It's a long way from the one INSERT ... SELECT to these results. And the description of the query-tree
transformation will be the last in this chapter. First, there is the parser's output:
INSERT INTO shoelace_ok
SELECT shoelace_arrive.arr_name, shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok;

Now the first rule shoelace_ok_ins is applied and turns this into:
UPDATE shoelace
 SET sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant

1031

The Rule System

 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace
 WHERE shoelace.sl_name = shoelace_arrive.arr_name;

and throws away the original INSERT on shoelace_ok. This rewritten query is passed to the rule system
again, and the second applied rule shoelace_upd produces:
UPDATE shoelace_data
 SET sl_name = shoelace.sl_name,
 sl_avail = shoelace.sl_avail + shoelace_arrive.arr_quant,
 sl_color = shoelace.sl_color,
 sl_len = shoelace.sl_len,
 sl_unit = shoelace.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data
 WHERE shoelace.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = shoelace.sl_name;

Again it's an INSTEAD rule and the previous query tree is trashed. Note that this query still uses the
view shoelace. But the rule system isn't finished with this step, so it continues and applies the _RETURN
rule on it, and we get:
UPDATE shoelace_data
 SET sl_name = s.sl_name,
 sl_avail = s.sl_avail + shoelace_arrive.arr_quant,
 sl_color = s.sl_color,
 sl_len = s.sl_len,
 sl_unit = s.sl_unit
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name;

Finally, the rule log_shoelace gets applied, producing the extra query tree:
INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_ok shoelace_ok,
 shoelace_ok old, shoelace_ok new,
 shoelace shoelace, shoelace old,
 shoelace new, shoelace_data shoelace_data,
 shoelace old, shoelace new,
 shoelace_data s, unit u,
 shoelace_data old, shoelace_data new
 shoelace_log shoelace_log
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND (s.sl_avail + shoelace_arrive.arr_quant) <> s.sl_avail;

After that the rule system runs out of rules and returns the generated query trees.

So we end up with two final query trees that are equivalent to the SQL statements:

1032

The Rule System

INSERT INTO shoelace_log
SELECT s.sl_name,
 s.sl_avail + shoelace_arrive.arr_quant,
 current_user,
 current_timestamp
 FROM shoelace_arrive shoelace_arrive, shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.arr_name
 AND shoelace_data.sl_name = s.sl_name
 AND s.sl_avail + shoelace_arrive.arr_quant <> s.sl_avail;

UPDATE shoelace_data
 SET sl_avail = shoelace_data.sl_avail + shoelace_arrive.arr_quant
 FROM shoelace_arrive shoelace_arrive,
 shoelace_data shoelace_data,
 shoelace_data s
 WHERE s.sl_name = shoelace_arrive.sl_name
 AND shoelace_data.sl_name = s.sl_name;

The result is that data coming from one relation inserted into another, changed into updates on a third,
changed into updating a fourth plus logging that final update in a fifth gets reduced into two queries.

There is a little detail that's a bit ugly. Looking at the two queries, it turns out that the shoelace_data
relation appears twice in the range table where it could definitely be reduced to one. The planner does
not handle it and so the execution plan for the rule systems output of the INSERT will be

Nested Loop
 -> Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive
 -> Seq Scan on shoelace_data

while omitting the extra range table entry would result in a

Merge Join
 -> Seq Scan
 -> Sort
 -> Seq Scan on s
 -> Seq Scan
 -> Sort
 -> Seq Scan on shoelace_arrive

which produces exactly the same entries in the log table. Thus, the rule system caused one extra scan
on the table shoelace_data that is absolutely not necessary. And the same redundant scan is done once
more in the UPDATE. But it was a really hard job to make that all possible at all.

Now we make a final demonstration of the Postgres Pro rule system and its power. Say you add some
shoelaces with extraordinary colors to your database:

INSERT INTO shoelace VALUES ('sl9', 0, 'pink', 35.0, 'inch', 0.0);
INSERT INTO shoelace VALUES ('sl10', 1000, 'magenta', 40.0, 'inch', 0.0);

We would like to make a view to check which shoelace entries do not fit any shoe in color. The view
for this is:

CREATE VIEW shoelace_mismatch AS
 SELECT * FROM shoelace WHERE NOT EXISTS
 (SELECT shoename FROM shoe WHERE slcolor = sl_color);

1033

The Rule System

Its output is:
SELECT * FROM shoelace_mismatch;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl9 | 0 | pink | 35 | inch | 88.9
 sl10 | 1000 | magenta | 40 | inch | 101.6

Now we want to set it up so that mismatching shoelaces that are not in stock are deleted from the
database. To make it a little harder for Postgres Pro, we don't delete it directly. Instead we create one
more view:
CREATE VIEW shoelace_can_delete AS
 SELECT * FROM shoelace_mismatch WHERE sl_avail = 0;

and do it this way:
DELETE FROM shoelace WHERE EXISTS
 (SELECT * FROM shoelace_can_delete
 WHERE sl_name = shoelace.sl_name);

Voilà:
SELECT * FROM shoelace;

 sl_name | sl_avail | sl_color | sl_len | sl_unit | sl_len_cm
---------+----------+----------+--------+---------+-----------
 sl1 | 5 | black | 80 | cm | 80
 sl2 | 6 | black | 100 | cm | 100
 sl7 | 6 | brown | 60 | cm | 60
 sl4 | 8 | black | 40 | inch | 101.6
 sl3 | 10 | black | 35 | inch | 88.9
 sl8 | 21 | brown | 40 | inch | 101.6
 sl10 | 1000 | magenta | 40 | inch | 101.6
 sl5 | 4 | brown | 1 | m | 100
 sl6 | 20 | brown | 0.9 | m | 90
(9 rows)

A DELETE on a view, with a subquery qualification that in total uses 4 nesting/joined views, where one of
them itself has a subquery qualification containing a view and where calculated view columns are used,
gets rewritten into one single query tree that deletes the requested data from a real table.

There are probably only a few situations out in the real world where such a construct is necessary. But
it makes you feel comfortable that it works.

38.5. Rules and Privileges
Due to rewriting of queries by the Postgres Pro rule system, other tables/views than those used in the
original query get accessed. When update rules are used, this can include write access to tables.

Rewrite rules don't have a separate owner. The owner of a relation (table or view) is automatically the
owner of the rewrite rules that are defined for it. The Postgres Pro rule system changes the behavior of
the default access control system. Relations that are used due to rules get checked against the privileges
of the rule owner, not the user invoking the rule. This means that users only need the required privileges
for the tables/views that are explicitly named in their queries.

For example: A user has a list of phone numbers where some of them are private, the others are of
interest for the assistant of the office. The user can construct the following:
CREATE TABLE phone_data (person text, phone text, private boolean);
CREATE VIEW phone_number AS
 SELECT person, CASE WHEN NOT private THEN phone END AS phone

1034

The Rule System

 FROM phone_data;
GRANT SELECT ON phone_number TO assistant;

Nobody except that user (and the database superusers) can access the phone_data table. But because
of the GRANT, the assistant can run a SELECT on the phone_number view. The rule system will rewrite the
SELECT from phone_number into a SELECT from phone_data. Since the user is the owner of phone_number
and therefore the owner of the rule, the read access to phone_data is now checked against the user's
privileges and the query is permitted. The check for accessing phone_number is also performed, but this
is done against the invoking user, so nobody but the user and the assistant can use it.

The privileges are checked rule by rule. So the assistant is for now the only one who can see the public
phone numbers. But the assistant can set up another view and grant access to that to the public. Then,
anyone can see the phone_number data through the assistant's view. What the assistant cannot do is to
create a view that directly accesses phone_data. (Actually the assistant can, but it will not work since
every access will be denied during the permission checks.) And as soon as the user notices that the
assistant opened their phone_number view, the user can revoke the assistant's access. Immediately, any
access to the assistant's view would fail.

One might think that this rule-by-rule checking is a security hole, but in fact it isn't. But if it did not work
this way, the assistant could set up a table with the same columns as phone_number and copy the data
to there once per day. Then it's the assistant's own data and the assistant can grant access to everyone
they want. A GRANT command means, “I trust you”. If someone you trust does the thing above, it's time
to think it over and then use REVOKE.

Note that while views can be used to hide the contents of certain columns using the technique shown
above, they cannot be used to reliably conceal the data in unseen rows unless the security_barrier
flag has been set. For example, the following view is insecure:
CREATE VIEW phone_number AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

This view might seem secure, since the rule system will rewrite any SELECT from phone_number into a
SELECT from phone_data and add the qualification that only entries where phone does not begin with
412 are wanted. But if the user can create their own functions, it is not difficult to convince the planner
to execute the user-defined function prior to the NOT LIKE expression. For example:
CREATE FUNCTION tricky(text, text) RETURNS bool AS $$
BEGIN
 RAISE NOTICE '% => %', $1, $2;
 RETURN true;
END;
$$ LANGUAGE plpgsql COST 0.0000000000000000000001;

SELECT * FROM phone_number WHERE tricky(person, phone);

Every person and phone number in the phone_data table will be printed as a NOTICE, because the planner
will choose to execute the inexpensive tricky function before the more expensive NOT LIKE. Even if
the user is prevented from defining new functions, built-in functions can be used in similar attacks. (For
example, most casting functions include their input values in the error messages they produce.)

Similar considerations apply to update rules. In the examples of the previous section, the owner of the
tables in the example database could grant the privileges SELECT, INSERT, UPDATE, and DELETE on the
shoelace view to someone else, but only SELECT on shoelace_log. The rule action to write log entries
will still be executed successfully, and that other user could see the log entries. But they could not create
fake entries, nor could they manipulate or remove existing ones. In this case, there is no possibility
of subverting the rules by convincing the planner to alter the order of operations, because the only
rule which references shoelace_log is an unqualified INSERT. This might not be true in more complex
scenarios.

When it is necessary for a view to provide row level security, the security_barrier attribute should be
applied to the view. This prevents maliciously-chosen functions and operators from being passed values

1035

The Rule System

from rows until after the view has done its work. For example, if the view shown above had been created
like this, it would be secure:

CREATE VIEW phone_number WITH (security_barrier) AS
 SELECT person, phone FROM phone_data WHERE phone NOT LIKE '412%';

Views created with the security_barrier may perform far worse than views created without this option.
In general, there is no way to avoid this: the fastest possible plan must be rejected if it may compromise
security. For this reason, this option is not enabled by default.

The query planner has more flexibility when dealing with functions that have no side effects. Such
functions are referred to as LEAKPROOF, and include many simple, commonly used operators, such as
many equality operators. The query planner can safely allow such functions to be evaluated at any
point in the query execution process, since invoking them on rows invisible to the user will not leak
any information about the unseen rows. Further, functions which do not take arguments or which are
not passed any arguments from the security barrier view do not have to be marked as LEAKPROOF to
be pushed down, as they never receive data from the view. In contrast, a function that might throw an
error depending on the values received as arguments (such as one that throws an error in the event
of overflow or division by zero) is not leak-proof, and could provide significant information about the
unseen rows if applied before the security view's row filters.

It is important to understand that even a view created with the security_barrier option is intended to
be secure only in the limited sense that the contents of the invisible tuples will not be passed to possibly-
insecure functions. The user may well have other means of making inferences about the unseen data;
for example, they can see the query plan using EXPLAIN, or measure the run time of queries against the
view. A malicious attacker might be able to infer something about the amount of unseen data, or even
gain some information about the data distribution or most common values (since these things may affect
the run time of the plan; or even, since they are also reflected in the optimizer statistics, the choice
of plan). If these types of "covert channel" attacks are of concern, it is probably unwise to grant any
access to the data at all.

38.6. Rules and Command Status
The Postgres Pro server returns a command status string, such as INSERT 149592 1, for each command
it receives. This is simple enough when there are no rules involved, but what happens when the query
is rewritten by rules?

Rules affect the command status as follows:

• If there is no unconditional INSTEAD rule for the query, then the originally given query will be
executed, and its command status will be returned as usual. (But note that if there were any
conditional INSTEAD rules, the negation of their qualifications will have been added to the original
query. This might reduce the number of rows it processes, and if so the reported status will be
affected.)

• If there is any unconditional INSTEAD rule for the query, then the original query will not be executed
at all. In this case, the server will return the command status for the last query that was inserted by
an INSTEAD rule (conditional or unconditional) and is of the same command type (INSERT, UPDATE,
or DELETE) as the original query. If no query meeting those requirements is added by any rule, then
the returned command status shows the original query type and zeroes for the row-count and OID
fields.

The programmer can ensure that any desired INSTEAD rule is the one that sets the command status in
the second case, by giving it the alphabetically last rule name among the active rules, so that it gets
applied last.

38.7. Rules Versus Triggers
Many things that can be done using triggers can also be implemented using the Postgres Pro rule system.
One of the things that cannot be implemented by rules are some kinds of constraints, especially foreign

1036

The Rule System

keys. It is possible to place a qualified rule that rewrites a command to NOTHING if the value of a column
does not appear in another table. But then the data is silently thrown away and that's not a good idea.
If checks for valid values are required, and in the case of an invalid value an error message should be
generated, it must be done by a trigger.

In this chapter, we focused on using rules to update views. All of the update rule examples in this chapter
can also be implemented using INSTEAD OF triggers on the views. Writing such triggers is often easier
than writing rules, particularly if complex logic is required to perform the update.

For the things that can be implemented by both, which is best depends on the usage of the database. A
trigger is fired once for each affected row. A rule modifies the query or generates an additional query. So
if many rows are affected in one statement, a rule issuing one extra command is likely to be faster than
a trigger that is called for every single row and must re-determine what to do many times. However, the
trigger approach is conceptually far simpler than the rule approach, and is easier for novices to get right.

Here we show an example of how the choice of rules versus triggers plays out in one situation. There
are two tables:

CREATE TABLE computer (
 hostname text, -- indexed
 manufacturer text -- indexed
);

CREATE TABLE software (
 software text, -- indexed
 hostname text -- indexed
);

Both tables have many thousands of rows and the indexes on hostname are unique. The rule or trigger
should implement a constraint that deletes rows from software that reference a deleted computer. The
trigger would use this command:

DELETE FROM software WHERE hostname = $1;

Since the trigger is called for each individual row deleted from computer, it can prepare and save the
plan for this command and pass the hostname value in the parameter. The rule would be written as:

CREATE RULE computer_del AS ON DELETE TO computer
 DO DELETE FROM software WHERE hostname = OLD.hostname;

Now we look at different types of deletes. In the case of a:

DELETE FROM computer WHERE hostname = 'mypc.local.net';

the table computer is scanned by index (fast), and the command issued by the trigger would also use an
index scan (also fast). The extra command from the rule would be:

DELETE FROM software WHERE computer.hostname = 'mypc.local.net'
 AND software.hostname = computer.hostname;

Since there are appropriate indexes set up, the planner will create a plan of

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

So there would be not that much difference in speed between the trigger and the rule implementation.

With the next delete we want to get rid of all the 2000 computers where the hostname starts with old.
There are two possible commands to do that. One is:

DELETE FROM computer WHERE hostname >= 'old'
 AND hostname < 'ole'

The command added by the rule will be:

1037

The Rule System

DELETE FROM software WHERE computer.hostname >= 'old' AND computer.hostname < 'ole'
 AND software.hostname = computer.hostname;

with the plan

Hash Join
 -> Seq Scan on software
 -> Hash
 -> Index Scan using comp_hostidx on computer

The other possible command is:

DELETE FROM computer WHERE hostname ~ '^old';

which results in the following executing plan for the command added by the rule:

Nestloop
 -> Index Scan using comp_hostidx on computer
 -> Index Scan using soft_hostidx on software

This shows, that the planner does not realize that the qualification for hostname in computer could also
be used for an index scan on software when there are multiple qualification expressions combined
with AND, which is what it does in the regular-expression version of the command. The trigger will get
invoked once for each of the 2000 old computers that have to be deleted, and that will result in one index
scan over computer and 2000 index scans over software. The rule implementation will do it with two
commands that use indexes. And it depends on the overall size of the table software whether the rule
will still be faster in the sequential scan situation. 2000 command executions from the trigger over the
SPI manager take some time, even if all the index blocks will soon be in the cache.

The last command we look at is:

DELETE FROM computer WHERE manufacturer = 'bim';

Again this could result in many rows to be deleted from computer. So the trigger will again run many
commands through the executor. The command generated by the rule will be:

DELETE FROM software WHERE computer.manufacturer = 'bim'
 AND software.hostname = computer.hostname;

The plan for that command will again be the nested loop over two index scans, only using a different
index on computer:

Nestloop
 -> Index Scan using comp_manufidx on computer
 -> Index Scan using soft_hostidx on software

In any of these cases, the extra commands from the rule system will be more or less independent from
the number of affected rows in a command.

The summary is, rules will only be significantly slower than triggers if their actions result in large and
badly qualified joins, a situation where the planner fails.

1038

Chapter 39. Procedural Languages
Postgres Pro allows user-defined functions to be written in other languages besides SQL and C. These
other languages are generically called procedural languages (PLs). For a function written in a procedural
language, the database server has no built-in knowledge about how to interpret the function's source
text. Instead, the task is passed to a special handler that knows the details of the language. The handler
could either do all the work of parsing, syntax analysis, execution, etc. itself, or it could serve as “glue”
between Postgres Pro and an existing implementation of a programming language. The handler itself is a
C language function compiled into a shared object and loaded on demand, just like any other C function.

There are currently four procedural languages available in the standard Postgres Pro distribution: PL/
pgSQL (Chapter 40), PL/Tcl (Chapter 41), PL/Perl (Chapter 42), and PL/Python (Chapter 43). There are
additional procedural languages available that are not included in the core distribution. Appendix H
has information about finding them. In addition other languages can be defined by users; the basics of
developing a new procedural language are covered in Chapter 51.

39.1. Installing Procedural Languages
A procedural language must be “installed” into each database where it is to be used. But procedural
languages installed in the database template1 are automatically available in all subsequently created
databases, since their entries in template1 will be copied by CREATE DATABASE. So the database
administrator can decide which languages are available in which databases and can make some
languages available by default if desired.

For the languages supplied with the standard distribution, it is only necessary to execute CREATE
EXTENSION language_name to install the language into the current database. The manual procedure
described below is only recommended for installing languages that have not been packaged as
extensions.

Manual Procedural Language Installation

A procedural language is installed in a database in five steps, which must be carried out by a database
superuser. In most cases the required SQL commands should be packaged as the installation script of
an “extension”, so that CREATE EXTENSION can be used to execute them.

1. The shared object for the language handler must be compiled and installed into an appropriate
library directory. This works in the same way as building and installing modules with regular user-
defined C functions does; see Section 35.10.5. Often, the language handler will depend on an external
library that provides the actual programming language engine; if so, that must be installed as well.

2. The handler must be declared with the command

CREATE FUNCTION handler_function_name()
 RETURNS language_handler
 AS 'path-to-shared-object'
 LANGUAGE C;

The special return type of language_handler tells the database system that this function does not
return one of the defined SQL data types and is not directly usable in SQL statements.

3. (Optional) Optionally, the language handler can provide an “inline” handler function that executes
anonymous code blocks (DO commands) written in this language. If an inline handler function is
provided by the language, declare it with a command like

CREATE FUNCTION inline_function_name(internal)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C;

4. (Optional) Optionally, the language handler can provide a “validator” function that checks a function
definition for correctness without actually executing it. The validator function is called by CREATE

1039

Procedural Languages

FUNCTION if it exists. If a validator function is provided by the language, declare it with a command
like

CREATE FUNCTION validator_function_name(oid)
 RETURNS void
 AS 'path-to-shared-object'
 LANGUAGE C STRICT;

5. Finally, the PL must be declared with the command

CREATE [TRUSTED] LANGUAGE language_name
 HANDLER handler_function_name
 [INLINE inline_function_name]
 [VALIDATOR validator_function_name] ;

The optional key word TRUSTED specifies that the language does not grant access to data that
the user would not otherwise have. Trusted languages are designed for ordinary database users
(those without superuser privilege) and allows them to safely create functions and procedures. Since
PL functions are executed inside the database server, the TRUSTED flag should only be given for
languages that do not allow access to database server internals or the file system. The languages
PL/pgSQL, PL/Tcl, and PL/Perl are considered trusted; the languages PL/TclU, PL/PerlU, and PL/
PythonU are designed to provide unlimited functionality and should not be marked trusted.

Example 39.1 shows how the manual installation procedure would work with the language PL/Perl.

Example 39.1. Manual Installation of PL/Perl

The following command tells the database server where to find the shared object for the PL/Perl
language's call handler function:

CREATE FUNCTION plperl_call_handler() RETURNS language_handler AS
 '$libdir/plperl' LANGUAGE C;

PL/Perl has an inline handler function and a validator function, so we declare those too:

CREATE FUNCTION plperl_inline_handler(internal) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

CREATE FUNCTION plperl_validator(oid) RETURNS void AS
 '$libdir/plperl' LANGUAGE C STRICT;

The command:

CREATE TRUSTED LANGUAGE plperl
 HANDLER plperl_call_handler
 INLINE plperl_inline_handler
 VALIDATOR plperl_validator;

then defines that the previously declared functions should be invoked for functions and procedures
where the language attribute is plperl.

In a default Postgres Pro installation, the handler for the PL/pgSQL language is built and installed into the
“library” directory; furthermore, the PL/pgSQL language itself is installed in all databases. If Tcl support
is configured in, the handlers for PL/Tcl and PL/TclU are built and installed in the library directory,
but the language itself is not installed in any database by default. Likewise, the PL/Perl and PL/PerlU
handlers are built and installed if Perl support is configured, and the PL/PythonU handler is installed if
Python support is configured, but these languages are not installed by default.

1040

Chapter 40. PL/pgSQL — SQL Procedural
Language
40.1. Overview

PL/pgSQL is a loadable procedural language for the Postgres Pro database system. The design goals of
PL/pgSQL were to create a loadable procedural language that

• can be used to create functions, procedures, and triggers,

• adds control structures to the SQL language,

• can perform complex computations,

• inherits all user-defined types, functions, procedures, and operators,

• can be defined to be trusted by the server,

• is easy to use.

Functions created with PL/pgSQL can be used anywhere that built-in functions could be used. For
example, it is possible to create complex conditional computation functions and later use them to define
operators or use them in index expressions.

In PostgreSQL 9.0 and later, PL/pgSQL is installed by default. However it is still a loadable module, so
especially security-conscious administrators could choose to remove it.

40.1.1. Advantages of Using PL/pgSQL
SQL is the language Postgres Pro and most other relational databases use as query language. It's
portable and easy to learn. But every SQL statement must be executed individually by the database
server.

That means that your client application must send each query to the database server, wait for it to be
processed, receive and process the results, do some computation, then send further queries to the server.
All this incurs interprocess communication and will also incur network overhead if your client is on a
different machine than the database server.

With PL/pgSQL you can group a block of computation and a series of queries inside the database server,
thus having the power of a procedural language and the ease of use of SQL, but with considerable savings
of client/server communication overhead.

• Extra round trips between client and server are eliminated

• Intermediate results that the client does not need do not have to be marshaled or transferred
between server and client

• Multiple rounds of query parsing can be avoided

This can result in a considerable performance increase as compared to an application that does not use
stored functions.

Also, with PL/pgSQL you can use all the data types, operators and functions of SQL.

40.1.2. Supported Argument and Result Data Types
Functions written in PL/pgSQL can accept as arguments any scalar or array data type supported by the
server, and they can return a result of any of these types. They can also accept or return any composite
type (row type) specified by name. It is also possible to declare a PL/pgSQL function as accepting record,

1041

PL/pgSQL — SQL
Procedural Language

which means that any composite type will do as input, or as returning record, which means that the
result is a row type whose columns are determined by specification in the calling query, as discussed
in Section 7.2.1.4.

PL/pgSQL functions can be declared to accept a variable number of arguments by using the VARIADIC
marker. This works exactly the same way as for SQL functions, as discussed in Section 35.5.5.

PL/pgSQL functions can also be declared to accept and return the polymorphic types described in
Section 35.2.5, thus allowing the actual data types handled by the function to vary from call to call.
Examples appear in Section 40.3.1.

PL/pgSQL functions can also be declared to return a “set” (or table) of any data type that can be returned
as a single instance. Such a function generates its output by executing RETURN NEXT for each desired
element of the result set, or by using RETURN QUERY to output the result of evaluating a query.

Finally, a PL/pgSQL function can be declared to return void if it has no useful return value. (Alternatively,
it could be written as a procedure in that case.)

PL/pgSQL functions can also be declared with output parameters in place of an explicit specification of
the return type. This does not add any fundamental capability to the language, but it is often convenient,
especially for returning multiple values. The RETURNS TABLE notation can also be used in place of RETURNS
SETOF.

Specific examples appear in Section 40.3.1 and Section 40.6.1.

40.2. Structure of PL/pgSQL
Functions written in PL/pgSQL are defined to the server by executing CREATE FUNCTION commands.
Such a command would normally look like, say,

CREATE FUNCTION somefunc(integer, text) RETURNS integer
AS 'function body text'
LANGUAGE plpgsql;

The function body is simply a string literal so far as CREATE FUNCTION is concerned. It is often helpful to
use dollar quoting (see Section 4.1.2.4) to write the function body, rather than the normal single quote
syntax. Without dollar quoting, any single quotes or backslashes in the function body must be escaped by
doubling them. Almost all the examples in this chapter use dollar-quoted literals for their function bodies.

PL/pgSQL is a block-structured language. The complete text of a function body must be a block. A block
is defined as:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
END [label];

Each declaration and each statement within a block is terminated by a semicolon. A block that appears
within another block must have a semicolon after END, as shown above; however the final END that
concludes a function body does not require a semicolon.

Tip
A common mistake is to write a semicolon immediately after BEGIN. This is incorrect and will result
in a syntax error.

1042

PL/pgSQL — SQL
Procedural Language

A label is only needed if you want to identify the block for use in an EXIT statement, or to qualify the
names of the variables declared in the block. If a label is given after END, it must match the label at
the block's beginning.

All key words are case-insensitive. Identifiers are implicitly converted to lower case unless double-
quoted, just as they are in ordinary SQL commands.

Comments work the same way in PL/pgSQL code as in ordinary SQL. A double dash (--) starts a comment
that extends to the end of the line. A /* starts a block comment that extends to the matching occurrence
of */. Block comments nest.

Any statement in the statement section of a block can be a subblock. Subblocks can be used for logical
grouping or to localize variables to a small group of statements. Variables declared in a subblock mask
any similarly-named variables of outer blocks for the duration of the subblock; but you can access the
outer variables anyway if you qualify their names with their block's label. For example:
CREATE FUNCTION somefunc() RETURNS integer AS $$
<< outerblock >>
DECLARE
 quantity integer := 30;
BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 30
 quantity := 50;
 --
 -- Create a subblock
 --
 DECLARE
 quantity integer := 80;
 BEGIN
 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 80
 RAISE NOTICE 'Outer quantity here is %', outerblock.quantity; -- Prints 50
 END;

 RAISE NOTICE 'Quantity here is %', quantity; -- Prints 50

 RETURN quantity;
END;
$$ LANGUAGE plpgsql;

Note
There is actually a hidden “outer block” surrounding the body of any PL/pgSQL function. This block
provides the declarations of the function's parameters (if any), as well as some special variables
such as FOUND (see Section 40.5.5). The outer block is labeled with the function's name, meaning
that parameters and special variables can be qualified with the function's name.

It is important not to confuse the use of BEGIN/END for grouping statements in PL/pgSQL with the
similarly-named SQL commands for transaction control. PL/pgSQL's BEGIN/END are only for grouping;
they do not start or end a transaction. See Section 40.8 for information on managing transactions in
PL/pgSQL. Also, a block containing an EXCEPTION clause effectively forms a subtransaction that can be
rolled back without affecting the outer transaction. For more about that see Section 40.6.8.

40.3. Declarations
All variables used in a block must be declared in the declarations section of the block. (The only
exceptions are that the loop variable of a FOR loop iterating over a range of integer values is automatically
declared as an integer variable, and likewise the loop variable of a FOR loop iterating over a cursor's
result is automatically declared as a record variable.)

1043

PL/pgSQL — SQL
Procedural Language

PL/pgSQL variables can have any SQL data type, such as integer, varchar, and char.

Here are some examples of variable declarations:

user_id integer;
quantity numeric(5);
url varchar;
myrow tablename%ROWTYPE;
myfield tablename.columnname%TYPE;
arow RECORD;

The general syntax of a variable declaration is:

name [CONSTANT] type [COLLATE collation_name] [NOT NULL] [{ DEFAULT | := |
 = } expression];

The DEFAULT clause, if given, specifies the initial value assigned to the variable when the block is entered.
If the DEFAULT clause is not given then the variable is initialized to the SQL null value. The CONSTANT
option prevents the variable from being assigned to after initialization, so that its value will remain
constant for the duration of the block. The COLLATE option specifies a collation to use for the variable
(see Section 40.3.6). If NOT NULL is specified, an assignment of a null value results in a run-time error.
All variables declared as NOT NULL must have a nonnull default value specified. Equal (=) can be used
instead of PL/SQL-compliant :=.

A variable's default value is evaluated and assigned to the variable each time the block is entered (not
just once per function call). So, for example, assigning now() to a variable of type timestamp causes the
variable to have the time of the current function call, not the time when the function was precompiled.

Examples:

quantity integer DEFAULT 32;
url varchar := 'http://mysite.com';
user_id CONSTANT integer := 10;

40.3.1. Declaring Function Parameters
Parameters passed to functions are named with the identifiers $1, $2, etc. Optionally, aliases can be
declared for $n parameter names for increased readability. Either the alias or the numeric identifier can
then be used to refer to the parameter value.

There are two ways to create an alias. The preferred way is to give a name to the parameter in the
CREATE FUNCTION command, for example:

CREATE FUNCTION sales_tax(subtotal real) RETURNS real AS $$
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

The other way is to explicitly declare an alias, using the declaration syntax

name ALIAS FOR $n;

The same example in this style looks like:

CREATE FUNCTION sales_tax(real) RETURNS real AS $$
DECLARE
 subtotal ALIAS FOR $1;
BEGIN
 RETURN subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

1044

PL/pgSQL — SQL
Procedural Language

Note
These two examples are not perfectly equivalent. In the first case, subtotal could be referenced
as sales_tax.subtotal, but in the second case it could not. (Had we attached a label to the inner
block, subtotal could be qualified with that label, instead.)

Some more examples:

CREATE FUNCTION instr(varchar, integer) RETURNS integer AS $$
DECLARE
 v_string ALIAS FOR $1;
 index ALIAS FOR $2;
BEGIN
 -- some computations using v_string and index here
END;
$$ LANGUAGE plpgsql;

CREATE FUNCTION concat_selected_fields(in_t sometablename) RETURNS text AS $$
BEGIN
 RETURN in_t.f1 || in_t.f3 || in_t.f5 || in_t.f7;
END;
$$ LANGUAGE plpgsql;

When a PL/pgSQL function is declared with output parameters, the output parameters are given $n
names and optional aliases in just the same way as the normal input parameters. An output parameter is
effectively a variable that starts out NULL; it should be assigned to during the execution of the function.
The final value of the parameter is what is returned. For instance, the sales-tax example could also be
done this way:

CREATE FUNCTION sales_tax(subtotal real, OUT tax real) AS $$
BEGIN
 tax := subtotal * 0.06;
END;
$$ LANGUAGE plpgsql;

Notice that we omitted RETURNS real — we could have included it, but it would be redundant.

Output parameters are most useful when returning multiple values. A trivial example is:

CREATE FUNCTION sum_n_product(x int, y int, OUT sum int, OUT prod int) AS $$
BEGIN
 sum := x + y;
 prod := x * y;
END;
$$ LANGUAGE plpgsql;

As discussed in Section 35.5.4, this effectively creates an anonymous record type for the function's
results. If a RETURNS clause is given, it must say RETURNS record.

Another way to declare a PL/pgSQL function is with RETURNS TABLE, for example:

CREATE FUNCTION extended_sales(p_itemno int)
RETURNS TABLE(quantity int, total numeric) AS $$
BEGIN
 RETURN QUERY SELECT s.quantity, s.quantity * s.price FROM sales AS s
 WHERE s.itemno = p_itemno;
END;
$$ LANGUAGE plpgsql;

1045

PL/pgSQL — SQL
Procedural Language

This is exactly equivalent to declaring one or more OUT parameters and specifying RETURNS SETOF
sometype.

When the return type of a PL/pgSQL function is declared as a polymorphic type (see Section 35.2.5), a
special parameter $0 is created. Its data type is the actual return type of the function, as deduced from
the actual input types. This allows the function to access its actual return type as shown in Section 40.3.3.
$0 is initialized to null and can be modified by the function, so it can be used to hold the return value
if desired, though that is not required. $0 can also be given an alias. For example, this function works
on any data type that has a + operator:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement)
RETURNS anyelement AS $$
DECLARE
 result ALIAS FOR $0;
BEGIN
 result := v1 + v2 + v3;
 RETURN result;
END;
$$ LANGUAGE plpgsql;

The same effect can be obtained by declaring one or more output parameters as polymorphic types.
In this case the special $0 parameter is not used; the output parameters themselves serve the same
purpose. For example:

CREATE FUNCTION add_three_values(v1 anyelement, v2 anyelement, v3 anyelement,
 OUT sum anyelement)
AS $$
BEGIN
 sum := v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

In practice it might be more useful to declare a polymorphic function using the anycompatible family
of types, so that automatic promotion of the input arguments to a common type will occur. For example:

CREATE FUNCTION add_three_values(v1 anycompatible, v2 anycompatible, v3 anycompatible)
RETURNS anycompatible AS $$
BEGIN
 RETURN v1 + v2 + v3;
END;
$$ LANGUAGE plpgsql;

With this example, a call such as

SELECT add_three_values(1, 2, 4.7);

will work, automatically promoting the integer inputs to numeric. The function using anyelement would
require you to cast the three inputs to the same type manually.

40.3.2. ALIAS
newname ALIAS FOR oldname;

The ALIAS syntax is more general than is suggested in the previous section: you can declare an alias for
any variable, not just function parameters. The main practical use for this is to assign a different name
for variables with predetermined names, such as NEW or OLD within a trigger function.

Examples:

DECLARE
 prior ALIAS FOR old;
 updated ALIAS FOR new;

1046

PL/pgSQL — SQL
Procedural Language

Since ALIAS creates two different ways to name the same object, unrestricted use can be confusing. It's
best to use it only for the purpose of overriding predetermined names.

40.3.3. Copying Types
variable%TYPE

%TYPE provides the data type of a variable or table column. You can use this to declare variables that will
hold database values. For example, let's say you have a column named user_id in your users table. To
declare a variable with the same data type as users.user_id you write:

user_id users.user_id%TYPE;

By using %TYPE you don't need to know the data type of the structure you are referencing, and most
importantly, if the data type of the referenced item changes in the future (for instance: you change the
type of user_id from integer to real), you might not need to change your function definition.

%TYPE is particularly valuable in polymorphic functions, since the data types needed for internal variables
can change from one call to the next. Appropriate variables can be created by applying %TYPE to the
function's arguments or result placeholders.

40.3.4. Row Types
name table_name%ROWTYPE;
name composite_type_name;

A variable of a composite type is called a row variable (or row-type variable). Such a variable can hold
a whole row of a SELECT or FOR query result, so long as that query's column set matches the declared
type of the variable. The individual fields of the row value are accessed using the usual dot notation,
for example rowvar.field.

A row variable can be declared to have the same type as the rows of an existing table or view, by using
the table_name%ROWTYPE notation; or it can be declared by giving a composite type's name. (Since every
table has an associated composite type of the same name, it actually does not matter in Postgres Pro
whether you write %ROWTYPE or not. But the form with %ROWTYPE is more portable.)

Parameters to a function can be composite types (complete table rows). In that case, the corresponding
identifier $n will be a row variable, and fields can be selected from it, for example $1.user_id.

Here is an example of using composite types. table1 and table2 are existing tables having at least the
mentioned fields:

CREATE FUNCTION merge_fields(t_row table1) RETURNS text AS $$
DECLARE
 t2_row table2%ROWTYPE;
BEGIN
 SELECT * INTO t2_row FROM table2 WHERE ... ;
 RETURN t_row.f1 || t2_row.f3 || t_row.f5 || t2_row.f7;
END;
$$ LANGUAGE plpgsql;

SELECT merge_fields(t.*) FROM table1 t WHERE ... ;

40.3.5. Record Types
name RECORD;

Record variables are similar to row-type variables, but they have no predefined structure. They take on
the actual row structure of the row they are assigned during a SELECT or FOR command. The substructure
of a record variable can change each time it is assigned to. A consequence of this is that until a record

1047

PL/pgSQL — SQL
Procedural Language

variable is first assigned to, it has no substructure, and any attempt to access a field in it will draw a
run-time error.

Note that RECORD is not a true data type, only a placeholder. One should also realize that when a PL/
pgSQL function is declared to return type record, this is not quite the same concept as a record variable,
even though such a function might use a record variable to hold its result. In both cases the actual
row structure is unknown when the function is written, but for a function returning record the actual
structure is determined when the calling query is parsed, whereas a record variable can change its row
structure on-the-fly.

40.3.6. Collation of PL/pgSQL Variables
When a PL/pgSQL function has one or more parameters of collatable data types, a collation is identified
for each function call depending on the collations assigned to the actual arguments, as described in
Section 22.2. If a collation is successfully identified (i.e., there are no conflicts of implicit collations
among the arguments) then all the collatable parameters are treated as having that collation implicitly.
This will affect the behavior of collation-sensitive operations within the function. For example, consider

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b;
END;
$$ LANGUAGE plpgsql;

SELECT less_than(text_field_1, text_field_2) FROM table1;
SELECT less_than(text_field_1, text_field_2 COLLATE "C") FROM table1;

The first use of less_than will use the common collation of text_field_1 and text_field_2 for the
comparison, while the second use will use C collation.

Furthermore, the identified collation is also assumed as the collation of any local variables that are of
collatable types. Thus this function would not work any differently if it were written as

CREATE FUNCTION less_than(a text, b text) RETURNS boolean AS $$
DECLARE
 local_a text := a;
 local_b text := b;
BEGIN
 RETURN local_a < local_b;
END;
$$ LANGUAGE plpgsql;

If there are no parameters of collatable data types, or no common collation can be identified for them,
then parameters and local variables use the default collation of their data type (which is usually the
database's default collation, but could be different for variables of domain types).

A local variable of a collatable data type can have a different collation associated with it by including
the COLLATE option in its declaration, for example

DECLARE
 local_a text COLLATE "en_US";

This option overrides the collation that would otherwise be given to the variable according to the rules
above.

Also, of course explicit COLLATE clauses can be written inside a function if it is desired to force a particular
collation to be used in a particular operation. For example,

CREATE FUNCTION less_than_c(a text, b text) RETURNS boolean AS $$
BEGIN
 RETURN a < b COLLATE "C";

1048

PL/pgSQL — SQL
Procedural Language

END;
$$ LANGUAGE plpgsql;

This overrides the collations associated with the table columns, parameters, or local variables used in
the expression, just as would happen in a plain SQL command.

40.4. Expressions
All expressions used in PL/pgSQL statements are processed using the server's main SQL executor. For
example, when you write a PL/pgSQL statement like

IF expression THEN ...

PL/pgSQL will evaluate the expression by feeding a query like

SELECT expression

to the main SQL engine. While forming the SELECT command, any occurrences of PL/pgSQL variable
names are replaced by parameters, as discussed in detail in Section 40.11.1. This allows the query
plan for the SELECT to be prepared just once and then reused for subsequent evaluations with different
values of the variables. Thus, what really happens on first use of an expression is essentially a PREPARE
command. For example, if we have declared two integer variables x and y, and we write

IF x < y THEN ...

what happens behind the scenes is equivalent to

PREPARE statement_name(integer, integer) AS SELECT $1 < $2;

and then this prepared statement is EXECUTEd for each execution of the IF statement, with the current
values of the PL/pgSQL variables supplied as parameter values. Normally these details are not important
to a PL/pgSQL user, but they are useful to know when trying to diagnose a problem. More information
appears in Section 40.11.2.

40.5. Basic Statements
In this section and the following ones, we describe all the statement types that are explicitly understood
by PL/pgSQL. Anything not recognized as one of these statement types is presumed to be an SQL
command and is sent to the main database engine to execute, as described in Section 40.5.2 and
Section 40.5.3.

40.5.1. Assignment
An assignment of a value to a PL/pgSQL variable is written as:

variable { := | = } expression;

As explained previously, the expression in such a statement is evaluated by means of an SQL SELECT
command sent to the main database engine. The expression must yield a single value (possibly a row
value, if the variable is a row or record variable). The target variable can be a simple variable (optionally
qualified with a block name), a field of a row or record variable, or an element of an array that is a simple
variable or field. Equal (=) can be used instead of PL/SQL-compliant :=.

If the expression's result data type doesn't match the variable's data type, the value will be coerced as
though by an assignment cast (see Section 10.4). If no assignment cast is known for the pair of data
types involved, the PL/pgSQL interpreter will attempt to convert the result value textually, that is by
applying the result type's output function followed by the variable type's input function. Note that this
could result in run-time errors generated by the input function, if the string form of the result value is
not acceptable to the input function.

Examples:

tax := subtotal * 0.06;

1049

PL/pgSQL — SQL
Procedural Language

my_record.user_id := 20;

40.5.2. Executing a Command with No Result
For any SQL command that does not return rows, for example INSERT without a RETURNING clause, you
can execute the command within a PL/pgSQL function just by writing the command.

Any PL/pgSQL variable name appearing in the command text is treated as a parameter, and then the
current value of the variable is provided as the parameter value at run time. This is exactly like the
processing described earlier for expressions; for details see Section 40.11.1.

When executing a SQL command in this way, PL/pgSQL may cache and re-use the execution plan for the
command, as discussed in Section 40.11.2.

Sometimes it is useful to evaluate an expression or SELECT query but discard the result, for example
when calling a function that has side-effects but no useful result value. To do this in PL/pgSQL, use the
PERFORM statement:

PERFORM query;

This executes query and discards the result. Write the query the same way you would write an SQL
SELECT command, but replace the initial keyword SELECT with PERFORM. For WITH queries, use PERFORM
and then place the query in parentheses. (In this case, the query can only return one row.) PL/pgSQL
variables will be substituted into the query just as for commands that return no result, and the plan is
cached in the same way. Also, the special variable FOUND is set to true if the query produced at least one
row, or false if it produced no rows (see Section 40.5.5).

Note
One might expect that writing SELECT directly would accomplish this result, but at present the
only accepted way to do it is PERFORM. A SQL command that can return rows, such as SELECT, will
be rejected as an error unless it has an INTO clause as discussed in the next section.

An example:

PERFORM create_mv('cs_session_page_requests_mv', my_query);

40.5.3. Executing a Query with a Single-Row Result
The result of a SQL command yielding a single row (possibly of multiple columns) can be assigned to
a record variable, row-type variable, or list of scalar variables. This is done by writing the base SQL
command and adding an INTO clause. For example,

SELECT select_expressions INTO [STRICT] target FROM ...;
INSERT ... RETURNING expressions INTO [STRICT] target;
UPDATE ... RETURNING expressions INTO [STRICT] target;
DELETE ... RETURNING expressions INTO [STRICT] target;

where target can be a record variable, a row variable, or a comma-separated list of simple variables
and record/row fields. PL/pgSQL variables will be substituted into the rest of the query, and the plan is
cached, just as described above for commands that do not return rows. This works for SELECT, INSERT/
UPDATE/DELETE with RETURNING, and utility commands that return row-set results (such as EXPLAIN).
Except for the INTO clause, the SQL command is the same as it would be written outside PL/pgSQL.

Tip
Note that this interpretation of SELECT with INTO is quite different from Postgres Pro's regular
SELECT INTO command, wherein the INTO target is a newly created table. If you want to create

1050

PL/pgSQL — SQL
Procedural Language

a table from a SELECT result inside a PL/pgSQL function, use the syntax CREATE TABLE ... AS
SELECT.

If a row or a variable list is used as target, the query's result columns must exactly match the structure
of the target as to number and data types, or else a run-time error occurs. When a record variable is the
target, it automatically configures itself to the row type of the query result columns.

The INTO clause can appear almost anywhere in the SQL command. Customarily it is written either just
before or just after the list of select_expressions in a SELECT command, or at the end of the command
for other command types. It is recommended that you follow this convention in case the PL/pgSQL parser
becomes stricter in future versions.

If STRICT is not specified in the INTO clause, then target will be set to the first row returned by the query,
or to nulls if the query returned no rows. (Note that “the first row” is not well-defined unless you've used
ORDER BY.) Any result rows after the first row are discarded. You can check the special FOUND variable
(see Section 40.5.5) to determine whether a row was returned:

SELECT * INTO myrec FROM emp WHERE empname = myname;
IF NOT FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
END IF;

If the STRICT option is specified, the query must return exactly one row or a run-time error will be
reported, either NO_DATA_FOUND (no rows) or TOO_MANY_ROWS (more than one row). You can use an
exception block if you wish to catch the error, for example:

BEGIN
 SELECT * INTO STRICT myrec FROM emp WHERE empname = myname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 RAISE EXCEPTION 'employee % not found', myname;
 WHEN TOO_MANY_ROWS THEN
 RAISE EXCEPTION 'employee % not unique', myname;
END;

Successful execution of a command with STRICT always sets FOUND to true.

For INSERT/UPDATE/DELETE with RETURNING, PL/pgSQL reports an error for more than one returned row,
even when STRICT is not specified. This is because there is no option such as ORDER BY with which to
determine which affected row should be returned.

If print_strict_params is enabled for the function, then when an error is thrown because the
requirements of STRICT are not met, the DETAIL part of the error message will include information about
the parameters passed to the query. You can change the print_strict_params setting for all functions by
setting plpgsql.print_strict_params, though only subsequent function compilations will be affected.
You can also enable it on a per-function basis by using a compiler option, for example:

CREATE FUNCTION get_userid(username text) RETURNS int
AS $$
#print_strict_params on
DECLARE
userid int;
BEGIN
 SELECT users.userid INTO STRICT userid
 FROM users WHERE users.username = get_userid.username;
 RETURN userid;
END;
$$ LANGUAGE plpgsql;

On failure, this function might produce an error message such as

1051

PL/pgSQL — SQL
Procedural Language

ERROR: query returned no rows
DETAIL: parameters: $1 = 'nosuchuser'
CONTEXT: PL/pgSQL function get_userid(text) line 6 at SQL statement

Note
The STRICT option matches the behavior of Oracle PL/SQL's SELECT INTO and related statements.

To handle cases where you need to process multiple result rows from a SQL query, see Section 40.6.6.

40.5.4. Executing Dynamic Commands
Oftentimes you will want to generate dynamic commands inside your PL/pgSQL functions, that is,
commands that will involve different tables or different data types each time they are executed. PL/
pgSQL's normal attempts to cache plans for commands (as discussed in Section 40.11.2) will not work
in such scenarios. To handle this sort of problem, the EXECUTE statement is provided:

EXECUTE command-string [INTO [STRICT] target] [USING expression [, ...]];

where command-string is an expression yielding a string (of type text) containing the command to be
executed. The optional target is a record variable, a row variable, or a comma-separated list of simple
variables and record/row fields, into which the results of the command will be stored. The optional USING
expressions supply values to be inserted into the command.

No substitution of PL/pgSQL variables is done on the computed command string. Any required variable
values must be inserted in the command string as it is constructed; or you can use parameters as
described below.

Also, there is no plan caching for commands executed via EXECUTE. Instead, the command is always
planned each time the statement is run. Thus the command string can be dynamically created within
the function to perform actions on different tables and columns.

The INTO clause specifies where the results of a SQL command returning rows should be assigned. If a
row or variable list is provided, it must exactly match the structure of the query's results (when a record
variable is used, it will configure itself to match the result structure automatically). If multiple rows are
returned, only the first will be assigned to the INTO variable. If no rows are returned, NULL is assigned
to the INTO variable(s). If no INTO clause is specified, the query results are discarded.

If the STRICT option is given, an error is reported unless the query produces exactly one row.

The command string can use parameter values, which are referenced in the command as $1, $2, etc.
These symbols refer to values supplied in the USING clause. This method is often preferable to inserting
data values into the command string as text: it avoids run-time overhead of converting the values to
text and back, and it is much less prone to SQL-injection attacks since there is no need for quoting or
escaping. An example is:

EXECUTE 'SELECT count(*) FROM mytable WHERE inserted_by = $1 AND inserted <= $2'
 INTO c
 USING checked_user, checked_date;

Note that parameter symbols can only be used for data values — if you want to use dynamically
determined table or column names, you must insert them into the command string textually. For example,
if the preceding query needed to be done against a dynamically selected table, you could do this:

EXECUTE 'SELECT count(*) FROM '
 || quote_ident(tabname)
 || ' WHERE inserted_by = $1 AND inserted <= $2'
 INTO c

1052

PL/pgSQL — SQL
Procedural Language

 USING checked_user, checked_date;

A cleaner approach is to use format()'s %I specification for table or column names (strings separated
by a newline are concatenated):

EXECUTE format('SELECT count(*) FROM %I '
 'WHERE inserted_by = $1 AND inserted <= $2', tabname)
 INTO c
 USING checked_user, checked_date;

Another restriction on parameter symbols is that they only work in SELECT, INSERT, UPDATE, and DELETE
commands. In other statement types (generically called utility statements), you must insert values
textually even if they are just data values.

An EXECUTE with a simple constant command string and some USING parameters, as in the first example
above, is functionally equivalent to just writing the command directly in PL/pgSQL and allowing
replacement of PL/pgSQL variables to happen automatically. The important difference is that EXECUTE
will re-plan the command on each execution, generating a plan that is specific to the current parameter
values; whereas PL/pgSQL may otherwise create a generic plan and cache it for re-use. In situations
where the best plan depends strongly on the parameter values, it can be helpful to use EXECUTE to
positively ensure that a generic plan is not selected.

SELECT INTO is not currently supported within EXECUTE; instead, execute a plain SELECT command and
specify INTO as part of the EXECUTE itself.

Note
The PL/pgSQL EXECUTE statement is not related to the EXECUTE SQL statement supported by
the Postgres Pro server. The server's EXECUTE statement cannot be used directly within PL/pgSQL
functions (and is not needed).

Example 40.1. Quoting Values in Dynamic Queries

When working with dynamic commands you will often have to handle escaping of single quotes. The
recommended method for quoting fixed text in your function body is dollar quoting. (If you have legacy
code that does not use dollar quoting, please refer to the overview in Section 40.12.1, which can save
you some effort when translating said code to a more reasonable scheme.)

Dynamic values require careful handling since they might contain quote characters. An example using
format() (this assumes that you are dollar quoting the function body so quote marks need not be
doubled):

EXECUTE format('UPDATE tbl SET %I = $1 '
 'WHERE key = $2', colname) USING newvalue, keyvalue;

It is also possible to call the quoting functions directly:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_literal(newvalue)
 || ' WHERE key = '
 || quote_literal(keyvalue);

This example demonstrates the use of the quote_ident and quote_literal functions (see Section 9.4).
For safety, expressions containing column or table identifiers should be passed through quote_ident
before insertion in a dynamic query. Expressions containing values that should be literal strings in the
constructed command should be passed through quote_literal. These functions take the appropriate

1053

PL/pgSQL — SQL
Procedural Language

steps to return the input text enclosed in double or single quotes respectively, with any embedded special
characters properly escaped.

Because quote_literal is labeled STRICT, it will always return null when called with a null argument.
In the above example, if newvalue or keyvalue were null, the entire dynamic query string would become
null, leading to an error from EXECUTE. You can avoid this problem by using the quote_nullable function,
which works the same as quote_literal except that when called with a null argument it returns the
string NULL. For example,

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = '
 || quote_nullable(newvalue)
 || ' WHERE key = '
 || quote_nullable(keyvalue);

If you are dealing with values that might be null, you should usually use quote_nullable in place of
quote_literal.

As always, care must be taken to ensure that null values in a query do not deliver unintended results.
For example the WHERE clause

'WHERE key = ' || quote_nullable(keyvalue)

will never succeed if keyvalue is null, because the result of using the equality operator = with a null
operand is always null. If you wish null to work like an ordinary key value, you would need to rewrite
the above as

'WHERE key IS NOT DISTINCT FROM ' || quote_nullable(keyvalue)

(At present, IS NOT DISTINCT FROM is handled much less efficiently than =, so don't do this unless you
must. See Section 9.2 for more information on nulls and IS DISTINCT.)

Note that dollar quoting is only useful for quoting fixed text. It would be a very bad idea to try to write
this example as:

EXECUTE 'UPDATE tbl SET '
 || quote_ident(colname)
 || ' = $$'
 || newvalue
 || '$$ WHERE key = '
 || quote_literal(keyvalue);

because it would break if the contents of newvalue happened to contain $$. The same objection would
apply to any other dollar-quoting delimiter you might pick. So, to safely quote text that is not known in
advance, you must use quote_literal, quote_nullable, or quote_ident, as appropriate.

Dynamic SQL statements can also be safely constructed using the format function (see Section 9.4.1).
For example:

EXECUTE format('UPDATE tbl SET %I = %L '
 'WHERE key = %L', colname, newvalue, keyvalue);

%I is equivalent to quote_ident, and %L is equivalent to quote_nullable. The format function can be
used in conjunction with the USING clause:

EXECUTE format('UPDATE tbl SET %I = $1 WHERE key = $2', colname)
 USING newvalue, keyvalue;

This form is better because the variables are handled in their native data type format, rather than
unconditionally converting them to text and quoting them via %L. It is also more efficient.

A much larger example of a dynamic command and EXECUTE can be seen in Example 40.10, which builds
and executes a CREATE FUNCTION command to define a new function.

1054

PL/pgSQL — SQL
Procedural Language

40.5.5. Obtaining the Result Status
There are several ways to determine the effect of a command. The first method is to use the GET
DIAGNOSTICS command, which has the form:

GET [CURRENT] DIAGNOSTICS variable { = | := } item [, ...];

This command allows retrieval of system status indicators. CURRENT is a noise word (but see also GET
STACKED DIAGNOSTICS in Section 40.6.8.1). Each item is a key word identifying a status value to be
assigned to the specified variable (which should be of the right data type to receive it). The currently
available status items are shown in Table 40.1. Colon-equal (:=) can be used instead of the SQL-standard
= token. An example:

GET DIAGNOSTICS integer_var = ROW_COUNT;

Table 40.1. Available Diagnostics Items

Name Type Description
ROW_COUNT bigint the number of rows processed by the most recent

SQL command
PG_CONTEXT text line(s) of text describing the current call stack (

see Section 40.6.9)

The second method to determine the effects of a command is to check the special variable named FOUND,
which is of type boolean. FOUND starts out false within each PL/pgSQL function call. It is set by each of
the following types of statements:

• A SELECT INTO statement sets FOUND true if a row is assigned, false if no row is returned.

• A PERFORM statement sets FOUND true if it produces (and discards) one or more rows, false if no row
is produced.

• UPDATE, INSERT, and DELETE statements set FOUND true if at least one row is affected, false if no row
is affected.

• A FETCH statement sets FOUND true if it returns a row, false if no row is returned.

• A MOVE statement sets FOUND true if it successfully repositions the cursor, false otherwise.

• A FOR or FOREACH statement sets FOUND true if it iterates one or more times, else false. FOUND is set
this way when the loop exits; inside the execution of the loop, FOUND is not modified by the loop
statement, although it might be changed by the execution of other statements within the loop body.

• RETURN QUERY and RETURN QUERY EXECUTE statements set FOUND true if the query returns at least
one row, false if no row is returned.

Other PL/pgSQL statements do not change the state of FOUND. Note in particular that EXECUTE changes
the output of GET DIAGNOSTICS, but does not change FOUND.

FOUND is a local variable within each PL/pgSQL function; any changes to it affect only the current function.

40.5.6. Doing Nothing At All
Sometimes a placeholder statement that does nothing is useful. For example, it can indicate that one
arm of an if/then/else chain is deliberately empty. For this purpose, use the NULL statement:

NULL;

For example, the following two fragments of code are equivalent:

BEGIN
 y := x / 0;

1055

PL/pgSQL — SQL
Procedural Language

EXCEPTION
 WHEN division_by_zero THEN
 NULL; -- ignore the error
END;

BEGIN
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN -- ignore the error
END;

Which is preferable is a matter of taste.

Note
In Oracle's PL/SQL, empty statement lists are not allowed, and so NULL statements are required
for situations such as this. PL/pgSQL allows you to just write nothing, instead.

40.6. Control Structures
Control structures are probably the most useful (and important) part of PL/pgSQL. With PL/pgSQL's
control structures, you can manipulate Postgres Pro data in a very flexible and powerful way.

40.6.1. Returning from a Function
There are two commands available that allow you to return data from a function: RETURN and RETURN
NEXT.

40.6.1.1. RETURN
RETURN expression;

RETURN with an expression terminates the function and returns the value of expression to the caller.
This form is used for PL/pgSQL functions that do not return a set.

In a function that returns a scalar type, the expression's result will automatically be cast into the
function's return type as described for assignments. But to return a composite (row) value, you must
write an expression delivering exactly the requested column set. This may require use of explicit casting.

If you declared the function with output parameters, write just RETURN with no expression. The current
values of the output parameter variables will be returned.

If you declared the function to return void, a RETURN statement can be used to exit the function early;
but do not write an expression following RETURN.

The return value of a function cannot be left undefined. If control reaches the end of the top-level block
of the function without hitting a RETURN statement, a run-time error will occur. This restriction does
not apply to functions with output parameters and functions returning void, however. In those cases a
RETURN statement is automatically executed if the top-level block finishes.

Some examples:

-- functions returning a scalar type
RETURN 1 + 2;
RETURN scalar_var;

-- functions returning a composite type
RETURN composite_type_var;

1056

PL/pgSQL — SQL
Procedural Language

RETURN (1, 2, 'three'::text); -- must cast columns to correct types

40.6.1.2. RETURN NEXT and RETURN QUERY
RETURN NEXT expression;
RETURN QUERY query;
RETURN QUERY EXECUTE command-string [USING expression [, ...]];

When a PL/pgSQL function is declared to return SETOF sometype, the procedure to follow is slightly
different. In that case, the individual items to return are specified by a sequence of RETURN NEXT or
RETURN QUERY commands, and then a final RETURN command with no argument is used to indicate that
the function has finished executing. RETURN NEXT can be used with both scalar and composite data types;
with a composite result type, an entire “table” of results will be returned. RETURN QUERY appends the
results of executing a query to the function's result set. RETURN NEXT and RETURN QUERY can be freely
intermixed in a single set-returning function, in which case their results will be concatenated.

RETURN NEXT and RETURN QUERY do not actually return from the function — they simply append zero
or more rows to the function's result set. Execution then continues with the next statement in the PL/
pgSQL function. As successive RETURN NEXT or RETURN QUERY commands are executed, the result set
is built up. A final RETURN, which should have no argument, causes control to exit the function (or you
can just let control reach the end of the function).

RETURN QUERY has a variant RETURN QUERY EXECUTE, which specifies the query to be executed
dynamically. Parameter expressions can be inserted into the computed query string via USING, in just
the same way as in the EXECUTE command.

If you declared the function with output parameters, write just RETURN NEXT with no expression. On
each execution, the current values of the output parameter variable(s) will be saved for eventual return
as a row of the result. Note that you must declare the function as returning SETOF record when there
are multiple output parameters, or SETOF sometype when there is just one output parameter of type
sometype, in order to create a set-returning function with output parameters.

Here is an example of a function using RETURN NEXT:

CREATE TABLE foo (fooid INT, foosubid INT, fooname TEXT);
INSERT INTO foo VALUES (1, 2, 'three');
INSERT INTO foo VALUES (4, 5, 'six');

CREATE OR REPLACE FUNCTION get_all_foo() RETURNS SETOF foo AS
$BODY$
DECLARE
 r foo%rowtype;
BEGIN
 FOR r IN
 SELECT * FROM foo WHERE fooid > 0
 LOOP
 -- can do some processing here
 RETURN NEXT r; -- return current row of SELECT
 END LOOP;
 RETURN;
END;
$BODY$
LANGUAGE plpgsql;

SELECT * FROM get_all_foo();

Here is an example of a function using RETURN QUERY:

CREATE FUNCTION get_available_flightid(date) RETURNS SETOF integer AS
$BODY$

1057

PL/pgSQL — SQL
Procedural Language

BEGIN
 RETURN QUERY SELECT flightid
 FROM flight
 WHERE flightdate >= $1
 AND flightdate < ($1 + 1);

 -- Since execution is not finished, we can check whether rows were returned
 -- and raise exception if not.
 IF NOT FOUND THEN
 RAISE EXCEPTION 'No flight at %.', $1;
 END IF;

 RETURN;
 END;
$BODY$
LANGUAGE plpgsql;

-- Returns available flights or raises exception if there are no
-- available flights.
SELECT * FROM get_available_flightid(CURRENT_DATE);

Note
The current implementation of RETURN NEXT and RETURN QUERY stores the entire result set before
returning from the function, as discussed above. That means that if a PL/pgSQL function produces
a very large result set, performance might be poor: data will be written to disk to avoid memory
exhaustion, but the function itself will not return until the entire result set has been generated. A
future version of PL/pgSQL might allow users to define set-returning functions that do not have
this limitation. Currently, the point at which data begins being written to disk is controlled by
the work_mem configuration variable. Administrators who have sufficient memory to store larger
result sets in memory should consider increasing this parameter.

40.6.2. Returning from a Procedure
A procedure does not have a return value. A procedure can therefore end without a RETURN statement.
If you wish to use a RETURN statement to exit the code early, write just RETURN with no expression.

If the procedure has output parameters, the final values of the output parameter variables will be
returned to the caller.

40.6.3. Calling a Procedure
A PL/pgSQL function, procedure, or DO block can call a procedure using CALL. Output parameters are
handled differently from the way that CALL works in plain SQL. Each INOUT parameter of the procedure
must correspond to a variable in the CALL statement, and whatever the procedure returns is assigned
back to that variable after it returns. For example:

CREATE PROCEDURE triple(INOUT x int)
LANGUAGE plpgsql
AS $$
BEGIN
 x := x * 3;
END;
$$;

DO $$
DECLARE myvar int := 5;

1058

PL/pgSQL — SQL
Procedural Language

BEGIN
 CALL triple(myvar);
 RAISE NOTICE 'myvar = %', myvar; -- prints 15
END;
$$;

40.6.4. Conditionals
IF and CASE statements let you execute alternative commands based on certain conditions. PL/pgSQL
has three forms of IF:

• IF ... THEN ... END IF

• IF ... THEN ... ELSE ... END IF

• IF ... THEN ... ELSIF ... THEN ... ELSE ... END IF

and two forms of CASE:

• CASE ... WHEN ... THEN ... ELSE ... END CASE

• CASE WHEN ... THEN ... ELSE ... END CASE

40.6.4.1. IF-THEN
IF boolean-expression THEN
 statements
END IF;

IF-THEN statements are the simplest form of IF. The statements between THEN and END IF will be
executed if the condition is true. Otherwise, they are skipped.

Example:

IF v_user_id <> 0 THEN
 UPDATE users SET email = v_email WHERE user_id = v_user_id;
END IF;

40.6.4.2. IF-THEN-ELSE
IF boolean-expression THEN
 statements
ELSE
 statements
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that
should be executed if the condition is not true. (Note this includes the case where the condition evaluates
to NULL.)

Examples:

IF parentid IS NULL OR parentid = ''
THEN
 RETURN fullname;
ELSE
 RETURN hp_true_filename(parentid) || '/' || fullname;
END IF;

IF v_count > 0 THEN
 INSERT INTO users_count (count) VALUES (v_count);
 RETURN 't';
ELSE

1059

PL/pgSQL — SQL
Procedural Language

 RETURN 'f';
END IF;

40.6.4.3. IF-THEN-ELSIF
IF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
[ELSIF boolean-expression THEN
 statements
 ...
]
]
[ELSE
 statements]
END IF;

Sometimes there are more than just two alternatives. IF-THEN-ELSIF provides a convenient method of
checking several alternatives in turn. The IF conditions are tested successively until the first one that
is true is found. Then the associated statement(s) are executed, after which control passes to the next
statement after END IF. (Any subsequent IF conditions are not tested.) If none of the IF conditions is
true, then the ELSE block (if any) is executed.

Here is an example:

IF number = 0 THEN
 result := 'zero';
ELSIF number > 0 THEN
 result := 'positive';
ELSIF number < 0 THEN
 result := 'negative';
ELSE
 -- hmm, the only other possibility is that number is null
 result := 'NULL';
END IF;

The key word ELSIF can also be spelled ELSEIF.

An alternative way of accomplishing the same task is to nest IF-THEN-ELSE statements, as in the
following example:

IF demo_row.sex = 'm' THEN
 pretty_sex := 'man';
ELSE
 IF demo_row.sex = 'f' THEN
 pretty_sex := 'woman';
 END IF;
END IF;

However, this method requires writing a matching END IF for each IF, so it is much more cumbersome
than using ELSIF when there are many alternatives.

40.6.4.4. Simple CASE
CASE search-expression
 WHEN expression [, expression [...]] THEN
 statements
 [WHEN expression [, expression [...]] THEN
 statements

1060

PL/pgSQL — SQL
Procedural Language

 ...]
 [ELSE
 statements]
END CASE;

The simple form of CASE provides conditional execution based on equality of operands. The search-
expression is evaluated (once) and successively compared to each expression in the WHEN clauses. If
a match is found, then the corresponding statements are executed, and then control passes to the next
statement after END CASE. (Subsequent WHEN expressions are not evaluated.) If no match is found, the
ELSE statements are executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is a simple example:

CASE x
 WHEN 1, 2 THEN
 msg := 'one or two';
 ELSE
 msg := 'other value than one or two';
END CASE;

40.6.4.5. Searched CASE
CASE
 WHEN boolean-expression THEN
 statements
 [WHEN boolean-expression THEN
 statements
 ...]
 [ELSE
 statements]
END CASE;

The searched form of CASE provides conditional execution based on truth of Boolean expressions. Each
WHEN clause's boolean-expression is evaluated in turn, until one is found that yields true. Then the
corresponding statements are executed, and then control passes to the next statement after END CASE.
(Subsequent WHEN expressions are not evaluated.) If no true result is found, the ELSE statements are
executed; but if ELSE is not present, then a CASE_NOT_FOUND exception is raised.

Here is an example:

CASE
 WHEN x BETWEEN 0 AND 10 THEN
 msg := 'value is between zero and ten';
 WHEN x BETWEEN 11 AND 20 THEN
 msg := 'value is between eleven and twenty';
END CASE;

This form of CASE is entirely equivalent to IF-THEN-ELSIF, except for the rule that reaching an omitted
ELSE clause results in an error rather than doing nothing.

40.6.5. Simple Loops
With the LOOP, EXIT, CONTINUE, WHILE, FOR, and FOREACH statements, you can arrange for your PL/pgSQL
function to repeat a series of commands.

40.6.5.1. LOOP
[<<label>>]
LOOP
 statements

1061

PL/pgSQL — SQL
Procedural Language

END LOOP [label];

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN
statement. The optional label can be used by EXIT and CONTINUE statements within nested loops to
specify which loop those statements refer to.

40.6.5.2. EXIT
EXIT [label] [WHEN boolean-expression];

If no label is given, the innermost loop is terminated and the statement following END LOOP is executed
next. If label is given, it must be the label of the current or some outer level of nested loop or block.
Then the named loop or block is terminated and control continues with the statement after the loop's/
block's corresponding END.

If WHEN is specified, the loop exit occurs only if boolean-expression is true. Otherwise, control passes
to the statement after EXIT.

EXIT can be used with all types of loops; it is not limited to use with unconditional loops.

When used with a BEGIN block, EXIT passes control to the next statement after the end of the block.
Note that a label must be used for this purpose; an unlabeled EXIT is never considered to match a BEGIN
block. (This is a change from pre-8.4 releases of PostgreSQL, which would allow an unlabeled EXIT to
match a BEGIN block.)

Examples:

LOOP
 -- some computations
 IF count > 0 THEN
 EXIT; -- exit loop
 END IF;
END LOOP;

LOOP
 -- some computations
 EXIT WHEN count > 0; -- same result as previous example
END LOOP;

<<ablock>>
BEGIN
 -- some computations
 IF stocks > 100000 THEN
 EXIT ablock; -- causes exit from the BEGIN block
 END IF;
 -- computations here will be skipped when stocks > 100000
END;

40.6.5.3. CONTINUE
CONTINUE [label] [WHEN boolean-expression];

If no label is given, the next iteration of the innermost loop is begun. That is, all statements remaining
in the loop body are skipped, and control returns to the loop control expression (if any) to determine
whether another loop iteration is needed. If label is present, it specifies the label of the loop whose
execution will be continued.

If WHEN is specified, the next iteration of the loop is begun only if boolean-expression is true. Otherwise,
control passes to the statement after CONTINUE.

CONTINUE can be used with all types of loops; it is not limited to use with unconditional loops.

1062

PL/pgSQL — SQL
Procedural Language

Examples:

LOOP
 -- some computations
 EXIT WHEN count > 100;
 CONTINUE WHEN count < 50;
 -- some computations for count IN [50 .. 100]
END LOOP;

40.6.5.4. WHILE
[<<label>>]
WHILE boolean-expression LOOP
 statements
END LOOP [label];

The WHILE statement repeats a sequence of statements so long as the boolean-expression evaluates to
true. The expression is checked just before each entry to the loop body.

For example:

WHILE amount_owed > 0 AND gift_certificate_balance > 0 LOOP
 -- some computations here
END LOOP;

WHILE NOT done LOOP
 -- some computations here
END LOOP;

40.6.5.5. FOR (Integer Variant)
[<<label>>]
FOR name IN [REVERSE] expression .. expression [BY expression] LOOP
 statements
END LOOP [label];

This form of FOR creates a loop that iterates over a range of integer values. The variable name is
automatically defined as type integer and exists only inside the loop (any existing definition of the
variable name is ignored within the loop). The two expressions giving the lower and upper bound of
the range are evaluated once when entering the loop. If the BY clause isn't specified the iteration step
is 1, otherwise it's the value specified in the BY clause, which again is evaluated once on loop entry. If
REVERSE is specified then the step value is subtracted, rather than added, after each iteration.

Some examples of integer FOR loops:

FOR i IN 1..10 LOOP
 -- i will take on the values 1,2,3,4,5,6,7,8,9,10 within the loop
END LOOP;

FOR i IN REVERSE 10..1 LOOP
 -- i will take on the values 10,9,8,7,6,5,4,3,2,1 within the loop
END LOOP;

FOR i IN REVERSE 10..1 BY 2 LOOP
 -- i will take on the values 10,8,6,4,2 within the loop
END LOOP;

If the lower bound is greater than the upper bound (or less than, in the REVERSE case), the loop body
is not executed at all. No error is raised.

If a label is attached to the FOR loop then the integer loop variable can be referenced with a qualified
name, using that label.

1063

PL/pgSQL — SQL
Procedural Language

40.6.6. Looping through Query Results
Using a different type of FOR loop, you can iterate through the results of a query and manipulate that
data accordingly. The syntax is:

[<<label>>]
FOR target IN query LOOP
 statements
END LOOP [label];

The target is a record variable, row variable, or comma-separated list of scalar variables. The target
is successively assigned each row resulting from the query and the loop body is executed for each row.
Here is an example:

CREATE FUNCTION refresh_mviews() RETURNS integer AS $$
DECLARE
 mviews RECORD;
BEGIN
 RAISE NOTICE 'Refreshing all materialized views...';

 FOR mviews IN
 SELECT n.nspname AS mv_schema,
 c.relname AS mv_name,
 pg_catalog.pg_get_userbyid(c.relowner) AS owner
 FROM pg_catalog.pg_class c
 LEFT JOIN pg_catalog.pg_namespace n ON (n.oid = c.relnamespace)
 WHERE c.relkind = 'm'
 ORDER BY 1
 LOOP

 -- Now "mviews" has one record with information about the materialized view

 RAISE NOTICE 'Refreshing materialized view %.% (owner: %)...',
 quote_ident(mviews.mv_schema),
 quote_ident(mviews.mv_name),
 quote_ident(mviews.owner);
 EXECUTE format('REFRESH MATERIALIZED VIEW %I.%I', mviews.mv_schema,
 mviews.mv_name);
 END LOOP;

 RAISE NOTICE 'Done refreshing materialized views.';
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

If the loop is terminated by an EXIT statement, the last assigned row value is still accessible after the
loop.

The query used in this type of FOR statement can be any SQL command that returns rows to the caller:
SELECT is the most common case, but you can also use INSERT, UPDATE, or DELETE with a RETURNING
clause. Some utility commands such as EXPLAIN will work too.

PL/pgSQL variables are substituted into the query text, and the query plan is cached for possible re-use,
as discussed in detail in Section 40.11.1 and Section 40.11.2.

The FOR-IN-EXECUTE statement is another way to iterate over rows:

[<<label>>]
FOR target IN EXECUTE text_expression [USING expression [, ...]] LOOP
 statements
END LOOP [label];

1064

PL/pgSQL — SQL
Procedural Language

This is like the previous form, except that the source query is specified as a string expression, which is
evaluated and replanned on each entry to the FOR loop. This allows the programmer to choose the speed
of a preplanned query or the flexibility of a dynamic query, just as with a plain EXECUTE statement. As
with EXECUTE, parameter values can be inserted into the dynamic command via USING.

Another way to specify the query whose results should be iterated through is to declare it as a cursor.
This is described in Section 40.7.4.

40.6.7. Looping through Arrays
The FOREACH loop is much like a FOR loop, but instead of iterating through the rows returned by a SQL
query, it iterates through the elements of an array value. (In general, FOREACH is meant for looping
through components of a composite-valued expression; variants for looping through composites besides
arrays may be added in future.) The FOREACH statement to loop over an array is:

[<<label>>]
FOREACH target [SLICE number] IN ARRAY expression LOOP
 statements
END LOOP [label];

Without SLICE, or if SLICE 0 is specified, the loop iterates through individual elements of the array
produced by evaluating the expression. The target variable is assigned each element value in sequence,
and the loop body is executed for each element. Here is an example of looping through the elements
of an integer array:

CREATE FUNCTION sum(int[]) RETURNS int8 AS $$
DECLARE
 s int8 := 0;
 x int;
BEGIN
 FOREACH x IN ARRAY $1
 LOOP
 s := s + x;
 END LOOP;
 RETURN s;
END;
$$ LANGUAGE plpgsql;

The elements are visited in storage order, regardless of the number of array dimensions. Although the
target is usually just a single variable, it can be a list of variables when looping through an array
of composite values (records). In that case, for each array element, the variables are assigned from
successive columns of the composite value.

With a positive SLICE value, FOREACH iterates through slices of the array rather than single elements.
The SLICE value must be an integer constant not larger than the number of dimensions of the array.
The target variable must be an array, and it receives successive slices of the array value, where each
slice is of the number of dimensions specified by SLICE. Here is an example of iterating through one-
dimensional slices:

CREATE FUNCTION scan_rows(int[]) RETURNS void AS $$
DECLARE
 x int[];
BEGIN
 FOREACH x SLICE 1 IN ARRAY $1
 LOOP
 RAISE NOTICE 'row = %', x;
 END LOOP;
END;
$$ LANGUAGE plpgsql;

1065

PL/pgSQL — SQL
Procedural Language

SELECT scan_rows(ARRAY[[1,2,3],[4,5,6],[7,8,9],[10,11,12]]);

NOTICE: row = {1,2,3}
NOTICE: row = {4,5,6}
NOTICE: row = {7,8,9}
NOTICE: row = {10,11,12}

40.6.8. Trapping Errors
By default, any error occurring in a PL/pgSQL function aborts execution of the function and the
surrounding transaction. You can trap errors and recover from them by using a BEGIN block with an
EXCEPTION clause. The syntax is an extension of the normal syntax for a BEGIN block:

[<<label>>]
[DECLARE
 declarations]
BEGIN
 statements
EXCEPTION
 WHEN condition [OR condition ...] THEN
 handler_statements
 [WHEN condition [OR condition ...] THEN
 handler_statements
 ...]
END;

If no error occurs, this form of block simply executes all the statements, and then control passes
to the next statement after END. But if an error occurs within the statements, further processing
of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched
for the first condition matching the error that occurred. If a match is found, the corresponding
handler_statements are executed, and then control passes to the next statement after END. If no match
is found, the error propagates out as though the EXCEPTION clause were not there at all: the error can
be caught by an enclosing block with EXCEPTION, or if there is none it aborts processing of the function.

The condition names can be any of those shown in Appendix A. A category name matches any error
within its category. The special condition name OTHERS matches every error type except QUERY_CANCELED
and ASSERT_FAILURE. (It is possible, but often unwise, to trap those two error types by name.) Condition
names are not case-sensitive. Also, an error condition can be specified by SQLSTATE code; for example
these are equivalent:

WHEN division_by_zero THEN ...
WHEN SQLSTATE '22012' THEN ...

If a new error occurs within the selected handler_statements, it cannot be caught by this EXCEPTION
clause, but is propagated out. A surrounding EXCEPTION clause could catch it.

When an error is caught by an EXCEPTION clause, the local variables of the PL/pgSQL function remain
as they were when the error occurred, but all changes to persistent database state within the block are
rolled back. As an example, consider this fragment:

INSERT INTO mytab(firstname, lastname) VALUES('Tom', 'Jones');
BEGIN
 UPDATE mytab SET firstname = 'Joe' WHERE lastname = 'Jones';
 x := x + 1;
 y := x / 0;
EXCEPTION
 WHEN division_by_zero THEN
 RAISE NOTICE 'caught division_by_zero';
 RETURN x;
END;

1066

PL/pgSQL — SQL
Procedural Language

When control reaches the assignment to y, it will fail with a division_by_zero error. This will be caught
by the EXCEPTION clause. The value returned in the RETURN statement will be the incremented value of
x, but the effects of the UPDATE command will have been rolled back. The INSERT command preceding
the block is not rolled back, however, so the end result is that the database contains Tom Jones not
Joe Jones.

Tip
A block containing an EXCEPTION clause is significantly more expensive to enter and exit than a
block without one. Therefore, don't use EXCEPTION without need.

Example 40.2. Exceptions with UPDATE/INSERT

This example uses exception handling to perform either UPDATE or INSERT, as appropriate. It is
recommended that applications use INSERT with ON CONFLICT DO UPDATE rather than actually using this
pattern. This example serves primarily to illustrate use of PL/pgSQL control flow structures:

CREATE TABLE db (a INT PRIMARY KEY, b TEXT);

CREATE FUNCTION merge_db(key INT, data TEXT) RETURNS VOID AS
$$
BEGIN
 LOOP
 -- first try to update the key
 UPDATE db SET b = data WHERE a = key;
 IF found THEN
 RETURN;
 END IF;
 -- not there, so try to insert the key
 -- if someone else inserts the same key concurrently,
 -- we could get a unique-key failure
 BEGIN
 INSERT INTO db(a,b) VALUES (key, data);
 RETURN;
 EXCEPTION WHEN unique_violation THEN
 -- Do nothing, and loop to try the UPDATE again.
 END;
 END LOOP;
END;
$$
LANGUAGE plpgsql;

SELECT merge_db(1, 'david');
SELECT merge_db(1, 'dennis');

This coding assumes the unique_violation error is caused by the INSERT, and not by, say, an INSERT
in a trigger function on the table. It might also misbehave if there is more than one unique index on the
table, since it will retry the operation regardless of which index caused the error. More safety could be
had by using the features discussed next to check that the trapped error was the one expected.

40.6.8.1. Obtaining Information about an Error
Exception handlers frequently need to identify the specific error that occurred. There are two ways
to get information about the current exception in PL/pgSQL: special variables and the GET STACKED
DIAGNOSTICS command.

Within an exception handler, the special variable SQLSTATE contains the error code that corresponds to
the exception that was raised (refer to Table A.1 for a list of possible error codes). The special variable

1067

PL/pgSQL — SQL
Procedural Language

SQLERRM contains the error message associated with the exception. These variables are undefined outside
exception handlers.

Within an exception handler, one may also retrieve information about the current exception by using the
GET STACKED DIAGNOSTICS command, which has the form:

GET STACKED DIAGNOSTICS variable { = | := } item [, ...];

Each item is a key word identifying a status value to be assigned to the specified variable (which should
be of the right data type to receive it). The currently available status items are shown in Table 40.2.

Table 40.2. Error Diagnostics Items

Name Type Description
RETURNED_SQLSTATE text the SQLSTATE error code of the

exception
COLUMN_NAME text the name of the column related to

exception
CONSTRAINT_NAME text the name of the constraint related to

exception
PG_DATATYPE_NAME text the name of the data type related to

exception
MESSAGE_TEXT text the text of the exception's primary

message
TABLE_NAME text the name of the table related to

exception
SCHEMA_NAME text the name of the schema related to

exception
PG_EXCEPTION_DETAIL text the text of the exception's detail

message, if any
PG_EXCEPTION_HINT text the text of the exception's hint

message, if any
PG_EXCEPTION_CONTEXT text line(s) of text describing the call

stack at the time of the exception (see
Section 40.6.9)

If the exception did not set a value for an item, an empty string will be returned.

Here is an example:

DECLARE
 text_var1 text;
 text_var2 text;
 text_var3 text;
BEGIN
 -- some processing which might cause an exception
 ...
EXCEPTION WHEN OTHERS THEN
 GET STACKED DIAGNOSTICS text_var1 = MESSAGE_TEXT,
 text_var2 = PG_EXCEPTION_DETAIL,
 text_var3 = PG_EXCEPTION_HINT;
END;

40.6.9. Obtaining Execution Location Information
The GET DIAGNOSTICS command, previously described in Section 40.5.5, retrieves information about
current execution state (whereas the GET STACKED DIAGNOSTICS command discussed above reports

1068

PL/pgSQL — SQL
Procedural Language

information about the execution state as of a previous error). Its PG_CONTEXT status item is useful for
identifying the current execution location. PG_CONTEXT returns a text string with line(s) of text describing
the call stack. The first line refers to the current function and currently executing GET DIAGNOSTICS
command. The second and any subsequent lines refer to calling functions further up the call stack. For
example:

CREATE OR REPLACE FUNCTION outer_func() RETURNS integer AS $$
BEGIN
 RETURN inner_func();
END;
$$ LANGUAGE plpgsql;

CREATE OR REPLACE FUNCTION inner_func() RETURNS integer AS $$
DECLARE
 stack text;
BEGIN
 GET DIAGNOSTICS stack = PG_CONTEXT;
 RAISE NOTICE E'--- Call Stack ---\n%', stack;
 RETURN 1;
END;
$$ LANGUAGE plpgsql;

SELECT outer_func();

NOTICE: --- Call Stack ---
PL/pgSQL function inner_func() line 5 at GET DIAGNOSTICS
PL/pgSQL function outer_func() line 3 at RETURN
CONTEXT: PL/pgSQL function outer_func() line 3 at RETURN
 outer_func

 1
(1 row)

GET STACKED DIAGNOSTICS ... PG_EXCEPTION_CONTEXT returns the same sort of stack trace, but
describing the location at which an error was detected, rather than the current location.

40.7. Cursors
Rather than executing a whole query at once, it is possible to set up a cursor that encapsulates the query,
and then read the query result a few rows at a time. One reason for doing this is to avoid memory overrun
when the result contains a large number of rows. (However, PL/pgSQL users do not normally need to
worry about that, since FOR loops automatically use a cursor internally to avoid memory problems.) A
more interesting usage is to return a reference to a cursor that a function has created, allowing the
caller to read the rows. This provides an efficient way to return large row sets from functions.

40.7.1. Declaring Cursor Variables
All access to cursors in PL/pgSQL goes through cursor variables, which are always of the special data
type refcursor. One way to create a cursor variable is just to declare it as a variable of type refcursor.
Another way is to use the cursor declaration syntax, which in general is:

name [[NO] SCROLL] CURSOR [(arguments)] FOR query;

(FOR can be replaced by IS for Oracle compatibility.) If SCROLL is specified, the cursor will be capable of
scrolling backward; if NO SCROLL is specified, backward fetches will be rejected; if neither specification
appears, it is query-dependent whether backward fetches will be allowed. arguments, if specified, is a
comma-separated list of pairs name datatype that define names to be replaced by parameter values in
the given query. The actual values to substitute for these names will be specified later, when the cursor
is opened.

1069

PL/pgSQL — SQL
Procedural Language

Some examples:

DECLARE
 curs1 refcursor;
 curs2 CURSOR FOR SELECT * FROM tenk1;
 curs3 CURSOR (key integer) FOR SELECT * FROM tenk1 WHERE unique1 = key;

All three of these variables have the data type refcursor, but the first can be used with any query, while
the second has a fully specified query already bound to it, and the last has a parameterized query bound
to it. (key will be replaced by an integer parameter value when the cursor is opened.) The variable curs1
is said to be unbound since it is not bound to any particular query.

The SCROLL option cannot be used when the cursor's query uses FOR UPDATE/SHARE. Also, it is best to
use NO SCROLL with a query that involves volatile functions. The implementation of SCROLL assumes that
re-reading the query's output will give consistent results, which a volatile function might not do.

40.7.2. Opening Cursors
Before a cursor can be used to retrieve rows, it must be opened. (This is the equivalent action to the
SQL command DECLARE CURSOR.) PL/pgSQL has three forms of the OPEN statement, two of which use
unbound cursor variables while the third uses a bound cursor variable.

Note
Bound cursor variables can also be used without explicitly opening the cursor, via the FOR
statement described in Section 40.7.4.

40.7.2.1. OPEN FOR query
OPEN unbound_cursorvar [[NO] SCROLL] FOR query;

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor variable (that is, as a simple refcursor
variable). The query must be a SELECT, or something else that returns rows (such as EXPLAIN). The
query is treated in the same way as other SQL commands in PL/pgSQL: PL/pgSQL variable names are
substituted, and the query plan is cached for possible reuse. When a PL/pgSQL variable is substituted
into the cursor query, the value that is substituted is the one it has at the time of the OPEN; subsequent
changes to the variable will not affect the cursor's behavior. The SCROLL and NO SCROLL options have
the same meanings as for a bound cursor.

An example:

OPEN curs1 FOR SELECT * FROM foo WHERE key = mykey;

40.7.2.2. OPEN FOR EXECUTE
OPEN unbound_cursorvar [[NO] SCROLL] FOR EXECUTE query_string
 [USING expression [, ...]];

The cursor variable is opened and given the specified query to execute. The cursor cannot be open
already, and it must have been declared as an unbound cursor variable (that is, as a simple refcursor
variable). The query is specified as a string expression, in the same way as in the EXECUTE command. As
usual, this gives flexibility so the query plan can vary from one run to the next (see Section 40.11.2), and
it also means that variable substitution is not done on the command string. As with EXECUTE, parameter
values can be inserted into the dynamic command via format() and USING. The SCROLL and NO SCROLL
options have the same meanings as for a bound cursor.

An example:

OPEN curs1 FOR EXECUTE format('SELECT * FROM %I WHERE col1 = $1',tabname) USING
 keyvalue;

1070

PL/pgSQL — SQL
Procedural Language

In this example, the table name is inserted into the query via format(). The comparison value for col1
is inserted via a USING parameter, so it needs no quoting.

40.7.2.3. Opening a Bound Cursor
OPEN bound_cursorvar [([argument_name :=] argument_value [, ...])];

This form of OPEN is used to open a cursor variable whose query was bound to it when it was declared.
The cursor cannot be open already. A list of actual argument value expressions must appear if and only
if the cursor was declared to take arguments. These values will be substituted in the query.

The query plan for a bound cursor is always considered cacheable; there is no equivalent of EXECUTE
in this case. Notice that SCROLL and NO SCROLL cannot be specified in OPEN, as the cursor's scrolling
behavior was already determined.

Argument values can be passed using either positional or named notation. In positional notation, all
arguments are specified in order. In named notation, each argument's name is specified using := to
separate it from the argument expression. Similar to calling functions, described in Section 4.3, it is also
allowed to mix positional and named notation.

Examples (these use the cursor declaration examples above):

OPEN curs2;
OPEN curs3(42);
OPEN curs3(key := 42);

Because variable substitution is done on a bound cursor's query, there are really two ways to pass values
into the cursor: either with an explicit argument to OPEN, or implicitly by referencing a PL/pgSQL variable
in the query. However, only variables declared before the bound cursor was declared will be substituted
into it. In either case the value to be passed is determined at the time of the OPEN. For example, another
way to get the same effect as the curs3 example above is

DECLARE
 key integer;
 curs4 CURSOR FOR SELECT * FROM tenk1 WHERE unique1 = key;
BEGIN
 key := 42;
 OPEN curs4;

40.7.3. Using Cursors
Once a cursor has been opened, it can be manipulated with the statements described here.

These manipulations need not occur in the same function that opened the cursor to begin with. You
can return a refcursor value out of a function and let the caller operate on the cursor. (Internally, a
refcursor value is simply the string name of a so-called portal containing the active query for the cursor.
This name can be passed around, assigned to other refcursor variables, and so on, without disturbing
the portal.)

All portals are implicitly closed at transaction end. Therefore a refcursor value is usable to reference
an open cursor only until the end of the transaction.

40.7.3.1. FETCH
FETCH [direction { FROM | IN }] cursor INTO target;

FETCH retrieves the next row from the cursor into a target, which might be a row variable, a record
variable, or a comma-separated list of simple variables, just like SELECT INTO. If there is no next row,
the target is set to NULL(s). As with SELECT INTO, the special variable FOUND can be checked to see
whether a row was obtained or not.

1071

PL/pgSQL — SQL
Procedural Language

The direction clause can be any of the variants allowed in the SQL FETCH command except the ones
that can fetch more than one row; namely, it can be NEXT, PRIOR, FIRST, LAST, ABSOLUTE count, RELATIVE
count, FORWARD, or BACKWARD. Omitting direction is the same as specifying NEXT. In the forms using
a count, the count can be any integer-valued expression (unlike the SQL FETCH command, which only
allows an integer constant). direction values that require moving backward are likely to fail unless the
cursor was declared or opened with the SCROLL option.

cursor must be the name of a refcursor variable that references an open cursor portal.

Examples:

FETCH curs1 INTO rowvar;
FETCH curs2 INTO foo, bar, baz;
FETCH LAST FROM curs3 INTO x, y;
FETCH RELATIVE -2 FROM curs4 INTO x;

40.7.3.2. MOVE
MOVE [direction { FROM | IN }] cursor;

MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only repositions the cursor and does not return the row moved to. As with SELECT INTO, the
special variable FOUND can be checked to see whether there was a next row to move to.

Examples:

MOVE curs1;
MOVE LAST FROM curs3;
MOVE RELATIVE -2 FROM curs4;
MOVE FORWARD 2 FROM curs4;

40.7.3.3. UPDATE/DELETE WHERE CURRENT OF
UPDATE table SET ... WHERE CURRENT OF cursor;
DELETE FROM table WHERE CURRENT OF cursor;

When a cursor is positioned on a table row, that row can be updated or deleted using the cursor to
identify the row. There are restrictions on what the cursor's query can be (in particular, no grouping)
and it's best to use FOR UPDATE in the cursor. For more information see the DECLARE reference page.

An example:

UPDATE foo SET dataval = myval WHERE CURRENT OF curs1;

40.7.3.4. CLOSE
CLOSE cursor;

CLOSE closes the portal underlying an open cursor. This can be used to release resources earlier than
end of transaction, or to free up the cursor variable to be opened again.

An example:

CLOSE curs1;

40.7.3.5. Returning Cursors
PL/pgSQL functions can return cursors to the caller. This is useful to return multiple rows or columns,
especially with very large result sets. To do this, the function opens the cursor and returns the cursor
name to the caller (or simply opens the cursor using a portal name specified by or otherwise known to
the caller). The caller can then fetch rows from the cursor. The cursor can be closed by the caller, or it
will be closed automatically when the transaction closes.

1072

PL/pgSQL — SQL
Procedural Language

The portal name used for a cursor can be specified by the programmer or automatically generated. To
specify a portal name, simply assign a string to the refcursor variable before opening it. The string
value of the refcursor variable will be used by OPEN as the name of the underlying portal. However,
if the refcursor variable is null, OPEN automatically generates a name that does not conflict with any
existing portal, and assigns it to the refcursor variable.

Note
A bound cursor variable is initialized to the string value representing its name, so that the portal
name is the same as the cursor variable name, unless the programmer overrides it by assignment
before opening the cursor. But an unbound cursor variable defaults to the null value initially, so it
will receive an automatically-generated unique name, unless overridden.

The following example shows one way a cursor name can be supplied by the caller:

CREATE TABLE test (col text);
INSERT INTO test VALUES ('123');

CREATE FUNCTION reffunc(refcursor) RETURNS refcursor AS '
BEGIN
 OPEN $1 FOR SELECT col FROM test;
 RETURN $1;
END;
' LANGUAGE plpgsql;

BEGIN;
SELECT reffunc('funccursor');
FETCH ALL IN funccursor;
COMMIT;

The following example uses automatic cursor name generation:

CREATE FUNCTION reffunc2() RETURNS refcursor AS '
DECLARE
 ref refcursor;
BEGIN
 OPEN ref FOR SELECT col FROM test;
 RETURN ref;
END;
' LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;
SELECT reffunc2();

 reffunc2

 <unnamed cursor 1>
(1 row)

FETCH ALL IN "<unnamed cursor 1>";
COMMIT;

The following example shows one way to return multiple cursors from a single function:

CREATE FUNCTION myfunc(refcursor, refcursor) RETURNS SETOF refcursor AS $$
BEGIN
 OPEN $1 FOR SELECT * FROM table_1;

1073

PL/pgSQL — SQL
Procedural Language

 RETURN NEXT $1;
 OPEN $2 FOR SELECT * FROM table_2;
 RETURN NEXT $2;
END;
$$ LANGUAGE plpgsql;

-- need to be in a transaction to use cursors.
BEGIN;

SELECT * FROM myfunc('a', 'b');

FETCH ALL FROM a;
FETCH ALL FROM b;
COMMIT;

40.7.4. Looping through a Cursor's Result
There is a variant of the FOR statement that allows iterating through the rows returned by a cursor. The
syntax is:

[<<label>>]
FOR recordvar IN bound_cursorvar [([argument_name :=] argument_value [, ...])]
 LOOP
 statements
END LOOP [label];

The cursor variable must have been bound to some query when it was declared, and it cannot be open
already. The FOR statement automatically opens the cursor, and it closes the cursor again when the loop
exits. A list of actual argument value expressions must appear if and only if the cursor was declared to
take arguments. These values will be substituted in the query, in just the same way as during an OPEN
(see Section 40.7.2.3).

The variable recordvar is automatically defined as type record and exists only inside the loop (any
existing definition of the variable name is ignored within the loop). Each row returned by the cursor is
successively assigned to this record variable and the loop body is executed.

40.8. Transaction Management
In procedures invoked by the CALL command as well as in anonymous code blocks (DO command),
it is possible to end transactions using the commands COMMIT and ROLLBACK. A new transaction is
started automatically after a transaction is ended using these commands, so there is no separate START
TRANSACTION command. (Note that BEGIN and END have different meanings in PL/pgSQL.)

Here is a simple example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plpgsql
AS $$
BEGIN
 FOR i IN 0..9 LOOP
 INSERT INTO test1 (a) VALUES (i);
 IF i % 2 = 0 THEN
 COMMIT;
 ELSE
 ROLLBACK;
 END IF;
 END LOOP;
END;
$$;

1074

PL/pgSQL — SQL
Procedural Language

CALL transaction_test1();

A new transaction starts out with default transaction characteristics such as transaction isolation level.
In cases where transactions are committed in a loop, it might be desirable to start new transactions
automatically with the same characteristics as the previous one. The commands COMMIT AND CHAIN and
ROLLBACK AND CHAIN accomplish this.

Transaction control is only possible in CALL or DO invocations from the top level or nested CALL or DO
invocations without any other intervening command. For example, if the call stack is CALL proc1() →
CALL proc2() → CALL proc3(), then the second and third procedures can perform transaction control
actions. But if the call stack is CALL proc1() → SELECT func2() → CALL proc3(), then the last procedure
cannot do transaction control, because of the SELECT in between.

Special considerations apply to cursor loops. Consider this example:

CREATE PROCEDURE transaction_test2()
LANGUAGE plpgsql
AS $$
DECLARE
 r RECORD;
BEGIN
 FOR r IN SELECT * FROM test2 ORDER BY x LOOP
 INSERT INTO test1 (a) VALUES (r.x);
 COMMIT;
 END LOOP;
END;
$$;

CALL transaction_test2();

Normally, cursors are automatically closed at transaction commit. However, a cursor created as part of
a loop like this is automatically converted to a holdable cursor by the first COMMIT or ROLLBACK. That
means that the cursor is fully evaluated at the first COMMIT or ROLLBACK rather than row by row. The
cursor is still removed automatically after the loop, so this is mostly invisible to the user.

Transaction commands are not allowed in cursor loops driven by commands that are not read-only (for
example UPDATE ... RETURNING).

A transaction cannot be ended inside a block with exception handlers.

40.9. Errors and Messages
40.9.1. Reporting Errors and Messages

Use the RAISE statement to report messages and raise errors.

RAISE [level] 'format' [, expression [, ...]] [USING option = expression
 [, ...]];
RAISE [level] condition_name [USING option = expression [, ...]];
RAISE [level] SQLSTATE 'sqlstate' [USING option = expression [, ...]];
RAISE [level] USING option = expression [, ...];
RAISE ;

The level option specifies the error severity. Allowed levels are DEBUG, LOG, INFO, NOTICE, WARNING,
and EXCEPTION, with EXCEPTION being the default. EXCEPTION raises an error (which normally aborts
the current transaction); the other levels only generate messages of different priority levels. Whether
messages of a particular priority are reported to the client, written to the server log, or both is controlled
by the log_min_messages and client_min_messages configuration variables. See Chapter 18 for more
information.

1075

PL/pgSQL — SQL
Procedural Language

After level if any, you can write a format (which must be a simple string literal, not an expression).
The format string specifies the error message text to be reported. The format string can be followed by
optional argument expressions to be inserted into the message. Inside the format string, % is replaced by
the string representation of the next optional argument's value. Write %% to emit a literal %. The number
of arguments must match the number of % placeholders in the format string, or an error is raised during
the compilation of the function.

In this example, the value of v_job_id will replace the % in the string:

RAISE NOTICE 'Calling cs_create_job(%)', v_job_id;

You can attach additional information to the error report by writing USING followed by option =
expression items. Each expression can be any string-valued expression. The allowed option key words
are:

MESSAGE

Sets the error message text. This option can't be used in the form of RAISE that includes a format
string before USING.

DETAIL

Supplies an error detail message.

HINT

Supplies a hint message.

ERRCODE

Specifies the error code (SQLSTATE) to report, either by condition name, as shown in Appendix A,
or directly as a five-character SQLSTATE code.

COLUMN
CONSTRAINT
DATATYPE
TABLE
SCHEMA

Supplies the name of a related object.

This example will abort the transaction with the given error message and hint:

RAISE EXCEPTION 'Nonexistent ID --> %', user_id
 USING HINT = 'Please check your user ID';

These two examples show equivalent ways of setting the SQLSTATE:

RAISE 'Duplicate user ID: %', user_id USING ERRCODE = 'unique_violation';
RAISE 'Duplicate user ID: %', user_id USING ERRCODE = '23505';

There is a second RAISE syntax in which the main argument is the condition name or SQLSTATE to be
reported, for example:

RAISE division_by_zero;
RAISE SQLSTATE '22012';

In this syntax, USING can be used to supply a custom error message, detail, or hint. Another way to do
the earlier example is

RAISE unique_violation USING MESSAGE = 'Duplicate user ID: ' || user_id;

Still another variant is to write RAISE USING or RAISE level USING and put everything else into the
USING list.

1076

PL/pgSQL — SQL
Procedural Language

The last variant of RAISE has no parameters at all. This form can only be used inside a BEGIN block's
EXCEPTION clause; it causes the error currently being handled to be re-thrown.

Note
Before PostgreSQL 9.1, RAISE without parameters was interpreted as re-throwing the error from
the block containing the active exception handler. Thus an EXCEPTION clause nested within that
handler could not catch it, even if the RAISE was within the nested EXCEPTION clause's block. This
was deemed surprising as well as being incompatible with Oracle's PL/SQL.

If no condition name nor SQLSTATE is specified in a RAISE EXCEPTION command, the default is to use
ERRCODE_RAISE_EXCEPTION (P0001). If no message text is specified, the default is to use the condition
name or SQLSTATE as message text.

Note
When specifying an error code by SQLSTATE code, you are not limited to the predefined error
codes, but can select any error code consisting of five digits and/or upper-case ASCII letters, other
than 00000. It is recommended that you avoid throwing error codes that end in three zeroes,
because these are category codes and can only be trapped by trapping the whole category.

40.9.2. Checking Assertions
The ASSERT statement is a convenient shorthand for inserting debugging checks into PL/pgSQL
functions.

ASSERT condition [, message];

The condition is a Boolean expression that is expected to always evaluate to true; if it does, the ASSERT
statement does nothing further. If the result is false or null, then an ASSERT_FAILURE exception is raised.
(If an error occurs while evaluating the condition, it is reported as a normal error.)

If the optional message is provided, it is an expression whose result (if not null) replaces the default error
message text “assertion failed”, should the condition fail. The message expression is not evaluated in
the normal case where the assertion succeeds.

Testing of assertions can be enabled or disabled via the configuration parameter
plpgsql.check_asserts, which takes a Boolean value; the default is on. If this parameter is off then
ASSERT statements do nothing.

Note that ASSERT is meant for detecting program bugs, not for reporting ordinary error conditions. Use
the RAISE statement, described above, for that.

40.10. Trigger Functions
PL/pgSQL can be used to define trigger functions on data changes or database events. A trigger function
is created with the CREATE FUNCTION command, declaring it as a function with no arguments and a return
type of trigger (for data change triggers) or event_trigger (for database event triggers). Special local
variables named TG_something are automatically defined to describe the condition that triggered the
call.

40.10.1. Triggers on Data Changes
A data change trigger is declared as a function with no arguments and a return type of trigger. Note
that the function must be declared with no arguments even if it expects to receive some arguments
specified in CREATE TRIGGER — such arguments are passed via TG_ARGV, as described below.

1077

PL/pgSQL — SQL
Procedural Language

When a PL/pgSQL function is called as a trigger, several special variables are created automatically in
the top-level block. They are:

NEW

Data type RECORD; variable holding the new database row for INSERT/UPDATE operations in row-level
triggers. This variable is null in statement-level triggers and for DELETE operations.

OLD

Data type RECORD; variable holding the old database row for UPDATE/DELETE operations in row-level
triggers. This variable is null in statement-level triggers and for INSERT operations.

TG_NAME

Data type name; variable that contains the name of the trigger actually fired.

TG_WHEN

Data type text; a string of BEFORE, AFTER, or INSTEAD OF, depending on the trigger's definition.

TG_LEVEL

Data type text; a string of either ROW or STATEMENT depending on the trigger's definition.

TG_OP

Data type text; a string of INSERT, UPDATE, DELETE, or TRUNCATE telling for which operation the
trigger was fired.

TG_RELID

Data type oid; the object ID of the table that caused the trigger invocation.

TG_RELNAME

Data type name; the name of the table that caused the trigger invocation. This is now deprecated,
and could disappear in a future release. Use TG_TABLE_NAME instead.

TG_TABLE_NAME

Data type name; the name of the table that caused the trigger invocation.

TG_TABLE_SCHEMA

Data type name; the name of the schema of the table that caused the trigger invocation.

TG_NARGS

Data type integer; the number of arguments given to the trigger function in the CREATE TRIGGER
statement.

TG_ARGV[]

Data type array of text; the arguments from the CREATE TRIGGER statement. The index counts from
0. Invalid indexes (less than 0 or greater than or equal to tg_nargs) result in a null value.

A trigger function must return either NULL or a record/row value having exactly the structure of the
table the trigger was fired for.

Row-level triggers fired BEFORE can return null to signal the trigger manager to skip the rest of the
operation for this row (i.e., subsequent triggers are not fired, and the INSERT/UPDATE/DELETE does not
occur for this row). If a nonnull value is returned then the operation proceeds with that row value.
Returning a row value different from the original value of NEW alters the row that will be inserted or

1078

PL/pgSQL — SQL
Procedural Language

updated. Thus, if the trigger function wants the triggering action to succeed normally without altering
the row value, NEW (or a value equal thereto) has to be returned. To alter the row to be stored, it is
possible to replace single values directly in NEW and return the modified NEW, or to build a complete new
record/row to return. In the case of a before-trigger on DELETE, the returned value has no direct effect,
but it has to be nonnull to allow the trigger action to proceed. Note that NEW is null in DELETE triggers,
so returning that is usually not sensible. The usual idiom in DELETE triggers is to return OLD.

INSTEAD OF triggers (which are always row-level triggers, and may only be used on views) can return
null to signal that they did not perform any updates, and that the rest of the operation for this row
should be skipped (i.e., subsequent triggers are not fired, and the row is not counted in the rows-affected
status for the surrounding INSERT/UPDATE/DELETE). Otherwise a nonnull value should be returned, to
signal that the trigger performed the requested operation. For INSERT and UPDATE operations, the return
value should be NEW, which the trigger function may modify to support INSERT RETURNING and UPDATE
RETURNING (this will also affect the row value passed to any subsequent triggers, or passed to a special
EXCLUDED alias reference within an INSERT statement with an ON CONFLICT DO UPDATE clause). For
DELETE operations, the return value should be OLD.

The return value of a row-level trigger fired AFTER or a statement-level trigger fired BEFORE or AFTER
is always ignored; it might as well be null. However, any of these types of triggers might still abort the
entire operation by raising an error.

Example 40.3 shows an example of a trigger function in PL/pgSQL.

Example 40.3. A PL/pgSQL Trigger Function

This example trigger ensures that any time a row is inserted or updated in the table, the current user
name and time are stamped into the row. And it checks that an employee's name is given and that the
salary is a positive value.

CREATE TABLE emp (
 empname text,
 salary integer,
 last_date timestamp,
 last_user text
);

CREATE FUNCTION emp_stamp() RETURNS trigger AS emp_stamp
 BEGIN
 -- Check that empname and salary are given
 IF NEW.empname IS NULL THEN
 RAISE EXCEPTION 'empname cannot be null';
 END IF;
 IF NEW.salary IS NULL THEN
 RAISE EXCEPTION '% cannot have null salary', NEW.empname;
 END IF;

 -- Who works for us when they must pay for it?
 IF NEW.salary < 0 THEN
 RAISE EXCEPTION '% cannot have a negative salary', NEW.empname;
 END IF;

 -- Remember who changed the payroll when
 NEW.last_date := current_timestamp;
 NEW.last_user := current_user;
 RETURN NEW;
 END;
emp_stamp LANGUAGE plpgsql;

CREATE TRIGGER emp_stamp BEFORE INSERT OR UPDATE ON emp

1079

PL/pgSQL — SQL
Procedural Language

 FOR EACH ROW EXECUTE FUNCTION emp_stamp();

Another way to log changes to a table involves creating a new table that holds a row for each
insert, update, or delete that occurs. This approach can be thought of as auditing changes to a table.
Example 40.4 shows an example of an audit trigger function in PL/pgSQL.

Example 40.4. A PL/pgSQL Trigger Function for Auditing

This example trigger ensures that any insert, update or delete of a row in the emp table is recorded (i.e.,
audited) in the emp_audit table. The current time and user name are stamped into the row, together
with the type of operation performed on it.

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create a row in emp_audit to reflect the operation performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit SELECT 'D', now(), user, OLD.*;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit SELECT 'U', now(), user, NEW.*;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp_audit SELECT 'I', now(), user, NEW.*;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW EXECUTE FUNCTION process_emp_audit();

A variation of the previous example uses a view joining the main table to the audit table, to show when
each entry was last modified. This approach still records the full audit trail of changes to the table, but
also presents a simplified view of the audit trail, showing just the last modified timestamp derived from
the audit trail for each entry. Example 40.5 shows an example of an audit trigger on a view in PL/pgSQL.

Example 40.5. A PL/pgSQL View Trigger Function for Auditing

This example uses a trigger on the view to make it updatable, and ensure that any insert, update or delete
of a row in the view is recorded (i.e., audited) in the emp_audit table. The current time and user name
are recorded, together with the type of operation performed, and the view displays the last modified
time of each row.

CREATE TABLE emp (
 empname text PRIMARY KEY,

1080

PL/pgSQL — SQL
Procedural Language

 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer,
 stamp timestamp NOT NULL
);

CREATE VIEW emp_view AS
 SELECT e.empname,
 e.salary,
 max(ea.stamp) AS last_updated
 FROM emp e
 LEFT JOIN emp_audit ea ON ea.empname = e.empname
 GROUP BY 1, 2;

CREATE OR REPLACE FUNCTION update_emp_view() RETURNS TRIGGER AS $$
 BEGIN
 --
 -- Perform the required operation on emp, and create a row in emp_audit
 -- to reflect the change made to emp.
 --
 IF (TG_OP = 'DELETE') THEN
 DELETE FROM emp WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 OLD.last_updated = now();
 INSERT INTO emp_audit VALUES('D', user, OLD.*);
 RETURN OLD;
 ELSIF (TG_OP = 'UPDATE') THEN
 UPDATE emp SET salary = NEW.salary WHERE empname = OLD.empname;
 IF NOT FOUND THEN RETURN NULL; END IF;

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('U', user, NEW.*);
 RETURN NEW;
 ELSIF (TG_OP = 'INSERT') THEN
 INSERT INTO emp VALUES(NEW.empname, NEW.salary);

 NEW.last_updated = now();
 INSERT INTO emp_audit VALUES('I', user, NEW.*);
 RETURN NEW;
 END IF;
 END;
$$ LANGUAGE plpgsql;

CREATE TRIGGER emp_audit
INSTEAD OF INSERT OR UPDATE OR DELETE ON emp_view
 FOR EACH ROW EXECUTE FUNCTION update_emp_view();

One use of triggers is to maintain a summary table of another table. The resulting summary can be used
in place of the original table for certain queries — often with vastly reduced run times. This technique
is commonly used in Data Warehousing, where the tables of measured or observed data (called fact
tables) might be extremely large. Example 40.6 shows an example of a trigger function in PL/pgSQL that
maintains a summary table for a fact table in a data warehouse.

1081

PL/pgSQL — SQL
Procedural Language

Example 40.6. A PL/pgSQL Trigger Function for Maintaining a Summary Table
The schema detailed here is partly based on the Grocery Store example from The Data Warehouse
Toolkit by Ralph Kimball.

--
-- Main tables - time dimension and sales fact.
--
CREATE TABLE time_dimension (
 time_key integer NOT NULL,
 day_of_week integer NOT NULL,
 day_of_month integer NOT NULL,
 month integer NOT NULL,
 quarter integer NOT NULL,
 year integer NOT NULL
);
CREATE UNIQUE INDEX time_dimension_key ON time_dimension(time_key);

CREATE TABLE sales_fact (
 time_key integer NOT NULL,
 product_key integer NOT NULL,
 store_key integer NOT NULL,
 amount_sold numeric(12,2) NOT NULL,
 units_sold integer NOT NULL,
 amount_cost numeric(12,2) NOT NULL
);
CREATE INDEX sales_fact_time ON sales_fact(time_key);

--
-- Summary table - sales by time.
--
CREATE TABLE sales_summary_bytime (
 time_key integer NOT NULL,
 amount_sold numeric(15,2) NOT NULL,
 units_sold numeric(12) NOT NULL,
 amount_cost numeric(15,2) NOT NULL
);
CREATE UNIQUE INDEX sales_summary_bytime_key ON sales_summary_bytime(time_key);

--
-- Function and trigger to amend summarized column(s) on UPDATE, INSERT, DELETE.
--
CREATE OR REPLACE FUNCTION maint_sales_summary_bytime() RETURNS TRIGGER
AS $maint_sales_summary_bytime$
 DECLARE
 delta_time_key integer;
 delta_amount_sold numeric(15,2);
 delta_units_sold numeric(12);
 delta_amount_cost numeric(15,2);
 BEGIN

 -- Work out the increment/decrement amount(s).
 IF (TG_OP = 'DELETE') THEN

 delta_time_key = OLD.time_key;
 delta_amount_sold = -1 * OLD.amount_sold;
 delta_units_sold = -1 * OLD.units_sold;
 delta_amount_cost = -1 * OLD.amount_cost;

1082

PL/pgSQL — SQL
Procedural Language

 ELSIF (TG_OP = 'UPDATE') THEN

 -- forbid updates that change the time_key -
 -- (probably not too onerous, as DELETE + INSERT is how most
 -- changes will be made).
 IF (OLD.time_key != NEW.time_key) THEN
 RAISE EXCEPTION 'Update of time_key : % -> % not allowed',
 OLD.time_key, NEW.time_key;
 END IF;

 delta_time_key = OLD.time_key;
 delta_amount_sold = NEW.amount_sold - OLD.amount_sold;
 delta_units_sold = NEW.units_sold - OLD.units_sold;
 delta_amount_cost = NEW.amount_cost - OLD.amount_cost;

 ELSIF (TG_OP = 'INSERT') THEN

 delta_time_key = NEW.time_key;
 delta_amount_sold = NEW.amount_sold;
 delta_units_sold = NEW.units_sold;
 delta_amount_cost = NEW.amount_cost;

 END IF;

 -- Insert or update the summary row with the new values.
 <<insert_update>>
 LOOP
 UPDATE sales_summary_bytime
 SET amount_sold = amount_sold + delta_amount_sold,
 units_sold = units_sold + delta_units_sold,
 amount_cost = amount_cost + delta_amount_cost
 WHERE time_key = delta_time_key;

 EXIT insert_update WHEN found;

 BEGIN
 INSERT INTO sales_summary_bytime (
 time_key,
 amount_sold,
 units_sold,
 amount_cost)
 VALUES (
 delta_time_key,
 delta_amount_sold,
 delta_units_sold,
 delta_amount_cost
);

 EXIT insert_update;

 EXCEPTION
 WHEN UNIQUE_VIOLATION THEN
 -- do nothing
 END;
 END LOOP insert_update;

 RETURN NULL;

1083

PL/pgSQL — SQL
Procedural Language

 END;
$maint_sales_summary_bytime$ LANGUAGE plpgsql;

CREATE TRIGGER maint_sales_summary_bytime
AFTER INSERT OR UPDATE OR DELETE ON sales_fact
 FOR EACH ROW EXECUTE FUNCTION maint_sales_summary_bytime();

INSERT INTO sales_fact VALUES(1,1,1,10,3,15);
INSERT INTO sales_fact VALUES(1,2,1,20,5,35);
INSERT INTO sales_fact VALUES(2,2,1,40,15,135);
INSERT INTO sales_fact VALUES(2,3,1,10,1,13);
SELECT * FROM sales_summary_bytime;
DELETE FROM sales_fact WHERE product_key = 1;
SELECT * FROM sales_summary_bytime;
UPDATE sales_fact SET units_sold = units_sold * 2;
SELECT * FROM sales_summary_bytime;

AFTER triggers can also make use of transition tables to inspect the entire set of rows changed by the
triggering statement. The CREATE TRIGGER command assigns names to one or both transition tables, and
then the function can refer to those names as though they were read-only temporary tables. Example 40.7
shows an example.

Example 40.7. Auditing with Transition Tables

This example produces the same results as Example 40.4, but instead of using a trigger that fires for
every row, it uses a trigger that fires once per statement, after collecting the relevant information in
a transition table. This can be significantly faster than the row-trigger approach when the invoking
statement has modified many rows. Notice that we must make a separate trigger declaration for each
kind of event, since the REFERENCING clauses must be different for each case. But this does not stop us
from using a single trigger function if we choose. (In practice, it might be better to use three separate
functions and avoid the run-time tests on TG_OP.)

CREATE TABLE emp (
 empname text NOT NULL,
 salary integer
);

CREATE TABLE emp_audit(
 operation char(1) NOT NULL,
 stamp timestamp NOT NULL,
 userid text NOT NULL,
 empname text NOT NULL,
 salary integer
);

CREATE OR REPLACE FUNCTION process_emp_audit() RETURNS TRIGGER AS emp_audit
 BEGIN
 --
 -- Create rows in emp_audit to reflect the operations performed on emp,
 -- making use of the special variable TG_OP to work out the operation.
 --
 IF (TG_OP = 'DELETE') THEN
 INSERT INTO emp_audit
 SELECT 'D', now(), user, o.* FROM old_table o;
 ELSIF (TG_OP = 'UPDATE') THEN
 INSERT INTO emp_audit
 SELECT 'U', now(), user, n.* FROM new_table n;
 ELSIF (TG_OP = 'INSERT') THEN

1084

PL/pgSQL — SQL
Procedural Language

 INSERT INTO emp_audit
 SELECT 'I', now(), user, n.* FROM new_table n;
 END IF;
 RETURN NULL; -- result is ignored since this is an AFTER trigger
 END;
emp_audit LANGUAGE plpgsql;

CREATE TRIGGER emp_audit_ins
 AFTER INSERT ON emp
 REFERENCING NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_upd
 AFTER UPDATE ON emp
 REFERENCING OLD TABLE AS old_table NEW TABLE AS new_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();
CREATE TRIGGER emp_audit_del
 AFTER DELETE ON emp
 REFERENCING OLD TABLE AS old_table
 FOR EACH STATEMENT EXECUTE FUNCTION process_emp_audit();

40.10.2. Triggers on Events
PL/pgSQL can be used to define event triggers. Postgres Pro requires that a function that is to be called as
an event trigger must be declared as a function with no arguments and a return type of event_trigger.

When a PL/pgSQL function is called as an event trigger, several special variables are created
automatically in the top-level block. They are:

TG_EVENT

Data type text; a string representing the event the trigger is fired for.

TG_TAG

Data type text; variable that contains the command tag for which the trigger is fired.

Example 40.8 shows an example of an event trigger function in PL/pgSQL.

Example 40.8. A PL/pgSQL Event Trigger Function

This example trigger simply raises a NOTICE message each time a supported command is executed.

CREATE OR REPLACE FUNCTION snitch() RETURNS event_trigger AS $$
BEGIN
 RAISE NOTICE 'snitch: % %', tg_event, tg_tag;
END;
$$ LANGUAGE plpgsql;

CREATE EVENT TRIGGER snitch ON ddl_command_start EXECUTE FUNCTION snitch();

40.11. PL/pgSQL under the Hood
This section discusses some implementation details that are frequently important for PL/pgSQL users
to know.

40.11.1. Variable Substitution
SQL statements and expressions within a PL/pgSQL function can refer to variables and parameters of the
function. Behind the scenes, PL/pgSQL substitutes query parameters for such references. Parameters
will only be substituted in places where a parameter or column reference is syntactically allowed. As an
extreme case, consider this example of poor programming style:

1085

PL/pgSQL — SQL
Procedural Language

INSERT INTO foo (foo) VALUES (foo);

The first occurrence of foo must syntactically be a table name, so it will not be substituted, even if the
function has a variable named foo. The second occurrence must be the name of a column of the table,
so it will not be substituted either. Only the third occurrence is a candidate to be a reference to the
function's variable.

Note
PostgreSQL versions before 9.0 would try to substitute the variable in all three cases, leading to
syntax errors.

Since the names of variables are syntactically no different from the names of table columns, there can
be ambiguity in statements that also refer to tables: is a given name meant to refer to a table column,
or a variable? Let's change the previous example to

INSERT INTO dest (col) SELECT foo + bar FROM src;

Here, dest and src must be table names, and col must be a column of dest, but foo and bar might
reasonably be either variables of the function or columns of src.

By default, PL/pgSQL will report an error if a name in a SQL statement could refer to either a variable
or a table column. You can fix such a problem by renaming the variable or column, or by qualifying the
ambiguous reference, or by telling PL/pgSQL which interpretation to prefer.

The simplest solution is to rename the variable or column. A common coding rule is to use a different
naming convention for PL/pgSQL variables than you use for column names. For example, if you
consistently name function variables v_something while none of your column names start with v_, no
conflicts will occur.

Alternatively you can qualify ambiguous references to make them clear. In the above example, src.foo
would be an unambiguous reference to the table column. To create an unambiguous reference to a
variable, declare it in a labeled block and use the block's label (see Section 40.2). For example,

<<block>>
DECLARE
 foo int;
BEGIN
 foo := ...;
 INSERT INTO dest (col) SELECT block.foo + bar FROM src;

Here block.foo means the variable even if there is a column foo in src. Function parameters, as well
as special variables such as FOUND, can be qualified by the function's name, because they are implicitly
declared in an outer block labeled with the function's name.

Sometimes it is impractical to fix all the ambiguous references in a large body of PL/pgSQL code.
In such cases you can specify that PL/pgSQL should resolve ambiguous references as the variable
(which is compatible with PL/pgSQL's behavior before PostgreSQL 9.0), or as the table column (which
is compatible with some other systems such as Oracle).

To change this behavior on a system-wide basis, set the configuration parameter
plpgsql.variable_conflict to one of error, use_variable, or use_column (where error is the factory
default). This parameter affects subsequent compilations of statements in PL/pgSQL functions, but not
statements already compiled in the current session. Because changing this setting can cause unexpected
changes in the behavior of PL/pgSQL functions, it can only be changed by a superuser.

You can also set the behavior on a function-by-function basis, by inserting one of these special commands
at the start of the function text:

#variable_conflict error

1086

PL/pgSQL — SQL
Procedural Language

#variable_conflict use_variable
#variable_conflict use_column

These commands affect only the function they are written in, and override the setting of
plpgsql.variable_conflict. An example is
CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 #variable_conflict use_variable
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = curtime, comment = comment
 WHERE users.id = id;
 END;
$$ LANGUAGE plpgsql;

In the UPDATE command, curtime, comment, and id will refer to the function's variable and parameters
whether or not users has columns of those names. Notice that we had to qualify the reference to
users.id in the WHERE clause to make it refer to the table column. But we did not have to qualify the
reference to comment as a target in the UPDATE list, because syntactically that must be a column of users.
We could write the same function without depending on the variable_conflict setting in this way:
CREATE FUNCTION stamp_user(id int, comment text) RETURNS void AS $$
 <<fn>>
 DECLARE
 curtime timestamp := now();
 BEGIN
 UPDATE users SET last_modified = fn.curtime, comment = stamp_user.comment
 WHERE users.id = stamp_user.id;
 END;
$$ LANGUAGE plpgsql;

Variable substitution does not happen in the command string given to EXECUTE or one of its variants. If
you need to insert a varying value into such a command, do so as part of constructing the string value,
or use USING, as illustrated in Section 40.5.4.

Variable substitution currently works only in SELECT, INSERT, UPDATE, and DELETE commands, because
the main SQL engine allows query parameters only in these commands. To use a non-constant name
or value in other statement types (generically called utility statements), you must construct the utility
statement as a string and EXECUTE it.

40.11.2. Plan Caching
The PL/pgSQL interpreter parses the function's source text and produces an internal binary instruction
tree the first time the function is called (within each session). The instruction tree fully translates the
PL/pgSQL statement structure, but individual SQL expressions and SQL commands used in the function
are not translated immediately.

As each expression and SQL command is first executed in the function, the PL/pgSQL interpreter parses
and analyzes the command to create a prepared statement, using the SPI manager's SPI_prepare
function. Subsequent visits to that expression or command reuse the prepared statement. Thus, a
function with conditional code paths that are seldom visited will never incur the overhead of analyzing
those commands that are never executed within the current session. A disadvantage is that errors in a
specific expression or command cannot be detected until that part of the function is reached in execution.
(Trivial syntax errors will be detected during the initial parsing pass, but anything deeper will not be
detected until execution.)

PL/pgSQL (or more precisely, the SPI manager) can furthermore attempt to cache the execution plan
associated with any particular prepared statement. If a cached plan is not used, then a fresh execution
plan is generated on each visit to the statement, and the current parameter values (that is, PL/pgSQL
variable values) can be used to optimize the selected plan. If the statement has no parameters, or is

1087

PL/pgSQL — SQL
Procedural Language

executed many times, the SPI manager will consider creating a generic plan that is not dependent on
specific parameter values, and caching that for re-use. Typically this will happen only if the execution
plan is not very sensitive to the values of the PL/pgSQL variables referenced in it. If it is, generating a plan
each time is a net win. See PREPARE for more information about the behavior of prepared statements.

Because PL/pgSQL saves prepared statements and sometimes execution plans in this way, SQL
commands that appear directly in a PL/pgSQL function must refer to the same tables and columns
on every execution; that is, you cannot use a parameter as the name of a table or column in an SQL
command. To get around this restriction, you can construct dynamic commands using the PL/pgSQL
EXECUTE statement — at the price of performing new parse analysis and constructing a new execution
plan on every execution.

The mutable nature of record variables presents another problem in this connection. When fields of a
record variable are used in expressions or statements, the data types of the fields must not change from
one call of the function to the next, since each expression will be analyzed using the data type that is
present when the expression is first reached. EXECUTE can be used to get around this problem when
necessary.

If the same function is used as a trigger for more than one table, PL/pgSQL prepares and caches
statements independently for each such table — that is, there is a cache for each trigger function and
table combination, not just for each function. This alleviates some of the problems with varying data
types; for instance, a trigger function will be able to work successfully with a column named key even
if it happens to have different types in different tables.

Likewise, functions having polymorphic argument types have a separate statement cache for each
combination of actual argument types they have been invoked for, so that data type differences do not
cause unexpected failures.

Statement caching can sometimes have surprising effects on the interpretation of time-sensitive values.
For example there is a difference between what these two functions do:

CREATE FUNCTION logfunc1(logtxt text) RETURNS void AS $$
 BEGIN
 INSERT INTO logtable VALUES (logtxt, 'now');
 END;
$$ LANGUAGE plpgsql;

and:

CREATE FUNCTION logfunc2(logtxt text) RETURNS void AS $$
 DECLARE
 curtime timestamp;
 BEGIN
 curtime := 'now';
 INSERT INTO logtable VALUES (logtxt, curtime);
 END;
$$ LANGUAGE plpgsql;

In the case of logfunc1, the Postgres Pro main parser knows when analyzing the INSERT that the string
'now' should be interpreted as timestamp, because the target column of logtable is of that type.
Thus, 'now' will be converted to a timestamp constant when the INSERT is analyzed, and then used
in all invocations of logfunc1 during the lifetime of the session. Needless to say, this isn't what the
programmer wanted. A better idea is to use the now() or current_timestamp function.

In the case of logfunc2, the Postgres Pro main parser does not know what type 'now' should become and
therefore it returns a data value of type text containing the string now. During the ensuing assignment
to the local variable curtime, the PL/pgSQL interpreter casts this string to the timestamp type by calling
the textout and timestamp_in functions for the conversion. So, the computed time stamp is updated
on each execution as the programmer expects. Even though this happens to work as expected, it's not
terribly efficient, so use of the now() function would still be a better idea.

1088

PL/pgSQL — SQL
Procedural Language

40.12. Tips for Developing in PL/pgSQL
One good way to develop in PL/pgSQL is to use the text editor of your choice to create your functions,
and in another window, use psql to load and test those functions. If you are doing it this way, it is a good
idea to write the function using CREATE OR REPLACE FUNCTION. That way you can just reload the file to
update the function definition. For example:
CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $$

$$ LANGUAGE plpgsql;

While running psql, you can load or reload such a function definition file with:
\i filename.sql

and then immediately issue SQL commands to test the function.

Another good way to develop in PL/pgSQL is with a GUI database access tool that facilitates development
in a procedural language. One example of such a tool is pgAdmin, although others exist. These tools
often provide convenient features such as escaping single quotes and making it easier to recreate and
debug functions.

40.12.1. Handling of Quotation Marks
The code of a PL/pgSQL function is specified in CREATE FUNCTION as a string literal. If you write the string
literal in the ordinary way with surrounding single quotes, then any single quotes inside the function
body must be doubled; likewise any backslashes must be doubled (assuming escape string syntax is
used). Doubling quotes is at best tedious, and in more complicated cases the code can become downright
incomprehensible, because you can easily find yourself needing half a dozen or more adjacent quote
marks. It's recommended that you instead write the function body as a “dollar-quoted” string literal (see
Section 4.1.2.4). In the dollar-quoting approach, you never double any quote marks, but instead take
care to choose a different dollar-quoting delimiter for each level of nesting you need. For example, you
might write the CREATE FUNCTION command as:
CREATE OR REPLACE FUNCTION testfunc(integer) RETURNS integer AS $PROC$

$PROC$ LANGUAGE plpgsql;

Within this, you might use quote marks for simple literal strings in SQL commands and $$ to delimit
fragments of SQL commands that you are assembling as strings. If you need to quote text that includes
$$, you could use Q, and so on.

The following chart shows what you have to do when writing quote marks without dollar quoting. It
might be useful when translating pre-dollar quoting code into something more comprehensible.

1 quotation mark
To begin and end the function body, for example:
CREATE FUNCTION foo() RETURNS integer AS '

' LANGUAGE plpgsql;

Anywhere within a single-quoted function body, quote marks must appear in pairs.

2 quotation marks
For string literals inside the function body, for example:
a_output := ''Blah'';
SELECT * FROM users WHERE f_name=''foobar'';

In the dollar-quoting approach, you'd just write:
a_output := 'Blah';
SELECT * FROM users WHERE f_name='foobar';

which is exactly what the PL/pgSQL parser would see in either case.

1089

PL/pgSQL — SQL
Procedural Language

4 quotation marks
When you need a single quotation mark in a string constant inside the function body, for example:
a_output := a_output || '' AND name LIKE ''''foobar'''' AND xyz''

The value actually appended to a_output would be: AND name LIKE 'foobar' AND xyz.

In the dollar-quoting approach, you'd write:
a_output := a_output || $$ AND name LIKE 'foobar' AND xyz$$

being careful that any dollar-quote delimiters around this are not just $$.

6 quotation marks
When a single quotation mark in a string inside the function body is adjacent to the end of that string
constant, for example:
a_output := a_output || '' AND name LIKE ''''foobar''''''

The value appended to a_output would then be: AND name LIKE 'foobar'.

In the dollar-quoting approach, this becomes:
a_output := a_output || $$ AND name LIKE 'foobar'$$

10 quotation marks
When you want two single quotation marks in a string constant (which accounts for 8 quotation
marks) and this is adjacent to the end of that string constant (2 more). You will probably only need
that if you are writing a function that generates other functions, as in Example 40.10. For example:
a_output := a_output || '' if v_'' ||
 referrer_keys.kind || '' like ''''''''''
 || referrer_keys.key_string || ''''''''''
 then return '''''' || referrer_keys.referrer_type
 || ''''''; end if;'';

The value of a_output would then be:
if v_... like ''...'' then return ''...''; end if;

In the dollar-quoting approach, this becomes:
a_output := a_output || $$ if v_$$ || referrer_keys.kind || $$ like '$$
 || referrer_keys.key_string || $$'
 then return '$$ || referrer_keys.referrer_type
 || $$'; end if;$$;

where we assume we only need to put single quote marks into a_output, because it will be re-quoted
before use.

40.12.2. Additional Compile-Time and Run-Time Checks
To aid the user in finding instances of simple but common problems before they cause harm, PL/pgSQL
provides additional checks. When enabled, depending on the configuration, they can be used to emit
either a WARNING or an ERROR during the compilation of a function. A function which has received a
WARNING can be executed without producing further messages, so you are advised to test in a separate
development environment.

Setting plpgsql.extra_warnings, or plpgsql.extra_errors, as appropriate, to "all" is encouraged
in development and/or testing environments.

These additional checks are enabled through the configuration variables plpgsql.extra_warnings for
warnings and plpgsql.extra_errors for errors. Both can be set either to a comma-separated list of
checks, "none" or "all". The default is "none". Currently the list of available checks includes:
shadowed_variables

Checks if a declaration shadows a previously defined variable.

1090

PL/pgSQL — SQL
Procedural Language

strict_multi_assignment

Some PL/PgSQL commands allow assigning values to more than one variable at a time, such as
SELECT INTO. Typically, the number of target variables and the number of source variables should
match, though PL/PgSQL will use NULL for missing values and extra variables are ignored. Enabling
this check will cause PL/PgSQL to throw a WARNING or ERROR whenever the number of target variables
and the number of source variables are different.

too_many_rows

Enabling this check will cause PL/PgSQL to check if a given query returns more than one row when
an INTO clause is used. As an INTO statement will only ever use one row, having a query return
multiple rows is generally either inefficient and/or nondeterministic and therefore is likely an error.

The following example shows the effect of plpgsql.extra_warnings set to shadowed_variables:

SET plpgsql.extra_warnings TO 'shadowed_variables';

CREATE FUNCTION foo(f1 int) RETURNS int AS $$
DECLARE
f1 int;
BEGIN
RETURN f1;
END;
$$ LANGUAGE plpgsql;
WARNING: variable "f1" shadows a previously defined variable
LINE 3: f1 int;
 ^
CREATE FUNCTION

The below example shows the effects of setting plpgsql.extra_warnings to strict_multi_assignment:

SET plpgsql.extra_warnings TO 'strict_multi_assignment';

CREATE OR REPLACE FUNCTION public.foo()
 RETURNS void
 LANGUAGE plpgsql
AS $$
DECLARE
 x int;
 y int;
BEGIN
 SELECT 1 INTO x, y;
 SELECT 1, 2 INTO x, y;
 SELECT 1, 2, 3 INTO x, y;
END;
$$;

SELECT foo();
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.
WARNING: number of source and target fields in assignment does not match
DETAIL: strict_multi_assignment check of extra_warnings is active.
HINT: Make sure the query returns the exact list of columns.

 foo

(1 row)

1091

PL/pgSQL — SQL
Procedural Language

40.13. Porting from Oracle PL/SQL
This section explains differences between Postgres Pro's PL/pgSQL language and Oracle's PL/SQL
language, to help developers who port applications from Oracle® to Postgres Pro.

PL/pgSQL is similar to PL/SQL in many aspects. It is a block-structured, imperative language, and all
variables have to be declared. Assignments, loops, and conditionals are similar. The main differences
you should keep in mind when porting from PL/SQL to PL/pgSQL are:
• If a name used in a SQL command could be either a column name of a table or a reference to

a variable of the function, PL/SQL treats it as a column name. This corresponds to PL/pgSQL's
plpgsql.variable_conflict = use_column behavior, which is not the default, as explained in
Section 40.11.1. It's often best to avoid such ambiguities in the first place, but if you have to port
a large amount of code that depends on this behavior, setting variable_conflict may be the best
solution.

• In Postgres Pro the function body must be written as a string literal. Therefore you need to use
dollar quoting or escape single quotes in the function body. (See Section 40.12.1.)

• Data type names often need translation. For example, in Oracle string values are commonly
declared as being of type varchar2, which is a non-SQL-standard type. In Postgres Pro, use type
varchar or text instead. Similarly, replace type number with numeric, or use some other numeric
data type if there's a more appropriate one.

• Instead of packages, use schemas to organize your functions into groups.
• Since there are no packages, there are no package-level variables either. This is somewhat

annoying. You can keep per-session state in temporary tables instead.
• Integer FOR loops with REVERSE work differently: PL/SQL counts down from the second number

to the first, while PL/pgSQL counts down from the first number to the second, requiring the loop
bounds to be swapped when porting. This incompatibility is unfortunate but is unlikely to be
changed. (See Section 40.6.5.5.)

• FOR loops over queries (other than cursors) also work differently: the target variable(s) must have
been declared, whereas PL/SQL always declares them implicitly. An advantage of this is that the
variable values are still accessible after the loop exits.

• There are various notational differences for the use of cursor variables.

40.13.1. Porting Examples
Example 40.9 shows how to port a simple function from PL/SQL to PL/pgSQL.

Example 40.9. Porting a Simple Function from PL/SQL to PL/pgSQL

Here is an Oracle PL/SQL function:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar2,
 v_version varchar2)
RETURN varchar2 IS
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
/
show errors;

Let's go through this function and see the differences compared to PL/pgSQL:
• The type name varchar2 has to be changed to varchar or text. In the examples in this section,

we'll use varchar, but text is often a better choice if you do not need specific string length limits.

1092

PL/pgSQL — SQL
Procedural Language

• The RETURN key word in the function prototype (not the function body) becomes RETURNS in
Postgres Pro. Also, IS becomes AS, and you need to add a LANGUAGE clause because PL/pgSQL is not
the only possible function language.

• In Postgres Pro, the function body is considered to be a string literal, so you need to use quote
marks or dollar quotes around it. This substitutes for the terminating / in the Oracle approach.

• The show errors command does not exist in Postgres Pro, and is not needed since errors are
reported automatically.

This is how this function would look when ported to Postgres Pro:

CREATE OR REPLACE FUNCTION cs_fmt_browser_version(v_name varchar,
 v_version varchar)
RETURNS varchar AS $$
BEGIN
 IF v_version IS NULL THEN
 RETURN v_name;
 END IF;
 RETURN v_name || '/' || v_version;
END;
$$ LANGUAGE plpgsql;

Example 40.10 shows how to port a function that creates another function and how to handle the ensuing
quoting problems.

Example 40.10. Porting a Function that Creates Another Function from PL/SQL to PL/pgSQL

The following procedure grabs rows from a SELECT statement and builds a large function with the results
in IF statements, for the sake of efficiency.

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc IS
 CURSOR referrer_keys IS
 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_cmd VARCHAR(4000);
BEGIN
 func_cmd := 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host IN VARCHAR2,
 v_domain IN VARCHAR2, v_url IN VARCHAR2) RETURN VARCHAR2 IS BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_cmd := func_cmd ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ''' || referrer_key.key_string
 || ''' THEN RETURN ''' || referrer_key.referrer_type
 || '''; END IF;';
 END LOOP;

 func_cmd := func_cmd || ' RETURN NULL; END;';

 EXECUTE IMMEDIATE func_cmd;
END;
/
show errors;

Here is how this function would end up in Postgres Pro:

CREATE OR REPLACE PROCEDURE cs_update_referrer_type_proc() AS $func$
DECLARE
 referrer_keys CURSOR IS

1093

PL/pgSQL — SQL
Procedural Language

 SELECT * FROM cs_referrer_keys
 ORDER BY try_order;
 func_body text;
 func_cmd text;
BEGIN
 func_body := 'BEGIN';

 FOR referrer_key IN referrer_keys LOOP
 func_body := func_body ||
 ' IF v_' || referrer_key.kind
 || ' LIKE ' || quote_literal(referrer_key.key_string)
 || ' THEN RETURN ' || quote_literal(referrer_key.referrer_type)
 || '; END IF;' ;
 END LOOP;

 func_body := func_body || ' RETURN NULL; END;';

 func_cmd :=
 'CREATE OR REPLACE FUNCTION cs_find_referrer_type(v_host varchar,
 v_domain varchar,
 v_url varchar)
 RETURNS varchar AS '
 || quote_literal(func_body)
 || ' LANGUAGE plpgsql;' ;

 EXECUTE func_cmd;
END;
$func$ LANGUAGE plpgsql;

Notice how the body of the function is built separately and passed through quote_literal to double
any quote marks in it. This technique is needed because we cannot safely use dollar quoting for
defining the new function: we do not know for sure what strings will be interpolated from the
referrer_key.key_string field. (We are assuming here that referrer_key.kind can be trusted to
always be host, domain, or url, but referrer_key.key_string might be anything, in particular it might
contain dollar signs.) This function is actually an improvement on the Oracle original, because it will
not generate broken code when referrer_key.key_string or referrer_key.referrer_type contain
quote marks.

Example 40.11 shows how to port a function with OUT parameters and string manipulation. Postgres Pro
does not have a built-in instr function, but you can create one using a combination of other functions.
In Section 40.13.3 there is a PL/pgSQL implementation of instr that you can use to make your porting
easier.

Example 40.11. Porting a Procedure With String Manipulation and OUT Parameters from PL/SQL
to PL/pgSQL

The following Oracle PL/SQL procedure is used to parse a URL and return several elements (host, path,
and query).

This is the Oracle version:

CREATE OR REPLACE PROCEDURE cs_parse_url(
 v_url IN VARCHAR2,
 v_host OUT VARCHAR2, -- This will be passed back
 v_path OUT VARCHAR2, -- This one too
 v_query OUT VARCHAR2) -- And this one
IS
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN

1094

PL/pgSQL — SQL
Procedural Language

 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
/
show errors;

Here is a possible translation into PL/pgSQL:
CREATE OR REPLACE FUNCTION cs_parse_url(
 v_url IN VARCHAR,
 v_host OUT VARCHAR, -- This will be passed back
 v_path OUT VARCHAR, -- This one too
 v_query OUT VARCHAR) -- And this one
AS $$
DECLARE
 a_pos1 INTEGER;
 a_pos2 INTEGER;
BEGIN
 v_host := NULL;
 v_path := NULL;
 v_query := NULL;
 a_pos1 := instr(v_url, '//');

 IF a_pos1 = 0 THEN
 RETURN;
 END IF;
 a_pos2 := instr(v_url, '/', a_pos1 + 2);
 IF a_pos2 = 0 THEN
 v_host := substr(v_url, a_pos1 + 2);
 v_path := '/';
 RETURN;
 END IF;

 v_host := substr(v_url, a_pos1 + 2, a_pos2 - a_pos1 - 2);
 a_pos1 := instr(v_url, '?', a_pos2 + 1);

1095

PL/pgSQL — SQL
Procedural Language

 IF a_pos1 = 0 THEN
 v_path := substr(v_url, a_pos2);
 RETURN;
 END IF;

 v_path := substr(v_url, a_pos2, a_pos1 - a_pos2);
 v_query := substr(v_url, a_pos1 + 1);
END;
$$ LANGUAGE plpgsql;

This function could be used like this:
SELECT * FROM cs_parse_url('http://foobar.com/query.cgi?baz');

Example 40.12 shows how to port a procedure that uses numerous features that are specific to Oracle.

Example 40.12. Porting a Procedure from PL/SQL to PL/pgSQL
The Oracle version:
CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id IN INTEGER) IS
 a_running_job_count INTEGER;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 raise_application_error(-20000,
 'Unable to create a new job: a job is currently running.');
 END IF;

 DELETE FROM cs_active_job;
 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
 EXCEPTION
 WHEN dup_val_on_index THEN NULL; -- don't worry if it already exists
 END;
 COMMIT;
END;
/
show errors

This is how we could port this procedure to PL/pgSQL:
CREATE OR REPLACE PROCEDURE cs_create_job(v_job_id integer) AS $$
DECLARE
 a_running_job_count integer;
BEGIN
 LOCK TABLE cs_jobs IN EXCLUSIVE MODE;

 SELECT count(*) INTO a_running_job_count FROM cs_jobs WHERE end_stamp IS NULL;

 IF a_running_job_count > 0 THEN
 COMMIT; -- free lock
 RAISE EXCEPTION 'Unable to create a new job: a job is currently running'; -- 1
 END IF;

 DELETE FROM cs_active_job;

1096

PL/pgSQL — SQL
Procedural Language

 INSERT INTO cs_active_job(job_id) VALUES (v_job_id);

 BEGIN
 INSERT INTO cs_jobs (job_id, start_stamp) VALUES (v_job_id, now());
 EXCEPTION
 WHEN unique_violation THEN -- 2
 -- don't worry if it already exists
 END;
 COMMIT;
END;
$$ LANGUAGE plpgsql;

1 The syntax of RAISE is considerably different from Oracle's statement, although the basic case RAISE
exception_name works similarly.

2 The exception names supported by PL/pgSQL are different from Oracle's. The set of built-in
exception names is much larger (see Appendix A). There is not currently a way to declare user-
defined exception names, although you can throw user-chosen SQLSTATE values instead.

40.13.2. Other Things to Watch For
This section explains a few other things to watch for when porting Oracle PL/SQL functions to Postgres
Pro.

40.13.2.1. Implicit Rollback after Exceptions
In PL/pgSQL, when an exception is caught by an EXCEPTION clause, all database changes since the block's
BEGIN are automatically rolled back. That is, the behavior is equivalent to what you'd get in Oracle with:
BEGIN
 SAVEPOINT s1;
 ... code here ...
EXCEPTION
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
 WHEN ... THEN
 ROLLBACK TO s1;
 ... code here ...
END;

If you are translating an Oracle procedure that uses SAVEPOINT and ROLLBACK TO in this style, your task
is easy: just omit the SAVEPOINT and ROLLBACK TO. If you have a procedure that uses SAVEPOINT and
ROLLBACK TO in a different way then some actual thought will be required.

40.13.2.2. EXECUTE
The PL/pgSQL version of EXECUTE works similarly to the PL/SQL version, but you have to remember to
use quote_literal and quote_ident as described in Section 40.5.4. Constructs of the type EXECUTE
'SELECT * FROM $1'; will not work reliably unless you use these functions.

40.13.2.3. Optimizing PL/pgSQL Functions
Postgres Pro gives you two function creation modifiers to optimize execution: “volatility” (whether the
function always returns the same result when given the same arguments) and “strictness” (whether the
function returns null if any argument is null). Consult the CREATE FUNCTION reference page for details.

When making use of these optimization attributes, your CREATE FUNCTION statement might look
something like this:
CREATE FUNCTION foo(...) RETURNS integer AS $$
...
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

1097

PL/pgSQL — SQL
Procedural Language

40.13.3. Appendix
This section contains the code for a set of Oracle-compatible instr functions that you can use to simplify
your porting efforts.

--
-- instr functions that mimic Oracle's counterpart
-- Syntax: instr(string1, string2 [, n [, m]])
-- where [] denotes optional parameters.
--
-- Search string1, beginning at the nth character, for the mth occurrence
-- of string2. If n is negative, search backwards, starting at the abs(n)'th
-- character from the end of string1.
-- If n is not passed, assume 1 (search starts at first character).
-- If m is not passed, assume 1 (find first occurrence).
-- Returns starting index of string2 in string1, or 0 if string2 is not found.
--

CREATE FUNCTION instr(varchar, varchar) RETURNS integer AS $$
BEGIN
 RETURN instr($1, $2, 1);
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 length integer;
 ss_length integer;
BEGIN
 IF beg_index > 0 THEN
 temp_str := substring(string FROM beg_index);
 pos := position(string_to_search_for IN temp_str);

 IF pos = 0 THEN
 RETURN 0;
 ELSE
 RETURN pos + beg_index - 1;
 END IF;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 RETURN beg;
 END IF;

 beg := beg - 1;
 END LOOP;

1098

PL/pgSQL — SQL
Procedural Language

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;
END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

CREATE FUNCTION instr(string varchar, string_to_search_for varchar,
 beg_index integer, occur_index integer)
RETURNS integer AS $$
DECLARE
 pos integer NOT NULL DEFAULT 0;
 occur_number integer NOT NULL DEFAULT 0;
 temp_str varchar;
 beg integer;
 i integer;
 length integer;
 ss_length integer;
BEGIN
 IF occur_index <= 0 THEN
 RAISE 'argument ''%'' is out of range', occur_index
 USING ERRCODE = '22003';
 END IF;

 IF beg_index > 0 THEN
 beg := beg_index - 1;
 FOR i IN 1..occur_index LOOP
 temp_str := substring(string FROM beg + 1);
 pos := position(string_to_search_for IN temp_str);
 IF pos = 0 THEN
 RETURN 0;
 END IF;
 beg := beg + pos;
 END LOOP;

 RETURN beg;
 ELSIF beg_index < 0 THEN
 ss_length := char_length(string_to_search_for);
 length := char_length(string);
 beg := length + 1 + beg_index;

 WHILE beg > 0 LOOP
 temp_str := substring(string FROM beg FOR ss_length);
 IF string_to_search_for = temp_str THEN
 occur_number := occur_number + 1;
 IF occur_number = occur_index THEN
 RETURN beg;
 END IF;
 END IF;

 beg := beg - 1;
 END LOOP;

 RETURN 0;
 ELSE
 RETURN 0;
 END IF;

1099

PL/pgSQL — SQL
Procedural Language

END;
$$ LANGUAGE plpgsql STRICT IMMUTABLE;

1100

Chapter 41. PL/Tcl — Tcl Procedural
Language

PL/Tcl is a loadable procedural language for the Postgres Pro database system that enables the Tcl
language to be used to write Postgres Pro functions and procedures.

41.1. Overview
PL/Tcl offers most of the capabilities a function writer has in the C language, with a few restrictions, and
with the addition of the powerful string processing libraries that are available for Tcl.

One compelling good restriction is that everything is executed from within the safety of the context of
a Tcl interpreter. In addition to the limited command set of safe Tcl, only a few commands are available
to access the database via SPI and to raise messages via elog(). PL/Tcl provides no way to access
internals of the database server or to gain OS-level access under the permissions of the Postgres Pro
server process, as a C function can do. Thus, unprivileged database users can be trusted to use this
language; it does not give them unlimited authority.

The other notable implementation restriction is that Tcl functions cannot be used to create input/output
functions for new data types.

Sometimes it is desirable to write Tcl functions that are not restricted to safe Tcl. For example, one might
want a Tcl function that sends email. To handle these cases, there is a variant of PL/Tcl called PL/TclU
(for untrusted Tcl). This is exactly the same language except that a full Tcl interpreter is used. If PL/
TclU is used, it must be installed as an untrusted procedural language so that only database superusers
can create functions in it. The writer of a PL/TclU function must take care that the function cannot be
used to do anything unwanted, since it will be able to do anything that could be done by a user logged
in as the database administrator.

The shared object code for the PL/Tcl and PL/TclU call handlers is automatically built and installed in
the Postgres Pro library directory if Tcl support is specified in the configuration step of the installation
procedure. To install PL/Tcl and/or PL/TclU in a particular database, use the CREATE EXTENSION
command, for example CREATE EXTENSION pltcl or CREATE EXTENSION pltclu.

41.2. PL/Tcl Functions and Arguments
To create a function in the PL/Tcl language, use the standard CREATE FUNCTION syntax:
CREATE FUNCTION funcname (argument-types) RETURNS return-type AS $$
 # PL/Tcl function body
$$ LANGUAGE pltcl;

PL/TclU is the same, except that the language has to be specified as pltclu.

The body of the function is simply a piece of Tcl script. When the function is called, the argument values
are passed to the Tcl script as variables named 1 ... n. The result is returned from the Tcl code in the
usual way, with a return statement. In a procedure, the return value from the Tcl code is ignored.

For example, a function returning the greater of two integer values could be defined as:
CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl STRICT;

Note the clause STRICT, which saves us from having to think about null input values: if a null value is
passed, the function will not be called at all, but will just return a null result automatically.

In a nonstrict function, if the actual value of an argument is null, the corresponding $n variable will be
set to an empty string. To detect whether a particular argument is null, use the function argisnull.

1101

https://www.tcl.tk/
https://www.tcl.tk/

PL/Tcl — Tcl Procedural Language

For example, suppose that we wanted tcl_max with one null and one nonnull argument to return the
nonnull argument, rather than null:
CREATE FUNCTION tcl_max(integer, integer) RETURNS integer AS $$
 if {[argisnull 1]} {
 if {[argisnull 2]} { return_null }
 return $2
 }
 if {[argisnull 2]} { return $1 }
 if {$1 > $2} {return $1}
 return $2
$$ LANGUAGE pltcl;

As shown above, to return a null value from a PL/Tcl function, execute return_null. This can be done
whether the function is strict or not.

Composite-type arguments are passed to the function as Tcl arrays. The element names of the array are
the attribute names of the composite type. If an attribute in the passed row has the null value, it will
not appear in the array. Here is an example:
CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid(employee) RETURNS boolean AS $$
 if {200000.0 < $1(salary)} {
 return "t"
 }
 if {$1(age) < 30 && 100000.0 < $1(salary)} {
 return "t"
 }
 return "f"
$$ LANGUAGE pltcl;

PL/Tcl functions can return composite-type results, too. To do this, the Tcl code must return a list of
column name/value pairs matching the expected result type. Any column names omitted from the list
are returned as nulls, and an error is raised if there are unexpected column names. Here is an example:
CREATE FUNCTION square_cube(in int, out squared int, out cubed int) AS $$
 return [list squared [expr {$1 * $1}] cubed [expr {$1 * $1 * $1}]]
$$ LANGUAGE pltcl;

Output arguments of procedures are returned in the same way, for example:
CREATE PROCEDURE tcl_triple(INOUT a integer, INOUT b integer) AS $$
 return [list a [expr {$1 * 3}] b [expr {$2 * 3}]]
$$ LANGUAGE pltcl;

CALL tcl_triple(5, 10);

Tip
The result list can be made from an array representation of the desired tuple with the array get
Tcl command. For example:
CREATE FUNCTION raise_pay(employee, delta int) RETURNS employee AS $$
 set 1(salary) [expr {$1(salary) + $2}]
 return [array get 1]
$$ LANGUAGE pltcl;

1102

PL/Tcl — Tcl Procedural Language

PL/Tcl functions can return sets. To do this, the Tcl code should call return_next once per row to be
returned, passing either the appropriate value when returning a scalar type, or a list of column name/
value pairs when returning a composite type. Here is an example returning a scalar type:

CREATE FUNCTION sequence(int, int) RETURNS SETOF int AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next $i
 }
$$ LANGUAGE pltcl;

and here is one returning a composite type:

CREATE FUNCTION table_of_squares(int, int) RETURNS TABLE (x int, x2 int) AS $$
 for {set i $1} {$i < $2} {incr i} {
 return_next [list x $i x2 [expr {$i * $i}]]
 }
$$ LANGUAGE pltcl;

41.3. Data Values in PL/Tcl
The argument values supplied to a PL/Tcl function's code are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
result type, or for the specified column of a composite result type.

41.4. Global Data in PL/Tcl
Sometimes it is useful to have some global data that is held between two calls to a function or is shared
between different functions. This is easily done in PL/Tcl, but there are some restrictions that must be
understood.

For security reasons, PL/Tcl executes functions called by any one SQL role in a separate Tcl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user's PL/Tcl functions. Each such interpreter will have its own values for any “global” Tcl variables.
Thus, two PL/Tcl functions will share the same global variables if and only if they are executed by the
same SQL role. In an application wherein a single session executes code under multiple SQL roles (via
SECURITY DEFINER functions, use of SET ROLE, etc) you may need to take explicit steps to ensure that PL/
Tcl functions can share data. To do that, make sure that functions that should communicate are owned
by the same user, and mark them SECURITY DEFINER. You must of course take care that such functions
can't be used to do anything unintended.

All PL/TclU functions used in a session execute in the same Tcl interpreter, which of course is distinct
from the interpreter(s) used for PL/Tcl functions. So global data is automatically shared between PL/
TclU functions. This is not considered a security risk because all PL/TclU functions execute at the same
trust level, namely that of a database superuser.

To help protect PL/Tcl functions from unintentionally interfering with each other, a global array is made
available to each function via the upvar command. The global name of this variable is the function's
internal name, and the local name is GD. It is recommended that GD be used for persistent private data
of a function. Use regular Tcl global variables only for values that you specifically intend to be shared
among multiple functions. (Note that the GD arrays are only global within a particular interpreter, so
they do not bypass the security restrictions mentioned above.)

An example of using GD appears in the spi_execp example below.

41.5. Database Access from PL/Tcl
In this section, we follow the usual Tcl convention of using question marks, rather than brackets, to
indicate an optional element in a syntax synopsis. The following commands are available to access the
database from the body of a PL/Tcl function:

1103

PL/Tcl — Tcl Procedural Language

spi_exec ?-count n? ?-array name? command ?loop-body?

Executes an SQL command given as a string. An error in the command causes an error to be
raised. Otherwise, the return value of spi_exec is the number of rows processed (selected, inserted,
updated, or deleted) by the command, or zero if the command is a utility statement. In addition, if
the command is a SELECT statement, the values of the selected columns are placed in Tcl variables
as described below.

The optional -count value tells spi_exec the maximum number of rows to process in the command.
The effect of this is comparable to setting up a query as a cursor and then saying FETCH n.

If the command is a SELECT statement, the values of the result columns are placed into Tcl variables
named after the columns. If the -array option is given, the column values are instead stored into
elements of the named associative array, with the column names used as array indexes. In addition,
the current row number within the result (counting from zero) is stored into the array element named
“.tupno”, unless that name is in use as a column name in the result.

If the command is a SELECT statement and no loop-body script is given, then only the first row of
results are stored into Tcl variables or array elements; remaining rows, if any, are ignored. No storing
occurs if the query returns no rows. (This case can be detected by checking the result of spi_exec.)
For example:
spi_exec "SELECT count(*) AS cnt FROM pg_proc"

will set the Tcl variable $cnt to the number of rows in the pg_proc system catalog.

If the optional loop-body argument is given, it is a piece of Tcl script that is executed once for each
row in the query result. (loop-body is ignored if the given command is not a SELECT.) The values
of the current row's columns are stored into Tcl variables or array elements before each iteration.
For example:
spi_exec -array C "SELECT * FROM pg_class" {
 elog DEBUG "have table $C(relname)"
}

will print a log message for every row of pg_class. This feature works similarly to other Tcl looping
constructs; in particular continue and break work in the usual way inside the loop body.

If a column of a query result is null, the target variable for it is “unset” rather than being set.

spi_prepare query typelist
Prepares and saves a query plan for later execution. The saved plan will be retained for the life of
the current session.

The query can use parameters, that is, placeholders for values to be supplied whenever the plan is
actually executed. In the query string, refer to parameters by the symbols $1 ... $n. If the query uses
parameters, the names of the parameter types must be given as a Tcl list. (Write an empty list for
typelist if no parameters are used.)

The return value from spi_prepare is a query ID to be used in subsequent calls to spi_execp. See
spi_execp for an example.

spi_execp ?-count n? ?-array name? ?-nulls string? queryid ?value-list? ?loop-body?

Executes a query previously prepared with spi_prepare. queryid is the ID returned by spi_prepare.
If the query references parameters, a value-list must be supplied. This is a Tcl list of actual values
for the parameters. The list must be the same length as the parameter type list previously given to
spi_prepare. Omit value-list if the query has no parameters.

The optional value for -nulls is a string of spaces and 'n' characters telling spi_execp which of
the parameters are null values. If given, it must have exactly the same length as the value-list. If
it is not given, all the parameter values are nonnull.

1104

PL/Tcl — Tcl Procedural Language

Except for the way in which the query and its parameters are specified, spi_execp works just like
spi_exec. The -count, -array, and loop-body options are the same, and so is the result value.

Here's an example of a PL/Tcl function using a prepared plan:

CREATE FUNCTION t1_count(integer, integer) RETURNS integer AS $$
 if {![info exists GD(plan)]} {
 # prepare the saved plan on the first call
 set GD(plan) [spi_prepare \
 "SELECT count(*) AS cnt FROM t1 WHERE num >= \$1 AND num <= \$2" \
 [list int4 int4]]
 }
 spi_execp -count 1 $GD(plan) [list $1 $2]
 return $cnt
$$ LANGUAGE pltcl;

We need backslashes inside the query string given to spi_prepare to ensure that the $n markers will
be passed through to spi_prepare as-is, and not replaced by Tcl variable substitution.

subtransaction command

The Tcl script contained in command is executed within a SQL subtransaction. If the script returns an
error, that entire subtransaction is rolled back before returning the error out to the surrounding Tcl
code. See Section 41.9 for more details and an example.

quote string
Doubles all occurrences of single quote and backslash characters in the given string. This can be used
to safely quote strings that are to be inserted into SQL commands given to spi_exec or spi_prepare.
For example, think about an SQL command string like:

"SELECT '$val' AS ret"

where the Tcl variable val actually contains doesn't. This would result in the final command string:

SELECT 'doesn't' AS ret

which would cause a parse error during spi_exec or spi_prepare. To work properly, the submitted
command should contain:

SELECT 'doesn''t' AS ret

which can be formed in PL/Tcl using:

"SELECT '[quote $val]' AS ret"

One advantage of spi_execp is that you don't have to quote parameter values like this, since the
parameters are never parsed as part of an SQL command string.

elog level msg

Emits a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, ERROR, and
FATAL. ERROR raises an error condition; if this is not trapped by the surrounding Tcl code, the error
propagates out to the calling query, causing the current transaction or subtransaction to be aborted.
This is effectively the same as the Tcl error command. FATAL aborts the transaction and causes the
current session to shut down. (There is probably no good reason to use this error level in PL/Tcl
functions, but it's provided for completeness.) The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 18 and Section 41.8 for more information.

41.6. Trigger Functions in PL/Tcl
Trigger functions can be written in PL/Tcl. Postgres Pro requires that a function that is to be called as a
trigger must be declared as a function with no arguments and a return type of trigger.

1105

PL/Tcl — Tcl Procedural Language

The information from the trigger manager is passed to the function body in the following variables:

$TG_name

The name of the trigger from the CREATE TRIGGER statement.

$TG_relid

The object ID of the table that caused the trigger function to be invoked.

$TG_table_name

The name of the table that caused the trigger function to be invoked.

$TG_table_schema

The schema of the table that caused the trigger function to be invoked.

$TG_relatts

A Tcl list of the table column names, prefixed with an empty list element. So looking up a column
name in the list with Tcl's lsearch command returns the element's number starting with 1 for the first
column, the same way the columns are customarily numbered in Postgres Pro. (Empty list elements
also appear in the positions of columns that have been dropped, so that the attribute numbering is
correct for columns to their right.)

$TG_when

The string BEFORE, AFTER, or INSTEAD OF, depending on the type of trigger event.

$TG_level

The string ROW or STATEMENT depending on the type of trigger event.

$TG_op

The string INSERT, UPDATE, DELETE, or TRUNCATE depending on the type of trigger event.

$NEW

An associative array containing the values of the new table row for INSERT or UPDATE actions, or
empty for DELETE. The array is indexed by column name. Columns that are null will not appear in
the array. This is not set for statement-level triggers.

$OLD

An associative array containing the values of the old table row for UPDATE or DELETE actions, or empty
for INSERT. The array is indexed by column name. Columns that are null will not appear in the array.
This is not set for statement-level triggers.

$args

A Tcl list of the arguments to the function as given in the CREATE TRIGGER statement. These arguments
are also accessible as $1 ... $n in the function body.

The return value from a trigger function can be one of the strings OK or SKIP, or a list of column name/
value pairs. If the return value is OK, the operation (INSERT/UPDATE/DELETE) that fired the trigger will
proceed normally. SKIP tells the trigger manager to silently suppress the operation for this row. If a list
is returned, it tells PL/Tcl to return a modified row to the trigger manager; the contents of the modified
row are specified by the column names and values in the list. Any columns not mentioned in the list are
set to null. Returning a modified row is only meaningful for row-level BEFORE INSERT or UPDATE triggers,
for which the modified row will be inserted instead of the one given in $NEW; or for row-level INSTEAD
OF INSERT or UPDATE triggers where the returned row is used as the source data for INSERT RETURNING
or UPDATE RETURNING clauses. In row-level BEFORE DELETE or INSTEAD OF DELETE triggers, returning

1106

PL/Tcl — Tcl Procedural Language

a modified row has the same effect as returning OK, that is the operation proceeds. The trigger return
value is ignored for all other types of triggers.

Tip
The result list can be made from an array representation of the modified tuple with the array
get Tcl command.

Here's a little example trigger function that forces an integer value in a table to keep track of the number
of updates that are performed on the row. For new rows inserted, the value is initialized to 0 and then
incremented on every update operation.

CREATE FUNCTION trigfunc_modcount() RETURNS trigger AS $$
 switch $TG_op {
 INSERT {
 set NEW($1) 0
 }
 UPDATE {
 set NEW($1) $OLD($1)
 incr NEW($1)
 }
 default {
 return OK
 }
 }
 return [array get NEW]
$$ LANGUAGE pltcl;

CREATE TABLE mytab (num integer, description text, modcnt integer);

CREATE TRIGGER trig_mytab_modcount BEFORE INSERT OR UPDATE ON mytab
 FOR EACH ROW EXECUTE FUNCTION trigfunc_modcount('modcnt');

Notice that the trigger function itself does not know the column name; that's supplied from the trigger
arguments. This lets the trigger function be reused with different tables.

41.7. Event Trigger Functions in PL/Tcl
Event trigger functions can be written in PL/Tcl. Postgres Pro requires that a function that is to be
called as an event trigger must be declared as a function with no arguments and a return type of
event_trigger.

The information from the trigger manager is passed to the function body in the following variables:

$TG_event

The name of the event the trigger is fired for.

$TG_tag

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here's a little example event trigger function that simply raises a NOTICE message each time a supported
command is executed:

CREATE OR REPLACE FUNCTION tclsnitch() RETURNS event_trigger AS $$
 elog NOTICE "tclsnitch: $TG_event $TG_tag"
$$ LANGUAGE pltcl;

1107

PL/Tcl — Tcl Procedural Language

CREATE EVENT TRIGGER tcl_a_snitch ON ddl_command_start EXECUTE FUNCTION tclsnitch();

41.8. Error Handling in PL/Tcl
Tcl code within or called from a PL/Tcl function can raise an error, either by executing some invalid
operation or by generating an error using the Tcl error command or PL/Tcl's elog command. Such
errors can be caught within Tcl using the Tcl catch command. If an error is not caught but is allowed
to propagate out to the top level of execution of the PL/Tcl function, it is reported as a SQL error in the
function's calling query.

Conversely, SQL errors that occur within PL/Tcl's spi_exec, spi_prepare, and spi_execp commands are
reported as Tcl errors, so they are catchable by Tcl's catch command. (Each of these PL/Tcl commands
runs its SQL operation in a subtransaction, which is rolled back on error, so that any partially-completed
operation is automatically cleaned up.) Again, if an error propagates out to the top level without being
caught, it turns back into a SQL error.

Tcl provides an errorCode variable that can represent additional information about an error in a form
that is easy for Tcl programs to interpret. The contents are in Tcl list format, and the first word identifies
the subsystem or library reporting the error; beyond that the contents are left to the individual subsystem
or library. For database errors reported by PL/Tcl commands, the first word is POSTGRES, the second word
is the Postgres Pro version number, and additional words are field name/value pairs providing detailed
information about the error. Fields SQLSTATE, condition, and message are always supplied (the first two
represent the error code and condition name as shown in Appendix A). Fields that may be present include
detail, hint, context, schema, table, column, datatype, constraint, statement, cursor_position,
filename, lineno, and funcname.

A convenient way to work with PL/Tcl's errorCode information is to load it into an array, so that the field
names become array subscripts. Code for doing that might look like

if {[catch { spi_exec $sql_command }]} {
 if {[lindex $::errorCode 0] == "POSTGRES"} {
 array set errorArray $::errorCode
 if {$errorArray(condition) == "undefined_table"} {
 # deal with missing table
 } else {
 # deal with some other type of SQL error
 }
 }
}

(The double colons explicitly specify that errorCode is a global variable.)

41.9. Explicit Subtransactions in PL/Tcl
Recovering from errors caused by database access as described in Section 41.8 can lead to an
undesirable situation where some operations succeed before one of them fails, and after recovering from
that error the data is left in an inconsistent state. PL/Tcl offers a solution to this problem in the form
of explicit subtransactions.

Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
 if [catch {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'"
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]

1108

PL/Tcl — Tcl Procedural Language

 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

If the second UPDATE statement results in an exception being raised, this function will log the failure, but
the result of the first UPDATE will nevertheless be committed. In other words, the funds will be withdrawn
from Joe's account, but will not be transferred to Mary's account. This happens because each spi_exec
is a separate subtransaction, and only one of those subtransactions got rolled back.

To handle such cases, you can wrap multiple database operations in an explicit subtransaction, which
will succeed or roll back as a whole. PL/Tcl provides a subtransaction command to manage this. We
can rewrite our function as:

CREATE FUNCTION transfer_funds2() RETURNS void AS $$
 if [catch {
 subtransaction {
 spi_exec "UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'"
 spi_exec "UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'"
 }
 } errormsg] {
 set result [format "error transferring funds: %s" $errormsg]
 } else {
 set result "funds transferred successfully"
 }
 spi_exec "INSERT INTO operations (result) VALUES ('[quote $result]')"
$$ LANGUAGE pltcl;

Note that use of catch is still required for this purpose. Otherwise the error would propagate to the top
level of the function, preventing the desired insertion into the operations table. The subtransaction
command does not trap errors, it only assures that all database operations executed inside its scope will
be rolled back together when an error is reported.

A rollback of an explicit subtransaction occurs on any error reported by the contained Tcl code, not only
errors originating from database access. Thus a regular Tcl exception raised inside a subtransaction
command will also cause the subtransaction to be rolled back. However, non-error exits out of the
contained Tcl code (for instance, due to return) do not cause a rollback.

41.10. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the top
level it is possible to control transactions. To commit the current transaction, call the commit command.
To roll back the current transaction, call the rollback command. (Note that it is not possible to run the
SQL commands COMMIT or ROLLBACK via spi_exec or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate command
for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE pltcl
AS $$
for {set i 0} {$i < 10} {incr i} {
 spi_exec "INSERT INTO test1 (a) VALUES ($i)"
 if {$i % 2 == 0} {
 commit
 } else {

1109

PL/Tcl — Tcl Procedural Language

 rollback
 }
}
$$;

CALL transaction_test1();

Transactions cannot be ended when an explicit subtransaction is active.

41.11. PL/Tcl Configuration
This section lists configuration parameters that affect PL/Tcl.

pltcl.start_proc (string)
This parameter, if set to a nonempty string, specifies the name (possibly schema-qualified) of a
parameterless PL/Tcl function that is to be executed whenever a new Tcl interpreter is created for
PL/Tcl. Such a function can perform per-session initialization, such as loading additional Tcl code. A
new Tcl interpreter is created when a PL/Tcl function is first executed in a database session, or when
an additional interpreter has to be created because a PL/Tcl function is called by a new SQL role.

The referenced function must be written in the pltcl language, and must not be marked SECURITY
DEFINER. (These restrictions ensure that it runs in the interpreter it's supposed to initialize.) The
current user must have permission to call it, too.

If the function fails with an error it will abort the function call that caused the new interpreter to
be created and propagate out to the calling query, causing the current transaction or subtransaction
to be aborted. Any actions already done within Tcl won't be undone; however, that interpreter won't
be used again. If the language is used again the initialization will be attempted again within a fresh
Tcl interpreter.

Only superusers can change this setting. Although this setting can be changed within a session, such
changes will not affect Tcl interpreters that have already been created.

pltclu.start_proc (string)

This parameter is exactly like pltcl.start_proc, except that it applies to PL/TclU. The referenced
function must be written in the pltclu language.

41.12. Tcl Procedure Names
In Postgres Pro, the same function name can be used for different function definitions as long as the
number of arguments or their types differ. Tcl, however, requires all procedure names to be distinct. PL/
Tcl deals with this by making the internal Tcl procedure names contain the object ID of the function from
the system table pg_proc as part of their name. Thus, Postgres Pro functions with the same name and
different argument types will be different Tcl procedures, too. This is not normally a concern for a PL/
Tcl programmer, but it might be visible when debugging.

1110

Chapter 42. PL/Perl — Perl Procedural
Language

PL/Perl is a loadable procedural language that enables you to write Postgres Pro functions and
procedures in the Perl programming language.

The main advantage to using PL/Perl is that this allows use, within stored functions and procedures, of
the manyfold “string munging” operators and functions available for Perl. Parsing complex strings might
be easier using Perl than it is with the string functions and control structures provided in PL/pgSQL.

To install PL/Perl in a particular database, use CREATE EXTENSION plperl.

Tip
If a language is installed into template1, all subsequently created databases will have the language
installed automatically.

Note
Users of source packages must specially enable the build of PL/Perl during the installation process.
Users of binary packages might find PL/Perl in a separate subpackage.

42.1. PL/Perl Functions and Arguments
To create a function in the PL/Perl language, use the standard CREATE FUNCTION syntax:

CREATE FUNCTION funcname (argument-types)
RETURNS return-type
-- function attributes can go here
AS $$
 # PL/Perl function body goes here
$$ LANGUAGE plperl;

The body of the function is ordinary Perl code. In fact, the PL/Perl glue code wraps it inside a Perl
subroutine. A PL/Perl function is called in a scalar context, so it can't return a list. You can return non-
scalar values (arrays, records, and sets) by returning a reference, as discussed below.

In a PL/Perl procedure, any return value from the Perl code is ignored.

PL/Perl also supports anonymous code blocks called with the DO statement:

DO $$
 # PL/Perl code
$$ LANGUAGE plperl;

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

Note
The use of named nested subroutines is dangerous in Perl, especially if they refer to lexical
variables in the enclosing scope. Because a PL/Perl function is wrapped in a subroutine, any named
subroutine you place inside one will be nested. In general, it is far safer to create anonymous
subroutines which you call via a coderef. For more information, see the entries for Variable "%s"

1111

https://www.perl.org

PL/Perl — Perl Procedural Language

will not stay shared and Variable "%s" is not available in the perldiag man page, or
search the Internet for “perl nested named subroutine”.

The syntax of the CREATE FUNCTION command requires the function body to be written as a string
constant. It is usually most convenient to use dollar quoting (see Section 4.1.2.4) for the string constant.
If you choose to use escape string syntax E'', you must double any single quote marks (') and
backslashes (\) used in the body of the function (see Section 4.1.2.1).

Arguments and results are handled as in any other Perl subroutine: arguments are passed in @_, and a
result value is returned with return or as the last expression evaluated in the function.

For example, a function returning the greater of two integer values could be defined as:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 if ($_[0] > $_[1]) { return $_[0]; }
 return $_[1];
$$ LANGUAGE plperl;

Note
Arguments will be converted from the database's encoding to UTF-8 for use inside PL/Perl, and
then converted from UTF-8 back to the database encoding upon return.

If an SQL null value is passed to a function, the argument value will appear as “undefined” in Perl.
The above function definition will not behave very nicely with null inputs (in fact, it will act as though
they are zeroes). We could add STRICT to the function definition to make Postgres Pro do something
more reasonable: if a null value is passed, the function will not be called at all, but will just return a
null result automatically. Alternatively, we could check for undefined inputs in the function body. For
example, suppose that we wanted perl_max with one null and one nonnull argument to return the nonnull
argument, rather than a null value:

CREATE FUNCTION perl_max (integer, integer) RETURNS integer AS $$
 my ($x, $y) = @_;
 if (not defined $x) {
 return undef if not defined $y;
 return $y;
 }
 return $x if not defined $y;
 return $x if $x > $y;
 return $y;
$$ LANGUAGE plperl;

As shown above, to return an SQL null value from a PL/Perl function, return an undefined value. This
can be done whether the function is strict or not.

Anything in a function argument that is not a reference is a string, which is in the standard Postgres Pro
external text representation for the relevant data type. In the case of ordinary numeric or text types,
Perl will just do the right thing and the programmer will normally not have to worry about it. However, in
other cases the argument will need to be converted into a form that is more usable in Perl. For example,
the decode_bytea function can be used to convert an argument of type bytea into unescaped binary.

Similarly, values passed back to Postgres Pro must be in the external text representation format. For
example, the encode_bytea function can be used to escape binary data for a return value of type bytea.

One case that is particularly important is boolean values. As just stated, the default behavior for bool
values is that they are passed to Perl as text, thus either 't' or 'f'. This is problematic, since Perl will not
treat 'f' as false! It is possible to improve matters by using a “transform” (see CREATE TRANSFORM).
Suitable transforms are provided by the bool_plperl extension. To use it, install the extension:

1112

PL/Perl — Perl Procedural Language

CREATE EXTENSION bool_plperl; -- or bool_plperlu for PL/PerlU

Then use the TRANSFORM function attribute for a PL/Perl function that takes or returns bool, for example:

CREATE FUNCTION perl_and(bool, bool) RETURNS bool
TRANSFORM FOR TYPE bool
AS $$
 my ($a, $b) = @_;
 return $a && $b;
$$ LANGUAGE plperl;

When this transform is applied, bool arguments will be seen by Perl as being 1 or empty, thus properly
true or false. If the function result is type bool, it will be true or false according to whether Perl would
evaluate the returned value as true. Similar transformations are also performed for boolean query
arguments and results of SPI queries performed inside the function (Section 42.3.1).

Perl can return PostgreSQL arrays as references to Perl arrays. Here is an example:

CREATE OR REPLACE function returns_array()
RETURNS text[][] AS $$
 return [['a"b','c,d'],['e\\f','g']];
$$ LANGUAGE plperl;

select returns_array();

Perl passes PostgreSQL arrays as a blessed PostgreSQL::InServer::ARRAY object. This object may be
treated as an array reference or a string, allowing for backward compatibility with Perl code written for
PostgreSQL versions below 9.1 to run. For example:

CREATE OR REPLACE FUNCTION concat_array_elements(text[]) RETURNS TEXT AS $$
 my $arg = shift;
 my $result = "";
 return undef if (!defined $arg);

 # as an array reference
 for (@$arg) {
 $result .= $_;
 }

 # also works as a string
 $result .= $arg;

 return $result;
$$ LANGUAGE plperl;

SELECT concat_array_elements(ARRAY['PL','/','Perl']);

Note
Multidimensional arrays are represented as references to lower-dimensional arrays of references
in a way common to every Perl programmer.

Composite-type arguments are passed to the function as references to hashes. The keys of the hash are
the attribute names of the composite type. Here is an example:

CREATE TABLE employee (
 name text,
 basesalary integer,
 bonus integer

1113

PL/Perl — Perl Procedural Language

);

CREATE FUNCTION empcomp(employee) RETURNS integer AS $$
 my ($emp) = @_;
 return $emp->{basesalary} + $emp->{bonus};
$$ LANGUAGE plperl;

SELECT name, empcomp(employee.*) FROM employee;

A PL/Perl function can return a composite-type result using the same approach: return a reference to a
hash that has the required attributes. For example:

CREATE TYPE testrowperl AS (f1 integer, f2 text, f3 text);

CREATE OR REPLACE FUNCTION perl_row() RETURNS testrowperl AS $$
 return {f2 => 'hello', f1 => 1, f3 => 'world'};
$$ LANGUAGE plperl;

SELECT * FROM perl_row();

Any columns in the declared result data type that are not present in the hash will be returned as null
values.

Similarly, output arguments of procedures can be returned as a hash reference:

CREATE PROCEDURE perl_triple(INOUT a integer, INOUT b integer) AS $$
 my ($a, $b) = @_;
 return {a => $a * 3, b => $b * 3};
$$ LANGUAGE plperl;

CALL perl_triple(5, 10);

PL/Perl functions can also return sets of either scalar or composite types. Usually you'll want to return
rows one at a time, both to speed up startup time and to keep from queuing up the entire result set in
memory. You can do this with return_next as illustrated below. Note that after the last return_next,
you must put either return or (better) return undef.

CREATE OR REPLACE FUNCTION perl_set_int(int)
RETURNS SETOF INTEGER AS $$
 foreach (0..$_[0]) {
 return_next($_);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set()
RETURNS SETOF testrowperl AS $$
 return_next({ f1 => 1, f2 => 'Hello', f3 => 'World' });
 return_next({ f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' });
 return_next({ f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' });
 return undef;
$$ LANGUAGE plperl;

For small result sets, you can return a reference to an array that contains either scalars, references to
arrays, or references to hashes for simple types, array types, and composite types, respectively. Here
are some simple examples of returning the entire result set as an array reference:

CREATE OR REPLACE FUNCTION perl_set_int(int) RETURNS SETOF INTEGER AS $$
 return [0..$_[0]];

1114

PL/Perl — Perl Procedural Language

$$ LANGUAGE plperl;

SELECT * FROM perl_set_int(5);

CREATE OR REPLACE FUNCTION perl_set() RETURNS SETOF testrowperl AS $$
 return [
 { f1 => 1, f2 => 'Hello', f3 => 'World' },
 { f1 => 2, f2 => 'Hello', f3 => 'PostgreSQL' },
 { f1 => 3, f2 => 'Hello', f3 => 'PL/Perl' }
];
$$ LANGUAGE plperl;

SELECT * FROM perl_set();

If you wish to use the strict pragma with your code you have a few options. For temporary global use
you can SET plperl.use_strict to true. This will affect subsequent compilations of PL/Perl functions,
but not functions already compiled in the current session. For permanent global use you can set
plperl.use_strict to true in the postgresql.conf file.

For permanent use in specific functions you can simply put:

use strict;

at the top of the function body.

The feature pragma is also available to use if your Perl is version 5.10.0 or higher.

42.2. Data Values in PL/Perl
The argument values supplied to a PL/Perl function's code are simply the input arguments converted
to text form (just as if they had been displayed by a SELECT statement). Conversely, the return and
return_next commands will accept any string that is acceptable input format for the function's declared
return type.

If this behavior is inconvenient for a particular case, it can be improved by using a transform, as already
illustrated for bool values. Several examples of transform modules are included in the PostgreSQL
distribution.

42.3. Built-in Functions
42.3.1. Database Access from PL/Perl

Access to the database itself from your Perl function can be done via the following functions:

spi_exec_query(query [, max-rows])

spi_exec_query executes an SQL command and returns the entire row set as a reference to an
array of hash references. You should only use this command when you know that the result set will
be relatively small. Here is an example of a query (SELECT command) with the optional maximum
number of rows:

$rv = spi_exec_query('SELECT * FROM my_table', 5);

This returns up to 5 rows from the table my_table. If my_table has a column my_column, you can get
that value from row $i of the result like this:

$foo = $rv->{rows}[$i]->{my_column};

The total number of rows returned from a SELECT query can be accessed like this:

$nrows = $rv->{processed}

1115

PL/Perl — Perl Procedural Language

Here is an example using a different command type:

$query = "INSERT INTO my_table VALUES (1, 'test')";
$rv = spi_exec_query($query);

You can then access the command status (e.g., SPI_OK_INSERT) like this:

$res = $rv->{status};

To get the number of rows affected, do:

$nrows = $rv->{processed};

Here is a complete example:

CREATE TABLE test (
 i int,
 v varchar
);

INSERT INTO test (i, v) VALUES (1, 'first line');
INSERT INTO test (i, v) VALUES (2, 'second line');
INSERT INTO test (i, v) VALUES (3, 'third line');
INSERT INTO test (i, v) VALUES (4, 'immortal');

CREATE OR REPLACE FUNCTION test_munge() RETURNS SETOF test AS $$
 my $rv = spi_exec_query('select i, v from test;');
 my $status = $rv->{status};
 my $nrows = $rv->{processed};
 foreach my $rn (0 .. $nrows - 1) {
 my $row = $rv->{rows}[$rn];
 $row->{i} += 200 if defined($row->{i});
 $row->{v} =~ tr/A-Za-z/a-zA-Z/ if (defined($row->{v}));
 return_next($row);
 }
 return undef;
$$ LANGUAGE plperl;

SELECT * FROM test_munge();

spi_query(command)
spi_fetchrow(cursor)
spi_cursor_close(cursor)

spi_query and spi_fetchrow work together as a pair for row sets which might be large, or for
cases where you wish to return rows as they arrive. spi_fetchrow works only with spi_query. The
following example illustrates how you use them together:

CREATE TYPE foo_type AS (the_num INTEGER, the_text TEXT);

CREATE OR REPLACE FUNCTION lotsa_md5 (INTEGER) RETURNS SETOF foo_type AS $$
 use Digest::MD5 qw(md5_hex);
 my $file = '/usr/share/dict/words';
 my $t = localtime;
 elog(NOTICE, "opening file $file at $t");
 open my $fh, '<', $file # ooh, it's a file access!
 or elog(ERROR, "cannot open $file for reading: $!");
 my @words = <$fh>;
 close $fh;
 $t = localtime;
 elog(NOTICE, "closed file $file at $t");
 chomp(@words);

1116

PL/Perl — Perl Procedural Language

 my $row;
 my $sth = spi_query("SELECT * FROM generate_series(1,$_[0]) AS b(a)");
 while (defined ($row = spi_fetchrow($sth))) {
 return_next({
 the_num => $row->{a},
 the_text => md5_hex($words[rand @words])
 });
 }
 return;
$$ LANGUAGE plperlu;

SELECT * from lotsa_md5(500);

Normally, spi_fetchrow should be repeated until it returns undef, indicating that there are no more
rows to read. The cursor returned by spi_query is automatically freed when spi_fetchrow returns
undef. If you do not wish to read all the rows, instead call spi_cursor_close to free the cursor.
Failure to do so will result in memory leaks.

spi_prepare(command, argument types)
spi_query_prepared(plan, arguments)
spi_exec_prepared(plan [, attributes], arguments)
spi_freeplan(plan)

spi_prepare, spi_query_prepared, spi_exec_prepared, and spi_freeplan implement the same
functionality but for prepared queries. spi_prepare accepts a query string with numbered argument
placeholders ($1, $2, etc) and a string list of argument types:

$plan = spi_prepare('SELECT * FROM test WHERE id > $1 AND name = $2',
 'INTEGER', 'TEXT');

Once a query plan is prepared by a call to spi_prepare, the plan can be used instead of the string
query, either in spi_exec_prepared, where the result is the same as returned by spi_exec_query,
or in spi_query_prepared which returns a cursor exactly as spi_query does, which can be later
passed to spi_fetchrow. The optional second parameter to spi_exec_prepared is a hash reference
of attributes; the only attribute currently supported is limit, which sets the maximum number of
rows returned by a query.

The advantage of prepared queries is that is it possible to use one prepared plan for more than one
query execution. After the plan is not needed anymore, it can be freed with spi_freeplan:

CREATE OR REPLACE FUNCTION init() RETURNS VOID AS $$
 $_SHARED{my_plan} = spi_prepare('SELECT (now() + $1)::date AS now',
 'INTERVAL');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION add_time(INTERVAL) RETURNS TEXT AS $$
 return spi_exec_prepared(
 $_SHARED{my_plan},
 $_[0]
)->{rows}->[0]->{now};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION done() RETURNS VOID AS $$
 spi_freeplan($_SHARED{my_plan});
 undef $_SHARED{my_plan};
$$ LANGUAGE plperl;

SELECT init();
SELECT add_time('1 day'), add_time('2 days'), add_time('3 days');
SELECT done();

1117

PL/Perl — Perl Procedural Language

 add_time | add_time | add_time
------------+------------+------------
 2005-12-10 | 2005-12-11 | 2005-12-12

Note that the parameter subscript in spi_prepare is defined via $1, $2, $3, etc, so avoid declaring
query strings in double quotes that might easily lead to hard-to-catch bugs.

Another example illustrates usage of an optional parameter in spi_exec_prepared:

CREATE TABLE hosts AS SELECT id, ('192.168.1.'||id)::inet AS address
 FROM generate_series(1,3) AS id;

CREATE OR REPLACE FUNCTION init_hosts_query() RETURNS VOID AS $$
 $_SHARED{plan} = spi_prepare('SELECT * FROM hosts
 WHERE address << $1', 'inet');
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION query_hosts(inet) RETURNS SETOF hosts AS $$
 return spi_exec_prepared(
 $_SHARED{plan},
 {limit => 2},
 $_[0]
)->{rows};
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION release_hosts_query() RETURNS VOID AS $$
 spi_freeplan($_SHARED{plan});
 undef $_SHARED{plan};
$$ LANGUAGE plperl;

SELECT init_hosts_query();
SELECT query_hosts('192.168.1.0/30');
SELECT release_hosts_query();

 query_hosts

 (1,192.168.1.1)
 (2,192.168.1.2)
(2 rows)

spi_commit()
spi_rollback()

Commit or roll back the current transaction. This can only be called in a procedure or anonymous
code block (DO command) called from the top level. (Note that it is not possible to run the SQL
commands COMMIT or ROLLBACK via spi_exec_query or similar. It has to be done using these
functions.) After a transaction is ended, a new transaction is automatically started, so there is no
separate function for that.

Here is an example:

CREATE PROCEDURE transaction_test1()
LANGUAGE plperl
AS $$
foreach my $i (0..9) {
 spi_exec_query("INSERT INTO test1 (a) VALUES ($i)");
 if ($i % 2 == 0) {
 spi_commit();
 } else {

1118

PL/Perl — Perl Procedural Language

 spi_rollback();
 }
}
$$;

CALL transaction_test1();

42.3.2. Utility Functions in PL/Perl
elog(level, msg)

Emit a log or error message. Possible levels are DEBUG, LOG, INFO, NOTICE, WARNING, and ERROR. ERROR
raises an error condition; if this is not trapped by the surrounding Perl code, the error propagates
out to the calling query, causing the current transaction or subtransaction to be aborted. This is
effectively the same as the Perl die command. The other levels only generate messages of different
priority levels. Whether messages of a particular priority are reported to the client, written to the
server log, or both is controlled by the log_min_messages and client_min_messages configuration
variables. See Chapter 18 for more information.

quote_literal(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string.
Embedded single-quotes and backslashes are properly doubled. Note that quote_literal returns
undef on undef input; if the argument might be undef, quote_nullable is often more suitable.

quote_nullable(string)

Return the given string suitably quoted to be used as a string literal in an SQL statement string; or, if
the argument is undef, return the unquoted string "NULL". Embedded single-quotes and backslashes
are properly doubled.

quote_ident(string)

Return the given string suitably quoted to be used as an identifier in an SQL statement string. Quotes
are added only if necessary (i.e., if the string contains non-identifier characters or would be case-
folded). Embedded quotes are properly doubled.

decode_bytea(string)

Return the unescaped binary data represented by the contents of the given string, which should be
bytea encoded.

encode_bytea(string)

Return the bytea encoded form of the binary data contents of the given string.

encode_array_literal(array)
encode_array_literal(array, delimiter)

Returns the contents of the referenced array as a string in array literal format (see Section 8.15.2).
Returns the argument value unaltered if it's not a reference to an array. The delimiter used between
elements of the array literal defaults to ", " if a delimiter is not specified or is undef.

encode_typed_literal(value, typename)

Converts a Perl variable to the value of the data type passed as a second argument and returns a
string representation of this value. Correctly handles nested arrays and values of composite types.

encode_array_constructor(array)

Returns the contents of the referenced array as a string in array constructor format (see
Section 4.2.12). Individual values are quoted using quote_nullable. Returns the argument value,
quoted using quote_nullable, if it's not a reference to an array.

1119

PL/Perl — Perl Procedural Language

looks_like_number(string)
Returns a true value if the content of the given string looks like a number, according to Perl, returns
false otherwise. Returns undef if the argument is undef. Leading and trailing space is ignored. Inf
and Infinity are regarded as numbers.

is_array_ref(argument)
Returns a true value if the given argument may be treated as an array reference, that is, if ref of the
argument is ARRAY or PostgreSQL::InServer::ARRAY. Returns false otherwise.

42.4. Global Values in PL/Perl
You can use the global hash %_SHARED to store data, including code references, between function calls
for the lifetime of the current session.

Here is a simple example for shared data:
CREATE OR REPLACE FUNCTION set_var(name text, val text) RETURNS text AS $$
 if ($_SHARED{$_[0]} = $_[1]) {
 return 'ok';
 } else {
 return "cannot set shared variable $_[0] to $_[1]";
 }
$$ LANGUAGE plperl;

CREATE OR REPLACE FUNCTION get_var(name text) RETURNS text AS $$
 return $_SHARED{$_[0]};
$$ LANGUAGE plperl;

SELECT set_var('sample', 'Hello, PL/Perl! How''s tricks?');
SELECT get_var('sample');

Here is a slightly more complicated example using a code reference:
CREATE OR REPLACE FUNCTION myfuncs() RETURNS void AS $$
 $_SHARED{myquote} = sub {
 my $arg = shift;
 $arg =~ s/(['\\])/\\$1/g;
 return "'$arg'";
 };
$$ LANGUAGE plperl;

SELECT myfuncs(); /* initializes the function */

/* Set up a function that uses the quote function */

CREATE OR REPLACE FUNCTION use_quote(TEXT) RETURNS text AS $$
 my $text_to_quote = shift;
 my $qfunc = $_SHARED{myquote};
 return &$qfunc($text_to_quote);
$$ LANGUAGE plperl;

(You could have replaced the above with the one-liner return $_SHARED{myquote}->($_[0]); at the
expense of readability.)

For security reasons, PL/Perl executes functions called by any one SQL role in a separate Perl interpreter
for that role. This prevents accidental or malicious interference by one user with the behavior of another
user's PL/Perl functions. Each such interpreter has its own value of the %_SHARED variable and other
global state. Thus, two PL/Perl functions will share the same value of %_SHARED if and only if they are
executed by the same SQL role. In an application wherein a single session executes code under multiple
SQL roles (via SECURITY DEFINER functions, use of SET ROLE, etc) you may need to take explicit steps

1120

PL/Perl — Perl Procedural Language

to ensure that PL/Perl functions can share data via %_SHARED. To do that, make sure that functions that
should communicate are owned by the same user, and mark them SECURITY DEFINER. You must of course
take care that such functions can't be used to do anything unintended.

42.5. Trusted and Untrusted PL/Perl
Normally, PL/Perl is installed as a “trusted” programming language named plperl. In this setup, certain
Perl operations are disabled to preserve security. In general, the operations that are restricted are those
that interact with the environment. This includes file handle operations, require, and use (for external
modules). There is no way to access internals of the database server process or to gain OS-level access
with the permissions of the server process, as a C function can do. Thus, any unprivileged database user
can be permitted to use this language.

Here is an example of a function that will not work because file system operations are not allowed for
security reasons:
CREATE FUNCTION badfunc() RETURNS integer AS $$
 my $tmpfile = "/tmp/badfile";
 open my $fh, '>', $tmpfile
 or elog(ERROR, qq{could not open the file "$tmpfile": $!});
 print $fh "Testing writing to a file\n";
 close $fh or elog(ERROR, qq{could not close the file "$tmpfile": $!});
 return 1;
$$ LANGUAGE plperl;

The creation of this function will fail as its use of a forbidden operation will be caught by the validator.

Sometimes it is desirable to write Perl functions that are not restricted. For example, one might want
a Perl function that sends mail. To handle these cases, PL/Perl can also be installed as an “untrusted”
language (usually called PL/PerlU). In this case the full Perl language is available. When installing the
language, the language name plperlu will select the untrusted PL/Perl variant.

The writer of a PL/PerlU function must take care that the function cannot be used to do anything
unwanted, since it will be able to do anything that could be done by a user logged in as the database
administrator. Note that the database system allows only database superusers to create functions in
untrusted languages.

If the above function was created by a superuser using the language plperlu, execution would succeed.

In the same way, anonymous code blocks written in Perl can use restricted operations if the language is
specified as plperlu rather than plperl, but the caller must be a superuser.

Note
While PL/Perl functions run in a separate Perl interpreter for each SQL role, all PL/PerlU functions
executed in a given session run in a single Perl interpreter (which is not any of the ones used for
PL/Perl functions). This allows PL/PerlU functions to share data freely, but no communication can
occur between PL/Perl and PL/PerlU functions.

Note
Perl cannot support multiple interpreters within one process unless it was built with the
appropriate flags, namely either usemultiplicity or useithreads. (usemultiplicity is
preferred unless you actually need to use threads. For more details, see the perlembed man page.)
If PL/Perl is used with a copy of Perl that was not built this way, then it is only possible to have one
Perl interpreter per session, and so any one session can only execute either PL/PerlU functions,
or PL/Perl functions that are all called by the same SQL role.

1121

PL/Perl — Perl Procedural Language

42.6. PL/Perl Triggers
PL/Perl can be used to write trigger functions. In a trigger function, the hash reference $_TD contains
information about the current trigger event. $_TD is a global variable, which gets a separate local value
for each invocation of the trigger. The fields of the $_TD hash reference are:
$_TD->{new}{foo}

NEW value of column foo

$_TD->{old}{foo}

OLD value of column foo

$_TD->{name}

Name of the trigger being called

$_TD->{event}

Trigger event: INSERT, UPDATE, DELETE, TRUNCATE, or UNKNOWN

$_TD->{when}

When the trigger was called: BEFORE, AFTER, INSTEAD OF, or UNKNOWN

$_TD->{level}

The trigger level: ROW, STATEMENT, or UNKNOWN

$_TD->{relid}

OID of the table on which the trigger fired

$_TD->{table_name}

Name of the table on which the trigger fired

$_TD->{relname}

Name of the table on which the trigger fired. This has been deprecated, and could be removed in a
future release. Please use $_TD->{table_name} instead.

$_TD->{table_schema}

Name of the schema in which the table on which the trigger fired, is

$_TD->{argc}

Number of arguments of the trigger function

@{$_TD->{args}}

Arguments of the trigger function. Does not exist if $_TD->{argc} is 0.

Row-level triggers can return one of the following:
return;

Execute the operation

"SKIP"

Don't execute the operation

"MODIFY"

Indicates that the NEW row was modified by the trigger function

Here is an example of a trigger function, illustrating some of the above:

1122

PL/Perl — Perl Procedural Language

CREATE TABLE test (
 i int,
 v varchar
);

CREATE OR REPLACE FUNCTION valid_id() RETURNS trigger AS $$
 if (($_TD->{new}{i} >= 100) || ($_TD->{new}{i} <= 0)) {
 return "SKIP"; # skip INSERT/UPDATE command
 } elsif ($_TD->{new}{v} ne "immortal") {
 $_TD->{new}{v} .= "(modified by trigger)";
 return "MODIFY"; # modify row and execute INSERT/UPDATE command
 } else {
 return; # execute INSERT/UPDATE command
 }
$$ LANGUAGE plperl;

CREATE TRIGGER test_valid_id_trig
 BEFORE INSERT OR UPDATE ON test
 FOR EACH ROW EXECUTE FUNCTION valid_id();

42.7. PL/Perl Event Triggers
PL/Perl can be used to write event trigger functions. In an event trigger function, the hash reference $_TD
contains information about the current trigger event. $_TD is a global variable, which gets a separate
local value for each invocation of the trigger. The fields of the $_TD hash reference are:

$_TD->{event}

The name of the event the trigger is fired for.

$_TD->{tag}

The command tag for which the trigger is fired.

The return value of the trigger function is ignored.

Here is an example of an event trigger function, illustrating some of the above:

CREATE OR REPLACE FUNCTION perlsnitch() RETURNS event_trigger AS $$
 elog(NOTICE, "perlsnitch: " . $_TD->{event} . " " . $_TD->{tag} . " ");
$$ LANGUAGE plperl;

CREATE EVENT TRIGGER perl_a_snitch
 ON ddl_command_start
 EXECUTE FUNCTION perlsnitch();

42.8. PL/Perl Under the Hood
42.8.1. Configuration

This section lists configuration parameters that affect PL/Perl.

plperl.on_init (string)
Specifies Perl code to be executed when a Perl interpreter is first initialized, before it is specialized
for use by plperl or plperlu. The SPI functions are not available when this code is executed. If the
code fails with an error it will abort the initialization of the interpreter and propagate out to the
calling query, causing the current transaction or subtransaction to be aborted.

The Perl code is limited to a single string. Longer code can be placed into a module and loaded by
the on_init string. Examples:

1123

PL/Perl — Perl Procedural Language

plperl.on_init = 'require "plperlinit.pl"'
plperl.on_init = 'use lib "/my/app"; use MyApp::PgInit;'

Any modules loaded by plperl.on_init, either directly or indirectly, will be available for use by
plperl. This may create a security risk. To see what modules have been loaded you can use:
DO 'elog(WARNING, join ", ", sort keys %INC)' LANGUAGE plperl;

Initialization will happen in the postmaster if the plperl library is included in
shared_preload_libraries, in which case extra consideration should be given to the risk of
destabilizing the postmaster. The principal reason for making use of this feature is that Perl modules
loaded by plperl.on_init need be loaded only at postmaster start, and will be instantly available
without loading overhead in individual database sessions. However, keep in mind that the overhead
is avoided only for the first Perl interpreter used by a database session — either PL/PerlU, or PL/
Perl for the first SQL role that calls a PL/Perl function. Any additional Perl interpreters created in
a database session will have to execute plperl.on_init afresh. Also, on Windows there will be no
savings whatsoever from preloading, since the Perl interpreter created in the postmaster process
does not propagate to child processes.

This parameter can only be set in the postgresql.conf file or on the server command line.

plperl.on_plperl_init (string)
plperl.on_plperlu_init (string)

These parameters specify Perl code to be executed when a Perl interpreter is specialized for plperl
or plperlu respectively. This will happen when a PL/Perl or PL/PerlU function is first executed in a
database session, or when an additional interpreter has to be created because the other language
is called or a PL/Perl function is called by a new SQL role. This follows any initialization done by
plperl.on_init. The SPI functions are not available when this code is executed. The Perl code
in plperl.on_plperl_init is executed after “locking down” the interpreter, and thus it can only
perform trusted operations.

If the code fails with an error it will abort the initialization and propagate out to the calling query,
causing the current transaction or subtransaction to be aborted. Any actions already done within
Perl won't be undone; however, that interpreter won't be used again. If the language is used again
the initialization will be attempted again within a fresh Perl interpreter.

Only superusers can change these settings. Although these settings can be changed within a session,
such changes will not affect Perl interpreters that have already been used to execute functions.

plperl.use_strict (boolean)
When set true subsequent compilations of PL/Perl functions will have the strict pragma enabled.
This parameter does not affect functions already compiled in the current session.

42.8.2. Limitations and Missing Features
The following features are currently missing from PL/Perl, but they would make welcome contributions.
• PL/Perl functions cannot call each other directly.
• SPI is not yet fully implemented.
• If you are fetching very large data sets using spi_exec_query, you should be aware that these will

all go into memory. You can avoid this by using spi_query/spi_fetchrow as illustrated earlier.

A similar problem occurs if a set-returning function passes a large set of rows back to Postgres Pro
via return. You can avoid this problem too by instead using return_next for each row returned, as
shown previously.

• When a session ends normally, not due to a fatal error, any END blocks that have been defined are
executed. Currently no other actions are performed. Specifically, file handles are not automatically
flushed and objects are not automatically destroyed.

1124

Chapter 43. PL/Python — Python Procedural
Language

The PL/Python procedural language allows Postgres Pro functions and procedures to be written in the
Python language.

To install PL/Python in a particular database, use CREATE EXTENSION plpythonu (but see also
Section 43.1).

Tip
If a language is installed into template1, all subsequently created databases will have the language
installed automatically.

PL/Python is only available as an “untrusted” language, meaning it does not offer any way of restricting
what users can do in it and is therefore named plpythonu. A trusted variant plpython might become
available in the future if a secure execution mechanism is developed in Python. The writer of a function
in untrusted PL/Python must take care that the function cannot be used to do anything unwanted, since
it will be able to do anything that could be done by a user logged in as the database administrator. Only
superusers can create functions in untrusted languages such as plpythonu.

Note
Users of source packages must specially enable the build of PL/Python during the installation
process. (Refer to the installation instructions for more information.) Users of binary packages
might find PL/Python in a separate subpackage.

43.1. Python 2 vs. Python 3
PL/Python supports both the Python 2 and Python 3 language variants. (The Postgres Pro installation
instructions might contain more precise information about the exact supported minor versions of
Python.) Because the Python 2 and Python 3 language variants are incompatible in some important
aspects, the following naming and transitioning scheme is used by PL/Python to avoid mixing them:

• The PostgreSQL language named plpython2u implements PL/Python based on the Python 2
language variant.

• The PostgreSQL language named plpython3u implements PL/Python based on the Python 3
language variant.

• The language named plpythonu implements PL/Python based on the default Python language
variant, which is currently Python 2. (This default is independent of what any local Python
installations might consider to be their “default”, for example, what /usr/bin/python might
be.) The default will probably be changed to Python 3 in a distant future release of Postgres Pro,
depending on the progress of the migration to Python 3 in the Python community.

This scheme is analogous to the recommendations in PEP 394 regarding the naming and transitioning
of the python command.

It depends on the build configuration or the installed packages whether PL/Python for Python 2 or Python
3 or both are available.

1125

https://www.python.org
https://www.python.org/dev/peps/pep-0394/

PL/Python — Python
Procedural Language

Tip
The built variant depends on which Python version was found during the installation or which
version was explicitly set using the PYTHON environment variable. To make both variants of PL/
Python available in one installation, the source tree has to be configured and built twice.

This results in the following usage and migration strategy:
• Existing users and users who are currently not interested in Python 3 use the language name

plpythonu and don't have to change anything for the foreseeable future. It is recommended to
gradually “future-proof” the code via migration to Python 2.6/2.7 to simplify the eventual migration
to Python 3.

In practice, many PL/Python functions will migrate to Python 3 with few or no changes.
• Users who know that they have heavily Python 2 dependent code and don't plan to ever change it

can make use of the plpython2u language name. This will continue to work into the very distant
future, until Python 2 support might be completely dropped by Postgres Pro.

• Users who want to dive into Python 3 can use the plpython3u language name, which will keep
working forever by today's standards. In the distant future, when Python 3 might become the
default, they might like to remove the “3” for aesthetic reasons.

• Daredevils, who want to build a Python-3-only operating system environment, can change the
contents of plpythonu's extension control and script files to make plpythonu be equivalent to
plpython3u, keeping in mind that this would make their installation incompatible with most of the
rest of the world.

See also the document What's New In Python 3.0 for more information about porting to Python 3.

It is not allowed to use PL/Python based on Python 2 and PL/Python based on Python 3 in the same
session, because the symbols in the dynamic modules would clash, which could result in crashes of the
Postgres Pro server process. There is a check that prevents mixing Python major versions in a session,
which will abort the session if a mismatch is detected. It is possible, however, to use both PL/Python
variants in the same database, from separate sessions.

43.2. PL/Python Functions
Functions in PL/Python are declared via the standard CREATE FUNCTION syntax:
CREATE FUNCTION funcname (argument-list)
 RETURNS return-type
AS $$
 # PL/Python function body
$$ LANGUAGE plpythonu;

The body of a function is simply a Python script. When the function is called, its arguments are passed
as elements of the list args; named arguments are also passed as ordinary variables to the Python
script. Use of named arguments is usually more readable. The result is returned from the Python code
in the usual way, with return or yield (in case of a result-set statement). If you do not provide a return
value, Python returns the default None. PL/Python translates Python's None into the SQL null value. In
a procedure, the result from the Python code must be None (typically achieved by ending the procedure
without a return statement or by using a return statement without argument); otherwise, an error will
be raised.

For example, a function to return the greater of two integers can be defined as:
CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if a > b:

1126

https://docs.python.org/3/whatsnew/3.0.html

PL/Python — Python
Procedural Language

 return a
 return b
$$ LANGUAGE plpythonu;

The Python code that is given as the body of the function definition is transformed into a Python function.
For example, the above results in:
def __plpython_procedure_pymax_23456():
 if a > b:
 return a
 return b

assuming that 23456 is the OID assigned to the function by Postgres Pro.

The arguments are set as global variables. Because of the scoping rules of Python, this has the subtle
consequence that an argument variable cannot be reassigned inside the function to the value of an
expression that involves the variable name itself, unless the variable is redeclared as global in the block.
For example, the following won't work:
CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 x = x.strip() # error
 return x
$$ LANGUAGE plpythonu;

because assigning to x makes x a local variable for the entire block, and so the x on the right-hand side
of the assignment refers to a not-yet-assigned local variable x, not the PL/Python function parameter.
Using the global statement, this can be made to work:
CREATE FUNCTION pystrip(x text)
 RETURNS text
AS $$
 global x
 x = x.strip() # ok now
 return x
$$ LANGUAGE plpythonu;

But it is advisable not to rely on this implementation detail of PL/Python. It is better to treat the function
parameters as read-only.

43.3. Data Values
Generally speaking, the aim of PL/Python is to provide a “natural” mapping between the PostgreSQL
and the Python worlds. This informs the data mapping rules described below.

43.3.1. Data Type Mapping
When a PL/Python function is called, its arguments are converted from their PostgreSQL data type to
a corresponding Python type:
• PostgreSQL boolean is converted to Python bool.
• PostgreSQL smallint and int are converted to Python int. PostgreSQL bigint and oid are

converted to long in Python 2 and to int in Python 3.
• PostgreSQL real and double are converted to Python float.
• PostgreSQL numeric is converted to Python Decimal. This type is imported from the cdecimal

package if that is available. Otherwise, decimal.Decimal from the standard library will be used.
cdecimal is significantly faster than decimal. In Python 3.3 and up, however, cdecimal has been
integrated into the standard library under the name decimal, so there is no longer any difference.

• PostgreSQL bytea is converted to Python str in Python 2 and to bytes in Python 3. In Python 2,
the string should be treated as a byte sequence without any character encoding.

1127

PL/Python — Python
Procedural Language

• All other data types, including the PostgreSQL character string types, are converted to a Python
str. In Python 2, this string will be in the Postgres Pro server encoding; in Python 3, it will be a
Unicode string like all strings.

• For nonscalar data types, see below.

When a PL/Python function returns, its return value is converted to the function's declared PostgreSQL
return data type as follows:
• When the PostgreSQL return type is boolean, the return value will be evaluated for truth according

to the Python rules. That is, 0 and empty string are false, but notably 'f' is true.
• When the PostgreSQL return type is bytea, the return value will be converted to a string (Python 2)

or bytes (Python 3) using the respective Python built-ins, with the result being converted to bytea.
• For all other PostgreSQL return types, the return value is converted to a string using the Python

built-in str, and the result is passed to the input function of the PostgreSQL data type. (If the
Python value is a float, it is converted using the repr built-in instead of str, to avoid loss of
precision.)

Strings in Python 2 are required to be in the Postgres Pro server encoding when they are passed
to Postgres Pro. Strings that are not valid in the current server encoding will raise an error, but
not all encoding mismatches can be detected, so garbage data can still result when this is not done
correctly. Unicode strings are converted to the correct encoding automatically, so it can be safer
and more convenient to use those. In Python 3, all strings are Unicode strings.

• For nonscalar data types, see below.
Note that logical mismatches between the declared PostgreSQL return type and the Python data type of
the actual return object are not flagged; the value will be converted in any case.

43.3.2. Null, None
If an SQL null value is passed to a function, the argument value will appear as None in Python. For
example, the function definition of pymax shown in Section 43.2 will return the wrong answer for
null inputs. We could add STRICT to the function definition to make Postgres Pro do something more
reasonable: if a null value is passed, the function will not be called at all, but will just return a null result
automatically. Alternatively, we could check for null inputs in the function body:

CREATE FUNCTION pymax (a integer, b integer)
 RETURNS integer
AS $$
 if (a is None) or (b is None):
 return None
 if a > b:
 return a
 return b
$$ LANGUAGE plpythonu;

As shown above, to return an SQL null value from a PL/Python function, return the value None. This can
be done whether the function is strict or not.

43.3.3. Arrays, Lists
SQL array values are passed into PL/Python as a Python list. To return an SQL array value out of a PL/
Python function, return a Python list:

CREATE FUNCTION return_arr()
 RETURNS int[]
AS $$
return [1, 2, 3, 4, 5]
$$ LANGUAGE plpythonu;

1128

PL/Python — Python
Procedural Language

SELECT return_arr();
 return_arr

 {1,2,3,4,5}
(1 row)

Multidimensional arrays are passed into PL/Python as nested Python lists. A 2-dimensional array is a
list of lists, for example. When returning a multi-dimensional SQL array out of a PL/Python function, the
inner lists at each level must all be of the same size. For example:

CREATE FUNCTION test_type_conversion_array_int4(x int4[]) RETURNS int4[] AS $$
plpy.info(x, type(x))
return x
$$ LANGUAGE plpythonu;

SELECT * FROM test_type_conversion_array_int4(ARRAY[[1,2,3],[4,5,6]]);
INFO: ([[1, 2, 3], [4, 5, 6]], <type 'list'>)
 test_type_conversion_array_int4

 {{1,2,3},{4,5,6}}
(1 row)

Other Python sequences, like tuples, are also accepted for backwards-compatibility with PostgreSQL
versions 9.6 and below, when multi-dimensional arrays were not supported. However, they are always
treated as one-dimensional arrays, because they are ambiguous with composite types. For the same
reason, when a composite type is used in a multi-dimensional array, it must be represented by a tuple,
rather than a list.

Note that in Python, strings are sequences, which can have undesirable effects that might be familiar
to Python programmers:

CREATE FUNCTION return_str_arr()
 RETURNS varchar[]
AS $$
return "hello"
$$ LANGUAGE plpythonu;

SELECT return_str_arr();
 return_str_arr

 {h,e,l,l,o}
(1 row)

43.3.4. Composite Types
Composite-type arguments are passed to the function as Python mappings. The element names of the
mapping are the attribute names of the composite type. If an attribute in the passed row has the null
value, it has the value None in the mapping. Here is an example:

CREATE TABLE employee (
 name text,
 salary integer,
 age integer
);

CREATE FUNCTION overpaid (e employee)
 RETURNS boolean
AS $$
 if e["salary"] > 200000:
 return True
 if (e["age"] < 30) and (e["salary"] > 100000):

1129

PL/Python — Python
Procedural Language

 return True
 return False
$$ LANGUAGE plpythonu;

There are multiple ways to return row or composite types from a Python function. The following examples
assume we have:

CREATE TYPE named_value AS (
 name text,
 value integer
);

A composite result can be returned as a:
Sequence type (a tuple or list, but not a set because it is not indexable)

Returned sequence objects must have the same number of items as the composite result type has
fields. The item with index 0 is assigned to the first field of the composite type, 1 to the second and
so on. For example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return (name, value)
 # or alternatively, as list: return [name, value]
$$ LANGUAGE plpythonu;

To return a SQL null for any column, insert None at the corresponding position.

When an array of composite types is returned, it cannot be returned as a list, because it is ambiguous
whether the Python list represents a composite type, or another array dimension.

Mapping (dictionary)
The value for each result type column is retrieved from the mapping with the column name as key.
Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 return { "name": name, "value": value }
$$ LANGUAGE plpythonu;

Any extra dictionary key/value pairs are ignored. Missing keys are treated as errors. To return a SQL
null value for any column, insert None with the corresponding column name as the key.

Object (any object providing method __getattr__)
This works the same as a mapping. Example:

CREATE FUNCTION make_pair (name text, value integer)
 RETURNS named_value
AS $$
 class named_value:
 def __init__ (self, n, v):
 self.name = n
 self.value = v
 return named_value(name, value)

 # or simply
 class nv: pass
 nv.name = name
 nv.value = value
 return nv

1130

PL/Python — Python
Procedural Language

$$ LANGUAGE plpythonu;

Functions with OUT parameters are also supported. For example:
CREATE FUNCTION multiout_simple(OUT i integer, OUT j integer) AS $$
return (1, 2)
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple();

Output parameters of procedures are passed back the same way. For example:
CREATE PROCEDURE python_triple(INOUT a integer, INOUT b integer) AS $$
return (a * 3, b * 3)
$$ LANGUAGE plpythonu;

CALL python_triple(5, 10);

43.3.5. Set-Returning Functions
A PL/Python function can also return sets of scalar or composite types. There are several ways to achieve
this because the returned object is internally turned into an iterator. The following examples assume
we have composite type:
CREATE TYPE greeting AS (
 how text,
 who text
);

A set result can be returned from a:
Sequence type (tuple, list, set)

CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 # return tuple containing lists as composite types
 # all other combinations work also
 return ([how, "World"], [how, "PostgreSQL"], [how, "PL/Python"])
$$ LANGUAGE plpythonu;

Iterator (any object providing __iter__ and next methods)
CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 class producer:
 def __init__ (self, how, who):
 self.how = how
 self.who = who
 self.ndx = -1

 def __iter__ (self):
 return self

 def next (self):
 self.ndx += 1
 if self.ndx == len(self.who):
 raise StopIteration
 return (self.how, self.who[self.ndx])

 return producer(how, ["World", "PostgreSQL", "PL/Python"])
$$ LANGUAGE plpythonu;

1131

PL/Python — Python
Procedural Language

Generator (yield)
CREATE FUNCTION greet (how text)
 RETURNS SETOF greeting
AS $$
 for who in ["World", "PostgreSQL", "PL/Python"]:
 yield (how, who)
$$ LANGUAGE plpythonu;

Set-returning functions with OUT parameters (using RETURNS SETOF record) are also supported. For
example:
CREATE FUNCTION multiout_simple_setof(n integer, OUT integer, OUT integer) RETURNS
 SETOF record AS $$
return [(1, 2)] * n
$$ LANGUAGE plpythonu;

SELECT * FROM multiout_simple_setof(3);

43.4. Sharing Data
The global dictionary SD is available to store private data between repeated calls to the same function.
The global dictionary GD is public data, that is available to all Python functions within a session; use
with care.

Each function gets its own execution environment in the Python interpreter, so that global data and
function arguments from myfunc are not available to myfunc2. The exception is the data in the GD
dictionary, as mentioned above.

43.5. Anonymous Code Blocks
PL/Python also supports anonymous code blocks called with the DO statement:
DO $$
 # PL/Python code
$$ LANGUAGE plpythonu;

An anonymous code block receives no arguments, and whatever value it might return is discarded.
Otherwise it behaves just like a function.

43.6. Trigger Functions
When a function is used as a trigger, the dictionary TD contains trigger-related values:
TD["event"]

contains the event as a string: INSERT, UPDATE, DELETE, or TRUNCATE.

TD["when"]

contains one of BEFORE, AFTER, or INSTEAD OF.

TD["level"]

contains ROW or STATEMENT.

TD["new"]
TD["old"]

For a row-level trigger, one or both of these fields contain the respective trigger rows, depending
on the trigger event.

TD["name"]

contains the trigger name.

1132

PL/Python — Python
Procedural Language

TD["table_name"]

contains the name of the table on which the trigger occurred.

TD["table_schema"]

contains the schema of the table on which the trigger occurred.

TD["relid"]

contains the OID of the table on which the trigger occurred.

TD["args"]

If the CREATE TRIGGER command included arguments, they are available in TD["args"][0] to
TD["args"][n-1].

If TD["when"] is BEFORE or INSTEAD OF and TD["level"] is ROW, you can return None or "OK" from the
Python function to indicate the row is unmodified, "SKIP" to abort the event, or if TD["event"] is INSERT
or UPDATE you can return "MODIFY" to indicate you've modified the new row. Otherwise the return value
is ignored.

43.7. Database Access
The PL/Python language module automatically imports a Python module called plpy. The functions and
constants in this module are available to you in the Python code as plpy.foo.

43.7.1. Database Access Functions
The plpy module provides several functions to execute database commands:

plpy.execute(query [, max-rows])

Calling plpy.execute with a query string and an optional row limit argument causes that query to
be run and the result to be returned in a result object.

The result object emulates a list or dictionary object. The result object can be accessed by row
number and column name. For example:

rv = plpy.execute("SELECT * FROM my_table", 5)

returns up to 5 rows from my_table. If my_table has a column my_column, it would be accessed as:

foo = rv[i]["my_column"]

The number of rows returned can be obtained using the built-in len function.

The result object has these additional methods:

nrows()

Returns the number of rows processed by the command. Note that this is not necessarily the
same as the number of rows returned. For example, an UPDATE command will set this value but
won't return any rows (unless RETURNING is used).

status()

The SPI_execute() return value.

colnames()
coltypes()
coltypmods()

Return a list of column names, list of column type OIDs, and list of type-specific type modifiers
for the columns, respectively.

1133

PL/Python — Python
Procedural Language

These methods raise an exception when called on a result object from a command that did not
produce a result set, e.g., UPDATE without RETURNING, or DROP TABLE. But it is OK to use these
methods on a result set containing zero rows.

__str__()

The standard __str__ method is defined so that it is possible for example to debug query
execution results using plpy.debug(rv).

The result object can be modified.

Note that calling plpy.execute will cause the entire result set to be read into memory. Only use
that function when you are sure that the result set will be relatively small. If you don't want to risk
excessive memory usage when fetching large results, use plpy.cursor rather than plpy.execute.

plpy.prepare(query [, argtypes])
plpy.execute(plan [, arguments [, max-rows]])

plpy.prepare prepares the execution plan for a query. It is called with a query string and a list of
parameter types, if you have parameter references in the query. For example:

plan = plpy.prepare("SELECT last_name FROM my_users WHERE first_name = $1",
 ["text"])

text is the type of the variable you will be passing for $1. The second argument is optional if you
don't want to pass any parameters to the query.

After preparing a statement, you use a variant of the function plpy.execute to run it:

rv = plpy.execute(plan, ["name"], 5)

Pass the plan as the first argument (instead of the query string), and a list of values to substitute into
the query as the second argument. The second argument is optional if the query does not expect any
parameters. The third argument is the optional row limit as before.

Alternatively, you can call the execute method on the plan object:

rv = plan.execute(["name"], 5)

Query parameters and result row fields are converted between PostgreSQL and Python data types
as described in Section 43.3.

When you prepare a plan using the PL/Python module it is automatically saved. Read the SPI
documentation (Chapter 44) for a description of what this means. In order to make effective use of
this across function calls one needs to use one of the persistent storage dictionaries SD or GD (see
Section 43.4). For example:

CREATE FUNCTION usesavedplan() RETURNS trigger AS $$
 if "plan" in SD:
 plan = SD["plan"]
 else:
 plan = plpy.prepare("SELECT 1")
 SD["plan"] = plan
 # rest of function
$$ LANGUAGE plpythonu;

plpy.cursor(query)
plpy.cursor(plan [, arguments])

The plpy.cursor function accepts the same arguments as plpy.execute (except for the row limit)
and returns a cursor object, which allows you to process large result sets in smaller chunks. As with
plpy.execute, either a query string or a plan object along with a list of arguments can be used, or
the cursor function can be called as a method of the plan object.

1134

PL/Python — Python
Procedural Language

The cursor object provides a fetch method that accepts an integer parameter and returns a result
object. Each time you call fetch, the returned object will contain the next batch of rows, never
larger than the parameter value. Once all rows are exhausted, fetch starts returning an empty result
object. Cursor objects also provide an iterator interface, yielding one row at a time until all rows are
exhausted. Data fetched that way is not returned as result objects, but rather as dictionaries, each
dictionary corresponding to a single result row.

An example of two ways of processing data from a large table is:

CREATE FUNCTION count_odd_iterator() RETURNS integer AS $$
odd = 0
for row in plpy.cursor("select num from largetable"):
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_fetch(batch_size integer) RETURNS integer AS $$
odd = 0
cursor = plpy.cursor("select num from largetable")
while True:
 rows = cursor.fetch(batch_size)
 if not rows:
 break
 for row in rows:
 if row['num'] % 2:
 odd += 1
return odd
$$ LANGUAGE plpythonu;

CREATE FUNCTION count_odd_prepared() RETURNS integer AS $$
odd = 0
plan = plpy.prepare("select num from largetable where num % $1 <> 0", ["integer"])
rows = list(plpy.cursor(plan, [2])) # or: = list(plan.cursor([2]))

return len(rows)
$$ LANGUAGE plpythonu;

Cursors are automatically disposed of. But if you want to explicitly release all resources held by a
cursor, use the close method. Once closed, a cursor cannot be fetched from anymore.

Tip
Do not confuse objects created by plpy.cursor with DB-API cursors as defined by the Python
Database API specification. They don't have anything in common except for the name.

43.7.2. Trapping Errors
Functions accessing the database might encounter errors, which will cause them to abort and raise an
exception. Both plpy.execute and plpy.prepare can raise an instance of a subclass of plpy.SPIError,
which by default will terminate the function. This error can be handled just like any other Python
exception, by using the try/except construct. For example:

CREATE FUNCTION try_adding_joe() RETURNS text AS $$
 try:
 plpy.execute("INSERT INTO users(username) VALUES ('joe')")
 except plpy.SPIError:

1135

https://docs.python.org/library/stdtypes.html#iterator-types
https://www.python.org/dev/peps/pep-0249/
https://www.python.org/dev/peps/pep-0249/

PL/Python — Python
Procedural Language

 return "something went wrong"
 else:
 return "Joe added"
$$ LANGUAGE plpythonu;

The actual class of the exception being raised corresponds to the specific condition that caused the
error. Refer to Table A.1 for a list of possible conditions. The module plpy.spiexceptions defines an
exception class for each Postgres Pro condition, deriving their names from the condition name. For
instance, division_by_zero becomes DivisionByZero, unique_violation becomes UniqueViolation,
fdw_error becomes FdwError, and so on. Each of these exception classes inherits from SPIError. This
separation makes it easier to handle specific errors, for instance:

CREATE FUNCTION insert_fraction(numerator int, denominator int) RETURNS text AS $$
from plpy import spiexceptions
try:
 plan = plpy.prepare("INSERT INTO fractions (frac) VALUES ($1 / $2)", ["int",
 "int"])
 plpy.execute(plan, [numerator, denominator])
except spiexceptions.DivisionByZero:
 return "denominator cannot equal zero"
except spiexceptions.UniqueViolation:
 return "already have that fraction"
except plpy.SPIError as e:
 return "other error, SQLSTATE %s" % e.sqlstate
else:
 return "fraction inserted"
$$ LANGUAGE plpythonu;

Note that because all exceptions from the plpy.spiexceptions module inherit from SPIError, an except
clause handling it will catch any database access error.

As an alternative way of handling different error conditions, you can catch the SPIError exception and
determine the specific error condition inside the except block by looking at the sqlstate attribute of the
exception object. This attribute is a string value containing the “SQLSTATE” error code. This approach
provides approximately the same functionality

43.8. Explicit Subtransactions
Recovering from errors caused by database access as described in Section 43.7.2 can lead to an
undesirable situation where some operations succeed before one of them fails, and after recovering from
that error the data is left in an inconsistent state. PL/Python offers a solution to this problem in the form
of explicit subtransactions.

43.8.1. Subtransaction Context Managers
Consider a function that implements a transfer between two accounts:

CREATE FUNCTION transfer_funds() RETURNS void AS $$
try:
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

1136

PL/Python — Python
Procedural Language

If the second UPDATE statement results in an exception being raised, this function will report the error,
but the result of the first UPDATE will nevertheless be committed. In other words, the funds will be
withdrawn from Joe's account, but will not be transferred to Mary's account.

To avoid such issues, you can wrap your plpy.execute calls in an explicit subtransaction. The
plpy module provides a helper object to manage explicit subtransactions that gets created with the
plpy.subtransaction() function. Objects created by this function implement the context manager
interface. Using explicit subtransactions we can rewrite our function as:
CREATE FUNCTION transfer_funds2() RETURNS void AS $$
try:
 with plpy.subtransaction():
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'")
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"
plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])
plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

Note that the use of try/catch is still required. Otherwise the exception would propagate to the top
of the Python stack and would cause the whole function to abort with a Postgres Pro error, so that the
operations table would not have any row inserted into it. The subtransaction context manager does
not trap errors, it only assures that all database operations executed inside its scope will be atomically
committed or rolled back. A rollback of the subtransaction block occurs on any kind of exception exit, not
only ones caused by errors originating from database access. A regular Python exception raised inside
an explicit subtransaction block would also cause the subtransaction to be rolled back.

43.8.2. Older Python Versions
Context managers syntax using the with keyword is available by default in Python 2.6. For compatibility
with older Python versions, you can call the subtransaction manager's __enter__ and __exit__ functions
using the enter and exit convenience aliases. The example function that transfers funds could be written
as:
CREATE FUNCTION transfer_funds_old() RETURNS void AS $$
try:
 subxact = plpy.subtransaction()
 subxact.enter()
 try:
 plpy.execute("UPDATE accounts SET balance = balance - 100 WHERE account_name =
 'joe'")
 plpy.execute("UPDATE accounts SET balance = balance + 100 WHERE account_name =
 'mary'")
 except:
 import sys
 subxact.exit(*sys.exc_info())
 raise
 else:
 subxact.exit(None, None, None)
except plpy.SPIError as e:
 result = "error transferring funds: %s" % e.args
else:
 result = "funds transferred correctly"

plan = plpy.prepare("INSERT INTO operations (result) VALUES ($1)", ["text"])

1137

https://docs.python.org/library/stdtypes.html#context-manager-types
https://docs.python.org/library/stdtypes.html#context-manager-types

PL/Python — Python
Procedural Language

plpy.execute(plan, [result])
$$ LANGUAGE plpythonu;

43.9. Transaction Management
In a procedure called from the top level or an anonymous code block (DO command) called from the
top level it is possible to control transactions. To commit the current transaction, call plpy.commit().
To roll back the current transaction, call plpy.rollback(). (Note that it is not possible to run the SQL
commands COMMIT or ROLLBACK via plpy.execute or similar. It has to be done using these functions.)
After a transaction is ended, a new transaction is automatically started, so there is no separate function
for that.

Here is an example:
CREATE PROCEDURE transaction_test1()
LANGUAGE plpythonu
AS $$
for i in range(0, 10):
 plpy.execute("INSERT INTO test1 (a) VALUES (%d)" % i)
 if i % 2 == 0:
 plpy.commit()
 else:
 plpy.rollback()
$$;

CALL transaction_test1();

Transactions cannot be ended when an explicit subtransaction is active.

43.10. Utility Functions
The plpy module also provides the functions
plpy.debug(msg, **kwargs)
plpy.log(msg, **kwargs)
plpy.info(msg, **kwargs)
plpy.notice(msg, **kwargs)
plpy.warning(msg, **kwargs)
plpy.error(msg, **kwargs)
plpy.fatal(msg, **kwargs)

plpy.error and plpy.fatal actually raise a Python exception which, if uncaught, propagates out to the
calling query, causing the current transaction or subtransaction to be aborted. raise plpy.Error(msg)
and raise plpy.Fatal(msg) are equivalent to calling plpy.error(msg) and plpy.fatal(msg),
respectively but the raise form does not allow passing keyword arguments. The other functions
only generate messages of different priority levels. Whether messages of a particular priority are
reported to the client, written to the server log, or both is controlled by the log_min_messages and
client_min_messages configuration variables. See Chapter 18 for more information.

The msg argument is given as a positional argument. For backward compatibility, more than one
positional argument can be given. In that case, the string representation of the tuple of positional
arguments becomes the message reported to the client.

The following keyword-only arguments are accepted:
detail
hint
sqlstate
schema_name
table_name

1138

PL/Python — Python
Procedural Language

column_name
datatype_name
constraint_name

The string representation of the objects passed as keyword-only arguments is used to enrich the
messages reported to the client. For example:

CREATE FUNCTION raise_custom_exception() RETURNS void AS $$
plpy.error("custom exception message",
 detail="some info about exception",
 hint="hint for users")
$$ LANGUAGE plpythonu;

=# SELECT raise_custom_exception();
ERROR: plpy.Error: custom exception message
DETAIL: some info about exception
HINT: hint for users
CONTEXT: Traceback (most recent call last):
 PL/Python function "raise_custom_exception", line 4, in <module>
 hint="hint for users")
PL/Python function "raise_custom_exception"

Another set of utility functions are plpy.quote_literal(string), plpy.quote_nullable(string),
and plpy.quote_ident(string). They are equivalent to the built-in quoting functions described in
Section 9.4. They are useful when constructing ad-hoc queries. A PL/Python equivalent of dynamic SQL
from Example 40.1 would be:

plpy.execute("UPDATE tbl SET %s = %s WHERE key = %s" % (
 plpy.quote_ident(colname),
 plpy.quote_nullable(newvalue),
 plpy.quote_literal(keyvalue)))

43.11. Environment Variables
Some of the environment variables that are accepted by the Python interpreter can also be used to
affect PL/Python behavior. They would need to be set in the environment of the main Postgres Pro server
process, for example in a start script. The available environment variables depend on the version of
Python; see the Python documentation for details. At the time of this writing, the following environment
variables have an affect on PL/Python, assuming an adequate Python version:
• PYTHONHOME

• PYTHONPATH

• PYTHONY2K

• PYTHONOPTIMIZE

• PYTHONDEBUG

• PYTHONVERBOSE

• PYTHONCASEOK

• PYTHONDONTWRITEBYTECODE

• PYTHONIOENCODING

• PYTHONUSERBASE

• PYTHONHASHSEED

(It appears to be a Python implementation detail beyond the control of PL/Python that some of the
environment variables listed on the python man page are only effective in a command-line interpreter
and not an embedded Python interpreter.)

1139

Chapter 44. Server Programming Interface
The Server Programming Interface (SPI) gives writers of user-defined C functions the ability to run SQL
commands inside their functions or procedures. SPI is a set of interface functions to simplify access to
the parser, planner, and executor. SPI also does some memory management.

Note
The available procedural languages provide various means to execute SQL commands from
functions. Most of these facilities are based on SPI, so this documentation might be of use for
users of those languages as well.

Note that if a command invoked via SPI fails, then control will not be returned to your C function. Rather,
the transaction or subtransaction in which your C function executes will be rolled back. (This might
seem surprising given that the SPI functions mostly have documented error-return conventions. Those
conventions only apply for errors detected within the SPI functions themselves, however.) It is possible
to recover control after an error by establishing your own subtransaction surrounding SPI calls that
might fail.

SPI functions return a nonnegative result on success (either via a returned integer value or in the global
variable SPI_result, as described below). On error, a negative result or NULL will be returned.

Source code files that use SPI must include the header file executor/spi.h.

44.1. Interface Functions

1140

Server Programming Interface

SPI_connect
SPI_connect, SPI_connect_ext — connect a C function to the SPI manager

Synopsis
int SPI_connect(void)

int SPI_connect_ext(int options)

Description
SPI_connect opens a connection from a C function invocation to the SPI manager. You must call this
function if you want to execute commands through SPI. Some utility SPI functions can be called from
unconnected C functions.

SPI_connect_ext does the same but has an argument that allows passing option flags. Currently, the
following option values are available:

SPI_OPT_NONATOMIC

Sets the SPI connection to be nonatomic, which means that transaction control calls SPI_commit,
SPI_rollback, and SPI_start_transaction are allowed. Otherwise, calling these functions will
result in an immediate error.

SPI_connect() is equivalent to SPI_connect_ext(0).

Return Value
SPI_OK_CONNECT

on success

SPI_ERROR_CONNECT

on error

1141

Server Programming Interface

SPI_finish
SPI_finish — disconnect a C function from the SPI manager

Synopsis
int SPI_finish(void)

Description
SPI_finish closes an existing connection to the SPI manager. You must call this function after
completing the SPI operations needed during your C function's current invocation. You do not need to
worry about making this happen, however, if you abort the transaction via elog(ERROR). In that case
SPI will clean itself up automatically.

Return Value
SPI_OK_FINISH

if properly disconnected

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

1142

Server Programming Interface

SPI_execute
SPI_execute — execute a command

Synopsis
int SPI_execute(const char * command, bool read_only, long count)

Description
SPI_execute executes the specified SQL command for count rows. If read_only is true, the command
must be read-only, and execution overhead is somewhat reduced.

This function can only be called from a connected C function.

If count is zero then the command is executed for all rows that it applies to. If count is greater than
zero, then no more than count rows will be retrieved; execution stops when the count is reached, much
like adding a LIMIT clause to the query. For example,

SPI_execute("SELECT * FROM foo", true, 5);

will retrieve at most 5 rows from the table. Note that such a limit is only effective when the command
actually returns rows. For example,

SPI_execute("INSERT INTO foo SELECT * FROM bar", false, 5);

inserts all rows from bar, ignoring the count parameter. However, with

SPI_execute("INSERT INTO foo SELECT * FROM bar RETURNING *", false, 5);

at most 5 rows would be inserted, since execution would stop after the fifth RETURNING result row is
retrieved.

You can pass multiple commands in one string; SPI_execute returns the result for the command executed
last. The count limit applies to each command separately (even though only the last result will actually
be returned). The limit is not applied to any hidden commands generated by rules.

When read_only is false, SPI_execute increments the command counter and computes a new snapshot
before executing each command in the string. The snapshot does not actually change if the current
transaction isolation level is SERIALIZABLE or REPEATABLE READ, but in READ COMMITTED mode the
snapshot update allows each command to see the results of newly committed transactions from other
sessions. This is essential for consistent behavior when the commands are modifying the database.

When read_only is true, SPI_execute does not update either the snapshot or the command counter,
and it allows only plain SELECT commands to appear in the command string. The commands are executed
using the snapshot previously established for the surrounding query. This execution mode is somewhat
faster than the read/write mode due to eliminating per-command overhead. It also allows genuinely
stable functions to be built: since successive executions will all use the same snapshot, there will be no
change in the results.

It is generally unwise to mix read-only and read-write commands within a single function using SPI;
that could result in very confusing behavior, since the read-only queries would not see the results of any
database updates done by the read-write queries.

The actual number of rows for which the (last) command was executed is returned in the global variable
SPI_processed. If the return value of the function is SPI_OK_SELECT, SPI_OK_INSERT_RETURNING,
SPI_OK_DELETE_RETURNING, or SPI_OK_UPDATE_RETURNING, then you can use the global pointer
SPITupleTable *SPI_tuptable to access the result rows. Some utility commands (such as EXPLAIN) also
return row sets, and SPI_tuptable will contain the result in these cases too. Some utility commands
(COPY, CREATE TABLE AS) don't return a row set, so SPI_tuptable is NULL, but they still return the
number of rows processed in SPI_processed.

1143

Server Programming Interface

The structure SPITupleTable is defined thus:

typedef struct SPITupleTable
{
 /* Public members */
 TupleDesc tupdesc; /* tuple descriptor */
 HeapTuple *vals; /* array of tuples */
 uint64 numvals; /* number of valid tuples */

 /* Private members, not intended for external callers */
 uint64 alloced; /* allocated length of vals array */
 MemoryContext tuptabcxt; /* memory context of result table */
 slist_node next; /* link for internal bookkeeping */
 SubTransactionId subid; /* subxact in which tuptable was created */
} SPITupleTable;

The fields tupdesc, vals, and numvals can be used by SPI callers; the remaining fields are internal.
vals is an array of pointers to rows. The number of rows is given by numvals (for somewhat historical
reasons, this count is also returned in SPI_processed). tupdesc is a row descriptor which you can pass
to SPI functions dealing with rows.

SPI_finish frees all SPITupleTables allocated during the current C function. You can free a particular
result table earlier, if you are done with it, by calling SPI_freetuptable.

Arguments
const char * command

string containing command to execute

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
If the execution of the command was successful then one of the following (nonnegative) values will be
returned:

SPI_OK_SELECT

if a SELECT (but not SELECT INTO) was executed

SPI_OK_SELINTO

if a SELECT INTO was executed

SPI_OK_INSERT

if an INSERT was executed

SPI_OK_DELETE

if a DELETE was executed

SPI_OK_UPDATE

if an UPDATE was executed

SPI_OK_INSERT_RETURNING

if an INSERT RETURNING was executed

1144

Server Programming Interface

SPI_OK_DELETE_RETURNING

if a DELETE RETURNING was executed

SPI_OK_UPDATE_RETURNING

if an UPDATE RETURNING was executed

SPI_OK_UTILITY

if a utility command (e.g., CREATE TABLE) was executed

SPI_OK_REWRITTEN

if the command was rewritten into another kind of command (e.g., UPDATE became an INSERT) by
a rule.

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if command is NULL or count is less than 0

SPI_ERROR_COPY

if COPY TO stdout or COPY FROM stdin was attempted

SPI_ERROR_TRANSACTION

if a transaction manipulation command was attempted (BEGIN, COMMIT, ROLLBACK, SAVEPOINT,
PREPARE TRANSACTION, COMMIT PREPARED, ROLLBACK PREPARED, or any variant thereof)

SPI_ERROR_OPUNKNOWN

if the command type is unknown (shouldn't happen)

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

Notes
All SPI query-execution functions set both SPI_processed and SPI_tuptable (just the pointer, not the
contents of the structure). Save these two global variables into local C function variables if you need to
access the result table of SPI_execute or another query-execution function across later calls.

1145

Server Programming Interface

SPI_exec
SPI_exec — execute a read/write command

Synopsis
int SPI_exec(const char * command, long count)

Description
SPI_exec is the same as SPI_execute, with the latter's read_only parameter always taken as false.

Arguments
const char * command

string containing command to execute

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute.

1146

Server Programming Interface

SPI_execute_with_args
SPI_execute_with_args — execute a command with out-of-line parameters

Synopsis
int SPI_execute_with_args(const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, long count)

Description
SPI_execute_with_args executes a command that might include references to externally supplied
parameters. The command text refers to a parameter as $n, and the call specifies data types and values
for each such symbol. read_only and count have the same interpretation as in SPI_execute.

The main advantage of this routine compared to SPI_execute is that data values can be inserted into
the command without tedious quoting/escaping, and thus with much less risk of SQL-injection attacks.

Similar results can be achieved with SPI_prepare followed by SPI_execute_plan; however, when using
this function the query plan is always customized to the specific parameter values provided. For one-
time query execution, this function should be preferred. If the same command is to be executed with
many different parameters, either method might be faster, depending on the cost of re-planning versus
the benefit of custom plans.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_execute_with_args assumes that no parameters are null. Otherwise, each
entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if
the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a
'\0' terminator.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

1147

Server Programming Interface

Return Value
The return value is the same as for SPI_execute.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1148

Server Programming Interface

SPI_prepare
SPI_prepare — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare(const char * command, int nargs, Oid * argtypes)

Description
SPI_prepare creates and returns a prepared statement for the specified command, but doesn't execute
the command. The prepared statement can later be executed repeatedly using SPI_execute_plan.

When the same or a similar command is to be executed repeatedly, it is generally advantageous to
perform parse analysis only once, and might furthermore be advantageous to re-use an execution plan
for the command. SPI_prepare converts a command string into a prepared statement that encapsulates
the results of parse analysis. The prepared statement also provides a place for caching an execution plan
if it is found that generating a custom plan for each execution is not helpful.

A prepared command can be generalized by writing parameters ($1, $2, etc.) in place of what would
be constants in a normal command. The actual values of the parameters are then specified when
SPI_execute_plan is called. This allows the prepared command to be used over a wider range of
situations than would be possible without parameters.

The statement returned by SPI_prepare can be used only in the current invocation of the C function,
since SPI_finish frees memory allocated for such a statement. But the statement can be saved for
longer using the functions SPI_keepplan or SPI_saveplan.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

Return Value
SPI_prepare returns a non-null pointer to an SPIPlan, which is an opaque struct representing a prepared
statement. On error, NULL will be returned, and SPI_result will be set to one of the same error codes
used by SPI_execute, except that it is set to SPI_ERROR_ARGUMENT if command is NULL, or if nargs is less
than 0, or if nargs is greater than 0 and argtypes is NULL.

Notes
If no parameters are defined, a generic plan will be created at the first use of SPI_execute_plan,
and used for all subsequent executions as well. If there are parameters, the first few uses of
SPI_execute_plan will generate custom plans that are specific to the supplied parameter values.
After enough uses of the same prepared statement, SPI_execute_plan will build a generic plan, and
if that is not too much more expensive than the custom plans, it will start using the generic plan
instead of re-planning each time. If this default behavior is unsuitable, you can alter it by passing the
CURSOR_OPT_GENERIC_PLAN or CURSOR_OPT_CUSTOM_PLAN flag to SPI_prepare_cursor, to force use of
generic or custom plans respectively.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, Postgres Pro will force re-analysis and re-planning of the statement before using it whenever

1149

Server Programming Interface

database objects used in the statement have undergone definitional (DDL) changes since the previous
use of the prepared statement. Also, if the value of search_path changes from one use to the next, the
statement will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL
9.3.) See PREPARE for more information about the behavior of prepared statements.

This function should only be called from a connected C function.

SPIPlanPtr is declared as a pointer to an opaque struct type in spi.h. It is unwise to try to access its
contents directly, as that makes your code much more likely to break in future revisions of Postgres Pro.

The name SPIPlanPtr is somewhat historical, since the data structure no longer necessarily contains
an execution plan.

1150

Server Programming Interface

SPI_prepare_cursor
SPI_prepare_cursor — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_cursor(const char * command, int nargs,
 Oid * argtypes, int cursorOptions)

Description
SPI_prepare_cursor is identical to SPI_prepare, except that it also allows specification of the planner's
“cursor options” parameter. This is a bit mask having the values shown in nodes/parsenodes.h for the
options field of DeclareCursorStmt. SPI_prepare always takes the cursor options as zero.

Arguments
const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

pointer to an array containing the OIDs of the data types of the parameters

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_cursor has the same return conventions as SPI_prepare.

Notes
Useful bits to set in cursorOptions include CURSOR_OPT_SCROLL, CURSOR_OPT_NO_SCROLL,
CURSOR_OPT_FAST_PLAN, CURSOR_OPT_GENERIC_PLAN, and CURSOR_OPT_CUSTOM_PLAN. Note in particular
that CURSOR_OPT_HOLD is ignored.

1151

Server Programming Interface

SPI_prepare_params
SPI_prepare_params — prepare a statement, without executing it yet

Synopsis
SPIPlanPtr SPI_prepare_params(const char * command,
 ParserSetupHook parserSetup,
 void * parserSetupArg,
 int cursorOptions)

Description
SPI_prepare_params creates and returns a prepared statement for the specified command, but doesn't
execute the command. This function is equivalent to SPI_prepare_cursor, with the addition that the
caller can specify parser hook functions to control the parsing of external parameter references.

Arguments
const char * command

command string

ParserSetupHook parserSetup

Parser hook setup function

void * parserSetupArg

pass-through argument for parserSetup

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

Return Value
SPI_prepare_params has the same return conventions as SPI_prepare.

1152

Server Programming Interface

SPI_getargcount
SPI_getargcount — return the number of arguments needed by a statement prepared by SPI_prepare

Synopsis
int SPI_getargcount(SPIPlanPtr plan)

Description
SPI_getargcount returns the number of arguments needed to execute a statement prepared by
SPI_prepare.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
The count of expected arguments for the plan. If the plan is NULL or invalid, SPI_result is set to
SPI_ERROR_ARGUMENT and -1 is returned.

1153

Server Programming Interface

SPI_getargtypeid
SPI_getargtypeid — return the data type OID for an argument of a statement prepared by SPI_prepare

Synopsis
Oid SPI_getargtypeid(SPIPlanPtr plan, int argIndex)

Description
SPI_getargtypeid returns the OID representing the type for the argIndex'th argument of a statement
prepared by SPI_prepare. First argument is at index zero.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

int argIndex

zero based index of the argument

Return Value
The type OID of the argument at the given index. If the plan is NULL or invalid, or argIndex is
less than 0 or not less than the number of arguments declared for the plan, SPI_result is set to
SPI_ERROR_ARGUMENT and InvalidOid is returned.

1154

Server Programming Interface

SPI_is_cursor_plan
SPI_is_cursor_plan — return true if a statement prepared by SPI_prepare can be used with
SPI_cursor_open

Synopsis
bool SPI_is_cursor_plan(SPIPlanPtr plan)

Description
SPI_is_cursor_plan returns true if a statement prepared by SPI_prepare can be passed as an
argument to SPI_cursor_open, or false if that is not the case. The criteria are that the plan represents
one single command and that this command returns tuples to the caller; for example, SELECT is allowed
unless it contains an INTO clause, and UPDATE is allowed only if it contains a RETURNING clause.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Return Value
true or false to indicate if the plan can produce a cursor or not, with SPI_result set to zero. If it is
not possible to determine the answer (for example, if the plan is NULL or invalid, or if called when not
connected to SPI), then SPI_result is set to a suitable error code and false is returned.

1155

Server Programming Interface

SPI_execute_plan
SPI_execute_plan — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan(SPIPlanPtr plan, Datum * values, const char * nulls,
 bool read_only, long count)

Description
SPI_execute_plan executes a statement prepared by SPI_prepare or one of its siblings. read_only and
count have the same interpretation as in SPI_execute.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_execute_plan assumes that no parameters are null. Otherwise, each entry
of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the
corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a
'\0' terminator.

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute, with the following additional possible error (negative)
results:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid, or count is less than 0

SPI_ERROR_PARAM

if values is NULL and plan was prepared with some parameters

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1156

Server Programming Interface

SPI_execute_plan_with_paramlist
SPI_execute_plan_with_paramlist — execute a statement prepared by SPI_prepare

Synopsis
int SPI_execute_plan_with_paramlist(SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only,
 long count)

Description
SPI_execute_plan_with_paramlist executes a statement prepared by SPI_prepare. This function is
equivalent to SPI_execute_plan except that information about the parameter values to be passed to the
query is presented differently. The ParamListInfo representation can be convenient for passing down
values that are already available in that format. It also supports use of dynamic parameter sets via hook
functions specified in ParamListInfo.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

long count

maximum number of rows to return, or 0 for no limit

Return Value
The return value is the same as for SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute_plan if successful.

1157

Server Programming Interface

SPI_execp
SPI_execp — execute a statement in read/write mode

Synopsis
int SPI_execp(SPIPlanPtr plan, Datum * values, const char * nulls, long count)

Description
SPI_execp is the same as SPI_execute_plan, with the latter's read_only parameter always taken as
false.

Arguments
SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_execp assumes that no parameters are null. Otherwise, each entry of
the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the
corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a
'\0' terminator.

long count

maximum number of rows to return, or 0 for no limit

Return Value
See SPI_execute_plan.

SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

1158

Server Programming Interface

SPI_cursor_open
SPI_cursor_open — set up a cursor using a statement created with SPI_prepare

Synopsis
Portal SPI_cursor_open(const char * name, SPIPlanPtr plan,
 Datum * values, const char * nulls,
 bool read_only)

Description
SPI_cursor_open sets up a cursor (internally, a portal) that will execute a statement prepared
by SPI_prepare. The parameters have the same meanings as the corresponding parameters to
SPI_execute_plan.

Using a cursor instead of executing the statement directly has two benefits. First, the result rows can be
retrieved a few at a time, avoiding memory overrun for queries that return many rows. Second, a portal
can outlive the current C function (it can, in fact, live to the end of the current transaction). Returning
the portal name to the C function's caller provides a way of returning a row set as result.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

Datum * values

An array of actual parameter values. Must have same length as the statement's number of arguments.

const char * nulls

An array describing which parameters are null. Must have same length as the statement's number
of arguments.

If nulls is NULL then SPI_cursor_open assumes that no parameters are null. Otherwise, each entry
of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n' if the
corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a
'\0' terminator.

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1159

Server Programming Interface

SPI_cursor_open_with_args
SPI_cursor_open_with_args — set up a cursor using a query and parameters

Synopsis
Portal SPI_cursor_open_with_args(const char *name,
 const char *command,
 int nargs, Oid *argtypes,
 Datum *values, const char *nulls,
 bool read_only, int cursorOptions)

Description
SPI_cursor_open_with_args sets up a cursor (internally, a portal) that will execute the specified
query. Most of the parameters have the same meanings as the corresponding parameters to
SPI_prepare_cursor and SPI_cursor_open.

For one-time query execution, this function should be preferred over SPI_prepare_cursor followed by
SPI_cursor_open. If the same command is to be executed with many different parameters, either method
might be faster, depending on the cost of re-planning versus the benefit of custom plans.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

const char * command

command string

int nargs

number of input parameters ($1, $2, etc.)

Oid * argtypes

an array of length nargs, containing the OIDs of the data types of the parameters

Datum * values

an array of length nargs, containing the actual parameter values

const char * nulls

an array of length nargs, describing which parameters are null

If nulls is NULL then SPI_cursor_open_with_args assumes that no parameters are null. Otherwise,
each entry of the nulls array should be ' ' if the corresponding parameter value is non-null, or 'n'
if the corresponding parameter value is null. (In the latter case, the actual value in the corresponding
values entry doesn't matter.) Note that nulls is not a text string, just an array: it does not need a
'\0' terminator.

bool read_only

true for read-only execution

int cursorOptions

integer bit mask of cursor options; zero produces default behavior

1160

Server Programming Interface

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1161

Server Programming Interface

SPI_cursor_open_with_paramlist
SPI_cursor_open_with_paramlist — set up a cursor using parameters

Synopsis
Portal SPI_cursor_open_with_paramlist(const char *name,
 SPIPlanPtr plan,
 ParamListInfo params,
 bool read_only)

Description
SPI_cursor_open_with_paramlist sets up a cursor (internally, a portal) that will execute a statement
prepared by SPI_prepare. This function is equivalent to SPI_cursor_open except that information
about the parameter values to be passed to the query is presented differently. The ParamListInfo
representation can be convenient for passing down values that are already available in that format. It
also supports use of dynamic parameter sets via hook functions specified in ParamListInfo.

The passed-in parameter data will be copied into the cursor's portal, so it can be freed while the cursor
still exists.

Arguments
const char * name

name for portal, or NULL to let the system select a name

SPIPlanPtr plan

prepared statement (returned by SPI_prepare)

ParamListInfo params

data structure containing parameter types and values; NULL if none

bool read_only

true for read-only execution

Return Value
Pointer to portal containing the cursor. Note there is no error return convention; any error will be
reported via elog.

1162

Server Programming Interface

SPI_cursor_find
SPI_cursor_find — find an existing cursor by name

Synopsis
Portal SPI_cursor_find(const char * name)

Description
SPI_cursor_find finds an existing portal by name. This is primarily useful to resolve a cursor name
returned as text by some other function.

Arguments
const char * name

name of the portal

Return Value
pointer to the portal with the specified name, or NULL if none was found

1163

Server Programming Interface

SPI_cursor_fetch
SPI_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_cursor_fetch(Portal portal, bool forward, long count)

Description
SPI_cursor_fetch fetches some rows from a cursor. This is equivalent to a subset of the SQL command
FETCH (see SPI_scroll_cursor_fetch for more functionality).

Arguments
Portal portal

portal containing the cursor

bool forward

true for fetch forward, false for fetch backward

long count

maximum number of rows to fetch

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
Fetching backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1164

Server Programming Interface

SPI_cursor_move
SPI_cursor_move — move a cursor

Synopsis
void SPI_cursor_move(Portal portal, bool forward, long count)

Description
SPI_cursor_move skips over some number of rows in a cursor. This is equivalent to a subset of the SQL
command MOVE (see SPI_scroll_cursor_move for more functionality).

Arguments
Portal portal

portal containing the cursor

bool forward

true for move forward, false for move backward

long count

maximum number of rows to move

Notes
Moving backward may fail if the cursor's plan was not created with the CURSOR_OPT_SCROLL option.

1165

Server Programming Interface

SPI_scroll_cursor_fetch
SPI_scroll_cursor_fetch — fetch some rows from a cursor

Synopsis
void SPI_scroll_cursor_fetch(Portal portal, FetchDirection direction,
 long count)

Description
SPI_scroll_cursor_fetch fetches some rows from a cursor. This is equivalent to the SQL command
FETCH.

Arguments
Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to fetch for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to fetch for
FETCH_ABSOLUTE; or relative row number to fetch for FETCH_RELATIVE

Return Value
SPI_processed and SPI_tuptable are set as in SPI_execute if successful.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1166

Server Programming Interface

SPI_scroll_cursor_move
SPI_scroll_cursor_move — move a cursor

Synopsis
void SPI_scroll_cursor_move(Portal portal, FetchDirection direction,
 long count)

Description
SPI_scroll_cursor_move skips over some number of rows in a cursor. This is equivalent to the SQL
command MOVE.

Arguments
Portal portal

portal containing the cursor

FetchDirection direction

one of FETCH_FORWARD, FETCH_BACKWARD, FETCH_ABSOLUTE or FETCH_RELATIVE

long count

number of rows to move for FETCH_FORWARD or FETCH_BACKWARD; absolute row number to move to for
FETCH_ABSOLUTE; or relative row number to move to for FETCH_RELATIVE

Return Value
SPI_processed is set as in SPI_execute if successful. SPI_tuptable is set to NULL, since no rows are
returned by this function.

Notes
See the SQL FETCH command for details of the interpretation of the direction and count parameters.

Direction values other than FETCH_FORWARD may fail if the cursor's plan was not created with the
CURSOR_OPT_SCROLL option.

1167

Server Programming Interface

SPI_cursor_close
SPI_cursor_close — close a cursor

Synopsis
void SPI_cursor_close(Portal portal)

Description
SPI_cursor_close closes a previously created cursor and releases its portal storage.

All open cursors are closed automatically at the end of a transaction. SPI_cursor_close need only be
invoked if it is desirable to release resources sooner.

Arguments
Portal portal

portal containing the cursor

1168

Server Programming Interface

SPI_keepplan
SPI_keepplan — save a prepared statement

Synopsis
int SPI_keepplan(SPIPlanPtr plan)

Description
SPI_keepplan saves a passed statement (prepared by SPI_prepare) so that it will not be freed by
SPI_finish nor by the transaction manager. This gives you the ability to reuse prepared statements in
the subsequent invocations of your C function in the current session.

Arguments
SPIPlanPtr plan

the prepared statement to be saved

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

Notes
The passed-in statement is relocated to permanent storage by means of pointer adjustment (no data
copying is required). If you later wish to delete it, use SPI_freeplan on it.

1169

Server Programming Interface

SPI_saveplan
SPI_saveplan — save a prepared statement

Synopsis
SPIPlanPtr SPI_saveplan(SPIPlanPtr plan)

Description
SPI_saveplan copies a passed statement (prepared by SPI_prepare) into memory that will not be freed
by SPI_finish nor by the transaction manager, and returns a pointer to the copied statement. This gives
you the ability to reuse prepared statements in the subsequent invocations of your C function in the
current session.

Arguments
SPIPlanPtr plan

the prepared statement to be saved

Return Value
Pointer to the copied statement; or NULL if unsuccessful. On error, SPI_result is set thus:

SPI_ERROR_ARGUMENT

if plan is NULL or invalid

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

Notes
The originally passed-in statement is not freed, so you might wish to do SPI_freeplan on it to avoid
leaking memory until SPI_finish.

In most cases, SPI_keepplan is preferred to this function, since it accomplishes largely the same result
without needing to physically copy the prepared statement's data structures.

1170

Server Programming Interface

SPI_register_relation
SPI_register_relation — make an ephemeral named relation available by name in SPI queries

Synopsis
int SPI_register_relation(EphemeralNamedRelation enr)

Description
SPI_register_relation makes an ephemeral named relation, with associated information, available to
queries planned and executed through the current SPI connection.

Arguments
EphemeralNamedRelation enr

the ephemeral named relation registry entry

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_REGISTER

if the relation has been successfully registered by name

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if enr is NULL or its name field is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name specified in the name field of enr is already registered for this connection

1171

Server Programming Interface

SPI_unregister_relation
SPI_unregister_relation — remove an ephemeral named relation from the registry

Synopsis
int SPI_unregister_relation(const char * name)

Description
SPI_unregister_relation removes an ephemeral named relation from the registry for the current
connection.

Arguments
const char * name

the relation registry entry name

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_REL_UNREGISTER

if the tuplestore has been successfully removed from the registry

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if name is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_NOT_FOUND

if name is not found in the registry for the current connection

1172

Server Programming Interface

SPI_register_trigger_data
SPI_register_trigger_data — make ephemeral trigger data available in SPI queries

Synopsis
int SPI_register_trigger_data(TriggerData *tdata)

Description
SPI_register_trigger_data makes any ephemeral relations captured by a trigger available to queries
planned and executed through the current SPI connection. Currently, this means the transition tables
captured by an AFTER trigger defined with a REFERENCING OLD/NEW TABLE AS ... clause. This function
should be called by a PL trigger handler function after connecting.

Arguments
TriggerData *tdata

the TriggerData object passed to a trigger handler function as fcinfo->context

Return Value
If the execution of the command was successful then the following (nonnegative) value will be returned:

SPI_OK_TD_REGISTER

if the captured trigger data (if any) has been successfully registered

On error, one of the following negative values is returned:

SPI_ERROR_ARGUMENT

if tdata is NULL

SPI_ERROR_UNCONNECTED

if called from an unconnected C function

SPI_ERROR_REL_DUPLICATE

if the name of any trigger data transient relation is already registered for this connection

44.2. Interface Support Functions
The functions described here provide an interface for extracting information from result sets returned
by SPI_execute and other SPI functions.

All functions described in this section can be used by both connected and unconnected C functions.

1173

Server Programming Interface

SPI_fname
SPI_fname — determine the column name for the specified column number

Synopsis
char * SPI_fname(TupleDesc rowdesc, int colnumber)

Description
SPI_fname returns a copy of the column name of the specified column. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The column name; NULL if colnumber is out of range. SPI_result set to SPI_ERROR_NOATTRIBUTE on error.

1174

Server Programming Interface

SPI_fnumber
SPI_fnumber — determine the column number for the specified column name

Synopsis
int SPI_fnumber(TupleDesc rowdesc, const char * colname)

Description
SPI_fnumber returns the column number for the column with the specified name.

If colname refers to a system column (e.g., ctid) then the appropriate negative column number
will be returned. The caller should be careful to test the return value for exact equality to
SPI_ERROR_NOATTRIBUTE to detect an error; testing the result for less than or equal to 0 is not correct
unless system columns should be rejected.

Arguments
TupleDesc rowdesc

input row description

const char * colname

column name

Return Value
Column number (count starts at 1 for user-defined columns), or SPI_ERROR_NOATTRIBUTE if the named
column was not found.

1175

Server Programming Interface

SPI_getvalue
SPI_getvalue — return the string value of the specified column

Synopsis
char * SPI_getvalue(HeapTuple row, TupleDesc rowdesc, int colnumber)

Description
SPI_getvalue returns the string representation of the value of the specified column.

The result is returned in memory allocated using palloc. (You can use pfree to release the memory
when you don't need it anymore.)

Arguments
HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
Column value, or NULL if the column is null, colnumber is out of range (SPI_result is
set to SPI_ERROR_NOATTRIBUTE), or no output function is available (SPI_result is set to
SPI_ERROR_NOOUTFUNC).

1176

Server Programming Interface

SPI_getbinval
SPI_getbinval — return the binary value of the specified column

Synopsis
Datum SPI_getbinval(HeapTuple row, TupleDesc rowdesc, int colnumber,
 bool * isnull)

Description
SPI_getbinval returns the value of the specified column in the internal form (as type Datum).

This function does not allocate new space for the datum. In the case of a pass-by-reference data type,
the return value will be a pointer into the passed row.

Arguments
HeapTuple row

input row to be examined

TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

bool * isnull

flag for a null value in the column

Return Value
The binary value of the column is returned. The variable pointed to by isnull is set to true if the column
is null, else to false.

SPI_result is set to SPI_ERROR_NOATTRIBUTE on error.

1177

Server Programming Interface

SPI_gettype
SPI_gettype — return the data type name of the specified column

Synopsis
char * SPI_gettype(TupleDesc rowdesc, int colnumber)

Description
SPI_gettype returns a copy of the data type name of the specified column. (You can use pfree to release
the copy of the name when you don't need it anymore.)

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The data type name of the specified column, or NULL on error. SPI_result is set to
SPI_ERROR_NOATTRIBUTE on error.

1178

Server Programming Interface

SPI_gettypeid
SPI_gettypeid — return the data type OID of the specified column

Synopsis
Oid SPI_gettypeid(TupleDesc rowdesc, int colnumber)

Description
SPI_gettypeid returns the OID of the data type of the specified column.

Arguments
TupleDesc rowdesc

input row description

int colnumber

column number (count starts at 1)

Return Value
The OID of the data type of the specified column or InvalidOid on error. On error, SPI_result is set
to SPI_ERROR_NOATTRIBUTE.

1179

Server Programming Interface

SPI_getrelname
SPI_getrelname — return the name of the specified relation

Synopsis
char * SPI_getrelname(Relation rel)

Description
SPI_getrelname returns a copy of the name of the specified relation. (You can use pfree to release the
copy of the name when you don't need it anymore.)

Arguments
Relation rel

input relation

Return Value
The name of the specified relation.

1180

Server Programming Interface

SPI_getnspname
SPI_getnspname — return the namespace of the specified relation

Synopsis
char * SPI_getnspname(Relation rel)

Description
SPI_getnspname returns a copy of the name of the namespace that the specified Relation belongs to.
This is equivalent to the relation's schema. You should pfree the return value of this function when you
are finished with it.

Arguments
Relation rel

input relation

Return Value
The name of the specified relation's namespace.

1181

Server Programming Interface

SPI_result_code_string
SPI_result_code_string — return error code as string

Synopsis
const char * SPI_result_code_string(int code);

Description
SPI_result_code_string returns a string representation of the result code returned by various SPI
functions or stored in SPI_result.

Arguments
int code

result code

Return Value
A string representation of the result code.

44.3. Memory Management
Postgres Pro allocates memory within memory contexts, which provide a convenient method of managing
allocations made in many different places that need to live for differing amounts of time. Destroying
a context releases all the memory that was allocated in it. Thus, it is not necessary to keep track of
individual objects to avoid memory leaks; instead only a relatively small number of contexts have to be
managed. palloc and related functions allocate memory from the “current” context.

SPI_connect creates a new memory context and makes it current. SPI_finish restores the previous
current memory context and destroys the context created by SPI_connect. These actions ensure that
transient memory allocations made inside your C function are reclaimed at C function exit, avoiding
memory leakage.

However, if your C function needs to return an object in allocated memory (such as a value of a pass-by-
reference data type), you cannot allocate that memory using palloc, at least not while you are connected
to SPI. If you try, the object will be deallocated by SPI_finish, and your C function will not work reliably.
To solve this problem, use SPI_palloc to allocate memory for your return object. SPI_palloc allocates
memory in the “upper executor context”, that is, the memory context that was current when SPI_connect
was called, which is precisely the right context for a value returned from your C function. Several of the
other utility functions described in this section also return objects created in the upper executor context.

When SPI_connect is called, the private context of the C function, which is created by SPI_connect, is
made the current context. All allocations made by palloc, repalloc, or SPI utility functions (except as
described in this section) are made in this context. When a C function disconnects from the SPI manager
(via SPI_finish) the current context is restored to the upper executor context, and all allocations made
in the C function memory context are freed and cannot be used any more.

1182

Server Programming Interface

SPI_palloc
SPI_palloc — allocate memory in the upper executor context

Synopsis
void * SPI_palloc(Size size)

Description
SPI_palloc allocates memory in the upper executor context.

This function can only be used while connected to SPI. Otherwise, it throws an error.

Arguments
Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of the specified size

1183

Server Programming Interface

SPI_repalloc
SPI_repalloc — reallocate memory in the upper executor context

Synopsis
void * SPI_repalloc(void * pointer, Size size)

Description
SPI_repalloc changes the size of a memory segment previously allocated using SPI_palloc.

This function is no longer different from plain repalloc. It's kept just for backward compatibility of
existing code.

Arguments
void * pointer

pointer to existing storage to change

Size size

size in bytes of storage to allocate

Return Value
pointer to new storage space of specified size with the contents copied from the existing area

1184

Server Programming Interface

SPI_pfree
SPI_pfree — free memory in the upper executor context

Synopsis
void SPI_pfree(void * pointer)

Description
SPI_pfree frees memory previously allocated using SPI_palloc or SPI_repalloc.

This function is no longer different from plain pfree. It's kept just for backward compatibility of existing
code.

Arguments
void * pointer

pointer to existing storage to free

1185

Server Programming Interface

SPI_copytuple
SPI_copytuple — make a copy of a row in the upper executor context

Synopsis
HeapTuple SPI_copytuple(HeapTuple row)

Description
SPI_copytuple makes a copy of a row in the upper executor context. This is normally used to return a
modified row from a trigger. In a function declared to return a composite type, use SPI_returntuple
instead.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments
HeapTuple row

row to be copied

Return Value
the copied row, or NULL on error (see SPI_result for an error indication)

1186

Server Programming Interface

SPI_returntuple
SPI_returntuple — prepare to return a tuple as a Datum

Synopsis
HeapTupleHeader SPI_returntuple(HeapTuple row, TupleDesc rowdesc)

Description
SPI_returntuple makes a copy of a row in the upper executor context, returning it in the form of a row
type Datum. The returned pointer need only be converted to Datum via PointerGetDatum before returning.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Note that this should be used for functions that are declared to return composite types. It is not used
for triggers; use SPI_copytuple for returning a modified row in a trigger.

Arguments
HeapTuple row

row to be copied

TupleDesc rowdesc

descriptor for row (pass the same descriptor each time for most effective caching)

Return Value
HeapTupleHeader pointing to copied row, or NULL on error (see SPI_result for an error indication)

1187

Server Programming Interface

SPI_modifytuple
SPI_modifytuple — create a row by replacing selected fields of a given row

Synopsis
HeapTuple SPI_modifytuple(Relation rel, HeapTuple row, int ncols,
 int * colnum, Datum * values, const char * nulls)

Description
SPI_modifytuple creates a new row by substituting new values for selected columns, copying the
original row's columns at other positions. The input row is not modified. The new row is returned in the
upper executor context.

This function can only be used while connected to SPI. Otherwise, it returns NULL and sets SPI_result
to SPI_ERROR_UNCONNECTED.

Arguments
Relation rel

Used only as the source of the row descriptor for the row. (Passing a relation rather than a row
descriptor is a misfeature.)

HeapTuple row

row to be modified

int ncols

number of columns to be changed

int * colnum

an array of length ncols, containing the numbers of the columns that are to be changed (column
numbers start at 1)

Datum * values

an array of length ncols, containing the new values for the specified columns

const char * nulls

an array of length ncols, describing which new values are null

If nulls is NULL then SPI_modifytuple assumes that no new values are null. Otherwise, each entry of
the nulls array should be ' ' if the corresponding new value is non-null, or 'n' if the corresponding
new value is null. (In the latter case, the actual value in the corresponding values entry doesn't
matter.) Note that nulls is not a text string, just an array: it does not need a '\0' terminator.

Return Value
new row with modifications, allocated in the upper executor context, or NULL on error (see SPI_result
for an error indication)

On error, SPI_result is set as follows:

SPI_ERROR_ARGUMENT

if rel is NULL, or if row is NULL, or if ncols is less than or equal to 0, or if colnum is NULL, or if values
is NULL.

1188

Server Programming Interface

SPI_ERROR_NOATTRIBUTE

if colnum contains an invalid column number (less than or equal to 0 or greater than the number
of columns in row)

SPI_ERROR_UNCONNECTED

if SPI is not active

1189

Server Programming Interface

SPI_freetuple
SPI_freetuple — free a row allocated in the upper executor context

Synopsis
void SPI_freetuple(HeapTuple row)

Description
SPI_freetuple frees a row previously allocated in the upper executor context.

This function is no longer different from plain heap_freetuple. It's kept just for backward compatibility
of existing code.

Arguments
HeapTuple row

row to free

1190

Server Programming Interface

SPI_freetuptable
SPI_freetuptable — free a row set created by SPI_execute or a similar function

Synopsis
void SPI_freetuptable(SPITupleTable * tuptable)

Description
SPI_freetuptable frees a row set created by a prior SPI command execution function, such as
SPI_execute. Therefore, this function is often called with the global variable SPI_tuptable as argument.

This function is useful if an SPI-using C function needs to execute multiple commands and does not want
to keep the results of earlier commands around until it ends. Note that any unfreed row sets will be freed
anyway at SPI_finish. Also, if a subtransaction is started and then aborted within execution of an SPI-
using C function, SPI automatically frees any row sets created while the subtransaction was running.

Beginning in PostgreSQL 9.3, SPI_freetuptable contains guard logic to protect against duplicate
deletion requests for the same row set. In previous releases, duplicate deletions would lead to crashes.

Arguments
SPITupleTable * tuptable

pointer to row set to free, or NULL to do nothing

1191

Server Programming Interface

SPI_freeplan
SPI_freeplan — free a previously saved prepared statement

Synopsis
int SPI_freeplan(SPIPlanPtr plan)

Description
SPI_freeplan releases a prepared statement previously returned by SPI_prepare or saved by
SPI_keepplan or SPI_saveplan.

Arguments
SPIPlanPtr plan

pointer to statement to free

Return Value
0 on success; SPI_ERROR_ARGUMENT if plan is NULL or invalid

44.4. Transaction Management
It is not possible to run transaction control commands such as COMMIT and ROLLBACK through SPI
functions such as SPI_execute. There are, however, separate interface functions that allow transaction
control through SPI.

It is not generally safe and sensible to start and end transactions in arbitrary user-defined SQL-callable
functions without taking into account the context in which they are called. For example, a transaction
boundary in the middle of a function that is part of a complex SQL expression that is part of some SQL
command will probably result in obscure internal errors or crashes. The interface functions presented
here are primarily intended to be used by procedural language implementations to support transaction
management in SQL-level procedures that are invoked by the CALL command, taking the context of the
CALL invocation into account. SPI-using procedures implemented in C can implement the same logic,
but the details of that are beyond the scope of this documentation.

1192

Server Programming Interface

SPI_commit
SPI_commit, SPI_commit_and_chain — commit the current transaction

Synopsis
void SPI_commit(void)

void SPI_commit_and_chain(void)

Description
SPI_commit commits the current transaction. It is approximately equivalent to running the SQL
command COMMIT. After a transaction is committed, a new transaction has to be started using
SPI_start_transaction before further database actions can be executed.

SPI_commit_and_chain is the same, but a new transaction is immediately started with the same
transaction characteristics as the just finished one, like with the SQL command COMMIT AND CHAIN.

These functions can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1193

Server Programming Interface

SPI_rollback
SPI_rollback, SPI_rollback_and_chain — abort the current transaction

Synopsis
void SPI_rollback(void)

void SPI_rollback_and_chain(void)

Description
SPI_rollback rolls back the current transaction. It is approximately equivalent to running the SQL
command ROLLBACK. After a transaction is rolled back, a new transaction has to be started using
SPI_start_transaction before further database actions can be executed.

SPI_rollback_and_chain is the same, but a new transaction is immediately started with the same
transaction characteristics as the just finished one, like with the SQL command ROLLBACK AND CHAIN.

These functions can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

1194

Server Programming Interface

SPI_start_transaction
SPI_start_transaction — start a new transaction

Synopsis
void SPI_start_transaction(void)

Description
SPI_start_transaction starts a new transaction. It can only be called after SPI_commit or
SPI_rollback, as there is no transaction active at that point. Normally, when an SPI-using procedure is
called, there is already a transaction active, so attempting to start another one before closing out the
current one will result in an error.

This function can only be executed if the SPI connection has been set as nonatomic in the call to
SPI_connect_ext.

44.5. Visibility of Data Changes
The following rules govern the visibility of data changes in functions that use SPI (or any other C
function):
• During the execution of an SQL command, any data changes made by the command are invisible to

the command itself. For example, in:
INSERT INTO a SELECT * FROM a;

the inserted rows are invisible to the SELECT part.
• Changes made by a command C are visible to all commands that are started after C, no matter

whether they are started inside C (during the execution of C) or after C is done.
• Commands executed via SPI inside a function called by an SQL command (either an ordinary

function or a trigger) follow one or the other of the above rules depending on the read/write flag
passed to SPI. Commands executed in read-only mode follow the first rule: they cannot see changes
of the calling command. Commands executed in read-write mode follow the second rule: they can
see all changes made so far.

• All standard procedural languages set the SPI read-write mode depending on the volatility attribute
of the function. Commands of STABLE and IMMUTABLE functions are done in read-only mode, while
commands of VOLATILE functions are done in read-write mode. While authors of C functions are
able to violate this convention, it's unlikely to be a good idea to do so.

The next section contains an example that illustrates the application of these rules.

44.6. Examples
This section contains a very simple example of SPI usage. The C function execq takes an SQL command
as its first argument and a row count as its second, executes the command using SPI_exec and returns
the number of rows that were processed by the command. You can find more complex examples for SPI
in the spi module.

#include "postgres.h"

#include "executor/spi.h"
#include "utils/builtins.h"

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(execq);

Datum

1195

Server Programming Interface

execq(PG_FUNCTION_ARGS)
{
 char *command;
 int cnt;
 int ret;
 uint64 proc;

 /* Convert given text object to a C string */
 command = text_to_cstring(PG_GETARG_TEXT_PP(0));
 cnt = PG_GETARG_INT32(1);

 SPI_connect();

 ret = SPI_exec(command, cnt);

 proc = SPI_processed;

 /*
 * If some rows were fetched, print them via elog(INFO).
 */
 if (ret > 0 && SPI_tuptable != NULL)
 {
 SPITupleTable *tuptable = SPI_tuptable;
 TupleDesc tupdesc = tuptable->tupdesc;
 char buf[8192];
 uint64 j;

 for (j = 0; j < tuptable->numvals; j++)
 {
 HeapTuple tuple = tuptable->vals[j];
 int i;

 for (i = 1, buf[0] = 0; i <= tupdesc->natts; i++)
 snprintf(buf + strlen(buf), sizeof(buf) - strlen(buf), " %s%s",
 SPI_getvalue(tuple, tupdesc, i),
 (i == tupdesc->natts) ? " " : " |");
 elog(INFO, "EXECQ: %s", buf);
 }
 }

 SPI_finish();
 pfree(command);

 PG_RETURN_INT64(proc);
}

This is how you declare the function after having compiled it into a shared library (details are in
Section 35.10.5.):
CREATE FUNCTION execq(text, integer) RETURNS int8
 AS 'filename'
 LANGUAGE C STRICT;

Here is a sample session:
=> SELECT execq('CREATE TABLE a (x integer)', 0);
 execq

 0
(1 row)

1196

Server Programming Interface

=> INSERT INTO a VALUES (execq('INSERT INTO a VALUES (0)', 0));
INSERT 0 1
=> SELECT execq('SELECT * FROM a', 0);
INFO: EXECQ: 0 -- inserted by execq
INFO: EXECQ: 1 -- returned by execq and inserted by upper INSERT

 execq

 2
(1 row)

=> SELECT execq('INSERT INTO a SELECT x + 2 FROM a', 1);
 execq

 1
(1 row)

=> SELECT execq('SELECT * FROM a', 10);
INFO: EXECQ: 0
INFO: EXECQ: 1
INFO: EXECQ: 2 -- 0 + 2, only one row inserted - as specified

 execq

 3 -- 10 is the max value only, 3 is the real number of rows
(1 row)

=> DELETE FROM a;
DELETE 3
=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INSERT 0 1
=> SELECT * FROM a;
 x

 1 -- no rows in a (0) + 1
(1 row)

=> INSERT INTO a VALUES (execq('SELECT * FROM a', 0) + 1);
INFO: EXECQ: 1
INSERT 0 1
=> SELECT * FROM a;
 x

 1
 2 -- there was one row in a + 1
(2 rows)

-- This demonstrates the data changes visibility rule:

=> INSERT INTO a SELECT execq('SELECT * FROM a', 0) * x FROM a;
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 1
INFO: EXECQ: 2
INFO: EXECQ: 2
INSERT 0 2
=> SELECT * FROM a;

1197

Server Programming Interface

 x

 1
 2
 2 -- 2 rows * 1 (x in first row)
 6 -- 3 rows (2 + 1 just inserted) * 2 (x in second row)
(4 rows) ^^^^^^
 rows visible to execq() in different invocations

1198

Chapter 45. Background Worker Processes
Postgres Pro can be extended to run user-supplied code in separate processes. Such processes are
started, stopped and monitored by postgres, which permits them to have a lifetime closely linked to the
server's status. These processes have the option to attach to Postgres Pro's shared memory area and
to connect to databases internally; they can also run multiple transactions serially, just like a regular
client-connected server process. Also, by linking to libpq they can connect to the server and behave like
a regular client application.

Warning
There are considerable robustness and security risks in using background worker processes
because, being written in the C language, they have unrestricted access to data. Administrators
wishing to enable modules that include background worker processes should exercise extreme
caution. Only carefully audited modules should be permitted to run background worker processes.

Background workers can be initialized at the time that Postgres Pro is started by including the
module name in shared_preload_libraries. A module wishing to run a background worker can
register it by calling RegisterBackgroundWorker(BackgroundWorker *worker) from its _PG_init()
function. Background workers can also be started after the system is up and running by
calling RegisterDynamicBackgroundWorker(BackgroundWorker *worker, BackgroundWorkerHandle
**handle). Unlike RegisterBackgroundWorker, which can only be called from within the postmaster
process, RegisterDynamicBackgroundWorker must be called from a regular backend or another
background worker.

The structure BackgroundWorker is defined thus:

typedef void (*bgworker_main_type)(Datum main_arg);
typedef struct BackgroundWorker
{
 char bgw_name[BGW_MAXLEN];
 char bgw_type[BGW_MAXLEN];
 int bgw_flags;
 BgWorkerStartTime bgw_start_time;
 int bgw_restart_time; /* in seconds, or BGW_NEVER_RESTART */
 char bgw_library_name[BGW_MAXLEN];
 char bgw_function_name[BGW_MAXLEN];
 Datum bgw_main_arg;
 char bgw_extra[BGW_EXTRALEN];
 int bgw_notify_pid;
} BackgroundWorker;

bgw_name and bgw_type are strings to be used in log messages, process listings and similar contexts.
bgw_type should be the same for all background workers of the same type, so that it is possible to
group such workers in a process listing, for example. bgw_name on the other hand can contain additional
information about the specific process. (Typically, the string for bgw_name will contain the type somehow,
but that is not strictly required.)

bgw_flags is a bitwise-or'd bit mask indicating the capabilities that the module wants. Possible values
are:

BGWORKER_SHMEM_ACCESS

Requests shared memory access. Workers without shared memory access cannot access any of
Postgres Pro's shared data structures, such as heavyweight or lightweight locks, shared buffers, or
any custom data structures which the worker itself may wish to create and use.

1199

Background Worker Processes

BGWORKER_BACKEND_DATABASE_CONNECTION

Requests the ability to establish a database connection through which it can later run transactions
and queries. A background worker using BGWORKER_BACKEND_DATABASE_CONNECTION to connect to a
database must also attach shared memory using BGWORKER_SHMEM_ACCESS, or worker start-up will fail.

bgw_start_time is the server state during which postgres should start the process; it can be one of
BgWorkerStart_PostmasterStart (start as soon as postgres itself has finished its own initialization;
processes requesting this are not eligible for database connections), BgWorkerStart_ConsistentState
(start as soon as a consistent state has been reached in a hot standby, allowing processes to connect
to databases and run read-only queries), and BgWorkerStart_RecoveryFinished (start as soon as the
system has entered normal read-write state). Note the last two values are equivalent in a server that's
not a hot standby. Note that this setting only indicates when the processes are to be started; they do
not stop when a different state is reached.

bgw_restart_time is the interval, in seconds, that postgres should wait before restarting the process
in the event that it crashes. It can be any positive value, or BGW_NEVER_RESTART, indicating not to restart
the process in case of a crash.

bgw_library_name is the name of a library in which the initial entry point for the background
worker should be sought. The named library will be dynamically loaded by the worker process and
bgw_function_name will be used to identify the function to be called. If loading a function from the core
code, this must be set to "postgres".

bgw_function_name is the name of a function in a dynamically loaded library which should be used as
the initial entry point for a new background worker.

bgw_main_arg is the Datum argument to the background worker main function. This main function should
take a single argument of type Datum and return void. bgw_main_arg will be passed as the argument.
In addition, the global variable MyBgworkerEntry points to a copy of the BackgroundWorker structure
passed at registration time; the worker may find it helpful to examine this structure.

On Windows (and anywhere else where EXEC_BACKEND is defined) or in dynamic background workers it
is not safe to pass a Datum by reference, only by value. If an argument is required, it is safest to pass
an int32 or other small value and use that as an index into an array allocated in shared memory. If a
value like a cstring or text is passed then the pointer won't be valid from the new background worker
process.

bgw_extra can contain extra data to be passed to the background worker. Unlike bgw_main_arg, this data
is not passed as an argument to the worker's main function, but it can be accessed via MyBgworkerEntry,
as discussed above.

bgw_notify_pid is the PID of a Postgres Pro backend process to which the postmaster should send
SIGUSR1 when the process is started or exits. It should be 0 for workers registered at postmaster startup
time, or when the backend registering the worker does not wish to wait for the worker to start up.
Otherwise, it should be initialized to MyProcPid.

Once running, the process can connect to a database by calling
BackgroundWorkerInitializeConnection(char *dbname, char *username, uint32 flags) or
BackgroundWorkerInitializeConnectionByOid(Oid dboid, Oid useroid, uint32 flags). This
allows the process to run transactions and queries using the SPI interface. If dbname is NULL or
dboid is InvalidOid, the session is not connected to any particular database, but shared catalogs can
be accessed. If username is NULL or useroid is InvalidOid, the process will run as the superuser
created during initdb. If BGWORKER_BYPASS_ALLOWCONN is specified as flags it is possible to bypass the
restriction to connect to databases not allowing user connections. A background worker can only call
one of these two functions, and only once. It is not possible to switch databases.

Signals are initially blocked when control reaches the background worker's main function, and must be
unblocked by it; this is to allow the process to customize its signal handlers, if necessary. Signals can

1200

Background Worker Processes

be unblocked in the new process by calling BackgroundWorkerUnblockSignals and blocked by calling
BackgroundWorkerBlockSignals.

If bgw_restart_time for a background worker is configured as BGW_NEVER_RESTART, or if it exits
with an exit code of 0 or is terminated by TerminateBackgroundWorker, it will be automatically
unregistered by the postmaster on exit. Otherwise, it will be restarted after the time period configured
via bgw_restart_time, or immediately if the postmaster reinitializes the cluster due to a backend failure.
Backends which need to suspend execution only temporarily should use an interruptible sleep rather
than exiting; this can be achieved by calling WaitLatch(). Make sure the WL_POSTMASTER_DEATH flag is
set when calling that function, and verify the return code for a prompt exit in the emergency case that
postgres itself has terminated.

When a background worker is registered using the RegisterDynamicBackgroundWorker function,
it is possible for the backend performing the registration to obtain information regarding
the status of the worker. Backends wishing to do this should pass the address of a
BackgroundWorkerHandle * as the second argument to RegisterDynamicBackgroundWorker. If the
worker is successfully registered, this pointer will be initialized with an opaque handle that can
subsequently be passed to GetBackgroundWorkerPid(BackgroundWorkerHandle *, pid_t *) or
TerminateBackgroundWorker(BackgroundWorkerHandle *). GetBackgroundWorkerPid can be used to
poll the status of the worker: a return value of BGWH_NOT_YET_STARTED indicates that the worker has not
yet been started by the postmaster; BGWH_STOPPED indicates that it has been started but is no longer
running; and BGWH_STARTED indicates that it is currently running. In this last case, the PID will also be
returned via the second argument. TerminateBackgroundWorker causes the postmaster to send SIGTERM
to the worker if it is running, and to unregister it as soon as it is not.

In some cases, a process which registers a background worker may wish to wait for
the worker to start up. This can be accomplished by initializing bgw_notify_pid to
MyProcPid and then passing the BackgroundWorkerHandle * obtained at registration time to
WaitForBackgroundWorkerStartup(BackgroundWorkerHandle *handle, pid_t *) function. This
function will block until the postmaster has attempted to start the background worker, or until the
postmaster dies. If the background worker is running, the return value will be BGWH_STARTED, and
the PID will be written to the provided address. Otherwise, the return value will be BGWH_STOPPED or
BGWH_POSTMASTER_DIED.

A process can also wait for a background worker to shut down, by using the
WaitForBackgroundWorkerShutdown(BackgroundWorkerHandle *handle) function and passing the
BackgroundWorkerHandle * obtained at registration. This function will block until the background
worker exits, or postmaster dies. When the background worker exits, the return value is BGWH_STOPPED,
if postmaster dies it will return BGWH_POSTMASTER_DIED.

Background workers can send asynchronous notification messages, either by using the NOTIFY
command via SPI, or directly via Async_Notify(). Such notifications will be sent at transaction
commit. Background workers should not register to receive asynchronous notifications with the LISTEN
command, as there is no infrastructure for a worker to consume such notifications.

The maximum number of registered background workers is limited by max_worker_processes.

1201

Chapter 46. Logical Decoding
Postgres Pro provides infrastructure to stream the modifications performed via SQL to external
consumers. This functionality can be used for a variety of purposes, including replication solutions and
auditing.

Changes are sent out in streams identified by logical replication slots.

The format in which those changes are streamed is determined by the output plugin used. An example
plugin is provided in the Postgres Pro distribution. Additional plugins can be written to extend the choice
of available formats without modifying any core code. Every output plugin has access to each individual
new row produced by INSERT and the new row version created by UPDATE. Availability of old row versions
for UPDATE and DELETE depends on the configured replica identity (see REPLICA IDENTITY).

Changes can be consumed either using the streaming replication protocol (see Section 50.4 and
Section 46.3), or by calling functions via SQL (see Section 46.4). It is also possible to write additional
methods of consuming the output of a replication slot without modifying core code (see Section 46.7).

46.1. Logical Decoding Examples
The following example demonstrates controlling logical decoding using the SQL interface.

Before you can use logical decoding, you must set wal_level to logical and max_replication_slots to at
least 1. Then, you should connect to the target database (in the example below, postgres) as a superuser.

postgres=# -- Create a slot named 'regression_slot' using the output plugin
 'test_decoding'
postgres=# SELECT * FROM pg_create_logical_replication_slot('regression_slot',
 'test_decoding');
 slot_name | lsn
-----------------+-----------
 regression_slot | 0/16B1970
(1 row)

postgres=# SELECT slot_name, plugin, slot_type, database, active, restart_lsn,
 confirmed_flush_lsn FROM pg_replication_slots;
 slot_name | plugin | slot_type | database | active | restart_lsn |
 confirmed_flush_lsn
-----------------+---------------+-----------+----------+--------+-------------
+-----------------
 regression_slot | test_decoding | logical | postgres | f | 0/16A4408 |
 0/16A4440
(1 row)

postgres=# -- There are no changes to see yet
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# CREATE TABLE data(id serial primary key, data text);
CREATE TABLE

postgres=# -- DDL isn't replicated, so all you'll see is the transaction
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+--------------
 0/BA2DA58 | 10297 | BEGIN 10297
 0/BA5A5A0 | 10297 | COMMIT 10297

1202

Logical Decoding

(2 rows)

postgres=# -- Once changes are read, they're consumed and not emitted
postgres=# -- in a subsequent call:
postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----+-----+------
(0 rows)

postgres=# BEGIN;
postgres=*# INSERT INTO data(data) VALUES('1');
postgres=*# INSERT INTO data(data) VALUES('2');
postgres=*# COMMIT;

postgres=# SELECT * FROM pg_logical_slot_get_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A688 | 10298 | BEGIN 10298
 0/BA5A6F0 | 10298 | table public.data: INSERT: id[integer]:1 data[text]:'1'
 0/BA5A7F8 | 10298 | table public.data: INSERT: id[integer]:2 data[text]:'2'
 0/BA5A8A8 | 10298 | COMMIT 10298
(4 rows)

postgres=# INSERT INTO data(data) VALUES('3');

postgres=# -- You can also peek ahead in the change stream without consuming changes
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- The next call to pg_logical_slot_peek_changes() returns the same changes
 again
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL);
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299
(3 rows)

postgres=# -- options can be passed to output plugin, to influence the formatting
postgres=# SELECT * FROM pg_logical_slot_peek_changes('regression_slot', NULL, NULL,
 'include-timestamp', 'on');
 lsn | xid | data
-----------+-------+---
 0/BA5A8E0 | 10299 | BEGIN 10299
 0/BA5A8E0 | 10299 | table public.data: INSERT: id[integer]:3 data[text]:'3'
 0/BA5A990 | 10299 | COMMIT 10299 (at 2017-05-10 12:07:21.272494-04)
(3 rows)

postgres=# -- Remember to destroy a slot you no longer need to stop it consuming
postgres=# -- server resources:
postgres=# SELECT pg_drop_replication_slot('regression_slot');
 pg_drop_replication_slot

1203

Logical Decoding

(1 row)

The following example shows how logical decoding is controlled over the streaming replication protocol,
using the program pg_recvlogical included in the Postgres Pro distribution. This requires that client
authentication is set up to allow replication connections (see Section 25.2.5.1) and that max_wal_senders
is set sufficiently high to allow an additional connection.

$ pg_recvlogical -d postgres --slot=test --create-slot
$ pg_recvlogical -d postgres --slot=test --start -f -
Control+Z
$ psql -d postgres -c "INSERT INTO data(data) VALUES('4');"
$ fg
BEGIN 693
table public.data: INSERT: id[integer]:4 data[text]:'4'
COMMIT 693
Control+C
$ pg_recvlogical -d postgres --slot=test --drop-slot

46.2. Logical Decoding Concepts
46.2.1. Logical Decoding

Logical decoding is the process of extracting all persistent changes to a database's tables into a coherent,
easy to understand format which can be interpreted without detailed knowledge of the database's
internal state.

In Postgres Pro, logical decoding is implemented by decoding the contents of the write-ahead log, which
describe changes on a storage level, into an application-specific form such as a stream of tuples or SQL
statements.

46.2.2. Replication Slots
In the context of logical replication, a slot represents a stream of changes that can be replayed to a
client in the order they were made on the origin server. Each slot streams a sequence of changes from
a single database.

Note
Postgres Pro also has streaming replication slots (see Section 25.2.5), but they are used somewhat
differently there.

A replication slot has an identifier that is unique across all databases in a Postgres Pro cluster. Slots
persist independently of the connection using them and are crash-safe.

A logical slot will emit each change just once in normal operation. The current position of each slot
is persisted only at checkpoint, so in the case of a crash the slot may return to an earlier LSN, which
will then cause recent changes to be sent again when the server restarts. Logical decoding clients
are responsible for avoiding ill effects from handling the same message more than once. Clients may
wish to record the last LSN they saw when decoding and skip over any repeated data or (when using
the replication protocol) request that decoding start from that LSN rather than letting the server
determine the start point. The Replication Progress Tracking feature is designed for this purpose, refer
to replication origins.

Multiple independent slots may exist for a single database. Each slot has its own state, allowing
different consumers to receive changes from different points in the database change stream. For most
applications, a separate slot will be required for each consumer.

1204

Logical Decoding

A logical replication slot knows nothing about the state of the receiver(s). It's even possible to have
multiple different receivers using the same slot at different times; they'll just get the changes following
on from when the last receiver stopped consuming them. Only one receiver may consume changes from
a slot at any given time.

Caution
Replication slots persist across crashes and know nothing about the state of their consumer(s).
They will prevent removal of required resources even when there is no connection using them.
This consumes storage because neither required WAL nor required rows from the system catalogs
can be removed by VACUUM as long as they are required by a replication slot. In extreme cases this
could cause the database to shut down to prevent transaction ID wraparound (see Section 23.1.5).
So if a slot is no longer required it should be dropped.

46.2.3. Output Plugins
Output plugins transform the data from the write-ahead log's internal representation into the format
the consumer of a replication slot desires.

46.2.4. Exported Snapshots
When a new replication slot is created using the streaming replication interface (see
CREATE_REPLICATION_SLOT), a snapshot is exported (see Section 9.27.5), which will show exactly the
state of the database after which all changes will be included in the change stream. This can be used
to create a new replica by using SET TRANSACTION SNAPSHOT to read the state of the database at the
moment the slot was created. This transaction can then be used to dump the database's state at that
point in time, which afterwards can be updated using the slot's contents without losing any changes.

Creation of a snapshot is not always possible. In particular, it will fail when connected to a hot standby.
Applications that do not require snapshot export may suppress it with the NOEXPORT_SNAPSHOT option.

46.3. Streaming Replication Protocol Interface
The commands
• CREATE_REPLICATION_SLOT slot_name LOGICAL output_plugin

• DROP_REPLICATION_SLOT slot_name [WAIT]
• START_REPLICATION SLOT slot_name LOGICAL ...

are used to create, drop, and stream changes from a replication slot, respectively. These commands are
only available over a replication connection; they cannot be used via SQL. See Section 50.4 for details
on these commands.

The command pg_recvlogical can be used to control logical decoding over a streaming replication
connection. (It uses these commands internally.)

46.4. Logical Decoding SQL Interface
See Section 9.27.6 for detailed documentation on the SQL-level API for interacting with logical decoding.

Synchronous replication (see Section 25.2.8) is only supported on replication slots used over the
streaming replication interface. The function interface and additional, non-core interfaces do not support
synchronous replication.

46.5. System Catalogs Related to Logical Decoding
The pg_replication_slots view and the pg_stat_replication view provide information about the
current state of replication slots and streaming replication connections respectively. These views apply
to both physical and logical replication.

1205

Logical Decoding

46.6. Logical Decoding Output Plugins
An example output plugin can be found in the contrib/test_decoding subdirectory of the Postgres
Pro source tree.

46.6.1. Initialization Function
An output plugin is loaded by dynamically loading a shared library with the output plugin's name as the
library base name. The normal library search path is used to locate the library. To provide the required
output plugin callbacks and to indicate that the library is actually an output plugin it needs to provide
a function named _PG_output_plugin_init. This function is passed a struct that needs to be filled with
the callback function pointers for individual actions.

typedef struct OutputPluginCallbacks
{
 LogicalDecodeStartupCB startup_cb;
 LogicalDecodeBeginCB begin_cb;
 LogicalDecodeChangeCB change_cb;
 LogicalDecodeTruncateCB truncate_cb;
 LogicalDecodeCommitCB commit_cb;
 LogicalDecodeMessageCB message_cb;
 LogicalDecodeFilterByOriginCB filter_by_origin_cb;
 LogicalDecodeShutdownCB shutdown_cb;
} OutputPluginCallbacks;

typedef void (*LogicalOutputPluginInit) (struct OutputPluginCallbacks *cb);

The begin_cb, change_cb and commit_cb callbacks are required, while startup_cb,
filter_by_origin_cb, truncate_cb, and shutdown_cb are optional. If truncate_cb is not set but a
TRUNCATE is to be decoded, the action will be ignored.

46.6.2. Capabilities
To decode, format and output changes, output plugins can use most of the backend's normal
infrastructure, including calling output functions. Read only access to relations is permitted as long as
only relations are accessed that either have been created by initdb in the pg_catalog schema, or have
been marked as user provided catalog tables using

ALTER TABLE user_catalog_table SET (user_catalog_table = true);
CREATE TABLE another_catalog_table(data text) WITH (user_catalog_table = true);

Any actions leading to transaction ID assignment are prohibited. That, among others, includes writing
to tables, performing DDL changes, and calling pg_current_xact_id().

46.6.3. Output Modes
Output plugin callbacks can pass data to the consumer in nearly arbitrary formats. For some use cases,
like viewing the changes via SQL, returning data in a data type that can contain arbitrary data (e.g.,
bytea) is cumbersome. If the output plugin only outputs textual data in the server's encoding, it can
declare that by setting OutputPluginOptions.output_type to OUTPUT_PLUGIN_TEXTUAL_OUTPUT instead
of OUTPUT_PLUGIN_BINARY_OUTPUT in the startup callback. In that case, all the data has to be in the
server's encoding so that a text datum can contain it. This is checked in assertion-enabled builds.

46.6.4. Output Plugin Callbacks
An output plugin gets notified about changes that are happening via various callbacks it needs to provide.

Concurrent transactions are decoded in commit order, and only changes belonging to a specific
transaction are decoded between the begin and commit callbacks. Transactions that were rolled
back explicitly or implicitly never get decoded. Successful savepoints are folded into the transaction
containing them in the order they were executed within that transaction.

1206

Logical Decoding

Note
Only transactions that have already safely been flushed to disk will be decoded. That can lead to a
COMMIT not immediately being decoded in a directly following pg_logical_slot_get_changes()
when synchronous_commit is set to off.

46.6.4.1. Startup Callback
The optional startup_cb callback is called whenever a replication slot is created or asked to stream
changes, independent of the number of changes that are ready to be put out.

typedef void (*LogicalDecodeStartupCB) (struct LogicalDecodingContext *ctx,
 OutputPluginOptions *options,
 bool is_init);

The is_init parameter will be true when the replication slot is being created and false otherwise.
options points to a struct of options that output plugins can set:

typedef struct OutputPluginOptions
{
 OutputPluginOutputType output_type;
 bool receive_rewrites;
} OutputPluginOptions;

output_type has to either be set to OUTPUT_PLUGIN_TEXTUAL_OUTPUT or
OUTPUT_PLUGIN_BINARY_OUTPUT. See also Section 46.6.3. If receive_rewrites is true, the output plugin
will also be called for changes made by heap rewrites during certain DDL operations. These are of
interest to plugins that handle DDL replication, but they require special handling.

The startup callback should validate the options present in ctx->output_plugin_options. If the output
plugin needs to have a state, it can use ctx->output_plugin_private to store it.

46.6.4.2. Shutdown Callback
The optional shutdown_cb callback is called whenever a formerly active replication slot is not used
anymore and can be used to deallocate resources private to the output plugin. The slot isn't necessarily
being dropped, streaming is just being stopped.

typedef void (*LogicalDecodeShutdownCB) (struct LogicalDecodingContext *ctx);

46.6.4.3. Transaction Begin Callback
The required begin_cb callback is called whenever a start of a committed transaction has been decoded.
Aborted transactions and their contents never get decoded.

typedef void (*LogicalDecodeBeginCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID.

46.6.4.4. Transaction End Callback
The required commit_cb callback is called whenever a transaction commit has been decoded. The
change_cb callbacks for all modified rows will have been called before this, if there have been any
modified rows.

typedef void (*LogicalDecodeCommitCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr commit_lsn);

1207

Logical Decoding

46.6.4.5. Change Callback
The required change_cb callback is called for every individual row modification inside a transaction,
may it be an INSERT, UPDATE, or DELETE. Even if the original command modified several rows at once the
callback will be called individually for each row.
typedef void (*LogicalDecodeChangeCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 Relation relation,
 ReorderBufferChange *change);

The ctx and txn parameters have the same contents as for the begin_cb and commit_cb callbacks,
but additionally the relation descriptor relation points to the relation the row belongs to and a struct
change describing the row modification are passed in.

Note
Only changes in user defined tables that are not unlogged (see UNLOGGED) and not temporary (see
TEMPORARY or TEMP) can be extracted using logical decoding.

46.6.4.6. Truncate Callback
The truncate_cb callback is called for a TRUNCATE command.
typedef void (*LogicalDecodeTruncateCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 int nrelations,
 Relation relations[],
 ReorderBufferChange *change);

The parameters are analogous to the change_cb callback. However, because TRUNCATE actions on tables
connected by foreign keys need to be executed together, this callback receives an array of relations
instead of just a single one. See the description of the TRUNCATE statement for details.

46.6.4.7. Origin Filter Callback
The optional filter_by_origin_cb callback is called to determine whether data that has been replayed
from origin_id is of interest to the output plugin.
typedef bool (*LogicalDecodeFilterByOriginCB) (struct LogicalDecodingContext *ctx,
 RepOriginId origin_id);

The ctx parameter has the same contents as for the other callbacks. No information but the origin is
available. To signal that changes originating on the passed in node are irrelevant, return true, causing
them to be filtered away; false otherwise. The other callbacks will not be called for transactions and
changes that have been filtered away.

This is useful when implementing cascading or multidirectional replication solutions. Filtering by the
origin allows to prevent replicating the same changes back and forth in such setups. While transactions
and changes also carry information about the origin, filtering via this callback is noticeably more
efficient.

46.6.4.8. Generic Message Callback
The optional message_cb callback is called whenever a logical decoding message has been decoded.
typedef void (*LogicalDecodeMessageCB) (struct LogicalDecodingContext *ctx,
 ReorderBufferTXN *txn,
 XLogRecPtr message_lsn,
 bool transactional,
 const char *prefix,
 Size message_size,

1208

Logical Decoding

 const char *message);

The txn parameter contains meta information about the transaction, like the time stamp at which it has
been committed and its XID. Note however that it can be NULL when the message is non-transactional
and the XID was not assigned yet in the transaction which logged the message. The lsn has WAL location
of the message. The transactional says if the message was sent as transactional or not. The prefix is
arbitrary null-terminated prefix which can be used for identifying interesting messages for the current
plugin. And finally the message parameter holds the actual message of message_size size.

Extra care should be taken to ensure that the prefix the output plugin considers interesting is unique.
Using name of the extension or the output plugin itself is often a good choice.

46.6.5. Functions for Producing Output
To actually produce output, output plugins can write data to the StringInfo output buffer in ctx-
>out when inside the begin_cb, commit_cb, or change_cb callbacks. Before writing to the output buffer,
OutputPluginPrepareWrite(ctx, last_write) has to be called, and after finishing writing to the buffer,
OutputPluginWrite(ctx, last_write) has to be called to perform the write. The last_write indicates
whether a particular write was the callback's last write.

The following example shows how to output data to the consumer of an output plugin:

OutputPluginPrepareWrite(ctx, true);
appendStringInfo(ctx->out, "BEGIN %u", txn->xid);
OutputPluginWrite(ctx, true);

46.7. Logical Decoding Output Writers
It is possible to add more output methods for logical decoding. Essentially, three functions need
to be provided: one to read WAL, one to prepare writing output, and one to write the output (see
Section 46.6.5).

46.8. Synchronous Replication Support for Logical
Decoding
46.8.1. Overview

Logical decoding can be used to build synchronous replication solutions with the same user interface as
synchronous replication for streaming replication. To do this, the streaming replication interface (see
Section 46.3) must be used to stream out data. Clients have to send Standby status update (F) (see
Section 50.4) messages, just like streaming replication clients do.

Note
A synchronous replica receiving changes via logical decoding will work in the scope of a single
database. Since, in contrast to that, synchronous_standby_names currently is server wide, this
means this technique will not work properly if more than one database is actively used.

46.8.2. Caveats
In synchronous replication setup, a deadlock can happen, if the transaction has locked [user] catalog
tables exclusively. See Section 46.6.2 for information on user catalog tables. This is because logical
decoding of transactions can lock catalog tables to access them. To avoid this users must refrain from
taking an exclusive lock on [user] catalog tables. This can happen in the following ways:
• Issuing an explicit LOCK on pg_class in a transaction.
• Perform CLUSTER on pg_class in a transaction.

1209

Logical Decoding

• Executing TRUNCATE on [user] catalog table in a transaction.
Note that these commands that can cause deadlock apply to not only explicitly indicated system catalog
tables above but also to any other [user] catalog table.

1210

Chapter 47. Replication Progress Tracking
Replication origins are intended to make it easier to implement logical replication solutions on top of
logical decoding. They provide a solution to two common problems:
• How to safely keep track of replication progress
• How to change replication behavior based on the origin of a row; for example, to prevent loops in

bi-directional replication setups

Replication origins have just two properties, a name and an OID. The name, which is what should be
used to refer to the origin across systems, is free-form text. It should be used in a way that makes
conflicts between replication origins created by different replication solutions unlikely; e.g., by prefixing
the replication solution's name to it. The OID is used only to avoid having to store the long version in
situations where space efficiency is important. It should never be shared across systems.

Replication origins can be created using the function pg_replication_origin_create(); dropped using
pg_replication_origin_drop(); and seen in the pg_replication_origin system catalog.

One nontrivial part of building a replication solution is to keep track of replay progress in a safe manner.
When the applying process, or the whole cluster, dies, it needs to be possible to find out up to where
data has successfully been replicated. Naive solutions to this, such as updating a row in a table for every
replayed transaction, have problems like run-time overhead and database bloat.

Using the replication origin infrastructure a session can be marked as replaying from a remote
node (using the pg_replication_origin_session_setup() function). Additionally the LSN and
commit time stamp of every source transaction can be configured on a per transaction basis using
pg_replication_origin_xact_setup(). If that's done replication progress will persist in a crash safe
manner. Replay progress for all replication origins can be seen in the pg_replication_origin_status
view. An individual origin's progress, e.g., when resuming replication, can be acquired using
pg_replication_origin_progress() for any origin or pg_replication_origin_session_progress()
for the origin configured in the current session.

In replication topologies more complex than replication from exactly one system to one other system,
another problem can be that it is hard to avoid replicating replayed rows again. That can lead both
to cycles in the replication and inefficiencies. Replication origins provide an optional mechanism to
recognize and prevent that. When configured using the functions referenced in the previous paragraph,
every change and transaction passed to output plugin callbacks (see Section 46.6) generated by
the session is tagged with the replication origin of the generating session. This allows treating
them differently in the output plugin, e.g., ignoring all but locally-originating rows. Additionally the
filter_by_origin_cb callback can be used to filter the logical decoding change stream based on the
source. While less flexible, filtering via that callback is considerably more efficient than doing it in the
output plugin.

1211

Part VI. Reference
The entries in this Reference are meant to provide in reasonable length an authoritative, complete, and
formal summary about their respective subjects. More information about the use of Postgres Pro, in
narrative, tutorial, or example form, can be found in other parts of this book. See the cross-references
listed on each reference page.

The reference entries are also available as traditional “man” pages.

SQL Commands
This part contains reference information for the SQL commands supported by Postgres Pro. By “SQL”
the language in general is meant; information about the standards conformance and compatibility of
each command can be found on the respective reference page.

1213

ABORT
ABORT — abort the current transaction

Synopsis
ABORT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ABORT rolls back the current transaction and causes all the updates made by the transaction to be
discarded. This command is identical in behavior to the standard SQL command ROLLBACK, and is
present only for historical reasons.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction
characteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is
started.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ABORT outside of a transaction block emits a warning and otherwise has no effect.

Examples
To abort all changes:

ABORT;

Compatibility
This command is a Postgres Pro extension present for historical reasons. ROLLBACK is the equivalent
standard SQL command.

See Also
BEGIN, COMMIT, ROLLBACK

1214

ALTER AGGREGATE
ALTER AGGREGATE — change the definition of an aggregate function

Synopsis
ALTER AGGREGATE name (aggregate_signature) RENAME TO new_name
ALTER AGGREGATE name (aggregate_signature)
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER AGGREGATE name (aggregate_signature) SET SCHEMA new_schema

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
ALTER AGGREGATE changes the definition of an aggregate function.

You must own the aggregate function to use ALTER AGGREGATE. To change the schema of an aggregate
function, you must also have CREATE privilege on the new schema. To alter the owner, you must also be
a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
aggregate function's schema. (These restrictions enforce that altering the owner doesn't do anything
you couldn't do by dropping and recreating the aggregate function. However, a superuser can alter
ownership of any aggregate function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER AGGREGATE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the aggregate
function's identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument
aggregate function, write * in place of the list of argument specifications. To reference an ordered-
set aggregate function, write ORDER BY between the direct and aggregated argument specifications.

new_name

The new name of the aggregate function.

new_owner

The new owner of the aggregate function.

new_schema

The new schema for the aggregate function.

1215

ALTER AGGREGATE

Notes
The recommended syntax for referencing an ordered-set aggregate is to write ORDER BY between the
direct and aggregated argument specifications, in the same style as in CREATE AGGREGATE. However,
it will also work to omit ORDER BY and just run the direct and aggregated argument specifications into
a single list. In this abbreviated form, if VARIADIC "any" was used in both the direct and aggregated
argument lists, write VARIADIC "any" only once.

Examples
To rename the aggregate function myavg for type integer to my_average:

ALTER AGGREGATE myavg(integer) RENAME TO my_average;

To change the owner of the aggregate function myavg for type integer to joe:

ALTER AGGREGATE myavg(integer) OWNER TO joe;

To move the ordered-set aggregate mypercentile with direct argument of type float8 and aggregated
argument of type integer into schema myschema:

ALTER AGGREGATE mypercentile(float8 ORDER BY integer) SET SCHEMA myschema;

This will work too:

ALTER AGGREGATE mypercentile(float8, integer) SET SCHEMA myschema;

Compatibility
There is no ALTER AGGREGATE statement in the SQL standard.

See Also
CREATE AGGREGATE, DROP AGGREGATE

1216

ALTER COLLATION
ALTER COLLATION — change the definition of a collation

Synopsis
ALTER COLLATION name REFRESH VERSION

ALTER COLLATION name RENAME TO new_name
ALTER COLLATION name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER COLLATION name SET SCHEMA new_schema

Description
ALTER COLLATION changes the definition of a collation.

You must own the collation to use ALTER COLLATION. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the collation's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the collation. However, a superuser can alter ownership of any collation
anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing collation.

new_name

The new name of the collation.

new_owner

The new owner of the collation.

new_schema

The new schema for the collation.

REFRESH VERSION

Update the collation's version. See Notes below.

Notes
When using collations provided by the ICU library, the ICU-specific version of the collator is recorded in
the system catalog when the collation object is created. When the collation is used, the current version
is checked against the recorded version, and a warning is issued when there is a mismatch, for example:

WARNING: collation "xx-x-icu" has version mismatch
DETAIL: The collation in the database was created using version 1.2.3.4, but the
 operating system provides version 2.3.4.5.
HINT: Rebuild all objects affected by this collation and run ALTER COLLATION
 pg_catalog."xx-x-icu" REFRESH VERSION, or build Postgres Pro with the right library
 version.

A change in collation definitions can lead to corrupt indexes and other problems because the database
system relies on stored objects having a certain sort order. Generally, this should be avoided, but it
can happen in legitimate circumstances, such as when using pg_upgrade to upgrade to server binaries
linked with a newer version of ICU. When this happens, all objects depending on the collation should

1217

ALTER COLLATION

be rebuilt, for example, using REINDEX. When that is done, the collation version can be refreshed using
the command ALTER COLLATION ... REFRESH VERSION. This will update the system catalog to record
the current collator version and will make the warning go away. Note that this does not actually check
whether all affected objects have been rebuilt correctly.

When using collations provided by libc and PostgreSQL was built with the GNU C library, the C library's
version is used as a collation version. Since collation definitions typically change only with GNU C library
releases, this provides some defense against corruption, but it is not completely reliable.

Currently, there is no version tracking for the database default collation.

The following query can be used to identify all collations in the current database that need to be refreshed
and the objects that depend on them:

SELECT pg_describe_object(refclassid, refobjid, refobjsubid) AS "Collation",
 pg_describe_object(classid, objid, objsubid) AS "Object"
 FROM pg_depend d JOIN pg_collation c
 ON refclassid = 'pg_collation'::regclass AND refobjid = c.oid
 WHERE c.collversion <> pg_collation_actual_version(c.oid)
 ORDER BY 1, 2;

Examples
To rename the collation ru_RU to russian:

ALTER COLLATION "ru_RU" RENAME TO russian;

To change the owner of the collation en_US to joe:

ALTER COLLATION "en_US" OWNER TO joe;

Compatibility
There is no ALTER COLLATION statement in the SQL standard.

See Also
CREATE COLLATION, DROP COLLATION

1218

ALTER CONVERSION
ALTER CONVERSION — change the definition of a conversion

Synopsis
ALTER CONVERSION name RENAME TO new_name
ALTER CONVERSION name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER CONVERSION name SET SCHEMA new_schema

Description
ALTER CONVERSION changes the definition of a conversion.

You must own the conversion to use ALTER CONVERSION. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the conversion's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the conversion. However, a superuser can alter ownership of any conversion
anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing conversion.

new_name

The new name of the conversion.

new_owner

The new owner of the conversion.

new_schema

The new schema for the conversion.

Examples
To rename the conversion iso_8859_1_to_utf8 to latin1_to_unicode:

ALTER CONVERSION iso_8859_1_to_utf8 RENAME TO latin1_to_unicode;

To change the owner of the conversion iso_8859_1_to_utf8 to joe:

ALTER CONVERSION iso_8859_1_to_utf8 OWNER TO joe;

Compatibility
There is no ALTER CONVERSION statement in the SQL standard.

See Also
CREATE CONVERSION, DROP CONVERSION

1219

ALTER DATABASE
ALTER DATABASE — change a database

Synopsis
ALTER DATABASE name [[WITH] option [...]]

where option can be:

 ALLOW_CONNECTIONS allowconn
 CONNECTION LIMIT connlimit
 IS_TEMPLATE istemplate

ALTER DATABASE name RENAME TO new_name

ALTER DATABASE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER DATABASE name SET TABLESPACE new_tablespace

ALTER DATABASE name SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER DATABASE name SET configuration_parameter FROM CURRENT
ALTER DATABASE name RESET configuration_parameter
ALTER DATABASE name RESET ALL

Description
ALTER DATABASE changes the attributes of a database.

The first form changes certain per-database settings. (See below for details.) Only the database owner
or a superuser can change these settings.

The second form changes the name of the database. Only the database owner or a superuser can rename
a database; non-superuser owners must also have the CREATEDB privilege. The current database cannot
be renamed. (Connect to a different database if you need to do that.)

The third form changes the owner of the database. To alter the owner, you must own the database and
also be a direct or indirect member of the new owning role, and you must have the CREATEDB privilege.
(Note that superusers have all these privileges automatically.)

The fourth form changes the default tablespace of the database. Only the database owner or a superuser
can do this; you must also have create privilege for the new tablespace. This command physically moves
any tables or indexes in the database's old default tablespace to the new tablespace. The new default
tablespace must be empty for this database, and no one can be connected to the database. Tables and
indexes in non-default tablespaces are unaffected.

The remaining forms change the session default for a run-time configuration variable for a Postgres
Pro database. Whenever a new session is subsequently started in that database, the specified value
becomes the session default value. The database-specific default overrides whatever setting is present
in postgresql.conf or has been received from the postgres command line. Only the database owner
or a superuser can change the session defaults for a database. Certain variables cannot be set this way,
or can only be set by a superuser.

Parameters
name

The name of the database whose attributes are to be altered.

1220

ALTER DATABASE

allowconn

If false then no one can connect to this database.

connlimit

How many concurrent connections can be made to this database. -1 means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false, then only
superusers or the owner of the database can clone it.

new_name

The new name of the database.

new_owner

The new owner of the database.

new_tablespace

The new default tablespace of the database.

This form of the command cannot be executed inside a transaction block.

configuration_parameter
value

Set this database's session default for the specified configuration parameter to the given value. If
value is DEFAULT or, equivalently, RESET is used, the database-specific setting is removed, so the
system-wide default setting will be inherited in new sessions. Use RESET ALL to clear all database-
specific settings. SET FROM CURRENT saves the session's current value of the parameter as the
database-specific value.

See SET and Chapter 18 for more information about allowed parameter names and values.

Notes
It is also possible to tie a session default to a specific role rather than to a database; see ALTER ROLE.
Role-specific settings override database-specific ones if there is a conflict.

Examples
To disable index scans by default in the database test:

ALTER DATABASE test SET enable_indexscan TO off;

Compatibility
The ALTER DATABASE statement is a Postgres Pro extension.

See Also
CREATE DATABASE, DROP DATABASE, SET, CREATE TABLESPACE

1221

ALTER DEFAULT PRIVILEGES
ALTER DEFAULT PRIVILEGES — define default access privileges

Synopsis
ALTER DEFAULT PRIVILEGES
 [FOR { ROLE | USER } target_role [, ...]]
 [IN SCHEMA schema_name [, ...]]
 abbreviated_grant_or_revoke

where abbreviated_grant_or_revoke is one of:

GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPES
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

GRANT { USAGE | CREATE | ALL [PRIVILEGES] }
 ON SCHEMAS
 TO { [GROUP] role_name | PUBLIC } [, ...] [WITH GRANT OPTION]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON TABLES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON SEQUENCES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { FUNCTIONS | ROUTINES }
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }

1222

ALTER DEFAULT PRIVILEGES

 ON TYPES
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | CREATE | ALL [PRIVILEGES] }
 ON SCHEMAS
 FROM { [GROUP] role_name | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

Description
ALTER DEFAULT PRIVILEGES allows you to set the privileges that will be applied to objects created in the
future. (It does not affect privileges assigned to already-existing objects.) Currently, only the privileges
for schemas, tables (including views and foreign tables), sequences, functions, and types (including
domains) can be altered. For this command, functions include aggregates and procedures. The words
FUNCTIONS and ROUTINES are equivalent in this command. (ROUTINES is preferred going forward as the
standard term for functions and procedures taken together. In earlier Postgres Pro releases, only the
word FUNCTIONS was allowed. It is not possible to set default privileges for functions and procedures
separately.)

You can change default privileges only for objects that will be created by yourself or by roles that you
are a member of. The privileges can be set globally (i.e., for all objects created in the current database),
or just for objects created in specified schemas.

As explained in Section 5.7, the default privileges for any object type normally grant all grantable
permissions to the object owner, and may grant some privileges to PUBLIC as well. However, this behavior
can be changed by altering the global default privileges with ALTER DEFAULT PRIVILEGES.

Default privileges that are specified per-schema are added to whatever the global default privileges are
for the particular object type. This means you cannot revoke privileges per-schema if they are granted
globally (either by default, or according to a previous ALTER DEFAULT PRIVILEGES command that did
not specify a schema). Per-schema REVOKE is only useful to reverse the effects of a previous per-schema
GRANT.

Parameters
target_role

The name of an existing role of which the current role is a member. If FOR ROLE is omitted, the
current role is assumed.

schema_name

The name of an existing schema. If specified, the default privileges are altered for objects later
created in that schema. If IN SCHEMA is omitted, the global default privileges are altered. IN SCHEMA
is not allowed when setting privileges for schemas, since schemas can't be nested.

role_name

The name of an existing role to grant or revoke privileges for. This parameter, and all the other
parameters in abbreviated_grant_or_revoke, act as described under GRANT or REVOKE, except
that one is setting permissions for a whole class of objects rather than specific named objects.

Notes
Use psql's \ddp command to obtain information about existing assignments of default privileges. The
meaning of the privilege display is the same as explained for \dp in Section 5.7.

If you wish to drop a role for which the default privileges have been altered, it is necessary to reverse
the changes in its default privileges or use DROP OWNED BY to get rid of the default privileges entry for
the role.

1223

ALTER DEFAULT PRIVILEGES

Examples
Grant SELECT privilege to everyone for all tables (and views) you subsequently create in schema
myschema, and allow role webuser to INSERT into them too:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT SELECT ON TABLES TO PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema GRANT INSERT ON TABLES TO webuser;

Undo the above, so that subsequently-created tables won't have any more permissions than normal:

ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE SELECT ON TABLES FROM PUBLIC;
ALTER DEFAULT PRIVILEGES IN SCHEMA myschema REVOKE INSERT ON TABLES FROM webuser;

Remove the public EXECUTE permission that is normally granted on functions, for all functions
subsequently created by role admin:

ALTER DEFAULT PRIVILEGES FOR ROLE admin REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

Note however that you cannot accomplish that effect with a command limited to a single schema. This
command has no effect, unless it is undoing a matching GRANT:

ALTER DEFAULT PRIVILEGES IN SCHEMA public REVOKE EXECUTE ON FUNCTIONS FROM PUBLIC;

That's because per-schema default privileges can only add privileges to the global setting, not remove
privileges granted by it.

Compatibility
There is no ALTER DEFAULT PRIVILEGES statement in the SQL standard.

See Also
GRANT, REVOKE

1224

ALTER DOMAIN
ALTER DOMAIN — change the definition of a domain

Synopsis
ALTER DOMAIN name
 { SET DEFAULT expression | DROP DEFAULT }
ALTER DOMAIN name
 { SET | DROP } NOT NULL
ALTER DOMAIN name
 ADD domain_constraint [NOT VALID]
ALTER DOMAIN name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
ALTER DOMAIN name
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER DOMAIN name
 VALIDATE CONSTRAINT constraint_name
ALTER DOMAIN name
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER DOMAIN name
 RENAME TO new_name
ALTER DOMAIN name
 SET SCHEMA new_schema

Description
ALTER DOMAIN changes the definition of an existing domain. There are several sub-forms:

SET/DROP DEFAULT
These forms set or remove the default value for a domain. Note that defaults only apply to subsequent
INSERT commands; they do not affect rows already in a table using the domain.

SET/DROP NOT NULL
These forms change whether a domain is marked to allow NULL values or to reject NULL values.
You can only SET NOT NULL when the columns using the domain contain no null values.

ADD domain_constraint [NOT VALID]

This form adds a new constraint to a domain using the same syntax as CREATE DOMAIN. When
a new constraint is added to a domain, all columns using that domain will be checked against the
newly added constraint. These checks can be suppressed by adding the new constraint using the NOT
VALID option; the constraint can later be made valid using ALTER DOMAIN ... VALIDATE CONSTRAINT.
Newly inserted or updated rows are always checked against all constraints, even those marked NOT
VALID. NOT VALID is only accepted for CHECK constraints.

DROP CONSTRAINT [IF EXISTS]

This form drops constraints on a domain. If IF EXISTS is specified and the constraint does not exist,
no error is thrown. In this case a notice is issued instead.

RENAME CONSTRAINT

This form changes the name of a constraint on a domain.

VALIDATE CONSTRAINT

This form validates a constraint previously added as NOT VALID, that is, it verifies that all values in
table columns of the domain type satisfy the specified constraint.

1225

ALTER DOMAIN

OWNER

This form changes the owner of the domain to the specified user.

RENAME

This form changes the name of the domain.

SET SCHEMA

This form changes the schema of the domain. Any constraints associated with the domain are moved
into the new schema as well.

You must own the domain to use ALTER DOMAIN. To change the schema of a domain, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the domain's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the domain. However, a superuser can alter ownership of any domain anyway.)

Parameters
name

The name (possibly schema-qualified) of an existing domain to alter.

domain_constraint

New domain constraint for the domain.

constraint_name

Name of an existing constraint to drop or rename.

NOT VALID

Do not verify existing stored data for constraint validity.

CASCADE

Automatically drop objects that depend on the constraint, and in turn all objects that depend on
those objects (see Section 5.14).

RESTRICT

Refuse to drop the constraint if there are any dependent objects. This is the default behavior.

new_name

The new name for the domain.

new_constraint_name

The new name for the constraint.

new_owner

The user name of the new owner of the domain.

new_schema

The new schema for the domain.

Notes
Although ALTER DOMAIN ADD CONSTRAINT attempts to verify that existing stored data satisfies the
new constraint, this check is not bulletproof, because the command cannot “see” table rows that are
newly inserted or updated and not yet committed. If there is a hazard that concurrent operations might

1226

ALTER DOMAIN

insert bad data, the way to proceed is to add the constraint using the NOT VALID option, commit that
command, wait until all transactions started before that commit have finished, and then issue ALTER
DOMAIN VALIDATE CONSTRAINT to search for data violating the constraint. This method is reliable because
once the constraint is committed, all new transactions are guaranteed to enforce it against new values
of the domain type.

Currently, ALTER DOMAIN ADD CONSTRAINT, ALTER DOMAIN VALIDATE CONSTRAINT, and ALTER DOMAIN
SET NOT NULL will fail if the named domain or any derived domain is used within a container-type column
(a composite, array, or range column) in any table in the database. They should eventually be improved
to be able to verify the new constraint for such nested values.

Examples
To add a NOT NULL constraint to a domain:

ALTER DOMAIN zipcode SET NOT NULL;

To remove a NOT NULL constraint from a domain:

ALTER DOMAIN zipcode DROP NOT NULL;

To add a check constraint to a domain:

ALTER DOMAIN zipcode ADD CONSTRAINT zipchk CHECK (char_length(VALUE) = 5);

To remove a check constraint from a domain:

ALTER DOMAIN zipcode DROP CONSTRAINT zipchk;

To rename a check constraint on a domain:

ALTER DOMAIN zipcode RENAME CONSTRAINT zipchk TO zip_check;

To move the domain into a different schema:

ALTER DOMAIN zipcode SET SCHEMA customers;

Compatibility
ALTER DOMAIN conforms to the SQL standard, except for the OWNER, RENAME, SET SCHEMA, and VALIDATE
CONSTRAINT variants, which are Postgres Pro extensions. The NOT VALID clause of the ADD CONSTRAINT
variant is also a Postgres Pro extension.

See Also
CREATE DOMAIN, DROP DOMAIN

1227

ALTER EVENT TRIGGER
ALTER EVENT TRIGGER — change the definition of an event trigger

Synopsis
ALTER EVENT TRIGGER name DISABLE
ALTER EVENT TRIGGER name ENABLE [REPLICA | ALWAYS]
ALTER EVENT TRIGGER name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER EVENT TRIGGER name RENAME TO new_name

Description
ALTER EVENT TRIGGER changes properties of an existing event trigger.

You must be superuser to alter an event trigger.

Parameters
name

The name of an existing trigger to alter.

new_owner

The user name of the new owner of the event trigger.

new_name

The new name of the event trigger.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER
These forms configure the firing of event triggers. A disabled trigger is still known to the system, but
is not executed when its triggering event occurs. See also session_replication_role.

Compatibility
There is no ALTER EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, DROP EVENT TRIGGER

1228

ALTER EXTENSION
ALTER EXTENSION — change the definition of an extension

Synopsis
ALTER EXTENSION name UPDATE [TO new_version]
ALTER EXTENSION name SET SCHEMA new_schema
ALTER EXTENSION name ADD member_object
ALTER EXTENSION name DROP member_object

where member_object is:

 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 CONVERSION object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 TABLE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TYPE object_name |
 VIEW object_name

and aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
ALTER EXTENSION changes the definition of an installed extension. There are several subforms:

UPDATE

This form updates the extension to a newer version. The extension must supply a suitable update
script (or series of scripts) that can modify the currently-installed version into the requested version.

1229

ALTER EXTENSION

SET SCHEMA

This form moves the extension's objects into another schema. The extension has to be relocatable
for this command to succeed.

ADD member_object

This form adds an existing object to the extension. This is mainly useful in extension update scripts.
The object will subsequently be treated as a member of the extension; notably, it can only be dropped
by dropping the extension.

DROP member_object

This form removes a member object from the extension. This is mainly useful in extension update
scripts. The object is not dropped, only disassociated from the extension.

See Section 35.17 for more information about these operations.

You must own the extension to use ALTER EXTENSION. The ADD/DROP forms require ownership of the
added/dropped object as well.

Parameters
name

The name of an installed extension.

new_version

The desired new version of the extension. This can be written as either an identifier or a string literal.
If not specified, ALTER EXTENSION UPDATE attempts to update to whatever is shown as the default
version in the extension's control file.

new_schema

The new schema for the extension.

object_name
aggregate_name
function_name
operator_name
procedure_name
routine_name

The name of an object to be added to or removed from the extension. Names of tables, aggregates,
domains, foreign tables, functions, operators, operator classes, operator families, procedures,
routines, sequences, text search objects, types, and views can be schema-qualified.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that ALTER EXTENSION does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is sufficient to
list the IN, INOUT, and VARIADIC arguments.

1230

ALTER EXTENSION

argname

The name of a function, procedure, or aggregate argument. Note that ALTER EXTENSION does not
actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the missing
argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

Examples
To update the hstore extension to version 2.0:

ALTER EXTENSION hstore UPDATE TO '2.0';

To change the schema of the hstore extension to utils:

ALTER EXTENSION hstore SET SCHEMA utils;

To add an existing function to the hstore extension:

ALTER EXTENSION hstore ADD FUNCTION populate_record(anyelement, hstore);

Compatibility
ALTER EXTENSION is a Postgres Pro extension.

See Also
CREATE EXTENSION, DROP EXTENSION

1231

ALTER FOREIGN DATA WRAPPER
ALTER FOREIGN DATA WRAPPER — change the definition of a foreign-data wrapper

Synopsis
ALTER FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER FOREIGN DATA WRAPPER name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER FOREIGN DATA WRAPPER name RENAME TO new_name

Description
ALTER FOREIGN DATA WRAPPER changes the definition of a foreign-data wrapper. The first form of the
command changes the support functions or the generic options of the foreign-data wrapper (at least one
clause is required). The second form changes the owner of the foreign-data wrapper.

Only superusers can alter foreign-data wrappers. Additionally, only superusers can own foreign-data
wrappers.

Parameters
name

The name of an existing foreign-data wrapper.

HANDLER handler_function

Specifies a new handler function for the foreign-data wrapper.

NO HANDLER

This is used to specify that the foreign-data wrapper should no longer have a handler function.

Note that foreign tables that use a foreign-data wrapper with no handler cannot be accessed.

VALIDATOR validator_function

Specifies a new validator function for the foreign-data wrapper.

Note that it is possible that pre-existing options of the foreign-data wrapper, or of dependent servers,
user mappings, or foreign tables, are invalid according to the new validator. Postgres Pro does not
check for this. It is up to the user to make sure that these options are correct before using the
modified foreign-data wrapper. However, any options specified in this ALTER FOREIGN DATA WRAPPER
command will be checked using the new validator.

NO VALIDATOR

This is used to specify that the foreign-data wrapper should no longer have a validator function.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign-data wrapper. ADD, SET, and DROP specify the action to be performed.
ADD is assumed if no operation is explicitly specified. Option names must be unique; names and values
are also validated using the foreign data wrapper's validator function, if any.

new_owner

The user name of the new owner of the foreign-data wrapper.

1232

ALTER FOREIGN DATA WRAPPER

new_name

The new name for the foreign-data wrapper.

Examples
Change a foreign-data wrapper dbi, add option foo, drop bar:

ALTER FOREIGN DATA WRAPPER dbi OPTIONS (ADD foo '1', DROP 'bar');

Change the foreign-data wrapper dbi validator to bob.myvalidator:

ALTER FOREIGN DATA WRAPPER dbi VALIDATOR bob.myvalidator;

Compatibility
ALTER FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), except that the HANDLER,
VALIDATOR, OWNER TO, and RENAME clauses are extensions.

See Also
CREATE FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER

1233

ALTER FOREIGN TABLE
ALTER FOREIGN TABLE — change the definition of a foreign table

Synopsis
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER FOREIGN TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER FOREIGN TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER FOREIGN TABLE [IF EXISTS] name
 SET SCHEMA new_schema

where action is one of:

 ADD [COLUMN] column_name data_type [COLLATE collation] [column_constraint
 [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ALTER [COLUMN] column_name OPTIONS ([ADD | SET | DROP] option ['value']
 [, ...])
 ADD table_constraint [NOT VALID]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 SET WITHOUT OIDS
 INHERIT parent_table
 NO INHERIT parent_table
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER FOREIGN TABLE changes the definition of an existing foreign table. There are several subforms:
ADD COLUMN

This form adds a new column to the foreign table, using the same syntax as CREATE FOREIGN
TABLE. Unlike the case when adding a column to a regular table, nothing happens to the underlying
storage: this action simply declares that some new column is now accessible through the foreign
table.

DROP COLUMN [IF EXISTS]

This form drops a column from a foreign table. You will need to say CASCADE if anything outside the
table depends on the column; for example, views. If IF EXISTS is specified and the column does not
exist, no error is thrown. In this case a notice is issued instead.

1234

ALTER FOREIGN TABLE

SET DATA TYPE

This form changes the type of a column of a foreign table. Again, this has no effect on any underlying
storage: this action simply changes the type that Postgres Pro believes the column to have.

SET/DROP DEFAULT

These forms set or remove the default value for a column. Default values only apply in subsequent
INSERT or UPDATE commands; they do not cause rows already in the table to change.

SET/DROP NOT NULL

Mark a column as allowing, or not allowing, null values.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. See
the similar form of ALTER TABLE for more details.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. See the similar form of ALTER TABLE for more details.

SET STORAGE

This form sets the storage mode for a column. See the similar form of ALTER TABLE for more details.
Note that the storage mode has no effect unless the table's foreign-data wrapper chooses to pay
attention to it.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a foreign table, using the same syntax as CREATE FOREIGN
TABLE. Currently only CHECK constraints are supported.

Unlike the case when adding a constraint to a regular table, nothing is done to verify the constraint
is correct; rather, this action simply declares that some new condition should be assumed to hold for
all rows in the foreign table. (See the discussion in CREATE FOREIGN TABLE.) If the constraint is
marked NOT VALID, then it isn't assumed to hold, but is only recorded for possible future use.

VALIDATE CONSTRAINT

This form marks as valid a constraint that was previously marked as NOT VALID. No action is taken
to verify the constraint, but future queries will assume that it holds.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a foreign table. If IF EXISTS is specified and the constraint
does not exist, no error is thrown. In this case a notice is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the foreign table. See the similar form of
ALTER TABLE for more details.

SET WITHOUT OIDS

Backward compatibility syntax for removing the oid system column. As oid system columns cannot
be added anymore, this never has an effect.

INHERIT parent_table

This form adds the target foreign table as a new child of the specified parent table. See the similar
form of ALTER TABLE for more details.

1235

ALTER FOREIGN TABLE

NO INHERIT parent_table

This form removes the target foreign table from the list of children of the specified parent table.

OWNER

This form changes the owner of the foreign table to the specified user.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the foreign table or one of its columns. ADD, SET, and DROP specify the action to
be performed. ADD is assumed if no operation is explicitly specified. Duplicate option names are not
allowed (although it's OK for a table option and a column option to have the same name). Option
names and values are also validated using the foreign data wrapper library.

RENAME

The RENAME forms change the name of a foreign table or the name of an individual column in a foreign
table.

SET SCHEMA

This form moves the foreign table into another schema.

All the actions except RENAME and SET SCHEMA can be combined into a list of multiple alterations to apply
in parallel. For example, it is possible to add several columns and/or alter the type of several columns
in a single command.

If the command is written as ALTER FOREIGN TABLE IF EXISTS ... and the foreign table does not exist,
no error is thrown. A notice is issued in this case.

You must own the table to use ALTER FOREIGN TABLE. To change the schema of a foreign table, you
must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the table's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the table. However, a superuser can alter ownership of any table anyway.) To add a column
or alter a column type, you must also have USAGE privilege on the data type.

Parameters
name

The name (possibly schema-qualified) of an existing foreign table to alter. If ONLY is specified before
the table name, only that table is altered. If ONLY is not specified, the table and all its descendant
tables (if any) are altered. Optionally, * can be specified after the table name to explicitly indicate
that descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the foreign table.

1236

ALTER FOREIGN TABLE

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default
behavior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the foreign table. (This requires superuser privilege if
any of the triggers are internally generated triggers. The core system does not add such triggers to
foreign tables, but add-on code could do so.)

USER

Disable or enable all triggers belonging to the foreign table except for internally generated triggers.

parent_table

A parent table to associate or de-associate with this foreign table.

new_owner

The user name of the new owner of the table.

new_schema

The name of the schema to which the table will be moved.

Notes
The key word COLUMN is noise and can be omitted.

Consistency with the foreign server is not checked when a column is added or removed with ADD COLUMN
or DROP COLUMN, a NOT NULL or CHECK constraint is added, or a column type is changed with SET DATA
TYPE. It is the user's responsibility to ensure that the table definition matches the remote side.

Refer to CREATE FOREIGN TABLE for a further description of valid parameters.

Examples
To mark a column as not-null:

ALTER FOREIGN TABLE distributors ALTER COLUMN street SET NOT NULL;

To change options of a foreign table:

ALTER FOREIGN TABLE myschema.distributors OPTIONS (ADD opt1 'value', SET opt2 'value2',
 DROP opt3 'value3');

Compatibility
The forms ADD, DROP, and SET DATA TYPE conform with the SQL standard. The other forms are Postgres
Pro extensions of the SQL standard. Also, the ability to specify more than one manipulation in a single
ALTER FOREIGN TABLE command is an extension.

1237

ALTER FOREIGN TABLE

ALTER FOREIGN TABLE DROP COLUMN can be used to drop the only column of a foreign table, leaving a
zero-column table. This is an extension of SQL, which disallows zero-column foreign tables.

See Also
CREATE FOREIGN TABLE, DROP FOREIGN TABLE

1238

ALTER FUNCTION
ALTER FUNCTION — change the definition of a function

Synopsis
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER FUNCTION name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT
 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SUPPORT support_function
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER FUNCTION changes the definition of a function.

You must own the function to use ALTER FUNCTION. To change a function's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the function's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the function. However, a superuser can alter ownership of any function anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that ALTER
FUNCTION does not actually pay any attention to OUT arguments, since only the input arguments are
needed to determine the function's identity. So it is sufficient to list the IN, INOUT, and VARIADIC
arguments.

argname

The name of an argument. Note that ALTER FUNCTION does not actually pay any attention to argument
names, since only the argument data types are needed to determine the function's identity.

1239

ALTER FUNCTION

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

new_name

The new name of the function.

new_owner

The new owner of the function. Note that if the function is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the function.

DEPENDS ON EXTENSION extension_name
NO DEPENDS ON EXTENSION extension_name

This form marks the function as dependent on the extension, or no longer dependent on that extension
if NO is specified. A function that's marked as dependent on an extension is automatically dropped
when the extension is dropped.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT changes the function so that it will be invoked when some or all of its
arguments are null. RETURNS NULL ON NULL INPUT or STRICT changes the function so that it is not
invoked if any of its arguments are null; instead, a null result is assumed automatically. See CREATE
FUNCTION for more information.

IMMUTABLE
STABLE
VOLATILE

Change the volatility of the function to the specified setting. See CREATE FUNCTION for details.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the function is a security definer or not. The key word EXTERNAL is ignored for SQL
conformance. See CREATE FUNCTION for more information about this capability.

PARALLEL

Change whether the function is deemed safe for parallelism. See CREATE FUNCTION for details.

LEAKPROOF

Change whether the function is considered leakproof or not. See CREATE FUNCTION for more
information about this capability.

COST execution_cost
Change the estimated execution cost of the function. See CREATE FUNCTION for more information.

ROWS result_rows
Change the estimated number of rows returned by a set-returning function. See CREATE FUNCTION
for more information.

SUPPORT support_function
Set or change the planner support function to use for this function. See Section 35.11 for details.
You must be superuser to use this option.

1240

ALTER FUNCTION

This option cannot be used to remove the support function altogether, since it must name a new
support function. Use CREATE OR REPLACE FUNCTION if you need to do that.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the function is called.
If value is DEFAULT or, equivalently, RESET is used, the function-local setting is removed, so that the
function executes with the value present in its environment. Use RESET ALL to clear all function-local
settings. SET FROM CURRENT saves the value of the parameter that is current when ALTER FUNCTION
is executed as the value to be applied when the function is entered.

See SET and Chapter 18 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the function sqrt for type integer to square_root:

ALTER FUNCTION sqrt(integer) RENAME TO square_root;

To change the owner of the function sqrt for type integer to joe:

ALTER FUNCTION sqrt(integer) OWNER TO joe;

To change the schema of the function sqrt for type integer to maths:

ALTER FUNCTION sqrt(integer) SET SCHEMA maths;

To mark the function sqrt for type integer as being dependent on the extension mathlib:

ALTER FUNCTION sqrt(integer) DEPENDS ON EXTENSION mathlib;

To adjust the search path that is automatically set for a function:

ALTER FUNCTION check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a function:

ALTER FUNCTION check_password(text) RESET search_path;

The function will now execute with whatever search path is used by its caller.

Compatibility
This statement is partially compatible with the ALTER FUNCTION statement in the SQL standard. The
standard allows more properties of a function to be modified, but does not provide the ability to rename
a function, make a function a security definer, attach configuration parameter values to a function, or
change the owner, schema, or volatility of a function. The standard also requires the RESTRICT key word,
which is optional in Postgres Pro.

See Also
CREATE FUNCTION, DROP FUNCTION, ALTER PROCEDURE, ALTER ROUTINE

1241

ALTER GROUP
ALTER GROUP — change role name or membership

Synopsis
ALTER GROUP role_specification ADD USER user_name [, ...]
ALTER GROUP role_specification DROP USER user_name [, ...]

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

ALTER GROUP group_name RENAME TO new_name

Description
ALTER GROUP changes the attributes of a user group. This is an obsolete command, though still accepted
for backwards compatibility, because groups (and users too) have been superseded by the more general
concept of roles.

The first two variants add users to a group or remove them from a group. (Any role can play the part
of either a “user” or a “group” for this purpose.) These variants are effectively equivalent to granting
or revoking membership in the role named as the “group”; so the preferred way to do this is to use
GRANT or REVOKE.

The third variant changes the name of the group. This is exactly equivalent to renaming the role with
ALTER ROLE.

Parameters
group_name

The name of the group (role) to modify.

user_name

Users (roles) that are to be added to or removed from the group. The users must already exist; ALTER
GROUP does not create or drop users.

new_name

The new name of the group.

Examples
Add users to a group:
ALTER GROUP staff ADD USER karl, john;

Remove a user from a group:
ALTER GROUP workers DROP USER beth;

Compatibility
There is no ALTER GROUP statement in the SQL standard.

See Also
GRANT, REVOKE, ALTER ROLE

1242

ALTER INDEX
ALTER INDEX — change the definition of an index

Synopsis
ALTER INDEX [IF EXISTS] name RENAME TO new_name
ALTER INDEX [IF EXISTS] name SET TABLESPACE tablespace_name
ALTER INDEX name ATTACH PARTITION index_name
ALTER INDEX name [NO] DEPENDS ON EXTENSION extension_name
ALTER INDEX [IF EXISTS] name SET (storage_parameter [= value] [, ...])
ALTER INDEX [IF EXISTS] name RESET (storage_parameter [, ...])
ALTER INDEX [IF EXISTS] name ALTER [COLUMN] column_number
 SET STATISTICS integer
ALTER INDEX ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

Description
ALTER INDEX changes the definition of an existing index. There are several subforms described below.
Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock is held unless
explicitly noted. When multiple subcommands are listed, the lock held will be the strictest one required
from any subcommand.
RENAME

The RENAME form changes the name of the index. If the index is associated with a table constraint
(either UNIQUE, PRIMARY KEY, or EXCLUDE), the constraint is renamed as well. There is no effect on
the stored data.

Renaming an index acquires a SHARE UPDATE EXCLUSIVE lock.

SET TABLESPACE

This form changes the index's tablespace to the specified tablespace and moves the data file(s)
associated with the index to the new tablespace. To change the tablespace of an index, you must own
the index and have CREATE privilege on the new tablespace. All indexes in the current database in
a tablespace can be moved by using the ALL IN TABLESPACE form, which will lock all indexes to be
moved and then move each one. This form also supports OWNED BY, which will only move indexes
owned by the roles specified. If the NOWAIT option is specified then the command will fail if it is
unable to acquire all of the locks required immediately. Note that system catalogs will not be moved
by this command, use ALTER DATABASE or explicit ALTER INDEX invocations instead if desired. See
also CREATE TABLESPACE.

ATTACH PARTITION

Causes the named index to become attached to the altered index. The named index must be on
a partition of the table containing the index being altered, and have an equivalent definition. An
attached index cannot be dropped by itself, and will automatically be dropped if its parent index is
dropped.

DEPENDS ON EXTENSION extension_name
NO DEPENDS ON EXTENSION extension_name

This form marks the index as dependent on the extension, or no longer dependent on that extension
if NO is specified. An index that's marked as dependent on an extension is automatically dropped
when the extension is dropped.

SET (storage_parameter [= value] [, ...])

This form changes one or more index-method-specific storage parameters for the index. See CREATE
INDEX for details on the available parameters. Note that the index contents will not be modified

1243

ALTER INDEX

immediately by this command; depending on the parameter you might need to rebuild the index with
REINDEX to get the desired effects.

RESET (storage_parameter [, ...])

This form resets one or more index-method-specific storage parameters to their defaults. As with
SET, a REINDEX might be needed to update the index entirely.

ALTER [COLUMN] column_number SET STATISTICS integer

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations,
though can be used only on index columns that are defined as an expression. Since expressions lack
a unique name, we refer to them using the ordinal number of the index column. The target can be
set in the range 0 to 10000; alternatively, set it to -1 to revert to using the system default statistics
target (default_statistics_target). For more information on the use of statistics by the Postgres Pro
query planner, refer to Section 14.2.

Parameters
IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

column_number

The ordinal number refers to the ordinal (left-to-right) position of the index column.

name

The name (possibly schema-qualified) of an existing index to alter.

new_name

The new name for the index.

tablespace_name

The tablespace to which the index will be moved.

extension_name

The name of the extension that the index is to depend on.

storage_parameter

The name of an index-method-specific storage parameter.

value

The new value for an index-method-specific storage parameter. This might be a number or a word
depending on the parameter.

Notes
These operations are also possible using ALTER TABLE. ALTER INDEX is in fact just an alias for the forms
of ALTER TABLE that apply to indexes.

There was formerly an ALTER INDEX OWNER variant, but this is now ignored (with a warning). An index
cannot have an owner different from its table's owner. Changing the table's owner automatically changes
the index as well.

Changing any part of a system catalog index is not permitted.

Examples
To rename an existing index:

1244

ALTER INDEX

ALTER INDEX distributors RENAME TO suppliers;

To move an index to a different tablespace:

ALTER INDEX distributors SET TABLESPACE fasttablespace;

To change an index's fill factor (assuming that the index method supports it):

ALTER INDEX distributors SET (fillfactor = 75);
REINDEX INDEX distributors;

Set the statistics-gathering target for an expression index:

CREATE INDEX coord_idx ON measured (x, y, (z + t));
ALTER INDEX coord_idx ALTER COLUMN 3 SET STATISTICS 1000;

Compatibility
ALTER INDEX is a Postgres Pro extension.

See Also
CREATE INDEX, REINDEX

1245

ALTER LANGUAGE
ALTER LANGUAGE — change the definition of a procedural language

Synopsis
ALTER [PROCEDURAL] LANGUAGE name RENAME TO new_name
ALTER [PROCEDURAL] LANGUAGE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Description
ALTER LANGUAGE changes the definition of a procedural language. The only functionality is to rename the
language or assign a new owner. You must be superuser or owner of the language to use ALTER LANGUAGE.

Parameters
name

Name of a language

new_name

The new name of the language

new_owner

The new owner of the language

Compatibility
There is no ALTER LANGUAGE statement in the SQL standard.

See Also
CREATE LANGUAGE, DROP LANGUAGE

1246

ALTER LARGE OBJECT
ALTER LARGE OBJECT — change the definition of a large object

Synopsis
ALTER LARGE OBJECT large_object_oid OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }

Description
ALTER LARGE OBJECT changes the definition of a large object.

You must own the large object to use ALTER LARGE OBJECT. To alter the owner, you must also be a direct
or indirect member of the new owning role. (However, a superuser can alter any large object anyway.)
Currently, the only functionality is to assign a new owner, so both restrictions always apply.

Parameters
large_object_oid

OID of the large object to be altered

new_owner

The new owner of the large object

Compatibility
There is no ALTER LARGE OBJECT statement in the SQL standard.

See Also
Chapter 32

1247

ALTER MATERIALIZED VIEW
ALTER MATERIALIZED VIEW — change the definition of a materialized view

Synopsis
ALTER MATERIALIZED VIEW [IF EXISTS] name
 action [, ...]
ALTER MATERIALIZED VIEW name
 [NO] DEPENDS ON EXTENSION extension_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME [COLUMN] column_name TO new_column_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 RENAME TO new_name
ALTER MATERIALIZED VIEW [IF EXISTS] name
 SET SCHEMA new_schema
ALTER MATERIALIZED VIEW ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]

where action is one of:

 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET TABLESPACE new_tablespace
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Description
ALTER MATERIALIZED VIEW changes various auxiliary properties of an existing materialized view.

You must own the materialized view to use ALTER MATERIALIZED VIEW. To change a materialized view's
schema, you must also have CREATE privilege on the new schema. To alter the owner, you must also be
a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
materialized view's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the materialized view. However, a superuser can alter ownership
of any view anyway.)

The statement subforms and actions available for ALTER MATERIALIZED VIEW are a subset of those
available for ALTER TABLE, and have the same meaning when used for materialized views. See the
descriptions for ALTER TABLE for details.

Parameters
name

The name (optionally schema-qualified) of an existing materialized view.

column_name

Name of a new or existing column.

1248

ALTER MATERIALIZED VIEW

extension_name

The name of the extension that the materialized view is to depend on (or no longer dependent on,
if NO is specified). A materialized view that's marked as dependent on an extension is automatically
dropped when the extension is dropped.

new_column_name

New name for an existing column.

new_owner

The user name of the new owner of the materialized view.

new_name

The new name for the materialized view.

new_schema

The new schema for the materialized view.

Examples
To rename the materialized view foo to bar:

ALTER MATERIALIZED VIEW foo RENAME TO bar;

Compatibility
ALTER MATERIALIZED VIEW is a Postgres Pro extension.

See Also
CREATE MATERIALIZED VIEW, DROP MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

1249

ALTER OPERATOR
ALTER OPERATOR — change the definition of an operator

Synopsis
ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 SET SCHEMA new_schema

ALTER OPERATOR name ({ left_type | NONE } , { right_type | NONE })
 SET ({ RESTRICT = { res_proc | NONE }
 | JOIN = { join_proc | NONE }
 } [, ...])

Description
ALTER OPERATOR changes the definition of an operator.

You must own the operator to use ALTER OPERATOR. To alter the owner, you must also be a direct or
indirect member of the new owning role, and that role must have CREATE privilege on the operator's
schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't do by
dropping and recreating the operator. However, a superuser can alter ownership of any operator
anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand; write NONE if the operator has no right operand.

new_owner

The new owner of the operator.

new_schema

The new schema for the operator.

res_proc

The restriction selectivity estimator function for this operator; write NONE to remove existing
selectivity estimator.

join_proc

The join selectivity estimator function for this operator; write NONE to remove existing selectivity
estimator.

Examples
Change the owner of a custom operator a @@ b for type text:

1250

ALTER OPERATOR

ALTER OPERATOR @@ (text, text) OWNER TO joe;

Change the restriction and join selectivity estimator functions of a custom operator a && b for type int[]:

ALTER OPERATOR && (_int4, _int4) SET (RESTRICT = _int_contsel, JOIN =
 _int_contjoinsel);

Compatibility
There is no ALTER OPERATOR statement in the SQL standard.

See Also
CREATE OPERATOR, DROP OPERATOR

1251

ALTER OPERATOR CLASS
ALTER OPERATOR CLASS — change the definition of an operator class

Synopsis
ALTER OPERATOR CLASS name USING index_method
 RENAME TO new_name

ALTER OPERATOR CLASS name USING index_method
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR CLASS name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR CLASS changes the definition of an operator class.

You must own the operator class to use ALTER OPERATOR CLASS. To alter the owner, you must also be
a direct or indirect member of the new owning role, and that role must have CREATE privilege on the
operator class's schema. (These restrictions enforce that altering the owner doesn't do anything you
couldn't do by dropping and recreating the operator class. However, a superuser can alter ownership
of any operator class anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index method this operator class is for.

new_name

The new name of the operator class.

new_owner

The new owner of the operator class.

new_schema

The new schema for the operator class.

Compatibility
There is no ALTER OPERATOR CLASS statement in the SQL standard.

See Also
CREATE OPERATOR CLASS, DROP OPERATOR CLASS, ALTER OPERATOR FAMILY

1252

ALTER OPERATOR FAMILY
ALTER OPERATOR FAMILY — change the definition of an operator family

Synopsis
ALTER OPERATOR FAMILY name USING index_method ADD
 { OPERATOR strategy_number operator_name (op_type, op_type)
 [FOR SEARCH | FOR ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])]
 function_name [(argument_type [, ...])]
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method DROP
 { OPERATOR strategy_number (op_type [, op_type])
 | FUNCTION support_number (op_type [, op_type])
 } [, ...]

ALTER OPERATOR FAMILY name USING index_method
 RENAME TO new_name

ALTER OPERATOR FAMILY name USING index_method
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

ALTER OPERATOR FAMILY name USING index_method
 SET SCHEMA new_schema

Description
ALTER OPERATOR FAMILY changes the definition of an operator family. You can add operators and support
functions to the family, remove them from the family, or change the family's name or owner.

When operators and support functions are added to a family with ALTER OPERATOR FAMILY, they are not
part of any specific operator class within the family, but are just “loose” within the family. This indicates
that these operators and functions are compatible with the family's semantics, but are not required
for correct functioning of any specific index. (Operators and functions that are so required should be
declared as part of an operator class, instead; see CREATE OPERATOR CLASS.) Postgres Pro will allow
loose members of a family to be dropped from the family at any time, but members of an operator class
cannot be dropped without dropping the whole class and any indexes that depend on it. Typically, single-
data-type operators and functions are part of operator classes because they are needed to support an
index on that specific data type, while cross-data-type operators and functions are made loose members
of the family.

You must be a superuser to use ALTER OPERATOR FAMILY. (This restriction is made because an erroneous
operator family definition could confuse or even crash the server.)

ALTER OPERATOR FAMILY does not presently check whether the operator family definition includes all the
operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator family.

Refer to Section 35.16 for further information.

Parameters
name

The name (optionally schema-qualified) of an existing operator family.

1253

ALTER OPERATOR FAMILY

index_method

The name of the index method this operator family is for.

strategy_number

The index method's strategy number for an operator associated with the operator family.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator family.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. Unlike the comparable syntax in CREATE OPERATOR CLASS, the operand data
types must always be specified.

In an ADD FUNCTION clause, the operand data type(s) the function is intended to support, if different
from the input data type(s) of the function. For B-tree comparison functions and hash functions it is
not necessary to specify op_type since the function's input data type(s) are always the correct ones
to use. For B-tree sort support functions, B-Tree equal image functions, and all functions in GiST,
SP-GiST and GIN operator classes, it is necessary to specify the operand data type(s) the function
is to be used with.

In a DROP FUNCTION clause, the operand data type(s) the function is intended to support must be
specified.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator family.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for
the operator family. If no argument list is specified, the name must be unique in its schema.

argument_type

The parameter data type(s) of the function.

new_name

The new name of the operator family.

new_owner

The new owner of the operator family.

new_schema

The new schema for the operator family.

The OPERATOR and FUNCTION clauses can appear in any order.

Notes
Notice that the DROP syntax only specifies the “slot” in the operator family, by strategy or support number
and input data type(s). The name of the operator or function occupying the slot is not mentioned. Also,
for DROP FUNCTION the type(s) to specify are the input data type(s) the function is intended to support;

1254

ALTER OPERATOR FAMILY

for GiST, SP-GiST and GIN indexes this might have nothing to do with the actual input argument types
of the function.

Because the index machinery does not check access permissions on functions before using them,
including a function or operator in an operator family is tantamount to granting public execute
permission on it. This is usually not an issue for the sorts of functions that are useful in an operator family.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer supported
because whether an index operator is “lossy” is now determined on-the-fly at run time. This allows
efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command adds cross-data-type operators and support functions to an operator
family that already contains B-tree operator classes for data types int4 and int2.

ALTER OPERATOR FAMILY integer_ops USING btree ADD

 -- int4 vs int2
 OPERATOR 1 < (int4, int2) ,
 OPERATOR 2 <= (int4, int2) ,
 OPERATOR 3 = (int4, int2) ,
 OPERATOR 4 >= (int4, int2) ,
 OPERATOR 5 > (int4, int2) ,
 FUNCTION 1 btint42cmp(int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 < (int2, int4) ,
 OPERATOR 2 <= (int2, int4) ,
 OPERATOR 3 = (int2, int4) ,
 OPERATOR 4 >= (int2, int4) ,
 OPERATOR 5 > (int2, int4) ,
 FUNCTION 1 btint24cmp(int2, int4) ;

To remove these entries again:

ALTER OPERATOR FAMILY integer_ops USING btree DROP

 -- int4 vs int2
 OPERATOR 1 (int4, int2) ,
 OPERATOR 2 (int4, int2) ,
 OPERATOR 3 (int4, int2) ,
 OPERATOR 4 (int4, int2) ,
 OPERATOR 5 (int4, int2) ,
 FUNCTION 1 (int4, int2) ,

 -- int2 vs int4
 OPERATOR 1 (int2, int4) ,
 OPERATOR 2 (int2, int4) ,
 OPERATOR 3 (int2, int4) ,
 OPERATOR 4 (int2, int4) ,
 OPERATOR 5 (int2, int4) ,
 FUNCTION 1 (int2, int4) ;

Compatibility
There is no ALTER OPERATOR FAMILY statement in the SQL standard.

1255

ALTER OPERATOR FAMILY

See Also
CREATE OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER
OPERATOR CLASS, DROP OPERATOR CLASS

1256

ALTER POLICY
ALTER POLICY — change the definition of a row level security policy

Synopsis
ALTER POLICY name ON table_name RENAME TO new_name

ALTER POLICY name ON table_name
 [TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
ALTER POLICY changes the definition of an existing row-level security policy. Note that ALTER POLICY
only allows the set of roles to which the policy applies and the USING and WITH CHECK expressions to be
modified. To change other properties of a policy, such as the command to which it applies or whether it
is permissive or restrictive, the policy must be dropped and recreated.

To use ALTER POLICY, you must own the table that the policy applies to.

In the second form of ALTER POLICY, the role list, using_expression, and check_expression are
replaced independently if specified. When one of those clauses is omitted, the corresponding part of the
policy is unchanged.

Parameters
name

The name of an existing policy to alter.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

new_name

The new name for the policy.

role_name

The role(s) to which the policy applies. Multiple roles can be specified at one time. To apply the policy
to all roles, use PUBLIC.

using_expression

The USING expression for the policy. See CREATE POLICY for details.

check_expression

The WITH CHECK expression for the policy. See CREATE POLICY for details.

Compatibility
ALTER POLICY is a Postgres Pro extension.

See Also
CREATE POLICY, DROP POLICY

1257

ALTER PROCEDURE
ALTER PROCEDURE — change the definition of a procedure

Synopsis
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER PROCEDURE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER PROCEDURE changes the definition of a procedure.

You must own the procedure to use ALTER PROCEDURE. To change a procedure's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the procedure's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the procedure. However, a superuser can alter ownership of any procedure anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing procedure. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that ALTER PROCEDURE does not actually pay any attention to
argument names, since only the argument data types are needed to determine the procedure's
identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any.

new_name

The new name of the procedure.

1258

ALTER PROCEDURE

new_owner

The new owner of the procedure. Note that if the procedure is marked SECURITY DEFINER, it will
subsequently execute as the new owner.

new_schema

The new schema for the procedure.

extension_name

The name of the extension that the procedure is to depend on.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

Change whether the procedure is a security definer or not. The key word EXTERNAL is ignored for
SQL conformance. See CREATE PROCEDURE for more information about this capability.

configuration_parameter
value

Add or change the assignment to be made to a configuration parameter when the procedure is called.
If value is DEFAULT or, equivalently, RESET is used, the procedure-local setting is removed, so that the
procedure executes with the value present in its environment. Use RESET ALL to clear all procedure-
local settings. SET FROM CURRENT saves the value of the parameter that is current when ALTER
PROCEDURE is executed as the value to be applied when the procedure is entered.

See SET and Chapter 18 for more information about allowed parameter names and values.

RESTRICT

Ignored for conformance with the SQL standard.

Examples
To rename the procedure insert_data with two arguments of type integer to insert_record:

ALTER PROCEDURE insert_data(integer, integer) RENAME TO insert_record;

To change the owner of the procedure insert_data with two arguments of type integer to joe:

ALTER PROCEDURE insert_data(integer, integer) OWNER TO joe;

To change the schema of the procedure insert_data with two arguments of type integer to accounting:

ALTER PROCEDURE insert_data(integer, integer) SET SCHEMA accounting;

To mark the procedure insert_data(integer, integer) as being dependent on the extension myext:

ALTER PROCEDURE insert_data(integer, integer) DEPENDS ON EXTENSION myext;

To adjust the search path that is automatically set for a procedure:

ALTER PROCEDURE check_password(text) SET search_path = admin, pg_temp;

To disable automatic setting of search_path for a procedure:

ALTER PROCEDURE check_password(text) RESET search_path;

The procedure will now execute with whatever search path is used by its caller.

Compatibility
This statement is partially compatible with the ALTER PROCEDURE statement in the SQL standard. The
standard allows more properties of a procedure to be modified, but does not provide the ability to rename

1259

ALTER PROCEDURE

a procedure, make a procedure a security definer, attach configuration parameter values to a procedure,
or change the owner, schema, or volatility of a procedure. The standard also requires the RESTRICT key
word, which is optional in Postgres Pro.

See Also
CREATE PROCEDURE, DROP PROCEDURE, ALTER FUNCTION, ALTER ROUTINE

1260

ALTER PUBLICATION
ALTER PUBLICATION — change the definition of a publication

Synopsis
ALTER PUBLICATION name ADD TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name SET TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name DROP TABLE [ONLY] table_name [*] [, ...]
ALTER PUBLICATION name SET (publication_parameter [= value] [, ...])
ALTER PUBLICATION name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER PUBLICATION name RENAME TO new_name

Description
The command ALTER PUBLICATION can change the attributes of a publication.

The first three variants change which tables are part of the publication. The SET TABLE clause will replace
the list of tables in the publication with the specified one. The ADD TABLE and DROP TABLE clauses will
add and remove one or more tables from the publication. Note that adding tables to a publication that
is already subscribed to will require a ALTER SUBSCRIPTION ... REFRESH PUBLICATION action on the
subscribing side in order to become effective.

The fourth variant of this command listed in the synopsis can change all of the publication properties
specified in CREATE PUBLICATION. Properties not mentioned in the command retain their previous
settings.

The remaining variants change the owner and the name of the publication.

You must own the publication to use ALTER PUBLICATION. Adding a table to a publication additionally
requires owning that table. To alter the owner, you must also be a direct or indirect member of the
new owning role. The new owner must have CREATE privilege on the database. Also, the new owner of
a FOR ALL TABLES publication must be a superuser. However, a superuser can change the ownership
of a publication regardless of these restrictions.

Parameters
name

The name of an existing publication whose definition is to be altered.

table_name

Name of an existing table. If ONLY is specified before the table name, only that table is affected. If
ONLY is not specified, the table and all its descendant tables (if any) are affected. Optionally, * can be
specified after the table name to explicitly indicate that descendant tables are included.

SET (publication_parameter [= value] [, ...])

This clause alters publication parameters originally set by CREATE PUBLICATION. See there for
more information.

new_owner

The user name of the new owner of the publication.

new_name

The new name for the publication.

1261

ALTER PUBLICATION

Examples
Change the publication to publish only deletes and updates:

ALTER PUBLICATION noinsert SET (publish = 'update, delete');

Add some tables to the publication:

ALTER PUBLICATION mypublication ADD TABLE users, departments;

Compatibility
ALTER PUBLICATION is a Postgres Pro extension.

See Also
CREATE PUBLICATION, DROP PUBLICATION, CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1262

ALTER ROLE
ALTER ROLE — change a database role

Synopsis
ALTER ROLE role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER ROLE name RENAME TO new_name

ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER ROLE { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

Description
ALTER ROLE changes the attributes of a Postgres Pro role.

The first variant of this command listed in the synopsis can change many of the role attributes that can
be specified in CREATE ROLE. (All the possible attributes are covered, except that there are no options
for adding or removing memberships; use GRANT and REVOKE for that.) Attributes not mentioned
in the command retain their previous settings. Database superusers can change any of these settings
for any role. Roles having CREATEROLE privilege can change any of these settings except SUPERUSER,
REPLICATION, and BYPASSRLS; but only for non-superuser and non-replication roles. Ordinary roles can
only change their own password.

The second variant changes the name of the role. Database superusers can rename any role. Roles having
CREATEROLE privilege can rename non-superuser roles. The current session user cannot be renamed.
(Connect as a different user if you need to do that.) Because MD5-encrypted passwords use the role name
as cryptographic salt, renaming a role clears its password if the password is MD5-encrypted.

The remaining variants change a role's session default for a configuration variable, either for all
databases or, when the IN DATABASE clause is specified, only for sessions in the named database. If ALL
is specified instead of a role name, this changes the setting for all roles. Using ALL with IN DATABASE is
effectively the same as using the command ALTER DATABASE ... SET

1263

ALTER ROLE

Whenever the role subsequently starts a new session, the specified value becomes the session default,
overriding whatever setting is present in postgresql.conf or has been received from the postgres
command line. This only happens at login time; executing SET ROLE or SET SESSION AUTHORIZATION
does not cause new configuration values to be set. Settings set for all databases are overridden by
database-specific settings attached to a role. Settings for specific databases or specific roles override
settings for all roles.

Superusers can change anyone's session defaults. Roles having CREATEROLE privilege can change
defaults for non-superuser roles. Ordinary roles can only set defaults for themselves. Certain
configuration variables cannot be set this way, or can only be set if a superuser issues the command.
Only superusers can change a setting for all roles in all databases.

Parameters
name

The name of the role whose attributes are to be altered.

CURRENT_USER

Alter the current user instead of an explicitly identified role.

SESSION_USER

Alter the current session user instead of an explicitly identified role.

SUPERUSER
NOSUPERUSER
CREATEDB
NOCREATEDB
CREATEROLE
NOCREATEROLE
INHERIT
NOINHERIT
LOGIN
NOLOGIN
REPLICATION
NOREPLICATION
BYPASSRLS
NOBYPASSRLS
CONNECTION LIMIT connlimit
[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL
VALID UNTIL 'timestamp'

These clauses alter attributes originally set by CREATE ROLE. For more information, see the CREATE
ROLE reference page.

new_name

The new name of the role.

database_name

The name of the database the configuration variable should be set in.

configuration_parameter
value

Set this role's session default for the specified configuration parameter to the given value. If value
is DEFAULT or, equivalently, RESET is used, the role-specific variable setting is removed, so the role
will inherit the system-wide default setting in new sessions. Use RESET ALL to clear all role-specific

1264

ALTER ROLE

settings. SET FROM CURRENT saves the session's current value of the parameter as the role-specific
value. If IN DATABASE is specified, the configuration parameter is set or removed for the given role
and database only.

Role-specific variable settings take effect only at login; SET ROLE and SET SESSION
AUTHORIZATION do not process role-specific variable settings.

See SET and Chapter 18 for more information about allowed parameter names and values.

Notes
Use CREATE ROLE to add new roles, and DROP ROLE to remove a role.

ALTER ROLE cannot change a role's memberships. Use GRANT and REVOKE to do that.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history
or the server log. psql contains a command \password that can be used to change a role's password
without exposing the cleartext password.

It is also possible to tie a session default to a specific database rather than to a role; see ALTER
DATABASE. If there is a conflict, database-role-specific settings override role-specific ones, which in
turn override database-specific ones.

Examples
Change a role's password:

ALTER ROLE davide WITH PASSWORD 'hu8jmn3';

Remove a role's password:

ALTER ROLE davide WITH PASSWORD NULL;

Change a password expiration date, specifying that the password should expire at midday on 4th May
2015 using the time zone which is one hour ahead of UTC:

ALTER ROLE chris VALID UNTIL 'May 4 12:00:00 2015 +1';

Make a password valid forever:

ALTER ROLE fred VALID UNTIL 'infinity';

Give a role the ability to create other roles and new databases:

ALTER ROLE miriam CREATEROLE CREATEDB;

Give a role a non-default setting of the maintenance_work_mem parameter:

ALTER ROLE worker_bee SET maintenance_work_mem = 100000;

Give a role a non-default, database-specific setting of the client_min_messages parameter:

ALTER ROLE fred IN DATABASE devel SET client_min_messages = DEBUG;

Compatibility
The ALTER ROLE statement is a Postgres Pro extension.

See Also
CREATE ROLE, DROP ROLE, ALTER DATABASE, SET

1265

ALTER ROUTINE
ALTER ROUTINE — change the definition of a routine

Synopsis
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 action [...] [RESTRICT]
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 RENAME TO new_name
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 SET SCHEMA new_schema
ALTER ROUTINE name [([[argmode] [argname] argtype [, ...]])]
 [NO] DEPENDS ON EXTENSION extension_name

where action is one of:

 IMMUTABLE | STABLE | VOLATILE
 [NOT] LEAKPROOF
 [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 PARALLEL { UNSAFE | RESTRICTED | SAFE }
 COST execution_cost
 ROWS result_rows
 SET configuration_parameter { TO | = } { value | DEFAULT }
 SET configuration_parameter FROM CURRENT
 RESET configuration_parameter
 RESET ALL

Description
ALTER ROUTINE changes the definition of a routine, which can be an aggregate function, a normal
function, or a procedure. See under ALTER AGGREGATE, ALTER FUNCTION, and ALTER PROCEDURE
for the description of the parameters, more examples, and further details.

Examples
To rename the routine foo for type integer to foobar:

ALTER ROUTINE foo(integer) RENAME TO foobar;

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This statement is partially compatible with the ALTER ROUTINE statement in the SQL standard. See
under ALTER FUNCTION and ALTER PROCEDURE for more details. Allowing routine names to refer to
aggregate functions is a Postgres Pro extension.

See Also
ALTER AGGREGATE, ALTER FUNCTION, ALTER PROCEDURE, DROP ROUTINE

Note that there is no CREATE ROUTINE command.

1266

ALTER RULE
ALTER RULE — change the definition of a rule

Synopsis
ALTER RULE name ON table_name RENAME TO new_name

Description
ALTER RULE changes properties of an existing rule. Currently, the only available action is to change the
rule's name.

To use ALTER RULE, you must own the table or view that the rule applies to.

Parameters
name

The name of an existing rule to alter.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

new_name

The new name for the rule.

Examples
To rename an existing rule:

ALTER RULE notify_all ON emp RENAME TO notify_me;

Compatibility
ALTER RULE is a Postgres Pro language extension, as is the entire query rewrite system.

See Also
CREATE RULE, DROP RULE

1267

ALTER SCHEMA
ALTER SCHEMA — change the definition of a schema

Synopsis
ALTER SCHEMA name RENAME TO new_name
ALTER SCHEMA name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }

Description
ALTER SCHEMA changes the definition of a schema.

You must own the schema to use ALTER SCHEMA. To rename a schema you must also have the CREATE
privilege for the database. To alter the owner, you must also be a direct or indirect member of the new
owning role, and you must have the CREATE privilege for the database. (Note that superusers have all
these privileges automatically.)

Parameters
name

The name of an existing schema.

new_name

The new name of the schema. The new name cannot begin with pg_, as such names are reserved
for system schemas.

new_owner

The new owner of the schema.

Compatibility
There is no ALTER SCHEMA statement in the SQL standard.

See Also
CREATE SCHEMA, DROP SCHEMA

1268

ALTER SEQUENCE
ALTER SEQUENCE — change the definition of a sequence generator

Synopsis
ALTER SEQUENCE [IF EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start]
 [RESTART [[WITH] restart]]
 [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]
ALTER SEQUENCE [IF EXISTS] name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER SEQUENCE [IF EXISTS] name RENAME TO new_name
ALTER SEQUENCE [IF EXISTS] name SET SCHEMA new_schema

Description
ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameters not
specifically set in the ALTER SEQUENCE command retain their prior settings.

You must own the sequence to use ALTER SEQUENCE. To change a sequence's schema, you must also
have CREATE privilege on the new schema. To alter the owner, you must also be a direct or indirect
member of the new owning role, and that role must have CREATE privilege on the sequence's schema.
(These restrictions enforce that altering the owner doesn't do anything you couldn't do by dropping and
recreating the sequence. However, a superuser can alter ownership of any sequence anyway.)

Parameters
name

The name (optionally schema-qualified) of a sequence to be altered.

IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

data_type

The optional clause AS data_type changes the data type of the sequence. Valid types are smallint,
integer, and bigint.

Changing the data type automatically changes the minimum and maximum values of the sequence if
and only if the previous minimum and maximum values were the minimum or maximum value of the
old data type (in other words, if the sequence had been created using NO MINVALUE or NO MAXVALUE,
implicitly or explicitly). Otherwise, the minimum and maximum values are preserved, unless new
values are given as part of the same command. If the minimum and maximum values do not fit into
the new data type, an error will be generated.

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascending sequence,
a negative one a descending sequence. If unspecified, the old increment value will be maintained.

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. If
NO MINVALUE is specified, the defaults of 1 and the minimum value of the data type for ascending and

1269

ALTER SEQUENCE

descending sequences, respectively, will be used. If neither option is specified, the current minimum
value will be maintained.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If NO
MAXVALUE is specified, the defaults of the maximum value of the data type and -1 for ascending and
descending sequences, respectively, will be used. If neither option is specified, the current maximum
value will be maintained.

start

The optional clause START WITH start changes the recorded start value of the sequence. This has no
effect on the current sequence value; it simply sets the value that future ALTER SEQUENCE RESTART
commands will use.

restart

The optional clause RESTART [WITH restart] changes the current value of the sequence. This is
similar to calling the setval function with is_called = false: the specified value will be returned
by the next call of nextval. Writing RESTART with no restart value is equivalent to supplying the
start value that was recorded by CREATE SEQUENCE or last set by ALTER SEQUENCE START WITH.

In contrast to a setval call, a RESTART operation on a sequence is transactional and blocks concurrent
transactions from obtaining numbers from the same sequence. If that's not the desired mode of
operation, setval should be used.

cache

The clause CACHE cache enables sequence numbers to be preallocated and stored in memory for
faster access. The minimum value is 1 (only one value can be generated at a time, i.e., no cache). If
unspecified, the old cache value will be maintained.

CYCLE

The optional CYCLE key word can be used to enable the sequence to wrap around when the maxvalue
or minvalue has been reached by an ascending or descending sequence respectively. If the limit is
reached, the next number generated will be the minvalue or maxvalue, respectively.

NO CYCLE

If the optional NO CYCLE key word is specified, any calls to nextval after the sequence has reached
its maximum value will return an error. If neither CYCLE or NO CYCLE are specified, the old cycle
behavior will be maintained.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well.
If specified, this association replaces any previously specified association for the sequence. The
specified table must have the same owner and be in the same schema as the sequence. Specifying
OWNED BY NONE removes any existing association, making the sequence “free-standing”.

new_owner

The user name of the new owner of the sequence.

new_name

The new name for the sequence.

1270

ALTER SEQUENCE

new_schema

The new schema for the sequence.

Notes
ALTER SEQUENCE will not immediately affect nextval results in backends, other than the current one,
that have preallocated (cached) sequence values. They will use up all cached values prior to noticing the
changed sequence generation parameters. The current backend will be affected immediately.

ALTER SEQUENCE does not affect the currval status for the sequence. (Before PostgreSQL 8.3, it
sometimes did.)

ALTER SEQUENCE blocks concurrent nextval, currval, lastval, and setval calls.

For historical reasons, ALTER TABLE can be used with sequences too; but the only variants of ALTER
TABLE that are allowed with sequences are equivalent to the forms shown above.

Examples
Restart a sequence called serial, at 105:

ALTER SEQUENCE serial RESTART WITH 105;

Compatibility
ALTER SEQUENCE conforms to the SQL standard, except for the AS, START WITH, OWNED BY, OWNER TO,
RENAME TO, and SET SCHEMA clauses, which are Postgres Pro extensions.

See Also
CREATE SEQUENCE, DROP SEQUENCE

1271

ALTER SERVER
ALTER SERVER — change the definition of a foreign server

Synopsis
ALTER SERVER name [VERSION 'new_version']
 [OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])]
ALTER SERVER name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER SERVER name RENAME TO new_name

Description
ALTER SERVER changes the definition of a foreign server. The first form changes the server version string
or the generic options of the server (at least one clause is required). The second form changes the owner
of the server.

To alter the server you must be the owner of the server. Additionally to alter the owner, you must own the
server and also be a direct or indirect member of the new owning role, and you must have USAGE privilege
on the server's foreign-data wrapper. (Note that superusers satisfy all these criteria automatically.)

Parameters
name

The name of an existing server.

new_version

New server version.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the server. ADD, SET, and DROP specify the action to be performed. ADD is assumed if
no operation is explicitly specified. Option names must be unique; names and values are also validated
using the server's foreign-data wrapper library.

new_owner

The user name of the new owner of the foreign server.

new_name

The new name for the foreign server.

Examples
Alter server foo, add connection options:

ALTER SERVER foo OPTIONS (host 'foo', dbname 'foodb');

Alter server foo, change version, change host option:

ALTER SERVER foo VERSION '8.4' OPTIONS (SET host 'baz');

Compatibility
ALTER SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The OWNER TO and RENAME forms are Postgres
Pro extensions.

See Also
CREATE SERVER, DROP SERVER

1272

ALTER STATISTICS
ALTER STATISTICS — change the definition of an extended statistics object

Synopsis
ALTER STATISTICS name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER STATISTICS name RENAME TO new_name
ALTER STATISTICS name SET SCHEMA new_schema
ALTER STATISTICS name SET STATISTICS new_target

Description
ALTER STATISTICS changes the parameters of an existing extended statistics object. Any parameters
not specifically set in the ALTER STATISTICS command retain their prior settings.

You must own the statistics object to use ALTER STATISTICS. To change a statistics object's schema,
you must also have CREATE privilege on the new schema. To alter the owner, you must also be a direct
or indirect member of the new owning role, and that role must have CREATE privilege on the statistics
object's schema. (These restrictions enforce that altering the owner doesn't do anything you couldn't
do by dropping and recreating the statistics object. However, a superuser can alter ownership of any
statistics object anyway.)

Parameters
name

The name (optionally schema-qualified) of the statistics object to be altered.

new_owner

The user name of the new owner of the statistics object.

new_name

The new name for the statistics object.

new_schema

The new schema for the statistics object.

new_target

The statistic-gathering target for this statistics object for subsequent ANALYZE operations. The
target can be set in the range 0 to 10000; alternatively, set it to -1 to revert to using the maximum
of the statistics target of the referenced columns, if set, or the system default statistics target
(default_statistics_target). For more information on the use of statistics by the PostgreSQL query
planner, refer to Section 14.2.

Compatibility
There is no ALTER STATISTICS command in the SQL standard.

See Also
CREATE STATISTICS, DROP STATISTICS

1273

ALTER SUBSCRIPTION
ALTER SUBSCRIPTION — change the definition of a subscription

Synopsis
ALTER SUBSCRIPTION name CONNECTION 'conninfo'
ALTER SUBSCRIPTION name SET PUBLICATION publication_name [, ...] [WITH
 (set_publication_option [= value] [, ...])]
ALTER SUBSCRIPTION name REFRESH PUBLICATION [WITH (refresh_option [= value]
 [, ...])]
ALTER SUBSCRIPTION name ENABLE
ALTER SUBSCRIPTION name DISABLE
ALTER SUBSCRIPTION name SET (subscription_parameter [= value] [, ...])
ALTER SUBSCRIPTION name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER SUBSCRIPTION name RENAME TO new_name

Description
ALTER SUBSCRIPTION can change most of the subscription properties that can be specified in CREATE
SUBSCRIPTION.

You must own the subscription to use ALTER SUBSCRIPTION. To alter the owner, you must also be a
direct or indirect member of the new owning role. The new owner has to be a superuser. (Currently,
all subscription owners must be superusers, so the owner checks will be bypassed in practice. But this
might change in the future.)

Parameters
name

The name of a subscription whose properties are to be altered.

CONNECTION 'conninfo'

This clause alters the connection property originally set by CREATE SUBSCRIPTION. See there for
more information.

SET PUBLICATION publication_name

Changes list of subscribed publications. See CREATE SUBSCRIPTION for more information. By
default this command will also act like REFRESH PUBLICATION.

set_publication_option specifies additional options for this operation. The supported options are:

refresh (boolean)

When false, the command will not try to refresh table information. REFRESH PUBLICATION should
then be executed separately. The default is true.

Additionally, refresh options as described under REFRESH PUBLICATION may be specified.

REFRESH PUBLICATION

Fetch missing table information from publisher. This will start replication of tables that were added
to the subscribed-to publications since the last invocation of REFRESH PUBLICATION or since CREATE
SUBSCRIPTION.

refresh_option specifies additional options for the refresh operation. The supported options are:

1274

ALTER SUBSCRIPTION

copy_data (boolean)
Specifies whether the existing data in the publications that are being subscribed to should be
copied once the replication starts. The default is true. (Previously subscribed tables are not
copied.)

ENABLE

Enables the previously disabled subscription, starting the logical replication worker at the end of
transaction.

DISABLE

Disables the running subscription, stopping the logical replication worker at the end of transaction.

SET (subscription_parameter [= value] [, ...])

This clause alters parameters originally set by CREATE SUBSCRIPTION. See there for more
information. The allowed options are slot_name and synchronous_commit

new_owner

The user name of the new owner of the subscription.

new_name

The new name for the subscription.

Examples
Change the publication subscribed by a subscription to insert_only:

ALTER SUBSCRIPTION mysub SET PUBLICATION insert_only;

Disable (stop) the subscription:

ALTER SUBSCRIPTION mysub DISABLE;

Compatibility
ALTER SUBSCRIPTION is a Postgres Pro extension.

See Also
CREATE SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER PUBLICATION

1275

ALTER SYSTEM
ALTER SYSTEM — change a server configuration parameter

Synopsis
ALTER SYSTEM SET configuration_parameter { TO | = } { value | 'value' | DEFAULT }

ALTER SYSTEM RESET configuration_parameter
ALTER SYSTEM RESET ALL

Description
ALTER SYSTEM is used for changing server configuration parameters across the entire database cluster.
It can be more convenient than the traditional method of manually editing the postgresql.conf file.
ALTER SYSTEM writes the given parameter setting to the postgresql.auto.conf file, which is read in
addition to postgresql.conf. Setting a parameter to DEFAULT, or using the RESET variant, removes that
configuration entry from the postgresql.auto.conf file. Use RESET ALL to remove all such configuration
entries.

Values set with ALTER SYSTEM will be effective after the next server configuration reload, or after the next
server restart in the case of parameters that can only be changed at server start. A server configuration
reload can be commanded by calling the SQL function pg_reload_conf(), running pg_ctl reload, or
sending a SIGHUP signal to the main server process.

Only superusers can use ALTER SYSTEM. Also, since this command acts directly on the file system and
cannot be rolled back, it is not allowed inside a transaction block or function.

Parameters
configuration_parameter

Name of a settable configuration parameter. Available parameters are documented in Chapter 18.

value

New value of the parameter. Values can be specified as string constants, identifiers, numbers, or
comma-separated lists of these, as appropriate for the particular parameter. DEFAULT can be written
to specify removing the parameter and its value from postgresql.auto.conf.

Notes
This command can't be used to set data_directory, nor parameters that are not allowed in
postgresql.conf (e.g., preset options).

See Section 18.1 for other ways to set the parameters.

Examples
Set the wal_level:

ALTER SYSTEM SET wal_level = replica;

Undo that, restoring whatever setting was effective in postgresql.conf:

ALTER SYSTEM RESET wal_level;

Compatibility
The ALTER SYSTEM statement is a Postgres Pro extension.

1276

ALTER SYSTEM

See Also
SET, SHOW

1277

ALTER TABLE
ALTER TABLE — change the definition of a table

Synopsis
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 action [, ...]
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME [COLUMN] column_name TO new_column_name
ALTER TABLE [IF EXISTS] [ONLY] name [*]
 RENAME CONSTRAINT constraint_name TO new_constraint_name
ALTER TABLE [IF EXISTS] name
 RENAME TO new_name
ALTER TABLE [IF EXISTS] name
 SET SCHEMA new_schema
ALTER TABLE ALL IN TABLESPACE name [OWNED BY role_name [, ...]]
 SET TABLESPACE new_tablespace [NOWAIT]
ALTER TABLE [IF EXISTS] name
 ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }
ALTER TABLE [IF EXISTS] name
 DETACH PARTITION partition_name

where action is one of:

 ADD [COLUMN] [IF NOT EXISTS] column_name data_type [COLLATE collation]
 [column_constraint [...]]
 DROP [COLUMN] [IF EXISTS] column_name [RESTRICT | CASCADE]
 ALTER [COLUMN] column_name [SET DATA] TYPE data_type [COLLATE collation]
 [USING expression]
 ALTER [COLUMN] column_name SET DEFAULT expression
 ALTER [COLUMN] column_name DROP DEFAULT
 ALTER [COLUMN] column_name { SET | DROP } NOT NULL
 ALTER [COLUMN] column_name DROP EXPRESSION [IF EXISTS]
 ALTER [COLUMN] column_name ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
 [(sequence_options)]
 ALTER [COLUMN] column_name { SET GENERATED { ALWAYS | BY DEFAULT } |
 SET sequence_option | RESTART [[WITH] restart] } [...]
 ALTER [COLUMN] column_name DROP IDENTITY [IF EXISTS]
 ALTER [COLUMN] column_name SET STATISTICS integer
 ALTER [COLUMN] column_name SET (attribute_option = value [, ...])
 ALTER [COLUMN] column_name RESET (attribute_option [, ...])
 ALTER [COLUMN] column_name SET STORAGE { PLAIN | EXTERNAL | EXTENDED | MAIN }
 ADD table_constraint [NOT VALID]
 ADD table_constraint_using_index
 ALTER CONSTRAINT constraint_name [DEFERRABLE | NOT DEFERRABLE] [INITIALLY
 DEFERRED | INITIALLY IMMEDIATE]
 VALIDATE CONSTRAINT constraint_name
 DROP CONSTRAINT [IF EXISTS] constraint_name [RESTRICT | CASCADE]
 DISABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE TRIGGER [trigger_name | ALL | USER]
 ENABLE REPLICA TRIGGER trigger_name
 ENABLE ALWAYS TRIGGER trigger_name
 DISABLE RULE rewrite_rule_name
 ENABLE RULE rewrite_rule_name
 ENABLE REPLICA RULE rewrite_rule_name
 ENABLE ALWAYS RULE rewrite_rule_name

1278

ALTER TABLE

 DISABLE ROW LEVEL SECURITY
 ENABLE ROW LEVEL SECURITY
 FORCE ROW LEVEL SECURITY
 NO FORCE ROW LEVEL SECURITY
 CLUSTER ON index_name
 SET WITHOUT CLUSTER
 SET WITHOUT OIDS
 SET TABLESPACE new_tablespace
 SET { LOGGED | UNLOGGED }
 SET (storage_parameter [= value] [, ...])
 RESET (storage_parameter [, ...])
 INHERIT parent_table
 NO INHERIT parent_table
 OF type_name
 NOT OF
 OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
 REPLICA IDENTITY { DEFAULT | USING INDEX index_name | FULL | NOTHING }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

and column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |
 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON
 UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint_using_index is:

 [CONSTRAINT constraint_name]
 { UNIQUE | PRIMARY KEY } USING INDEX index_name
 [DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

1279

ALTER TABLE

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Description
ALTER TABLE changes the definition of an existing table. There are several subforms described below.
Note that the lock level required may differ for each subform. An ACCESS EXCLUSIVE lock is acquired
unless explicitly noted. When multiple subcommands are given, the lock acquired will be the strictest
one required by any subcommand.

ADD COLUMN [IF NOT EXISTS]

This form adds a new column to the table, using the same syntax as CREATE TABLE. If IF NOT EXISTS
is specified and a column already exists with this name, no error is thrown.

DROP COLUMN [IF EXISTS]

This form drops a column from a table. Indexes and table constraints involving the column will be
automatically dropped as well. Multivariate statistics referencing the dropped column will also be
removed if the removal of the column would cause the statistics to contain data for only a single
column. You will need to say CASCADE if anything outside the table depends on the column, for
example, foreign key references or views. If IF EXISTS is specified and the column does not exist,
no error is thrown. In this case a notice is issued instead.

SET DATA TYPE

This form changes the type of a column of a table. Indexes and simple table constraints involving
the column will be automatically converted to use the new column type by reparsing the originally
supplied expression. The optional COLLATE clause specifies a collation for the new column; if omitted,
the collation is the default for the new column type. The optional USING clause specifies how to
compute the new column value from the old; if omitted, the default conversion is the same as an
assignment cast from old data type to new. A USING clause must be provided if there is no implicit
or assignment cast from old to new type.

SET/DROP DEFAULT
These forms set or remove the default value for a column (where removal is equivalent to setting
the default value to NULL). The new default value will only apply in subsequent INSERT or UPDATE
commands; it does not cause rows already in the table to change.

SET/DROP NOT NULL
These forms change whether a column is marked to allow null values or to reject null values.

SET NOT NULL may only be applied to a column provided none of the records in the table contain a
NULL value for the column. Ordinarily this is checked during the ALTER TABLE by scanning the entire
table; however, if a valid CHECK constraint is found which proves no NULL can exist, then the table
scan is skipped.

If this table is a partition, one cannot perform DROP NOT NULL on a column if it is marked NOT NULL
in the parent table. To drop the NOT NULL constraint from all the partitions, perform DROP NOT NULL
on the parent table. Even if there is no NOT NULL constraint on the parent, such a constraint can still
be added to individual partitions, if desired; that is, the children can disallow nulls even if the parent
allows them, but not the other way around.

1280

ALTER TABLE

DROP EXPRESSION [IF EXISTS]

This form turns a stored generated column into a normal base column. Existing data in the columns
is retained, but future changes will no longer apply the generation expression.

If DROP EXPRESSION IF EXISTS is specified and the column is not a stored generated column, no
error is thrown. In this case a notice is issued instead.

ADD GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY
SET GENERATED { ALWAYS | BY DEFAULT }
DROP IDENTITY [IF EXISTS]

These forms change whether a column is an identity column or change the generation attribute of
an existing identity column. See CREATE TABLE for details. Like SET DEFAULT, these forms only
affect the behavior of subsequent INSERT and UPDATE commands; they do not cause rows already in
the table to change.

If DROP IDENTITY IF EXISTS is specified and the column is not an identity column, no error is thrown.
In this case a notice is issued instead.

SET sequence_option
RESTART

These forms alter the sequence that underlies an existing identity column. sequence_option is an
option supported by ALTER SEQUENCE such as INCREMENT BY.

SET STATISTICS

This form sets the per-column statistics-gathering target for subsequent ANALYZE operations. The
target can be set in the range 0 to 10000; alternatively, set it to -1 to revert to using the system
default statistics target (default_statistics_target). For more information on the use of statistics by
the Postgres Pro query planner, refer to Section 14.2.

SET STATISTICS acquires a SHARE UPDATE EXCLUSIVE lock.

SET (attribute_option = value [, ...])
RESET (attribute_option [, ...])

This form sets or resets per-attribute options. Currently, the only defined per-attribute options are
n_distinct and n_distinct_inherited, which override the number-of-distinct-values estimates
made by subsequent ANALYZE operations. n_distinct affects the statistics for the table itself, while
n_distinct_inherited affects the statistics gathered for the table plus its inheritance children.
When set to a positive value, ANALYZE will assume that the column contains exactly the specified
number of distinct nonnull values. When set to a negative value, which must be greater than or equal
to -1, ANALYZE will assume that the number of distinct nonnull values in the column is linear in the
size of the table; the exact count is to be computed by multiplying the estimated table size by the
absolute value of the given number. For example, a value of -1 implies that all values in the column
are distinct, while a value of -0.5 implies that each value appears twice on the average. This can be
useful when the size of the table changes over time, since the multiplication by the number of rows
in the table is not performed until query planning time. Specify a value of 0 to revert to estimating
the number of distinct values normally. For more information on the use of statistics by the Postgres
Pro query planner, refer to Section 14.2.

Changing per-attribute options acquires a SHARE UPDATE EXCLUSIVE lock.

SET STORAGE
This form sets the storage mode for a column. This controls whether this column is held inline or in
a secondary TOAST table, and whether the data should be compressed or not. PLAIN must be used
for fixed-length values such as integer and is inline, uncompressed. MAIN is for inline, compressible
data. EXTERNAL is for external, uncompressed data, and EXTENDED is for external, compressed data.
EXTENDED is the default for most data types that support non-PLAIN storage. Use of EXTERNAL will

1281

ALTER TABLE

make substring operations on very large text and bytea values run faster, at the penalty of increased
storage space. Note that SET STORAGE doesn't itself change anything in the table, it just sets the
strategy to be pursued during future table updates. See Section 65.2 for more information.

ADD table_constraint [NOT VALID]

This form adds a new constraint to a table using the same constraint syntax as CREATE TABLE, plus
the option NOT VALID, which is currently only allowed for foreign key and CHECK constraints.

Normally, this form will cause a scan of the table to verify that all existing rows in the table satisfy
the new constraint. But if the NOT VALID option is used, this potentially-lengthy scan is skipped. The
constraint will still be enforced against subsequent inserts or updates (that is, they'll fail unless there
is a matching row in the referenced table, in the case of foreign keys, or they'll fail unless the new
row matches the specified check condition). But the database will not assume that the constraint
holds for all rows in the table, until it is validated by using the VALIDATE CONSTRAINT option. See
Notes below for more information about using the NOT VALID option.

Although most forms of ADD table_constraint require an ACCESS EXCLUSIVE lock, ADD FOREIGN KEY
requires only a SHARE ROW EXCLUSIVE lock. Note that ADD FOREIGN KEY also acquires a SHARE ROW
EXCLUSIVE lock on the referenced table, in addition to the lock on the table on which the constraint
is declared.

Additional restrictions apply when unique or primary key constraints are added to partitioned tables;
see CREATE TABLE. Also, foreign key constraints on partitioned tables may not be declared NOT
VALID at present.

ADD table_constraint_using_index

This form adds a new PRIMARY KEY or UNIQUE constraint to a table based on an existing unique index.
All the columns of the index will be included in the constraint.

The index cannot have expression columns nor be a partial index. Also, it must be a b-tree index
with default sort ordering. These restrictions ensure that the index is equivalent to one that would
be built by a regular ADD PRIMARY KEY or ADD UNIQUE command.

If PRIMARY KEY is specified, and the index's columns are not already marked NOT NULL, then this
command will attempt to do ALTER COLUMN SET NOT NULL against each such column. That requires
a full table scan to verify the column(s) contain no nulls. In all other cases, this is a fast operation.

If a constraint name is provided then the index will be renamed to match the constraint name.
Otherwise the constraint will be named the same as the index.

After this command is executed, the index is “owned” by the constraint, in the same way as if the
index had been built by a regular ADD PRIMARY KEY or ADD UNIQUE command. In particular, dropping
the constraint will make the index disappear too.

This form is not currently supported on partitioned tables.

Note
Adding a constraint using an existing index can be helpful in situations where a new constraint
needs to be added without blocking table updates for a long time. To do that, create the index
using CREATE INDEX CONCURRENTLY, and then install it as an official constraint using this syntax.
See the example below.

ALTER CONSTRAINT

This form alters the attributes of a constraint that was previously created. Currently only foreign
key constraints may be altered.

1282

ALTER TABLE

VALIDATE CONSTRAINT

This form validates a foreign key or check constraint that was previously created as NOT VALID, by
scanning the table to ensure there are no rows for which the constraint is not satisfied. Nothing
happens if the constraint is already marked valid. (See Notes below for an explanation of the
usefulness of this command.)

This command acquires a SHARE UPDATE EXCLUSIVE lock.

DROP CONSTRAINT [IF EXISTS]

This form drops the specified constraint on a table, along with any index underlying the constraint.
If IF EXISTS is specified and the constraint does not exist, no error is thrown. In this case a notice
is issued instead.

DISABLE/ENABLE [REPLICA | ALWAYS] TRIGGER

These forms configure the firing of trigger(s) belonging to the table. A disabled trigger is still known
to the system, but is not executed when its triggering event occurs. For a deferred trigger, the enable
status is checked when the event occurs, not when the trigger function is actually executed. One
can disable or enable a single trigger specified by name, or all triggers on the table, or only user
triggers (this option excludes internally generated constraint triggers such as those that are used
to implement foreign key constraints or deferrable uniqueness and exclusion constraints). Disabling
or enabling internally generated constraint triggers requires superuser privileges; it should be done
with caution since of course the integrity of the constraint cannot be guaranteed if the triggers are
not executed.

The trigger firing mechanism is also affected by the configuration variable session_replication_role.
Simply enabled triggers (the default) will fire when the replication role is “origin” (the default) or
“local”. Triggers configured as ENABLE REPLICA will only fire if the session is in “replica” mode, and
triggers configured as ENABLE ALWAYS will fire regardless of the current replication role.

The effect of this mechanism is that in the default configuration, triggers do not fire on replicas.
This is useful because if a trigger is used on the origin to propagate data between tables, then the
replication system will also replicate the propagated data, and the trigger should not fire a second
time on the replica, because that would lead to duplication. However, if a trigger is used for another
purpose such as creating external alerts, then it might be appropriate to set it to ENABLE ALWAYS so
that it is also fired on replicas.

This command acquires a SHARE ROW EXCLUSIVE lock.

DISABLE/ENABLE [REPLICA | ALWAYS] RULE

These forms configure the firing of rewrite rules belonging to the table. A disabled rule is still known
to the system, but is not applied during query rewriting. The semantics are as for disabled/enabled
triggers. This configuration is ignored for ON SELECT rules, which are always applied in order to keep
views working even if the current session is in a non-default replication role.

The rule firing mechanism is also affected by the configuration variable session_replication_role,
analogous to triggers as described above.

DISABLE/ENABLE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table. If enabled and
no policies exist for the table, then a default-deny policy is applied. Note that policies can exist for
a table even if row level security is disabled. In this case, the policies will not be applied and the
policies will be ignored. See also CREATE POLICY.

NO FORCE/FORCE ROW LEVEL SECURITY

These forms control the application of row security policies belonging to the table when the user
is the table owner. If enabled, row level security policies will be applied when the user is the table

1283

ALTER TABLE

owner. If disabled (the default) then row level security will not be applied when the user is the table
owner. See also CREATE POLICY.

CLUSTER ON

This form selects the default index for future CLUSTER operations. It does not actually re-cluster
the table.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT CLUSTER

This form removes the most recently used CLUSTER index specification from the table. This affects
future cluster operations that don't specify an index.

Changing cluster options acquires a SHARE UPDATE EXCLUSIVE lock.

SET WITHOUT OIDS

Backward-compatible syntax for removing the oid system column. As oid system columns cannot be
added anymore, this never has an effect.

SET TABLESPACE

This form changes the table's tablespace to the specified tablespace and moves the data file(s)
associated with the table to the new tablespace. Indexes on the table, if any, are not moved; but they
can be moved separately with additional SET TABLESPACE commands. When applied to a partitioned
table, nothing is moved, but any partitions created afterwards with CREATE TABLE PARTITION OF
will use that tablespace, unless overridden by a TABLESPACE clause.

All tables in the current database in a tablespace can be moved by using the ALL IN TABLESPACE form,
which will lock all tables to be moved first and then move each one. This form also supports OWNED
BY, which will only move tables owned by the roles specified. If the NOWAIT option is specified then
the command will fail if it is unable to acquire all of the locks required immediately. Note that system
catalogs are not moved by this command; use ALTER DATABASE or explicit ALTER TABLE invocations
instead if desired. The information_schema relations are not considered part of the system catalogs
and will be moved. See also CREATE TABLESPACE.

SET { LOGGED | UNLOGGED }

This form changes the table from unlogged to logged or vice-versa (see UNLOGGED). It cannot be
applied to a temporary table.

SET (storage_parameter [= value] [, ...])

This form changes one or more storage parameters for the table. See Storage Parameters in the
CREATE TABLE documentation for details on the available parameters. Note that the table contents
will not be modified immediately by this command; depending on the parameter you might need to
rewrite the table to get the desired effects. That can be done with VACUUM FULL, CLUSTER or one
of the forms of ALTER TABLE that forces a table rewrite. For planner related parameters, changes will
take effect from the next time the table is locked so currently executing queries will not be affected.

SHARE UPDATE EXCLUSIVE lock will be taken for fillfactor, toast and autovacuum storage parameters,
as well as the planner parameter parallel_workers.

RESET (storage_parameter [, ...])

This form resets one or more storage parameters to their defaults. As with SET, a table rewrite might
be needed to update the table entirely.

INHERIT parent_table

This form adds the target table as a new child of the specified parent table. Subsequently, queries
against the parent will include records of the target table. To be added as a child, the target table

1284

ALTER TABLE

must already contain all the same columns as the parent (it could have additional columns, too). The
columns must have matching data types, and if they have NOT NULL constraints in the parent then
they must also have NOT NULL constraints in the child.

There must also be matching child-table constraints for all CHECK constraints of the parent, except
those marked non-inheritable (that is, created with ALTER TABLE ... ADD CONSTRAINT ... NO
INHERIT) in the parent, which are ignored; all child-table constraints matched must not be marked
non-inheritable. Currently UNIQUE, PRIMARY KEY, and FOREIGN KEY constraints are not considered,
but this might change in the future.

NO INHERIT parent_table

This form removes the target table from the list of children of the specified parent table. Queries
against the parent table will no longer include records drawn from the target table.

OF type_name

This form links the table to a composite type as though CREATE TABLE OF had formed it. The table's
list of column names and types must precisely match that of the composite type. The table must
not inherit from any other table. These restrictions ensure that CREATE TABLE OF would permit an
equivalent table definition.

NOT OF

This form dissociates a typed table from its type.

OWNER TO

This form changes the owner of the table, sequence, view, materialized view, or foreign table to the
specified user.

REPLICA IDENTITY

This form changes the information which is written to the write-ahead log to identify rows which are
updated or deleted. In most cases, the old value of each column is only logged if it differs from the
new value; however, if the old value is stored externally, it is always logged regardless of whether it
changed. This option has no effect except when logical replication is in use.

DEFAULT

Records the old values of the columns of the primary key, if any. This is the default for non-system
tables.

USING INDEX index_name

Records the old values of the columns covered by the named index, that must be unique, not
partial, not deferrable, and include only columns marked NOT NULL. If this index is dropped, the
behavior is the same as NOTHING.

FULL

Records the old values of all columns in the row.

NOTHING

Records no information about the old row. This is the default for system tables.

RENAME

The RENAME forms change the name of a table (or an index, sequence, view, materialized view, or
foreign table), the name of an individual column in a table, or the name of a constraint of the table.
When renaming a constraint that has an underlying index, the index is renamed as well. There is
no effect on the stored data.

1285

ALTER TABLE

SET SCHEMA

This form moves the table into another schema. Associated indexes, constraints, and sequences
owned by table columns are moved as well.

ATTACH PARTITION partition_name { FOR VALUES partition_bound_spec | DEFAULT }

This form attaches an existing table (which might itself be partitioned) as a partition of the target
table. The table can be attached as a partition for specific values using FOR VALUES or as a default
partition by using DEFAULT. For each index in the target table, a corresponding one will be created
in the attached table; or, if an equivalent index already exists, it will be attached to the target table's
index, as if ALTER INDEX ATTACH PARTITION had been executed. Note that if the existing table is a
foreign table, it is currently not allowed to attach the table as a partition of the target table if there
are UNIQUE indexes on the target table. (See also CREATE FOREIGN TABLE.) For each user-defined
row-level trigger that exists in the target table, a corresponding one is created in the attached table.

A partition using FOR VALUES uses same syntax for partition_bound_spec as CREATE TABLE. The
partition bound specification must correspond to the partitioning strategy and partition key of the
target table. The table to be attached must have all the same columns as the target table and no
more; moreover, the column types must also match. Also, it must have all the NOT NULL and CHECK
constraints of the target table. Currently FOREIGN KEY constraints are not considered. UNIQUE and
PRIMARY KEY constraints from the parent table will be created in the partition, if they don't already
exist. If any of the CHECK constraints of the table being attached are marked NO INHERIT, the command
will fail; such constraints must be recreated without the NO INHERIT clause.

If the new partition is a regular table, a full table scan is performed to check that existing rows in
the table do not violate the partition constraint. It is possible to avoid this scan by adding a valid
CHECK constraint to the table that allows only rows satisfying the desired partition constraint before
running this command. The CHECK constraint will be used to determine that the table need not be
scanned to validate the partition constraint. This does not work, however, if any of the partition keys
is an expression and the partition does not accept NULL values. If attaching a list partition that will
not accept NULL values, also add NOT NULL constraint to the partition key column, unless it's an
expression.

If the new partition is a foreign table, nothing is done to verify that all the rows in the foreign table
obey the partition constraint. (See the discussion in CREATE FOREIGN TABLE about constraints on
the foreign table.)

When a table has a default partition, defining a new partition changes the partition constraint for
the default partition. The default partition can't contain any rows that would need to be moved to
the new partition, and will be scanned to verify that none are present. This scan, like the scan of the
new partition, can be avoided if an appropriate CHECK constraint is present. Also like the scan of the
new partition, it is always skipped when the default partition is a foreign table.

Attaching a partition acquires a SHARE UPDATE EXCLUSIVE lock on the parent table, in addition to
the ACCESS EXCLUSIVE locks on the table being attached and on the default partition (if any).

Further locks must also be held on all sub-partitions if the table being attached is itself a partitioned
table. Likewise if the default partition is itself a partitioned table. The locking of the sub-partitions
can be avoided by adding a CHECK constraint as described in Section 5.11.2.2.

DETACH PARTITION partition_name
This form detaches the specified partition of the target table. The detached partition continues to
exist as a standalone table, but no longer has any ties to the table from which it was detached. Any
indexes that were attached to the target table's indexes are detached. Any triggers that were created
as clones of those in the target table are removed. SHARE lock is obtained on any tables that reference
this partitioned table in foreign key constraints.

All the forms of ALTER TABLE that act on a single table, except RENAME, SET SCHEMA, ATTACH PARTITION,
and DETACH PARTITION can be combined into a list of multiple alterations to be applied together. For

1286

ALTER TABLE

example, it is possible to add several columns and/or alter the type of several columns in a single
command. This is particularly useful with large tables, since only one pass over the table need be made.

You must own the table to use ALTER TABLE. To change the schema or tablespace of a table, you must
also have CREATE privilege on the new schema or tablespace. To add the table as a new child of a parent
table, you must own the parent table as well. Also, to attach a table as a new partition of the table, you
must own the table being attached. To alter the owner, you must also be a direct or indirect member of
the new owning role, and that role must have CREATE privilege on the table's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the table.
However, a superuser can alter ownership of any table anyway.) To add a column or alter a column type
or use the OF clause, you must also have USAGE privilege on the data type.

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing table to alter. If ONLY is specified before the
table name, only that table is altered. If ONLY is not specified, the table and all its descendant tables
(if any) are altered. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

column_name

Name of a new or existing column.

new_column_name

New name for an existing column.

new_name

New name for the table.

data_type

Data type of the new column, or new data type for an existing column.

table_constraint

New table constraint for the table.

constraint_name

Name of a new or existing constraint.

CASCADE

Automatically drop objects that depend on the dropped column or constraint (for example, views
referencing the column), and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the column or constraint if there are any dependent objects. This is the default
behavior.

trigger_name

Name of a single trigger to disable or enable.

ALL

Disable or enable all triggers belonging to the table. (This requires superuser privilege if any of the
triggers are internally generated constraint triggers such as those that are used to implement foreign
key constraints or deferrable uniqueness and exclusion constraints.)

1287

ALTER TABLE

USER

Disable or enable all triggers belonging to the table except for internally generated constraint
triggers such as those that are used to implement foreign key constraints or deferrable uniqueness
and exclusion constraints.

index_name

The name of an existing index.

storage_parameter

The name of a table storage parameter.

value

The new value for a table storage parameter. This might be a number or a word depending on the
parameter.

parent_table

A parent table to associate or de-associate with this table.

new_owner

The user name of the new owner of the table.

new_tablespace

The name of the tablespace to which the table will be moved.

new_schema

The name of the schema to which the table will be moved.

partition_name

The name of the table to attach as a new partition or to detach from this table.

partition_bound_spec

The partition bound specification for a new partition. Refer to CREATE TABLE for more details on
the syntax of the same.

Notes
The key word COLUMN is noise and can be omitted.

When a column is added with ADD COLUMN and a non-volatile DEFAULT is specified, the default is evaluated
at the time of the statement and the result stored in the table's metadata. That value will be used for
the column for all existing rows. If no DEFAULT is specified, NULL is used. In neither case is a rewrite
of the table required.

Adding a column with a volatile DEFAULT or changing the type of an existing column will require the entire
table and its indexes to be rewritten. As an exception, when changing the type of an existing column, if
the USING clause does not change the column contents and the old type is either binary coercible to the
new type or an unconstrained domain over the new type, a table rewrite is not needed; but any indexes
on the affected columns must still be rebuilt. Table and/or index rebuilds may take a significant amount
of time for a large table; and will temporarily require as much as double the disk space.

Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet the
constraint, but does not require a table rewrite.

Similarly, when attaching a new partition it may be scanned to verify that existing rows meet the partition
constraint.

1288

ALTER TABLE

The main reason for providing the option to specify multiple changes in a single ALTER TABLE is that
multiple table scans or rewrites can thereby be combined into a single pass over the table.

Scanning a large table to verify a new foreign key or check constraint can take a long time, and other
updates to the table are locked out until the ALTER TABLE ADD CONSTRAINT command is committed.
The main purpose of the NOT VALID constraint option is to reduce the impact of adding a constraint on
concurrent updates. With NOT VALID, the ADD CONSTRAINT command does not scan the table and can
be committed immediately. After that, a VALIDATE CONSTRAINT command can be issued to verify that
existing rows satisfy the constraint. The validation step does not need to lock out concurrent updates,
since it knows that other transactions will be enforcing the constraint for rows that they insert or update;
only pre-existing rows need to be checked. Hence, validation acquires only a SHARE UPDATE EXCLUSIVE
lock on the table being altered. (If the constraint is a foreign key then a ROW SHARE lock is also required
on the table referenced by the constraint.) In addition to improving concurrency, it can be useful to
use NOT VALID and VALIDATE CONSTRAINT in cases where the table is known to contain pre-existing
violations. Once the constraint is in place, no new violations can be inserted, and the existing problems
can be corrected at leisure until VALIDATE CONSTRAINT finally succeeds.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL
operations. Subsequent insert and update operations in the table will store a null value for the column.
Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your table, as
the space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as
existing rows are updated.

To force immediate reclamation of space occupied by a dropped column, you can execute one of the
forms of ALTER TABLE that performs a rewrite of the whole table. This results in reconstructing each
row with the dropped column replaced by a null value.

The rewriting forms of ALTER TABLE are not MVCC-safe. After a table rewrite, the table will appear
empty to concurrent transactions, if they are using a snapshot taken before the rewrite occurred. See
Section 13.5 for more details.

The USING option of SET DATA TYPE can actually specify any expression involving the old values of the
row; that is, it can refer to other columns as well as the one being converted. This allows very general
conversions to be done with the SET DATA TYPE syntax. Because of this flexibility, the USING expression
is not applied to the column's default value (if any); the result might not be a constant expression as
required for a default. This means that when there is no implicit or assignment cast from old to new
type, SET DATA TYPE might fail to convert the default even though a USING clause is supplied. In such
cases, drop the default with DROP DEFAULT, perform the ALTER TYPE, and then use SET DEFAULT to add
a suitable new default. Similar considerations apply to indexes and constraints involving the column.

If a table has any descendant tables, it is not permitted to add, rename, or change the type of a column
in the parent table without doing the same to the descendants. This ensures that the descendants
always have columns matching the parent. Similarly, a CHECK constraint cannot be renamed in the parent
without also renaming it in all descendants, so that CHECK constraints also match between the parent
and its descendants. (That restriction does not apply to index-based constraints, however.) Also, because
selecting from the parent also selects from its descendants, a constraint on the parent cannot be marked
valid unless it is also marked valid for those descendants. In all of these cases, ALTER TABLE ONLY will
be rejected.

A recursive DROP COLUMN operation will remove a descendant table's column only if the descendant does
not inherit that column from any other parents and never had an independent definition of the column.
A nonrecursive DROP COLUMN (i.e., ALTER TABLE ONLY ... DROP COLUMN) never removes any descendant
columns, but instead marks them as independently defined rather than inherited. A nonrecursive DROP
COLUMN command will fail for a partitioned table, because all partitions of a table must have the same
columns as the partitioning root.

The actions for identity columns (ADD GENERATED, SET etc., DROP IDENTITY), as well as the actions
TRIGGER, CLUSTER, OWNER, and TABLESPACE never recurse to descendant tables; that is, they always act

1289

ALTER TABLE

as though ONLY were specified. Adding a constraint recurses only for CHECK constraints that are not
marked NO INHERIT.

Changing any part of a system catalog table is not permitted.

Refer to CREATE TABLE for a further description of valid parameters. Chapter 5 has further information
on inheritance.

Examples
To add a column of type varchar to a table:

ALTER TABLE distributors ADD COLUMN address varchar(30);

That will cause all existing rows in the table to be filled with null values for the new column.

To add a column with a non-null default:

ALTER TABLE measurements
 ADD COLUMN mtime timestamp with time zone DEFAULT now();

Existing rows will be filled with the current time as the value of the new column, and then new rows
will receive the time of their insertion.

To add a column and fill it with a value different from the default to be used later:

ALTER TABLE transactions
 ADD COLUMN status varchar(30) DEFAULT 'old',
 ALTER COLUMN status SET default 'current';

Existing rows will be filled with old, but then the default for subsequent commands will be current. The
effects are the same as if the two sub-commands had been issued in separate ALTER TABLE commands.

To drop a column from a table:

ALTER TABLE distributors DROP COLUMN address RESTRICT;

To change the types of two existing columns in one operation:

ALTER TABLE distributors
 ALTER COLUMN address TYPE varchar(80),
 ALTER COLUMN name TYPE varchar(100);

To change an integer column containing Unix timestamps to timestamp with time zone via a USING
clause:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp SET DATA TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second';

The same, when the column has a default expression that won't automatically cast to the new data type:

ALTER TABLE foo
 ALTER COLUMN foo_timestamp DROP DEFAULT,
 ALTER COLUMN foo_timestamp TYPE timestamp with time zone
 USING
 timestamp with time zone 'epoch' + foo_timestamp * interval '1 second',
 ALTER COLUMN foo_timestamp SET DEFAULT now();

To rename an existing column:

ALTER TABLE distributors RENAME COLUMN address TO city;

To rename an existing table:

1290

ALTER TABLE

ALTER TABLE distributors RENAME TO suppliers;

To rename an existing constraint:

ALTER TABLE distributors RENAME CONSTRAINT zipchk TO zip_check;

To add a not-null constraint to a column:

ALTER TABLE distributors ALTER COLUMN street SET NOT NULL;

To remove a not-null constraint from a column:

ALTER TABLE distributors ALTER COLUMN street DROP NOT NULL;

To add a check constraint to a table and all its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5);

To add a check constraint only to a table and not to its children:

ALTER TABLE distributors ADD CONSTRAINT zipchk CHECK (char_length(zipcode) = 5) NO
 INHERIT;

(The check constraint will not be inherited by future children, either.)

To remove a check constraint from a table and all its children:

ALTER TABLE distributors DROP CONSTRAINT zipchk;

To remove a check constraint from one table only:

ALTER TABLE ONLY distributors DROP CONSTRAINT zipchk;

(The check constraint remains in place for any child tables.)

To add a foreign key constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
 addresses (address);

To add a foreign key constraint to a table with the least impact on other work:

ALTER TABLE distributors ADD CONSTRAINT distfk FOREIGN KEY (address) REFERENCES
 addresses (address) NOT VALID;
ALTER TABLE distributors VALIDATE CONSTRAINT distfk;

To add a (multicolumn) unique constraint to a table:

ALTER TABLE distributors ADD CONSTRAINT dist_id_zipcode_key UNIQUE (dist_id, zipcode);

To add an automatically named primary key constraint to a table, noting that a table can only ever have
one primary key:

ALTER TABLE distributors ADD PRIMARY KEY (dist_id);

To move a table to a different tablespace:

ALTER TABLE distributors SET TABLESPACE fasttablespace;

To move a table to a different schema:

ALTER TABLE myschema.distributors SET SCHEMA yourschema;

To recreate a primary key constraint, without blocking updates while the index is rebuilt:

CREATE UNIQUE INDEX CONCURRENTLY dist_id_temp_idx ON distributors (dist_id);
ALTER TABLE distributors DROP CONSTRAINT distributors_pkey,
 ADD CONSTRAINT distributors_pkey PRIMARY KEY USING INDEX dist_id_temp_idx;

1291

ALTER TABLE

To attach a partition to a range-partitioned table:

ALTER TABLE measurement
 ATTACH PARTITION measurement_y2016m07 FOR VALUES FROM ('2016-07-01') TO
 ('2016-08-01');

To attach a partition to a list-partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_ab FOR VALUES IN ('a', 'b');

To attach a partition to a hash-partitioned table:

ALTER TABLE orders
 ATTACH PARTITION orders_p4 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

To attach a default partition to a partitioned table:

ALTER TABLE cities
 ATTACH PARTITION cities_partdef DEFAULT;

To detach a partition from a partitioned table:

ALTER TABLE measurement
 DETACH PARTITION measurement_y2015m12;

Compatibility
The forms ADD (without USING INDEX), DROP [COLUMN], DROP IDENTITY, RESTART, SET DEFAULT, SET DATA
TYPE (without USING), SET GENERATED, and SET sequence_option conform with the SQL standard. The
other forms are Postgres Pro extensions of the SQL standard. Also, the ability to specify more than one
manipulation in a single ALTER TABLE command is an extension.

ALTER TABLE DROP COLUMN can be used to drop the only column of a table, leaving a zero-column table.
This is an extension of SQL, which disallows zero-column tables.

See Also
CREATE TABLE

1292

ALTER TABLESPACE
ALTER TABLESPACE — change the definition of a tablespace

Synopsis
ALTER TABLESPACE name RENAME TO new_name
ALTER TABLESPACE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TABLESPACE name SET (tablespace_option = value [, ...])
ALTER TABLESPACE name RESET (tablespace_option [, ...])

Description
ALTER TABLESPACE can be used to change the definition of a tablespace.

You must own the tablespace to change the definition of a tablespace. To alter the owner, you must also
be a direct or indirect member of the new owning role. (Note that superusers have these privileges
automatically.)

Parameters
name

The name of an existing tablespace.

new_name

The new name of the tablespace. The new name cannot begin with pg_, as such names are reserved
for system tablespaces.

new_owner

The new owner of the tablespace.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available
parameters are seq_page_cost, random_page_cost, effective_io_concurrency and
maintenance_io_concurrency. Setting these values for a particular tablespace will override the
planner's usual estimate of the cost of reading pages from tables in that tablespace, and the
executor's prefetching behavior, as established by the configuration parameters of the same name
(see seq_page_cost, random_page_cost, effective_io_concurrency, maintenance_io_concurrency).
This may be useful if one tablespace is located on a disk which is faster or slower than the remainder
of the I/O subsystem.

Examples
Rename tablespace index_space to fast_raid:

ALTER TABLESPACE index_space RENAME TO fast_raid;

Change the owner of tablespace index_space:

ALTER TABLESPACE index_space OWNER TO mary;

Compatibility
There is no ALTER TABLESPACE statement in the SQL standard.

See Also
CREATE TABLESPACE, DROP TABLESPACE

1293

ALTER TEXT SEARCH CONFIGURATION
ALTER TEXT SEARCH CONFIGURATION — change the definition of a text search configuration

Synopsis
ALTER TEXT SEARCH CONFIGURATION name
 ADD MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] WITH dictionary_name [, ...]
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 ALTER MAPPING FOR token_type [, ...] REPLACE old_dictionary WITH new_dictionary
ALTER TEXT SEARCH CONFIGURATION name
 DROP MAPPING [IF EXISTS] FOR token_type [, ...]
ALTER TEXT SEARCH CONFIGURATION name RENAME TO new_name
ALTER TEXT SEARCH CONFIGURATION name OWNER TO { new_owner | CURRENT_USER |
 SESSION_USER }
ALTER TEXT SEARCH CONFIGURATION name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH CONFIGURATION changes the definition of a text search configuration. You can modify
its mappings from token types to dictionaries, or change the configuration's name or owner.

You must be the owner of the configuration to use ALTER TEXT SEARCH CONFIGURATION.

Parameters
name

The name (optionally schema-qualified) of an existing text search configuration.

token_type

The name of a token type that is emitted by the configuration's parser.

dictionary_name

The name of a text search dictionary to be consulted for the specified token type(s). If multiple
dictionaries are listed, they are consulted in the specified order.

old_dictionary

The name of a text search dictionary to be replaced in the mapping.

new_dictionary

The name of a text search dictionary to be substituted for old_dictionary.

new_name

The new name of the text search configuration.

new_owner

The new owner of the text search configuration.

new_schema

The new schema for the text search configuration.

1294

ALTER TEXT SEARCH
CONFIGURATION

The ADD MAPPING FOR form installs a list of dictionaries to be consulted for the specified token type(s);
it is an error if there is already a mapping for any of the token types. The ALTER MAPPING FOR form does
the same, but first removing any existing mapping for those token types. The ALTER MAPPING REPLACE
forms substitute new_dictionary for old_dictionary anywhere the latter appears. This is done for only
the specified token types when FOR appears, or for all mappings of the configuration when it doesn't.
The DROP MAPPING form removes all dictionaries for the specified token type(s), causing tokens of those
types to be ignored by the text search configuration. It is an error if there is no mapping for the token
types, unless IF EXISTS appears.

Examples
The following example replaces the english dictionary with the swedish dictionary anywhere that
english is used within my_config.

ALTER TEXT SEARCH CONFIGURATION my_config
 ALTER MAPPING REPLACE english WITH swedish;

Compatibility
There is no ALTER TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
CREATE TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1295

ALTER TEXT SEARCH DICTIONARY
ALTER TEXT SEARCH DICTIONARY — change the definition of a text search dictionary

Synopsis
ALTER TEXT SEARCH DICTIONARY name (
 option [= value] [, ...]
)
ALTER TEXT SEARCH DICTIONARY name RENAME TO new_name
ALTER TEXT SEARCH DICTIONARY name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TEXT SEARCH DICTIONARY name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH DICTIONARY changes the definition of a text search dictionary. You can change the
dictionary's template-specific options, or change the dictionary's name or owner.

You must be the owner of the dictionary to use ALTER TEXT SEARCH DICTIONARY.

Parameters
name

The name (optionally schema-qualified) of an existing text search dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The new value to use for a template-specific option. If the equal sign and value are omitted, then any
previous setting for the option is removed from the dictionary, allowing the default to be used.

new_name

The new name of the text search dictionary.

new_owner

The new owner of the text search dictionary.

new_schema

The new schema for the text search dictionary.

Template-specific options can appear in any order.

Examples
The following example command changes the stopword list for a Snowball-based dictionary. Other
parameters remain unchanged.

ALTER TEXT SEARCH DICTIONARY my_dict (StopWords = newrussian);

The following example command changes the language option to dutch, and removes the stopword
option entirely.

ALTER TEXT SEARCH DICTIONARY my_dict (language = dutch, StopWords);

The following example command “updates” the dictionary's definition without actually changing
anything.

1296

ALTER TEXT SEARCH DICTIONARY

ALTER TEXT SEARCH DICTIONARY my_dict (dummy);

(The reason this works is that the option removal code doesn't complain if there is no such option.)
This trick is useful when changing configuration files for the dictionary: the ALTER will force existing
database sessions to re-read the configuration files, which otherwise they would never do if they had
read them earlier.

Compatibility
There is no ALTER TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
CREATE TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1297

ALTER TEXT SEARCH PARSER
ALTER TEXT SEARCH PARSER — change the definition of a text search parser

Synopsis
ALTER TEXT SEARCH PARSER name RENAME TO new_name
ALTER TEXT SEARCH PARSER name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH PARSER changes the definition of a text search parser. Currently, the only supported
functionality is to change the parser's name.

You must be a superuser to use ALTER TEXT SEARCH PARSER.

Parameters
name

The name (optionally schema-qualified) of an existing text search parser.

new_name

The new name of the text search parser.

new_schema

The new schema for the text search parser.

Compatibility
There is no ALTER TEXT SEARCH PARSER statement in the SQL standard.

See Also
CREATE TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1298

ALTER TEXT SEARCH TEMPLATE
ALTER TEXT SEARCH TEMPLATE — change the definition of a text search template

Synopsis
ALTER TEXT SEARCH TEMPLATE name RENAME TO new_name
ALTER TEXT SEARCH TEMPLATE name SET SCHEMA new_schema

Description
ALTER TEXT SEARCH TEMPLATE changes the definition of a text search template. Currently, the only
supported functionality is to change the template's name.

You must be a superuser to use ALTER TEXT SEARCH TEMPLATE.

Parameters
name

The name (optionally schema-qualified) of an existing text search template.

new_name

The new name of the text search template.

new_schema

The new schema for the text search template.

Compatibility
There is no ALTER TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
CREATE TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1299

ALTER TRIGGER
ALTER TRIGGER — change the definition of a trigger

Synopsis
ALTER TRIGGER name ON table_name RENAME TO new_name
ALTER TRIGGER name ON table_name [NO] DEPENDS ON EXTENSION extension_name

Description
ALTER TRIGGER changes properties of an existing trigger. The RENAME clause changes the name of the
given trigger without otherwise changing the trigger definition. The DEPENDS ON EXTENSION clause
marks the trigger as dependent on an extension, such that if the extension is dropped, the trigger will
automatically be dropped as well.

You must own the table on which the trigger acts to be allowed to change its properties.

Parameters
name

The name of an existing trigger to alter.

table_name

The name of the table on which this trigger acts.

new_name

The new name for the trigger.

extension_name

The name of the extension that the trigger is to depend on (or no longer dependent on, if NO is
specified). A trigger that's marked as dependent on an extension is automatically dropped when the
extension is dropped.

Notes
The ability to temporarily enable or disable a trigger is provided by ALTER TABLE, not by ALTER TRIGGER,
because ALTER TRIGGER has no convenient way to express the option of enabling or disabling all of a
table's triggers at once.

Examples
To rename an existing trigger:

ALTER TRIGGER emp_stamp ON emp RENAME TO emp_track_chgs;

To mark a trigger as being dependent on an extension:

ALTER TRIGGER emp_stamp ON emp DEPENDS ON EXTENSION emplib;

Compatibility
ALTER TRIGGER is a Postgres Pro extension of the SQL standard.

See Also
ALTER TABLE

1300

ALTER TYPE
ALTER TYPE — change the definition of a type

Synopsis
ALTER TYPE name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER TYPE name RENAME TO new_name
ALTER TYPE name SET SCHEMA new_schema
ALTER TYPE name RENAME ATTRIBUTE attribute_name TO new_attribute_name [CASCADE |
 RESTRICT]
ALTER TYPE name action [, ...]
ALTER TYPE name ADD VALUE [IF NOT EXISTS] new_enum_value [{ BEFORE |
 AFTER } neighbor_enum_value]
ALTER TYPE name RENAME VALUE existing_enum_value TO new_enum_value
ALTER TYPE name SET (property = value [, ...])

where action is one of:

 ADD ATTRIBUTE attribute_name data_type [COLLATE collation] [CASCADE | RESTRICT]
 DROP ATTRIBUTE [IF EXISTS] attribute_name [CASCADE | RESTRICT]
 ALTER ATTRIBUTE attribute_name [SET DATA] TYPE data_type [COLLATE collation]
 [CASCADE | RESTRICT]

Description
ALTER TYPE changes the definition of an existing type. There are several subforms:
OWNER

This form changes the owner of the type.

RENAME

This form changes the name of the type.

SET SCHEMA

This form moves the type into another schema.

RENAME ATTRIBUTE

This form is only usable with composite types. It changes the name of an individual attribute of the
type.

ADD ATTRIBUTE

This form adds a new attribute to a composite type, using the same syntax as CREATE TYPE.

DROP ATTRIBUTE [IF EXISTS]

This form drops an attribute from a composite type. If IF EXISTS is specified and the attribute does
not exist, no error is thrown. In this case a notice is issued instead.

ALTER ATTRIBUTE ... SET DATA TYPE

This form changes the type of an attribute of a composite type.

ADD VALUE [IF NOT EXISTS] [BEFORE | AFTER]

This form adds a new value to an enum type. The new value's place in the enum's ordering can be
specified as being BEFORE or AFTER one of the existing values. Otherwise, the new item is added at
the end of the list of values.

1301

ALTER TYPE

If IF NOT EXISTS is specified, it is not an error if the type already contains the new value: a notice is
issued but no other action is taken. Otherwise, an error will occur if the new value is already present.

RENAME VALUE

This form renames a value of an enum type. The value's place in the enum's ordering is not affected.
An error will occur if the specified value is not present or the new name is already present.

SET (property = value [, ...])

This form is only applicable to base types. It allows adjustment of a subset of the base-type properties
that can be set in CREATE TYPE. Specifically, these properties can be changed:
• RECEIVE can be set to the name of a binary input function, or NONE to remove the type's binary

input function. Using this option requires superuser privilege.
• SEND can be set to the name of a binary output function, or NONE to remove the type's binary

output function. Using this option requires superuser privilege.
• TYPMOD_IN can be set to the name of a type modifier input function, or NONE to remove the

type's type modifier input function. Using this option requires superuser privilege.
• TYPMOD_OUT can be set to the name of a type modifier output function, or NONE to remove the

type's type modifier output function. Using this option requires superuser privilege.
• ANALYZE can be set to the name of a type-specific statistics collection function, or NONE to

remove the type's statistics collection function. Using this option requires superuser privilege.
• STORAGEcan be set to plain, extended, external, or main (see Section 65.2 for more

information about what these mean). However, changing from plain to another setting requires
superuser privilege (because it requires that the type's C functions all be TOAST-ready), and
changing to plain from another setting is not allowed at all (since the type may already have
TOASTed values present in the database). Note that changing this option doesn't by itself
change any stored data, it just sets the default TOAST strategy to be used for table columns
created in the future. See ALTER TABLE to change the TOAST strategy for existing table
columns.

See CREATE TYPE for more details about these type properties. Note that where appropriate, a
change in these properties for a base type will be propagated automatically to domains based on
that type.

The ADD ATTRIBUTE, DROP ATTRIBUTE, and ALTER ATTRIBUTE actions can be combined into a list of
multiple alterations to apply in parallel. For example, it is possible to add several attributes and/or alter
the type of several attributes in a single command.

You must own the type to use ALTER TYPE. To change the schema of a type, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the
new owning role, and that role must have CREATE privilege on the type's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the type.
However, a superuser can alter ownership of any type anyway.) To add an attribute or alter an attribute
type, you must also have USAGE privilege on the attribute's data type.

Parameters
name

The name (possibly schema-qualified) of an existing type to alter.

new_name

The new name for the type.

new_owner

The user name of the new owner of the type.

1302

ALTER TYPE

new_schema

The new schema for the type.

attribute_name

The name of the attribute to add, alter, or drop.

new_attribute_name

The new name of the attribute to be renamed.

data_type

The data type of the attribute to add, or the new type of the attribute to alter.

new_enum_value

The new value to be added to an enum type's list of values, or the new name to be given to an existing
value. Like all enum literals, it needs to be quoted.

neighbor_enum_value

The existing enum value that the new value should be added immediately before or after in the enum
type's sort ordering. Like all enum literals, it needs to be quoted.

existing_enum_value

The existing enum value that should be renamed. Like all enum literals, it needs to be quoted.

property

The name of a base-type property to be modified; see above for possible values.

CASCADE

Automatically propagate the operation to typed tables of the type being altered, and their
descendants.

RESTRICT

Refuse the operation if the type being altered is the type of a typed table. This is the default.

Notes
If ALTER TYPE ... ADD VALUE (the form that adds a new value to an enum type) is executed inside a
transaction block, the new value cannot be used until after the transaction has been committed.

Comparisons involving an added enum value will sometimes be slower than comparisons involving only
original members of the enum type. This will usually only occur if BEFORE or AFTER is used to set the
new value's sort position somewhere other than at the end of the list. However, sometimes it will happen
even though the new value is added at the end (this occurs if the OID counter “wrapped around” since
the original creation of the enum type). The slowdown is usually insignificant; but if it matters, optimal
performance can be regained by dropping and recreating the enum type, or by dumping and reloading
the database.

Examples
To rename a data type:
ALTER TYPE electronic_mail RENAME TO email;

To change the owner of the type email to joe:
ALTER TYPE email OWNER TO joe;

To change the schema of the type email to customers:

1303

ALTER TYPE

ALTER TYPE email SET SCHEMA customers;

To add a new attribute to a composite type:

ALTER TYPE compfoo ADD ATTRIBUTE f3 int;

To add a new value to an enum type in a particular sort position:

ALTER TYPE colors ADD VALUE 'orange' AFTER 'red';

To rename an enum value:

ALTER TYPE colors RENAME VALUE 'purple' TO 'mauve';

To create binary I/O functions for an existing base type:

CREATE FUNCTION mytypesend(mytype) RETURNS bytea ...;
CREATE FUNCTION mytyperecv(internal, oid, integer) RETURNS mytype ...;
ALTER TYPE mytype SET (
 SEND = mytypesend,
 RECEIVE = mytyperecv
);

Compatibility
The variants to add and drop attributes are part of the SQL standard; the other variants are Postgres
Pro extensions.

See Also
CREATE TYPE, DROP TYPE

1304

ALTER USER
ALTER USER — change a database role

Synopsis
ALTER USER role_specification [WITH] option [...]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'

ALTER USER name RENAME TO new_name

ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter { TO | = } { value | DEFAULT }
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 SET configuration_parameter FROM CURRENT
ALTER USER { role_specification | ALL } [IN DATABASE database_name]
 RESET configuration_parameter
ALTER USER { role_specification | ALL } [IN DATABASE database_name] RESET ALL

where role_specification can be:

 role_name
 | CURRENT_USER
 | SESSION_USER

Description
ALTER USER is now an alias for ALTER ROLE.

Compatibility
The ALTER USER statement is a Postgres Pro extension. The SQL standard leaves the definition of users
to the implementation.

See Also
ALTER ROLE

1305

ALTER USER MAPPING
ALTER USER MAPPING — change the definition of a user mapping

Synopsis
ALTER USER MAPPING FOR { user_name | USER | CURRENT_USER | SESSION_USER | PUBLIC }
 SERVER server_name
 OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Description
ALTER USER MAPPING changes the definition of a user mapping.

The owner of a foreign server can alter user mappings for that server for any user. Also, a user can alter
a user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC is
used to match all present and future user names in the system.

server_name

Server name of the user mapping.

OPTIONS ([ADD | SET | DROP] option ['value'] [, ...])

Change options for the user mapping. The new options override any previously specified options. ADD,
SET, and DROP specify the action to be performed. ADD is assumed if no operation is explicitly specified.
Option names must be unique; options are also validated by the server's foreign-data wrapper.

Examples
Change the password for user mapping bob, server foo:

ALTER USER MAPPING FOR bob SERVER foo OPTIONS (SET password 'public');

Compatibility
ALTER USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). There is a subtle syntax issue: The
standard omits the FOR key word. Since both CREATE USER MAPPING and DROP USER MAPPING use FOR
in analogous positions, and IBM DB2 (being the other major SQL/MED implementation) also requires it
for ALTER USER MAPPING, Postgres Pro diverges from the standard here in the interest of consistency
and interoperability.

See Also
CREATE USER MAPPING, DROP USER MAPPING

1306

ALTER VIEW
ALTER VIEW — change the definition of a view

Synopsis
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name SET DEFAULT expression
ALTER VIEW [IF EXISTS] name ALTER [COLUMN] column_name DROP DEFAULT
ALTER VIEW [IF EXISTS] name OWNER TO { new_owner | CURRENT_USER | SESSION_USER }
ALTER VIEW [IF EXISTS] name RENAME [COLUMN] column_name TO new_column_name
ALTER VIEW [IF EXISTS] name RENAME TO new_name
ALTER VIEW [IF EXISTS] name SET SCHEMA new_schema
ALTER VIEW [IF EXISTS] name SET (view_option_name [= view_option_value] [, ...])
ALTER VIEW [IF EXISTS] name RESET (view_option_name [, ...])

Description
ALTER VIEW changes various auxiliary properties of a view. (If you want to modify the view's defining
query, use CREATE OR REPLACE VIEW.)

You must own the view to use ALTER VIEW. To change a view's schema, you must also have CREATE
privilege on the new schema. To alter the owner, you must also be a direct or indirect member of the
new owning role, and that role must have CREATE privilege on the view's schema. (These restrictions
enforce that altering the owner doesn't do anything you couldn't do by dropping and recreating the view.
However, a superuser can alter ownership of any view anyway.)

Parameters
name

The name (optionally schema-qualified) of an existing view.

column_name

Name of an existing column.

new_column_name

New name for an existing column.

IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

SET/DROP DEFAULT
These forms set or remove the default value for a column. A view column's default value is substituted
into any INSERT or UPDATE command whose target is the view, before applying any rules or triggers for
the view. The view's default will therefore take precedence over any default values from underlying
relations.

new_owner

The user name of the new owner of the view.

new_name

The new name for the view.

new_schema

The new schema for the view.

1307

ALTER VIEW

SET (view_option_name [= view_option_value] [, ...])
RESET (view_option_name [, ...])

Sets or resets a view option. Currently supported options are:

check_option (enum)

Changes the check option of the view. The value must be local or cascaded.

security_barrier (boolean)

Changes the security-barrier property of the view. The value must be Boolean value, such as true
or false.

Notes
For historical reasons, ALTER TABLE can be used with views too; but the only variants of ALTER TABLE
that are allowed with views are equivalent to the ones shown above.

Examples
To rename the view foo to bar:

ALTER VIEW foo RENAME TO bar;

To attach a default column value to an updatable view:

CREATE TABLE base_table (id int, ts timestamptz);
CREATE VIEW a_view AS SELECT * FROM base_table;
ALTER VIEW a_view ALTER COLUMN ts SET DEFAULT now();
INSERT INTO base_table(id) VALUES(1); -- ts will receive a NULL
INSERT INTO a_view(id) VALUES(2); -- ts will receive the current time

Compatibility
ALTER VIEW is a Postgres Pro extension of the SQL standard.

See Also
CREATE VIEW, DROP VIEW

1308

ANALYZE
ANALYZE — collect statistics about a database

Synopsis
ANALYZE [(option [, ...])] [table_and_columns [, ...]]
ANALYZE [VERBOSE] [table_and_columns [, ...]]

where option can be one of:

 VERBOSE [boolean]
 SKIP_LOCKED [boolean]

and table_and_columns is:

 table_name [(column_name [, ...])]

Description
ANALYZE collects statistics about the contents of tables in the database, and stores the results in the
pg_statistic system catalog. Subsequently, the query planner uses these statistics to help determine
the most efficient execution plans for queries.

Without a table_and_columns list, ANALYZE processes every table and materialized view in the current
database that the current user has permission to analyze. With a list, ANALYZE processes only those
table(s). It is further possible to give a list of column names for a table, in which case only the statistics
for those columns are collected.

When the option list is surrounded by parentheses, the options can be written in any order. The
parenthesized syntax was added in PostgreSQL 11; the unparenthesized syntax is deprecated.

Parameters
VERBOSE

Enables display of progress messages.

SKIP_LOCKED

Specifies that ANALYZE should not wait for any conflicting locks to be released when beginning work
on a relation: if a relation cannot be locked immediately without waiting, the relation is skipped.
Note that even with this option, ANALYZE may still block when opening the relation's indexes or when
acquiring sample rows from partitions, table inheritance children, and some types of foreign tables.
Also, while ANALYZE ordinarily processes all partitions of specified partitioned tables, this option will
cause ANALYZE to skip all partitions if there is a conflicting lock on the partitioned table.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

table_name

The name (possibly schema-qualified) of a specific table to analyze. If omitted, all regular tables,
partitioned tables, and materialized views in the current database are analyzed (but not foreign
tables). If the specified table is a partitioned table, both the inheritance statistics of the partitioned
table as a whole and statistics of the individual partitions are updated.

1309

ANALYZE

column_name

The name of a specific column to analyze. Defaults to all columns.

Outputs
When VERBOSE is specified, ANALYZE emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To analyze a table, one must ordinarily be the table's owner or a superuser. However, database owners
are allowed to analyze all tables in their databases, except shared catalogs. (The restriction for shared
catalogs means that a true database-wide ANALYZE can only be performed by a superuser.) ANALYZE will
skip over any tables that the calling user does not have permission to analyze.

Foreign tables are analyzed only when explicitly selected. Not all foreign data wrappers support ANALYZE.
If the table's wrapper does not support ANALYZE, the command prints a warning and does nothing.

In the default Postgres Pro configuration, the autovacuum daemon (see Section 23.1.6) takes care of
automatic analyzing of tables when they are first loaded with data, and as they change throughout
regular operation. When autovacuum is disabled, it is a good idea to run ANALYZE periodically, or just
after making major changes in the contents of a table. Accurate statistics will help the planner to choose
the most appropriate query plan, and thereby improve the speed of query processing. A common strategy
for read-mostly databases is to run VACUUM and ANALYZE once a day during a low-usage time of day.
(This will not be sufficient if there is heavy update activity.)

ANALYZE requires only a read lock on the target table, so it can run in parallel with other activity on
the table.

The statistics collected by ANALYZE usually include a list of some of the most common values in each
column and a histogram showing the approximate data distribution in each column. One or both of these
can be omitted if ANALYZE deems them uninteresting (for example, in a unique-key column, there are no
common values) or if the column data type does not support the appropriate operators. There is more
information about the statistics in Chapter 23.

For large tables, ANALYZE takes a random sample of the table contents, rather than examining every
row. This allows even very large tables to be analyzed in a small amount of time. Note, however, that
the statistics are only approximate, and will change slightly each time ANALYZE is run, even if the actual
table contents did not change. This might result in small changes in the planner's estimated costs shown
by EXPLAIN. In rare situations, this non-determinism will cause the planner's choices of query plans
to change after ANALYZE is run. To avoid this, raise the amount of statistics collected by ANALYZE, as
described below.

The extent of analysis can be controlled by adjusting the default_statistics_target configuration variable,
or on a column-by-column basis by setting the per-column statistics target with ALTER TABLE ... ALTER
COLUMN ... SET STATISTICS (see ALTER TABLE). The target value sets the maximum number of entries
in the most-common-value list and the maximum number of bins in the histogram. The default target
value is 100, but this can be adjusted up or down to trade off accuracy of planner estimates against the
time taken for ANALYZE and the amount of space occupied in pg_statistic. In particular, setting the
statistics target to zero disables collection of statistics for that column. It might be useful to do that for
columns that are never used as part of the WHERE, GROUP BY, or ORDER BY clauses of queries, since the
planner will have no use for statistics on such columns.

The largest statistics target among the columns being analyzed determines the number of table rows
sampled to prepare the statistics. Increasing the target causes a proportional increase in the time and
space needed to do ANALYZE.

One of the values estimated by ANALYZE is the number of distinct values that appear in each column.
Because only a subset of the rows are examined, this estimate can sometimes be quite inaccurate, even

1310

ANALYZE

with the largest possible statistics target. If this inaccuracy leads to bad query plans, a more accurate
value can be determined manually and then installed with ALTER TABLE ... ALTER COLUMN ... SET
(n_distinct = ...) (see ALTER TABLE).

If the table being analyzed has one or more children, ANALYZE will gather statistics twice: once on the
rows of the parent table only, and a second time on the rows of the parent table with all of its children.
This second set of statistics is needed when planning queries that traverse the entire inheritance tree.
The autovacuum daemon, however, will only consider inserts or updates on the parent table itself when
deciding whether to trigger an automatic analyze for that table. If that table is rarely inserted into or
updated, the inheritance statistics will not be up to date unless you run ANALYZE manually.

For partitioned tables, ANALYZE gathers statistics by sampling rows from all partitions; in addition, it
will recurse into each partition and update its statistics. Each leaf partition is analyzed only once, even
with multi-level partitioning. No statistics are collected for only the parent table (without data from its
partitions), because with partitioning it's guaranteed to be empty.

By contrast, if the table being analyzed has inheritance children, ANALYZE gathers two sets of statistics:
one on the rows of the parent table only, and a second including rows of both the parent table and all of
its children. This second set of statistics is needed when planning queries that process the inheritance
tree as a whole. The child tables themselves are not individually analyzed in this case.

The autovacuum daemon does not process partitioned tables, nor does it process inheritance parents if
only the children are ever modified. It is usually necessary to periodically run a manual ANALYZE to keep
the statistics of the table hierarchy up to date.

If any child tables or partitions are foreign tables whose foreign data wrappers do not support ANALYZE,
those tables are ignored while gathering inheritance statistics.

If the table being analyzed is completely empty, ANALYZE will not record new statistics for that table.
Any existing statistics will be retained.

Compatibility
There is no ANALYZE statement in the SQL standard.

See Also
VACUUM, vacuumdb, Section 18.4.4, Section 23.1.6

1311

BEGIN
BEGIN — start a transaction block

Synopsis
BEGIN [WORK | TRANSACTION] [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
BEGIN initiates a transaction block, that is, all statements after a BEGIN command will be executed
in a single transaction until an explicit COMMIT or ROLLBACK is given. By default (without BEGIN),
Postgres Pro executes transactions in “autocommit” mode, that is, each statement is executed in its own
transaction and a commit is implicitly performed at the end of the statement (if execution was successful,
otherwise a rollback is done).

Statements are executed more quickly in a transaction block, because transaction start/commit requires
significant CPU and disk activity. Execution of multiple statements inside a transaction is also useful
to ensure consistency when making several related changes: other sessions will be unable to see the
intermediate states wherein not all the related updates have been done.

If the isolation level, read/write mode, or deferrable mode is specified, the new transaction has those
characteristics, as if SET TRANSACTION was executed.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

Refer to SET TRANSACTION for information on the meaning of the other parameters to this statement.

Notes
START TRANSACTION has the same functionality as BEGIN.

Use COMMIT or ROLLBACK to terminate a transaction block.

Issuing BEGIN when already inside a transaction block will provoke a warning message. The state of
the transaction is not affected. To nest transactions within a transaction block, use savepoints (see
SAVEPOINT).

For reasons of backwards compatibility, the commas between successive transaction_modes can be
omitted.

Examples
To begin a transaction block:

BEGIN;

1312

BEGIN

Compatibility
BEGIN is a Postgres Pro language extension. It is equivalent to the SQL-standard command START
TRANSACTION, whose reference page contains additional compatibility information.

The DEFERRABLE transaction_mode is a Postgres Pro language extension.

Incidentally, the BEGIN key word is used for a different purpose in embedded SQL. You are advised to be
careful about the transaction semantics when porting database applications.

See Also
COMMIT, ROLLBACK, START TRANSACTION, SAVEPOINT

1313

CALL
CALL — invoke a procedure

Synopsis
CALL name ([argument] [, ...])

Description
CALL executes a procedure.

If the procedure has any output parameters, then a result row will be returned, containing the values
of those parameters.

Parameters
name

The name (optionally schema-qualified) of the procedure.

argument

An input argument for the procedure call. See Section 4.3 for the full details on function and
procedure call syntax, including use of named parameters.

Notes
The user must have EXECUTE privilege on the procedure in order to be allowed to invoke it.

To call a function (not a procedure), use SELECT instead.

If CALL is executed in a transaction block, then the called procedure cannot execute transaction control
statements. Transaction control statements are only allowed if CALL is executed in its own transaction.

PL/pgSQL handles output parameters in CALL commands differently; see Section 40.6.3.

Examples
CALL do_db_maintenance();

Compatibility
CALL conforms to the SQL standard.

See Also
CREATE PROCEDURE

1314

CHECKPOINT
CHECKPOINT — force a write-ahead log checkpoint

Synopsis
CHECKPOINT

Description
A checkpoint is a point in the write-ahead log sequence at which all data files have been updated to
reflect the information in the log. All data files will be flushed to disk. Refer to Section 28.4 for more
details about what happens during a checkpoint.

The CHECKPOINT command forces an immediate checkpoint when the command is issued, without
waiting for a regular checkpoint scheduled by the system (controlled by the settings in Section 18.5.2).
CHECKPOINT is not intended for use during normal operation.

If executed during recovery, the CHECKPOINT command will force a restartpoint (see Section 28.4) rather
than writing a new checkpoint.

Only superusers can call CHECKPOINT.

Compatibility
The CHECKPOINT command is a Postgres Pro language extension.

1315

CLOSE
CLOSE — close a cursor

Synopsis
CLOSE { name | ALL }

Description
CLOSE frees the resources associated with an open cursor. After the cursor is closed, no subsequent
operations are allowed on it. A cursor should be closed when it is no longer needed.

Every non-holdable open cursor is implicitly closed when a transaction is terminated by COMMIT or
ROLLBACK. A holdable cursor is implicitly closed if the transaction that created it aborts via ROLLBACK. If
the creating transaction successfully commits, the holdable cursor remains open until an explicit CLOSE
is executed, or the client disconnects.

Parameters
name

The name of an open cursor to close.

ALL

Close all open cursors.

Notes
Postgres Pro does not have an explicit OPEN cursor statement; a cursor is considered open when it is
declared. Use the DECLARE statement to declare a cursor.

You can see all available cursors by querying the pg_cursors system view.

If a cursor is closed after a savepoint which is later rolled back, the CLOSE is not rolled back; that is,
the cursor remains closed.

Examples
Close the cursor liahona:

CLOSE liahona;

Compatibility
CLOSE is fully conforming with the SQL standard. CLOSE ALL is a Postgres Pro extension.

See Also
DECLARE, FETCH, MOVE

1316

CLUSTER
CLUSTER — cluster a table according to an index

Synopsis
CLUSTER [VERBOSE] table_name [USING index_name]
CLUSTER [VERBOSE]

Description
CLUSTER instructs Postgres Pro to cluster the table specified by table_name based on the index specified
by index_name. The index must already have been defined on table_name.

When a table is clustered, it is physically reordered based on the index information. Clustering is a
one-time operation: when the table is subsequently updated, the changes are not clustered. That is,
no attempt is made to store new or updated rows according to their index order. (If one wishes, one
can periodically recluster by issuing the command again. Also, setting the table's fillfactor storage
parameter to less than 100% can aid in preserving cluster ordering during updates, since updated rows
are kept on the same page if enough space is available there.)

When a table is clustered, Postgres Pro remembers which index it was clustered by. The form CLUSTER
table_name reclusters the table using the same index as before. You can also use the CLUSTER or SET
WITHOUT CLUSTER forms of ALTER TABLE to set the index to be used for future cluster operations, or
to clear any previous setting.

CLUSTER without any parameter reclusters all the previously-clustered tables in the current database
that the calling user owns, or all such tables if called by a superuser. This form of CLUSTER cannot be
executed inside a transaction block.

When a table is being clustered, an ACCESS EXCLUSIVE lock is acquired on it. This prevents any other
database operations (both reads and writes) from operating on the table until the CLUSTER is finished.

Parameters
table_name

The name (possibly schema-qualified) of a table.

index_name

The name of an index.

VERBOSE

Prints a progress report as each table is clustered.

Notes
In cases where you are accessing single rows randomly within a table, the actual order of the data in the
table is unimportant. However, if you tend to access some data more than others, and there is an index
that groups them together, you will benefit from using CLUSTER. If you are requesting a range of indexed
values from a table, or a single indexed value that has multiple rows that match, CLUSTER will help
because once the index identifies the table page for the first row that matches, all other rows that match
are probably already on the same table page, and so you save disk accesses and speed up the query.

CLUSTER can re-sort the table using either an index scan on the specified index, or (if the index is a b-
tree) a sequential scan followed by sorting. It will attempt to choose the method that will be faster, based
on planner cost parameters and available statistical information.

1317

CLUSTER

When an index scan is used, a temporary copy of the table is created that contains the table data in the
index order. Temporary copies of each index on the table are created as well. Therefore, you need free
space on disk at least equal to the sum of the table size and the index sizes.

When a sequential scan and sort is used, a temporary sort file is also created, so that the peak temporary
space requirement is as much as double the table size, plus the index sizes. This method is often faster
than the index scan method, but if the disk space requirement is intolerable, you can disable this choice
by temporarily setting enable_sort to off.

It is advisable to set maintenance_work_mem to a reasonably large value (but not more than the amount
of RAM you can dedicate to the CLUSTER operation) before clustering.

Because the planner records statistics about the ordering of tables, it is advisable to run ANALYZE on
the newly clustered table. Otherwise, the planner might make poor choices of query plans.

Because CLUSTER remembers which indexes are clustered, one can cluster the tables one wants clustered
manually the first time, then set up a periodic maintenance script that executes CLUSTER without any
parameters, so that the desired tables are periodically reclustered.

Examples
Cluster the table employees on the basis of its index employees_ind:

CLUSTER employees USING employees_ind;

Cluster the employees table using the same index that was used before:

CLUSTER employees;

Cluster all tables in the database that have previously been clustered:

CLUSTER;

Compatibility
There is no CLUSTER statement in the SQL standard.

The syntax

CLUSTER index_name ON table_name

is also supported for compatibility with pre-8.3 PostgreSQL versions.

See Also
clusterdb

1318

COMMENT
COMMENT — define or change the comment of an object

Synopsis
COMMENT ON
{
 ACCESS METHOD object_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 CAST (source_type AS target_type) |
 COLLATION object_name |
 COLUMN relation_name.column_name |
 CONSTRAINT constraint_name ON table_name |
 CONSTRAINT constraint_name ON DOMAIN domain_name |
 CONVERSION object_name |
 DATABASE object_name |
 DOMAIN object_name |
 EXTENSION object_name |
 EVENT TRIGGER object_name |
 FOREIGN DATA WRAPPER object_name |
 FOREIGN TABLE object_name |
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 INDEX object_name |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 OPERATOR operator_name (left_type, right_type) |
 OPERATOR CLASS object_name USING index_method |
 OPERATOR FAMILY object_name USING index_method |
 POLICY policy_name ON table_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 RULE rule_name ON table_name |
 SCHEMA object_name |
 SEQUENCE object_name |
 SERVER object_name |
 STATISTICS object_name |
 SUBSCRIPTION object_name |
 TABLE object_name |
 TABLESPACE object_name |
 TEXT SEARCH CONFIGURATION object_name |
 TEXT SEARCH DICTIONARY object_name |
 TEXT SEARCH PARSER object_name |
 TEXT SEARCH TEMPLATE object_name |
 TRANSFORM FOR type_name LANGUAGE lang_name |
 TRIGGER trigger_name ON table_name |
 TYPE object_name |
 VIEW object_name
} IS 'text'

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |

1319

COMMENT

[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
COMMENT stores a comment about a database object.

Only one comment string is stored for each object, so to modify a comment, issue a new COMMENT
command for the same object. To remove a comment, write NULL in place of the text string. Comments
are automatically dropped when their object is dropped.

A SHARE UPDATE EXCLUSIVE lock is acquired on the object to be commented.

For most kinds of object, only the object's owner can set the comment. Roles don't have owners, so the
rule for COMMENT ON ROLE is that you must be superuser to comment on a superuser role, or have the
CREATEROLE privilege to comment on non-superuser roles. Likewise, access methods don't have owners
either; you must be superuser to comment on an access method. Of course, a superuser can comment
on anything.

Comments can be viewed using psql's \d family of commands. Other user interfaces to retrieve comments
can be built atop the same built-in functions that psql uses, namely obj_description, col_description,
and shobj_description (see Table 9.73).

Parameters
object_name
relation_name.column_name
aggregate_name
constraint_name
function_name
operator_name
policy_name
procedure_name
routine_name
rule_name
trigger_name

The name of the object to be commented. Names of tables, aggregates, collations, conversions,
domains, foreign tables, functions, indexes, operators, operator classes, operator families,
procedures, routines, sequences, statistics, text search objects, types, and views can be schema-
qualified. When commenting on a column, relation_name must refer to a table, view, composite
type, or foreign table.

table_name
domain_name

When creating a comment on a constraint, a trigger, a rule or a policy these parameters specify the
name of the table or domain on which that object is defined.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that COMMENT does not actually pay any attention to OUT arguments, since only

1320

COMMENT

the input arguments are needed to determine the function's identity. So it is sufficient to list the IN,
INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that COMMENT does not actually pay
any attention to argument names, since only the argument data types are needed to determine the
function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

left_type
right_type

The data type(s) of the operator's arguments (optionally schema-qualified). Write NONE for the missing
argument of a prefix or postfix operator.

PROCEDURAL

This is a noise word.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

text

The new comment, written as a string literal; or NULL to drop the comment.

Notes
There is presently no security mechanism for viewing comments: any user connected to a database can
see all the comments for objects in that database. For shared objects such as databases, roles, and
tablespaces, comments are stored globally so any user connected to any database in the cluster can see
all the comments for shared objects. Therefore, don't put security-critical information in comments.

Examples
Attach a comment to the table mytable:

COMMENT ON TABLE mytable IS 'This is my table.';

Remove it again:

COMMENT ON TABLE mytable IS NULL;

Some more examples:

COMMENT ON ACCESS METHOD gin IS 'GIN index access method';
COMMENT ON AGGREGATE my_aggregate (double precision) IS 'Computes sample variance';
COMMENT ON CAST (text AS int4) IS 'Allow casts from text to int4';
COMMENT ON COLLATION "fr_CA" IS 'Canadian French';
COMMENT ON COLUMN my_table.my_column IS 'Employee ID number';
COMMENT ON CONVERSION my_conv IS 'Conversion to UTF8';
COMMENT ON CONSTRAINT bar_col_cons ON bar IS 'Constrains column col';
COMMENT ON CONSTRAINT dom_col_constr ON DOMAIN dom IS 'Constrains col of domain';

1321

COMMENT

COMMENT ON DATABASE my_database IS 'Development Database';
COMMENT ON DOMAIN my_domain IS 'Email Address Domain';
COMMENT ON EVENT TRIGGER abort_ddl IS 'Aborts all DDL commands';
COMMENT ON EXTENSION hstore IS 'implements the hstore data type';
COMMENT ON FOREIGN DATA WRAPPER mywrapper IS 'my foreign data wrapper';
COMMENT ON FOREIGN TABLE my_foreign_table IS 'Employee Information in other database';
COMMENT ON FUNCTION my_function (timestamp) IS 'Returns Roman Numeral';
COMMENT ON INDEX my_index IS 'Enforces uniqueness on employee ID';
COMMENT ON LANGUAGE plpython IS 'Python support for stored procedures';
COMMENT ON LARGE OBJECT 346344 IS 'Planning document';
COMMENT ON MATERIALIZED VIEW my_matview IS 'Summary of order history';
COMMENT ON OPERATOR ^ (text, text) IS 'Performs intersection of two texts';
COMMENT ON OPERATOR - (NONE, integer) IS 'Unary minus';
COMMENT ON OPERATOR CLASS int4ops USING btree IS '4 byte integer operators for btrees';
COMMENT ON OPERATOR FAMILY integer_ops USING btree IS 'all integer operators for
 btrees';
COMMENT ON POLICY my_policy ON mytable IS 'Filter rows by users';
COMMENT ON PROCEDURE my_proc (integer, integer) IS 'Runs a report';
COMMENT ON PUBLICATION alltables IS 'Publishes all operations on all tables';
COMMENT ON ROLE my_role IS 'Administration group for finance tables';
COMMENT ON ROUTINE my_routine (integer, integer) IS 'Runs a routine (which is a
 function or procedure)';
COMMENT ON RULE my_rule ON my_table IS 'Logs updates of employee records';
COMMENT ON SCHEMA my_schema IS 'Departmental data';
COMMENT ON SEQUENCE my_sequence IS 'Used to generate primary keys';
COMMENT ON SERVER myserver IS 'my foreign server';
COMMENT ON STATISTICS my_statistics IS 'Improves planner row estimations';
COMMENT ON SUBSCRIPTION alltables IS 'Subscription for all operations on all tables';
COMMENT ON TABLE my_schema.my_table IS 'Employee Information';
COMMENT ON TABLESPACE my_tablespace IS 'Tablespace for indexes';
COMMENT ON TEXT SEARCH CONFIGURATION my_config IS 'Special word filtering';
COMMENT ON TEXT SEARCH DICTIONARY swedish IS 'Snowball stemmer for Swedish language';
COMMENT ON TEXT SEARCH PARSER my_parser IS 'Splits text into words';
COMMENT ON TEXT SEARCH TEMPLATE snowball IS 'Snowball stemmer';
COMMENT ON TRANSFORM FOR hstore LANGUAGE plpythonu IS 'Transform between hstore and
 Python dict';
COMMENT ON TRIGGER my_trigger ON my_table IS 'Used for RI';
COMMENT ON TYPE complex IS 'Complex number data type';
COMMENT ON VIEW my_view IS 'View of departmental costs';

Compatibility
There is no COMMENT command in the SQL standard.

1322

COMMIT
COMMIT — commit the current transaction

Synopsis
COMMIT [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
COMMIT commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction
characteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is
started.

Notes
Use ROLLBACK to abort a transaction.

Issuing COMMIT when not inside a transaction does no harm, but it will provoke a warning message.
COMMIT AND CHAIN when not inside a transaction is an error.

Examples
To commit the current transaction and make all changes permanent:

COMMIT;

Compatibility
The command COMMIT conforms to the SQL standard. The form COMMIT TRANSACTION is a Postgres Pro
extension.

See Also
BEGIN, ROLLBACK

1323

COMMIT PREPARED
COMMIT PREPARED — commit a transaction that was earlier prepared for two-phase commit

Synopsis
COMMIT PREPARED transaction_id

Description
COMMIT PREPARED commits a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be committed.

Notes
To commit a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is committed
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Commit the transaction identified by the transaction identifier foobar:

COMMIT PREPARED 'foobar';

Compatibility
COMMIT PREPARED is a Postgres Pro extension. It is intended for use by external transaction management
systems, some of which are covered by standards (such as X/Open XA), but the SQL side of those systems
is not standardized.

See Also
PREPARE TRANSACTION, ROLLBACK PREPARED

1324

COPY
COPY — copy data between a file and a table

Synopsis
COPY table_name [(column_name [, ...])]
 FROM { 'filename' | PROGRAM 'command' | STDIN }
 [[WITH] (option [, ...])]
 [WHERE condition]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | PROGRAM 'command' | STDOUT }
 [[WITH] (option [, ...])]

where option can be one of:

 FORMAT format_name
 FREEZE [boolean]
 DELIMITER 'delimiter_character'
 NULL 'null_string'
 HEADER [boolean]
 QUOTE 'quote_character'
 ESCAPE 'escape_character'
 FORCE_QUOTE { (column_name [, ...]) | * }
 FORCE_NOT_NULL (column_name [, ...])
 FORCE_NULL (column_name [, ...])
 ENCODING 'encoding_name'

Description
COPY moves data between Postgres Pro tables and standard file-system files. COPY TO copies the contents
of a table to a file, while COPY FROM copies data from a file to a table (appending the data to whatever is
in the table already). COPY TO can also copy the results of a SELECT query.

If a column list is specified, COPY TO copies only the data in the specified columns to the file. For COPY
FROM, each field in the file is inserted, in order, into the specified column. Table columns not specified in
the COPY FROM column list will receive their default values.

COPY with a file name instructs the Postgres Pro server to directly read from or write to a file. The file
must be accessible by the Postgres Pro user (the user ID the server runs as) and the name must be
specified from the viewpoint of the server. When PROGRAM is specified, the server executes the given
command and reads from the standard output of the program, or writes to the standard input of the
program. The command must be specified from the viewpoint of the server, and be executable by the
Postgres Pro user. When STDIN or STDOUT is specified, data is transmitted via the connection between
the client and the server.

Parameters
table_name

The name (optionally schema-qualified) of an existing table.

column_name

An optional list of columns to be copied. If no column list is specified, all columns of the table except
generated columns will be copied.

1325

COPY

query

A SELECT, VALUES, INSERT, UPDATE or DELETE command whose results are to be copied. Note
that parentheses are required around the query.

For INSERT, UPDATE and DELETE queries a RETURNING clause must be provided, and the target
relation must not have a conditional rule, nor an ALSO rule, nor an INSTEAD rule that expands to
multiple statements.

filename

The path name of the input or output file. An input file name can be an absolute or relative path, but
an output file name must be an absolute path. Windows users might need to use an E'' string and
double any backslashes used in the path name.

PROGRAM

A command to execute. In COPY FROM, the input is read from standard output of the command, and
in COPY TO, the output is written to the standard input of the command.

Note that the command is invoked by the shell, so if you need to pass any arguments to shell command
that come from an untrusted source, you must be careful to strip or escape any special characters
that might have a special meaning for the shell. For security reasons, it is best to use a fixed command
string, or at least avoid passing any user input in it.

STDIN

Specifies that input comes from the client application.

STDOUT

Specifies that output goes to the client application.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

FORMAT

Selects the data format to be read or written: text, csv (Comma Separated Values), or binary. The
default is text.

FREEZE

Requests copying the data with rows already frozen, just as they would be after running the VACUUM
FREEZE command. This is intended as a performance option for initial data loading. Rows will be
frozen only if the table being loaded has been created or truncated in the current subtransaction,
there are no cursors open and there are no older snapshots held by this transaction. It is currently
not possible to perform a COPY FREEZE on a partitioned table.

Note that all other sessions will immediately be able to see the data once it has been successfully
loaded. This violates the normal rules of MVCC visibility and users specifying should be aware of the
potential problems this might cause.

DELIMITER

Specifies the character that separates columns within each row (line) of the file. The default is a
tab character in text format, a comma in CSV format. This must be a single one-byte character. This
option is not allowed when using binary format.

NULL

Specifies the string that represents a null value. The default is \N (backslash-N) in text format, and
an unquoted empty string in CSV format. You might prefer an empty string even in text format for

1326

COPY

cases where you don't want to distinguish nulls from empty strings. This option is not allowed when
using binary format.

Note
When using COPY FROM, any data item that matches this string will be stored as a null value,
so you should make sure that you use the same string as you used with COPY TO.

HEADER

Specifies that the file contains a header line with the names of each column in the file. On output,
the first line contains the column names from the table, and on input, the first line is ignored. This
option is allowed only when using CSV format.

QUOTE

Specifies the quoting character to be used when a data value is quoted. The default is double-quote.
This must be a single one-byte character. This option is allowed only when using CSV format.

ESCAPE

Specifies the character that should appear before a data character that matches the QUOTE value. The
default is the same as the QUOTE value (so that the quoting character is doubled if it appears in the
data). This must be a single one-byte character. This option is allowed only when using CSV format.

FORCE_QUOTE

Forces quoting to be used for all non-NULL values in each specified column. NULL output is never
quoted. If * is specified, non-NULL values will be quoted in all columns. This option is allowed only
in COPY TO, and only when using CSV format.

FORCE_NOT_NULL

Do not match the specified columns' values against the null string. In the default case where the
null string is empty, this means that empty values will be read as zero-length strings rather than
nulls, even when they are not quoted. This option is allowed only in COPY FROM, and only when using
CSV format.

FORCE_NULL

Match the specified columns' values against the null string, even if it has been quoted, and if a match
is found set the value to NULL. In the default case where the null string is empty, this converts a quoted
empty string into NULL. This option is allowed only in COPY FROM, and only when using CSV format.

ENCODING

Specifies that the file is encoded in the encoding_name. If this option is omitted, the current client
encoding is used. See the Notes below for more details.

WHERE

The optional WHERE clause has the general form

WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will not be inserted to the table. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

Currently, subqueries are not allowed in WHERE expressions, and the evaluation does not see any
changes made by the COPY itself (this matters when the expression contains calls to VOLATILE
functions).

1327

COPY

Outputs
On successful completion, a COPY command returns a command tag of the form

COPY count

The count is the number of rows copied.

Note
psql will print this command tag only if the command was not COPY ... TO STDOUT, or the
equivalent psql meta-command \copy ... to stdout. This is to prevent confusing the command
tag with the data that was just printed.

Notes
COPY TO can be used only with plain tables, not views, and does not copy rows from child tables or child
partitions. For example, COPY table TO copies the same rows as SELECT * FROM ONLY table. The
syntax COPY (SELECT * FROM table) TO ... can be used to dump all of the rows in an inheritance
hierarchy, partitioned table, or view.

COPY FROM can be used with plain, foreign, or partitioned tables or with views that have INSTEAD OF
INSERT triggers.

You must have select privilege on the table whose values are read by COPY TO, and insert privilege on
the table into which values are inserted by COPY FROM. It is sufficient to have column privileges on the
column(s) listed in the command.

If row-level security is enabled for the table, the relevant SELECT policies will apply to COPY table TO
statements. Currently, COPY FROM is not supported for tables with row-level security. Use equivalent
INSERT statements instead.

Files named in a COPY command are read or written directly by the server, not by the client application.
Therefore, they must reside on or be accessible to the database server machine, not the client. They must
be accessible to and readable or writable by the Postgres Pro user (the user ID the server runs as), not the
client. Similarly, the command specified with PROGRAM is executed directly by the server, not by the client
application, must be executable by the Postgres Pro user. COPY naming a file or command is only allowed
to database superusers or users who are granted one of the default roles pg_read_server_files,
pg_write_server_files, or pg_execute_server_program, since it allows reading or writing any file or
running a program that the server has privileges to access.

Do not confuse COPY with the psql instruction \copy. \copy invokes COPY FROM STDIN or COPY TO STDOUT,
and then fetches/stores the data in a file accessible to the psql client. Thus, file accessibility and access
rights depend on the client rather than the server when \copy is used.

It is recommended that the file name used in COPY always be specified as an absolute path. This is
enforced by the server in the case of COPY TO, but for COPY FROM you do have the option of reading from
a file specified by a relative path. The path will be interpreted relative to the working directory of the
server process (normally the cluster's data directory), not the client's working directory.

Executing a command with PROGRAM might be restricted by the operating system's access control
mechanisms, such as SELinux.

COPY FROM will invoke any triggers and check constraints on the destination table. However, it will not
invoke rules.

For identity columns, the COPY FROM command will always write the column values provided in the input
data, like the INSERT option OVERRIDING SYSTEM VALUE.

1328

COPY

COPY input and output is affected by DateStyle. To ensure portability to other Postgres Pro installations
that might use non-default DateStyle settings, DateStyle should be set to ISO before using COPY TO. It
is also a good idea to avoid dumping data with IntervalStyle set to sql_standard, because negative
interval values might be misinterpreted by a server that has a different setting for IntervalStyle.

Input data is interpreted according to ENCODING option or the current client encoding, and output data
is encoded in ENCODING or the current client encoding, even if the data does not pass through the client
but is read from or written to a file directly by the server.

COPY stops operation at the first error. This should not lead to problems in the event of a COPY TO, but
the target table will already have received earlier rows in a COPY FROM. These rows will not be visible
or accessible, but they still occupy disk space. This might amount to a considerable amount of wasted
disk space if the failure happened well into a large copy operation. You might wish to invoke VACUUM to
recover the wasted space.

FORCE_NULL and FORCE_NOT_NULL can be used simultaneously on the same column. This results in
converting quoted null strings to null values and unquoted null strings to empty strings.

Postgres Pro does not allow NUL bytes in data. If you are going to import such data using the COPY FROM
command, you can specify an ASCII character in the nul_byte_replacement_on_import configuration
parameter to replace NUL bytes on the fly.

File Formats
Text Format

When the text format is used, the data read or written is a text file with one line per table row. Columns
in a row are separated by the delimiter character. The column values themselves are strings generated
by the output function, or acceptable to the input function, of each attribute's data type. The specified
null string is used in place of columns that are null. COPY FROM will raise an error if any line of the input
file contains more or fewer columns than are expected.

End of data can be represented by a single line containing just backslash-period (\.). An end-of-data
marker is not necessary when reading from a file, since the end of file serves perfectly well; it is needed
only when copying data to or from client applications using pre-3.0 client protocol.

Backslash characters (\) can be used in the COPY data to quote data characters that might otherwise
be taken as row or column delimiters. In particular, the following characters must be preceded by a
backslash if they appear as part of a column value: backslash itself, newline, carriage return, and the
current delimiter character.

The specified null string is sent by COPY TO without adding any backslashes; conversely, COPY FROM
matches the input against the null string before removing backslashes. Therefore, a null string such as
\N cannot be confused with the actual data value \N (which would be represented as \\N).

The following special backslash sequences are recognized by COPY FROM:

Sequence Represents
\b Backspace (ASCII 8)
\f Form feed (ASCII 12)
\n Newline (ASCII 10)
\r Carriage return (ASCII 13)
\t Tab (ASCII 9)
\v Vertical tab (ASCII 11)
\digits Backslash followed by one to three octal digits

specifies the byte with that numeric code

1329

COPY

Sequence Represents
\xdigits Backslash x followed by one or two hex digits

specifies the byte with that numeric code

Presently, COPY TO will never emit an octal or hex-digits backslash sequence, but it does use the other
sequences listed above for those control characters.

Any other backslashed character that is not mentioned in the above table will be taken to represent itself.
However, beware of adding backslashes unnecessarily, since that might accidentally produce a string
matching the end-of-data marker (\.) or the null string (\N by default). These strings will be recognized
before any other backslash processing is done.

It is strongly recommended that applications generating COPY data convert data newlines and carriage
returns to the \n and \r sequences respectively. At present it is possible to represent a data carriage
return by a backslash and carriage return, and to represent a data newline by a backslash and newline.
However, these representations might not be accepted in future releases. They are also highly vulnerable
to corruption if the COPY file is transferred across different machines (for example, from Unix to Windows
or vice versa).

All backslash sequences are interpreted after encoding conversion. The bytes specified with the octal
and hex-digit backslash sequences must form valid characters in the database encoding.

COPY TO will terminate each row with a Unix-style newline (“\n”). Servers running on Microsoft Windows
instead output carriage return/newline (“\r\n”), but only for COPY to a server file; for consistency across
platforms, COPY TO STDOUT always sends “\n” regardless of server platform. COPY FROM can handle lines
ending with newlines, carriage returns, or carriage return/newlines. To reduce the risk of error due to
un-backslashed newlines or carriage returns that were meant as data, COPY FROM will complain if the
line endings in the input are not all alike.

CSV Format
This format option is used for importing and exporting the Comma Separated Value (CSV) file format
used by many other programs, such as spreadsheets. Instead of the escaping rules used by Postgres
Pro's standard text format, it produces and recognizes the common CSV escaping mechanism.

The values in each record are separated by the DELIMITER character. If the value contains the delimiter
character, the QUOTE character, the NULL string, a carriage return, or line feed character, then the whole
value is prefixed and suffixed by the QUOTE character, and any occurrence within the value of a QUOTE
character or the ESCAPE character is preceded by the escape character. You can also use FORCE_QUOTE
to force quotes when outputting non-NULL values in specific columns.

The CSV format has no standard way to distinguish a NULL value from an empty string. Postgres Pro's
COPY handles this by quoting. A NULL is output as the NULL parameter string and is not quoted, while a
non-NULL value matching the NULL parameter string is quoted. For example, with the default settings,
a NULL is written as an unquoted empty string, while an empty string data value is written with double
quotes (""). Reading values follows similar rules. You can use FORCE_NOT_NULL to prevent NULL input
comparisons for specific columns. You can also use FORCE_NULL to convert quoted null string data values
to NULL.

Because backslash is not a special character in the CSV format, \., the end-of-data marker, could also
appear as a data value. To avoid any misinterpretation, a \. data value appearing as a lone entry on
a line is automatically quoted on output, and on input, if quoted, is not interpreted as the end-of-data
marker. If you are loading a file created by another application that has a single unquoted column and
might have a value of \., you might need to quote that value in the input file.

Note
In CSV format, all characters are significant. A quoted value surrounded by white space, or any
characters other than DELIMITER, will include those characters. This can cause errors if you

1330

COPY

import data from a system that pads CSV lines with white space out to some fixed width. If such
a situation arises you might need to preprocess the CSV file to remove the trailing white space,
before importing the data into Postgres Pro.

Note
CSV format will both recognize and produce CSV files with quoted values containing embedded
carriage returns and line feeds. Thus the files are not strictly one line per table row like text-
format files.

Note
Many programs produce strange and occasionally perverse CSV files, so the file format is more a
convention than a standard. Thus you might encounter some files that cannot be imported using
this mechanism, and COPY might produce files that other programs cannot process.

Binary Format
The binary format option causes all data to be stored/read as binary format rather than as text. It is
somewhat faster than the text and CSV formats, but a binary-format file is less portable across machine
architectures and Postgres Pro versions. Also, the binary format is very data type specific; for example
it will not work to output binary data from a smallint column and read it into an integer column, even
though that would work fine in text format.

The binary file format consists of a file header, zero or more tuples containing the row data, and a file
trailer. Headers and data are in network byte order.

Note
PostgreSQL releases before 7.4 used a different binary file format.

File Header
The file header consists of 15 bytes of fixed fields, followed by a variable-length header extension area.
The fixed fields are:
Signature

11-byte sequence PGCOPY\n\377\r\n\0 — note that the zero byte is a required part of the signature.
(The signature is designed to allow easy identification of files that have been munged by a non-8-bit-
clean transfer. This signature will be changed by end-of-line-translation filters, dropped zero bytes,
dropped high bits, or parity changes.)

Flags field
32-bit integer bit mask to denote important aspects of the file format. Bits are numbered from 0
(LSB) to 31 (MSB). Note that this field is stored in network byte order (most significant byte first), as
are all the integer fields used in the file format. Bits 16–31 are reserved to denote critical file format
issues; a reader should abort if it finds an unexpected bit set in this range. Bits 0–15 are reserved to
signal backwards-compatible format issues; a reader should simply ignore any unexpected bits set
in this range. Currently only one flag bit is defined, and the rest must be zero:
Bit 16

If 1, OIDs are included in the data; if 0, not. Oid system columns are not supported in Postgres
Pro anymore, but the format still contains the indicator.

1331

COPY

Header extension area length
32-bit integer, length in bytes of remainder of header, not including self. Currently, this is zero, and
the first tuple follows immediately. Future changes to the format might allow additional data to be
present in the header. A reader should silently skip over any header extension data it does not know
what to do with.

The header extension area is envisioned to contain a sequence of self-identifying chunks. The flags field
is not intended to tell readers what is in the extension area. Specific design of header extension contents
is left for a later release.

This design allows for both backwards-compatible header additions (add header extension chunks, or
set low-order flag bits) and non-backwards-compatible changes (set high-order flag bits to signal such
changes, and add supporting data to the extension area if needed).

Tuples

Each tuple begins with a 16-bit integer count of the number of fields in the tuple. (Presently, all tuples
in a table will have the same count, but that might not always be true.) Then, repeated for each field
in the tuple, there is a 32-bit length word followed by that many bytes of field data. (The length word
does not include itself, and can be zero.) As a special case, -1 indicates a NULL field value. No value
bytes follow in the NULL case.

There is no alignment padding or any other extra data between fields.

Presently, all data values in a binary-format file are assumed to be in binary format (format code one).
It is anticipated that a future extension might add a header field that allows per-column format codes
to be specified.

If OIDs are included in the file, the OID field immediately follows the field-count word. It is a normal
field except that it's not included in the field-count. Note that oid system columns are not supported in
current versions of Postgres Pro.

File Trailer

The file trailer consists of a 16-bit integer word containing -1. This is easily distinguished from a tuple's
field-count word.

A reader should report an error if a field-count word is neither -1 nor the expected number of columns.
This provides an extra check against somehow getting out of sync with the data.

Examples
The following example copies a table to the client using the vertical bar (|) as the field delimiter:
COPY country TO STDOUT (DELIMITER '|');

To copy data from a file into the country table:
COPY country FROM '/usr1/proj/bray/sql/country_data';

To copy into a file just the countries whose names start with 'A':
COPY (SELECT * FROM country WHERE country_name LIKE 'A%') TO '/usr1/proj/bray/sql/
a_list_countries.copy';

To copy into a compressed file, you can pipe the output through an external compression program:
COPY country TO PROGRAM 'gzip > /usr1/proj/bray/sql/country_data.gz';

Here is a sample of data suitable for copying into a table from STDIN:
AF AFGHANISTAN
AL ALBANIA
DZ ALGERIA

1332

COPY

ZM ZAMBIA
ZW ZIMBABWE

Note that the white space on each line is actually a tab character.

The following is the same data, output in binary format. The data is shown after filtering through the
Unix utility od -c. The table has three columns; the first has type char(2), the second has type text,
and the third has type integer. All the rows have a null value in the third column.

0000000 P G C O P Y \n 377 \r \n \0 \0 \0 \0 \0 \0
0000020 \0 \0 \0 \0 003 \0 \0 \0 002 A F \0 \0 \0 013 A
0000040 F G H A N I S T A N 377 377 377 377 \0 003
0000060 \0 \0 \0 002 A L \0 \0 \0 007 A L B A N I
0000100 A 377 377 377 377 \0 003 \0 \0 \0 002 D Z \0 \0 \0
0000120 007 A L G E R I A 377 377 377 377 \0 003 \0 \0
0000140 \0 002 Z M \0 \0 \0 006 Z A M B I A 377 377
0000160 377 377 \0 003 \0 \0 \0 002 Z W \0 \0 \0 \b Z I
0000200 M B A B W E 377 377 377 377 377 377

Compatibility
There is no COPY statement in the SQL standard.

The following syntax was used before PostgreSQL version 9.0 and is still supported:

COPY table_name [(column_name [, ...])]
 FROM { 'filename' | STDIN }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE NOT NULL column_name [, ...]]]]

COPY { table_name [(column_name [, ...])] | (query) }
 TO { 'filename' | STDOUT }
 [[WITH]
 [BINARY]
 [DELIMITER [AS] 'delimiter_character']
 [NULL [AS] 'null_string']
 [CSV [HEADER]
 [QUOTE [AS] 'quote_character']
 [ESCAPE [AS] 'escape_character']
 [FORCE QUOTE { column_name [, ...] | * }]]]

Note that in this syntax, BINARY and CSV are treated as independent keywords, not as arguments of a
FORMAT option.

The following syntax was used before PostgreSQL version 7.3 and is still supported:

COPY [BINARY] table_name
 FROM { 'filename' | STDIN }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

COPY [BINARY] table_name
 TO { 'filename' | STDOUT }
 [[USING] DELIMITERS 'delimiter_character']
 [WITH NULL AS 'null_string']

1333

CREATE ACCESS METHOD
CREATE ACCESS METHOD — define a new access method

Synopsis
CREATE ACCESS METHOD name
 TYPE access_method_type
 HANDLER handler_function

Description
CREATE ACCESS METHOD creates a new access method.

The access method name must be unique within the database.

Only superusers can define new access methods.

Parameters
name

The name of the access method to be created.

access_method_type

This clause specifies the type of access method to define. Only TABLE and INDEX are supported at
present.

handler_function

handler_function is the name (possibly schema-qualified) of a previously registered function that
represents the access method. The handler function must be declared to take a single argument of
type internal, and its return type depends on the type of access method; for TABLE access methods,
it must be table_am_handler and for INDEX access methods, it must be index_am_handler. The C-
level API that the handler function must implement varies depending on the type of access method.
The table access method API is described in Chapter 56 and the index access method API is described
in Chapter 57.

Examples
Create an index access method heptree with handler function heptree_handler:

CREATE ACCESS METHOD heptree TYPE INDEX HANDLER heptree_handler;

Compatibility
CREATE ACCESS METHOD is a Postgres Pro extension.

See Also
DROP ACCESS METHOD, CREATE OPERATOR CLASS, CREATE OPERATOR FAMILY

1334

CREATE AGGREGATE
CREATE AGGREGATE — define a new aggregate function

Synopsis
CREATE [OR REPLACE] AGGREGATE name ([argmode] [argname] arg_data_type
 [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]
 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
)

CREATE [OR REPLACE] AGGREGATE name ([[argmode] [argname] arg_data_type
 [, ...]]
 ORDER BY [argmode] [argname] arg_data_type [, ...]) (
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, INITCOND = initial_condition]
 [, PARALLEL = { SAFE | RESTRICTED | UNSAFE }]
 [, HYPOTHETICAL]
)

or the old syntax

CREATE [OR REPLACE] AGGREGATE name (
 BASETYPE = base_type,
 SFUNC = sfunc,
 STYPE = state_data_type
 [, SSPACE = state_data_size]
 [, FINALFUNC = ffunc]
 [, FINALFUNC_EXTRA]
 [, FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, COMBINEFUNC = combinefunc]
 [, SERIALFUNC = serialfunc]

1335

CREATE AGGREGATE

 [, DESERIALFUNC = deserialfunc]
 [, INITCOND = initial_condition]
 [, MSFUNC = msfunc]
 [, MINVFUNC = minvfunc]
 [, MSTYPE = mstate_data_type]
 [, MSSPACE = mstate_data_size]
 [, MFINALFUNC = mffunc]
 [, MFINALFUNC_EXTRA]
 [, MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }]
 [, MINITCOND = minitial_condition]
 [, SORTOP = sort_operator]
)

Description
CREATE AGGREGATE defines a new aggregate function. CREATE OR REPLACE AGGREGATE will either define
a new aggregate function or replace an existing definition. Some basic and commonly-used aggregate
functions are included with the distribution; they are documented in Section 9.21. If one defines new
types or needs an aggregate function not already provided, then CREATE AGGREGATE can be used to
provide the desired features.

When replacing an existing definition, the argument types, result type, and number of direct arguments
may not be changed. Also, the new definition must be of the same kind (ordinary aggregate, ordered-
set aggregate, or hypothetical-set aggregate) as the old one.

If a schema name is given (for example, CREATE AGGREGATE myschema.myagg ...) then the aggregate
function is created in the specified schema. Otherwise it is created in the current schema.

An aggregate function is identified by its name and input data type(s). Two aggregates in the same
schema can have the same name if they operate on different input types. The name and input data type(s)
of an aggregate must also be distinct from the name and input data type(s) of every ordinary function
in the same schema. This behavior is identical to overloading of ordinary function names (see CREATE
FUNCTION).

A simple aggregate function is made from one or two ordinary functions: a state transition function
sfunc, and an optional final calculation function ffunc. These are used as follows:

sfunc(internal-state, next-data-values) ---> next-internal-state
ffunc(internal-state) ---> aggregate-value

Postgres Pro creates a temporary variable of data type stype to hold the current internal state of the
aggregate. At each input row, the aggregate argument value(s) are calculated and the state transition
function is invoked with the current state value and the new argument value(s) to calculate a new internal
state value. After all the rows have been processed, the final function is invoked once to calculate the
aggregate's return value. If there is no final function then the ending state value is returned as-is.

An aggregate function can provide an initial condition, that is, an initial value for the internal state
value. This is specified and stored in the database as a value of type text, but it must be a valid external
representation of a constant of the state value data type. If it is not supplied then the state value starts
out null.

If the state transition function is declared “strict”, then it cannot be called with null inputs. With such a
transition function, aggregate execution behaves as follows. Rows with any null input values are ignored
(the function is not called and the previous state value is retained). If the initial state value is null, then
at the first row with all-nonnull input values, the first argument value replaces the state value, and the
transition function is invoked at each subsequent row with all-nonnull input values. This is handy for
implementing aggregates like max. Note that this behavior is only available when state_data_type is
the same as the first arg_data_type. When these types are different, you must supply a nonnull initial
condition or use a nonstrict transition function.

1336

CREATE AGGREGATE

If the state transition function is not strict, then it will be called unconditionally at each input row, and
must deal with null inputs and null state values for itself. This allows the aggregate author to have full
control over the aggregate's handling of null values.

If the final function is declared “strict”, then it will not be called when the ending state value is null;
instead a null result will be returned automatically. (Of course this is just the normal behavior of strict
functions.) In any case the final function has the option of returning a null value. For example, the final
function for avg returns null when it sees there were zero input rows.

Sometimes it is useful to declare the final function as taking not just the state value, but extra parameters
corresponding to the aggregate's input values. The main reason for doing this is if the final function
is polymorphic and the state value's data type would be inadequate to pin down the result type. These
extra parameters are always passed as NULL (and so the final function must not be strict when the
FINALFUNC_EXTRA option is used), but nonetheless they are valid parameters. The final function could
for example make use of get_fn_expr_argtype to identify the actual argument type in the current call.

An aggregate can optionally support moving-aggregate mode, as described in Section 35.12.1. This
requires specifying the MSFUNC, MINVFUNC, and MSTYPE parameters, and optionally the MSSPACE,
MFINALFUNC, MFINALFUNC_EXTRA, MFINALFUNC_MODIFY, and MINITCOND parameters. Except for MINVFUNC,
these parameters work like the corresponding simple-aggregate parameters without M; they define a
separate implementation of the aggregate that includes an inverse transition function.

The syntax with ORDER BY in the parameter list creates a special type of aggregate called an ordered-
set aggregate; or if HYPOTHETICAL is specified, then a hypothetical-set aggregate is created. These
aggregates operate over groups of sorted values in order-dependent ways, so that specification of
an input sort order is an essential part of a call. Also, they can have direct arguments, which are
arguments that are evaluated only once per aggregation rather than once per input row. Hypothetical-set
aggregates are a subclass of ordered-set aggregates in which some of the direct arguments are required
to match, in number and data types, the aggregated argument columns. This allows the values of those
direct arguments to be added to the collection of aggregate-input rows as an additional “hypothetical”
row.

An aggregate can optionally support partial aggregation, as described in Section 35.12.4. This requires
specifying the COMBINEFUNC parameter. If the state_data_type is internal, it's usually also appropriate
to provide the SERIALFUNC and DESERIALFUNC parameters so that parallel aggregation is possible. Note
that the aggregate must also be marked PARALLEL SAFE to enable parallel aggregation.

Aggregates that behave like MIN or MAX can sometimes be optimized by looking into an index instead of
scanning every input row. If this aggregate can be so optimized, indicate it by specifying a sort operator.
The basic requirement is that the aggregate must yield the first element in the sort ordering induced
by the operator; in other words:
SELECT agg(col) FROM tab;

must be equivalent to:
SELECT col FROM tab ORDER BY col USING sortop LIMIT 1;

Further assumptions are that the aggregate ignores null inputs, and that it delivers a null result if and
only if there were no non-null inputs. Ordinarily, a data type's < operator is the proper sort operator
for MIN, and > is the proper sort operator for MAX. Note that the optimization will never actually take
effect unless the specified operator is the “less than” or “greater than” strategy member of a B-tree
index operator class.

To be able to create an aggregate function, you must have USAGE privilege on the argument types, the
state type(s), and the return type, as well as EXECUTE privilege on the supporting functions.

Parameters
name

The name (optionally schema-qualified) of the aggregate function to create.

1337

CREATE AGGREGATE

argmode

The mode of an argument: IN or VARIADIC. (Aggregate functions do not support OUT arguments.) If
omitted, the default is IN. Only the last argument can be marked VARIADIC.

argname

The name of an argument. This is currently only useful for documentation purposes. If omitted, the
argument has no name.

arg_data_type

An input data type on which this aggregate function operates. To create a zero-argument aggregate
function, write * in place of the list of argument specifications. (An example of such an aggregate
is count(*).)

base_type

In the old syntax for CREATE AGGREGATE, the input data type is specified by a basetype parameter
rather than being written next to the aggregate name. Note that this syntax allows only one input
parameter. To define a zero-argument aggregate function with this syntax, specify the basetype as
"ANY" (not *). Ordered-set aggregates cannot be defined with the old syntax.

sfunc

The name of the state transition function to be called for each input row. For a normal N-argument
aggregate function, the sfunc must take N+1 arguments, the first being of type state_data_type
and the rest matching the declared input data type(s) of the aggregate. The function must return
a value of type state_data_type. This function takes the current state value and the current input
data value(s), and returns the next state value.

For ordered-set (including hypothetical-set) aggregates, the state transition function receives only
the current state value and the aggregated arguments, not the direct arguments. Otherwise it is
the same.

state_data_type

The data type for the aggregate's state value.

state_data_size

The approximate average size (in bytes) of the aggregate's state value. If this parameter is omitted
or is zero, a default estimate is used based on the state_data_type. The planner uses this value to
estimate the memory required for a grouped aggregate query.

ffunc

The name of the final function called to compute the aggregate's result after all input rows
have been traversed. For a normal aggregate, this function must take a single argument of type
state_data_type. The return data type of the aggregate is defined as the return type of this function.
If ffunc is not specified, then the ending state value is used as the aggregate's result, and the return
type is state_data_type.

For ordered-set (including hypothetical-set) aggregates, the final function receives not only the final
state value, but also the values of all the direct arguments.

If FINALFUNC_EXTRA is specified, then in addition to the final state value and any direct arguments,
the final function receives extra NULL values corresponding to the aggregate's regular (aggregated)
arguments. This is mainly useful to allow correct resolution of the aggregate result type when a
polymorphic aggregate is being defined.

FINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
This option specifies whether the final function is a pure function that does not modify its arguments.
READ_ONLY indicates it does not; the other two values indicate that it may change the transition state

1338

CREATE AGGREGATE

value. See Notes below for more detail. The default is READ_ONLY, except for ordered-set aggregates,
for which the default is READ_WRITE.

combinefunc

The combinefunc function may optionally be specified to allow the aggregate function to support
partial aggregation. If provided, the combinefunc must combine two state_data_type values,
each containing the result of aggregation over some subset of the input values, to produce a new
state_data_type that represents the result of aggregating over both sets of inputs. This function
can be thought of as an sfunc, where instead of acting upon an individual input row and adding it to
the running aggregate state, it adds another aggregate state to the running state.

The combinefunc must be declared as taking two arguments of the state_data_type and returning
a value of the state_data_type. Optionally this function may be “strict”. In this case the function
will not be called when either of the input states are null; the other state will be taken as the correct
result.

For aggregate functions whose state_data_type is internal, the combinefunc must not be strict.
In this case the combinefunc must ensure that null states are handled correctly and that the state
being returned is properly stored in the aggregate memory context.

serialfunc

An aggregate function whose state_data_type is internal can participate in parallel aggregation
only if it has a serialfunc function, which must serialize the aggregate state into a bytea value for
transmission to another process. This function must take a single argument of type internal and
return type bytea. A corresponding deserialfunc is also required.

deserialfunc

Deserialize a previously serialized aggregate state back into state_data_type. This function must
take two arguments of types bytea and internal, and produce a result of type internal. (Note: the
second, internal argument is unused, but is required for type safety reasons.)

initial_condition

The initial setting for the state value. This must be a string constant in the form accepted for the
data type state_data_type. If not specified, the state value starts out null.

msfunc

The name of the forward state transition function to be called for each input row in moving-aggregate
mode. This is exactly like the regular transition function, except that its first argument and result
are of type mstate_data_type, which might be different from state_data_type.

minvfunc

The name of the inverse state transition function to be used in moving-aggregate mode. This function
has the same argument and result types as msfunc, but it is used to remove a value from the current
aggregate state, rather than add a value to it. The inverse transition function must have the same
strictness attribute as the forward state transition function.

mstate_data_type

The data type for the aggregate's state value, when using moving-aggregate mode.

mstate_data_size

The approximate average size (in bytes) of the aggregate's state value, when using moving-aggregate
mode. This works the same as state_data_size.

mffunc

The name of the final function called to compute the aggregate's result after all input rows have
been traversed, when using moving-aggregate mode. This works the same as ffunc, except that

1339

CREATE AGGREGATE

its first argument's type is mstate_data_type and extra dummy arguments are specified by writing
MFINALFUNC_EXTRA. The aggregate result type determined by mffunc or mstate_data_type must
match that determined by the aggregate's regular implementation.

MFINALFUNC_MODIFY = { READ_ONLY | SHAREABLE | READ_WRITE }
This option is like FINALFUNC_MODIFY, but it describes the behavior of the moving-aggregate final
function.

minitial_condition

The initial setting for the state value, when using moving-aggregate mode. This works the same as
initial_condition.

sort_operator

The associated sort operator for a MIN- or MAX-like aggregate. This is just an operator name (possibly
schema-qualified). The operator is assumed to have the same input data types as the aggregate
(which must be a single-argument normal aggregate).

PARALLEL = { SAFE | RESTRICTED | UNSAFE }
The meanings of PARALLEL SAFE, PARALLEL RESTRICTED, and PARALLEL UNSAFE are the same as in
CREATE FUNCTION. An aggregate will not be considered for parallelization if it is marked PARALLEL
UNSAFE (which is the default!) or PARALLEL RESTRICTED. Note that the parallel-safety markings of the
aggregate's support functions are not consulted by the planner, only the marking of the aggregate
itself.

HYPOTHETICAL

For ordered-set aggregates only, this flag specifies that the aggregate arguments are to be processed
according to the requirements for hypothetical-set aggregates: that is, the last few direct arguments
must match the data types of the aggregated (WITHIN GROUP) arguments. The HYPOTHETICAL flag
has no effect on run-time behavior, only on parse-time resolution of the data types and collations of
the aggregate's arguments.

The parameters of CREATE AGGREGATE can be written in any order, not just the order illustrated above.

Notes
In parameters that specify support function names, you can write a schema name if needed, for example
SFUNC = public.sum. Do not write argument types there, however — the argument types of the support
functions are determined from other parameters.

Ordinarily, Postgres Pro functions are expected to be true functions that do not modify their input values.
However, an aggregate transition function, when used in the context of an aggregate, is allowed to cheat
and modify its transition-state argument in place. This can provide substantial performance benefits
compared to making a fresh copy of the transition state each time.

Likewise, while an aggregate final function is normally expected not to modify its input values, sometimes
it is impractical to avoid modifying the transition-state argument. Such behavior must be declared using
the FINALFUNC_MODIFY parameter. The READ_WRITE value indicates that the final function modifies the
transition state in unspecified ways. This value prevents use of the aggregate as a window function, and
it also prevents merging of transition states for aggregate calls that share the same input values and
transition functions. The SHAREABLE value indicates that the transition function cannot be applied after
the final function, but multiple final-function calls can be performed on the ending transition state value.
This value prevents use of the aggregate as a window function, but it allows merging of transition states.
(That is, the optimization of interest here is not applying the same final function repeatedly, but applying
different final functions to the same ending transition state value. This is allowed as long as none of the
final functions are marked READ_WRITE.)

If an aggregate supports moving-aggregate mode, it will improve calculation efficiency when the
aggregate is used as a window function for a window with moving frame start (that is, a frame start mode

1340

CREATE AGGREGATE

other than UNBOUNDED PRECEDING). Conceptually, the forward transition function adds input values to the
aggregate's state when they enter the window frame from the bottom, and the inverse transition function
removes them again when they leave the frame at the top. So, when values are removed, they are always
removed in the same order they were added. Whenever the inverse transition function is invoked, it will
thus receive the earliest added but not yet removed argument value(s). The inverse transition function
can assume that at least one row will remain in the current state after it removes the oldest row. (When
this would not be the case, the window function mechanism simply starts a fresh aggregation, rather
than using the inverse transition function.)

The forward transition function for moving-aggregate mode is not allowed to return NULL as the new
state value. If the inverse transition function returns NULL, this is taken as an indication that the inverse
function cannot reverse the state calculation for this particular input, and so the aggregate calculation
will be redone from scratch for the current frame starting position. This convention allows moving-
aggregate mode to be used in situations where there are some infrequent cases that are impractical to
reverse out of the running state value.

If no moving-aggregate implementation is supplied, the aggregate can still be used with moving frames,
but Postgres Pro will recompute the whole aggregation whenever the start of the frame moves. Note
that whether or not the aggregate supports moving-aggregate mode, Postgres Pro can handle a moving
frame end without recalculation; this is done by continuing to add new values to the aggregate's state.
This is why use of an aggregate as a window function requires that the final function be read-only: it
must not damage the aggregate's state value, so that the aggregation can be continued even after an
aggregate result value has been obtained for one set of frame boundaries.

The syntax for ordered-set aggregates allows VARIADIC to be specified for both the last direct parameter
and the last aggregated (WITHIN GROUP) parameter. However, the current implementation restricts
use of VARIADIC in two ways. First, ordered-set aggregates can only use VARIADIC "any", not other
variadic array types. Second, if the last direct parameter is VARIADIC "any", then there can be only one
aggregated parameter and it must also be VARIADIC "any". (In the representation used in the system
catalogs, these two parameters are merged into a single VARIADIC "any" item, since pg_proc cannot
represent functions with more than one VARIADIC parameter.) If the aggregate is a hypothetical-set
aggregate, the direct arguments that match the VARIADIC "any" parameter are the hypothetical ones;
any preceding parameters represent additional direct arguments that are not constrained to match the
aggregated arguments.

Currently, ordered-set aggregates do not need to support moving-aggregate mode, since they cannot
be used as window functions.

Partial (including parallel) aggregation is currently not supported for ordered-set aggregates. Also, it
will never be used for aggregate calls that include DISTINCT or ORDER BY clauses, since those semantics
cannot be supported during partial aggregation.

Examples
See Section 35.12.

Compatibility
CREATE AGGREGATE is a Postgres Pro language extension. The SQL standard does not provide for user-
defined aggregate functions.

See Also
ALTER AGGREGATE, DROP AGGREGATE

1341

CREATE CAST
CREATE CAST — define a new cast

Synopsis
CREATE CAST (source_type AS target_type)
 WITH FUNCTION function_name [(argument_type [, ...])]
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITHOUT FUNCTION
 [AS ASSIGNMENT | AS IMPLICIT]

CREATE CAST (source_type AS target_type)
 WITH INOUT
 [AS ASSIGNMENT | AS IMPLICIT]

Description
CREATE CAST defines a new cast. A cast specifies how to perform a conversion between two data types.
For example,

SELECT CAST(42 AS float8);

converts the integer constant 42 to type float8 by invoking a previously specified function, in this case
float8(int4). (If no suitable cast has been defined, the conversion fails.)

Two types can be binary coercible, which means that the conversion can be performed “for free” without
invoking any function. This requires that corresponding values use the same internal representation.
For instance, the types text and varchar are binary coercible both ways. Binary coercibility is not
necessarily a symmetric relationship. For example, the cast from xml to text can be performed for free
in the present implementation, but the reverse direction requires a function that performs at least a
syntax check. (Two types that are binary coercible both ways are also referred to as binary compatible.)

You can define a cast as an I/O conversion cast by using the WITH INOUT syntax. An I/O conversion cast
is performed by invoking the output function of the source data type, and passing the resulting string to
the input function of the target data type. In many common cases, this feature avoids the need to write a
separate cast function for conversion. An I/O conversion cast acts the same as a regular function-based
cast; only the implementation is different.

By default, a cast can be invoked only by an explicit cast request, that is an explicit CAST(x AS typename)
or x::typename construct.

If the cast is marked AS ASSIGNMENT then it can be invoked implicitly when assigning a value to a column
of the target data type. For example, supposing that foo.f1 is a column of type text, then:

INSERT INTO foo (f1) VALUES (42);

will be allowed if the cast from type integer to type text is marked AS ASSIGNMENT, otherwise not. (We
generally use the term assignment cast to describe this kind of cast.)

If the cast is marked AS IMPLICIT then it can be invoked implicitly in any context, whether assignment
or internally in an expression. (We generally use the term implicit cast to describe this kind of cast.)
For example, consider this query:

SELECT 2 + 4.0;

The parser initially marks the constants as being of type integer and numeric respectively. There is
no integer + numeric operator in the system catalogs, but there is a numeric + numeric operator. The

1342

CREATE CAST

query will therefore succeed if a cast from integer to numeric is available and is marked AS IMPLICIT
— which in fact it is. The parser will apply the implicit cast and resolve the query as if it had been written

SELECT CAST (2 AS numeric) + 4.0;

Now, the catalogs also provide a cast from numeric to integer. If that cast were marked AS IMPLICIT —
which it is not — then the parser would be faced with choosing between the above interpretation and the
alternative of casting the numeric constant to integer and applying the integer + integer operator.
Lacking any knowledge of which choice to prefer, it would give up and declare the query ambiguous. The
fact that only one of the two casts is implicit is the way in which we teach the parser to prefer resolution
of a mixed numeric-and-integer expression as numeric; there is no built-in knowledge about that.

It is wise to be conservative about marking casts as implicit. An overabundance of implicit casting paths
can cause Postgres Pro to choose surprising interpretations of commands, or to be unable to resolve
commands at all because there are multiple possible interpretations. A good rule of thumb is to make
a cast implicitly invokable only for information-preserving transformations between types in the same
general type category. For example, the cast from int2 to int4 can reasonably be implicit, but the cast
from float8 to int4 should probably be assignment-only. Cross-type-category casts, such as text to
int4, are best made explicit-only.

Note
Sometimes it is necessary for usability or standards-compliance reasons to provide multiple
implicit casts among a set of types, resulting in ambiguity that cannot be avoided as above. The
parser has a fallback heuristic based on type categories and preferred types that can help to
provide desired behavior in such cases. See CREATE TYPE for more information.

To be able to create a cast, you must own the source or the target data type and have USAGE privilege
on the other type. To create a binary-coercible cast, you must be superuser. (This restriction is made
because an erroneous binary-coercible cast conversion can easily crash the server.)

Parameters
source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

function_name[(argument_type [, ...])]

The function used to perform the cast. The function name can be schema-qualified. If it is not, the
function will be looked up in the schema search path. The function's result data type must match
the target type of the cast. Its arguments are discussed below. If no argument list is specified, the
function name must be unique in its schema.

WITHOUT FUNCTION

Indicates that the source type is binary-coercible to the target type, so no function is required to
perform the cast.

WITH INOUT

Indicates that the cast is an I/O conversion cast, performed by invoking the output function of the
source data type, and passing the resulting string to the input function of the target data type.

AS ASSIGNMENT

Indicates that the cast can be invoked implicitly in assignment contexts.

1343

CREATE CAST

AS IMPLICIT

Indicates that the cast can be invoked implicitly in any context.

Cast implementation functions can have one to three arguments. The first argument type must be
identical to or binary-coercible from the cast's source type. The second argument, if present, must be
type integer; it receives the type modifier associated with the destination type, or -1 if there is none.
The third argument, if present, must be type boolean; it receives true if the cast is an explicit cast,
false otherwise. (Bizarrely, the SQL standard demands different behaviors for explicit and implicit
casts in some cases. This argument is supplied for functions that must implement such casts. It is not
recommended that you design your own data types so that this matters.)

The return type of a cast function must be identical to or binary-coercible to the cast's target type.

Ordinarily a cast must have different source and target data types. However, it is allowed to declare
a cast with identical source and target types if it has a cast implementation function with more than
one argument. This is used to represent type-specific length coercion functions in the system catalogs.
The named function is used to coerce a value of the type to the type modifier value given by its second
argument.

When a cast has different source and target types and a function that takes more than one argument,
it supports converting from one type to another and applying a length coercion in a single step. When
no such entry is available, coercion to a type that uses a type modifier involves two cast steps, one to
convert between data types and a second to apply the modifier.

A cast to or from a domain type currently has no effect. Casting to or from a domain uses the casts
associated with its underlying type.

Notes
Use DROP CAST to remove user-defined casts.

Remember that if you want to be able to convert types both ways you need to declare casts both ways
explicitly.

It is normally not necessary to create casts between user-defined types and the standard string types
(text, varchar, and char(n), as well as user-defined types that are defined to be in the string category).
Postgres Pro provides automatic I/O conversion casts for that. The automatic casts to string types are
treated as assignment casts, while the automatic casts from string types are explicit-only. You can
override this behavior by declaring your own cast to replace an automatic cast, but usually the only
reason to do so is if you want the conversion to be more easily invokable than the standard assignment-
only or explicit-only setting. Another possible reason is that you want the conversion to behave differently
from the type's I/O function; but that is sufficiently surprising that you should think twice about whether
it's a good idea. (A small number of the built-in types do indeed have different behaviors for conversions,
mostly because of requirements of the SQL standard.)

While not required, it is recommended that you continue to follow this old convention of naming cast
implementation functions after the target data type. Many users are used to being able to cast data types
using a function-style notation, that is typename(x). This notation is in fact nothing more nor less than a
call of the cast implementation function; it is not specially treated as a cast. If your conversion functions
are not named to support this convention then you will have surprised users. Since Postgres Pro allows
overloading of the same function name with different argument types, there is no difficulty in having
multiple conversion functions from different types that all use the target type's name.

Note
Actually the preceding paragraph is an oversimplification: there are two cases in which a function-
call construct will be treated as a cast request without having matched it to an actual function. If
a function call name(x) does not exactly match any existing function, but name is the name of a data

1344

CREATE CAST

type and pg_cast provides a binary-coercible cast to this type from the type of x, then the call will
be construed as a binary-coercible cast. This exception is made so that binary-coercible casts can
be invoked using functional syntax, even though they lack any function. Likewise, if there is no
pg_cast entry but the cast would be to or from a string type, the call will be construed as an I/O
conversion cast. This exception allows I/O conversion casts to be invoked using functional syntax.

Note
There is also an exception to the exception: I/O conversion casts from composite types to string
types cannot be invoked using functional syntax, but must be written in explicit cast syntax (either
CAST or :: notation). This exception was added because after the introduction of automatically-
provided I/O conversion casts, it was found too easy to accidentally invoke such a cast when a
function or column reference was intended.

Examples
To create an assignment cast from type bigint to type int4 using the function int4(bigint):

CREATE CAST (bigint AS int4) WITH FUNCTION int4(bigint) AS ASSIGNMENT;

(This cast is already predefined in the system.)

Compatibility
The CREATE CAST command conforms to the SQL standard, except that SQL does not make provisions
for binary-coercible types or extra arguments to implementation functions. AS IMPLICIT is a Postgres
Pro extension, too.

See Also
CREATE FUNCTION, CREATE TYPE, DROP CAST

1345

CREATE COLLATION
CREATE COLLATION — define a new collation

Synopsis
CREATE COLLATION [IF NOT EXISTS] name (
 [LOCALE = locale,]
 [LC_COLLATE = lc_collate,]
 [LC_CTYPE = lc_ctype,]
 [PROVIDER = provider,]
 [DETERMINISTIC = boolean,]
 [VERSION = version]
)
CREATE COLLATION [IF NOT EXISTS] name FROM existing_collation

Description
CREATE COLLATION defines a new collation using the specified operating system locale settings, or by
copying an existing collation.

To be able to create a collation, you must have CREATE privilege on the destination schema.

Parameters
IF NOT EXISTS

Do not throw an error if a collation with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing collation is anything like the one that would
have been created.

name

The name of the collation. The collation name can be schema-qualified. If it is not, the collation is
defined in the current schema. The collation name must be unique within that schema. (The system
catalogs can contain collations with the same name for other encodings, but these are ignored if the
database encoding does not match.)

locale

This is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify this, you cannot specify
either of those parameters.

lc_collate

Use the specified operating system locale for the LC_COLLATE locale category.

lc_ctype

Use the specified operating system locale for the LC_CTYPE locale category.

provider

Specifies the provider to use for locale services associated with this collation. Possible values are: icu,
libc. libc is the default. The available choices depend on the operating system and build options.

DETERMINISTIC

Specifies whether the collation should use deterministic comparisons. The default is true. A
deterministic comparison considers strings that are not byte-wise equal to be unequal even if they are
considered logically equal by the comparison. Postgres Pro breaks ties using a byte-wise comparison.

1346

CREATE COLLATION

Comparison that is not deterministic can make the collation be, say, case- or accent-insensitive. For
that, you need to choose an appropriate LC_COLLATE setting and set the collation to not deterministic
here.

Nondeterministic collations are only supported with the ICU provider.

version

Specifies the version string to store with the collation. Normally, this should be omitted, which will
cause the version to be computed from the actual version of the collation as provided by the operating
system. This option is intended to be used by pg_upgrade for copying the version from an existing
installation.

See also ALTER COLLATION for how to handle collation version mismatches.

existing_collation

The name of an existing collation to copy. The new collation will have the same properties as the
existing one, but it will be an independent object.

Notes
CREATE COLLATION takes a SHARE ROW EXCLUSIVE lock, which is self-conflicting, on the pg_collation
system catalog, so only one CREATE COLLATION command can run at a time.

Use DROP COLLATION to remove user-defined collations.

See Section 22.2.2.3 for more information on how to create collations.

When using the libc collation provider, the locale must be applicable to the current database encoding.
See CREATE DATABASE for the precise rules.

Examples
To create a collation from the operating system locale ru_RU.utf8 (assuming the current database
encoding is UTF8):

CREATE COLLATION russian (locale = 'ru_RU.utf8');

To create a collation using the ICU provider where Latin characters precede Cyrillic ones:

CREATE COLLATION latn_cyrl (provider = icu, locale = 'ru-RU-u-kr-latn-cyrl');

To create a collation from an existing collation:

CREATE COLLATION german FROM "de_DE";

This can be convenient to be able to use operating-system-independent collation names in applications.

Compatibility
There is a CREATE COLLATION statement in the SQL standard, but it is limited to copying an existing
collation. The syntax to create a new collation is a Postgres Pro extension.

See Also
ALTER COLLATION, DROP COLLATION

1347

CREATE CONVERSION
CREATE CONVERSION — define a new encoding conversion

Synopsis
CREATE [DEFAULT] CONVERSION name
 FOR source_encoding TO dest_encoding FROM function_name

Description
CREATE CONVERSION defines a new conversion between two character set encodings.

Conversions that are marked DEFAULT can be used for automatic encoding conversion between client
and server. To support that usage, two conversions, from encoding A to B and from encoding B to A,
must be defined.

To be able to create a conversion, you must have EXECUTE privilege on the function and CREATE privilege
on the destination schema.

Parameters
DEFAULT

The DEFAULT clause indicates that this conversion is the default for this particular source to
destination encoding. There should be only one default encoding in a schema for the encoding pair.

name

The name of the conversion. The conversion name can be schema-qualified. If it is not, the conversion
is defined in the current schema. The conversion name must be unique within a schema.

source_encoding

The source encoding name.

dest_encoding

The destination encoding name.

function_name

The function used to perform the conversion. The function name can be schema-qualified. If it is not,
the function will be looked up in the path.

The function must have the following signature:

conv_proc(
 integer, -- source encoding ID
 integer, -- destination encoding ID
 cstring, -- source string (null terminated C string)
 internal, -- destination (fill with a null terminated C string)
 integer -- source string length
) RETURNS void;

Notes
Neither the source nor the destination encoding can be SQL_ASCII, as the server's behavior for cases
involving the SQL_ASCII “encoding” is hard-wired.

Use DROP CONVERSION to remove user-defined conversions.

1348

CREATE CONVERSION

The privileges required to create a conversion might be changed in a future release.

Examples
To create a conversion from encoding UTF8 to LATIN1 using myfunc:

CREATE CONVERSION myconv FOR 'UTF8' TO 'LATIN1' FROM myfunc;

Compatibility
CREATE CONVERSION is a Postgres Pro extension. There is no CREATE CONVERSION statement in the SQL
standard, but a CREATE TRANSLATION statement that is very similar in purpose and syntax.

See Also
ALTER CONVERSION, CREATE FUNCTION, DROP CONVERSION

1349

CREATE DATABASE
CREATE DATABASE — create a new database

Synopsis
CREATE DATABASE name
 [[WITH] [OWNER [=] user_name]
 [TEMPLATE [=] template]
 [ENCODING [=] encoding]
 [LOCALE [=] locale[@provider]]
 [LC_COLLATE [=] lc_collate[@provider]]
 [LC_CTYPE [=] lc_ctype]
 [TABLESPACE [=] tablespace_name]
 [ALLOW_CONNECTIONS [=] allowconn]
 [CONNECTION LIMIT [=] connlimit]
 [IS_TEMPLATE [=] istemplate]]

Description
CREATE DATABASE creates a new Postgres Pro database.

To create a database, you must be a superuser or have the special CREATEDB privilege. See CREATE
ROLE.

By default, the new database will be created by cloning the standard system database template1.
A different template can be specified by writing TEMPLATE name. In particular, by writing TEMPLATE
template0, you can create a pristine database (one where no user-defined objects exist and where the
system objects have not been altered) containing only the standard objects predefined by your version
of Postgres Pro. This is useful if you wish to avoid copying any installation-local objects that might have
been added to template1.

Parameters
name

The name of a database to create.

user_name

The role name of the user who will own the new database, or DEFAULT to use the default (namely, the
user executing the command). To create a database owned by another role, you must be a direct or
indirect member of that role, or be a superuser.

template

The name of the template from which to create the new database, or DEFAULT to use the default
template (template1).

encoding

Character set encoding to use in the new database. Specify a string constant (e.g., 'SQL_ASCII'),
or an integer encoding number, or DEFAULT to use the default encoding (namely, the encoding of
the template database). The character sets supported by the Postgres Pro server are described in
Section 22.3.1. See below for additional restrictions.

locale[@provider]
This is a shortcut for setting LC_COLLATE and LC_CTYPE at once. If you specify this, you cannot specify
either of those parameters. Optionally, you can specify the provider of the default collation same way
as in lc_collate.

1350

CREATE DATABASE

Tip
The other locale settings lc_messages, lc_monetary, lc_numeric, and lc_time are not fixed per
database and are not set by this command. If you want to make them the default for a specific
database, you can use ALTER DATABASE ... SET.

lc_collate[@provider]

Collation order (LC_COLLATE) to use in the new database. This affects the sort order applied to strings,
e.g., in queries with ORDER BY, as well as the order used in indexes on text columns. The default is
to use the collation order of the template database. Optionally, you can specify the provider of the
default collation after the @ symbol, as explained in Section 22.2.2. Supported values are icu and
libc. See below for additional restrictions.

lc_ctype

Character classification (LC_CTYPE) to use in the new database. This affects the categorization of
characters, e.g., lower, upper and digit. The default is to use the character classification of the
template database. See below for additional restrictions.

tablespace_name

The name of the tablespace that will be associated with the new database, or DEFAULT to use the
template database's tablespace. This tablespace will be the default tablespace used for objects
created in this database. See CREATE TABLESPACE for more information.

allowconn

If false then no one can connect to this database. The default is true, allowing connections (except
as restricted by other mechanisms, such as GRANT/REVOKE CONNECT).

connlimit

How many concurrent connections can be made to this database. -1 (the default) means no limit.

istemplate

If true, then this database can be cloned by any user with CREATEDB privileges; if false (the default),
then only superusers or the owner of the database can clone it.

Optional parameters can be written in any order, not only the order illustrated above.

Notes
CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient
permissions on the data directory, a full disk, or other file system problems.

Use DROP DATABASE to remove a database.

The program createdb is a wrapper program around this command, provided for convenience.

Database-level configuration parameters (set via ALTER DATABASE) and database-level permissions (set
via GRANT) are not copied from the template database.

Although it is possible to copy a database other than template1 by specifying its name as the template,
this is not (yet) intended as a general-purpose “COPY DATABASE” facility. The principal limitation is that no
other sessions can be connected to the template database while it is being copied. CREATE DATABASE will
fail if any other connection exists when it starts; otherwise, new connections to the template database
are locked out until CREATE DATABASE completes. See Section 21.3 for more information.

1351

CREATE DATABASE

The character set encoding specified for the new database must be compatible with the chosen locale
settings (LC_COLLATE and LC_CTYPE). If the locale is C (or equivalently POSIX), then all encodings are
allowed, but for other locale settings there is only one encoding that will work properly. (On Windows,
however, UTF-8 encoding can be used with any locale.) CREATE DATABASE will allow superusers to specify
SQL_ASCII encoding regardless of the locale settings, but this choice is deprecated and may result in
misbehavior of character-string functions if data that is not encoding-compatible with the locale is stored
in the database.

The encoding and locale settings must match those of the template database, except when template0 is
used as template. This is because other databases might contain data that does not match the specified
encoding, or might contain indexes whose sort ordering is affected by LC_COLLATE and LC_CTYPE.
Copying such data would result in a database that is corrupt according to the new settings. template0,
however, is known to not contain any data or indexes that would be affected.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the database, it is possible that both will fail.
Also, the limit is not enforced against superusers or background worker processes.

Examples
To create a new database:

CREATE DATABASE lusiadas;

To create a database sales owned by user salesapp with a default tablespace of salesspace:

CREATE DATABASE sales OWNER salesapp TABLESPACE salesspace;

To create a database music with a different locale:

CREATE DATABASE music
 LOCALE 'sv_SE.utf8'
 TEMPLATE template0;

In this example, the TEMPLATE template0 clause is required if the specified locale is different from the
one in template1. (If it is not, then specifying the locale explicitly is redundant.)

To create a database music2 with a different locale and a different character set encoding:

CREATE DATABASE music2
 LOCALE 'sv_SE.iso885915'
 ENCODING LATIN9
 TEMPLATE template0;

The specified locale and encoding settings must match, or an error will be reported.

Note that locale names are specific to the operating system, so that the above commands might not work
in the same way everywhere.

Compatibility
There is no CREATE DATABASE statement in the SQL standard. Databases are equivalent to catalogs,
whose creation is implementation-defined.

See Also
ALTER DATABASE, DROP DATABASE

1352

CREATE DOMAIN
CREATE DOMAIN — define a new domain

Synopsis
CREATE DOMAIN name [AS] data_type
 [COLLATE collation]
 [DEFAULT expression]
 [constraint [...]]

where constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL | NULL | CHECK (expression) }

Description
CREATE DOMAIN creates a new domain. A domain is essentially a data type with optional constraints
(restrictions on the allowed set of values). The user who defines a domain becomes its owner.

If a schema name is given (for example, CREATE DOMAIN myschema.mydomain ...) then the domain is
created in the specified schema. Otherwise it is created in the current schema. The domain name must
be unique among the types and domains existing in its schema.

Domains are useful for abstracting common constraints on fields into a single location for maintenance.
For example, several tables might contain email address columns, all requiring the same CHECK
constraint to verify the address syntax. Define a domain rather than setting up each table's constraint
individually.

To be able to create a domain, you must have USAGE privilege on the underlying type.

Parameters
name

The name (optionally schema-qualified) of a domain to be created.

data_type

The underlying data type of the domain. This can include array specifiers.

collation

An optional collation for the domain. If no collation is specified, the underlying data type's default
collation is used. The underlying type must be collatable if COLLATE is specified.

DEFAULT expression

The DEFAULT clause specifies a default value for columns of the domain data type. The value is any
variable-free expression (but subqueries are not allowed). The data type of the default expression
must match the data type of the domain. If no default value is specified, then the default value is
the null value.

The default expression will be used in any insert operation that does not specify a value for the
column. If a default value is defined for a particular column, it overrides any default associated with
the domain. In turn, the domain default overrides any default value associated with the underlying
data type.

CONSTRAINT constraint_name

An optional name for a constraint. If not specified, the system generates a name.

1353

CREATE DOMAIN

NOT NULL

Values of this domain are prevented from being null (but see notes below).

NULL

Values of this domain are allowed to be null. This is the default.

This clause is only intended for compatibility with nonstandard SQL databases. Its use is discouraged
in new applications.

CHECK (expression)

CHECK clauses specify integrity constraints or tests which values of the domain must satisfy. Each
constraint must be an expression producing a Boolean result. It should use the key word VALUE
to refer to the value being tested. Expressions evaluating to TRUE or UNKNOWN succeed. If the
expression produces a FALSE result, an error is reported and the value is not allowed to be converted
to the domain type.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than VALUE.

When a domain has multiple CHECK constraints, they will be tested in alphabetical order by name.
(PostgreSQL versions before 9.5 did not honor any particular firing order for CHECK constraints.)

Notes
Domain constraints, particularly NOT NULL, are checked when converting a value to the domain type. It
is possible for a column that is nominally of the domain type to read as null despite there being such a
constraint. For example, this can happen in an outer-join query, if the domain column is on the nullable
side of the outer join. A more subtle example is

INSERT INTO tab (domcol) VALUES ((SELECT domcol FROM tab WHERE false));

The empty scalar sub-SELECT will produce a null value that is considered to be of the domain type, so
no further constraint checking is applied to it, and the insertion will succeed.

It is very difficult to avoid such problems, because of SQL's general assumption that a null value is a valid
value of every data type. Best practice therefore is to design a domain's constraints so that a null value
is allowed, and then to apply column NOT NULL constraints to columns of the domain type as needed,
rather than directly to the domain type.

Postgres Pro assumes that CHECK constraints' conditions are immutable, that is, they will always give
the same result for the same input value. This assumption is what justifies examining CHECK constraints
only when a value is first converted to be of a domain type, and not at other times. (This is essentially
the same as the treatment of table CHECK constraints, as described in Section 5.4.1.)

An example of a common way to break this assumption is to reference a user-defined function in a CHECK
expression, and then change the behavior of that function. Postgres Pro does not disallow that, but it
will not notice if there are stored values of the domain type that now violate the CHECK constraint. That
would cause a subsequent database dump and reload to fail. The recommended way to handle such a
change is to drop the constraint (using ALTER DOMAIN), adjust the function definition, and re-add the
constraint, thereby rechecking it against stored data.

Examples
This example creates the us_postal_code data type and then uses the type in a table definition. A regular
expression test is used to verify that the value looks like a valid US postal code:

CREATE DOMAIN us_postal_code AS TEXT
CHECK(
 VALUE ~ '^\d{5}$'
OR VALUE ~ '^\d{5}-\d{4}$'

1354

CREATE DOMAIN

);

CREATE TABLE us_snail_addy (
 address_id SERIAL PRIMARY KEY,
 street1 TEXT NOT NULL,
 street2 TEXT,
 street3 TEXT,
 city TEXT NOT NULL,
 postal us_postal_code NOT NULL
);

Compatibility
The command CREATE DOMAIN conforms to the SQL standard.

See Also
ALTER DOMAIN, DROP DOMAIN

1355

CREATE EVENT TRIGGER
CREATE EVENT TRIGGER — define a new event trigger

Synopsis
CREATE EVENT TRIGGER name
 ON event
 [WHEN filter_variable IN (filter_value [, ...]) [AND ...]]
 EXECUTE { FUNCTION | PROCEDURE } function_name()

Description
CREATE EVENT TRIGGER creates a new event trigger. Whenever the designated event occurs and the
WHEN condition associated with the trigger, if any, is satisfied, the trigger function will be executed. For a
general introduction to event triggers, see Chapter 37. The user who creates an event trigger becomes
its owner.

Parameters
name

The name to give the new trigger. This name must be unique within the database.

event

The name of the event that triggers a call to the given function. See Section 37.1 for more information
on event names.

filter_variable

The name of a variable used to filter events. This makes it possible to restrict the firing of the trigger
to a subset of the cases in which it is supported. Currently the only supported filter_variable is
TAG.

filter_value

A list of values for the associated filter_variable for which the trigger should fire. For TAG, this
means a list of command tags (e.g., 'DROP FUNCTION').

function_name

A user-supplied function that is declared as taking no argument and returning type event_trigger.

In the syntax of CREATE EVENT TRIGGER, the keywords FUNCTION and PROCEDURE are equivalent, but
the referenced function must in any case be a function, not a procedure. The use of the keyword
PROCEDURE here is historical and deprecated.

Notes
Only superusers can create event triggers.

Event triggers are disabled in single-user mode (see postgres). If an erroneous event trigger disables
the database so much that you can't even drop the trigger, restart in single-user mode and you'll be
able to do that.

Examples
Forbid the execution of any DDL command:

CREATE OR REPLACE FUNCTION abort_any_command()

1356

CREATE EVENT TRIGGER

 RETURNS event_trigger
 LANGUAGE plpgsql
 AS $$
BEGIN
 RAISE EXCEPTION 'command % is disabled', tg_tag;
END;
$$;

CREATE EVENT TRIGGER abort_ddl ON ddl_command_start
 EXECUTE FUNCTION abort_any_command();

Compatibility
There is no CREATE EVENT TRIGGER statement in the SQL standard.

See Also
ALTER EVENT TRIGGER, DROP EVENT TRIGGER, CREATE FUNCTION

1357

CREATE EXTENSION
CREATE EXTENSION — install an extension

Synopsis
CREATE EXTENSION [IF NOT EXISTS] extension_name
 [WITH] [SCHEMA schema_name]
 [VERSION version]
 [CASCADE]

Description
CREATE EXTENSION loads a new extension into the current database. There must not be an extension of
the same name already loaded.

Loading an extension essentially amounts to running the extension's script file. The script will typically
create new SQL objects such as functions, data types, operators and index support methods. CREATE
EXTENSION additionally records the identities of all the created objects, so that they can be dropped
again if DROP EXTENSION is issued.

The user who runs CREATE EXTENSION becomes the owner of the extension for purposes of later privilege
checks, and normally also becomes the owner of any objects created by the extension's script.

Loading an extension ordinarily requires the same privileges that would be required to create its
component objects. For many extensions this means superuser privileges are needed. However, if the
extension is marked trusted in its control file, then it can be installed by any user who has CREATE
privilege on the current database. In this case the extension object itself will be owned by the calling
user, but the contained objects will be owned by the bootstrap superuser (unless the extension's script
explicitly assigns them to the calling user). This configuration gives the calling user the right to drop
the extension, but not to modify individual objects within it.

Parameters
IF NOT EXISTS

Do not throw an error if an extension with the same name already exists. A notice is issued in this
case. Note that there is no guarantee that the existing extension is anything like the one that would
have been created from the currently-available script file.

extension_name

The name of the extension to be installed. Postgres Pro will create the extension using details from
the file SHAREDIR/extension/extension_name.control.

schema_name

The name of the schema in which to install the extension's objects, given that the extension allows its
contents to be relocated. The named schema must already exist. If not specified, and the extension's
control file does not specify a schema either, the current default object creation schema is used.

If the extension specifies a schema parameter in its control file, then that schema cannot be
overridden with a SCHEMA clause. Normally, an error will be raised if a SCHEMA clause is given and it
conflicts with the extension's schema parameter. However, if the CASCADE clause is also given, then
schema_name is ignored when it conflicts. The given schema_name will be used for installation of any
needed extensions that do not specify schema in their control files.

Remember that the extension itself is not considered to be within any schema: extensions have
unqualified names that must be unique database-wide. But objects belonging to the extension can
be within schemas.

1358

CREATE EXTENSION

version

The version of the extension to install. This can be written as either an identifier or a string literal.
The default version is whatever is specified in the extension's control file.

CASCADE

Automatically install any extensions that this extension depends on that are not already installed.
Their dependencies are likewise automatically installed, recursively. The SCHEMA clause, if given,
applies to all extensions that get installed this way. Other options of the statement are not applied to
automatically-installed extensions; in particular, their default versions are always selected.

Notes
Before you can use CREATE EXTENSION to load an extension into a database, the extension's supporting
files must be installed. Information about installing the extensions supplied with Postgres Pro can be
found in Additional Supplied Modules.

The extensions currently available for loading can be identified from the pg_available_extensions or
pg_available_extension_versions system views.

Caution
Installing an extension as superuser requires trusting that the extension's author wrote the
extension installation script in a secure fashion. It is not terribly difficult for a malicious user to
create trojan-horse objects that will compromise later execution of a carelessly-written extension
script, allowing that user to acquire superuser privileges. However, trojan-horse objects are only
hazardous if they are in the search_path during script execution, meaning that they are in the
extension's installation target schema or in the schema of some extension it depends on. Therefore,
a good rule of thumb when dealing with extensions whose scripts have not been carefully vetted is
to install them only into schemas for which CREATE privilege has not been and will not be granted
to any untrusted users. Likewise for any extensions they depend on.

The extensions supplied with Postgres Pro are believed to be secure against installation-
time attacks of this sort, except for a few that depend on other extensions. As stated in the
documentation for those extensions, they should be installed into secure schemas, or installed into
the same schemas as the extensions they depend on, or both.

For information about writing new extensions, see Section 35.17.

Examples
Install the hstore extension into the current database, placing its objects in schema addons:

CREATE EXTENSION hstore SCHEMA addons;

Another way to accomplish the same thing:

SET search_path = addons;
CREATE EXTENSION hstore;

Compatibility
CREATE EXTENSION is a Postgres Pro extension.

See Also
ALTER EXTENSION, DROP EXTENSION

1359

CREATE FOREIGN DATA WRAPPER
CREATE FOREIGN DATA WRAPPER — define a new foreign-data wrapper

Synopsis
CREATE FOREIGN DATA WRAPPER name
 [HANDLER handler_function | NO HANDLER]
 [VALIDATOR validator_function | NO VALIDATOR]
 [OPTIONS (option 'value' [, ...])]

Description
CREATE FOREIGN DATA WRAPPER creates a new foreign-data wrapper. The user who defines a foreign-
data wrapper becomes its owner.

The foreign-data wrapper name must be unique within the database.

Only superusers can create foreign-data wrappers.

Parameters
name

The name of the foreign-data wrapper to be created.

HANDLER handler_function

handler_function is the name of a previously registered function that will be called to retrieve the
execution functions for foreign tables. The handler function must take no arguments, and its return
type must be fdw_handler.

It is possible to create a foreign-data wrapper with no handler function, but foreign tables using such
a wrapper can only be declared, not accessed.

VALIDATOR validator_function

validator_function is the name of a previously registered function that will be called to check
the generic options given to the foreign-data wrapper, as well as options for foreign servers, user
mappings and foreign tables using the foreign-data wrapper. If no validator function or NO VALIDATOR
is specified, then options will not be checked at creation time. (Foreign-data wrappers will possibly
ignore or reject invalid option specifications at run time, depending on the implementation.) The
validator function must take two arguments: one of type text[], which will contain the array of
options as stored in the system catalogs, and one of type oid, which will be the OID of the system
catalog containing the options. The return type is ignored; the function should report invalid options
using the ereport(ERROR) function.

OPTIONS (option 'value' [, ...])

This clause specifies options for the new foreign-data wrapper. The allowed option names and values
are specific to each foreign data wrapper and are validated using the foreign-data wrapper's validator
function. Option names must be unique.

Notes
Postgres Pro's foreign-data functionality is still under active development. Optimization of queries is
primitive (and mostly left to the wrapper, too). Thus, there is considerable room for future performance
improvements.

Examples
Create a useless foreign-data wrapper dummy:

1360

CREATE FOREIGN DATA WRAPPER

CREATE FOREIGN DATA WRAPPER dummy;

Create a foreign-data wrapper file with handler function file_fdw_handler:

CREATE FOREIGN DATA WRAPPER file HANDLER file_fdw_handler;

Create a foreign-data wrapper mywrapper with some options:

CREATE FOREIGN DATA WRAPPER mywrapper
 OPTIONS (debug 'true');

Compatibility
CREATE FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED), with the exception that the
HANDLER and VALIDATOR clauses are extensions and the standard clauses LIBRARY and LANGUAGE are not
implemented in Postgres Pro.

Note, however, that the SQL/MED functionality as a whole is not yet conforming.

See Also
ALTER FOREIGN DATA WRAPPER, DROP FOREIGN DATA WRAPPER, CREATE SERVER, CREATE USER
MAPPING, CREATE FOREIGN TABLE

1361

CREATE FOREIGN TABLE
CREATE FOREIGN TABLE — define a new foreign table

Synopsis
CREATE FOREIGN TABLE [IF NOT EXISTS] table_name ([
 { column_name data_type [OPTIONS (option 'value' [, ...])] [COLLATE collation]
 [column_constraint [...]]
 | table_constraint }
 [, ...]
])
[INHERITS (parent_table [, ...])]
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

CREATE FOREIGN TABLE [IF NOT EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] partition_bound_spec
 SERVER server_name
[OPTIONS (option 'value' [, ...])]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED }

and table_constraint is:

[CONSTRAINT constraint_name]
CHECK (expression) [NO INHERIT]

Description
CREATE FOREIGN TABLE creates a new foreign table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE FOREIGN TABLE myschema.mytable ...) then the
table is created in the specified schema. Otherwise it is created in the current schema. The name of the
foreign table must be distinct from the name of any other foreign table, table, sequence, index, view, or
materialized view in the same schema.

CREATE FOREIGN TABLE also automatically creates a data type that represents the composite type
corresponding to one row of the foreign table. Therefore, foreign tables cannot have the same name as
any existing data type in the same schema.

If PARTITION OF clause is specified then the table is created as a partition of parent_table with specified
bounds.

To be able to create a foreign table, you must have USAGE privilege on the foreign server, as well as USAGE
privilege on all column types used in the table.

1362

CREATE FOREIGN TABLE

Parameters
IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have
been created.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by Postgres Pro, refer to Chapter 8.

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If not
specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new foreign table automatically
inherits all columns. Parent tables can be plain tables or foreign tables. See the similar form of
CREATE TABLE for more details.

PARTITION OF parent_table FOR VALUES partition_bound_spec

This form can be used to create the foreign table as partition of the given parent table with specified
partition bound values. See the similar form of CREATE TABLE for more details. Note that it is
currently not allowed to create the foreign table as a partition of the parent table if there are UNIQUE
indexes on the parent table. (See also ALTER TABLE ATTACH PARTITION.)

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to
communicate helpful constraint information to client applications. (Double-quotes are needed to
specify constraint names that contain spaces.) If a constraint name is not specified, the system
generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which each row in the foreign
table is expected to satisfy; that is, the expression should produce TRUE or UNKNOWN, never FALSE,
for all rows in the foreign table. A check constraint specified as a column constraint should reference
that column's value only, while an expression appearing in a table constraint can reference multiple
columns.

1363

CREATE FOREIGN TABLE

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row. The system column tableoid may be referenced, but not any other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (subqueries and cross-references to other columns
in the current table are not allowed). The data type of the default expression must match the data
type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

GENERATED ALWAYS AS (generation_expr) STORED

This clause creates the column as a generated column. The column cannot be written to, and when
read the result of the specified expression will be returned.

The keyword STORED is required to signify that the column will be computed on write. (The computed
value will be presented to the foreign-data wrapper for storage and must be returned on reading.)

The generation expression can refer to other columns in the table, but not other generated columns.
Any functions and operators used must be immutable. References to other tables are not allowed.

server_name

The name of an existing foreign server to use for the foreign table. For details on defining a server,
see CREATE SERVER.

OPTIONS (option 'value' [, ...])

Options to be associated with the new foreign table or one of its columns. The allowed option
names and values are specific to each foreign data wrapper and are validated using the foreign-data
wrapper's validator function. Duplicate option names are not allowed (although it's OK for a table
option and a column option to have the same name).

Notes
Constraints on foreign tables (such as CHECK or NOT NULL clauses) are not enforced by the core Postgres
Pro system, and most foreign data wrappers do not attempt to enforce them either; that is, the constraint
is simply assumed to hold true. There would be little point in such enforcement since it would only
apply to rows inserted or updated via the foreign table, and not to rows modified by other means, such
as directly on the remote server. Instead, a constraint attached to a foreign table should represent a
constraint that is being enforced by the remote server.

Some special-purpose foreign data wrappers might be the only access mechanism for the data they
access, and in that case it might be appropriate for the foreign data wrapper itself to perform constraint
enforcement. But you should not assume that a wrapper does that unless its documentation says so.

Although Postgres Pro does not attempt to enforce constraints on foreign tables, it does assume that
they are correct for purposes of query optimization. If there are rows visible in the foreign table that do
not satisfy a declared constraint, queries on the table might produce errors or incorrect answers. It is
the user's responsibility to ensure that the constraint definition matches reality.

Caution
When a foreign table is used as a partition of a partitioned table, there is an implicit constraint
that its contents must satisfy the partitioning rule. Again, it is the user's responsibility to ensure
that that is true, which is best done by installing a matching constraint on the remote server.

1364

CREATE FOREIGN TABLE

Within a partitioned table containing foreign-table partitions, an UPDATE that changes the partition key
value can cause a row to be moved from a local partition to a foreign-table partition, provided the
foreign data wrapper supports tuple routing. However it is not currently possible to move a row from a
foreign-table partition to another partition. An UPDATE that would require doing that will fail due to the
partitioning constraint, assuming that that is properly enforced by the remote server.

Similar considerations apply to generated columns. Stored generated columns are computed on insert
or update on the local Postgres Pro server and handed to the foreign-data wrapper for writing out
to the foreign data store, but it is not enforced that a query of the foreign table returns values for
stored generated columns that are consistent with the generation expression. Again, this might result
in incorrect query results.

Examples
Create foreign table films, which will be accessed through the server film_server:

CREATE FOREIGN TABLE films (
 code char(5) NOT NULL,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
)
SERVER film_server;

Create foreign table measurement_y2016m07, which will be accessed through the server server_07, as
a partition of the range partitioned table measurement:

CREATE FOREIGN TABLE measurement_y2016m07
 PARTITION OF measurement FOR VALUES FROM ('2016-07-01') TO ('2016-08-01')
 SERVER server_07;

Compatibility
The CREATE FOREIGN TABLE command largely conforms to the SQL standard; however, much as with
CREATE TABLE, NULL constraints and zero-column foreign tables are permitted. The ability to specify
column default values is also a Postgres Pro extension. Table inheritance, in the form defined by Postgres
Pro, is nonstandard.

See Also
ALTER FOREIGN TABLE, DROP FOREIGN TABLE, CREATE TABLE, CREATE SERVER, IMPORT
FOREIGN SCHEMA

1365

CREATE FUNCTION
CREATE FUNCTION — define a new function

Synopsis
CREATE [OR REPLACE] FUNCTION
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 [RETURNS rettype
 | RETURNS TABLE (column_name column_type [, ...])]
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | WINDOW
 | { IMMUTABLE | STABLE | VOLATILE }
 | [NOT] LEAKPROOF
 | { CALLED ON NULL INPUT | RETURNS NULL ON NULL INPUT | STRICT }
 | { [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER }
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST execution_cost
 | ROWS result_rows
 | SUPPORT support_function
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...

Description
CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create a new function,
or replace an existing definition. To be able to define a function, the user must have the USAGE privilege
on the language.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created
in the current schema. The name of the new function must not match any existing function or procedure
with the same input argument types in the same schema. However, functions and procedures of different
argument types can share a name (this is called overloading).

To replace the current definition of an existing function, use CREATE OR REPLACE FUNCTION. It is not
possible to change the name or argument types of a function this way (if you tried, you would actually
be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change the
return type of an existing function. To do that, you must drop and recreate the function. (When using
OUT parameters, that means you cannot change the types of any OUT parameters except by dropping
the function.)

When CREATE OR REPLACE FUNCTION is used to replace an existing function, the ownership and
permissions of the function do not change. All other function properties are assigned the values specified
or implied in the command. You must own the function to replace it (this includes being a member of
the owning role).

If you drop and then recreate a function, the new function is not the same entity as the old; you will
have to drop existing rules, views, triggers, etc. that refer to the old function. Use CREATE OR REPLACE
FUNCTION to change a function definition without breaking objects that refer to the function. Also, ALTER
FUNCTION can be used to change most of the auxiliary properties of an existing function.

The user that creates the function becomes the owner of the function.

To be able to create a function, you must have USAGE privilege on the argument types and the return type.

1366

CREATE FUNCTION

Refer to Section 35.3 for further information on writing functions.

Parameters
name

The name (optionally schema-qualified) of the function to create.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Only OUT
arguments can follow a VARIADIC one. Also, OUT and INOUT arguments cannot be used together with
the RETURNS TABLE notation.

argname

The name of an argument. Some languages (including SQL and PL/pgSQL) let you use the name in
the function body. For other languages the name of an input argument is just extra documentation,
so far as the function itself is concerned; but you can use input argument names when calling a
function to improve readability (see Section 4.3). In any case, the name of an output argument is
significant, because it defines the column name in the result row type. (If you omit the name for an
output argument, the system will choose a default column name.)

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any. The argument types
can be base, composite, or domain types, or can reference the type of a table column.

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this feature
can sometimes help make a function independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. Only input (including INOUT) parameters can have
a default value. All input parameters following a parameter with a default value must have default
values as well.

rettype

The return data type (optionally schema-qualified). The return type can be a base, composite, or
domain type, or can reference the type of a table column. Depending on the implementation language
it might also be allowed to specify “pseudo-types” such as cstring. If the function is not supposed
to return a value, specify void as the return type.

When there are OUT or INOUT parameters, the RETURNS clause can be omitted. If present, it must
agree with the result type implied by the output parameters: RECORD if there are multiple output
parameters, or the same type as the single output parameter.

The SETOF modifier indicates that the function will return a set of items, rather than a single item.

The type of a column is referenced by writing table_name.column_name%TYPE.

column_name

The name of an output column in the RETURNS TABLE syntax. This is effectively another way of
declaring a named OUT parameter, except that RETURNS TABLE also implies RETURNS SETOF.

column_type

The data type of an output column in the RETURNS TABLE syntax.

1367

CREATE FUNCTION

lang_name

The name of the language that the function is implemented in. It can be sql, c, internal, or the
name of a user-defined procedural language, e.g., plpgsql. Enclosing the name in single quotes is
deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the function should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If
a procedural language implementation does not know how to handle a type and no transform is
supplied, it will fall back to a default behavior for converting data types, but this depends on the
implementation.

WINDOW

WINDOW indicates that the function is a window function rather than a plain function. This is currently
only useful for functions written in C. The WINDOW attribute cannot be changed when replacing an
existing function definition.

IMMUTABLE
STABLE
VOLATILE

These attributes inform the query optimizer about the behavior of the function. At most one choice
can be specified. If none of these appear, VOLATILE is the default assumption.

IMMUTABLE indicates that the function cannot modify the database and always returns the same result
when given the same argument values; that is, it does not do database lookups or otherwise use
information not directly present in its argument list. If this option is given, any call of the function
with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan
it will consistently return the same result for the same argument values, but that its result could
change across SQL statements. This is the appropriate selection for functions whose results depend
on database lookups, parameter variables (such as the current time zone), etc. (It is inappropriate
for AFTER triggers that wish to query rows modified by the current command.) Also note that the
current_timestamp family of functions qualify as stable, since their values do not change within a
transaction.

VOLATILE indicates that the function value can change even within a single table scan, so no
optimizations can be made. Relatively few database functions are volatile in this sense; some
examples are random(), currval(), timeofday(). But note that any function that has side-effects
must be classified volatile, even if its result is quite predictable, to prevent calls from being optimized
away; an example is setval().

For additional details see Section 35.7.

LEAKPROOF

LEAKPROOF indicates that the function has no side effects. It reveals no information about its
arguments other than by its return value. For example, a function which throws an error message
for some argument values but not others, or which includes the argument values in any error
message, is not leakproof. This affects how the system executes queries against views created with
the security_barrier option or tables with row level security enabled. The system will enforce
conditions from security policies and security barrier views before any user-supplied conditions from
the query itself that contain non-leakproof functions, in order to prevent the inadvertent exposure
of data. Functions and operators marked as leakproof are assumed to be trustworthy, and may be
executed before conditions from security policies and security barrier views. In addition, functions
which do not take arguments or which are not passed any arguments from the security barrier view

1368

CREATE FUNCTION

or table do not have to be marked as leakproof to be executed before security conditions. See CREATE
VIEW and Section 38.5. This option can only be set by the superuser.

CALLED ON NULL INPUT
RETURNS NULL ON NULL INPUT
STRICT

CALLED ON NULL INPUT (the default) indicates that the function will be called normally when some
of its arguments are null. It is then the function author's responsibility to check for null values if
necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the function always returns null whenever
any of its arguments are null. If this parameter is specified, the function is not executed when there
are null arguments; instead a null result is assumed automatically.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the function is to be executed with the privileges of the user that
calls it. That is the default. SECURITY DEFINER specifies that the function is to be executed with the
privileges of the user that owns it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL, this
feature applies to all functions not only external ones.

PARALLEL

PARALLEL UNSAFE indicates that the function can't be executed in parallel mode and the presence
of such a function in an SQL statement forces a serial execution plan. This is the default. PARALLEL
RESTRICTED indicates that the function can be executed in parallel mode, but the execution is
restricted to parallel group leader. PARALLEL SAFE indicates that the function is safe to run in parallel
mode without restriction.

Functions should be labeled parallel unsafe if they modify any database state, or if they make changes
to the transaction such as using sub-transactions, or if they access sequences or attempt to make
persistent changes to settings (e.g., setval). They should be labeled as parallel restricted if they
access temporary tables, client connection state, cursors, prepared statements, or miscellaneous
backend-local state which the system cannot synchronize in parallel mode (e.g., setseed cannot be
executed other than by the group leader because a change made by another process would not be
reflected in the leader). In general, if a function is labeled as being safe when it is restricted or unsafe,
or if it is labeled as being restricted when it is in fact unsafe, it may throw errors or produce wrong
answers when used in a parallel query. C-language functions could in theory exhibit totally undefined
behavior if mislabeled, since there is no way for the system to protect itself against arbitrary C code,
but in most likely cases the result will be no worse than for any other function. If in doubt, functions
should be labeled as UNSAFE, which is the default.

COST execution_cost
A positive number giving the estimated execution cost for the function, in units of cpu_operator_cost.
If the function returns a set, this is the cost per returned row. If the cost is not specified, 1 unit is
assumed for C-language and internal functions, and 100 units for functions in all other languages.
Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows
A positive number giving the estimated number of rows that the planner should expect the function
to return. This is only allowed when the function is declared to return a set. The default assumption
is 1000 rows.

SUPPORT support_function
The name (optionally schema-qualified) of a planner support function to use for this function. See
Section 35.11 for details. You must be superuser to use this option.

1369

CREATE FUNCTION

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when the
function is entered, and then restored to its prior value when the function exits. SET FROM CURRENT
saves the value of the parameter that is current when CREATE FUNCTION is executed as the value to
be applied when the function is entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside
the function for the same variable are restricted to the function: the configuration parameter's prior
value is still restored at function exit. However, an ordinary SET command (without LOCAL) overrides
the SET clause, much as it would do for a previous SET LOCAL command: the effects of such a command
will persist after function exit, unless the current transaction is rolled back.

See SET and Chapter 18 for more information about allowed parameter names and values.

definition

A string constant defining the function; the meaning depends on the language. It can be an internal
function name, the path to an object file, an SQL command, or text in a procedural language.

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the function definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the function definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language functions when the function
name in the C language source code is not the same as the name of the SQL function. The string
obj_file is the name of the shared library file containing the compiled C function, and is interpreted
as for the LOAD command. The string link_symbol is the function's link symbol, that is, the name
of the function in the C language source code. If the link symbol is omitted, it is assumed to be the
same as the name of the SQL function being defined. The C names of all functions must be different,
so you must give overloaded C functions different C names (for example, use the argument types
as part of the C names).

When repeated CREATE FUNCTION calls refer to the same object file, the file is only loaded once per
session. To unload and reload the file (perhaps during development), start a new session.

Overloading
Postgres Pro allows function overloading; that is, the same name can be used for several different
functions so long as they have distinct input argument types. Whether or not you use it, this capability
entails security precautions when calling functions in databases where some users mistrust other users;
see Section 10.3.

Two functions are considered the same if they have the same names and input argument types, ignoring
any OUT parameters. Thus for example these declarations conflict:
CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, out text) ...

Functions that have different argument type lists will not be considered to conflict at creation time, but
if defaults are provided they might conflict in use. For example, consider
CREATE FUNCTION foo(int) ...
CREATE FUNCTION foo(int, int default 42) ...

A call foo(10) will fail due to the ambiguity about which function should be called.

Notes
The full SQL type syntax is allowed for declaring a function's arguments and return value. However,
parenthesized type modifiers (e.g., the precision field for type numeric) are discarded by CREATE

1370

CREATE FUNCTION

FUNCTION. Thus for example CREATE FUNCTION foo (varchar(10)) ... is exactly the same as CREATE
FUNCTION foo (varchar)

When replacing an existing function with CREATE OR REPLACE FUNCTION, there are restrictions on
changing parameter names. You cannot change the name already assigned to any input parameter
(although you can add names to parameters that had none before). If there is more than one output
parameter, you cannot change the names of the output parameters, because that would change the
column names of the anonymous composite type that describes the function's result. These restrictions
are made to ensure that existing calls of the function do not stop working when it is replaced.

If a function is declared STRICT with a VARIADIC argument, the strictness check tests that the variadic
array as a whole is non-null. The function will still be called if the array has null elements.

Examples
Add two integers using a SQL function:
CREATE FUNCTION add(integer, integer) RETURNS integer
 AS 'select $1 + $2;'
 LANGUAGE SQL
 IMMUTABLE
 RETURNS NULL ON NULL INPUT;

Increment an integer, making use of an argument name, in PL/pgSQL:
CREATE OR REPLACE FUNCTION increment(i integer) RETURNS integer AS $$
 BEGIN
 RETURN i + 1;
 END;
$$ LANGUAGE plpgsql;

Return a record containing multiple output parameters:
CREATE FUNCTION dup(in int, out f1 int, out f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

You can do the same thing more verbosely with an explicitly named composite type:
CREATE TYPE dup_result AS (f1 int, f2 text);

CREATE FUNCTION dup(int) RETURNS dup_result
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

Another way to return multiple columns is to use a TABLE function:
CREATE FUNCTION dup(int) RETURNS TABLE(f1 int, f2 text)
 AS $$ SELECT $1, CAST($1 AS text) || ' is text' $$
 LANGUAGE SQL;

SELECT * FROM dup(42);

However, a TABLE function is different from the preceding examples, because it actually returns a set
of records, not just one record.

Writing SECURITY DEFINER Functions Safely
Because a SECURITY DEFINER function is executed with the privileges of the user that owns it, care
is needed to ensure that the function cannot be misused. For security, search_path should be set to

1371

CREATE FUNCTION

exclude any schemas writable by untrusted users. This prevents malicious users from creating objects
(e.g., tables, functions, and operators) that mask objects intended to be used by the function. Particularly
important in this regard is the temporary-table schema, which is searched first by default, and is normally
writable by anyone. A secure arrangement can be obtained by forcing the temporary schema to be
searched last. To do this, write pg_tempas the last entry in search_path. This function illustrates safe
usage:

CREATE FUNCTION check_password(uname TEXT, pass TEXT)
RETURNS BOOLEAN AS $$
DECLARE passed BOOLEAN;
BEGIN
 SELECT (pwd = $2) INTO passed
 FROM pwds
 WHERE username = $1;

 RETURN passed;
END;
$$ LANGUAGE plpgsql
 SECURITY DEFINER
 -- Set a secure search_path: trusted schema(s), then 'pg_temp'.
 SET search_path = admin, pg_temp;

This function's intention is to access a table admin.pwds. But without the SET clause, or with a SET clause
mentioning only admin, the function could be subverted by creating a temporary table named pwds.

Before PostgreSQL version 8.3, the SET clause was not available, and so older functions may contain
rather complicated logic to save, set, and restore search_path. The SET clause is far easier to use for
this purpose.

Another point to keep in mind is that by default, execute privilege is granted to PUBLIC for newly created
functions (see Section 5.7 for more information). Frequently you will wish to restrict use of a security
definer function to only some users. To do that, you must revoke the default PUBLIC privileges and then
grant execute privilege selectively. To avoid having a window where the new function is accessible to
all, create it and set the privileges within a single transaction. For example:

BEGIN;
CREATE FUNCTION check_password(uname TEXT, pass TEXT) ... SECURITY DEFINER;
REVOKE ALL ON FUNCTION check_password(uname TEXT, pass TEXT) FROM PUBLIC;
GRANT EXECUTE ON FUNCTION check_password(uname TEXT, pass TEXT) TO admins;
COMMIT;

Compatibility
A CREATE FUNCTION command is defined in the SQL standard. The Postgres Pro version is similar but
not fully compatible. The attributes are not portable, neither are the different available languages.

For compatibility with some other database systems, argmode can be written either before or after
argname. But only the first way is standard-compliant.

For parameter defaults, the SQL standard specifies only the syntax with the DEFAULT key word. The
syntax with = is used in T-SQL and Firebird.

See Also
ALTER FUNCTION, DROP FUNCTION, GRANT, LOAD, REVOKE

1372

CREATE GROUP
CREATE GROUP — define a new database role

Synopsis
CREATE GROUP name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE GROUP is now an alias for CREATE ROLE.

Compatibility
There is no CREATE GROUP statement in the SQL standard.

See Also
CREATE ROLE

1373

CREATE INDEX
CREATE INDEX — define a new index

Synopsis
CREATE [UNIQUE] INDEX [CONCURRENTLY] [[IF NOT EXISTS] name] ON
 [ONLY] table_name [USING method]
 ({ column_name | (expression) } [COLLATE collation] [opclass
 [(opclass_parameter = value [, ...])]] [ASC | DESC] [NULLS { FIRST | LAST }]
 [, ...])
 [INCLUDE (column_name [, ...])]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 [WHERE predicate]

Description
CREATE INDEX constructs an index on the specified column(s) of the specified relation, which can be
a table or a materialized view. Indexes are primarily used to enhance database performance (though
inappropriate use can result in slower performance).

The key field(s) for the index are specified as column names, or alternatively as expressions written in
parentheses. Multiple fields can be specified if the index method supports multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row.
This feature can be used to obtain fast access to data based on some transformation of the basic data.
For example, an index computed on upper(col) would allow the clause WHERE upper(col) = 'JIM'
to use an index.

Postgres Pro provides the index methods B-tree, hash, GiST, SP-GiST, GIN, and BRIN. Users can also
define their own index methods, but that is fairly complicated.

When the WHERE clause is present, a partial index is created. A partial index is an index that contains
entries for only a portion of a table, usually a portion that is more useful for indexing than the rest of the
table. For example, if you have a table that contains both billed and unbilled orders where the unbilled
orders take up a small fraction of the total table and yet that is an often used section, you can improve
performance by creating an index on just that portion. Another possible application is to use WHERE with
UNIQUE to enforce uniqueness over a subset of a table. See Section 11.8 for more discussion.

The expression used in the WHERE clause can refer only to columns of the underlying table, but it can use
all columns, not just the ones being indexed. Presently, subqueries and aggregate expressions are also
forbidden in WHERE. The same restrictions apply to index fields that are expressions.

All functions and operators used in an index definition must be “immutable”, that is, their results must
depend only on their arguments and never on any outside influence (such as the contents of another
table or the current time). This restriction ensures that the behavior of the index is well-defined. To use a
user-defined function in an index expression or WHERE clause, remember to mark the function immutable
when you create it.

Parameters
UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data already
exist) and each time data is added. Attempts to insert or update data which would result in duplicate
entries will generate an error.

1374

CREATE INDEX

Additional restrictions apply when unique indexes are applied to partitioned tables; see CREATE
TABLE.

CONCURRENTLY

When this option is used, Postgres Pro will build the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index build locks out writes
(but not reads) on the table until it's done. There are several caveats to be aware of when using this
option — see Building Indexes Concurrently below.

For temporary tables, CREATE INDEX is always non-concurrent, as no other session can access them,
and non-concurrent index creation is cheaper.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing index is anything like the one that would have been
created. Index name is required when IF NOT EXISTS is specified.

INCLUDE

The optional INCLUDE clause specifies a list of columns which will be included in the index as non-key
columns. A non-key column cannot be used in an index scan search qualification, and it is disregarded
for purposes of any uniqueness or exclusion constraint enforced by the index. However, an index-
only scan can return the contents of non-key columns without having to visit the index's table, since
they are available directly from the index entry. Thus, addition of non-key columns allows index-only
scans to be used for queries that otherwise could not use them.

It's wise to be conservative about adding non-key columns to an index, especially wide columns. If
an index tuple exceeds the maximum size allowed for the index type, data insertion will fail. In any
case, non-key columns duplicate data from the index's table and bloat the size of the index, thus
potentially slowing searches. Furthermore, B-tree deduplication is never used with indexes that have
a non-key column.

Columns listed in the INCLUDE clause don't need appropriate operator classes; the clause can include
columns whose data types don't have operator classes defined for a given access method.

Expressions are not supported as included columns since they cannot be used in index-only scans.

Currently, the B-tree and the GiST index access methods support this feature. In B-tree and the
GiST indexes, the values of columns listed in the INCLUDE clause are included in leaf tuples which
correspond to heap tuples, but are not included in upper-level index entries used for tree navigation.

name

The name of the index to be created. No schema name can be included here; the index is always
created in the same schema as its parent table. If the name is omitted, Postgres Pro chooses a suitable
name based on the parent table's name and the indexed column name(s).

ONLY

Indicates not to recurse creating indexes on partitions, if the table is partitioned. The default is to
recurse.

table_name

The name (possibly schema-qualified) of the table to be indexed.

method

The name of the index method to be used. Choices are btree, hash, gist, spgist, gin, and brin.
The default method is btree.

1375

CREATE INDEX

column_name

The name of a column of the table.

expression

An expression based on one or more columns of the table. The expression usually must be written
with surrounding parentheses, as shown in the syntax. However, the parentheses can be omitted if
the expression has the form of a function call.

collation

The name of the collation to use for the index. By default, the index uses the collation declared for
the column to be indexed or the result collation of the expression to be indexed. Indexes with non-
default collations can be useful for queries that involve expressions using non-default collations.

opclass

The name of an operator class. See below for details.

opclass_parameter

The name of an operator class parameter. See below for details.

ASC

Specifies ascending sort order (which is the default).

DESC

Specifies descending sort order.

NULLS FIRST

Specifies that nulls sort before non-nulls. This is the default when DESC is specified.

NULLS LAST

Specifies that nulls sort after non-nulls. This is the default when DESC is not specified.

storage_parameter

The name of an index-method-specific storage parameter. See Index Storage Parameters below for
details.

tablespace_name

The tablespace in which to create the index. If not specified, default_tablespace is consulted, or
temp_tablespaces for indexes on temporary tables.

predicate

The constraint expression for a partial index.

Index Storage Parameters
The optional WITH clause specifies storage parameters for the index. Each index method has its own
set of allowed storage parameters. The B-tree, hash, GiST and SP-GiST index methods all accept this
parameter:

fillfactor (integer)

The fillfactor for an index is a percentage that determines how full the index method will try to pack
index pages. For B-trees, leaf pages are filled to this percentage during initial index build, and also

1376

CREATE INDEX

when extending the index at the right (adding new largest key values). If pages subsequently become
completely full, they will be split, leading to gradual degradation in the index's efficiency. B-trees
use a default fillfactor of 90, but any integer value from 10 to 100 can be selected. If the table is
static then fillfactor 100 is best to minimize the index's physical size, but for heavily updated tables a
smaller fillfactor is better to minimize the need for page splits. The other index methods use fillfactor
in different but roughly analogous ways; the default fillfactor varies between methods.

B-tree indexes additionally accept this parameter:

deduplicate_items (boolean)

Controls usage of the B-tree deduplication technique described in Section 59.4.2. Set to ON or OFF
to enable or disable the optimization. (Alternative spellings of ON and OFF are allowed as described
in Section 18.1.) The default is ON.

Note
Turning deduplicate_items off via ALTER INDEX prevents future insertions from triggering
deduplication, but does not in itself make existing posting list tuples use the standard tuple
representation.

GiST indexes additionally accept this parameter:

buffering (enum)

Determines whether the buffering build technique described in Section 60.4.1 is used to build the
index. With OFF it is disabled, with ON it is enabled, and with AUTO it is initially disabled, but turned
on on-the-fly once the index size reaches effective_cache_size. The default is AUTO.

GIN indexes accept different parameters:

fastupdate (boolean)

This setting controls usage of the fast update technique described in Section 62.4.1. It is a Boolean
parameter: ON enables fast update, OFF disables it. The default is ON.

Note
Turning fastupdate off via ALTER INDEX prevents future insertions from going into the list of
pending index entries, but does not in itself flush previous entries. You might want to VACUUM
the table or call gin_clean_pending_list function afterward to ensure the pending list is
emptied.

gin_pending_list_limit (integer)

Custom gin_pending_list_limit parameter. This value is specified in kilobytes.

BRIN indexes accept different parameters:

pages_per_range (integer)

Defines the number of table blocks that make up one block range for each entry of a BRIN index (see
Section 63.1 for more details). The default is 128.

autosummarize (boolean)

Defines whether a summarization run is invoked for the previous page range whenever an insertion
is detected on the next one.

1377

CREATE INDEX

Building Indexes Concurrently
Creating an index can interfere with regular operation of a database. Normally Postgres Pro locks the
table to be indexed against writes and performs the entire index build with a single scan of the table.
Other transactions can still read the table, but if they try to insert, update, or delete rows in the table
they will block until the index build is finished. This could have a severe effect if the system is a live
production database. Very large tables can take many hours to be indexed, and even for smaller tables,
an index build can lock out writers for periods that are unacceptably long for a production system.

Postgres Pro supports building indexes without locking out writes. This method is invoked by specifying
the CONCURRENTLY option of CREATE INDEX. When this option is used, Postgres Pro must perform two
scans of the table, and in addition it must wait for all existing transactions that could potentially modify
or use the index to terminate. Thus this method requires more total work than a standard index build
and takes significantly longer to complete. However, since it allows normal operations to continue while
the index is built, this method is useful for adding new indexes in a production environment. Of course,
the extra CPU and I/O load imposed by the index creation might slow other operations.

In a concurrent index build, the index is actually entered into the system catalogs in one transaction,
then two table scans occur in two more transactions. Before each table scan, the index build must wait
for existing transactions that have modified the table to terminate. After the second scan, the index
build must wait for any transactions that have a snapshot (see Chapter 13) predating the second scan
to terminate, including transactions used by any phase of concurrent index builds on other tables. Then
finally the index can be marked ready for use, and the CREATE INDEX command terminates. Even then,
however, the index may not be immediately usable for queries: in the worst case, it cannot be used as
long as transactions exist that predate the start of the index build.

If a problem arises while scanning the table, such as a deadlock or a uniqueness violation in a unique
index, the CREATE INDEX command will fail but leave behind an “invalid” index. This index will be ignored
for querying purposes because it might be incomplete; however it will still consume update overhead.
The psql \d command will report such an index as INVALID:
postgres=# \d tab
 Table "public.tab"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 col | integer | | |
Indexes:
 "idx" btree (col) INVALID

The recommended recovery method in such cases is to drop the index and try again to perform CREATE
INDEX CONCURRENTLY. (Another possibility is to rebuild the index with REINDEX INDEX CONCURRENTLY).

Another caveat when building a unique index concurrently is that the uniqueness constraint is already
being enforced against other transactions when the second table scan begins. This means that constraint
violations could be reported in other queries prior to the index becoming available for use, or even in
cases where the index build eventually fails. Also, if a failure does occur in the second scan, the “invalid”
index continues to enforce its uniqueness constraint afterwards.

Concurrent builds of expression indexes and partial indexes are supported. Errors occurring in the
evaluation of these expressions could cause behavior similar to that described above for unique
constraint violations.

Regular index builds permit other regular index builds on the same table to occur simultaneously, but
only one concurrent index build can occur on a table at a time. In either case, schema modification of
the table is not allowed while the index is being built. Another difference is that a regular CREATE INDEX
command can be performed within a transaction block, but CREATE INDEX CONCURRENTLY cannot.

Concurrent builds for indexes on partitioned tables are currently not supported. However, you may
concurrently build the index on each partition individually and then finally create the partitioned index
non-concurrently in order to reduce the time where writes to the partitioned table will be locked out. In
this case, building the partitioned index is a metadata only operation.

1378

CREATE INDEX

Notes
See Chapter 11 for information about when indexes can be used, when they are not used, and in which
particular situations they can be useful.

Currently, only the B-tree, GiST, GIN, and BRIN index methods support multicolumn indexes. Up to 32
fields can be specified by default. (This limit can be altered when building Postgres Pro.) Only B-tree
currently supports unique indexes.

An operator class with optional parameters can be specified for each column of an index. The operator
class identifies the operators to be used by the index for that column. For example, a B-tree index on
four-byte integers would use the int4_ops class; this operator class includes comparison functions for
four-byte integers. In practice the default operator class for the column's data type is usually sufficient.
The main point of having operator classes is that for some data types, there could be more than
one meaningful ordering. For example, we might want to sort a complex-number data type either by
absolute value or by real part. We could do this by defining two operator classes for the data type and
then selecting the proper class when creating an index. More information about operator classes is in
Section 11.10 and in Section 35.16.

When CREATE INDEX is invoked on a partitioned table, the default behavior is to recurse to all partitions to
ensure they all have matching indexes. Each partition is first checked to determine whether an equivalent
index already exists, and if so, that index will become attached as a partition index to the index being
created, which will become its parent index. If no matching index exists, a new index will be created
and automatically attached; the name of the new index in each partition will be determined as if no
index name had been specified in the command. If the ONLY option is specified, no recursion is done,
and the index is marked invalid. (ALTER INDEX ... ATTACH PARTITION marks the index valid, once
all partitions acquire matching indexes.) Note, however, that any partition that is created in the future
using CREATE TABLE ... PARTITION OF will automatically have a matching index, regardless of whether
ONLY is specified.

For index methods that support ordered scans (currently, only B-tree), the optional clauses ASC, DESC,
NULLS FIRST, and/or NULLS LAST can be specified to modify the sort ordering of the index. Since an
ordered index can be scanned either forward or backward, it is not normally useful to create a single-
column DESC index — that sort ordering is already available with a regular index. The value of these
options is that multicolumn indexes can be created that match the sort ordering requested by a mixed-
ordering query, such as SELECT ... ORDER BY x ASC, y DESC. The NULLS options are useful if you need
to support “nulls sort low” behavior, rather than the default “nulls sort high”, in queries that depend
on indexes to avoid sorting steps.

The system regularly collects statistics on all of a table's columns. Newly-created non-expression indexes
can immediately use these statistics to determine an index's usefulness. For new expression indexes, it is
necessary to run ANALYZE or wait for the autovacuum daemon to analyze the table to generate statistics
for these indexes.

For most index methods, the speed of creating an index is dependent on the setting of
maintenance_work_mem. Larger values will reduce the time needed for index creation, so long as you
don't make it larger than the amount of memory really available, which would drive the machine into
swapping.

Postgres Pro can build indexes while leveraging multiple CPUs in order to process the table rows faster.
This feature is known as parallel index build. For index methods that support building indexes in parallel
(currently, only B-tree), maintenance_work_mem specifies the maximum amount of memory that can be
used by each index build operation as a whole, regardless of how many worker processes were started.
Generally, a cost model automatically determines how many worker processes should be requested, if
any.

Parallel index builds may benefit from increasing maintenance_work_mem where an equivalent serial
index build will see little or no benefit. Note that maintenance_work_mem may influence the number
of worker processes requested, since parallel workers must have at least a 32MB share of the total

1379

CREATE INDEX

maintenance_work_mem budget. There must also be a remaining 32MB share for the leader process.
Increasing max_parallel_maintenance_workers may allow more workers to be used, which will reduce
the time needed for index creation, so long as the index build is not already I/O bound. Of course, there
should also be sufficient CPU capacity that would otherwise lie idle.

Setting a value for parallel_workers via ALTER TABLE directly controls how many parallel worker
processes will be requested by a CREATE INDEX against the table. This bypasses the cost model
completely, and prevents maintenance_work_mem from affecting how many parallel workers are
requested. Setting parallel_workers to 0 via ALTER TABLE will disable parallel index builds on the table
in all cases.

Tip
You might want to reset parallel_workers after setting it as part of tuning an index build. This
avoids inadvertent changes to query plans, since parallel_workers affects all parallel table scans.

While CREATE INDEX with the CONCURRENTLY option supports parallel builds without special restrictions,
only the first table scan is actually performed in parallel.

Use DROP INDEX to remove an index.

Like any long-running transaction, CREATE INDEX on a table can affect which tuples can be removed by
concurrent VACUUM on any other table.

Prior releases of Postgres Pro also had an R-tree index method. This method has been removed because
it had no significant advantages over the GiST method. If USING rtree is specified, CREATE INDEX will
interpret it as USING gist, to simplify conversion of old databases to GiST.

Examples
To create a unique B-tree index on the column title in the table films:
CREATE UNIQUE INDEX title_idx ON films (title);

To create a unique B-tree index on the column title with included columns director and rating in
the table films:
CREATE UNIQUE INDEX title_idx ON films (title) INCLUDE (director, rating);

To create a B-Tree index with deduplication disabled:
CREATE INDEX title_idx ON films (title) WITH (deduplicate_items = off);

To create an index on the expression lower(title), allowing efficient case-insensitive searches:
CREATE INDEX ON films ((lower(title)));

(In this example we have chosen to omit the index name, so the system will choose a name, typically
films_lower_idx.)

To create an index with non-default collation:
CREATE INDEX title_idx_german ON films (title COLLATE "de_DE");

To create an index with non-default sort ordering of nulls:
CREATE INDEX title_idx_nulls_low ON films (title NULLS FIRST);

To create an index with non-default fill factor:
CREATE UNIQUE INDEX title_idx ON films (title) WITH (fillfactor = 70);

To create a GIN index with fast updates disabled:

1380

CREATE INDEX

CREATE INDEX gin_idx ON documents_table USING GIN (locations) WITH (fastupdate = off);

To create an index on the column code in the table films and have the index reside in the tablespace
indexspace:

CREATE INDEX code_idx ON films (code) TABLESPACE indexspace;

To create a GiST index on a point attribute so that we can efficiently use box operators on the result
of the conversion function:

CREATE INDEX pointloc
 ON points USING gist (box(location,location));
SELECT * FROM points
 WHERE box(location,location) && '(0,0),(1,1)'::box;

To create an index without locking out writes to the table:

CREATE INDEX CONCURRENTLY sales_quantity_index ON sales_table (quantity);

Compatibility
CREATE INDEX is a Postgres Pro language extension. There are no provisions for indexes in the SQL
standard.

See Also
ALTER INDEX, DROP INDEX, REINDEX

1381

CREATE LANGUAGE
CREATE LANGUAGE — define a new procedural language

Synopsis
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name
 HANDLER call_handler [INLINE inline_handler] [VALIDATOR valfunction]
CREATE [OR REPLACE] [TRUSTED] [PROCEDURAL] LANGUAGE name

Description
CREATE LANGUAGE registers a new procedural language with a Postgres Pro database. Subsequently,
functions and procedures can be defined in this new language.

CREATE LANGUAGE effectively associates the language name with handler function(s) that are responsible
for executing functions written in the language. Refer to Chapter 51 for more information about language
handlers.

CREATE OR REPLACE LANGUAGE will either create a new language, or replace an existing definition. If
the language already exists, its parameters are updated according to the command, but the language's
ownership and permissions settings do not change, and any existing functions written in the language
are assumed to still be valid.

One must have the Postgres Pro superuser privilege to register a new language or change an existing
language's parameters. However, once the language is created it is valid to assign ownership of it to a
non-superuser, who may then drop it, change its permissions, rename it, or assign it to a new owner.
(Do not, however, assign ownership of the underlying C functions to a non-superuser; that would create
a privilege escalation path for that user.)

The form of CREATE LANGUAGE that does not supply any handler function is obsolete. For backwards
compatibility with old dump files, it is interpreted as CREATE EXTENSION. That will work if the language
has been packaged into an extension of the same name, which is the conventional way to set up
procedural languages.

Parameters
TRUSTED

TRUSTED specifies that the language does not grant access to data that the user would not otherwise
have. If this key word is omitted when registering the language, only users with the Postgres Pro
superuser privilege can use this language to create new functions.

PROCEDURAL

This is a noise word.

name

The name of the new procedural language. The name must be unique among the languages in the
database.

For backward compatibility, the name can be enclosed by single quotes.

HANDLER call_handler
call_handler is the name of a previously registered function that will be called to execute the
procedural language's functions. The call handler for a procedural language must be written in a
compiled language such as C with version 1 call convention and registered with Postgres Pro as a
function taking no arguments and returning the language_handler type, a placeholder type that is
simply used to identify the function as a call handler.

1382

CREATE LANGUAGE

INLINE inline_handler

inline_handler is the name of a previously registered function that will be called to execute an
anonymous code block (DO command) in this language. If no inline_handler function is specified,
the language does not support anonymous code blocks. The handler function must take one argument
of type internal, which will be the DO command's internal representation, and it will typically return
void. The return value of the handler is ignored.

VALIDATOR valfunction

valfunction is the name of a previously registered function that will be called when a new function
in the language is created, to validate the new function. If no validator function is specified, then a
new function will not be checked when it is created. The validator function must take one argument
of type oid, which will be the OID of the to-be-created function, and will typically return void.

A validator function would typically inspect the function body for syntactical correctness, but it can
also look at other properties of the function, for example if the language cannot handle certain
argument types. To signal an error, the validator function should use the ereport() function. The
return value of the function is ignored.

Notes
Use DROP LANGUAGE to drop procedural languages.

The system catalog pg_language (see Section 49.29) records information about the currently installed
languages. Also, the psql command \dL lists the installed languages.

To create functions in a procedural language, a user must have the USAGE privilege for the language. By
default, USAGE is granted to PUBLIC (i.e., everyone) for trusted languages. This can be revoked if desired.

Procedural languages are local to individual databases. However, a language can be installed into
the template1 database, which will cause it to be available automatically in all subsequently-created
databases.

Examples
A minimal sequence for creating a new procedural language is:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS '$libdir/plsample'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Typically that would be written in an extension's creation script, and users would do this to install the
extension:

CREATE EXTENSION plsample;

Compatibility
CREATE LANGUAGE is a Postgres Pro extension.

See Also
ALTER LANGUAGE, CREATE FUNCTION, DROP LANGUAGE, GRANT, REVOKE

1383

CREATE MATERIALIZED VIEW
CREATE MATERIALIZED VIEW — define a new materialized view

Synopsis
CREATE MATERIALIZED VIEW [IF NOT EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...])]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description
CREATE MATERIALIZED VIEW defines a materialized view of a query. The query is executed and used to
populate the view at the time the command is issued (unless WITH NO DATA is used) and may be refreshed
later using REFRESH MATERIALIZED VIEW.

CREATE MATERIALIZED VIEW is similar to CREATE TABLE AS, except that it also remembers the query
used to initialize the view, so that it can be refreshed later upon demand. A materialized view has many
of the same properties as a table, but there is no support for temporary materialized views.

Parameters
IF NOT EXISTS

Do not throw an error if a materialized view with the same name already exists. A notice is issued
in this case. Note that there is no guarantee that the existing materialized view is anything like the
one that would have been created.

table_name

The name (optionally schema-qualified) of the materialized view to be created.

column_name

The name of a column in the new materialized view. If column names are not provided, they are taken
from the output column names of the query.

USING method

This optional clause specifies the table access method to use to store the contents for the new
materialized view; the method needs be an access method of type TABLE. See Chapter 56 for more
information. If this option is not specified, the default table access method is chosen for the new
materialized view. See default_table_access_method for more information.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new materialized view; see Storage
Parameters in the CREATE TABLE documentation for more information. All parameters supported
for CREATE TABLE are also supported for CREATE MATERIALIZED VIEW. See CREATE TABLE for more
information.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new materialized view is to be
created. If not specified, default_tablespace is consulted.

1384

CREATE MATERIALIZED VIEW

query

A SELECT, TABLE, or VALUES command. This query will run within a security-restricted operation;
in particular, calls to functions that themselves create temporary tables will fail.

WITH [NO] DATA

This clause specifies whether or not the materialized view should be populated at creation time.
If not, the materialized view will be flagged as unscannable and cannot be queried until REFRESH
MATERIALIZED VIEW is used.

Compatibility
CREATE MATERIALIZED VIEW is a Postgres Pro extension.

See Also
ALTER MATERIALIZED VIEW, CREATE TABLE AS, CREATE VIEW, DROP MATERIALIZED VIEW,
REFRESH MATERIALIZED VIEW

1385

CREATE OPERATOR
CREATE OPERATOR — define a new operator

Synopsis
CREATE OPERATOR name (
 {FUNCTION|PROCEDURE} = function_name
 [, LEFTARG = left_type] [, RIGHTARG = right_type]
 [, COMMUTATOR = com_op] [, NEGATOR = neg_op]
 [, RESTRICT = res_proc] [, JOIN = join_proc]
 [, HASHES] [, MERGES]
)

Description
CREATE OPERATOR defines a new operator, name. The user who defines an operator becomes its owner.
If a schema name is given then the operator is created in the specified schema. Otherwise it is created
in the current schema.

The operator name is a sequence of up to NAMEDATALEN-1 (63 by default) characters from the following
list:

+ - * / < > = ~ ! @ # % ^ & | ` ?

There are a few restrictions on your choice of name:

• -- and /* cannot appear anywhere in an operator name, since they will be taken as the start of a
comment.

• A multicharacter operator name cannot end in + or -, unless the name also contains at least one of
these characters:

~ ! @ # % ^ & | ` ?

For example, @- is an allowed operator name, but *- is not. This restriction allows Postgres Pro to
parse SQL-compliant commands without requiring spaces between tokens.

• The use of => as an operator name is deprecated. It may be disallowed altogether in a future
release.

The operator != is mapped to <> on input, so these two names are always equivalent.

At least one of LEFTARG and RIGHTARG must be defined. For binary operators, both must be defined. For
right unary operators, only LEFTARG should be defined, while for left unary operators only RIGHTARG
should be defined.

Note
Right unary, also called postfix, operators are deprecated and will be removed in PostgreSQL
version 14.

The function_name function must have been previously defined using CREATE FUNCTION and must be
defined to accept the correct number of arguments (either one or two) of the indicated types.

In the syntax of CREATE OPERATOR, the keywords FUNCTION and PROCEDURE are equivalent, but the
referenced function must in any case be a function, not a procedure. The use of the keyword PROCEDURE
here is historical and deprecated.

1386

CREATE OPERATOR

The other clauses specify optional operator optimization clauses. Their meaning is detailed in
Section 35.15.

To be able to create an operator, you must have USAGE privilege on the argument types and the return
type, as well as EXECUTE privilege on the underlying function. If a commutator or negator operator is
specified, you must own these operators.

Parameters
name

The name of the operator to be defined. See above for allowable characters. The name can be schema-
qualified, for example CREATE OPERATOR myschema.+ (...). If not, then the operator is created in
the current schema. Two operators in the same schema can have the same name if they operate on
different data types. This is called overloading.

function_name

The function used to implement this operator.

left_type

The data type of the operator's left operand, if any. This option would be omitted for a left-unary
operator.

right_type

The data type of the operator's right operand, if any. This option would be omitted for a right-unary
operator.

com_op

The commutator of this operator.

neg_op

The negator of this operator.

res_proc

The restriction selectivity estimator function for this operator.

join_proc

The join selectivity estimator function for this operator.

HASHES

Indicates this operator can support a hash join.

MERGES

Indicates this operator can support a merge join.

To give a schema-qualified operator name in com_op or the other optional arguments, use the OPERATOR()
syntax, for example:

COMMUTATOR = OPERATOR(myschema.===) ,

Notes
Refer to Section 35.14 for further information.

It is not possible to specify an operator's lexical precedence in CREATE OPERATOR, because the parser's
precedence behavior is hard-wired. See Section 4.1.6 for precedence details.

1387

CREATE OPERATOR

The obsolete options SORT1, SORT2, LTCMP, and GTCMP were formerly used to specify the names of sort
operators associated with a merge-joinable operator. This is no longer necessary, since information about
associated operators is found by looking at B-tree operator families instead. If one of these options is
given, it is ignored except for implicitly setting MERGES true.

Use DROP OPERATOR to delete user-defined operators from a database. Use ALTER OPERATOR to
modify operators in a database.

Examples
The following command defines a new operator, area-equality, for the data type box:

CREATE OPERATOR === (
 LEFTARG = box,
 RIGHTARG = box,
 FUNCTION = area_equal_function,
 COMMUTATOR = ===,
 NEGATOR = !==,
 RESTRICT = area_restriction_function,
 JOIN = area_join_function,
 HASHES, MERGES
);

Compatibility
CREATE OPERATOR is a Postgres Pro extension. There are no provisions for user-defined operators in the
SQL standard.

See Also
ALTER OPERATOR, CREATE OPERATOR CLASS, DROP OPERATOR

1388

CREATE OPERATOR CLASS
CREATE OPERATOR CLASS — define a new operator class

Synopsis
CREATE OPERATOR CLASS name [DEFAULT] FOR TYPE data_type
 USING index_method [FAMILY family_name] AS
 { OPERATOR strategy_number operator_name [(op_type, op_type)] [FOR SEARCH | FOR
 ORDER BY sort_family_name]
 | FUNCTION support_number [(op_type [, op_type])] function_name
 (argument_type [, ...])
 | STORAGE storage_type
 } [, ...]

Description
CREATE OPERATOR CLASS creates a new operator class. An operator class defines how a particular data
type can be used with an index. The operator class specifies that certain operators will fill particular roles
or “strategies” for this data type and this index method. The operator class also specifies the support
functions to be used by the index method when the operator class is selected for an index column. All
the operators and functions used by an operator class must be defined before the operator class can
be created.

If a schema name is given then the operator class is created in the specified schema. Otherwise it is
created in the current schema. Two operator classes in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator class becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator class definition could confuse or
even crash the server.)

CREATE OPERATOR CLASS does not presently check whether the operator class definition includes all the
operators and functions required by the index method, nor whether the operators and functions form a
self-consistent set. It is the user's responsibility to define a valid operator class.

Related operator classes can be grouped into operator families. To add a new operator class to an existing
family, specify the FAMILY option in CREATE OPERATOR CLASS. Without this option, the new class is placed
into a family named the same as the new class (creating that family if it doesn't already exist).

Refer to Section 35.16 for further information.

Parameters
name

The name of the operator class to be created. The name can be schema-qualified.

DEFAULT

If present, the operator class will become the default operator class for its data type. At most one
operator class can be the default for a specific data type and index method.

data_type

The column data type that this operator class is for.

index_method

The name of the index method this operator class is for.

1389

CREATE OPERATOR CLASS

family_name

The name of the existing operator family to add this operator class to. If not specified, a family named
the same as the operator class is used (creating it, if it doesn't already exist).

strategy_number

The index method's strategy number for an operator associated with the operator class.

operator_name

The name (optionally schema-qualified) of an operator associated with the operator class.

op_type

In an OPERATOR clause, the operand data type(s) of the operator, or NONE to signify a left-unary or
right-unary operator. The operand data types can be omitted in the normal case where they are the
same as the operator class's data type.

In a FUNCTION clause, the operand data type(s) the function is intended to support, if different from
the input data type(s) of the function (for B-tree comparison functions and hash functions) or the
class's data type (for B-tree sort support functions, B-tree equal image functions, and all functions in
GiST, SP-GiST, GIN and BRIN operator classes). These defaults are correct, and so op_type need not
be specified in FUNCTION clauses, except for the case of a B-tree sort support function that is meant
to support cross-data-type comparisons.

sort_family_name

The name (optionally schema-qualified) of an existing btree operator family that describes the sort
ordering associated with an ordering operator.

If neither FOR SEARCH nor FOR ORDER BY is specified, FOR SEARCH is the default.

support_number

The index method's support function number for a function associated with the operator class.

function_name

The name (optionally schema-qualified) of a function that is an index method support function for
the operator class.

argument_type

The parameter data type(s) of the function.

storage_type

The data type actually stored in the index. Normally this is the same as the column data type, but
some index methods (currently GiST, GIN and BRIN) allow it to be different. The STORAGE clause
must be omitted unless the index method allows a different type to be used. If the column data_type
is specified as anyarray, the storage_type can be declared as anyelement to indicate that the index
entries are members of the element type belonging to the actual array type that each particular
index is created for.

The OPERATOR, FUNCTION, and STORAGE clauses can appear in any order.

Notes
Because the index machinery does not check access permissions on functions before using them,
including a function or operator in an operator class is tantamount to granting public execute permission
on it. This is usually not an issue for the sorts of functions that are useful in an operator class.

The operators should not be defined by SQL functions. A SQL function is likely to be inlined into the
calling query, which will prevent the optimizer from recognizing that the query matches an index.

1390

CREATE OPERATOR CLASS

Before PostgreSQL 8.4, the OPERATOR clause could include a RECHECK option. This is no longer supported
because whether an index operator is “lossy” is now determined on-the-fly at run time. This allows
efficient handling of cases where an operator might or might not be lossy.

Examples
The following example command defines a GiST index operator class for the data type _int4 (array of
int4). See the intarray module for the complete example.

CREATE OPERATOR CLASS gist__int_ops
 DEFAULT FOR TYPE _int4 USING gist AS
 OPERATOR 3 &&,
 OPERATOR 6 = (anyarray, anyarray),
 OPERATOR 7 @>,
 OPERATOR 8 <@,
 OPERATOR 20 @@ (_int4, query_int),
 FUNCTION 1 g_int_consistent (internal, _int4, smallint, oid,
 internal),
 FUNCTION 2 g_int_union (internal, internal),
 FUNCTION 3 g_int_compress (internal),
 FUNCTION 4 g_int_decompress (internal),
 FUNCTION 5 g_int_penalty (internal, internal, internal),
 FUNCTION 6 g_int_picksplit (internal, internal),
 FUNCTION 7 g_int_same (_int4, _int4, internal);

Compatibility
CREATE OPERATOR CLASS is a Postgres Pro extension. There is no CREATE OPERATOR CLASS statement
in the SQL standard.

See Also
ALTER OPERATOR CLASS, DROP OPERATOR CLASS, CREATE OPERATOR FAMILY, ALTER OPERATOR
FAMILY

1391

CREATE OPERATOR FAMILY
CREATE OPERATOR FAMILY — define a new operator family

Synopsis
CREATE OPERATOR FAMILY name USING index_method

Description
CREATE OPERATOR FAMILY creates a new operator family. An operator family defines a collection of related
operator classes, and perhaps some additional operators and support functions that are compatible
with these operator classes but not essential for the functioning of any individual index. (Operators and
functions that are essential to indexes should be grouped within the relevant operator class, rather than
being “loose” in the operator family. Typically, single-data-type operators are bound to operator classes,
while cross-data-type operators can be loose in an operator family containing operator classes for both
data types.)

The new operator family is initially empty. It should be populated by issuing subsequent CREATE OPERATOR
CLASS commands to add contained operator classes, and optionally ALTER OPERATOR FAMILY commands
to add “loose” operators and their corresponding support functions.

If a schema name is given then the operator family is created in the specified schema. Otherwise it is
created in the current schema. Two operator families in the same schema can have the same name only
if they are for different index methods.

The user who defines an operator family becomes its owner. Presently, the creating user must be a
superuser. (This restriction is made because an erroneous operator family definition could confuse or
even crash the server.)

Refer to Section 35.16 for further information.

Parameters
name

The name of the operator family to be created. The name can be schema-qualified.

index_method

The name of the index method this operator family is for.

Compatibility
CREATE OPERATOR FAMILY is a Postgres Pro extension. There is no CREATE OPERATOR FAMILY statement
in the SQL standard.

See Also
ALTER OPERATOR FAMILY, DROP OPERATOR FAMILY, CREATE OPERATOR CLASS, ALTER OPERATOR
CLASS, DROP OPERATOR CLASS

1392

CREATE POLICY
CREATE POLICY — define a new row level security policy for a table

Synopsis
CREATE POLICY name ON table_name
 [AS { PERMISSIVE | RESTRICTIVE }]
 [FOR { ALL | SELECT | INSERT | UPDATE | DELETE }]
 [TO { role_name | PUBLIC | CURRENT_USER | SESSION_USER } [, ...]]
 [USING (using_expression)]
 [WITH CHECK (check_expression)]

Description
The CREATE POLICY command defines a new row-level security policy for a table. Note that row-level
security must be enabled on the table (using ALTER TABLE ... ENABLE ROW LEVEL SECURITY) in order
for created policies to be applied.

A policy grants the permission to select, insert, update, or delete rows that match the relevant policy
expression. Existing table rows are checked against the expression specified in USING, while new rows
that would be created via INSERT or UPDATE are checked against the expression specified in WITH CHECK.
When a USING expression returns true for a given row then that row is visible to the user, while if false
or null is returned then the row is not visible. When a WITH CHECK expression returns true for a row then
that row is inserted or updated, while if false or null is returned then an error occurs.

For INSERT and UPDATE statements, WITH CHECK expressions are enforced after BEFORE triggers are fired,
and before any actual data modifications are made. Thus a BEFORE ROW trigger may modify the data
to be inserted, affecting the result of the security policy check. WITH CHECK expressions are enforced
before any other constraints.

Policy names are per-table. Therefore, one policy name can be used for many different tables and have
a definition for each table which is appropriate to that table.

Policies can be applied for specific commands or for specific roles. The default for newly created policies
is that they apply for all commands and roles, unless otherwise specified. Multiple policies may apply to
a single command; see below for more details. Table 273 summarizes how the different types of policy
apply to specific commands.

For policies that can have both USING and WITH CHECK expressions (ALL and UPDATE), if no WITH CHECK
expression is defined, then the USING expression will be used both to determine which rows are visible
(normal USING case) and which new rows will be allowed to be added (WITH CHECK case).

If row-level security is enabled for a table, but no applicable policies exist, a “default deny” policy is
assumed, so that no rows will be visible or updatable.

Parameters
name

The name of the policy to be created. This must be distinct from the name of any other policy for
the table.

table_name

The name (optionally schema-qualified) of the table the policy applies to.

PERMISSIVE

Specify that the policy is to be created as a permissive policy. All permissive policies which are
applicable to a given query will be combined together using the Boolean “OR” operator. By creating

1393

CREATE POLICY

permissive policies, administrators can add to the set of records which can be accessed. Policies are
permissive by default.

RESTRICTIVE

Specify that the policy is to be created as a restrictive policy. All restrictive policies which are
applicable to a given query will be combined together using the Boolean “AND” operator. By creating
restrictive policies, administrators can reduce the set of records which can be accessed as all
restrictive policies must be passed for each record.

Note that there needs to be at least one permissive policy to grant access to records before restrictive
policies can be usefully used to reduce that access. If only restrictive policies exist, then no records
will be accessible. When a mix of permissive and restrictive policies are present, a record is only
accessible if at least one of the permissive policies passes, in addition to all the restrictive policies.

command

The command to which the policy applies. Valid options are ALL, SELECT, INSERT, UPDATE, and DELETE.
ALL is the default. See below for specifics regarding how these are applied.

role_name

The role(s) to which the policy is to be applied. The default is PUBLIC, which will apply the policy
to all roles.

using_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain any
aggregate or window functions. This expression will be added to queries that refer to the table if
row level security is enabled. Rows for which the expression returns true will be visible. Any rows
for which the expression returns false or null will not be visible to the user (in a SELECT), and will
not be available for modification (in an UPDATE or DELETE). Such rows are silently suppressed; no
error is reported.

check_expression

Any SQL conditional expression (returning boolean). The conditional expression cannot contain any
aggregate or window functions. This expression will be used in INSERT and UPDATE queries against
the table if row level security is enabled. Only rows for which the expression evaluates to true
will be allowed. An error will be thrown if the expression evaluates to false or null for any of the
records inserted or any of the records that result from the update. Note that the check_expression
is evaluated against the proposed new contents of the row, not the original contents.

Per-Command Policies
ALL

Using ALL for a policy means that it will apply to all commands, regardless of the type of command.
If an ALL policy exists and more specific policies exist, then both the ALL policy and the more specific
policy (or policies) will be applied. Additionally, ALL policies will be applied to both the selection
side of a query and the modification side, using the USING expression for both cases if only a USING
expression has been defined.

As an example, if an UPDATE is issued, then the ALL policy will be applicable both to what the
UPDATE will be able to select as rows to be updated (applying the USING expression), and to the
resulting updated rows, to check if they are permitted to be added to the table (applying the WITH
CHECK expression, if defined, and the USING expression otherwise). If an INSERT or UPDATE command
attempts to add rows to the table that do not pass the ALL policy's WITH CHECK expression, the entire
command will be aborted.

SELECT

Using SELECT for a policy means that it will apply to SELECT queries and whenever SELECT permissions
are required on the relation the policy is defined for. The result is that only those records from the

1394

CREATE POLICY

relation that pass the SELECT policy will be returned during a SELECT query, and that queries that
require SELECT permissions, such as UPDATE, will also only see those records that are allowed by
the SELECT policy. A SELECT policy cannot have a WITH CHECK expression, as it only applies in cases
where records are being retrieved from the relation.

INSERT

Using INSERT for a policy means that it will apply to INSERT commands. Rows being inserted that
do not pass this policy will result in a policy violation error, and the entire INSERT command will be
aborted. An INSERT policy cannot have a USING expression, as it only applies in cases where records
are being added to the relation.

Note that INSERT with ON CONFLICT DO UPDATE checks INSERT policies' WITH CHECK expressions only
for rows appended to the relation by the INSERT path.

UPDATE

Using UPDATE for a policy means that it will apply to UPDATE, SELECT FOR UPDATE and SELECT
FOR SHARE commands, as well as auxiliary ON CONFLICT DO UPDATE clauses of INSERT commands.
Since UPDATE involves pulling an existing record and replacing it with a new modified record,
UPDATE policies accept both a USING expression and a WITH CHECK expression. The USING expression
determines which records the UPDATE command will see to operate against, while the WITH CHECK
expression defines which modified rows are allowed to be stored back into the relation.

Any rows whose updated values do not pass the WITH CHECK expression will cause an error, and the
entire command will be aborted. If only a USING clause is specified, then that clause will be used for
both USING and WITH CHECK cases.

Typically an UPDATE command also needs to read data from columns in the relation being updated
(e.g., in a WHERE clause or a RETURNING clause, or in an expression on the right hand side of the
SET clause). In this case, SELECT rights are also required on the relation being updated, and the
appropriate SELECT or ALL policies will be applied in addition to the UPDATE policies. Thus the user
must have access to the row(s) being updated through a SELECT or ALL policy in addition to being
granted permission to update the row(s) via an UPDATE or ALL policy.

When an INSERT command has an auxiliary ON CONFLICT DO UPDATE clause, if the UPDATE path is
taken, the row to be updated is first checked against the USING expressions of any UPDATE policies,
and then the new updated row is checked against the WITH CHECK expressions. Note, however, that
unlike a standalone UPDATE command, if the existing row does not pass the USING expressions, an
error will be thrown (the UPDATE path will never be silently avoided).

DELETE

Using DELETE for a policy means that it will apply to DELETE commands. Only rows that pass this
policy will be seen by a DELETE command. There can be rows that are visible through a SELECT that
are not available for deletion, if they do not pass the USING expression for the DELETE policy.

In most cases a DELETE command also needs to read data from columns in the relation that it is
deleting from (e.g., in a WHERE clause or a RETURNING clause). In this case, SELECT rights are also
required on the relation, and the appropriate SELECT or ALL policies will be applied in addition to the
DELETE policies. Thus the user must have access to the row(s) being deleted through a SELECT or ALL
policy in addition to being granted permission to delete the row(s) via a DELETE or ALL policy.

A DELETE policy cannot have a WITH CHECK expression, as it only applies in cases where records are
being deleted from the relation, so that there is no new row to check.

1395

CREATE POLICY

Table 273. Policies Applied by Command Type

SELECT/ALL
policy

INSERT/ALL
policy

UPDATE/ALL policy DELETE/ALL
policy

Command

USING
expression

WITH CHECK
expression

USING
expression

WITH CHECK
expression

USING
expression

SELECT Existing row — — — —
SELECT FOR
UPDATE/SHARE

Existing row — Existing row — —

INSERT — New row — — —
INSERT ...
RETURNING

New row a New row — — —

UPDATE Existing & new
rows a

— Existing row New row —

DELETE Existing row a — — — Existing row
ON CONFLICT
DO UPDATE

Existing & new
rows

— Existing row New row —

a If read access is required to the existing or new row (for example, a WHERE or RETURNING clause that refers to columns from the relation).

Application of Multiple Policies
When multiple policies of different command types apply to the same command (for example, SELECT
and UPDATE policies applied to an UPDATE command), then the user must have both types of permissions
(for example, permission to select rows from the relation as well as permission to update them). Thus
the expressions for one type of policy are combined with the expressions for the other type of policy
using the AND operator.

When multiple policies of the same command type apply to the same command, then there must be at
least one PERMISSIVE policy granting access to the relation, and all of the RESTRICTIVE policies must
pass. Thus all the PERMISSIVE policy expressions are combined using OR, all the RESTRICTIVE policy
expressions are combined using AND, and the results are combined using AND. If there are no PERMISSIVE
policies, then access is denied.

Note that, for the purposes of combining multiple policies, ALL policies are treated as having the same
type as whichever other type of policy is being applied.

For example, in an UPDATE command requiring both SELECT and UPDATE permissions, if there are multiple
applicable policies of each type, they will be combined as follows:

expression from RESTRICTIVE SELECT/ALL policy 1
AND
expression from RESTRICTIVE SELECT/ALL policy 2
AND
...
AND
(
 expression from PERMISSIVE SELECT/ALL policy 1
 OR
 expression from PERMISSIVE SELECT/ALL policy 2
 OR
 ...
)
AND
expression from RESTRICTIVE UPDATE/ALL policy 1
AND
expression from RESTRICTIVE UPDATE/ALL policy 2

1396

CREATE POLICY

AND
...
AND
(
 expression from PERMISSIVE UPDATE/ALL policy 1
 OR
 expression from PERMISSIVE UPDATE/ALL policy 2
 OR
 ...
)

Notes
You must be the owner of a table to create or change policies for it.

While policies will be applied for explicit queries against tables in the database, they are not applied
when the system is performing internal referential integrity checks or validating constraints. This means
there are indirect ways to determine that a given value exists. An example of this is attempting to insert
a duplicate value into a column that is a primary key or has a unique constraint. If the insert fails then
the user can infer that the value already exists. (This example assumes that the user is permitted by
policy to insert records which they are not allowed to see.) Another example is where a user is allowed
to insert into a table which references another, otherwise hidden table. Existence can be determined by
the user inserting values into the referencing table, where success would indicate that the value exists
in the referenced table. These issues can be addressed by carefully crafting policies to prevent users
from being able to insert, delete, or update records at all which might possibly indicate a value they
are not otherwise able to see, or by using generated values (e.g., surrogate keys) instead of keys with
external meanings.

Generally, the system will enforce filter conditions imposed using security policies prior to qualifications
that appear in user queries, in order to prevent inadvertent exposure of the protected data to user-
defined functions which might not be trustworthy. However, functions and operators marked by the
system (or the system administrator) as LEAKPROOF may be evaluated before policy expressions, as they
are assumed to be trustworthy.

Since policy expressions are added to the user's query directly, they will be run with the rights of the
user running the overall query. Therefore, users who are using a given policy must be able to access any
tables or functions referenced in the expression or they will simply receive a permission denied error
when attempting to query the table that has row-level security enabled. This does not change how views
work, however. As with normal queries and views, permission checks and policies for the tables which
are referenced by a view will use the view owner's rights and any policies which apply to the view owner.

Additional discussion and practical examples can be found in Section 5.8.

Compatibility
CREATE POLICY is a Postgres Pro extension.

See Also
ALTER POLICY, DROP POLICY, ALTER TABLE

1397

CREATE PROCEDURE
CREATE PROCEDURE — define a new procedure

Synopsis
CREATE [OR REPLACE] PROCEDURE
 name ([[argmode] [argname] argtype [{ DEFAULT | = } default_expr]
 [, ...]])
 { LANGUAGE lang_name
 | TRANSFORM { FOR TYPE type_name } [, ...]
 | [EXTERNAL] SECURITY INVOKER | [EXTERNAL] SECURITY DEFINER
 | SET configuration_parameter { TO value | = value | FROM CURRENT }
 | AS 'definition'
 | AS 'obj_file', 'link_symbol'
 } ...

Description
CREATE PROCEDURE defines a new procedure. CREATE OR REPLACE PROCEDURE will either create a new
procedure, or replace an existing definition. To be able to define a procedure, the user must have the
USAGE privilege on the language.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is
created in the current schema. The name of the new procedure must not match any existing procedure
or function with the same input argument types in the same schema. However, procedures and functions
of different argument types can share a name (this is called overloading).

To replace the current definition of an existing procedure, use CREATE OR REPLACE PROCEDURE. It is not
possible to change the name or argument types of a procedure this way (if you tried, you would actually
be creating a new, distinct procedure).

When CREATE OR REPLACE PROCEDURE is used to replace an existing procedure, the ownership and
permissions of the procedure do not change. All other procedure properties are assigned the values
specified or implied in the command. You must own the procedure to replace it (this includes being a
member of the owning role).

The user that creates the procedure becomes the owner of the procedure.

To be able to create a procedure, you must have USAGE privilege on the argument types.

Refer to Section 35.4 for further information on writing procedures.

Parameters
name

The name (optionally schema-qualified) of the procedure to create.

argmode

The mode of an argument: IN, INOUT, or VARIADIC. If omitted, the default is IN. (OUT arguments are
currently not supported for procedures. Use INOUT instead.)

argname

The name of an argument.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any. The argument
types can be base, composite, or domain types, or can reference the type of a table column.

1398

CREATE PROCEDURE

Depending on the implementation language it might also be allowed to specify “pseudo-types” such
as cstring. Pseudo-types indicate that the actual argument type is either incompletely specified, or
outside the set of ordinary SQL data types.

The type of a column is referenced by writing table_name.column_name%TYPE. Using this feature
can sometimes help make a procedure independent of changes to the definition of a table.

default_expr

An expression to be used as default value if the parameter is not specified. The expression has to be
coercible to the argument type of the parameter. All input parameters following a parameter with a
default value must have default values as well.

lang_name

The name of the language that the procedure is implemented in. It can be sql, c, internal, or the
name of a user-defined procedural language, e.g., plpgsql. Enclosing the name in single quotes is
deprecated and requires matching case.

TRANSFORM { FOR TYPE type_name } [, ...] }

Lists which transforms a call to the procedure should apply. Transforms convert between SQL types
and language-specific data types; see CREATE TRANSFORM. Procedural language implementations
usually have hardcoded knowledge of the built-in types, so those don't need to be listed here. If
a procedural language implementation does not know how to handle a type and no transform is
supplied, it will fall back to a default behavior for converting data types, but this depends on the
implementation.

[EXTERNAL] SECURITY INVOKER
[EXTERNAL] SECURITY DEFINER

SECURITY INVOKER indicates that the procedure is to be executed with the privileges of the user that
calls it. That is the default. SECURITY DEFINER specifies that the procedure is to be executed with
the privileges of the user that owns it.

The key word EXTERNAL is allowed for SQL conformance, but it is optional since, unlike in SQL, this
feature applies to all procedures not only external ones.

A SECURITY DEFINER procedure cannot execute transaction control statements (for example, COMMIT
and ROLLBACK, depending on the language).

configuration_parameter
value

The SET clause causes the specified configuration parameter to be set to the specified value when
the procedure is entered, and then restored to its prior value when the procedure exits. SET FROM
CURRENT saves the value of the parameter that is current when CREATE PROCEDURE is executed as the
value to be applied when the procedure is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside
the procedure for the same variable are restricted to the procedure: the configuration parameter's
prior value is still restored at procedure exit. However, an ordinary SET command (without LOCAL)
overrides the SET clause, much as it would do for a previous SET LOCAL command: the effects of such
a command will persist after procedure exit, unless the current transaction is rolled back.

If a SET clause is attached to a procedure, then that procedure cannot execute transaction control
statements (for example, COMMIT and ROLLBACK, depending on the language).

See SET and Chapter 18 for more information about allowed parameter names and values.

definition

A string constant defining the procedure; the meaning depends on the language. It can be an internal
procedure name, the path to an object file, an SQL command, or text in a procedural language.

1399

CREATE PROCEDURE

It is often helpful to use dollar quoting (see Section 4.1.2.4) to write the procedure definition string,
rather than the normal single quote syntax. Without dollar quoting, any single quotes or backslashes
in the procedure definition must be escaped by doubling them.

obj_file, link_symbol

This form of the AS clause is used for dynamically loadable C language procedures when the
procedure name in the C language source code is not the same as the name of the SQL procedure.
The string obj_file is the name of the shared library file containing the compiled C procedure, and
is interpreted as for the LOAD command. The string link_symbol is the procedure's link symbol,
that is, the name of the procedure in the C language source code. If the link symbol is omitted, it is
assumed to be the same as the name of the SQL procedure being defined.

When repeated CREATE PROCEDURE calls refer to the same object file, the file is only loaded once per
session. To unload and reload the file (perhaps during development), start a new session.

Notes
See CREATE FUNCTION for more details on function creation that also apply to procedures.

Use CALL to execute a procedure.

Examples
CREATE PROCEDURE insert_data(a integer, b integer)
LANGUAGE SQL
AS $$
INSERT INTO tbl VALUES (a);
INSERT INTO tbl VALUES (b);
$$;

CALL insert_data(1, 2);

Compatibility
A CREATE PROCEDURE command is defined in the SQL standard. The Postgres Pro version is similar but
not fully compatible. For details see also CREATE FUNCTION.

See Also
ALTER PROCEDURE, DROP PROCEDURE, CALL, CREATE FUNCTION

1400

CREATE PUBLICATION
CREATE PUBLICATION — define a new publication

Synopsis
CREATE PUBLICATION name
 [FOR TABLE [ONLY] table_name [*] [, ...]
 | FOR ALL TABLES]
 [WITH (publication_parameter [= value] [, ...])]

Description
CREATE PUBLICATION adds a new publication into the current database. The publication name must be
distinct from the name of any existing publication in the current database.

A publication is essentially a group of tables whose data changes are intended to be replicated through
logical replication. See Section 29.1 for details about how publications fit into the logical replication
setup.

Parameters
name

The name of the new publication.

FOR TABLE

Specifies a list of tables to add to the publication. If ONLY is specified before the table name, only that
table is added to the publication. If ONLY is not specified, the table and all its descendant tables (if any)
are added. Optionally, * can be specified after the table name to explicitly indicate that descendant
tables are included. This does not apply to a partitioned table, however. The partitions of a partitioned
table are always implicitly considered part of the publication, so they are never explicitly added to
the publication.

Only persistent base tables and partitioned tables can be part of a publication. Temporary tables,
unlogged tables, foreign tables, materialized views, and regular views cannot be part of a publication.

When a partitioned table is added to a publication, all of its existing and future partitions are implicitly
considered to be part of the publication. So, even operations that are performed directly on a partition
are also published via publications that its ancestors are part of.

FOR ALL TABLES

Marks the publication as one that replicates changes for all tables in the database, including tables
created in the future.

WITH (publication_parameter [= value] [, ...])

This clause specifies optional parameters for a publication. The following parameters are supported:
publish (string)

This parameter determines which DML operations will be published by the new publication to the
subscribers. The value is comma-separated list of operations. The allowed operations are insert,
update, delete, and truncate. The default is to publish all actions, and so the default value for
this option is 'insert, update, delete, truncate'.

publish_via_partition_root (boolean)
This parameter determines whether changes in a partitioned table (or on its partitions) contained
in the publication will be published using the identity and schema of the partitioned table rather

1401

CREATE PUBLICATION

than that of the individual partitions that are actually changed; the latter is the default. Enabling
this allows the changes to be replicated into a non-partitioned table or a partitioned table
consisting of a different set of partitions.

If this is enabled, TRUNCATE operations performed directly on partitions are not replicated.

Notes
If neither FOR TABLE nor FOR ALL TABLES is specified, then the publication starts out with an empty set
of tables. That is useful if tables are to be added later.

The creation of a publication does not start replication. It only defines a grouping and filtering logic for
future subscribers.

To create a publication, the invoking user must have the CREATE privilege for the current database. (Of
course, superusers bypass this check.)

To add a table to a publication, the invoking user must have ownership rights on the table. The FOR ALL
TABLES clause requires the invoking user to be a superuser.

The tables added to a publication that publishes UPDATE and/or DELETE operations must have REPLICA
IDENTITY defined. Otherwise those operations will be disallowed on those tables.

For an INSERT ... ON CONFLICT command, the publication will publish the operation that actually
results from the command. So depending of the outcome, it may be published as either INSERT or UPDATE,
or it may not be published at all.

ATTACHing a table into a partition tree whose root is published using a publication with
publish_via_partition_root set to true does not result in the table's existing contents being
replicated.

COPY ... FROM commands are published as INSERT operations.

DDL operations are not published.

Examples
Create a publication that publishes all changes in two tables:

CREATE PUBLICATION mypublication FOR TABLE users, departments;

Create a publication that publishes all changes in all tables:

CREATE PUBLICATION alltables FOR ALL TABLES;

Create a publication that only publishes INSERT operations in one table:

CREATE PUBLICATION insert_only FOR TABLE mydata
 WITH (publish = 'insert');

Compatibility
CREATE PUBLICATION is a Postgres Pro extension.

See Also
ALTER PUBLICATION, DROP PUBLICATION, CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1402

CREATE ROLE
CREATE ROLE — define a new database role

Synopsis
CREATE ROLE name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE ROLE adds a new role to a Postgres Pro database cluster. A role is an entity that can own database
objects and have database privileges; a role can be considered a “user”, a “group”, or both depending
on how it is used. Refer to Chapter 20 and Chapter 19 for information about managing users and
authentication. You must have CREATEROLE privilege or be a database superuser to use this command.

Note that roles are defined at the database cluster level, and so are valid in all databases in the cluster.

Parameters
name

The name of the new role.

SUPERUSER
NOSUPERUSER

These clauses determine whether the new role is a “superuser”, who can override all access
restrictions within the database. Superuser status is dangerous and should be used only when really
needed. You must yourself be a superuser to create a new superuser. If not specified, NOSUPERUSER
is the default.

CREATEDB
NOCREATEDB

These clauses define a role's ability to create databases. If CREATEDB is specified, the role being
defined will be allowed to create new databases. Specifying NOCREATEDB will deny a role the ability
to create databases. If not specified, NOCREATEDB is the default.

1403

CREATE ROLE

CREATEROLE
NOCREATEROLE

These clauses determine whether a role will be permitted to create new roles (that is, execute
CREATE ROLE). A role with CREATEROLE privilege can also alter and drop other roles. If not specified,
NOCREATEROLE is the default.

INHERIT
NOINHERIT

These clauses determine whether a role “inherits” the privileges of roles it is a member of. A role
with the INHERIT attribute can automatically use whatever database privileges have been granted to
all roles it is directly or indirectly a member of. Without INHERIT, membership in another role only
grants the ability to SET ROLE to that other role; the privileges of the other role are only available
after having done so. If not specified, INHERIT is the default.

LOGIN
NOLOGIN

These clauses determine whether a role is allowed to log in; that is, whether the role can be given
as the initial session authorization name during client connection. A role having the LOGIN attribute
can be thought of as a user. Roles without this attribute are useful for managing database privileges,
but are not users in the usual sense of the word. If not specified, NOLOGIN is the default, except when
CREATE ROLE is invoked through its alternative spelling CREATE USER.

REPLICATION
NOREPLICATION

These clauses determine whether a role is a replication role. A role must have this attribute (or
be a superuser) in order to be able to connect to the server in replication mode (physical or
logical replication) and in order to be able to create or drop replication slots. A role having the
REPLICATION attribute is a very highly privileged role, and should only be used on roles actually used
for replication. If not specified, NOREPLICATION is the default. You must be a superuser to create a
new role having the REPLICATION attribute.

BYPASSRLS
NOBYPASSRLS

These clauses determine whether a role bypasses every row-level security (RLS) policy. NOBYPASSRLS
is the default. You must be a superuser to create a new role having the BYPASSRLS attribute.

Note that pg_dump will set row_security to OFF by default, to ensure all contents of a table are
dumped out. If the user running pg_dump does not have appropriate permissions, an error will be
returned. However, superusers and the owner of the table being dumped always bypass RLS.

CONNECTION LIMIT connlimit
If role can log in, this specifies how many concurrent connections the role can make. -1 (the default)
means no limit. Note that only normal connections are counted towards this limit. Neither prepared
transactions nor background worker connections are counted towards this limit.

[ENCRYPTED] PASSWORD 'password'
PASSWORD NULL

Sets the role's password. (A password is only of use for roles having the LOGIN attribute, but you
can nonetheless define one for roles without it.) If you do not plan to use password authentication
you can omit this option. If no password is specified, the password will be set to null and password
authentication will always fail for that user. A null password can optionally be written explicitly as
PASSWORD NULL.

Note
Specifying an empty string will also set the password to null, but that was not the case before
Postgres Pro version 10. In earlier versions, an empty string could be used, or not, depending

1404

CREATE ROLE

on the authentication method and the exact version, and libpq would refuse to use it in any
case. To avoid the ambiguity, specifying an empty string should be avoided.

The password is always stored encrypted in the system catalogs. The ENCRYPTED keyword has no
effect, but is accepted for backwards compatibility. The method of encryption is determined by the
configuration parameter password_encryption. If the presented password string is already in MD5-
encrypted or SCRAM-encrypted format, then it is stored as-is regardless of password_encryption
(since the system cannot decrypt the specified encrypted password string, to encrypt it in a different
format). This allows reloading of encrypted passwords during dump/restore.

VALID UNTIL 'timestamp'
The VALID UNTIL clause sets a date and time after which the role's password is no longer valid. If
this clause is omitted the password will be valid for all time.

IN ROLE role_name
The IN ROLE clause lists one or more existing roles to which the new role will be immediately added as
a new member. (Note that there is no option to add the new role as an administrator; use a separate
GRANT command to do that.)

IN GROUP role_name
IN GROUP is an obsolete spelling of IN ROLE.

ROLE role_name
The ROLE clause lists one or more existing roles which are automatically added as members of the
new role. (This in effect makes the new role a “group”.)

ADMIN role_name
The ADMIN clause is like ROLE, but the named roles are added to the new role WITH ADMIN OPTION,
giving them the right to grant membership in this role to others.

USER role_name
The USER clause is an obsolete spelling of the ROLE clause.

SYSID uid
The SYSID clause is ignored, but is accepted for backwards compatibility.

Notes
Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. All the attributes
specified by CREATE ROLE can be modified by later ALTER ROLE commands.

The preferred way to add and remove members of roles that are being used as groups is to use GRANT
and REVOKE.

The VALID UNTIL clause defines an expiration time for a password only, not for the role per
se. In particular, the expiration time is not enforced when logging in using a non-password-based
authentication method.

The INHERIT attribute governs inheritance of grantable privileges (that is, access privileges for database
objects and role memberships). It does not apply to the special role attributes set by CREATE ROLE and
ALTER ROLE. For example, being a member of a role with CREATEDB privilege does not immediately grant
the ability to create databases, even if INHERIT is set; it would be necessary to become that role via SET
ROLE before creating a database.

The INHERIT attribute is the default for reasons of backwards compatibility: in prior releases of Postgres
Pro, users always had access to all privileges of groups they were members of. However, NOINHERIT
provides a closer match to the semantics specified in the SQL standard.

1405

CREATE ROLE

Be careful with the CREATEROLE privilege. There is no concept of inheritance for the privileges of a
CREATEROLE-role. That means that even if a role does not have a certain privilege but is allowed to create
other roles, it can easily create another role with different privileges than its own (except for creating
roles with superuser privileges). For example, if the role “user” has the CREATEROLE privilege but not the
CREATEDB privilege, nonetheless it can create a new role with the CREATEDB privilege. Therefore, regard
roles that have the CREATEROLE privilege as almost-superuser-roles.

Postgres Pro includes a program createuser that has the same functionality as CREATE ROLE (in fact, it
calls this command) but can be run from the command shell.

The CONNECTION LIMIT option is only enforced approximately; if two new sessions start at about the
same time when just one connection “slot” remains for the role, it is possible that both will fail. Also,
the limit is never enforced for superusers.

Caution must be exercised when specifying an unencrypted password with this command. The password
will be transmitted to the server in cleartext, and it might also be logged in the client's command history
or the server log. The command createuser, however, transmits the password encrypted. Also, psql
contains a command \password that can be used to safely change the password later.

Examples
Create a role that can log in, but don't give it a password:

CREATE ROLE jonathan LOGIN;

Create a role with a password:

CREATE USER davide WITH PASSWORD 'jw8s0F4';

(CREATE USER is the same as CREATE ROLE except that it implies LOGIN.)

Create a role with a password that is valid until the end of 2004. After one second has ticked in 2005,
the password is no longer valid.

CREATE ROLE miriam WITH LOGIN PASSWORD 'jw8s0F4' VALID UNTIL '2005-01-01';

Create a role that can create databases and manage roles:

CREATE ROLE admin WITH CREATEDB CREATEROLE;

Compatibility
The CREATE ROLE statement is in the SQL standard, but the standard only requires the syntax

CREATE ROLE name [WITH ADMIN role_name]

Multiple initial administrators, and all the other options of CREATE ROLE, are Postgres Pro extensions.

The SQL standard defines the concepts of users and roles, but it regards them as distinct concepts and
leaves all commands defining users to be specified by each database implementation. In Postgres Pro
we have chosen to unify users and roles into a single kind of entity. Roles therefore have many more
optional attributes than they do in the standard.

The behavior specified by the SQL standard is most closely approximated by giving users the NOINHERIT
attribute, while roles are given the INHERIT attribute.

See Also
SET ROLE, ALTER ROLE, DROP ROLE, GRANT, REVOKE, createuser

1406

CREATE RULE
CREATE RULE — define a new rewrite rule

Synopsis
CREATE [OR REPLACE] RULE name AS ON event
 TO table_name [WHERE condition]
 DO [ALSO | INSTEAD] { NOTHING | command | (command ; command ...) }

where event can be one of:

 SELECT | INSERT | UPDATE | DELETE

Description
CREATE RULE defines a new rule applying to a specified table or view. CREATE OR REPLACE RULE will
either create a new rule, or replace an existing rule of the same name for the same table.

The Postgres Pro rule system allows one to define an alternative action to be performed on insertions,
updates, or deletions in database tables. Roughly speaking, a rule causes additional commands to be
executed when a given command on a given table is executed. Alternatively, an INSTEAD rule can replace
a given command by another, or cause a command not to be executed at all. Rules are used to implement
SQL views as well. It is important to realize that a rule is really a command transformation mechanism,
or command macro. The transformation happens before the execution of the command starts. If you
actually want an operation that fires independently for each physical row, you probably want to use a
trigger, not a rule. More information about the rules system is in Chapter 38.

Presently, ON SELECT rules must be unconditional INSTEAD rules and must have actions that consist of a
single SELECT command. Thus, an ON SELECT rule effectively turns the table into a view, whose visible
contents are the rows returned by the rule's SELECT command rather than whatever had been stored in
the table (if anything). It is considered better style to write a CREATE VIEW command than to create a
real table and define an ON SELECT rule for it.

You can create the illusion of an updatable view by defining ON INSERT, ON UPDATE, and ON DELETE rules
(or any subset of those that's sufficient for your purposes) to replace update actions on the view with
appropriate updates on other tables. If you want to support INSERT RETURNING and so on, then be sure
to put a suitable RETURNING clause into each of these rules.

There is a catch if you try to use conditional rules for complex view updates: there must be an
unconditional INSTEAD rule for each action you wish to allow on the view. If the rule is conditional, or
is not INSTEAD, then the system will still reject attempts to perform the update action, because it thinks
it might end up trying to perform the action on the dummy table of the view in some cases. If you want
to handle all the useful cases in conditional rules, add an unconditional DO INSTEAD NOTHING rule to
ensure that the system understands it will never be called on to update the dummy table. Then make
the conditional rules non-INSTEAD; in the cases where they are applied, they add to the default INSTEAD
NOTHING action. (This method does not currently work to support RETURNING queries, however.)

Note
A view that is simple enough to be automatically updatable (see CREATE VIEW) does not require
a user-created rule in order to be updatable. While you can create an explicit rule anyway, the
automatic update transformation will generally outperform an explicit rule.

Another alternative worth considering is to use INSTEAD OF triggers (see CREATE TRIGGER) in
place of rules.

1407

CREATE RULE

Parameters
name

The name of a rule to create. This must be distinct from the name of any other rule for the same
table. Multiple rules on the same table and same event type are applied in alphabetical name order.

event

The event is one of SELECT, INSERT, UPDATE, or DELETE. Note that an INSERT containing an ON
CONFLICT clause cannot be used on tables that have either INSERT or UPDATE rules. Consider using
an updatable view instead.

table_name

The name (optionally schema-qualified) of the table or view the rule applies to.

condition

Any SQL conditional expression (returning boolean). The condition expression cannot refer to any
tables except NEW and OLD, and cannot contain aggregate functions.

INSTEAD

INSTEAD indicates that the commands should be executed instead of the original command.

ALSO

ALSO indicates that the commands should be executed in addition to the original command.

If neither ALSO nor INSTEAD is specified, ALSO is the default.

command

The command or commands that make up the rule action. Valid commands are SELECT, INSERT,
UPDATE, DELETE, or NOTIFY.

Within condition and command, the special table names NEW and OLD can be used to refer to values in the
referenced table. NEW is valid in ON INSERT and ON UPDATE rules to refer to the new row being inserted
or updated. OLD is valid in ON UPDATE and ON DELETE rules to refer to the existing row being updated
or deleted.

Notes
You must be the owner of a table to create or change rules for it.

In a rule for INSERT, UPDATE, or DELETE on a view, you can add a RETURNING clause that emits the view's
columns. This clause will be used to compute the outputs if the rule is triggered by an INSERT RETURNING,
UPDATE RETURNING, or DELETE RETURNING command respectively. When the rule is triggered by a
command without RETURNING, the rule's RETURNING clause will be ignored. The current implementation
allows only unconditional INSTEAD rules to contain RETURNING; furthermore there can be at most one
RETURNING clause among all the rules for the same event. (This ensures that there is only one candidate
RETURNING clause to be used to compute the results.) RETURNING queries on the view will be rejected if
there is no RETURNING clause in any available rule.

It is very important to take care to avoid circular rules. For example, though each of the following two
rule definitions are accepted by Postgres Pro, the SELECT command would cause Postgres Pro to report
an error because of recursive expansion of a rule:

CREATE RULE "_RETURN" AS
 ON SELECT TO t1
 DO INSTEAD
 SELECT * FROM t2;

1408

CREATE RULE

CREATE RULE "_RETURN" AS
 ON SELECT TO t2
 DO INSTEAD
 SELECT * FROM t1;

SELECT * FROM t1;

Presently, if a rule action contains a NOTIFY command, the NOTIFY command will be executed
unconditionally, that is, the NOTIFY will be issued even if there are not any rows that the rule should
apply to. For example, in:

CREATE RULE notify_me AS ON UPDATE TO mytable DO ALSO NOTIFY mytable;

UPDATE mytable SET name = 'foo' WHERE id = 42;

one NOTIFY event will be sent during the UPDATE, whether or not there are any rows that match the
condition id = 42. This is an implementation restriction that might be fixed in future releases.

Compatibility
CREATE RULE is a Postgres Pro language extension, as is the entire query rewrite system.

See Also
ALTER RULE, DROP RULE

1409

CREATE SCHEMA
CREATE SCHEMA — define a new schema

Synopsis
CREATE SCHEMA schema_name [AUTHORIZATION role_specification] [schema_element
 [...]]
CREATE SCHEMA AUTHORIZATION role_specification [schema_element [...]]
CREATE SCHEMA IF NOT EXISTS schema_name [AUTHORIZATION role_specification]
CREATE SCHEMA IF NOT EXISTS AUTHORIZATION role_specification

where role_specification can be:

 user_name
 | CURRENT_USER
 | SESSION_USER

Description
CREATE SCHEMA enters a new schema into the current database. The schema name must be distinct from
the name of any existing schema in the current database.

A schema is essentially a namespace: it contains named objects (tables, data types, functions, and
operators) whose names can duplicate those of other objects existing in other schemas. Named objects
are accessed either by “qualifying” their names with the schema name as a prefix, or by setting a search
path that includes the desired schema(s). A CREATE command specifying an unqualified object name
creates the object in the current schema (the one at the front of the search path, which can be determined
with the function current_schema).

Optionally, CREATE SCHEMA can include subcommands to create objects within the new schema. The
subcommands are treated essentially the same as separate commands issued after creating the schema,
except that if the AUTHORIZATION clause is used, all the created objects will be owned by that user.

Parameters
schema_name

The name of a schema to be created. If this is omitted, the user_name is used as the schema name.
The name cannot begin with pg_, as such names are reserved for system schemas.

user_name

The role name of the user who will own the new schema. If omitted, defaults to the user executing
the command. To create a schema owned by another role, you must be a direct or indirect member
of that role, or be a superuser.

schema_element

An SQL statement defining an object to be created within the schema. Currently, only CREATE TABLE,
CREATE VIEW, CREATE INDEX, CREATE SEQUENCE, CREATE TRIGGER and GRANT are accepted as clauses
within CREATE SCHEMA. Other kinds of objects may be created in separate commands after the schema
is created.

IF NOT EXISTS

Do nothing (except issuing a notice) if a schema with the same name already exists. schema_element
subcommands cannot be included when this option is used.

1410

CREATE SCHEMA

Notes
To create a schema, the invoking user must have the CREATE privilege for the current database. (Of
course, superusers bypass this check.)

Examples
Create a schema:

CREATE SCHEMA myschema;

Create a schema for user joe; the schema will also be named joe:

CREATE SCHEMA AUTHORIZATION joe;

Create a schema named test that will be owned by user joe, unless there already is a schema named
test. (It does not matter whether joe owns the pre-existing schema.)

CREATE SCHEMA IF NOT EXISTS test AUTHORIZATION joe;

Create a schema and create a table and view within it:

CREATE SCHEMA hollywood
 CREATE TABLE films (title text, release date, awards text[])
 CREATE VIEW winners AS
 SELECT title, release FROM films WHERE awards IS NOT NULL;

Notice that the individual subcommands do not end with semicolons.

The following is an equivalent way of accomplishing the same result:

CREATE SCHEMA hollywood;
CREATE TABLE hollywood.films (title text, release date, awards text[]);
CREATE VIEW hollywood.winners AS
 SELECT title, release FROM hollywood.films WHERE awards IS NOT NULL;

Compatibility
The SQL standard allows a DEFAULT CHARACTER SET clause in CREATE SCHEMA, as well as more
subcommand types than are presently accepted by Postgres Pro.

The SQL standard specifies that the subcommands in CREATE SCHEMA can appear in any order. The
present Postgres Pro implementation does not handle all cases of forward references in subcommands;
it might sometimes be necessary to reorder the subcommands in order to avoid forward references.

According to the SQL standard, the owner of a schema always owns all objects within it. Postgres Pro
allows schemas to contain objects owned by users other than the schema owner. This can happen only if
the schema owner grants the CREATE privilege on their schema to someone else, or a superuser chooses
to create objects in it.

The IF NOT EXISTS option is a Postgres Pro extension.

See Also
ALTER SCHEMA, DROP SCHEMA

1411

CREATE SEQUENCE
CREATE SEQUENCE — define a new sequence generator

Synopsis
CREATE [TEMPORARY | TEMP] SEQUENCE [IF NOT EXISTS] name
 [AS data_type]
 [INCREMENT [BY] increment]
 [MINVALUE minvalue | NO MINVALUE] [MAXVALUE maxvalue | NO MAXVALUE]
 [START [WITH] start] [CACHE cache] [[NO] CYCLE]
 [OWNED BY { table_name.column_name | NONE }]

Description
CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a
new special single-row table with the name name. The generator will be owned by the user issuing the
command.

If a schema name is given then the sequence is created in the specified schema. Otherwise it is created
in the current schema. Temporary sequences exist in a special schema, so a schema name cannot be
given when creating a temporary sequence. The sequence name must be distinct from the name of any
other sequence, table, index, view, or foreign table in the same schema.

After a sequence is created, you use the functions nextval, currval, and setval to operate on the
sequence. These functions are documented in Section 9.17.

Although you cannot update a sequence directly, you can use a query like:
SELECT * FROM name;

to examine the parameters and current state of a sequence. In particular, the last_value field of the
sequence shows the last value allocated by any session. (Of course, this value might be obsolete by the
time it's printed, if other sessions are actively doing nextval calls.)

Parameters
TEMPORARY or TEMP

If specified, the sequence object is created only for this session, and is automatically dropped on
session exit. Existing permanent sequences with the same name are not visible (in this session) while
the temporary sequence exists, unless they are referenced with schema-qualified names.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the sequence that would
have been created — it might not even be a sequence.

name

The name (optionally schema-qualified) of the sequence to be created.

data_type

The optional clause AS data_type specifies the data type of the sequence. Valid types are smallint,
integer, and bigint. bigint is the default. The data type determines the default minimum and
maximum values of the sequence.

increment

The optional clause INCREMENT BY increment specifies which value is added to the current sequence
value to create a new value. A positive value will make an ascending sequence, a negative one a
descending sequence. The default value is 1.

1412

CREATE SEQUENCE

minvalue
NO MINVALUE

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate.
If this clause is not supplied or NO MINVALUE is specified, then defaults will be used. The default
for an ascending sequence is 1. The default for a descending sequence is the minimum value of the
data type.

maxvalue
NO MAXVALUE

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If this
clause is not supplied or NO MAXVALUE is specified, then default values will be used. The default for an
ascending sequence is the maximum value of the data type. The default for a descending sequence
is -1.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default starting
value is minvalue for ascending sequences and maxvalue for descending ones.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated and
stored in memory for faster access. The minimum value is 1 (only one value can be generated at a
time, i.e., no cache), and this is also the default.

CYCLE
NO CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been
reached by an ascending or descending sequence respectively. If the limit is reached, the next number
generated will be the minvalue or maxvalue, respectively.

If NO CYCLE is specified, any calls to nextval after the sequence has reached its maximum value will
return an error. If neither CYCLE or NO CYCLE are specified, NO CYCLE is the default.

OWNED BY table_name.column_name
OWNED BY NONE

The OWNED BY option causes the sequence to be associated with a specific table column, such that
if that column (or its whole table) is dropped, the sequence will be automatically dropped as well.
The specified table must have the same owner and be in the same schema as the sequence. OWNED
BY NONE, the default, specifies that there is no such association.

Notes
Use DROP SEQUENCE to remove a sequence.

Sequences are based on bigint arithmetic, so the range cannot exceed the range of an eight-byte integer
(-9223372036854775808 to 9223372036854775807).

Because nextval and setval calls are never rolled back, sequence objects cannot be used if “gapless”
assignment of sequence numbers is needed. It is possible to build gapless assignment by using exclusive
locking of a table containing a counter; but this solution is much more expensive than sequence objects,
especially if many transactions need sequence numbers concurrently.

Unexpected results might be obtained if a cache setting greater than one is used for a sequence
object that will be used concurrently by multiple sessions. Each session will allocate and cache
successive sequence values during one access to the sequence object and increase the sequence object's
last_value accordingly. Then, the next cache-1 uses of nextval within that session simply return the

1413

CREATE SEQUENCE

preallocated values without touching the sequence object. So, any numbers allocated but not used within
a session will be lost when that session ends, resulting in “holes” in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values
might be generated out of sequence when all the sessions are considered. For example, with a cache
setting of 10, session A might reserve values 1..10 and return nextval=1, then session B might reserve
values 11..20 and return nextval=11 before session A has generated nextval=2. Thus, with a cache
setting of one it is safe to assume that nextval values are generated sequentially; with a cache setting
greater than one you should only assume that the nextval values are all distinct, not that they are
generated purely sequentially. Also, last_value will reflect the latest value reserved by any session,
whether or not it has yet been returned by nextval.

Another consideration is that a setval executed on such a sequence will not be noticed by other sessions
until they have used up any preallocated values they have cached.

Examples
Create an ascending sequence called serial, starting at 101:

CREATE SEQUENCE serial START 101;

Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 101

Select the next number from this sequence:

SELECT nextval('serial');

 nextval

 102

Use this sequence in an INSERT command:

INSERT INTO distributors VALUES (nextval('serial'), 'nothing');

Update the sequence value after a COPY FROM:

BEGIN;
COPY distributors FROM 'input_file';
SELECT setval('serial', max(id)) FROM distributors;
END;

Compatibility
CREATE SEQUENCE conforms to the SQL standard, with the following exceptions:
• Obtaining the next value is done using the nextval() function instead of the standard's NEXT

VALUE FOR expression.
• The OWNED BY clause is a Postgres Pro extension.

See Also
ALTER SEQUENCE, DROP SEQUENCE

1414

CREATE SERVER
CREATE SERVER — define a new foreign server

Synopsis
CREATE SERVER [IF NOT EXISTS] server_name [TYPE 'server_type'] [VERSION
 'server_version']
 FOREIGN DATA WRAPPER fdw_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE SERVER defines a new foreign server. The user who defines the server becomes its owner.

A foreign server typically encapsulates connection information that a foreign-data wrapper uses to
access an external data resource. Additional user-specific connection information may be specified by
means of user mappings.

The server name must be unique within the database.

Creating a server requires USAGE privilege on the foreign-data wrapper being used.

Parameters
IF NOT EXISTS

Do not throw an error if a server with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing server is anything like the one that would have
been created.

server_name

The name of the foreign server to be created.

server_type

Optional server type, potentially useful to foreign-data wrappers.

server_version

Optional server version, potentially useful to foreign-data wrappers.

fdw_name

The name of the foreign-data wrapper that manages the server.

OPTIONS (option 'value' [, ...])

This clause specifies the options for the server. The options typically define the connection details of
the server, but the actual names and values are dependent on the server's foreign-data wrapper.

Notes
When using the dblink module, a foreign server's name can be used as an argument of the dblink_connect
function to indicate the connection parameters. It is necessary to have the USAGE privilege on the foreign
server to be able to use it in this way.

Examples
Create a server myserver that uses the foreign-data wrapper postgres_fdw:

1415

CREATE SERVER

CREATE SERVER myserver FOREIGN DATA WRAPPER postgres_fdw OPTIONS (host 'foo', dbname
 'foodb', port '5432');

See postgres_fdw for more details.

Compatibility
CREATE SERVER conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER SERVER, DROP SERVER, CREATE FOREIGN DATA WRAPPER, CREATE FOREIGN TABLE,
CREATE USER MAPPING

1416

CREATE STATISTICS
CREATE STATISTICS — define extended statistics

Synopsis
CREATE STATISTICS [IF NOT EXISTS] statistics_name
 [(statistics_kind [, ...])]
 ON column_name, column_name [, ...]
 FROM table_name

Description
CREATE STATISTICS will create a new extended statistics object tracking data about the specified table,
foreign table or materialized view. The statistics object will be created in the current database and will
be owned by the user issuing the command.

If a schema name is given (for example, CREATE STATISTICS myschema.mystat ...) then the statistics
object is created in the specified schema. Otherwise it is created in the current schema. The name of
the statistics object must be distinct from the name of any other statistics object in the same schema.

Parameters
IF NOT EXISTS

Do not throw an error if a statistics object with the same name already exists. A notice is issued
in this case. Note that only the name of the statistics object is considered here, not the details of
its definition.

statistics_name

The name (optionally schema-qualified) of the statistics object to be created.

statistics_kind

A statistics kind to be computed in this statistics object. Currently supported kinds are ndistinct,
which enables n-distinct statistics, dependencies, which enables functional dependency statistics,
and mcv which enables most-common values lists. If this clause is omitted, all supported statistics
kinds are included in the statistics object. For more information, see Section 14.2.2 and Section 66.2.

column_name

The name of a table column to be covered by the computed statistics. At least two column names
must be given; the order of the column names is insignificant.

table_name

The name (optionally schema-qualified) of the table containing the column(s) the statistics are
computed on.

Notes
You must be the owner of a table to create a statistics object reading it. Once created, however, the
ownership of the statistics object is independent of the underlying table(s).

Examples
Create table t1 with two functionally dependent columns, i.e., knowledge of a value in the first column
is sufficient for determining the value in the other column. Then functional dependency statistics are
built on those columns:

1417

CREATE STATISTICS

CREATE TABLE t1 (
 a int,
 b int
);

INSERT INTO t1 SELECT i/100, i/500
 FROM generate_series(1,1000000) s(i);

ANALYZE t1;

-- the number of matching rows will be drastically underestimated:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

CREATE STATISTICS s1 (dependencies) ON a, b FROM t1;

ANALYZE t1;

-- now the row count estimate is more accurate:
EXPLAIN ANALYZE SELECT * FROM t1 WHERE (a = 1) AND (b = 0);

Without functional-dependency statistics, the planner would assume that the two WHERE conditions are
independent, and would multiply their selectivities together to arrive at a much-too-small row count
estimate. With such statistics, the planner recognizes that the WHERE conditions are redundant and does
not underestimate the row count.

Create table t2 with two perfectly correlated columns (containing identical data), and a MCV list on
those columns:

CREATE TABLE t2 (
 a int,
 b int
);

INSERT INTO t2 SELECT mod(i,100), mod(i,100)
 FROM generate_series(1,1000000) s(i);

CREATE STATISTICS s2 (mcv) ON a, b FROM t2;

ANALYZE t2;

-- valid combination (found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 1);

-- invalid combination (not found in MCV)
EXPLAIN ANALYZE SELECT * FROM t2 WHERE (a = 1) AND (b = 2);

The MCV list gives the planner more detailed information about the specific values that commonly appear
in the table, as well as an upper bound on the selectivities of combinations of values that do not appear
in the table, allowing it to generate better estimates in both cases.

Compatibility
There is no CREATE STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, DROP STATISTICS

1418

CREATE SUBSCRIPTION
CREATE SUBSCRIPTION — define a new subscription

Synopsis
CREATE SUBSCRIPTION subscription_name
 CONNECTION 'conninfo'
 PUBLICATION publication_name [, ...]
 [WITH (subscription_parameter [= value] [, ...])]

Description
CREATE SUBSCRIPTION adds a new subscription for the current database. The subscription name must
be distinct from the name of any existing subscription in the database.

The subscription represents a replication connection to the publisher. As such this command does not
only add definitions in the local catalogs but also creates a replication slot on the publisher.

A logical replication worker will be started to replicate data for the new subscription at the commit of
the transaction where this command is run.

Additional information about subscriptions and logical replication as a whole is available at Section 29.2
and Chapter 29.

Parameters
subscription_name

The name of the new subscription.

CONNECTION 'conninfo'

The connection string to the publisher. For details see Section 31.1.1.

PUBLICATION publication_name

Names of the publications on the publisher to subscribe to.

WITH (subscription_parameter [= value] [, ...])

This clause specifies optional parameters for a subscription. The following parameters are supported:

copy_data (boolean)

Specifies whether the existing data in the publications that are being subscribed to should be
copied once the replication starts. The default is true.

create_slot (boolean)

Specifies whether the command should create the replication slot on the publisher. The default
is true.

enabled (boolean)

Specifies whether the subscription should be actively replicating, or whether it should be just
setup but not started yet. The default is true.

slot_name (string)

Name of the replication slot to use. The default behavior is to use the name of the subscription
for the slot name.

1419

CREATE SUBSCRIPTION

When slot_name is set to NONE, there will be no replication slot associated with the subscription.
This can be used if the replication slot will be created later manually. Such subscriptions must
also have both enabled and create_slot set to false.

synchronous_commit (enum)

The value of this parameter overrides the synchronous_commit setting. The default value is off.

It is safe to use off for logical replication: If the subscriber loses transactions because of missing
synchronization, the data will be sent again from the publisher.

A different setting might be appropriate when doing synchronous logical replication. The logical
replication workers report the positions of writes and flushes to the publisher, and when using
synchronous replication, the publisher will wait for the actual flush. This means that setting
synchronous_commit for the subscriber to off when the subscription is used for synchronous
replication might increase the latency for COMMIT on the publisher. In this scenario, it can be
advantageous to set synchronous_commit to local or higher.

connect (boolean)

Specifies whether the CREATE SUBSCRIPTION should connect to the publisher at all. Setting this
to false will change default values of enabled, create_slot and copy_data to false.

It is not allowed to combine connect set to false and enabled, create_slot, or copy_data set
to true.

Since no connection is made when this option is set to false, the tables are not subscribed,
and so after you enable the subscription nothing will be replicated. It is required to run ALTER
SUBSCRIPTION ... REFRESH PUBLICATION in order for tables to be subscribed.

Notes
See Section 29.7 for details on how to configure access control between the subscription and the
publication instance.

When creating a replication slot (the default behavior), CREATE SUBSCRIPTION cannot be executed inside
a transaction block.

Creating a subscription that connects to the same database cluster (for example, to replicate between
databases in the same cluster or to replicate within the same database) will only succeed if the
replication slot is not created as part of the same command. Otherwise, the CREATE SUBSCRIPTION
call will hang. To make this work, create the replication slot separately (using the function
pg_create_logical_replication_slot with the plugin name pgoutput) and create the subscription
using the parameter create_slot = false. This is an implementation restriction that might be lifted
in a future release.

Examples
Create a subscription to a remote server that replicates tables in the publications mypublication and
insert_only and starts replicating immediately on commit:

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION mypublication, insert_only;

Create a subscription to a remote server that replicates tables in the insert_only publication and does
not start replicating until enabled at a later time.

CREATE SUBSCRIPTION mysub
 CONNECTION 'host=192.168.1.50 port=5432 user=foo dbname=foodb'
 PUBLICATION insert_only

1420

CREATE SUBSCRIPTION

 WITH (enabled = false);

Compatibility
CREATE SUBSCRIPTION is a Postgres Pro extension.

See Also
ALTER SUBSCRIPTION, DROP SUBSCRIPTION, CREATE PUBLICATION, ALTER PUBLICATION

1421

CREATE TABLE
CREATE TABLE — define a new table

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name ([
 { column_name data_type [COLLATE collation] [column_constraint [...]]
 | table_constraint
 | LIKE source_table [like_option ...] }
 [, ...]
])
[INHERITS (parent_table [, ...])]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 OF type_name [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)]
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 PARTITION OF parent_table [(
 { column_name [WITH OPTIONS] [column_constraint [...]]
 | table_constraint }
 [, ...]
)] { FOR VALUES partition_bound_spec | DEFAULT }
[PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) }
 [COLLATE collation] [opclass] [, ...])]
[USING method]
[WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
[ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
[TABLESPACE tablespace_name]

where column_constraint is:

[CONSTRAINT constraint_name]
{ NOT NULL |
 NULL |
 CHECK (expression) [NO INHERIT] |
 DEFAULT default_expr |
 GENERATED ALWAYS AS (generation_expr) STORED |

1422

CREATE TABLE

 GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)] |
 UNIQUE index_parameters |
 PRIMARY KEY index_parameters |
 REFERENCES reftable [(refcolumn)] [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE]
 [ON DELETE referential_action] [ON UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT constraint_name]
{ CHECK (expression) [NO INHERIT] |
 UNIQUE (column_name [, ...]) index_parameters |
 PRIMARY KEY (column_name [, ...]) index_parameters |
 EXCLUDE [USING index_method] (exclude_element WITH operator
 [, ...]) index_parameters [WHERE (predicate)] |
 FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
 [MATCH FULL | MATCH PARTIAL | MATCH SIMPLE] [ON DELETE referential_action] [ON
 UPDATE referential_action] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED | INITIALLY IMMEDIATE]

and like_option is:

{ INCLUDING | EXCLUDING } { COMMENTS | CONSTRAINTS | DEFAULTS | GENERATED | IDENTITY |
 INDEXES | STATISTICS | STORAGE | ALL }

and partition_bound_spec is:

IN (partition_bound_expr [, ...]) |
FROM ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...])
 TO ({ partition_bound_expr | MINVALUE | MAXVALUE } [, ...]) |
WITH (MODULUS numeric_literal, REMAINDER numeric_literal)

index_parameters in UNIQUE, PRIMARY KEY, and EXCLUDE constraints are:

[INCLUDE (column_name [, ...])]
[WITH (storage_parameter [= value] [, ...])]
[USING INDEX TABLESPACE tablespace_name]

exclude_element in an EXCLUDE constraint is:

{ column_name | (expression) } [opclass] [ASC | DESC] [NULLS { FIRST | LAST }]

Description
CREATE TABLE will create a new, initially empty table in the current database. The table will be owned
by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table is created
in the specified schema. Otherwise it is created in the current schema. Temporary tables exist in a special
schema, so a schema name cannot be given when creating a temporary table. The name of the table must
be distinct from the name of any other table, sequence, index, view, or foreign table in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding
to one row of the table. Therefore, tables cannot have the same name as any existing data type in the
same schema.

The optional constraint clauses specify constraints (tests) that new or updated rows must satisfy for an
insert or update operation to succeed. A constraint is an SQL object that helps define the set of valid
values in the table in various ways.

1423

CREATE TABLE

There are two ways to define constraints: table constraints and column constraints. A column constraint
is defined as part of a column definition. A table constraint definition is not tied to a particular column,
and it can encompass more than one column. Every column constraint can also be written as a table
constraint; a column constraint is only a notational convenience for use when the constraint only affects
one column.

To be able to create a table, you must have USAGE privilege on all column types or the type in the OF
clause, respectively.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Temporary tables are automatically dropped at
the end of a session, or optionally at the end of the current transaction (see ON COMMIT below). Existing
permanent tables with the same name are not visible to the current session while the temporary table
exists, unless they are referenced with schema-qualified names. Any indexes created on a temporary
table are automatically temporary as well.

The autovacuum daemon cannot access and therefore cannot vacuum or analyze temporary tables.
For this reason, appropriate vacuum and analyze operations should be performed via session SQL
commands. For example, if a temporary table is going to be used in complex queries, it is wise to run
ANALYZE on the temporary table after it is populated.

Optionally, GLOBAL or LOCAL can be written before TEMPORARY or TEMP. This presently makes no
difference in Postgres Pro and is deprecated; see Compatibility below.

UNLOGGED

If specified, the table is created as an unlogged table. Data written to unlogged tables is not written
to the write-ahead log (see Chapter 28), which makes them considerably faster than ordinary tables.
However, they are not crash-safe: an unlogged table is automatically truncated after a crash or
unclean shutdown. The contents of an unlogged table are also not replicated to standby servers. Any
indexes created on an unlogged table are automatically unlogged as well.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Note that there is no guarantee that the existing relation is anything like the one that would have
been created.

table_name

The name (optionally schema-qualified) of the table to be created.

OF type_name

Creates a typed table, which takes its structure from the specified composite type (name optionally
schema-qualified). A typed table is tied to its type; for example the table will be dropped if the type
is dropped (with DROP TYPE ... CASCADE).

When a typed table is created, then the data types of the columns are determined by the underlying
composite type and are not specified by the CREATE TABLE command. But the CREATE TABLE command
can add defaults and constraints to the table and can specify storage parameters.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This can include array specifiers. For more information on the data
types supported by Postgres Pro, refer to Chapter 8.

1424

CREATE TABLE

COLLATE collation

The COLLATE clause assigns a collation to the column (which must be of a collatable data type). If not
specified, the column data type's default collation is used.

INHERITS (parent_table [, ...])

The optional INHERITS clause specifies a list of tables from which the new table automatically inherits
all columns. Parent tables can be plain tables or foreign tables.

Use of INHERITS creates a persistent relationship between the new child table and its parent table(s).
Schema modifications to the parent(s) normally propagate to children as well, and by default the
data of the child table is included in scans of the parent(s).

If the same column name exists in more than one parent table, an error is reported unless the data
types of the columns match in each of the parent tables. If there is no conflict, then the duplicate
columns are merged to form a single column in the new table. If the column name list of the new
table contains a column name that is also inherited, the data type must likewise match the inherited
column(s), and the column definitions are merged into one. If the new table explicitly specifies a
default value for the column, this default overrides any defaults from inherited declarations of the
column. Otherwise, any parents that specify default values for the column must all specify the same
default, or an error will be reported.

CHECK constraints are merged in essentially the same way as columns: if multiple parent tables and/
or the new table definition contain identically-named CHECK constraints, these constraints must all
have the same check expression, or an error will be reported. Constraints having the same name
and expression will be merged into one copy. A constraint marked NO INHERIT in a parent will not be
considered. Notice that an unnamed CHECK constraint in the new table will never be merged, since
a unique name will always be chosen for it.

Column STORAGE settings are also copied from parent tables.

If a column in the parent table is an identity column, that property is not inherited. A column in the
child table can be declared identity column if desired.

PARTITION BY { RANGE | LIST | HASH } ({ column_name | (expression) } [opclass] [, ...])

The optional PARTITION BY clause specifies a strategy of partitioning the table. The table thus created
is called a partitioned table. The parenthesized list of columns or expressions forms the partition
key for the table. When using range or hash partitioning, the partition key can include multiple
columns or expressions (up to 32, but this limit can be altered when building Postgres Pro), but for
list partitioning, the partition key must consist of a single column or expression.

Range and list partitioning require a btree operator class, while hash partitioning requires a hash
operator class. If no operator class is specified explicitly, the default operator class of the appropriate
type will be used; if no default operator class exists, an error will be raised. When hash partitioning
is used, the operator class used must implement support function 2 (see Section 35.16.3 for details).

A partitioned table is divided into sub-tables (called partitions), which are created using separate
CREATE TABLE commands. The partitioned table is itself empty. A data row inserted into the table is
routed to a partition based on the value of columns or expressions in the partition key. If no existing
partition matches the values in the new row, an error will be reported.

Partitioned tables do not support EXCLUDE constraints; however, you can define these constraints on
individual partitions.

See Section 5.11 for more discussion on table partitioning.

PARTITION OF parent_table { FOR VALUES partition_bound_spec | DEFAULT }

Creates the table as a partition of the specified parent table. The table can be created either as a
partition for specific values using FOR VALUES or as a default partition using DEFAULT. Any indexes,

1425

CREATE TABLE

constraints and user-defined row-level triggers that exist in the parent table are cloned on the new
partition.

The partition_bound_spec must correspond to the partitioning method and partition key of the
parent table, and must not overlap with any existing partition of that parent. The form with IN is
used for list partitioning, the form with FROM and TO is used for range partitioning, and the form with
WITH is used for hash partitioning.

partition_bound_expr is any variable-free expression (subqueries, window functions, aggregate
functions, and set-returning functions are not allowed). Its data type must match the data type of the
corresponding partition key column. The expression is evaluated once at table creation time, so it
can even contain volatile expressions such as CURRENT_TIMESTAMP.

When creating a list partition, NULL can be specified to signify that the partition allows the partition
key column to be null. However, there cannot be more than one such list partition for a given parent
table. NULL cannot be specified for range partitions.

When creating a range partition, the lower bound specified with FROM is an inclusive bound, whereas
the upper bound specified with TO is an exclusive bound. That is, the values specified in the FROM
list are valid values of the corresponding partition key columns for this partition, whereas those in
the TO list are not. Note that this statement must be understood according to the rules of row-wise
comparison (Section 9.24.5). For example, given PARTITION BY RANGE (x,y), a partition bound FROM
(1, 2) TO (3, 4) allows x=1 with any y>=2, x=2 with any non-null y, and x=3 with any y<4.

The special values MINVALUE and MAXVALUE may be used when creating a range partition to indicate
that there is no lower or upper bound on the column's value. For example, a partition defined using
FROM (MINVALUE) TO (10) allows any values less than 10, and a partition defined using FROM (10)
TO (MAXVALUE) allows any values greater than or equal to 10.

When creating a range partition involving more than one column, it can also make sense to use
MAXVALUE as part of the lower bound, and MINVALUE as part of the upper bound. For example, a
partition defined using FROM (0, MAXVALUE) TO (10, MAXVALUE) allows any rows where the first
partition key column is greater than 0 and less than or equal to 10. Similarly, a partition defined
using FROM ('a', MINVALUE) TO ('b', MINVALUE) allows any rows where the first partition key
column starts with "a".

Note that if MINVALUE or MAXVALUE is used for one column of a partitioning bound, the same value
must be used for all subsequent columns. For example, (10, MINVALUE, 0) is not a valid bound; you
should write (10, MINVALUE, MINVALUE).

Also note that some element types, such as timestamp, have a notion of "infinity", which is just
another value that can be stored. This is different from MINVALUE and MAXVALUE, which are not
real values that can be stored, but rather they are ways of saying that the value is unbounded.
MAXVALUE can be thought of as being greater than any other value, including "infinity" and MINVALUE
as being less than any other value, including "minus infinity". Thus the range FROM ('infinity')
TO (MAXVALUE) is not an empty range; it allows precisely one value to be stored — "infinity".

If DEFAULT is specified, the table will be created as the default partition of the parent table. This
option is not available for hash-partitioned tables. A partition key value not fitting into any other
partition of the given parent will be routed to the default partition.

When a table has an existing DEFAULT partition and a new partition is added to it, the default partition
must be scanned to verify that it does not contain any rows which properly belong in the new partition.
If the default partition contains a large number of rows, this may be slow. The scan will be skipped
if the default partition is a foreign table or if it has a constraint which proves that it cannot contain
rows which should be placed in the new partition.

When creating a hash partition, a modulus and remainder must be specified. The modulus must be a
positive integer, and the remainder must be a non-negative integer less than the modulus. Typically,

1426

CREATE TABLE

when initially setting up a hash-partitioned table, you should choose a modulus equal to the number of
partitions and assign every table the same modulus and a different remainder (see examples, below).
However, it is not required that every partition have the same modulus, only that every modulus
which occurs among the partitions of a hash-partitioned table is a factor of the next larger modulus.
This allows the number of partitions to be increased incrementally without needing to move all the
data at once. For example, suppose you have a hash-partitioned table with 8 partitions, each of which
has modulus 8, but find it necessary to increase the number of partitions to 16. You can detach one
of the modulus-8 partitions, create two new modulus-16 partitions covering the same portion of the
key space (one with a remainder equal to the remainder of the detached partition, and the other with
a remainder equal to that value plus 8), and repopulate them with data. You can then repeat this --
perhaps at a later time -- for each modulus-8 partition until none remain. While this may still involve
a large amount of data movement at each step, it is still better than having to create a whole new
table and move all the data at once.

A partition must have the same column names and types as the partitioned table to which it belongs.
Modifications to the column names or types of a partitioned table will automatically propagate to
all partitions. CHECK constraints will be inherited automatically by every partition, but an individual
partition may specify additional CHECK constraints; additional constraints with the same name and
condition as in the parent will be merged with the parent constraint. Defaults may be specified
separately for each partition. But note that a partition's default value is not applied when inserting
a tuple through a partitioned table.

Rows inserted into a partitioned table will be automatically routed to the correct partition. If no
suitable partition exists, an error will occur.

Operations such as TRUNCATE which normally affect a table and all of its inheritance children will
cascade to all partitions, but may also be performed on an individual partition. Note that dropping a
partition with DROP TABLE requires taking an ACCESS EXCLUSIVE lock on the parent table.

LIKE source_table [like_option ...]

The LIKE clause specifies a table from which the new table automatically copies all column names,
their data types, and their not-null constraints.

Unlike INHERITS, the new table and original table are completely decoupled after creation is
complete. Changes to the original table will not be applied to the new table, and it is not possible to
include data of the new table in scans of the original table.

Also unlike INHERITS, columns and constraints copied by LIKE are not merged with similarly named
columns and constraints. If the same name is specified explicitly or in another LIKE clause, an error
is signaled.

The optional like_option clauses specify which additional properties of the original table to copy.
Specifying INCLUDING copies the property, specifying EXCLUDING omits the property. EXCLUDING is
the default. If multiple specifications are made for the same kind of object, the last one is used. The
available options are:
INCLUDING COMMENTS

Comments for the copied columns, constraints, and indexes will be copied. The default behavior
is to exclude comments, resulting in the copied columns and constraints in the new table having
no comments.

INCLUDING CONSTRAINTS

CHECK constraints will be copied. No distinction is made between column constraints and table
constraints. Not-null constraints are always copied to the new table.

INCLUDING DEFAULTS

Default expressions for the copied column definitions will be copied. Otherwise, default
expressions are not copied, resulting in the copied columns in the new table having null defaults.

1427

CREATE TABLE

Note that copying defaults that call database-modification functions, such as nextval, may create
a functional linkage between the original and new tables.

INCLUDING GENERATED

Any generation expressions of copied column definitions will be copied. By default, new columns
will be regular base columns.

INCLUDING IDENTITY

Any identity specifications of copied column definitions will be copied. A new sequence is created
for each identity column of the new table, separate from the sequences associated with the old
table.

INCLUDING INDEXES

Indexes, PRIMARY KEY, UNIQUE, and EXCLUDE constraints on the original table will be created on
the new table. Names for the new indexes and constraints are chosen according to the default
rules, regardless of how the originals were named. (This behavior avoids possible duplicate-name
failures for the new indexes.)

INCLUDING STATISTICS

Extended statistics are copied to the new table.

INCLUDING STORAGE

STORAGE settings for the copied column definitions will be copied. The default behavior is to
exclude STORAGE settings, resulting in the copied columns in the new table having type-specific
default settings. For more on STORAGE settings, see Section 65.2.

INCLUDING ALL

INCLUDING ALL is an abbreviated form selecting all the available individual options. (It could be
useful to write individual EXCLUDING clauses after INCLUDING ALL to select all but some specific
options.)

The LIKE clause can also be used to copy column definitions from views, foreign tables, or composite
types. Inapplicable options (e.g., INCLUDING INDEXES from a view) are ignored.

CONSTRAINT constraint_name

An optional name for a column or table constraint. If the constraint is violated, the constraint name
is present in error messages, so constraint names like col must be positive can be used to
communicate helpful constraint information to client applications. (Double-quotes are needed to
specify constraint names that contain spaces.) If a constraint name is not specified, the system
generates a name.

NOT NULL

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only provided for compatibility with non-standard SQL databases. Its use is discouraged
in new applications.

CHECK (expression) [NO INHERIT]

The CHECK clause specifies an expression producing a Boolean result which new or updated rows must
satisfy for an insert or update operation to succeed. Expressions evaluating to TRUE or UNKNOWN
succeed. Should any row of an insert or update operation produce a FALSE result, an error exception

1428

CREATE TABLE

is raised and the insert or update does not alter the database. A check constraint specified as a
column constraint should reference that column's value only, while an expression appearing in a
table constraint can reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of
the current row (see Section 5.4.1). The system column tableoid may be referenced, but not any
other system column.

A constraint marked with NO INHERIT will not propagate to child tables.

When a table has multiple CHECK constraints, they will be tested for each row in alphabetical order
by name, after checking NOT NULL constraints. (PostgreSQL versions before 9.5 did not honor any
particular firing order for CHECK constraints.)

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears
within. The value is any variable-free expression (in particular, cross-references to other columns in
the current table are not allowed). Subqueries are not allowed either. The data type of the default
expression must match the data type of the column.

The default expression will be used in any insert operation that does not specify a value for the
column. If there is no default for a column, then the default is null.

GENERATED ALWAYS AS (generation_expr) STORED

This clause creates the column as a generated column. The column cannot be written to, and when
read the result of the specified expression will be returned.

The keyword STORED is required to signify that the column will be computed on write and will be
stored on disk.

The generation expression can refer to other columns in the table, but not other generated columns.
Any functions and operators used must be immutable. References to other tables are not allowed.

GENERATED { ALWAYS | BY DEFAULT } AS IDENTITY [(sequence_options)]

This clause creates the column as an identity column. It will have an implicit sequence attached to
it and the column in new rows will automatically have values from the sequence assigned to it. Such
a column is implicitly NOT NULL.

The clauses ALWAYS and BY DEFAULT determine how explicitly user-specified values are handled in
INSERT and UPDATE commands.

In an INSERT command, if ALWAYS is selected, a user-specified value is only accepted if the INSERT
statement specifies OVERRIDING SYSTEM VALUE. If BY DEFAULT is selected, then the user-specified
value takes precedence. See INSERT for details. (In the COPY command, user-specified values are
always used regardless of this setting.)

In an UPDATE command, if ALWAYS is selected, any update of the column to any value other than
DEFAULT will be rejected. If BY DEFAULT is selected, the column can be updated normally. (There is
no OVERRIDING clause for the UPDATE command.)

The optional sequence_options clause can be used to override the options of the sequence. See
CREATE SEQUENCE for details.

UNIQUE (column constraint)
UNIQUE (column_name [, ...]) [INCLUDE (column_name [, ...])] (table constraint)

The UNIQUE constraint specifies that a group of one or more columns of a table can contain only
unique values. The behavior of a unique table constraint is the same as that of a unique column

1429

CREATE TABLE

constraint, with the additional capability to span multiple columns. The constraint therefore enforces
that any two rows must differ in at least one of these columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique constraint should name a set of columns that is different from the set of columns named
by any other unique or primary key constraint defined for the table. (Otherwise, redundant unique
constraints will be discarded.)

When establishing a unique constraint for a multi-level partition hierarchy, all the columns in the
partition key of the target partitioned table, as well as those of all its descendant partitioned tables,
must be included in the constraint definition.

Adding a unique constraint will automatically create a unique btree index on the column or group
of columns used in the constraint.

The optional INCLUDE clause adds to that index one or more columns that are simply “payload”:
uniqueness is not enforced on them, and the index cannot be searched on the basis of those columns.
However they can be retrieved by an index-only scan. Note that although the constraint is not
enforced on included columns, it still depends on them. Consequently, some operations on such
columns (e.g., DROP COLUMN) can cause cascaded constraint and index deletion.

PRIMARY KEY (column constraint)
PRIMARY KEY (column_name [, ...]) [INCLUDE (column_name [, ...])] (table constraint)

The PRIMARY KEY constraint specifies that a column or columns of a table can contain only unique
(non-duplicate), nonnull values. Only one primary key can be specified for a table, whether as a
column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from the set of columns
named by any unique constraint defined for the same table. (Otherwise, the unique constraint is
redundant and will be discarded.)

PRIMARY KEY enforces the same data constraints as a combination of UNIQUE and NOT NULL. However,
identifying a set of columns as the primary key also provides metadata about the design of the
schema, since a primary key implies that other tables can rely on this set of columns as a unique
identifier for rows.

When placed on a partitioned table, PRIMARY KEY constraints share the restrictions previously
described for UNIQUE constraints.

Adding a PRIMARY KEY constraint will automatically create a unique btree index on the column or
group of columns used in the constraint.

The optional INCLUDE clause adds to that index one or more columns that are simply “payload”:
uniqueness is not enforced on them, and the index cannot be searched on the basis of those columns.
However they can be retrieved by an index-only scan. Note that although the constraint is not
enforced on included columns, it still depends on them. Consequently, some operations on such
columns (e.g., DROP COLUMN) can cause cascaded constraint and index deletion.

EXCLUDE [USING index_method] (exclude_element WITH operator [, ...]) index_parameters
[WHERE (predicate)]

The EXCLUDE clause defines an exclusion constraint, which guarantees that if any two rows are
compared on the specified column(s) or expression(s) using the specified operator(s), not all of these
comparisons will return TRUE. If all of the specified operators test for equality, this is equivalent
to a UNIQUE constraint, although an ordinary unique constraint will be faster. However, exclusion
constraints can specify constraints that are more general than simple equality. For example, you can
specify a constraint that no two rows in the table contain overlapping circles (see Section 8.8) by
using the && operator.

1430

CREATE TABLE

Exclusion constraints are implemented using an index, so each specified operator must be associated
with an appropriate operator class (see Section 11.10) for the index access method index_method.
The operators are required to be commutative. Each exclude_element can optionally specify an
operator class and/or ordering options; these are described fully under CREATE INDEX.

The access method must support amgettuple (see Chapter 57); at present this means GIN cannot
be used. Although it's allowed, there is little point in using B-tree or hash indexes with an exclusion
constraint, because this does nothing that an ordinary unique constraint doesn't do better. So in
practice the access method will always be GiST or SP-GiST.

The predicate allows you to specify an exclusion constraint on a subset of the table; internally this
creates a partial index. Note that parentheses are required around the predicate.

REFERENCES reftable [(refcolumn)] [MATCH matchtype] [ON DELETE referential_action
] [ON UPDATE referential_action] (column constraint)
FOREIGN KEY (column_name [, ...]) REFERENCES reftable [(refcolumn [, ...])]
[MATCH matchtype] [ON DELETE referential_action] [ON UPDATE referential_action]
(table constraint)

These clauses specify a foreign key constraint, which requires that a group of one or more columns
of the new table must only contain values that match values in the referenced column(s) of some row
of the referenced table. If the refcolumn list is omitted, the primary key of the reftable is used. The
referenced columns must be the columns of a non-deferrable unique or primary key constraint in
the referenced table. The user must have REFERENCES permission on the referenced table (either the
whole table, or the specific referenced columns). The addition of a foreign key constraint requires
a SHARE ROW EXCLUSIVE lock on the referenced table. Note that foreign key constraints cannot be
defined between temporary tables and permanent tables.

A value inserted into the referencing column(s) is matched against the values of the referenced table
and referenced columns using the given match type. There are three match types: MATCH FULL,
MATCH PARTIAL, and MATCH SIMPLE (which is the default). MATCH FULL will not allow one column of a
multicolumn foreign key to be null unless all foreign key columns are null; if they are all null, the row
is not required to have a match in the referenced table. MATCH SIMPLE allows any of the foreign key
columns to be null; if any of them are null, the row is not required to have a match in the referenced
table. MATCH PARTIAL is not yet implemented. (Of course, NOT NULL constraints can be applied to the
referencing column(s) to prevent these cases from arising.)

In addition, when the data in the referenced columns is changed, certain actions are performed
on the data in this table's columns. The ON DELETE clause specifies the action to perform when a
referenced row in the referenced table is being deleted. Likewise, the ON UPDATE clause specifies
the action to perform when a referenced column in the referenced table is being updated to a new
value. If the row is updated, but the referenced column is not actually changed, no action is done.
Referential actions other than the NO ACTION check cannot be deferred, even if the constraint is
declared deferrable. There are the following possible actions for each clause:

NO ACTION

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. If the constraint is deferred, this error will be produced at constraint check time if there
still exist any referencing rows. This is the default action.

RESTRICT

Produce an error indicating that the deletion or update would create a foreign key constraint
violation. This is the same as NO ACTION except that the check is not deferrable.

CASCADE

Delete any rows referencing the deleted row, or update the values of the referencing column(s)
to the new values of the referenced columns, respectively.

1431

CREATE TABLE

SET NULL

Set the referencing column(s) to null.

SET DEFAULT

Set the referencing column(s) to their default values. (There must be a row in the referenced
table matching the default values, if they are not null, or the operation will fail.)

If the referenced column(s) are changed frequently, it might be wise to add an index to the referencing
column(s) so that referential actions associated with the foreign key constraint can be performed
more efficiently.

DEFERRABLE
NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will
be checked immediately after every command. Checking of constraints that are deferrable can
be postponed until the end of the transaction (using the SET CONSTRAINTS command). NOT
DEFERRABLE is the default. Currently, only UNIQUE, PRIMARY KEY, EXCLUDE, and REFERENCES (foreign
key) constraints accept this clause. NOT NULL and CHECK constraints are not deferrable. Note that
deferrable constraints cannot be used as conflict arbitrators in an INSERT statement that includes
an ON CONFLICT DO UPDATE clause.

INITIALLY IMMEDIATE
INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the
constraint is INITIALLY IMMEDIATE, it is checked after each statement. This is the default. If the
constraint is INITIALLY DEFERRED, it is checked only at the end of the transaction. The constraint
check time can be altered with the SET CONSTRAINTS command.

USING method

This optional clause specifies the table access method to use to store the contents for the new
table; the method needs be an access method of type TABLE. See Chapter 56 for more information.
If this option is not specified, the default table access method is chosen for the new table. See
default_table_access_method for more information.

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for a table or index; see Storage Parameters
below for more information. For backward-compatibility the WITH clause for a table can also include
OIDS=FALSE to specify that rows of the new table should not contain OIDs (object identifiers),
OIDS=TRUE is not supported anymore.

WITHOUT OIDS

This is backward-compatible syntax for declaring a table WITHOUT OIDS, creating a table WITH OIDS
is not supported anymore.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON COMMIT.
The three options are:
PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit. When used on a partitioned table, this is not
cascaded to its partitions.

1432

CREATE TABLE

DROP

The temporary table will be dropped at the end of the current transaction block. When used
on a partitioned table, this action drops its partitions and when used on tables with inheritance
children, it drops the dependent children.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If
not specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary. For
partitioned tables, since no storage is required for the table itself, the tablespace specified overrides
default_tablespace as the default tablespace to use for any newly created partitions when no other
tablespace is explicitly specified.

USING INDEX TABLESPACE tablespace_name

This clause allows selection of the tablespace in which the index associated with a UNIQUE, PRIMARY
KEY, or EXCLUDE constraint will be created. If not specified, default_tablespace is consulted, or
temp_tablespaces if the table is temporary.

Storage Parameters
The WITH clause can specify storage parameters for tables, and for indexes associated with a UNIQUE,
PRIMARY KEY, or EXCLUDE constraint. Storage parameters for indexes are documented in CREATE INDEX.
The storage parameters currently available for tables are listed below. For many of these parameters,
as shown, there is an additional parameter with the same name prefixed with toast., which controls
the behavior of the table's secondary TOAST table, if any (see Section 65.2 for more information about
TOAST). If a table parameter value is set and the equivalent toast. parameter is not, the TOAST table
will use the table's parameter value. Specifying these parameters for partitioned tables is not supported,
but you may specify them for individual leaf partitions.

fillfactor (integer)
The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default.
When a smaller fillfactor is specified, INSERT operations pack table pages only to the indicated
percentage; the remaining space on each page is reserved for updating rows on that page. This gives
UPDATE a chance to place the updated copy of a row on the same page as the original, which is more
efficient than placing it on a different page. For a table whose entries are never updated, complete
packing is the best choice, but in heavily updated tables smaller fillfactors are appropriate. This
parameter cannot be set for TOAST tables.

toast_tuple_target (integer)
The toast_tuple_target specifies the minimum tuple length required before we try to compress and/
or move long column values into TOAST tables, and is also the target length we try to reduce the
length below once toasting begins. This affects columns marked as External (for move), Main (for
compression), or Extended (for both) and applies only to new tuples. There is no effect on existing
rows. By default this parameter is set to allow at least 4 tuples per block, which with the default
block size will be 2040 bytes. Valid values are between 128 bytes and the (block size - header), by
default 8160 bytes. Changing this value may not be useful for very short or very long rows. Note that
the default setting is often close to optimal, and it is possible that setting this parameter could have
negative effects in some cases. This parameter cannot be set for TOAST tables.

parallel_workers (integer)
This sets the number of workers that should be used to assist a parallel scan of this table. If not set,
the system will determine a value based on the relation size. The actual number of workers chosen
by the planner or by utility statements that use parallel scans may be less, for example due to the
setting of max_worker_processes.

autovacuum_enabled, toast.autovacuum_enabled (boolean)
Enables or disables the autovacuum daemon for a particular table. If true, the autovacuum daemon
will perform automatic VACUUM and/or ANALYZE operations on this table following the rules discussed

1433

CREATE TABLE

in Section 23.1.6. If false, this table will not be autovacuumed, except to prevent transaction ID
wraparound. See Section 23.1.5 for more about wraparound prevention. Note that the autovacuum
daemon does not run at all (except to prevent transaction ID wraparound) if the autovacuum
parameter is false; setting individual tables' storage parameters does not override that. Therefore
there is seldom much point in explicitly setting this storage parameter to true, only to false.

vacuum_index_cleanup, toast.vacuum_index_cleanup (boolean)

Enables or disables index cleanup when VACUUM is run on this table. The default value is true.
Disabling index cleanup can speed up VACUUM very significantly, but may also lead to severely bloated
indexes if table modifications are frequent. The INDEX_CLEANUP parameter of VACUUM, if specified,
overrides the value of this option.

vacuum_truncate, toast.vacuum_truncate (boolean)

Enables or disables vacuum to try to truncate off any empty pages at the end of this table. The default
value is true. If true, VACUUM and autovacuum do the truncation and the disk space for the truncated
pages is returned to the operating system. Note that the truncation requires ACCESS EXCLUSIVE lock
on the table. The TRUNCATE parameter of VACUUM, if specified, overrides the value of this option.

autovacuum_vacuum_threshold, toast.autovacuum_vacuum_threshold (integer)

Per-table value for autovacuum_vacuum_threshold parameter.

autovacuum_vacuum_scale_factor, toast.autovacuum_vacuum_scale_factor (floating point)

Per-table value for autovacuum_vacuum_scale_factor parameter.

autovacuum_vacuum_insert_threshold, toast.autovacuum_vacuum_insert_threshold (integer)

Per-table value for autovacuum_vacuum_insert_threshold parameter. The special value of -1 may be
used to disable insert vacuums on the table.

autovacuum_vacuum_insert_scale_factor, toast.autovacuum_vacuum_insert_scale_factor
(floating point)

Per-table value for autovacuum_vacuum_insert_scale_factor parameter.

autovacuum_analyze_threshold (integer)

Per-table value for autovacuum_analyze_threshold parameter.

autovacuum_analyze_scale_factor (floating point)

Per-table value for autovacuum_analyze_scale_factor parameter.

autovacuum_vacuum_cost_delay, toast.autovacuum_vacuum_cost_delay (floating point)

Per-table value for autovacuum_vacuum_cost_delay parameter.

autovacuum_vacuum_cost_limit, toast.autovacuum_vacuum_cost_limit (integer)

Per-table value for autovacuum_vacuum_cost_limit parameter.

autovacuum_freeze_min_age, toast.autovacuum_freeze_min_age (integer)

Per-table value for vacuum_freeze_min_age parameter. Note that autovacuum will ignore
per-table autovacuum_freeze_min_age parameters that are larger than half the system-wide
autovacuum_freeze_max_age setting.

autovacuum_freeze_max_age, toast.autovacuum_freeze_max_age (integer)

Per-table value for autovacuum_freeze_max_age parameter. Note that autovacuum will ignore per-
table autovacuum_freeze_max_age parameters that are larger than the system-wide setting (it can
only be set smaller).

1434

CREATE TABLE

autovacuum_freeze_table_age, toast.autovacuum_freeze_table_age (integer)
Per-table value for vacuum_freeze_table_age parameter.

autovacuum_multixact_freeze_min_age, toast.autovacuum_multixact_freeze_min_age (integer)
Per-table value for vacuum_multixact_freeze_min_age parameter. Note that autovacuum will ignore
per-table autovacuum_multixact_freeze_min_age parameters that are larger than half the system-
wide autovacuum_multixact_freeze_max_age setting.

autovacuum_multixact_freeze_max_age, toast.autovacuum_multixact_freeze_max_age (integer)
Per-table value for autovacuum_multixact_freeze_max_age parameter. Note that autovacuum will
ignore per-table autovacuum_multixact_freeze_max_age parameters that are larger than the
system-wide setting (it can only be set smaller).

autovacuum_multixact_freeze_table_age, toast.autovacuum_multixact_freeze_table_age
(integer)

Per-table value for vacuum_multixact_freeze_table_age parameter.

log_autovacuum_min_duration, toast.log_autovacuum_min_duration (integer)
Per-table value for log_autovacuum_min_duration parameter.

user_catalog_table (boolean)
Declare the table as an additional catalog table for purposes of logical replication. See Section 46.6.2
for details. This parameter cannot be set for TOAST tables.

Notes
Postgres Pro automatically creates an index for each unique constraint and primary key constraint to
enforce uniqueness. Thus, it is not necessary to create an index explicitly for primary key columns. (See
CREATE INDEX for more information.)

Unique constraints and primary keys are not inherited in the current implementation. This makes the
combination of inheritance and unique constraints rather dysfunctional.

A table cannot have more than 1600 columns. (In practice, the effective limit is usually lower because
of tuple-length constraints.)

Examples
Create table films and table distributors:

CREATE TABLE films (
 code char(5) CONSTRAINT firstkey PRIMARY KEY,
 title varchar(40) NOT NULL,
 did integer NOT NULL,
 date_prod date,
 kind varchar(10),
 len interval hour to minute
);

CREATE TABLE distributors (
 did integer PRIMARY KEY GENERATED BY DEFAULT AS IDENTITY,
 name varchar(40) NOT NULL CHECK (name <> '')
);

Create a table with a 2-dimensional array:

CREATE TABLE array_int (
 vector int[][]

1435

CREATE TABLE

);

Define a unique table constraint for the table films. Unique table constraints can be defined on one or
more columns of the table:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT production UNIQUE(date_prod)
);

Define a check column constraint:

CREATE TABLE distributors (
 did integer CHECK (did > 100),
 name varchar(40)
);

Define a check table constraint:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 CONSTRAINT con1 CHECK (did > 100 AND name <> '')
);

Define a primary key table constraint for the table films:

CREATE TABLE films (
 code char(5),
 title varchar(40),
 did integer,
 date_prod date,
 kind varchar(10),
 len interval hour to minute,
 CONSTRAINT code_title PRIMARY KEY(code,title)
);

Define a primary key constraint for table distributors. The following two examples are equivalent, the
first using the table constraint syntax, the second the column constraint syntax:

CREATE TABLE distributors (
 did integer,
 name varchar(40),
 PRIMARY KEY(did)
);

CREATE TABLE distributors (
 did integer PRIMARY KEY,
 name varchar(40)
);

Assign a literal constant default value for the column name, arrange for the default value of column did
to be generated by selecting the next value of a sequence object, and make the default value of modtime
be the time at which the row is inserted:

CREATE TABLE distributors (
 name varchar(40) DEFAULT 'Luso Films',

1436

CREATE TABLE

 did integer DEFAULT nextval('distributors_serial'),
 modtime timestamp DEFAULT current_timestamp
);

Define two NOT NULL column constraints on the table distributors, one of which is explicitly given
a name:
CREATE TABLE distributors (
 did integer CONSTRAINT no_null NOT NULL,
 name varchar(40) NOT NULL
);

Define a unique constraint for the name column:
CREATE TABLE distributors (
 did integer,
 name varchar(40) UNIQUE
);

The same, specified as a table constraint:
CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name)
);

Create the same table, specifying 70% fill factor for both the table and its unique index:
CREATE TABLE distributors (
 did integer,
 name varchar(40),
 UNIQUE(name) WITH (fillfactor=70)
)
WITH (fillfactor=70);

Create table circles with an exclusion constraint that prevents any two circles from overlapping:
CREATE TABLE circles (
 c circle,
 EXCLUDE USING gist (c WITH &&)
);

Create table cinemas in tablespace diskvol1:
CREATE TABLE cinemas (
 id serial,
 name text,
 location text
) TABLESPACE diskvol1;

Create a composite type and a typed table:
CREATE TYPE employee_type AS (name text, salary numeric);

CREATE TABLE employees OF employee_type (
 PRIMARY KEY (name),
 salary WITH OPTIONS DEFAULT 1000
);

Create a range partitioned table:
CREATE TABLE measurement (
 logdate date not null,

1437

CREATE TABLE

 peaktemp int,
 unitsales int
) PARTITION BY RANGE (logdate);

Create a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_year_month (
 logdate date not null,
 peaktemp int,
 unitsales int
) PARTITION BY RANGE (EXTRACT(YEAR FROM logdate), EXTRACT(MONTH FROM logdate));

Create a list partitioned table:

CREATE TABLE cities (
 city_id bigserial not null,
 name text not null,
 population bigint
) PARTITION BY LIST (left(lower(name), 1));

Create a hash partitioned table:

CREATE TABLE orders (
 order_id bigint not null,
 cust_id bigint not null,
 status text
) PARTITION BY HASH (order_id);

Create partition of a range partitioned table:

CREATE TABLE measurement_y2016m07
 PARTITION OF measurement (
 unitsales DEFAULT 0
) FOR VALUES FROM ('2016-07-01') TO ('2016-08-01');

Create a few partitions of a range partitioned table with multiple columns in the partition key:

CREATE TABLE measurement_ym_older
 PARTITION OF measurement_year_month
 FOR VALUES FROM (MINVALUE, MINVALUE) TO (2016, 11);

CREATE TABLE measurement_ym_y2016m11
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 11) TO (2016, 12);

CREATE TABLE measurement_ym_y2016m12
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2016, 12) TO (2017, 01);

CREATE TABLE measurement_ym_y2017m01
 PARTITION OF measurement_year_month
 FOR VALUES FROM (2017, 01) TO (2017, 02);

Create partition of a list partitioned table:

CREATE TABLE cities_ab
 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b');

Create partition of a list partitioned table that is itself further partitioned and then add a partition to it:

CREATE TABLE cities_ab

1438

CREATE TABLE

 PARTITION OF cities (
 CONSTRAINT city_id_nonzero CHECK (city_id != 0)
) FOR VALUES IN ('a', 'b') PARTITION BY RANGE (population);

CREATE TABLE cities_ab_10000_to_100000
 PARTITION OF cities_ab FOR VALUES FROM (10000) TO (100000);

Create partitions of a hash partitioned table:

CREATE TABLE orders_p1 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 0);
CREATE TABLE orders_p2 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 1);
CREATE TABLE orders_p3 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 2);
CREATE TABLE orders_p4 PARTITION OF orders
 FOR VALUES WITH (MODULUS 4, REMAINDER 3);

Create a default partition:

CREATE TABLE cities_partdef
 PARTITION OF cities DEFAULT;

Compatibility
The CREATE TABLE command conforms to the SQL standard, with exceptions listed below.

Temporary Tables
Although the syntax of CREATE TEMPORARY TABLE resembles that of the SQL standard, the effect is not
the same. In the standard, temporary tables are defined just once and automatically exist (starting with
empty contents) in every session that needs them. Postgres Pro instead requires each session to issue
its own CREATE TEMPORARY TABLE command for each temporary table to be used. This allows different
sessions to use the same temporary table name for different purposes, whereas the standard's approach
constrains all instances of a given temporary table name to have the same table structure.

The standard's definition of the behavior of temporary tables is widely ignored. Postgres Pro's behavior
on this point is similar to that of several other SQL databases.

The SQL standard also distinguishes between global and local temporary tables, where a local temporary
table has a separate set of contents for each SQL module within each session, though its definition is
still shared across sessions. Since Postgres Pro does not support SQL modules, this distinction is not
relevant in Postgres Pro.

For compatibility's sake, Postgres Pro will accept the GLOBAL and LOCAL keywords in a temporary table
declaration, but they currently have no effect. Use of these keywords is discouraged, since future
versions of Postgres Pro might adopt a more standard-compliant interpretation of their meaning.

The ON COMMIT clause for temporary tables also resembles the SQL standard, but has some differences.
If the ON COMMIT clause is omitted, SQL specifies that the default behavior is ON COMMIT DELETE ROWS.
However, the default behavior in Postgres Pro is ON COMMIT PRESERVE ROWS. The ON COMMIT DROP option
does not exist in SQL.

Non-Deferred Uniqueness Constraints
When a UNIQUE or PRIMARY KEY constraint is not deferrable, Postgres Pro checks for uniqueness
immediately whenever a row is inserted or modified. The SQL standard says that uniqueness should
be enforced only at the end of the statement; this makes a difference when, for example, a single
command updates multiple key values. To obtain standard-compliant behavior, declare the constraint as
DEFERRABLE but not deferred (i.e., INITIALLY IMMEDIATE). Be aware that this can be significantly slower
than immediate uniqueness checking.

1439

CREATE TABLE

Column Check Constraints
The SQL standard says that CHECK column constraints can only refer to the column they apply to; only
CHECK table constraints can refer to multiple columns. Postgres Pro does not enforce this restriction; it
treats column and table check constraints alike.

EXCLUDE Constraint
The EXCLUDE constraint type is a Postgres Pro extension.

NULL “Constraint”
The NULL “constraint” (actually a non-constraint) is a Postgres Pro extension to the SQL standard that
is included for compatibility with some other database systems (and for symmetry with the NOT NULL
constraint). Since it is the default for any column, its presence is simply noise.

Constraint Naming
The SQL standard says that table and domain constraints must have names that are unique across the
schema containing the table or domain. Postgres Pro is laxer: it only requires constraint names to be
unique across the constraints attached to a particular table or domain. However, this extra freedom
does not exist for index-based constraints (UNIQUE, PRIMARY KEY, and EXCLUDE constraints), because
the associated index is named the same as the constraint, and index names must be unique across all
relations within the same schema.

Currently, Postgres Pro does not record names for NOT NULL constraints at all, so they are not subject
to the uniqueness restriction. This might change in a future release.

Inheritance
Multiple inheritance via the INHERITS clause is a Postgres Pro language extension. SQL:1999 and later
define single inheritance using a different syntax and different semantics. SQL:1999-style inheritance
is not yet supported by Postgres Pro.

Zero-Column Tables
Postgres Pro allows a table of no columns to be created (for example, CREATE TABLE foo();). This is
an extension from the SQL standard, which does not allow zero-column tables. Zero-column tables are
not in themselves very useful, but disallowing them creates odd special cases for ALTER TABLE DROP
COLUMN, so it seems cleaner to ignore this spec restriction.

Multiple Identity Columns
Postgres Pro allows a table to have more than one identity column. The standard specifies that a table
can have at most one identity column. This is relaxed mainly to give more flexibility for doing schema
changes or migrations. Note that the INSERT command supports only one override clause that applies to
the entire statement, so having multiple identity columns with different behaviors is not well supported.

Generated Columns
The option STORED is not standard but is also used by other SQL implementations. The SQL standard
does not specify the storage of generated columns.

LIKE Clause
While a LIKE clause exists in the SQL standard, many of the options that Postgres Pro accepts for it are
not in the standard, and some of the standard's options are not implemented by Postgres Pro.

WITH Clause
The WITH clause is a Postgres Pro extension; storage parameters are not in the standard.

1440

CREATE TABLE

Tablespaces
The Postgres Pro concept of tablespaces is not part of the standard. Hence, the clauses TABLESPACE and
USING INDEX TABLESPACE are extensions.

Typed Tables
Typed tables implement a subset of the SQL standard. According to the standard, a typed table has
columns corresponding to the underlying composite type as well as one other column that is the “self-
referencing column”. Postgres Pro does not support self-referencing columns explicitly.

PARTITION BY Clause
The PARTITION BY clause is a Postgres Pro extension.

PARTITION OF Clause
The PARTITION OF clause is a Postgres Pro extension.

See Also
ALTER TABLE, DROP TABLE, CREATE TABLE AS, CREATE TABLESPACE, CREATE TYPE

1441

CREATE TABLE AS
CREATE TABLE AS — define a new table from the results of a query

Synopsis
CREATE [[GLOBAL | LOCAL] { TEMPORARY | TEMP } | UNLOGGED] TABLE [IF NOT
 EXISTS] table_name
 [(column_name [, ...])]
 [USING method]
 [WITH (storage_parameter [= value] [, ...]) | WITHOUT OIDS]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS | DROP }]
 [TABLESPACE tablespace_name]
 AS query
 [WITH [NO] DATA]

Description
CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table columns
have the names and data types associated with the output columns of the SELECT (except that you can
override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates
a new table and evaluates the query just once to fill the new table initially. The new table will not track
subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining SELECT
statement whenever it is queried.

Parameters
GLOBAL or LOCAL

Ignored for compatibility. Use of these keywords is deprecated; refer to CREATE TABLE for details.

TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

IF NOT EXISTS

Do not throw an error if a relation with the same name already exists. A notice is issued in this case.
Refer to CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are taken from the
output column names of the query.

USING method

This optional clause specifies the table access method to use to store the contents for the new
table; the method needs be an access method of type TABLE. See Chapter 56 for more information.
If this option is not specified, the default table access method is chosen for the new table. See
default_table_access_method for more information.

1442

CREATE TABLE AS

WITH (storage_parameter [= value] [, ...])

This clause specifies optional storage parameters for the new table; see Storage Parameters in the
CREATE TABLE documentation for more information. For backward-compatibility the WITH clause
for a table can also include OIDS=FALSE to specify that rows of the new table should contain no OIDs
(object identifiers), OIDS=TRUE is not supported anymore.

WITHOUT OIDS

This is backward-compatible syntax for declaring a table WITHOUT OIDS, creating a table WITH OIDS
is not supported anymore.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON COMMIT.
The three options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior.

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially,
an automatic TRUNCATE is done at each commit.

DROP

The temporary table will be dropped at the end of the current transaction block.

TABLESPACE tablespace_name

The tablespace_name is the name of the tablespace in which the new table is to be created. If not
specified, default_tablespace is consulted, or temp_tablespaces if the table is temporary.

query

A SELECT, TABLE, or VALUES command, or an EXECUTE command that runs a prepared SELECT,
TABLE, or VALUES query.

WITH [NO] DATA

This clause specifies whether or not the data produced by the query should be copied into the new
table. If not, only the table structure is copied. The default is to copy the data.

Notes
This command is functionally similar to SELECT INTO, but it is preferred since it is less likely to be
confused with other uses of the SELECT INTO syntax. Furthermore, CREATE TABLE AS offers a superset
of the functionality offered by SELECT INTO.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

CREATE TABLE films_recent AS
 SELECT * FROM films WHERE date_prod >= '2002-01-01';

To copy a table completely, the short form using the TABLE command can also be used:

CREATE TABLE films2 AS
 TABLE films;

Create a new temporary table films_recent, consisting of only recent entries from the table films,
using a prepared statement. The new table will be dropped at commit:

1443

CREATE TABLE AS

PREPARE recentfilms(date) AS
 SELECT * FROM films WHERE date_prod > $1;
CREATE TEMP TABLE films_recent ON COMMIT DROP AS
 EXECUTE recentfilms('2002-01-01');

Compatibility
CREATE TABLE AS conforms to the SQL standard. The following are nonstandard extensions:
• The standard requires parentheses around the subquery clause; in Postgres Pro, these parentheses

are optional.
• In the standard, the WITH [NO] DATA clause is required; in Postgres Pro it is optional.
• Postgres Pro handles temporary tables in a way rather different from the standard; see CREATE

TABLE for details.
• The WITH clause is a Postgres Pro extension; storage parameters are not in the standard.
• The Postgres Pro concept of tablespaces is not part of the standard. Hence, the clause TABLESPACE

is an extension.

See Also
CREATE MATERIALIZED VIEW, CREATE TABLE, EXECUTE, SELECT, SELECT INTO, VALUES

1444

CREATE TABLESPACE
CREATE TABLESPACE — define a new tablespace

Synopsis
CREATE TABLESPACE tablespace_name
 [OWNER { new_owner | CURRENT_USER | SESSION_USER }]
 LOCATION 'directory'
 [WITH (tablespace_option = value [, ...])]

Description
CREATE TABLESPACE registers a new cluster-wide tablespace. The tablespace name must be distinct from
the name of any existing tablespace in the database cluster.

A tablespace allows superusers to define an alternative location on the file system where the data files
containing database objects (such as tables and indexes) can reside.

A user with appropriate privileges can pass tablespace_name to CREATE DATABASE, CREATE TABLE,
CREATE INDEX or ADD CONSTRAINT to have the data files for these objects stored within the specified
tablespace.

Warning
A tablespace cannot be used independently of the cluster in which it is defined; see Section 21.6.

Parameters
tablespace_name

The name of a tablespace to be created. The name cannot begin with pg_, as such names are reserved
for system tablespaces.

user_name

The name of the user who will own the tablespace. If omitted, defaults to the user executing the
command. Only superusers can create tablespaces, but they can assign ownership of tablespaces
to non-superusers.

directory

The directory that will be used for the tablespace. The directory must exist (CREATE TABLESPACE will
not create it), should be empty, and must be owned by the Postgres Pro system user. The directory
must be specified by an absolute path name.

tablespace_option

A tablespace parameter to be set or reset. Currently, the only available
parameters are seq_page_cost, random_page_cost, effective_io_concurrency and
maintenance_io_concurrency. Setting these values for a particular tablespace will override the
planner's usual estimate of the cost of reading pages from tables in that tablespace, and the
executor's prefetching behavior, as established by the configuration parameters of the same name
(see seq_page_cost, random_page_cost, effective_io_concurrency, maintenance_io_concurrency).
This may be useful if one tablespace is located on a disk which is faster or slower than the remainder
of the I/O subsystem.

Notes
Tablespaces are only supported on systems that support symbolic links.

1445

CREATE TABLESPACE

CREATE TABLESPACE cannot be executed inside a transaction block.

Examples
To create a tablespace dbspace at file system location /data/dbs, first create the directory using
operating system facilities and set the correct ownership:

mkdir /data/dbs
chown postgres:postgres /data/dbs

Then issue the tablespace creation command inside Postgres Pro:

CREATE TABLESPACE dbspace LOCATION '/data/dbs';

To create a tablespace owned by a different database user, use a command like this:

CREATE TABLESPACE indexspace OWNER genevieve LOCATION '/data/indexes';

Compatibility
CREATE TABLESPACE is a Postgres Pro extension.

See Also
CREATE DATABASE, CREATE TABLE, CREATE INDEX, DROP TABLESPACE, ALTER TABLESPACE

1446

CREATE TEXT SEARCH CONFIGURATION
CREATE TEXT SEARCH CONFIGURATION — define a new text search configuration

Synopsis
CREATE TEXT SEARCH CONFIGURATION name (
 PARSER = parser_name |
 COPY = source_config
)

Description
CREATE TEXT SEARCH CONFIGURATION creates a new text search configuration. A text search
configuration specifies a text search parser that can divide a string into tokens, plus dictionaries that
can be used to determine which tokens are of interest for searching.

If only the parser is specified, then the new text search configuration initially has no mappings
from token types to dictionaries, and therefore will ignore all words. Subsequent ALTER TEXT
SEARCH CONFIGURATION commands must be used to create mappings to make the configuration useful.
Alternatively, an existing text search configuration can be copied.

If a schema name is given then the text search configuration is created in the specified schema.
Otherwise it is created in the current schema.

The user who defines a text search configuration becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search configuration to be created. The name can be schema-qualified.

parser_name

The name of the text search parser to use for this configuration.

source_config

The name of an existing text search configuration to copy.

Notes
The PARSER and COPY options are mutually exclusive, because when an existing configuration is copied,
its parser selection is copied too.

Compatibility
There is no CREATE TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, DROP TEXT SEARCH CONFIGURATION

1447

CREATE TEXT SEARCH DICTIONARY
CREATE TEXT SEARCH DICTIONARY — define a new text search dictionary

Synopsis
CREATE TEXT SEARCH DICTIONARY name (
 TEMPLATE = template
 [, option = value [, ...]]
)

Description
CREATE TEXT SEARCH DICTIONARY creates a new text search dictionary. A text search dictionary specifies
a way of recognizing interesting or uninteresting words for searching. A dictionary depends on a text
search template, which specifies the functions that actually perform the work. Typically the dictionary
provides some options that control the detailed behavior of the template's functions.

If a schema name is given then the text search dictionary is created in the specified schema. Otherwise
it is created in the current schema.

The user who defines a text search dictionary becomes its owner.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search dictionary to be created. The name can be schema-qualified.

template

The name of the text search template that will define the basic behavior of this dictionary.

option

The name of a template-specific option to be set for this dictionary.

value

The value to use for a template-specific option. If the value is not a simple identifier or number, it
must be quoted (but you can always quote it, if you wish).

The options can appear in any order.

Examples
The following example command creates a Snowball-based dictionary with a nonstandard list of stop
words.

CREATE TEXT SEARCH DICTIONARY my_russian (
 template = snowball,
 language = russian,
 stopwords = myrussian
);

Compatibility
There is no CREATE TEXT SEARCH DICTIONARY statement in the SQL standard.

1448

CREATE TEXT
SEARCH DICTIONARY

See Also
ALTER TEXT SEARCH DICTIONARY, DROP TEXT SEARCH DICTIONARY

1449

CREATE TEXT SEARCH PARSER
CREATE TEXT SEARCH PARSER — define a new text search parser

Synopsis
CREATE TEXT SEARCH PARSER name (
 START = start_function ,
 GETTOKEN = gettoken_function ,
 END = end_function ,
 LEXTYPES = lextypes_function
 [, HEADLINE = headline_function]
)

Description
CREATE TEXT SEARCH PARSER creates a new text search parser. A text search parser defines a method
for splitting a text string into tokens and assigning types (categories) to the tokens. A parser is not
particularly useful by itself, but must be bound into a text search configuration along with some text
search dictionaries to be used for searching.

If a schema name is given then the text search parser is created in the specified schema. Otherwise it
is created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH PARSER. (This restriction is made because an
erroneous text search parser definition could confuse or even crash the server.)

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search parser to be created. The name can be schema-qualified.

start_function

The name of the start function for the parser.

gettoken_function

The name of the get-next-token function for the parser.

end_function

The name of the end function for the parser.

lextypes_function

The name of the lextypes function for the parser (a function that returns information about the set
of token types it produces).

headline_function

The name of the headline function for the parser (a function that summarizes a set of tokens).

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. All except the headline function are required.

The arguments can appear in any order, not only the one shown above.

1450

CREATE TEXT SEARCH PARSER

Compatibility
There is no CREATE TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, DROP TEXT SEARCH PARSER

1451

CREATE TEXT SEARCH TEMPLATE
CREATE TEXT SEARCH TEMPLATE — define a new text search template

Synopsis
CREATE TEXT SEARCH TEMPLATE name (
 [INIT = init_function ,]
 LEXIZE = lexize_function
)

Description
CREATE TEXT SEARCH TEMPLATE creates a new text search template. Text search templates define
the functions that implement text search dictionaries. A template is not useful by itself, but must be
instantiated as a dictionary to be used. The dictionary typically specifies parameters to be given to the
template functions.

If a schema name is given then the text search template is created in the specified schema. Otherwise
it is created in the current schema.

You must be a superuser to use CREATE TEXT SEARCH TEMPLATE. This restriction is made because
an erroneous text search template definition could confuse or even crash the server. The reason for
separating templates from dictionaries is that a template encapsulates the “unsafe” aspects of defining
a dictionary. The parameters that can be set when defining a dictionary are safe for unprivileged users
to set, and so creating a dictionary need not be a privileged operation.

Refer to Chapter 12 for further information.

Parameters
name

The name of the text search template to be created. The name can be schema-qualified.

init_function

The name of the init function for the template.

lexize_function

The name of the lexize function for the template.

The function names can be schema-qualified if necessary. Argument types are not given, since the
argument list for each type of function is predetermined. The lexize function is required, but the init
function is optional.

The arguments can appear in any order, not only the one shown above.

Compatibility
There is no CREATE TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, DROP TEXT SEARCH TEMPLATE

1452

CREATE TRANSFORM
CREATE TRANSFORM — define a new transform

Synopsis
CREATE [OR REPLACE] TRANSFORM FOR type_name LANGUAGE lang_name (
 FROM SQL WITH FUNCTION from_sql_function_name [(argument_type [, ...])],
 TO SQL WITH FUNCTION to_sql_function_name [(argument_type [, ...])]
);

Description
CREATE TRANSFORM defines a new transform. CREATE OR REPLACE TRANSFORM will either create a new
transform, or replace an existing definition.

A transform specifies how to adapt a data type to a procedural language. For example, when writing
a function in PL/Python using the hstore type, PL/Python has no prior knowledge how to present
hstore values in the Python environment. Language implementations usually default to using the text
representation, but that is inconvenient when, for example, an associative array or a list would be more
appropriate.

A transform specifies two functions:
• A “from SQL” function that converts the type from the SQL environment to the language. This

function will be invoked on the arguments of a function written in the language.
• A “to SQL” function that converts the type from the language to the SQL environment. This function

will be invoked on the return value of a function written in the language.
It is not necessary to provide both of these functions. If one is not specified, the language-specific default
behavior will be used if necessary. (To prevent a transformation in a certain direction from happening
at all, you could also write a transform function that always errors out.)

To be able to create a transform, you must own and have USAGE privilege on the type, have USAGE privilege
on the language, and own and have EXECUTE privilege on the from-SQL and to-SQL functions, if specified.

Parameters
type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

from_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the SQL environment to the language. It
must take one argument of type internal and return type internal. The actual argument will be of
the type for the transform, and the function should be coded as if it were. (But it is not allowed to
declare an SQL-level function returning internal without at least one argument of type internal.)
The actual return value will be something specific to the language implementation. If no argument
list is specified, the function name must be unique in its schema.

to_sql_function_name[(argument_type [, ...])]

The name of the function for converting the type from the language to the SQL environment. It must
take one argument of type internal and return the type that is the type for the transform. The actual
argument value will be something specific to the language implementation. If no argument list is
specified, the function name must be unique in its schema.

1453

CREATE TRANSFORM

Notes
Use DROP TRANSFORM to remove transforms.

Examples
To create a transform for type hstore and language plpythonu, first set up the type and the language:

CREATE TYPE hstore ...;

CREATE EXTENSION plpythonu;

Then create the necessary functions:

CREATE FUNCTION hstore_to_plpython(val internal) RETURNS internal
LANGUAGE C STRICT IMMUTABLE
AS ...;

CREATE FUNCTION plpython_to_hstore(val internal) RETURNS hstore
LANGUAGE C STRICT IMMUTABLE
AS ...;

And finally create the transform to connect them all together:

CREATE TRANSFORM FOR hstore LANGUAGE plpythonu (
 FROM SQL WITH FUNCTION hstore_to_plpython(internal),
 TO SQL WITH FUNCTION plpython_to_hstore(internal)
);

In practice, these commands would be wrapped up in an extension.

The contrib section contains a number of extensions that provide transforms, which can serve as real-
world examples.

Compatibility
This form of CREATE TRANSFORM is a Postgres Pro extension. There is a CREATE TRANSFORM command
in the SQL standard, but it is for adapting data types to client languages. That usage is not supported
by Postgres Pro.

See Also
CREATE FUNCTION, CREATE LANGUAGE, CREATE TYPE, DROP TRANSFORM

1454

CREATE TRIGGER
CREATE TRIGGER — define a new trigger

Synopsis
CREATE [CONSTRAINT] TRIGGER name { BEFORE | AFTER | INSTEAD OF } { event [OR ...] }
 ON table_name
 [FROM referenced_table_name]
 [NOT DEFERRABLE | [DEFERRABLE] [INITIALLY IMMEDIATE | INITIALLY DEFERRED]]
 [REFERENCING { { OLD | NEW } TABLE [AS] transition_relation_name } [...]]
 [FOR [EACH] { ROW | STATEMENT }]
 [WHEN (condition)]
 EXECUTE { FUNCTION | PROCEDURE } function_name (arguments)

where event can be one of:

 INSERT
 UPDATE [OF column_name [, ...]]
 DELETE
 TRUNCATE

Description
CREATE TRIGGER creates a new trigger. The trigger will be associated with the specified table, view,
or foreign table and will execute the specified function function_name when certain operations are
performed on that table.

The trigger can be specified to fire before the operation is attempted on a row (before constraints are
checked and the INSERT, UPDATE, or DELETE is attempted); or after the operation has completed (after
constraints are checked and the INSERT, UPDATE, or DELETE has completed); or instead of the operation
(in the case of inserts, updates or deletes on a view). If the trigger fires before or instead of the event,
the trigger can skip the operation for the current row, or change the row being inserted (for INSERT and
UPDATE operations only). If the trigger fires after the event, all changes, including the effects of other
triggers, are “visible” to the trigger.

A trigger that is marked FOR EACH ROW is called once for every row that the operation modifies. For
example, a DELETE that affects 10 rows will cause any ON DELETE triggers on the target relation to be
called 10 separate times, once for each deleted row. In contrast, a trigger that is marked FOR EACH
STATEMENT only executes once for any given operation, regardless of how many rows it modifies (in
particular, an operation that modifies zero rows will still result in the execution of any applicable FOR
EACH STATEMENT triggers).

Triggers that are specified to fire INSTEAD OF the trigger event must be marked FOR EACH ROW, and can
only be defined on views. BEFORE and AFTER triggers on a view must be marked as FOR EACH STATEMENT.

In addition, triggers may be defined to fire for TRUNCATE, though only FOR EACH STATEMENT.

The following table summarizes which types of triggers may be used on tables, views, and foreign tables:

When Event Row-level Statement-level
INSERT/UPDATE/DELETE Tables and

foreign tables
Tables, views,

 and foreign tables
BEFORE

TRUNCATE — Tables
AFTER INSERT/UPDATE/DELETE Tables and

foreign tables
Tables, views,

 and foreign tables

1455

CREATE TRIGGER

When Event Row-level Statement-level
TRUNCATE — Tables

INSERT/UPDATE/DELETE Views —INSTEAD OF

TRUNCATE — —

Also, a trigger definition can specify a Boolean WHEN condition, which will be tested to see whether the
trigger should be fired. In row-level triggers the WHEN condition can examine the old and/or new values
of columns of the row. Statement-level triggers can also have WHEN conditions, although the feature is
not so useful for them since the condition cannot refer to any values in the table.

If multiple triggers of the same kind are defined for the same event, they will be fired in alphabetical
order by name.

When the CONSTRAINT option is specified, this command creates a constraint trigger. This is the same as
a regular trigger except that the timing of the trigger firing can be adjusted using SET CONSTRAINTS.
Constraint triggers must be AFTER ROW triggers on plain tables (not foreign tables). They can be
fired either at the end of the statement causing the triggering event, or at the end of the containing
transaction; in the latter case they are said to be deferred. A pending deferred-trigger firing can also be
forced to happen immediately by using SET CONSTRAINTS. Constraint triggers are expected to raise an
exception when the constraints they implement are violated.

The REFERENCING option enables collection of transition relations, which are row sets that include all of
the rows inserted, deleted, or modified by the current SQL statement. This feature lets the trigger see
a global view of what the statement did, not just one row at a time. This option is only allowed for an
AFTER trigger that is not a constraint trigger; also, if the trigger is an UPDATE trigger, it must not specify
a column_name list. OLD TABLE may only be specified once, and only for a trigger that can fire on UPDATE
or DELETE; it creates a transition relation containing the before-images of all rows updated or deleted
by the statement. Similarly, NEW TABLE may only be specified once, and only for a trigger that can fire
on UPDATE or INSERT; it creates a transition relation containing the after-images of all rows updated or
inserted by the statement.

SELECT does not modify any rows so you cannot create SELECT triggers. Rules and views may provide
workable solutions to problems that seem to need SELECT triggers.

Refer to Chapter 36 for more information about triggers.

Parameters
name

The name to give the new trigger. This must be distinct from the name of any other trigger for the
same table. The name cannot be schema-qualified — the trigger inherits the schema of its table. For
a constraint trigger, this is also the name to use when modifying the trigger's behavior using SET
CONSTRAINTS.

BEFORE
AFTER
INSTEAD OF

Determines whether the function is called before, after, or instead of the event. A constraint trigger
can only be specified as AFTER.

event

One of INSERT, UPDATE, DELETE, or TRUNCATE; this specifies the event that will fire the trigger. Multiple
events can be specified using OR, except when transition relations are requested.

For UPDATE events, it is possible to specify a list of columns using this syntax:

1456

CREATE TRIGGER

UPDATE OF column_name1 [, column_name2 ...]

The trigger will only fire if at least one of the listed columns is mentioned as a target of the UPDATE
command or if one of the listed columns is a generated column that depends on a column that is
the target of the UPDATE.

INSTEAD OF UPDATE events do not allow a list of columns. A column list cannot be specified when
requesting transition relations, either.

table_name

The name (optionally schema-qualified) of the table, view, or foreign table the trigger is for.

referenced_table_name

The (possibly schema-qualified) name of another table referenced by the constraint. This option is
used for foreign-key constraints and is not recommended for general use. This can only be specified
for constraint triggers.

DEFERRABLE
NOT DEFERRABLE
INITIALLY IMMEDIATE
INITIALLY DEFERRED

The default timing of the trigger. See the CREATE TABLE documentation for details of these
constraint options. This can only be specified for constraint triggers.

REFERENCING

This keyword immediately precedes the declaration of one or two relation names that provide access
to the transition relations of the triggering statement.

OLD TABLE
NEW TABLE

This clause indicates whether the following relation name is for the before-image transition relation
or the after-image transition relation.

transition_relation_name

The (unqualified) name to be used within the trigger for this transition relation.

FOR EACH ROW
FOR EACH STATEMENT

This specifies whether the trigger function should be fired once for every row affected by the trigger
event, or just once per SQL statement. If neither is specified, FOR EACH STATEMENT is the default.
Constraint triggers can only be specified FOR EACH ROW.

condition

A Boolean expression that determines whether the trigger function will actually be executed. If WHEN
is specified, the function will only be called if the condition returns true. In FOR EACH ROW triggers,
the WHEN condition can refer to columns of the old and/or new row values by writing OLD.column_name
or NEW.column_name respectively. Of course, INSERT triggers cannot refer to OLD and DELETE triggers
cannot refer to NEW.

INSTEAD OF triggers do not support WHEN conditions.

Currently, WHEN expressions cannot contain subqueries.

Note that for constraint triggers, evaluation of the WHEN condition is not deferred, but occurs
immediately after the row update operation is performed. If the condition does not evaluate to true
then the trigger is not queued for deferred execution.

1457

CREATE TRIGGER

function_name

A user-supplied function that is declared as taking no arguments and returning type trigger, which
is executed when the trigger fires.

In the syntax of CREATE TRIGGER, the keywords FUNCTION and PROCEDURE are equivalent, but the
referenced function must in any case be a function, not a procedure. The use of the keyword
PROCEDURE here is historical and deprecated.

arguments

An optional comma-separated list of arguments to be provided to the function when the trigger
is executed. The arguments are literal string constants. Simple names and numeric constants can
be written here, too, but they will all be converted to strings. Please check the description of the
implementation language of the trigger function to find out how these arguments can be accessed
within the function; it might be different from normal function arguments.

Notes
To create a trigger on a table, the user must have the TRIGGER privilege on the table. The user must also
have EXECUTE privilege on the trigger function.

Use DROP TRIGGER to remove a trigger.

A column-specific trigger (one defined using the UPDATE OF column_name syntax) will fire when any of
its columns are listed as targets in the UPDATE command's SET list. It is possible for a column's value
to change even when the trigger is not fired, because changes made to the row's contents by BEFORE
UPDATE triggers are not considered. Conversely, a command such as UPDATE ... SET x = x ... will
fire a trigger on column x, even though the column's value did not change.

There are a few built-in trigger functions that can be used to solve common problems without having
to write your own trigger code; see Section 9.28.

In a BEFORE trigger, the WHEN condition is evaluated just before the function is or would be executed,
so using WHEN is not materially different from testing the same condition at the beginning of the trigger
function. Note in particular that the NEW row seen by the condition is the current value, as possibly
modified by earlier triggers. Also, a BEFORE trigger's WHEN condition is not allowed to examine the system
columns of the NEW row (such as ctid), because those won't have been set yet.

In an AFTER trigger, the WHEN condition is evaluated just after the row update occurs, and it determines
whether an event is queued to fire the trigger at the end of statement. So when an AFTER trigger's WHEN
condition does not return true, it is not necessary to queue an event nor to re-fetch the row at end of
statement. This can result in significant speedups in statements that modify many rows, if the trigger
only needs to be fired for a few of the rows.

In some cases it is possible for a single SQL command to fire more than one kind of trigger. For instance
an INSERT with an ON CONFLICT DO UPDATE clause may cause both insert and update operations, so it
will fire both kinds of triggers as needed. The transition relations supplied to triggers are specific to
their event type; thus an INSERT trigger will see only the inserted rows, while an UPDATE trigger will
see only the updated rows.

Row updates or deletions caused by foreign-key enforcement actions, such as ON UPDATE CASCADE or ON
DELETE SET NULL, are treated as part of the SQL command that caused them (note that such actions are
never deferred). Relevant triggers on the affected table will be fired, so that this provides another way
in which a SQL command might fire triggers not directly matching its type. In simple cases, triggers that
request transition relations will see all changes caused in their table by a single original SQL command
as a single transition relation. However, there are cases in which the presence of an AFTER ROW trigger
that requests transition relations will cause the foreign-key enforcement actions triggered by a single
SQL command to be split into multiple steps, each with its own transition relation(s). In such cases,
any statement-level triggers that are present will be fired once per creation of a transition relation set,
ensuring that the triggers see each affected row in a transition relation once and only once.

1458

CREATE TRIGGER

Statement-level triggers on a view are fired only if the action on the view is handled by a row-level
INSTEAD OF trigger. If the action is handled by an INSTEAD rule, then whatever statements are emitted
by the rule are executed in place of the original statement naming the view, so that the triggers that will
be fired are those on tables named in the replacement statements. Similarly, if the view is automatically
updatable, then the action is handled by automatically rewriting the statement into an action on the
view's base table, so that the base table's statement-level triggers are the ones that are fired.

Creating a row-level trigger on a partitioned table will cause identical triggers to be created in all its
existing partitions; and any partitions created or attached later will contain an identical trigger, too. If
the partition is detached from its parent, the trigger is removed. Triggers on partitioned tables may not
be INSTEAD OF.

Modifying a partitioned table or a table with inheritance children fires statement-level triggers attached
to the explicitly named table, but not statement-level triggers for its partitions or child tables. In contrast,
row-level triggers are fired on the rows in affected partitions or child tables, even if they are not explicitly
named in the query. If a statement-level trigger has been defined with transition relations named by
a REFERENCING clause, then before and after images of rows are visible from all affected partitions or
child tables. In the case of inheritance children, the row images include only columns that are present
in the table that the trigger is attached to. Currently, row-level triggers with transition relations cannot
be defined on partitions or inheritance child tables.

Examples
Execute the function check_account_update whenever a row of the table accounts is about to be
updated:
CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

The same, but only execute the function if column balance is specified as a target in the UPDATE
command:
CREATE TRIGGER check_update
 BEFORE UPDATE OF balance ON accounts
 FOR EACH ROW
 EXECUTE FUNCTION check_account_update();

This form only executes the function if column balance has in fact changed value:
CREATE TRIGGER check_update
 BEFORE UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.balance IS DISTINCT FROM NEW.balance)
 EXECUTE FUNCTION check_account_update();

Call a function to log updates of accounts, but only if something changed:
CREATE TRIGGER log_update
 AFTER UPDATE ON accounts
 FOR EACH ROW
 WHEN (OLD.* IS DISTINCT FROM NEW.*)
 EXECUTE FUNCTION log_account_update();

Execute the function view_insert_row for each row to insert rows into the tables underlying a view:
CREATE TRIGGER view_insert
 INSTEAD OF INSERT ON my_view
 FOR EACH ROW
 EXECUTE FUNCTION view_insert_row();

Execute the function check_transfer_balances_to_zero for each statement to confirm that the
transfer rows offset to a net of zero:

1459

CREATE TRIGGER

CREATE TRIGGER transfer_insert
 AFTER INSERT ON transfer
 REFERENCING NEW TABLE AS inserted
 FOR EACH STATEMENT
 EXECUTE FUNCTION check_transfer_balances_to_zero();

Execute the function check_matching_pairs for each row to confirm that changes are made to matching
pairs at the same time (by the same statement):

CREATE TRIGGER paired_items_update
 AFTER UPDATE ON paired_items
 REFERENCING NEW TABLE AS newtab OLD TABLE AS oldtab
 FOR EACH ROW
 EXECUTE FUNCTION check_matching_pairs();

Section 36.4 contains a complete example of a trigger function written in C.

Compatibility
The CREATE TRIGGER statement in Postgres Pro implements a subset of the SQL standard. The following
functionalities are currently missing:
• While transition table names for AFTER triggers are specified using the REFERENCING clause in

the standard way, the row variables used in FOR EACH ROW triggers may not be specified in a
REFERENCING clause. They are available in a manner that is dependent on the language in which the
trigger function is written, but is fixed for any one language. Some languages effectively behave as
though there is a REFERENCING clause containing OLD ROW AS OLD NEW ROW AS NEW.

• The standard allows transition tables to be used with column-specific UPDATE triggers, but then the
set of rows that should be visible in the transition tables depends on the trigger's column list. This
is not currently implemented by Postgres Pro.

• Postgres Pro only allows the execution of a user-defined function for the triggered action. The
standard allows the execution of a number of other SQL commands, such as CREATE TABLE, as the
triggered action. This limitation is not hard to work around by creating a user-defined function that
executes the desired commands.

SQL specifies that multiple triggers should be fired in time-of-creation order. Postgres Pro uses name
order, which was judged to be more convenient.

SQL specifies that BEFORE DELETE triggers on cascaded deletes fire after the cascaded DELETE completes.
The Postgres Pro behavior is for BEFORE DELETE to always fire before the delete action, even a cascading
one. This is considered more consistent. There is also nonstandard behavior if BEFORE triggers modify
rows or prevent updates during an update that is caused by a referential action. This can lead to
constraint violations or stored data that does not honor the referential constraint.

The ability to specify multiple actions for a single trigger using OR is a Postgres Pro extension of the
SQL standard.

The ability to fire triggers for TRUNCATE is a Postgres Pro extension of the SQL standard, as is the ability
to define statement-level triggers on views.

CREATE CONSTRAINT TRIGGER is a Postgres Pro extension of the SQL standard.

See Also
ALTER TRIGGER, DROP TRIGGER, CREATE FUNCTION, SET CONSTRAINTS

1460

CREATE TYPE
CREATE TYPE — define a new data type

Synopsis
CREATE TYPE name AS
 ([attribute_name data_type [COLLATE collation] [, ...]])

CREATE TYPE name AS ENUM
 (['label' [, ...]])

CREATE TYPE name AS RANGE (
 SUBTYPE = subtype
 [, SUBTYPE_OPCLASS = subtype_operator_class]
 [, COLLATION = collation]
 [, CANONICAL = canonical_function]
 [, SUBTYPE_DIFF = subtype_diff_function]
)

CREATE TYPE name (
 INPUT = input_function,
 OUTPUT = output_function
 [, RECEIVE = receive_function]
 [, SEND = send_function]
 [, TYPMOD_IN = type_modifier_input_function]
 [, TYPMOD_OUT = type_modifier_output_function]
 [, ANALYZE = analyze_function]
 [, INTERNALLENGTH = { internallength | VARIABLE }]
 [, PASSEDBYVALUE]
 [, ALIGNMENT = alignment]
 [, STORAGE = storage]
 [, LIKE = like_type]
 [, CATEGORY = category]
 [, PREFERRED = preferred]
 [, DEFAULT = default]
 [, ELEMENT = element]
 [, DELIMITER = delimiter]
 [, COLLATABLE = collatable]
)

CREATE TYPE name

Description
CREATE TYPE registers a new data type for use in the current database. The user who defines a type
becomes its owner.

If a schema name is given then the type is created in the specified schema. Otherwise it is created in
the current schema. The type name must be distinct from the name of any existing type or domain in
the same schema. (Because tables have associated data types, the type name must also be distinct from
the name of any existing table in the same schema.)

There are five forms of CREATE TYPE, as shown in the syntax synopsis above. They respectively create
a composite type, an enum type, a range type, a base type, or a shell type. The first four of these are
discussed in turn below. A shell type is simply a placeholder for a type to be defined later; it is created
by issuing CREATE TYPE with no parameters except for the type name. Shell types are needed as forward
references when creating range types and base types, as discussed in those sections.

1461

CREATE TYPE

Composite Types
The first form of CREATE TYPE creates a composite type. The composite type is specified by a list of
attribute names and data types. An attribute's collation can be specified too, if its data type is collatable.
A composite type is essentially the same as the row type of a table, but using CREATE TYPE avoids the
need to create an actual table when all that is wanted is to define a type. A stand-alone composite type
is useful, for example, as the argument or return type of a function.

To be able to create a composite type, you must have USAGE privilege on all attribute types.

Enumerated Types
The second form of CREATE TYPE creates an enumerated (enum) type, as described in Section 8.7. Enum
types take a list of quoted labels, each of which must be less than NAMEDATALEN bytes long (64 bytes in
a standard Postgres Pro build). (It is possible to create an enumerated type with zero labels, but such a
type cannot be used to hold values before at least one label is added using ALTER TYPE.)

Range Types
The third form of CREATE TYPE creates a new range type, as described in Section 8.17.

The range type's subtype can be any type with an associated b-tree operator class (to determine the
ordering of values for the range type). Normally the subtype's default b-tree operator class is used to
determine ordering; to use a non-default operator class, specify its name with subtype_opclass. If the
subtype is collatable, and you want to use a non-default collation in the range's ordering, specify the
desired collation with the collation option.

The optional canonical function must take one argument of the range type being defined, and return
a value of the same type. This is used to convert range values to a canonical form, when applicable.
See Section 8.17.8 for more information. Creating a canonical function is a bit tricky, since it must
be defined before the range type can be declared. To do this, you must first create a shell type, which
is a placeholder type that has no properties except a name and an owner. This is done by issuing the
command CREATE TYPE name, with no additional parameters. Then the function can be declared using
the shell type as argument and result, and finally the range type can be declared using the same name.
This automatically replaces the shell type entry with a valid range type.

The optional subtype_diff function must take two values of the subtype type as argument, and return
a double precision value representing the difference between the two given values. While this is
optional, providing it allows much greater efficiency of GiST indexes on columns of the range type. See
Section 8.17.8 for more information.

Base Types
The fourth form of CREATE TYPE creates a new base type (scalar type). To create a new base type, you
must be a superuser. (This restriction is made because an erroneous type definition could confuse or
even crash the server.)

The parameters can appear in any order, not only that illustrated above, and most
are optional. You must register two or more functions (using CREATE FUNCTION)
before defining the type. The support functions input_function and output_function are
required, while the functions receive_function, send_function, type_modifier_input_function,
type_modifier_output_function and analyze_function are optional. Generally these functions have
to be coded in C or another low-level language.

The input_function converts the type's external textual representation to the internal representation
used by the operators and functions defined for the type. output_function performs the reverse
transformation. The input function can be declared as taking one argument of type cstring, or as taking
three arguments of types cstring, oid, integer. The first argument is the input text as a C string, the
second argument is the type's own OID (except for array types, which instead receive their element
type's OID), and the third is the typmod of the destination column, if known (-1 will be passed if not). The

1462

CREATE TYPE

input function must return a value of the data type itself. Usually, an input function should be declared
STRICT; if it is not, it will be called with a NULL first parameter when reading a NULL input value.
The function must still return NULL in this case, unless it raises an error. (This case is mainly meant to
support domain input functions, which might need to reject NULL inputs.) The output function must be
declared as taking one argument of the new data type. The output function must return type cstring.
Output functions are not invoked for NULL values.

The optional receive_function converts the type's external binary representation to the internal
representation. If this function is not supplied, the type cannot participate in binary input. The binary
representation should be chosen to be cheap to convert to internal form, while being reasonably
portable. (For example, the standard integer data types use network byte order as the external binary
representation, while the internal representation is in the machine's native byte order.) The receive
function should perform adequate checking to ensure that the value is valid. The receive function can be
declared as taking one argument of type internal, or as taking three arguments of types internal, oid,
integer. The first argument is a pointer to a StringInfo buffer holding the received byte string; the
optional arguments are the same as for the text input function. The receive function must return a value
of the data type itself. Usually, a receive function should be declared STRICT; if it is not, it will be called
with a NULL first parameter when reading a NULL input value. The function must still return NULL in
this case, unless it raises an error. (This case is mainly meant to support domain receive functions, which
might need to reject NULL inputs.) Similarly, the optional send_function converts from the internal
representation to the external binary representation. If this function is not supplied, the type cannot
participate in binary output. The send function must be declared as taking one argument of the new data
type. The send function must return type bytea. Send functions are not invoked for NULL values.

You should at this point be wondering how the input and output functions can be declared to have results
or arguments of the new type, when they have to be created before the new type can be created. The
answer is that the type should first be defined as a shell type, which is a placeholder type that has no
properties except a name and an owner. This is done by issuing the command CREATE TYPE name, with
no additional parameters. Then the C I/O functions can be defined referencing the shell type. Finally,
CREATE TYPE with a full definition replaces the shell entry with a complete, valid type definition, after
which the new type can be used normally.

The optional type_modifier_input_function and type_modifier_output_function are needed if the
type supports modifiers, that is optional constraints attached to a type declaration, such as char(5)
or numeric(30,2). Postgres Pro allows user-defined types to take one or more simple constants or
identifiers as modifiers. However, this information must be capable of being packed into a single non-
negative integer value for storage in the system catalogs. The type_modifier_input_function is passed
the declared modifier(s) in the form of a cstring array. It must check the values for validity (throwing
an error if they are wrong), and if they are correct, return a single non-negative integer value that
will be stored as the column “typmod”. Type modifiers will be rejected if the type does not have a
type_modifier_input_function. The type_modifier_output_function converts the internal integer
typmod value back to the correct form for user display. It must return a cstring value that is the exact
string to append to the type name; for example numeric's function might return (30,2). It is allowed to
omit the type_modifier_output_function, in which case the default display format is just the stored
typmod integer value enclosed in parentheses.

The optional analyze_function performs type-specific statistics collection for columns of the data type.
By default, ANALYZE will attempt to gather statistics using the type's “equals” and “less-than” operators,
if there is a default b-tree operator class for the type. For non-scalar types this behavior is likely to be
unsuitable, so it can be overridden by specifying a custom analysis function. The analysis function must
be declared to take a single argument of type internal, and return a boolean result.

While the details of the new type's internal representation are only known to the I/O functions and other
functions you create to work with the type, there are several properties of the internal representation
that must be declared to Postgres Pro. Foremost of these is internallength. Base data types can be
fixed-length, in which case internallength is a positive integer, or variable-length, indicated by setting
internallength to VARIABLE. (Internally, this is represented by setting typlen to -1.) The internal
representation of all variable-length types must start with a 4-byte integer giving the total length of this

1463

CREATE TYPE

value of the type. (Note that the length field is often encoded, as described in Section 65.2; it's unwise
to access it directly.)

The optional flag PASSEDBYVALUE indicates that values of this data type are passed by value, rather than
by reference. Types passed by value must be fixed-length, and their internal representation cannot be
larger than the size of the Datum type (4 bytes on some machines, 8 bytes on others).

The alignment parameter specifies the storage alignment required for the data type. The allowed values
equate to alignment on 1, 2, 4, or 8 byte boundaries. Note that variable-length types must have an
alignment of at least 4, since they necessarily contain an int4 as their first component.

The storage parameter allows selection of storage strategies for variable-length data types. (Only plain
is allowed for fixed-length types.) plain specifies that data of the type will always be stored in-line and
not compressed. extended specifies that the system will first try to compress a long data value, and will
move the value out of the main table row if it's still too long. external allows the value to be moved out
of the main table, but the system will not try to compress it. main allows compression, but discourages
moving the value out of the main table. (Data items with this storage strategy might still be moved out
of the main table if there is no other way to make a row fit, but they will be kept in the main table
preferentially over extended and external items.)

All storage values other than plain imply that the functions of the data type can handle values that have
been toasted, as described in Section 65.2 and Section 35.13.1. The specific other value given merely
determines the default TOAST storage strategy for columns of a toastable data type; users can pick other
strategies for individual columns using ALTER TABLE SET STORAGE.

The like_type parameter provides an alternative method for specifying the basic representation
properties of a data type: copy them from some existing type. The values of internallength,
passedbyvalue, alignment, and storage are copied from the named type. (It is possible, though
usually undesirable, to override some of these values by specifying them along with the LIKE clause.)
Specifying representation this way is especially useful when the low-level implementation of the new
type “piggybacks” on an existing type in some fashion.

The category and preferred parameters can be used to help control which implicit cast will be applied
in ambiguous situations. Each data type belongs to a category named by a single ASCII character, and
each type is either “preferred” or not within its category. The parser will prefer casting to preferred types
(but only from other types within the same category) when this rule is helpful in resolving overloaded
functions or operators. For more details see Chapter 10. For types that have no implicit casts to or from
any other types, it is sufficient to leave these settings at the defaults. However, for a group of related
types that have implicit casts, it is often helpful to mark them all as belonging to a category and select
one or two of the “most general” types as being preferred within the category. The category parameter
is especially useful when adding a user-defined type to an existing built-in category, such as the numeric
or string types. However, it is also possible to create new entirely-user-defined type categories. Select
any ASCII character other than an upper-case letter to name such a category.

A default value can be specified, in case a user wants columns of the data type to default to something
other than the null value. Specify the default with the DEFAULT key word. (Such a default can be
overridden by an explicit DEFAULT clause attached to a particular column.)

To indicate that a type is an array, specify the type of the array elements using the ELEMENT key word.
For example, to define an array of 4-byte integers (int4), specify ELEMENT = int4. More details about
array types appear below.

To indicate the delimiter to be used between values in the external representation of arrays of this type,
delimiter can be set to a specific character. The default delimiter is the comma (,). Note that the
delimiter is associated with the array element type, not the array type itself.

If the optional Boolean parameter collatable is true, column definitions and expressions of the type
may carry collation information through use of the COLLATE clause. It is up to the implementations of the

1464

CREATE TYPE

functions operating on the type to actually make use of the collation information; this does not happen
automatically merely by marking the type collatable.

Array Types
Whenever a user-defined type is created, Postgres Pro automatically creates an associated array type,
whose name consists of the element type's name prepended with an underscore, and truncated if
necessary to keep it less than NAMEDATALEN bytes long. (If the name so generated collides with an existing
type name, the process is repeated until a non-colliding name is found.) This implicitly-created array type
is variable length and uses the built-in input and output functions array_in and array_out. The array
type tracks any changes in its element type's owner or schema, and is dropped if the element type is.

You might reasonably ask why there is an ELEMENT option, if the system makes the correct array type
automatically. The only case where it's useful to use ELEMENT is when you are making a fixed-length
type that happens to be internally an array of a number of identical things, and you want to allow these
things to be accessed directly by subscripting, in addition to whatever operations you plan to provide for
the type as a whole. For example, type point is represented as just two floating-point numbers, which
can be accessed using point[0] and point[1]. Note that this facility only works for fixed-length types
whose internal form is exactly a sequence of identical fixed-length fields. A subscriptable variable-length
type must have the generalized internal representation used by array_in and array_out. For historical
reasons (i.e., this is clearly wrong but it's far too late to change it), subscripting of fixed-length array
types starts from zero, rather than from one as for variable-length arrays.

Parameters
name

The name (optionally schema-qualified) of a type to be created.

attribute_name

The name of an attribute (column) for the composite type.

data_type

The name of an existing data type to become a column of the composite type.

collation

The name of an existing collation to be associated with a column of a composite type, or with a range
type.

label

A string literal representing the textual label associated with one value of an enum type.

subtype

The name of the element type that the range type will represent ranges of.

subtype_operator_class

The name of a b-tree operator class for the subtype.

canonical_function

The name of the canonicalization function for the range type.

subtype_diff_function

The name of a difference function for the subtype.

input_function

The name of a function that converts data from the type's external textual form to its internal form.

1465

CREATE TYPE

output_function

The name of a function that converts data from the type's internal form to its external textual form.

receive_function

The name of a function that converts data from the type's external binary form to its internal form.

send_function

The name of a function that converts data from the type's internal form to its external binary form.

type_modifier_input_function

The name of a function that converts an array of modifier(s) for the type into internal form.

type_modifier_output_function

The name of a function that converts the internal form of the type's modifier(s) to external textual
form.

analyze_function

The name of a function that performs statistical analysis for the data type.

internallength

A numeric constant that specifies the length in bytes of the new type's internal representation. The
default assumption is that it is variable-length.

alignment

The storage alignment requirement of the data type. If specified, it must be char, int2, int4, or
double; the default is int4.

storage

The storage strategy for the data type. If specified, must be plain, external, extended, or main;
the default is plain.

like_type

The name of an existing data type that the new type will have the same representation as. The
values of internallength, passedbyvalue, alignment, and storage are copied from that type, unless
overridden by explicit specification elsewhere in this CREATE TYPE command.

category

The category code (a single ASCII character) for this type. The default is 'U' for “user-defined
type”. Other standard category codes can be found in Table 49.63. You may also choose other ASCII
characters in order to create custom categories.

preferred

True if this type is a preferred type within its type category, else false. The default is false. Be very
careful about creating a new preferred type within an existing type category, as this could cause
surprising changes in behavior.

default

The default value for the data type. If this is omitted, the default is null.

element

The type being created is an array; this specifies the type of the array elements.

1466

CREATE TYPE

delimiter

The delimiter character to be used between values in arrays made of this type.

collatable

True if this type's operations can use collation information. The default is false.

Notes
Because there are no restrictions on use of a data type once it's been created, creating a base type or
range type is tantamount to granting public execute permission on the functions mentioned in the type
definition. This is usually not an issue for the sorts of functions that are useful in a type definition. But
you might want to think twice before designing a type in a way that would require “secret” information
to be used while converting it to or from external form.

Before PostgreSQL version 8.3, the name of a generated array type was always exactly the element
type's name with one underscore character (_) prepended. (Type names were therefore restricted in
length to one fewer character than other names.) While this is still usually the case, the array type name
may vary from this in case of maximum-length names or collisions with user type names that begin
with underscore. Writing code that depends on this convention is therefore deprecated. Instead, use
pg_type.typarray to locate the array type associated with a given type.

It may be advisable to avoid using type and table names that begin with underscore. While the server
will change generated array type names to avoid collisions with user-given names, there is still risk
of confusion, particularly with old client software that may assume that type names beginning with
underscores always represent arrays.

Before PostgreSQL version 8.2, the shell-type creation syntax CREATE TYPE name did not exist. The way
to create a new base type was to create its input function first. In this approach, Postgres Pro will first see
the name of the new data type as the return type of the input function. The shell type is implicitly created
in this situation, and then it can be referenced in the definitions of the remaining I/O functions. This
approach still works, but is deprecated and might be disallowed in some future release. Also, to avoid
accidentally cluttering the catalogs with shell types as a result of simple typos in function definitions, a
shell type will only be made this way when the input function is written in C.

Examples
This example creates a composite type and uses it in a function definition:
CREATE TYPE compfoo AS (f1 int, f2 text);

CREATE FUNCTION getfoo() RETURNS SETOF compfoo AS $$
 SELECT fooid, fooname FROM foo
$$ LANGUAGE SQL;

This example creates an enumerated type and uses it in a table definition:
CREATE TYPE bug_status AS ENUM ('new', 'open', 'closed');

CREATE TABLE bug (
 id serial,
 description text,
 status bug_status
);

This example creates a range type:
CREATE TYPE float8_range AS RANGE (subtype = float8, subtype_diff = float8mi);

This example creates the base data type box and then uses the type in a table definition:
CREATE TYPE box;

1467

CREATE TYPE

CREATE FUNCTION my_box_in_function(cstring) RETURNS box AS ... ;
CREATE FUNCTION my_box_out_function(box) RETURNS cstring AS ... ;

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function
);

CREATE TABLE myboxes (
 id integer,
 description box
);

If the internal structure of box were an array of four float4 elements, we might instead use:

CREATE TYPE box (
 INTERNALLENGTH = 16,
 INPUT = my_box_in_function,
 OUTPUT = my_box_out_function,
 ELEMENT = float4
);

which would allow a box value's component numbers to be accessed by subscripting. Otherwise the type
behaves the same as before.

This example creates a large object type and uses it in a table definition:

CREATE TYPE bigobj (
 INPUT = lo_filein, OUTPUT = lo_fileout,
 INTERNALLENGTH = VARIABLE
);
CREATE TABLE big_objs (
 id integer,
 obj bigobj
);

More examples, including suitable input and output functions, are in Section 35.13.

Compatibility
The first form of the CREATE TYPE command, which creates a composite type, conforms to the SQL
standard. The other forms are Postgres Pro extensions. The CREATE TYPE statement in the SQL standard
also defines other forms that are not implemented in Postgres Pro.

The ability to create a composite type with zero attributes is a Postgres Pro-specific deviation from the
standard (analogous to the same case in CREATE TABLE).

See Also
ALTER TYPE, CREATE DOMAIN, CREATE FUNCTION, DROP TYPE

1468

CREATE USER
CREATE USER — define a new database role

Synopsis
CREATE USER name [[WITH] option [...]]

where option can be:

 SUPERUSER | NOSUPERUSER
 | CREATEDB | NOCREATEDB
 | CREATEROLE | NOCREATEROLE
 | INHERIT | NOINHERIT
 | LOGIN | NOLOGIN
 | REPLICATION | NOREPLICATION
 | BYPASSRLS | NOBYPASSRLS
 | CONNECTION LIMIT connlimit
 | [ENCRYPTED] PASSWORD 'password' | PASSWORD NULL
 | VALID UNTIL 'timestamp'
 | IN ROLE role_name [, ...]
 | IN GROUP role_name [, ...]
 | ROLE role_name [, ...]
 | ADMIN role_name [, ...]
 | USER role_name [, ...]
 | SYSID uid

Description
CREATE USER is now an alias for CREATE ROLE. The only difference is that when the command is spelled
CREATE USER, LOGIN is assumed by default, whereas NOLOGIN is assumed when the command is spelled
CREATE ROLE.

Compatibility
The CREATE USER statement is a Postgres Pro extension. The SQL standard leaves the definition of users
to the implementation.

See Also
CREATE ROLE

1469

CREATE USER MAPPING
CREATE USER MAPPING — define a new mapping of a user to a foreign server

Synopsis
CREATE USER MAPPING [IF NOT EXISTS] FOR { user_name | USER | CURRENT_USER | PUBLIC }
 SERVER server_name
 [OPTIONS (option 'value' [, ...])]

Description
CREATE USER MAPPING defines a mapping of a user to a foreign server. A user mapping typically
encapsulates connection information that a foreign-data wrapper uses together with the information
encapsulated by a foreign server to access an external data resource.

The owner of a foreign server can create user mappings for that server for any user. Also, a user can
create a user mapping for their own user name if USAGE privilege on the server has been granted to
the user.

Parameters
IF NOT EXISTS

Do not throw an error if a mapping of the given user to the given foreign server already exists.
A notice is issued in this case. Note that there is no guarantee that the existing user mapping is
anything like the one that would have been created.

user_name

The name of an existing user that is mapped to foreign server. CURRENT_USER and USER match the
name of the current user. When PUBLIC is specified, a so-called public mapping is created that is
used when no user-specific mapping is applicable.

server_name

The name of an existing server for which the user mapping is to be created.

OPTIONS (option 'value' [, ...])

This clause specifies the options of the user mapping. The options typically define the actual user
name and password of the mapping. Option names must be unique. The allowed option names and
values are specific to the server's foreign-data wrapper.

Examples
Create a user mapping for user bob, server foo:

CREATE USER MAPPING FOR bob SERVER foo OPTIONS (user 'bob', password 'secret');

Compatibility
CREATE USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED).

See Also
ALTER USER MAPPING, DROP USER MAPPING, CREATE FOREIGN DATA WRAPPER, CREATE SERVER

1470

CREATE VIEW
CREATE VIEW — define a new view

Synopsis
CREATE [OR REPLACE] [TEMP | TEMPORARY] [RECURSIVE] VIEW name [(column_name
 [, ...])]
 [WITH (view_option_name [= view_option_value] [, ...])]
 AS query
 [WITH [CASCADED | LOCAL] CHECK OPTION]

Description
CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run
every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced. The
new query must generate the same columns that were generated by the existing view query (that is, the
same column names in the same order and with the same data types), but it may add additional columns
to the end of the list. The calculations giving rise to the output columns may be completely different.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view is created in
the specified schema. Otherwise it is created in the current schema. Temporary views exist in a special
schema, so a schema name cannot be given when creating a temporary view. The name of the view must
be distinct from the name of any other view, table, sequence, index or foreign table in the same schema.

Parameters
TEMPORARY or TEMP

If specified, the view is created as a temporary view. Temporary views are automatically dropped
at the end of the current session. Existing permanent relations with the same name are not visible
to the current session while the temporary view exists, unless they are referenced with schema-
qualified names.

If any of the tables referenced by the view are temporary, the view is created as a temporary view
(whether TEMPORARY is specified or not).

RECURSIVE
Creates a recursive view. The syntax
CREATE RECURSIVE VIEW [schema .] view_name (column_names) AS SELECT ...;

is equivalent to
CREATE VIEW [schema .] view_name AS WITH RECURSIVE view_name (column_names) AS
 (SELECT ...) SELECT column_names FROM view_name;

A view column name list must be specified for a recursive view.

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are
deduced from the query.

WITH (view_option_name [= view_option_value] [, ...])

This clause specifies optional parameters for a view; the following parameters are supported:

1471

CREATE VIEW

check_option (enum)

This parameter may be either local or cascaded, and is equivalent to specifying WITH [CASCADED
| LOCAL] CHECK OPTION (see below). This option can be changed on existing views using ALTER
VIEW.

security_barrier (boolean)
This should be used if the view is intended to provide row-level security. See Section 38.5 for
full details.

query

A SELECT or VALUES command which will provide the columns and rows of the view.

WITH [CASCADED | LOCAL] CHECK OPTION
This option controls the behavior of automatically updatable views. When this option is specified,
INSERT and UPDATE commands on the view will be checked to ensure that new rows satisfy the view-
defining condition (that is, the new rows are checked to ensure that they are visible through the
view). If they are not, the update will be rejected. If the CHECK OPTION is not specified, INSERT and
UPDATE commands on the view are allowed to create rows that are not visible through the view. The
following check options are supported:

LOCAL

New rows are only checked against the conditions defined directly in the view itself. Any
conditions defined on underlying base views are not checked (unless they also specify the CHECK
OPTION).

CASCADED

New rows are checked against the conditions of the view and all underlying base views. If
the CHECK OPTION is specified, and neither LOCAL nor CASCADED is specified, then CASCADED is
assumed.

The CHECK OPTION may not be used with RECURSIVE views.

Note that the CHECK OPTION is only supported on views that are automatically updatable, and do not
have INSTEAD OF triggers or INSTEAD rules. If an automatically updatable view is defined on top of
a base view that has INSTEAD OF triggers, then the LOCAL CHECK OPTION may be used to check the
conditions on the automatically updatable view, but the conditions on the base view with INSTEAD OF
triggers will not be checked (a cascaded check option will not cascade down to a trigger-updatable
view, and any check options defined directly on a trigger-updatable view will be ignored). If the view
or any of its base relations has an INSTEAD rule that causes the INSERT or UPDATE command to be
rewritten, then all check options will be ignored in the rewritten query, including any checks from
automatically updatable views defined on top of the relation with the INSTEAD rule.

Notes
Use the DROP VIEW statement to drop views.

Be careful that the names and types of the view's columns will be assigned the way you want. For
example:

CREATE VIEW vista AS SELECT 'Hello World';

is bad form because the column name defaults to ?column?; also, the column data type defaults to text,
which might not be what you wanted. Better style for a string literal in a view's result is something like:

CREATE VIEW vista AS SELECT text 'Hello World' AS hello;

Access to tables referenced in the view is determined by permissions of the view owner. In some cases,
this can be used to provide secure but restricted access to the underlying tables. However, not all views

1472

CREATE VIEW

are secure against tampering; see Section 38.5 for details. Functions called in the view are treated the
same as if they had been called directly from the query using the view. Therefore the user of a view must
have permissions to call all functions used by the view.

When CREATE OR REPLACE VIEW is used on an existing view, only the view's defining SELECT rule
is changed. Other view properties, including ownership, permissions, and non-SELECT rules, remain
unchanged. You must own the view to replace it (this includes being a member of the owning role).

Updatable Views
Simple views are automatically updatable: the system will allow INSERT, UPDATE and DELETE statements
to be used on the view in the same way as on a regular table. A view is automatically updatable if it
satisfies all of the following conditions:
• The view must have exactly one entry in its FROM list, which must be a table or another updatable

view.
• The view definition must not contain WITH, DISTINCT, GROUP BY, HAVING, LIMIT, or OFFSET clauses

at the top level.
• The view definition must not contain set operations (UNION, INTERSECT or EXCEPT) at the top level.
• The view's select list must not contain any aggregates, window functions or set-returning functions.

An automatically updatable view may contain a mix of updatable and non-updatable columns. A column
is updatable if it is a simple reference to an updatable column of the underlying base relation; otherwise
the column is read-only, and an error will be raised if an INSERT or UPDATE statement attempts to assign
a value to it.

If the view is automatically updatable the system will convert any INSERT, UPDATE or DELETE statement
on the view into the corresponding statement on the underlying base relation. INSERT statements that
have an ON CONFLICT UPDATE clause are fully supported.

If an automatically updatable view contains a WHERE condition, the condition restricts which rows of the
base relation are available to be modified by UPDATE and DELETE statements on the view. However, an
UPDATE is allowed to change a row so that it no longer satisfies the WHERE condition, and thus is no longer
visible through the view. Similarly, an INSERT command can potentially insert base-relation rows that
do not satisfy the WHERE condition and thus are not visible through the view (ON CONFLICT UPDATE may
similarly affect an existing row not visible through the view). The CHECK OPTION may be used to prevent
INSERT and UPDATE commands from creating such rows that are not visible through the view.

If an automatically updatable view is marked with the security_barrier property then all the view's
WHERE conditions (and any conditions using operators which are marked as LEAKPROOF) will always be
evaluated before any conditions that a user of the view has added. See Section 38.5 for full details. Note
that, due to this, rows which are not ultimately returned (because they do not pass the user's WHERE
conditions) may still end up being locked. EXPLAIN can be used to see which conditions are applied at
the relation level (and therefore do not lock rows) and which are not.

A more complex view that does not satisfy all these conditions is read-only by default: the system will
not allow an insert, update, or delete on the view. You can get the effect of an updatable view by creating
INSTEAD OF triggers on the view, which must convert attempted inserts, etc. on the view into appropriate
actions on other tables. For more information see CREATE TRIGGER. Another possibility is to create
rules (see CREATE RULE), but in practice triggers are easier to understand and use correctly.

Note that the user performing the insert, update or delete on the view must have the corresponding
insert, update or delete privilege on the view. In addition the view's owner must have the relevant
privileges on the underlying base relations, but the user performing the update does not need any
permissions on the underlying base relations (see Section 38.5).

Examples
Create a view consisting of all comedy films:

1473

CREATE VIEW

CREATE VIEW comedies AS
 SELECT *
 FROM films
 WHERE kind = 'Comedy';

This will create a view containing the columns that are in the film table at the time of view creation.
Though * was used to create the view, columns added later to the table will not be part of the view.

Create a view with LOCAL CHECK OPTION:

CREATE VIEW universal_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'U'
 WITH LOCAL CHECK OPTION;

This will create a view based on the comedies view, showing only films with kind = 'Comedy' and
classification = 'U'. Any attempt to INSERT or UPDATE a row in the view will be rejected if the new
row doesn't have classification = 'U', but the film kind will not be checked.

Create a view with CASCADED CHECK OPTION:

CREATE VIEW pg_comedies AS
 SELECT *
 FROM comedies
 WHERE classification = 'PG'
 WITH CASCADED CHECK OPTION;

This will create a view that checks both the kind and classification of new rows.

Create a view with a mix of updatable and non-updatable columns:

CREATE VIEW comedies AS
 SELECT f.*,
 country_code_to_name(f.country_code) AS country,
 (SELECT avg(r.rating)
 FROM user_ratings r
 WHERE r.film_id = f.id) AS avg_rating
 FROM films f
 WHERE f.kind = 'Comedy';

This view will support INSERT, UPDATE and DELETE. All the columns from the films table will be updatable,
whereas the computed columns country and avg_rating will be read-only.

Create a recursive view consisting of the numbers from 1 to 100:

CREATE RECURSIVE VIEW public.nums_1_100 (n) AS
 VALUES (1)
UNION ALL
 SELECT n+1 FROM nums_1_100 WHERE n < 100;

Notice that although the recursive view's name is schema-qualified in this CREATE, its internal self-
reference is not schema-qualified. This is because the implicitly-created CTE's name cannot be schema-
qualified.

Compatibility
CREATE OR REPLACE VIEW is a Postgres Pro language extension. So is the concept of a temporary view.
The WITH (...) clause is an extension as well.

See Also
ALTER VIEW, DROP VIEW, CREATE MATERIALIZED VIEW

1474

DEALLOCATE
DEALLOCATE — deallocate a prepared statement

Synopsis
DEALLOCATE [PREPARE] { name | ALL }

Description
DEALLOCATE is used to deallocate a previously prepared SQL statement. If you do not explicitly deallocate
a prepared statement, it is deallocated when the session ends.

For more information on prepared statements, see PREPARE.

Parameters
PREPARE

This key word is ignored.

name

The name of the prepared statement to deallocate.

ALL

Deallocate all prepared statements.

Compatibility
The SQL standard includes a DEALLOCATE statement, but it is only for use in embedded SQL.

See Also
EXECUTE, PREPARE

1475

DECLARE
DECLARE — define a cursor

Synopsis
DECLARE name [BINARY] [INSENSITIVE] [[NO] SCROLL]
 CURSOR [{ WITH | WITHOUT } HOLD] FOR query

Description
DECLARE allows a user to create cursors, which can be used to retrieve a small number of rows at a time
out of a larger query. After the cursor is created, rows are fetched from it using FETCH.

Note
This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 40.7.

Parameters
name

The name of the cursor to be created.

BINARY

Causes the cursor to return data in binary rather than in text format.

INSENSITIVE

Indicates that data retrieved from the cursor should be unaffected by updates to the table(s)
underlying the cursor that occur after the cursor is created. In Postgres Pro, this is the default
behavior; so this key word has no effect and is only accepted for compatibility with the SQL standard.

SCROLL
NO SCROLL

SCROLL specifies that the cursor can be used to retrieve rows in a nonsequential fashion (e.g.,
backward). Depending upon the complexity of the query's execution plan, specifying SCROLL might
impose a performance penalty on the query's execution time. NO SCROLL specifies that the cursor
cannot be used to retrieve rows in a nonsequential fashion. The default is to allow scrolling in some
cases; this is not the same as specifying SCROLL. See Notes below for details.

WITH HOLD
WITHOUT HOLD

WITH HOLD specifies that the cursor can continue to be used after the transaction that created
it successfully commits. WITHOUT HOLD specifies that the cursor cannot be used outside of the
transaction that created it. If neither WITHOUT HOLD nor WITH HOLD is specified, WITHOUT HOLD is
the default.

query

A SELECT or VALUES command which will provide the rows to be returned by the cursor.

The key words BINARY, INSENSITIVE, and SCROLL can appear in any order.

1476

DECLARE

Notes
Normal cursors return data in text format, the same as a SELECT would produce. The BINARY option
specifies that the cursor should return data in binary format. This reduces conversion effort for both
the server and client, at the cost of more programmer effort to deal with platform-dependent binary
data formats. As an example, if a query returns a value of one from an integer column, you would get a
string of 1 with a default cursor, whereas with a binary cursor you would get a 4-byte field containing
the internal representation of the value (in big-endian byte order).

Binary cursors should be used carefully. Many applications, including psql, are not prepared to handle
binary cursors and expect data to come back in the text format.

Note
When the client application uses the “extended query” protocol to issue a FETCH command, the
Bind protocol message specifies whether data is to be retrieved in text or binary format. This
choice overrides the way that the cursor is defined. The concept of a binary cursor as such is thus
obsolete when using extended query protocol — any cursor can be treated as either text or binary.

Unless WITH HOLD is specified, the cursor created by this command can only be used within the current
transaction. Thus, DECLARE without WITH HOLD is useless outside a transaction block: the cursor would
survive only to the completion of the statement. Therefore Postgres Pro reports an error if such a
command is used outside a transaction block. Use BEGIN and COMMIT (or ROLLBACK) to define a
transaction block.

If WITH HOLD is specified and the transaction that created the cursor successfully commits, the cursor can
continue to be accessed by subsequent transactions in the same session. (But if the creating transaction
is aborted, the cursor is removed.) A cursor created with WITH HOLD is closed when an explicit CLOSE
command is issued on it, or the session ends. In the current implementation, the rows represented by a
held cursor are copied into a temporary file or memory area so that they remain available for subsequent
transactions.

WITH HOLD may not be specified when the query includes FOR UPDATE or FOR SHARE.

The SCROLL option should be specified when defining a cursor that will be used to fetch backwards. This
is required by the SQL standard. However, for compatibility with earlier versions, Postgres Pro will allow
backward fetches without SCROLL, if the cursor's query plan is simple enough that no extra overhead is
needed to support it. However, application developers are advised not to rely on using backward fetches
from a cursor that has not been created with SCROLL. If NO SCROLL is specified, then backward fetches
are disallowed in any case.

Backward fetches are also disallowed when the query includes FOR UPDATE or FOR SHARE; therefore
SCROLL may not be specified in this case.

Caution
Scrollable cursors may give unexpected results if they invoke any volatile functions (see
Section 35.7). When a previously fetched row is re-fetched, the functions might be re-executed,
perhaps leading to results different from the first time. It's best to specify NO SCROLL for a query
involving volatile functions. If that is not practical, one workaround is to declare the cursor SCROLL
WITH HOLD and commit the transaction before reading any rows from it. This will force the entire
output of the cursor to be materialized in temporary storage, so that volatile functions are executed
exactly once for each row.

If the cursor's query includes FOR UPDATE or FOR SHARE, then returned rows are locked at the time they
are first fetched, in the same way as for a regular SELECT command with these options. In addition,

1477

DECLARE

the returned rows will be the most up-to-date versions; therefore these options provide the equivalent
of what the SQL standard calls a “sensitive cursor”. (Specifying INSENSITIVE together with FOR UPDATE
or FOR SHARE is an error.)

Caution
It is generally recommended to use FOR UPDATE if the cursor is intended to be used with UPDATE ...
WHERE CURRENT OF or DELETE ... WHERE CURRENT OF. Using FOR UPDATE prevents other sessions
from changing the rows between the time they are fetched and the time they are updated. Without
FOR UPDATE, a subsequent WHERE CURRENT OF command will have no effect if the row was changed
since the cursor was created.

Another reason to use FOR UPDATE is that without it, a subsequent WHERE CURRENT OF might
fail if the cursor query does not meet the SQL standard's rules for being “simply updatable” (in
particular, the cursor must reference just one table and not use grouping or ORDER BY). Cursors
that are not simply updatable might work, or might not, depending on plan choice details; so in
the worst case, an application might work in testing and then fail in production. If FOR UPDATE is
specified, the cursor is guaranteed to be updatable.

The main reason not to use FOR UPDATE with WHERE CURRENT OF is if you need the cursor to be
scrollable, or to be insensitive to the subsequent updates (that is, continue to show the old data).
If this is a requirement, pay close heed to the caveats shown above.

The SQL standard only makes provisions for cursors in embedded SQL. The Postgres Pro server does
not implement an OPEN statement for cursors; a cursor is considered to be open when it is declared.
However, ECPG, the embedded SQL preprocessor for Postgres Pro, supports the standard SQL cursor
conventions, including those involving DECLARE and OPEN statements.

You can see all available cursors by querying the pg_cursors system view.

Examples
To declare a cursor:

DECLARE liahona CURSOR FOR SELECT * FROM films;

See FETCH for more examples of cursor usage.

Compatibility
The SQL standard says that it is implementation-dependent whether cursors are sensitive to concurrent
updates of the underlying data by default. In Postgres Pro, cursors are insensitive by default, and can
be made sensitive by specifying FOR UPDATE. Other products may work differently.

The SQL standard allows cursors only in embedded SQL and in modules. Postgres Pro permits cursors
to be used interactively.

Binary cursors are a Postgres Pro extension.

See Also
CLOSE, FETCH, MOVE

1478

DELETE
DELETE — delete rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
DELETE FROM [ONLY] table_name [*] [[AS] alias]
 [USING from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent,
the effect is to delete all rows in the table. The result is a valid, but empty table.

Tip
TRUNCATE provides a faster mechanism to remove all rows from a table.

There are two ways to delete rows in a table using information contained in other tables in the
database: using sub-selects, or specifying additional tables in the USING clause. Which technique is more
appropriate depends on the specific circumstances.

The optional RETURNING clause causes DELETE to compute and return value(s) based on each row actually
deleted. Any expression using the table's columns, and/or columns of other tables mentioned in USING,
can be computed. The syntax of the RETURNING list is identical to that of the output list of SELECT.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for any
table in the USING clause or whose values are read in the condition.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
DELETE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to delete rows from. If ONLY is specified before the
table name, matching rows are deleted from the named table only. If ONLY is not specified, matching
rows are also deleted from any tables inheriting from the named table. Optionally, * can be specified
after the table name to explicitly indicate that descendant tables are included.

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given DELETE FROM foo AS f, the remainder of the DELETE statement
must refer to this table as f not foo.

from_item

A table expression allowing columns from other tables to appear in the WHERE condition. This uses
the same syntax as the FROM clause of a SELECT statement; for example, an alias for the table name
can be specified. Do not repeat the target table as a from_item unless you wish to set up a self-join
(in which case it must appear with an alias in the from_item).

1479

DELETE

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be deleted.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be deleted is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the DELETE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the DELETE command after each row is deleted. The
expression can use any column names of the table named by table_name or table(s) listed in USING.
Write * to return all columns.

output_name

A name to use for a returned column.

Outputs
On successful completion, a DELETE command returns a command tag of the form

DELETE count

The count is the number of rows deleted. Note that the number may be less than the number of rows
that matched the condition when deletes were suppressed by a BEFORE DELETE trigger. If count is 0,
no rows were deleted by the query (this is not considered an error).

If the DELETE command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
deleted by the command.

Notes
Postgres Pro lets you reference columns of other tables in the WHERE condition by specifying the other
tables in the USING clause. For example, to delete all films produced by a given producer, one can do:

DELETE FROM films USING producers
 WHERE producer_id = producers.id AND producers.name = 'foo';

What is essentially happening here is a join between films and producers, with all successfully joined
films rows being marked for deletion. This syntax is not standard. A more standard way to do it is:

DELETE FROM films
 WHERE producer_id IN (SELECT id FROM producers WHERE name = 'foo');

In some cases the join style is easier to write or faster to execute than the sub-select style.

Examples
Delete all films but musicals:

DELETE FROM films WHERE kind <> 'Musical';

Clear the table films:

DELETE FROM films;

Delete completed tasks, returning full details of the deleted rows:

DELETE FROM tasks WHERE status = 'DONE' RETURNING *;

1480

DELETE

Delete the row of tasks on which the cursor c_tasks is currently positioned:

DELETE FROM tasks WHERE CURRENT OF c_tasks;

Compatibility
This command conforms to the SQL standard, except that the USING and RETURNING clauses are Postgres
Pro extensions, as is the ability to use WITH with DELETE.

See Also
TRUNCATE

1481

DISCARD
DISCARD — discard session state

Synopsis
DISCARD { ALL | PLANS | SEQUENCES | TEMPORARY | TEMP }

Description
DISCARD releases internal resources associated with a database session. This command is useful for
partially or fully resetting the session's state. There are several subcommands to release different types
of resources; the DISCARD ALL variant subsumes all the others, and also resets additional state.

Parameters
PLANS

Releases all cached query plans, forcing re-planning to occur the next time the associated prepared
statement is used.

SEQUENCES

Discards all cached sequence-related state, including currval()/lastval() information and any
preallocated sequence values that have not yet been returned by nextval(). (See CREATE
SEQUENCE for a description of preallocated sequence values.)

TEMPORARY or TEMP
Drops all temporary tables created in the current session.

ALL

Releases all temporary resources associated with the current session and resets the session to its
initial state. Currently, this has the same effect as executing the following sequence of statements:

CLOSE ALL;
SET SESSION AUTHORIZATION DEFAULT;
RESET ALL;
DEALLOCATE ALL;
UNLISTEN *;
SELECT pg_advisory_unlock_all();
DISCARD PLANS;
DISCARD TEMP;
DISCARD SEQUENCES;

Notes
DISCARD ALL cannot be executed inside a transaction block.

Compatibility
DISCARD is a Postgres Pro extension.

1482

DO
DO — execute an anonymous code block

Synopsis
DO [LANGUAGE lang_name] code

Description
DO executes an anonymous code block, or in other words a transient anonymous function in a procedural
language.

The code block is treated as though it were the body of a function with no parameters, returning void.
It is parsed and executed a single time.

The optional LANGUAGE clause can be written either before or after the code block.

Parameters
code

The procedural language code to be executed. This must be specified as a string literal, just as in
CREATE FUNCTION. Use of a dollar-quoted literal is recommended.

lang_name

The name of the procedural language the code is written in. If omitted, the default is plpgsql.

Notes
The procedural language to be used must already have been installed into the current database by means
of CREATE EXTENSION. plpgsql is installed by default, but other languages are not.

The user must have USAGE privilege for the procedural language, or must be a superuser if the language
is untrusted. This is the same privilege requirement as for creating a function in the language.

If DO is executed in a transaction block, then the procedure code cannot execute transaction control
statements. Transaction control statements are only allowed if DO is executed in its own transaction.

Examples
Grant all privileges on all views in schema public to role webuser:

DO $$DECLARE r record;
BEGIN
 FOR r IN SELECT table_schema, table_name FROM information_schema.tables
 WHERE table_type = 'VIEW' AND table_schema = 'public'
 LOOP
 EXECUTE 'GRANT ALL ON ' || quote_ident(r.table_schema) || '.' ||
 quote_ident(r.table_name) || ' TO webuser';
 END LOOP;
END$$;

Compatibility
There is no DO statement in the SQL standard.

See Also
CREATE LANGUAGE

1483

DROP ACCESS METHOD
DROP ACCESS METHOD — remove an access method

Synopsis
DROP ACCESS METHOD [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP ACCESS METHOD removes an existing access method. Only superusers can drop access methods.

Parameters
IF EXISTS

Do not throw an error if the access method does not exist. A notice is issued in this case.

name

The name of an existing access method.

CASCADE

Automatically drop objects that depend on the access method (such as operator classes, operator
families, and indexes), and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the access method if any objects depend on it. This is the default.

Examples
Drop the access method heptree:

DROP ACCESS METHOD heptree;

Compatibility
DROP ACCESS METHOD is a Postgres Pro extension.

See Also
CREATE ACCESS METHOD

1484

DROP AGGREGATE
DROP AGGREGATE — remove an aggregate function

Synopsis
DROP AGGREGATE [IF EXISTS] name (aggregate_signature) [, ...] [CASCADE |
 RESTRICT]

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
DROP AGGREGATE removes an existing aggregate function. To execute this command the current user
must be the owner of the aggregate function.

Parameters
IF EXISTS

Do not throw an error if the aggregate does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing aggregate function.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP AGGREGATE does not actually pay any attention to argument
names, since only the argument data types are needed to determine the aggregate function's identity.

argtype

An input data type on which the aggregate function operates. To reference a zero-argument
aggregate function, write * in place of the list of argument specifications. To reference an ordered-
set aggregate function, write ORDER BY between the direct and aggregated argument specifications.

CASCADE

Automatically drop objects that depend on the aggregate function (such as views using it), and in
turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the aggregate function if any objects depend on it. This is the default.

Notes
Alternative syntaxes for referencing ordered-set aggregates are described under ALTER AGGREGATE.

Examples
To remove the aggregate function myavg for type integer:

1485

DROP AGGREGATE

DROP AGGREGATE myavg(integer);

To remove the hypothetical-set aggregate function myrank, which takes an arbitrary list of ordering
columns and a matching list of direct arguments:

DROP AGGREGATE myrank(VARIADIC "any" ORDER BY VARIADIC "any");

To remove multiple aggregate functions in one command:

DROP AGGREGATE myavg(integer), myavg(bigint);

Compatibility
There is no DROP AGGREGATE statement in the SQL standard.

See Also
ALTER AGGREGATE, CREATE AGGREGATE

1486

DROP CAST
DROP CAST — remove a cast

Synopsis
DROP CAST [IF EXISTS] (source_type AS target_type) [CASCADE | RESTRICT]

Description
DROP CAST removes a previously defined cast.

To be able to drop a cast, you must own the source or the target data type. These are the same privileges
that are required to create a cast.

Parameters
IF EXISTS

Do not throw an error if the cast does not exist. A notice is issued in this case.

source_type

The name of the source data type of the cast.

target_type

The name of the target data type of the cast.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on casts.

Examples
To drop the cast from type text to type int:

DROP CAST (text AS int);

Compatibility
The DROP CAST command conforms to the SQL standard.

See Also
CREATE CAST

1487

DROP COLLATION
DROP COLLATION — remove a collation

Synopsis
DROP COLLATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP COLLATION removes a previously defined collation. To be able to drop a collation, you must own
the collation.

Parameters
IF EXISTS

Do not throw an error if the collation does not exist. A notice is issued in this case.

name

The name of the collation. The collation name can be schema-qualified.

CASCADE

Automatically drop objects that depend on the collation, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the collation if any objects depend on it. This is the default.

Examples
To drop the collation named german:

DROP COLLATION german;

Compatibility
The DROP COLLATION command conforms to the SQL standard, apart from the IF EXISTS option, which
is a Postgres Pro extension.

See Also
ALTER COLLATION, CREATE COLLATION

1488

DROP CONVERSION
DROP CONVERSION — remove a conversion

Synopsis
DROP CONVERSION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP CONVERSION removes a previously defined conversion. To be able to drop a conversion, you must
own the conversion.

Parameters
IF EXISTS

Do not throw an error if the conversion does not exist. A notice is issued in this case.

name

The name of the conversion. The conversion name can be schema-qualified.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on conversions.

Examples
To drop the conversion named myname:

DROP CONVERSION myname;

Compatibility
There is no DROP CONVERSION statement in the SQL standard, but a DROP TRANSLATION statement that
goes along with the CREATE TRANSLATION statement that is similar to the CREATE CONVERSION statement
in Postgres Pro.

See Also
ALTER CONVERSION, CREATE CONVERSION

1489

DROP DATABASE
DROP DATABASE — remove a database

Synopsis
DROP DATABASE [IF EXISTS] name [[WITH] (option [, ...])]

where option can be:

 FORCE

Description
DROP DATABASE drops a database. It removes the catalog entries for the database and deletes the
directory containing the data. It can only be executed by the database owner. It cannot be executed
while you are connected to the target database. (Connect to postgres or any other database to issue
this command.) Also, if anyone else is connected to the target database, this command will fail unless
you use the FORCE option described below.

DROP DATABASE cannot be undone. Use it with care!

Parameters
IF EXISTS

Do not throw an error if the database does not exist. A notice is issued in this case.

name

The name of the database to remove.

FORCE

Attempt to terminate all existing connections to the target database. It doesn't terminate if prepared
transactions, active logical replication slots or subscriptions are present in the target database.

This will fail if the current user has no permissions to terminate other connections. Required
permissions are the same as with pg_terminate_backend, described in Section 9.27.2. This will also
fail if we are not able to terminate connections.

Notes
DROP DATABASE cannot be executed inside a transaction block.

This command cannot be executed while connected to the target database. Thus, it might be more
convenient to use the program dropdb instead, which is a wrapper around this command.

Compatibility
There is no DROP DATABASE statement in the SQL standard.

See Also
CREATE DATABASE

1490

DROP DOMAIN
DROP DOMAIN — remove a domain

Synopsis
DROP DOMAIN [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP DOMAIN removes a domain. Only the owner of a domain can remove it.

Parameters
IF EXISTS

Do not throw an error if the domain does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing domain.

CASCADE

Automatically drop objects that depend on the domain (such as table columns), and in turn all objects
that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the domain if any objects depend on it. This is the default.

Examples
To remove the domain box:

DROP DOMAIN box;

Compatibility
This command conforms to the SQL standard, except for the IF EXISTS option, which is a Postgres Pro
extension.

See Also
CREATE DOMAIN, ALTER DOMAIN

1491

DROP EVENT TRIGGER
DROP EVENT TRIGGER — remove an event trigger

Synopsis
DROP EVENT TRIGGER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP EVENT TRIGGER removes an existing event trigger. To execute this command, the current user must
be the owner of the event trigger.

Parameters
IF EXISTS

Do not throw an error if the event trigger does not exist. A notice is issued in this case.

name

The name of the event trigger to remove.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger snitch:

DROP EVENT TRIGGER snitch;

Compatibility
There is no DROP EVENT TRIGGER statement in the SQL standard.

See Also
CREATE EVENT TRIGGER, ALTER EVENT TRIGGER

1492

DROP EXTENSION
DROP EXTENSION — remove an extension

Synopsis
DROP EXTENSION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP EXTENSION removes extensions from the database. Dropping an extension causes its component
objects to be dropped as well.

You must own the extension to use DROP EXTENSION.

Parameters
IF EXISTS

Do not throw an error if the extension does not exist. A notice is issued in this case.

name

The name of an installed extension.

CASCADE

Automatically drop objects that depend on the extension, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the extension if any objects depend on it (other than its own member objects and
other extensions listed in the same DROP command). This is the default.

Examples
To remove the extension hstore from the current database:

DROP EXTENSION hstore;

This command will fail if any of hstore's objects are in use in the database, for example if any tables have
columns of the hstore type. Add the CASCADE option to forcibly remove those dependent objects as well.

Compatibility
DROP EXTENSION is a Postgres Pro extension.

See Also
CREATE EXTENSION, ALTER EXTENSION

1493

DROP FOREIGN DATA WRAPPER
DROP FOREIGN DATA WRAPPER — remove a foreign-data wrapper

Synopsis
DROP FOREIGN DATA WRAPPER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN DATA WRAPPER removes an existing foreign-data wrapper. To execute this command, the
current user must be the owner of the foreign-data wrapper.

Parameters
IF EXISTS

Do not throw an error if the foreign-data wrapper does not exist. A notice is issued in this case.

name

The name of an existing foreign-data wrapper.

CASCADE

Automatically drop objects that depend on the foreign-data wrapper (such as foreign tables and
servers), and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the foreign-data wrapper if any objects depend on it. This is the default.

Examples
Drop the foreign-data wrapper dbi:

DROP FOREIGN DATA WRAPPER dbi;

Compatibility
DROP FOREIGN DATA WRAPPER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a
Postgres Pro extension.

See Also
CREATE FOREIGN DATA WRAPPER, ALTER FOREIGN DATA WRAPPER

1494

DROP FOREIGN TABLE
DROP FOREIGN TABLE — remove a foreign table

Synopsis
DROP FOREIGN TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP FOREIGN TABLE removes a foreign table. Only the owner of a foreign table can remove it.

Parameters
IF EXISTS

Do not throw an error if the foreign table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the foreign table to drop.

CASCADE

Automatically drop objects that depend on the foreign table (such as views), and in turn all objects
that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the foreign table if any objects depend on it. This is the default.

Examples
To destroy two foreign tables, films and distributors:

DROP FOREIGN TABLE films, distributors;

Compatibility
This command conforms to ISO/IEC 9075-9 (SQL/MED), except that the standard only allows one foreign
table to be dropped per command, and apart from the IF EXISTS option, which is a Postgres Pro
extension.

See Also
ALTER FOREIGN TABLE, CREATE FOREIGN TABLE

1495

DROP FUNCTION
DROP FUNCTION — remove a function

Synopsis
DROP FUNCTION [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP FUNCTION removes the definition of an existing function. To execute this command the user must be
the owner of the function. The argument types to the function must be specified, since several different
functions can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN, OUT, INOUT, or VARIADIC. If omitted, the default is IN. Note that DROP
FUNCTION does not actually pay any attention to OUT arguments, since only the input arguments are
needed to determine the function's identity. So it is sufficient to list the IN, INOUT, and VARIADIC
arguments.

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention to argument
names, since only the argument data types are needed to determine the function's identity.

argtype

The data type(s) of the function's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers), and in turn
all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

Examples
This command removes the square root function:

DROP FUNCTION sqrt(integer);

Drop multiple functions in one command:

DROP FUNCTION sqrt(integer), sqrt(bigint);

If the function name is unique in its schema, it can be referred to without an argument list:

1496

DROP FUNCTION

DROP FUNCTION update_employee_salaries;

Note that this is different from

DROP FUNCTION update_employee_salaries();

which refers to a function with zero arguments, whereas the first variant can refer to a function with
any number of arguments, including zero, as long as the name is unique.

Compatibility
This command conforms to the SQL standard, with these Postgres Pro extensions:
• The standard only allows one function to be dropped per command.
• The IF EXISTS option
• The ability to specify argument modes and names

See Also
CREATE FUNCTION, ALTER FUNCTION, DROP PROCEDURE, DROP ROUTINE

1497

DROP GROUP
DROP GROUP — remove a database role

Synopsis
DROP GROUP [IF EXISTS] name [, ...]

Description
DROP GROUP is now an alias for DROP ROLE.

Compatibility
There is no DROP GROUP statement in the SQL standard.

See Also
DROP ROLE

1498

DROP INDEX
DROP INDEX — remove an index

Synopsis
DROP INDEX [CONCURRENTLY] [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP INDEX drops an existing index from the database system. To execute this command you must be
the owner of the index.

Parameters
CONCURRENTLY

Drop the index without locking out concurrent selects, inserts, updates, and deletes on the index's
table. A normal DROP INDEX acquires an ACCESS EXCLUSIVE lock on the table, blocking other accesses
until the index drop can be completed. With this option, the command instead waits until conflicting
transactions have completed.

There are several caveats to be aware of when using this option. Only one index name can be
specified, and the CASCADE option is not supported. (Thus, an index that supports a UNIQUE or PRIMARY
KEY constraint cannot be dropped this way.) Also, regular DROP INDEX commands can be performed
within a transaction block, but DROP INDEX CONCURRENTLY cannot. Lastly, indexes on partitioned
tables cannot be dropped using this option.

For temporary tables, DROP INDEX is always non-concurrent, as no other session can access them,
and non-concurrent index drop is cheaper.

IF EXISTS

Do not throw an error if the index does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an index to remove.

CASCADE

Automatically drop objects that depend on the index, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the index if any objects depend on it. This is the default.

Examples
This command will remove the index title_idx:

DROP INDEX title_idx;

Compatibility
DROP INDEX is a Postgres Pro language extension. There are no provisions for indexes in the SQL
standard.

See Also
CREATE INDEX

1499

DROP LANGUAGE
DROP LANGUAGE — remove a procedural language

Synopsis
DROP [PROCEDURAL] LANGUAGE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP LANGUAGE removes the definition of a previously registered procedural language. You must be a
superuser or the owner of the language to use DROP LANGUAGE.

Note
As of PostgreSQL 9.1, most procedural languages have been made into “extensions”, and should
therefore be removed with DROP EXTENSION not DROP LANGUAGE.

Parameters
IF EXISTS

Do not throw an error if the language does not exist. A notice is issued in this case.

name

The name of an existing procedural language. For backward compatibility, the name can be enclosed
by single quotes.

CASCADE

Automatically drop objects that depend on the language (such as functions in the language), and in
turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the language if any objects depend on it. This is the default.

Examples
This command removes the procedural language plsample:

DROP LANGUAGE plsample;

Compatibility
There is no DROP LANGUAGE statement in the SQL standard.

See Also
ALTER LANGUAGE, CREATE LANGUAGE

1500

DROP MATERIALIZED VIEW
DROP MATERIALIZED VIEW — remove a materialized view

Synopsis
DROP MATERIALIZED VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP MATERIALIZED VIEW drops an existing materialized view. To execute this command you must be
the owner of the materialized view.

Parameters
IF EXISTS

Do not throw an error if the materialized view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the materialized view to remove.

CASCADE

Automatically drop objects that depend on the materialized view (such as other materialized views,
or regular views), and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the materialized view if any objects depend on it. This is the default.

Examples
This command will remove the materialized view called order_summary:

DROP MATERIALIZED VIEW order_summary;

Compatibility
DROP MATERIALIZED VIEW is a Postgres Pro extension.

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, REFRESH MATERIALIZED VIEW

1501

DROP OPERATOR
DROP OPERATOR — remove an operator

Synopsis
DROP OPERATOR [IF EXISTS] name ({ left_type | NONE } , { right_type | NONE })
 [, ...] [CASCADE | RESTRICT]

Description
DROP OPERATOR drops an existing operator from the database system. To execute this command you must
be the owner of the operator.

Parameters
IF EXISTS

Do not throw an error if the operator does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator.

left_type

The data type of the operator's left operand; write NONE if the operator has no left operand.

right_type

The data type of the operator's right operand; write NONE if the operator has no right operand.

CASCADE

Automatically drop objects that depend on the operator (such as views using it), and in turn all objects
that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the operator if any objects depend on it. This is the default.

Examples
Remove the power operator a^b for type integer:

DROP OPERATOR ^ (integer, integer);

Remove the left unary bitwise complement operator ~b for type bit:

DROP OPERATOR ~ (none, bit);

Remove the right unary factorial operator x! for type bigint:

DROP OPERATOR ! (bigint, none);

Remove multiple operators in one command:

DROP OPERATOR ~ (none, bit), ! (bigint, none);

Compatibility
There is no DROP OPERATOR statement in the SQL standard.

1502

DROP OPERATOR

See Also
CREATE OPERATOR, ALTER OPERATOR

1503

DROP OPERATOR CLASS
DROP OPERATOR CLASS — remove an operator class

Synopsis
DROP OPERATOR CLASS [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR CLASS drops an existing operator class. To execute this command you must be the owner
of the operator class.

DROP OPERATOR CLASS does not drop any of the operators or functions referenced by the class. If there are
any indexes depending on the operator class, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator class does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator class.

index_method

The name of the index access method the operator class is for.

CASCADE

Automatically drop objects that depend on the operator class (such as indexes), and in turn all objects
that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the operator class if any objects depend on it. This is the default.

Notes
DROP OPERATOR CLASS will not drop the operator family containing the class, even if there is nothing else
left in the family (in particular, in the case where the family was implicitly created by CREATE OPERATOR
CLASS). An empty operator family is harmless, but for the sake of tidiness you might wish to remove the
family with DROP OPERATOR FAMILY; or perhaps better, use DROP OPERATOR FAMILY in the first place.

Examples
Remove the B-tree operator class widget_ops:

DROP OPERATOR CLASS widget_ops USING btree;

This command will not succeed if there are any existing indexes that use the operator class. Add CASCADE
to drop such indexes along with the operator class.

Compatibility
There is no DROP OPERATOR CLASS statement in the SQL standard.

See Also
ALTER OPERATOR CLASS, CREATE OPERATOR CLASS, DROP OPERATOR FAMILY

1504

DROP OPERATOR FAMILY
DROP OPERATOR FAMILY — remove an operator family

Synopsis
DROP OPERATOR FAMILY [IF EXISTS] name USING index_method [CASCADE | RESTRICT]

Description
DROP OPERATOR FAMILY drops an existing operator family. To execute this command you must be the
owner of the operator family.

DROP OPERATOR FAMILY includes dropping any operator classes contained in the family, but it does not
drop any of the operators or functions referenced by the family. If there are any indexes depending on
operator classes within the family, you will need to specify CASCADE for the drop to complete.

Parameters
IF EXISTS

Do not throw an error if the operator family does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing operator family.

index_method

The name of the index access method the operator family is for.

CASCADE

Automatically drop objects that depend on the operator family, and in turn all objects that depend
on those objects (see Section 5.14).

RESTRICT

Refuse to drop the operator family if any objects depend on it. This is the default.

Examples
Remove the B-tree operator family float_ops:

DROP OPERATOR FAMILY float_ops USING btree;

This command will not succeed if there are any existing indexes that use operator classes within the
family. Add CASCADE to drop such indexes along with the operator family.

Compatibility
There is no DROP OPERATOR FAMILY statement in the SQL standard.

See Also
ALTER OPERATOR FAMILY, CREATE OPERATOR FAMILY, ALTER OPERATOR CLASS, CREATE
OPERATOR CLASS, DROP OPERATOR CLASS

1505

DROP OWNED
DROP OWNED — remove database objects owned by a database role

Synopsis
DROP OWNED BY { name | CURRENT_USER | SESSION_USER } [, ...] [CASCADE | RESTRICT]

Description
DROP OWNED drops all the objects within the current database that are owned by one of the specified
roles. Any privileges granted to the given roles on objects in the current database or on shared objects
(databases, tablespaces) will also be revoked.

Parameters
name

The name of a role whose objects will be dropped, and whose privileges will be revoked.

CASCADE

Automatically drop objects that depend on the affected objects, and in turn all objects that depend
on those objects (see Section 5.14).

RESTRICT

Refuse to drop the objects owned by a role if any other database objects depend on one of the affected
objects. This is the default.

Notes
DROP OWNED is often used to prepare for the removal of one or more roles. Because DROP OWNED only
affects the objects in the current database, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

Using the CASCADE option might make the command recurse to objects owned by other users.

The REASSIGN OWNED command is an alternative that reassigns the ownership of all the database
objects owned by one or more roles. However, REASSIGN OWNED does not deal with privileges for other
objects.

Databases and tablespaces owned by the role(s) will not be removed.

See Section 20.4 for more discussion.

Compatibility
The DROP OWNED command is a Postgres Pro extension.

See Also
REASSIGN OWNED, DROP ROLE

1506

DROP POLICY
DROP POLICY — remove a row level security policy from a table

Synopsis
DROP POLICY [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP POLICY removes the specified policy from the table. Note that if the last policy is removed for a
table and the table still has row level security enabled via ALTER TABLE, then the default-deny policy will
be used. ALTER TABLE ... DISABLE ROW LEVEL SECURITY can be used to disable row level security for
a table, whether policies for the table exist or not.

Parameters
IF EXISTS

Do not throw an error if the policy does not exist. A notice is issued in this case.

name

The name of the policy to drop.

table_name

The name (optionally schema-qualified) of the table that the policy is on.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on policies.

Examples
To drop the policy called p1 on the table named my_table:

DROP POLICY p1 ON my_table;

Compatibility
DROP POLICY is a Postgres Pro extension.

See Also
CREATE POLICY, ALTER POLICY

1507

DROP PROCEDURE
DROP PROCEDURE — remove a procedure

Synopsis
DROP PROCEDURE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP PROCEDURE removes the definition of an existing procedure. To execute this command the user must
be the owner of the procedure. The argument types to the procedure must be specified, since several
different procedures can exist with the same name and different argument lists.

Parameters
IF EXISTS

Do not throw an error if the procedure does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing procedure. If no argument list is specified, the
name must be unique in its schema.

argmode

The mode of an argument: IN or VARIADIC. If omitted, the default is IN.

argname

The name of an argument. Note that DROP PROCEDURE does not actually pay any attention to argument
names, since only the argument data types are needed to determine the procedure's identity.

argtype

The data type(s) of the procedure's arguments (optionally schema-qualified), if any.

CASCADE

Automatically drop objects that depend on the procedure, and in turn all objects that depend on
those objects (see Section 5.14).

RESTRICT

Refuse to drop the procedure if any objects depend on it. This is the default.

Examples
DROP PROCEDURE do_db_maintenance();

Compatibility
This command conforms to the SQL standard, with these Postgres Pro extensions:

• The standard only allows one procedure to be dropped per command.

• The IF EXISTS option

• The ability to specify argument modes and names

1508

DROP PROCEDURE

See Also
CREATE PROCEDURE, ALTER PROCEDURE, DROP FUNCTION, DROP ROUTINE

1509

DROP PUBLICATION
DROP PUBLICATION — remove a publication

Synopsis
DROP PUBLICATION [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP PUBLICATION removes an existing publication from the database.

A publication can only be dropped by its owner or a superuser.

Parameters
IF EXISTS

Do not throw an error if the publication does not exist. A notice is issued in this case.

name

The name of an existing publication.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on publications.

Examples
Drop a publication:

DROP PUBLICATION mypublication;

Compatibility
DROP PUBLICATION is a Postgres Pro extension.

See Also
CREATE PUBLICATION, ALTER PUBLICATION

1510

DROP ROLE
DROP ROLE — remove a database role

Synopsis
DROP ROLE [IF EXISTS] name [, ...]

Description
DROP ROLE removes the specified role(s). To drop a superuser role, you must be a superuser yourself; to
drop non-superuser roles, you must have CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised
if so. Before dropping the role, you must drop all the objects it owns (or reassign their ownership) and
revoke any privileges the role has been granted on other objects. The REASSIGN OWNED and DROP
OWNED commands can be useful for this purpose; see Section 20.4 for more discussion.

However, it is not necessary to remove role memberships involving the role; DROP ROLE automatically
revokes any memberships of the target role in other roles, and of other roles in the target role. The other
roles are not dropped nor otherwise affected.

Parameters
IF EXISTS

Do not throw an error if the role does not exist. A notice is issued in this case.

name

The name of the role to remove.

Notes
Postgres Pro includes a program dropuser that has the same functionality as this command (in fact, it
calls this command) but can be run from the command shell.

Examples
To drop a role:

DROP ROLE jonathan;

Compatibility
The SQL standard defines DROP ROLE, but it allows only one role to be dropped at a time, and it specifies
different privilege requirements than Postgres Pro uses.

See Also
CREATE ROLE, ALTER ROLE, SET ROLE

1511

DROP ROUTINE
DROP ROUTINE — remove a routine

Synopsis
DROP ROUTINE [IF EXISTS] name [([[argmode] [argname] argtype [, ...]])]
 [, ...]
 [CASCADE | RESTRICT]

Description
DROP ROUTINE removes the definition of an existing routine, which can be an aggregate function, a normal
function, or a procedure. See under DROP AGGREGATE, DROP FUNCTION, and DROP PROCEDURE
for the description of the parameters, more examples, and further details.

Examples
To drop the routine foo for type integer:

DROP ROUTINE foo(integer);

This command will work independent of whether foo is an aggregate, function, or procedure.

Compatibility
This command conforms to the SQL standard, with these Postgres Pro extensions:
• The standard only allows one routine to be dropped per command.
• The IF EXISTS option
• The ability to specify argument modes and names
• Aggregate functions are an extension.

See Also
DROP AGGREGATE, DROP FUNCTION, DROP PROCEDURE, ALTER ROUTINE

Note that there is no CREATE ROUTINE command.

1512

DROP RULE
DROP RULE — remove a rewrite rule

Synopsis
DROP RULE [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP RULE drops a rewrite rule.

Parameters
IF EXISTS

Do not throw an error if the rule does not exist. A notice is issued in this case.

name

The name of the rule to drop.

table_name

The name (optionally schema-qualified) of the table or view that the rule applies to.

CASCADE

Automatically drop objects that depend on the rule, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the rule if any objects depend on it. This is the default.

Examples
To drop the rewrite rule newrule:

DROP RULE newrule ON mytable;

Compatibility
DROP RULE is a Postgres Pro language extension, as is the entire query rewrite system.

See Also
CREATE RULE, ALTER RULE

1513

DROP SCHEMA
DROP SCHEMA — remove a schema

Synopsis
DROP SCHEMA [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SCHEMA removes schemas from the database.

A schema can only be dropped by its owner or a superuser. Note that the owner can drop the schema
(and thereby all contained objects) even if they do not own some of the objects within the schema.

Parameters
IF EXISTS

Do not throw an error if the schema does not exist. A notice is issued in this case.

name

The name of a schema.

CASCADE

Automatically drop objects (tables, functions, etc.) that are contained in the schema, and in turn all
objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the schema if it contains any objects. This is the default.

Notes
Using the CASCADE option might make the command remove objects in other schemas besides the one(s)
named.

Examples
To remove schema mystuff from the database, along with everything it contains:

DROP SCHEMA mystuff CASCADE;

Compatibility
DROP SCHEMA is fully conforming with the SQL standard, except that the standard only allows one schema
to be dropped per command, and apart from the IF EXISTS option, which is a Postgres Pro extension.

See Also
ALTER SCHEMA, CREATE SCHEMA

1514

DROP SEQUENCE
DROP SEQUENCE — remove a sequence

Synopsis
DROP SEQUENCE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SEQUENCE removes sequence number generators. A sequence can only be dropped by its owner
or a superuser.

Parameters
IF EXISTS

Do not throw an error if the sequence does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of a sequence.

CASCADE

Automatically drop objects that depend on the sequence, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the sequence if any objects depend on it. This is the default.

Examples
To remove the sequence serial:

DROP SEQUENCE serial;

Compatibility
DROP SEQUENCE conforms to the SQL standard, except that the standard only allows one sequence to be
dropped per command, and apart from the IF EXISTS option, which is a Postgres Pro extension.

See Also
CREATE SEQUENCE, ALTER SEQUENCE

1515

DROP SERVER
DROP SERVER — remove a foreign server descriptor

Synopsis
DROP SERVER [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP SERVER removes an existing foreign server descriptor. To execute this command, the current user
must be the owner of the server.

Parameters
IF EXISTS

Do not throw an error if the server does not exist. A notice is issued in this case.

name

The name of an existing server.

CASCADE

Automatically drop objects that depend on the server (such as user mappings), and in turn all objects
that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the server if any objects depend on it. This is the default.

Examples
Drop a server foo if it exists:

DROP SERVER IF EXISTS foo;

Compatibility
DROP SERVER conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a Postgres Pro extension.

See Also
CREATE SERVER, ALTER SERVER

1516

DROP STATISTICS
DROP STATISTICS — remove extended statistics

Synopsis
DROP STATISTICS [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP STATISTICS removes statistics object(s) from the database. Only the statistics object's owner, the
schema owner, or a superuser can drop a statistics object.

Parameters
IF EXISTS

Do not throw an error if the statistics object does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the statistics object to drop.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on statistics.

Examples
To destroy two statistics objects in different schemas, without failing if they don't exist:

DROP STATISTICS IF EXISTS
 accounting.users_uid_creation,
 public.grants_user_role;

Compatibility
There is no DROP STATISTICS command in the SQL standard.

See Also
ALTER STATISTICS, CREATE STATISTICS

1517

DROP SUBSCRIPTION
DROP SUBSCRIPTION — remove a subscription

Synopsis
DROP SUBSCRIPTION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP SUBSCRIPTION removes a subscription from the database cluster.

A subscription can only be dropped by a superuser.

DROP SUBSCRIPTION cannot be executed inside a transaction block if the subscription is associated with
a replication slot. (You can use ALTER SUBSCRIPTION to unset the slot.)

Parameters
name

The name of a subscription to be dropped.

CASCADE
RESTRICT

These key words do not have any effect, since there are no dependencies on subscriptions.

Notes
When dropping a subscription that is associated with a replication slot on the remote host (the normal
state), DROP SUBSCRIPTION will connect to the remote host and try to drop the replication slot as part
of its operation. This is necessary so that the resources allocated for the subscription on the remote
host are released. If this fails, either because the remote host is not reachable or because the remote
replication slot cannot be dropped or does not exist or never existed, the DROP SUBSCRIPTION command
will fail. To proceed in this situation, disassociate the subscription from the replication slot by executing
ALTER SUBSCRIPTION ... SET (slot_name = NONE). After that, DROP SUBSCRIPTION will no longer
attempt any actions on a remote host. Note that if the remote replication slot still exists, it should then
be dropped manually; otherwise it will continue to reserve WAL and might eventually cause the disk to
fill up. See also Section 29.2.1.

If a subscription is associated with a replication slot, then DROP SUBSCRIPTION cannot be executed inside
a transaction block.

Examples
Drop a subscription:

DROP SUBSCRIPTION mysub;

Compatibility
DROP SUBSCRIPTION is a Postgres Pro extension.

See Also
CREATE SUBSCRIPTION, ALTER SUBSCRIPTION

1518

DROP TABLE
DROP TABLE — remove a table

Synopsis
DROP TABLE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TABLE removes tables from the database. Only the table owner, the schema owner, and superuser
can drop a table. To empty a table of rows without destroying the table, use DELETE or TRUNCATE.

DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.
However, to drop a table that is referenced by a view or a foreign-key constraint of another table, CASCADE
must be specified. (CASCADE will remove a dependent view entirely, but in the foreign-key case it will
only remove the foreign-key constraint, not the other table entirely.)

Parameters
IF EXISTS

Do not throw an error if the table does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the table to drop.

CASCADE

Automatically drop objects that depend on the table (such as views), and in turn all objects that
depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the table if any objects depend on it. This is the default.

Examples
To destroy two tables, films and distributors:

DROP TABLE films, distributors;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one table to be
dropped per command, and apart from the IF EXISTS option, which is a Postgres Pro extension.

See Also
ALTER TABLE, CREATE TABLE

1519

DROP TABLESPACE
DROP TABLESPACE — remove a tablespace

Synopsis
DROP TABLESPACE [IF EXISTS] name

Description
DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all
database objects before it can be dropped. It is possible that objects in other databases might still
reside in the tablespace even if no objects in the current database are using the tablespace. Also, if
the tablespace is listed in the temp_tablespaces setting of any active session, the DROP might fail due to
temporary files residing in the tablespace.

Parameters
IF EXISTS

Do not throw an error if the tablespace does not exist. A notice is issued in this case.

name

The name of a tablespace.

Notes
DROP TABLESPACE cannot be executed inside a transaction block.

Examples
To remove tablespace mystuff from the system:

DROP TABLESPACE mystuff;

Compatibility
DROP TABLESPACE is a Postgres Pro extension.

See Also
CREATE TABLESPACE, ALTER TABLESPACE

1520

DROP TEXT SEARCH CONFIGURATION
DROP TEXT SEARCH CONFIGURATION — remove a text search configuration

Synopsis
DROP TEXT SEARCH CONFIGURATION [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH CONFIGURATION drops an existing text search configuration. To execute this command
you must be the owner of the configuration.

Parameters
IF EXISTS

Do not throw an error if the text search configuration does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search configuration.

CASCADE

Automatically drop objects that depend on the text search configuration, and in turn all objects that
depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the text search configuration if any objects depend on it. This is the default.

Examples
Remove the text search configuration my_english:

DROP TEXT SEARCH CONFIGURATION my_english;

This command will not succeed if there are any existing indexes that reference the configuration in
to_tsvector calls. Add CASCADE to drop such indexes along with the text search configuration.

Compatibility
There is no DROP TEXT SEARCH CONFIGURATION statement in the SQL standard.

See Also
ALTER TEXT SEARCH CONFIGURATION, CREATE TEXT SEARCH CONFIGURATION

1521

DROP TEXT SEARCH DICTIONARY
DROP TEXT SEARCH DICTIONARY — remove a text search dictionary

Synopsis
DROP TEXT SEARCH DICTIONARY [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH DICTIONARY drops an existing text search dictionary. To execute this command you
must be the owner of the dictionary.

Parameters
IF EXISTS

Do not throw an error if the text search dictionary does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search dictionary.

CASCADE

Automatically drop objects that depend on the text search dictionary, and in turn all objects that
depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the text search dictionary if any objects depend on it. This is the default.

Examples
Remove the text search dictionary english:

DROP TEXT SEARCH DICTIONARY english;

This command will not succeed if there are any existing text search configurations that use the dictionary.
Add CASCADE to drop such configurations along with the dictionary.

Compatibility
There is no DROP TEXT SEARCH DICTIONARY statement in the SQL standard.

See Also
ALTER TEXT SEARCH DICTIONARY, CREATE TEXT SEARCH DICTIONARY

1522

DROP TEXT SEARCH PARSER
DROP TEXT SEARCH PARSER — remove a text search parser

Synopsis
DROP TEXT SEARCH PARSER [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH PARSER drops an existing text search parser. You must be a superuser to use this
command.

Parameters
IF EXISTS

Do not throw an error if the text search parser does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search parser.

CASCADE

Automatically drop objects that depend on the text search parser, and in turn all objects that depend
on those objects (see Section 5.14).

RESTRICT

Refuse to drop the text search parser if any objects depend on it. This is the default.

Examples
Remove the text search parser my_parser:

DROP TEXT SEARCH PARSER my_parser;

This command will not succeed if there are any existing text search configurations that use the parser.
Add CASCADE to drop such configurations along with the parser.

Compatibility
There is no DROP TEXT SEARCH PARSER statement in the SQL standard.

See Also
ALTER TEXT SEARCH PARSER, CREATE TEXT SEARCH PARSER

1523

DROP TEXT SEARCH TEMPLATE
DROP TEXT SEARCH TEMPLATE — remove a text search template

Synopsis
DROP TEXT SEARCH TEMPLATE [IF EXISTS] name [CASCADE | RESTRICT]

Description
DROP TEXT SEARCH TEMPLATE drops an existing text search template. You must be a superuser to use
this command.

Parameters
IF EXISTS

Do not throw an error if the text search template does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing text search template.

CASCADE

Automatically drop objects that depend on the text search template, and in turn all objects that
depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the text search template if any objects depend on it. This is the default.

Examples
Remove the text search template thesaurus:

DROP TEXT SEARCH TEMPLATE thesaurus;

This command will not succeed if there are any existing text search dictionaries that use the template.
Add CASCADE to drop such dictionaries along with the template.

Compatibility
There is no DROP TEXT SEARCH TEMPLATE statement in the SQL standard.

See Also
ALTER TEXT SEARCH TEMPLATE, CREATE TEXT SEARCH TEMPLATE

1524

DROP TRANSFORM
DROP TRANSFORM — remove a transform

Synopsis
DROP TRANSFORM [IF EXISTS] FOR type_name LANGUAGE lang_name [CASCADE | RESTRICT]

Description
DROP TRANSFORM removes a previously defined transform.

To be able to drop a transform, you must own the type and the language. These are the same privileges
that are required to create a transform.

Parameters
IF EXISTS

Do not throw an error if the transform does not exist. A notice is issued in this case.

type_name

The name of the data type of the transform.

lang_name

The name of the language of the transform.

CASCADE

Automatically drop objects that depend on the transform, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the transform if any objects depend on it. This is the default.

Examples
To drop the transform for type hstore and language plpythonu:

DROP TRANSFORM FOR hstore LANGUAGE plpythonu;

Compatibility
This form of DROP TRANSFORM is a Postgres Pro extension. See CREATE TRANSFORM for details.

See Also
CREATE TRANSFORM

1525

DROP TRIGGER
DROP TRIGGER — remove a trigger

Synopsis
DROP TRIGGER [IF EXISTS] name ON table_name [CASCADE | RESTRICT]

Description
DROP TRIGGER removes an existing trigger definition. To execute this command, the current user must
be the owner of the table for which the trigger is defined.

Parameters
IF EXISTS

Do not throw an error if the trigger does not exist. A notice is issued in this case.

name

The name of the trigger to remove.

table_name

The name (optionally schema-qualified) of the table for which the trigger is defined.

CASCADE

Automatically drop objects that depend on the trigger, and in turn all objects that depend on those
objects (see Section 5.14).

RESTRICT

Refuse to drop the trigger if any objects depend on it. This is the default.

Examples
Destroy the trigger if_dist_exists on the table films:

DROP TRIGGER if_dist_exists ON films;

Compatibility
The DROP TRIGGER statement in Postgres Pro is incompatible with the SQL standard. In the SQL standard,
trigger names are not local to tables, so the command is simply DROP TRIGGER name.

See Also
CREATE TRIGGER

1526

DROP TYPE
DROP TYPE — remove a data type

Synopsis
DROP TYPE [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP TYPE removes a user-defined data type. Only the owner of a type can remove it.

Parameters
IF EXISTS

Do not throw an error if the type does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the data type to remove.

CASCADE

Automatically drop objects that depend on the type (such as table columns, functions, and operators),
and in turn all objects that depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the type if any objects depend on it. This is the default.

Examples
To remove the data type box:

DROP TYPE box;

Compatibility
This command is similar to the corresponding command in the SQL standard, apart from the IF EXISTS
option, which is a Postgres Pro extension. But note that much of the CREATE TYPE command and the data
type extension mechanisms in Postgres Pro differ from the SQL standard.

See Also
ALTER TYPE, CREATE TYPE

1527

DROP USER
DROP USER — remove a database role

Synopsis
DROP USER [IF EXISTS] name [, ...]

Description
DROP USER is simply an alternate spelling of DROP ROLE.

Compatibility
The DROP USER statement is a Postgres Pro extension. The SQL standard leaves the definition of users
to the implementation.

See Also
DROP ROLE

1528

DROP USER MAPPING
DROP USER MAPPING — remove a user mapping for a foreign server

Synopsis
DROP USER MAPPING [IF EXISTS] FOR { user_name | USER | CURRENT_USER | PUBLIC }
 SERVER server_name

Description
DROP USER MAPPING removes an existing user mapping from foreign server.

The owner of a foreign server can drop user mappings for that server for any user. Also, a user can drop
a user mapping for their own user name if USAGE privilege on the server has been granted to the user.

Parameters
IF EXISTS

Do not throw an error if the user mapping does not exist. A notice is issued in this case.

user_name

User name of the mapping. CURRENT_USER and USER match the name of the current user. PUBLIC is
used to match all present and future user names in the system.

server_name

Server name of the user mapping.

Examples
Drop a user mapping bob, server foo if it exists:

DROP USER MAPPING IF EXISTS FOR bob SERVER foo;

Compatibility
DROP USER MAPPING conforms to ISO/IEC 9075-9 (SQL/MED). The IF EXISTS clause is a Postgres Pro
extension.

See Also
CREATE USER MAPPING, ALTER USER MAPPING

1529

DROP VIEW
DROP VIEW — remove a view

Synopsis
DROP VIEW [IF EXISTS] name [, ...] [CASCADE | RESTRICT]

Description
DROP VIEW drops an existing view. To execute this command you must be the owner of the view.

Parameters
IF EXISTS

Do not throw an error if the view does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of the view to remove.

CASCADE

Automatically drop objects that depend on the view (such as other views), and in turn all objects that
depend on those objects (see Section 5.14).

RESTRICT

Refuse to drop the view if any objects depend on it. This is the default.

Examples
This command will remove the view called kinds:

DROP VIEW kinds;

Compatibility
This command conforms to the SQL standard, except that the standard only allows one view to be
dropped per command, and apart from the IF EXISTS option, which is a Postgres Pro extension.

See Also
ALTER VIEW, CREATE VIEW

1530

END
END — commit the current transaction

Synopsis
END [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
END commits the current transaction. All changes made by the transaction become visible to others
and are guaranteed to be durable if a crash occurs. This command is a Postgres Pro extension that is
equivalent to COMMIT.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction
characteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is
started.

Notes
Use ROLLBACK to abort a transaction.

Issuing END when not inside a transaction does no harm, but it will provoke a warning message.

Examples
To commit the current transaction and make all changes permanent:

END;

Compatibility
END is a Postgres Pro extension that provides functionality equivalent to COMMIT, which is specified
in the SQL standard.

See Also
BEGIN, COMMIT, ROLLBACK

1531

EXECUTE
EXECUTE — execute a prepared statement

Synopsis
EXECUTE name [(parameter [, ...])]

Description
EXECUTE is used to execute a previously prepared statement. Since prepared statements only exist for the
duration of a session, the prepared statement must have been created by a PREPARE statement executed
earlier in the current session.

If the PREPARE statement that created the statement specified some parameters, a compatible set of
parameters must be passed to the EXECUTE statement, or else an error is raised. Note that (unlike
functions) prepared statements are not overloaded based on the type or number of their parameters;
the name of a prepared statement must be unique within a database session.

For more information on the creation and usage of prepared statements, see PREPARE.

Parameters
name

The name of the prepared statement to execute.

parameter

The actual value of a parameter to the prepared statement. This must be an expression yielding a
value that is compatible with the data type of this parameter, as was determined when the prepared
statement was created.

Outputs
The command tag returned by EXECUTE is that of the prepared statement, and not EXECUTE.

Examples
Examples are given in Examples in the PREPARE documentation.

Compatibility
The SQL standard includes an EXECUTE statement, but it is only for use in embedded SQL. This version
of the EXECUTE statement also uses a somewhat different syntax.

See Also
DEALLOCATE, PREPARE

1532

EXPLAIN
EXPLAIN — show the execution plan of a statement

Synopsis
EXPLAIN [(option [, ...])] statement
EXPLAIN [ANALYZE] [VERBOSE] statement

where option can be one of:

 ANALYZE [boolean]
 VERBOSE [boolean]
 COSTS [boolean]
 SETTINGS [boolean]
 BUFFERS [boolean]
 WAL [boolean]
 TIMING [boolean]
 SUMMARY [boolean]
 FORMAT { TEXT | XML | JSON | YAML }

Description
This command displays the execution plan that the Postgres Pro planner generates for the supplied
statement. The execution plan shows how the table(s) referenced by the statement will be scanned —
by plain sequential scan, index scan, etc. — and if multiple tables are referenced, what join algorithms
will be used to bring together the required rows from each input table.

The most critical part of the display is the estimated statement execution cost, which is the planner's
guess at how long it will take to run the statement (measured in cost units that are arbitrary, but
conventionally mean disk page fetches). Actually two numbers are shown: the start-up cost before the
first row can be returned, and the total cost to return all the rows. For most queries the total cost is
what matters, but in contexts such as a subquery in EXISTS, the planner will choose the smallest start-
up cost instead of the smallest total cost (since the executor will stop after getting one row, anyway).
Also, if you limit the number of rows to return with a LIMIT clause, the planner makes an appropriate
interpolation between the endpoint costs to estimate which plan is really the cheapest.

The ANALYZE option causes the statement to be actually executed, not only planned. Then actual run
time statistics are added to the display, including the total elapsed time expended within each plan node
(in milliseconds) and the total number of rows it actually returned. This is useful for seeing whether the
planner's estimates are close to reality.

Important
Keep in mind that the statement is actually executed when the ANALYZE option is used. Although
EXPLAIN will discard any output that a SELECT would return, other side effects of the statement
will happen as usual. If you wish to use EXPLAIN ANALYZE on an INSERT, UPDATE, DELETE, CREATE
TABLE AS, or EXECUTE statement without letting the command affect your data, use this approach:

BEGIN;
EXPLAIN ANALYZE ...;
ROLLBACK;

Only the ANALYZE and VERBOSE options can be specified, and only in that order, without surrounding
the option list in parentheses. Prior to PostgreSQL 9.0, the unparenthesized syntax was the only one
supported. It is expected that all new options will be supported only in the parenthesized syntax.

1533

EXPLAIN

Parameters
ANALYZE

Carry out the command and show actual run times and other statistics. This parameter defaults to
FALSE.

VERBOSE

Display additional information regarding the plan. Specifically, include the output column list for each
node in the plan tree, schema-qualify table and function names, always label variables in expressions
with their range table alias, and always print the name of each trigger for which statistics are
displayed. This parameter defaults to FALSE.

COSTS

Include information on the estimated startup and total cost of each plan node, as well as the estimated
number of rows and the estimated width of each row. This parameter defaults to TRUE.

SETTINGS

Include information on configuration parameters. Specifically, include options affecting query
planning with value different from the built-in default value. This parameter defaults to FALSE.

BUFFERS

Include information on buffer usage. Specifically, include the number of shared blocks hit, read,
dirtied, and written, the number of local blocks hit, read, dirtied, and written, the number of temp
blocks read and written, and the time spent reading and writing data file blocks (in milliseconds) if
track_io_timing is enabled. A hit means that a read was avoided because the block was found already
in cache when needed. Shared blocks contain data from regular tables and indexes; local blocks
contain data from temporary tables and indexes; while temp blocks contain short-term working
data used in sorts, hashes, Materialize plan nodes, and similar cases. The number of blocks dirtied
indicates the number of previously unmodified blocks that were changed by this query; while the
number of blocks written indicates the number of previously-dirtied blocks evicted from cache by
this backend during query processing. The number of blocks shown for an upper-level node includes
those used by all its child nodes. In text format, only non-zero values are printed. It defaults to FALSE.

WAL

Include information on WAL record generation. Specifically, include the number of records, number
of full page images (fpi) and the amount of WAL generated in bytes. In text format, only non-zero
values are printed. This parameter may only be used when ANALYZE is also enabled. It defaults to
FALSE.

TIMING

Include actual startup time and time spent in each node in the output. The overhead of repeatedly
reading the system clock can slow down the query significantly on some systems, so it may be useful
to set this parameter to FALSE when only actual row counts, and not exact times, are needed. Run
time of the entire statement is always measured, even when node-level timing is turned off with this
option. This parameter may only be used when ANALYZE is also enabled. It defaults to TRUE.

SUMMARY

Include summary information (e.g., totaled timing information) after the query plan. Summary
information is included by default when ANALYZE is used but otherwise is not included by default, but
can be enabled using this option. Planning time in EXPLAIN EXECUTE includes the time required to
fetch the plan from the cache and the time required for re-planning, if necessary.

FORMAT

Specify the output format, which can be TEXT, XML, JSON, or YAML. Non-text output contains the
same information as the text output format, but is easier for programs to parse. This parameter
defaults to TEXT.

1534

EXPLAIN

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

statement

Any SELECT, INSERT, UPDATE, DELETE, VALUES, EXECUTE, DECLARE, CREATE TABLE AS, or CREATE
MATERIALIZED VIEW AS statement, whose execution plan you wish to see.

Outputs
The command's result is a textual description of the plan selected for the statement, optionally annotated
with execution statistics. Section 14.1 describes the information provided.

Notes
In order to allow the Postgres Pro query planner to make reasonably informed decisions when optimizing
queries, the pg_statistic data should be up-to-date for all tables used in the query. Normally the
autovacuum daemon will take care of that automatically. But if a table has recently had substantial
changes in its contents, you might need to do a manual ANALYZE rather than wait for autovacuum to
catch up with the changes.

In order to measure the run-time cost of each node in the execution plan, the current implementation
of EXPLAIN ANALYZE adds profiling overhead to query execution. As a result, running EXPLAIN ANALYZE
on a query can sometimes take significantly longer than executing the query normally. The amount of
overhead depends on the nature of the query, as well as the platform being used. The worst case occurs
for plan nodes that in themselves require very little time per execution, and on machines that have
relatively slow operating system calls for obtaining the time of day.

Examples
To show the plan for a simple query on a table with a single integer column and 10000 rows:

EXPLAIN SELECT * FROM foo;

 QUERY PLAN

 Seq Scan on foo (cost=0.00..155.00 rows=10000 width=4)
(1 row)

Here is the same query, with JSON output formatting:

EXPLAIN (FORMAT JSON) SELECT * FROM foo;
 QUERY PLAN

 [+
 { +
 "Plan": { +
 "Node Type": "Seq Scan",+
 "Relation Name": "foo", +
 "Alias": "foo", +
 "Startup Cost": 0.00, +
 "Total Cost": 155.00, +
 "Plan Rows": 10000, +
 "Plan Width": 4 +
 } +
 } +
]
(1 row)

1535

EXPLAIN

If there is an index and we use a query with an indexable WHERE condition, EXPLAIN might show a different
plan:
EXPLAIN SELECT * FROM foo WHERE i = 4;

 QUERY PLAN
--
 Index Scan using fi on foo (cost=0.00..5.98 rows=1 width=4)
 Index Cond: (i = 4)
(2 rows)

Here is the same query, but in YAML format:
EXPLAIN (FORMAT YAML) SELECT * FROM foo WHERE i='4';
 QUERY PLAN

 - Plan: +
 Node Type: "Index Scan" +
 Scan Direction: "Forward"+
 Index Name: "fi" +
 Relation Name: "foo" +
 Alias: "foo" +
 Startup Cost: 0.00 +
 Total Cost: 5.98 +
 Plan Rows: 1 +
 Plan Width: 4 +
 Index Cond: "(i = 4)"
(1 row)

XML format is left as an exercise for the reader.

Here is the same plan with cost estimates suppressed:
EXPLAIN (COSTS FALSE) SELECT * FROM foo WHERE i = 4;

 QUERY PLAN

 Index Scan using fi on foo
 Index Cond: (i = 4)
(2 rows)

Here is an example of a query plan for a query using an aggregate function:
EXPLAIN SELECT sum(i) FROM foo WHERE i < 10;

 QUERY PLAN

 Aggregate (cost=23.93..23.93 rows=1 width=4)
 -> Index Scan using fi on foo (cost=0.00..23.92 rows=6 width=4)
 Index Cond: (i < 10)
(3 rows)

Here is an example of using EXPLAIN EXECUTE to display the execution plan for a prepared query:
PREPARE query(int, int) AS SELECT sum(bar) FROM test
 WHERE id > $1 AND id < $2
 GROUP BY foo;

EXPLAIN ANALYZE EXECUTE query(100, 200);

 QUERY PLAN

1536

EXPLAIN

 HashAggregate (cost=9.54..9.54 rows=1 width=8) (actual time=0.156..0.161 rows=11
 loops=1)
 Group Key: foo
 -> Index Scan using test_pkey on test (cost=0.29..9.29 rows=50 width=8) (actual
 time=0.039..0.091 rows=99 loops=1)
 Index Cond: ((id > $1) AND (id < $2))
 Planning time: 0.197 ms
 Execution time: 0.225 ms
(6 rows)

Of course, the specific numbers shown here depend on the actual contents of the tables involved. Also
note that the numbers, and even the selected query strategy, might vary between Postgres Pro releases
due to planner improvements. In addition, the ANALYZE command uses random sampling to estimate
data statistics; therefore, it is possible for cost estimates to change after a fresh run of ANALYZE, even
if the actual distribution of data in the table has not changed.

Compatibility
There is no EXPLAIN statement defined in the SQL standard.

See Also
ANALYZE

1537

FETCH
FETCH — retrieve rows from a query using a cursor

Synopsis
FETCH [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description
FETCH retrieves rows using a previously-created cursor.

A cursor has an associated position, which is used by FETCH. The cursor position can be before the first
row of the query result, on any particular row of the result, or after the last row of the result. When
created, a cursor is positioned before the first row. After fetching some rows, the cursor is positioned
on the row most recently retrieved. If FETCH runs off the end of the available rows then the cursor is left
positioned after the last row, or before the first row if fetching backward. FETCH ALL or FETCH BACKWARD
ALL will always leave the cursor positioned after the last row or before the first row.

The forms NEXT, PRIOR, FIRST, LAST, ABSOLUTE, RELATIVE fetch a single row after moving the cursor
appropriately. If there is no such row, an empty result is returned, and the cursor is left positioned before
the first row or after the last row as appropriate.

The forms using FORWARD and BACKWARD retrieve the indicated number of rows moving in the forward or
backward direction, leaving the cursor positioned on the last-returned row (or after/before all rows, if
the count exceeds the number of rows available).

RELATIVE 0, FORWARD 0, and BACKWARD 0 all request fetching the current row without moving the cursor,
that is, re-fetching the most recently fetched row. This will succeed unless the cursor is positioned before
the first row or after the last row; in which case, no row is returned.

Note
This page describes usage of cursors at the SQL command level. If you are trying to use cursors
inside a PL/pgSQL function, the rules are different — see Section 40.7.3.

Parameters
direction

direction defines the fetch direction and number of rows to fetch. It can be one of the following:

1538

FETCH

NEXT

Fetch the next row. This is the default if direction is omitted.

PRIOR

Fetch the prior row.

FIRST

Fetch the first row of the query (same as ABSOLUTE 1).

LAST

Fetch the last row of the query (same as ABSOLUTE -1).

ABSOLUTE count

Fetch the count'th row of the query, or the abs(count)'th row from the end if count is negative.
Position before first row or after last row if count is out of range; in particular, ABSOLUTE 0
positions before the first row.

RELATIVE count

Fetch the count'th succeeding row, or the abs(count)'th prior row if count is negative. RELATIVE
0 re-fetches the current row, if any.

count

Fetch the next count rows (same as FORWARD count).

ALL

Fetch all remaining rows (same as FORWARD ALL).

FORWARD

Fetch the next row (same as NEXT).

FORWARD count

Fetch the next count rows. FORWARD 0 re-fetches the current row.

FORWARD ALL

Fetch all remaining rows.

BACKWARD

Fetch the prior row (same as PRIOR).

BACKWARD count

Fetch the prior count rows (scanning backwards). BACKWARD 0 re-fetches the current row.

BACKWARD ALL

Fetch all prior rows (scanning backwards).

count

count is a possibly-signed integer constant, determining the location or number of rows to fetch.
For FORWARD and BACKWARD cases, specifying a negative count is equivalent to changing the sense
of FORWARD and BACKWARD.

cursor_name

An open cursor's name.

1539

FETCH

Outputs
On successful completion, a FETCH command returns a command tag of the form
FETCH count

The count is the number of rows fetched (possibly zero). Note that in psql, the command tag will not
actually be displayed, since psql displays the fetched rows instead.

Notes
The cursor should be declared with the SCROLL option if one intends to use any variants of FETCH other
than FETCH NEXT or FETCH FORWARD with a positive count. For simple queries Postgres Pro will allow
backwards fetch from cursors not declared with SCROLL, but this behavior is best not relied on. If the
cursor is declared with NO SCROLL, no backward fetches are allowed.

ABSOLUTE fetches are not any faster than navigating to the desired row with a relative move: the
underlying implementation must traverse all the intermediate rows anyway. Negative absolute fetches
are even worse: the query must be read to the end to find the last row, and then traversed backward
from there. However, rewinding to the start of the query (as with FETCH ABSOLUTE 0) is fast.

DECLARE is used to define a cursor. Use MOVE to change cursor position without retrieving data.

Examples
The following example traverses a table using a cursor:
BEGIN WORK;

-- Set up a cursor:
DECLARE liahona SCROLL CURSOR FOR SELECT * FROM films;

-- Fetch the first 5 rows in the cursor liahona:
FETCH FORWARD 5 FROM liahona;

 code | title | did | date_prod | kind | len
-------+-------------------------+-----+------------+----------+-------
 BL101 | The Third Man | 101 | 1949-12-23 | Drama | 01:44
 BL102 | The African Queen | 101 | 1951-08-11 | Romantic | 01:43
 JL201 | Une Femme est une Femme | 102 | 1961-03-12 | Romantic | 01:25
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08
 P_302 | Becket | 103 | 1964-02-03 | Drama | 02:28

-- Fetch the previous row:
FETCH PRIOR FROM liahona;

 code | title | did | date_prod | kind | len
-------+---------+-----+------------+--------+-------
 P_301 | Vertigo | 103 | 1958-11-14 | Action | 02:08

-- Close the cursor and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
The SQL standard defines FETCH for use in embedded SQL only. The variant of FETCH described here
returns the data as if it were a SELECT result rather than placing it in host variables. Other than this
point, FETCH is fully upward-compatible with the SQL standard.

The FETCH forms involving FORWARD and BACKWARD, as well as the forms FETCH count and FETCH ALL, in
which FORWARD is implicit, are Postgres Pro extensions.

1540

FETCH

The SQL standard allows only FROM preceding the cursor name; the option to use IN, or to leave them
out altogether, is an extension.

See Also
CLOSE, DECLARE, MOVE

1541

GRANT
GRANT — define access privileges

Synopsis
GRANT { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } routine_name [([[argmode] [arg_name
] arg_type [, ...]])] [, ...]
 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

1542

GRANT

GRANT { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 TO role_specification [, ...] [WITH GRANT OPTION]

GRANT role_name [, ...] TO role_specification [, ...]
 [WITH ADMIN OPTION]
 [GRANTED BY role_specification]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_USER
 | SESSION_USER

Description
The GRANT command has two basic variants: one that grants privileges on a database object (table,
column, view, foreign table, sequence, database, foreign-data wrapper, foreign server, function,
procedure, procedural language, schema, or tablespace), and one that grants membership in a role.
These variants are similar in many ways, but they are different enough to be described separately.

GRANT on Database Objects
This variant of the GRANT command gives specific privileges on a database object to one or more roles.
These privileges are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that
might be created later. PUBLIC can be thought of as an implicitly defined group that always includes all
roles. Any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC.

If WITH GRANT OPTION is specified, the recipient of the privilege can in turn grant it to others. Without
a grant option, the recipient cannot do that. Grant options cannot be granted to PUBLIC.

There is no need to grant privileges to the owner of an object (usually the user that created it), as the
owner has all privileges by default. (The owner could, however, choose to revoke some of their own
privileges for safety.)

The right to drop an object, or to alter its definition in any way, is not treated as a grantable privilege; it
is inherent in the owner, and cannot be granted or revoked. (However, a similar effect can be obtained
by granting or revoking membership in the role that owns the object; see below.) The owner implicitly
has all grant options for the object, too.

The possible privileges are:

1543

GRANT

SELECT
INSERT
UPDATE
DELETE
TRUNCATE
REFERENCES
TRIGGER
CREATE
CONNECT
TEMPORARY
EXECUTE
USAGE

Specific types of privileges, as defined in Section 5.7.

TEMP

Alternative spelling for TEMPORARY.

ALL PRIVILEGES

Grant all of the privileges available for the object's type. The PRIVILEGES key word is optional in
Postgres Pro, though it is required by strict SQL.

The FUNCTION syntax works for plain functions, aggregate functions, and window functions, but not
for procedures; use PROCEDURE for those. Alternatively, use ROUTINE to refer to a function, aggregate
function, window function, or procedure regardless of its precise type.

There is also an option to grant privileges on all objects of the same type within one or more schemas. This
functionality is currently supported only for tables, sequences, functions, and procedures. ALL TABLES
also affects views and foreign tables, just like the specific-object GRANT command. ALL FUNCTIONS also
affects aggregate and window functions, but not procedures, again just like the specific-object GRANT
command. Use ALL ROUTINES to include procedures.

GRANT on Roles
This variant of the GRANT command grants membership in a role to one or more other roles. Membership
in a role is significant because it conveys the privileges granted to a role to each of its members.

If WITH ADMIN OPTION is specified, the member can in turn grant membership in the role to others,
and revoke membership in the role as well. Without the admin option, ordinary users cannot do that. A
role is not considered to hold WITH ADMIN OPTION on itself, but it may grant or revoke membership in
itself from a database session where the session user matches the role. Database superusers can grant
or revoke membership in any role to anyone. Roles having CREATEROLE privilege can grant or revoke
membership in any role that is not a superuser.

If GRANTED BY is specified, the grant is recorded as having been done by the specified role. Only database
superusers may use this option, except when it names the same role executing the command.

Unlike the case with privileges, membership in a role cannot be granted to PUBLIC. Note also that this
form of the command does not allow the noise word GROUP in role_specification.

Notes
The REVOKE command is used to revoke access privileges.

Since PostgreSQL 8.1, the concepts of users and groups have been unified into a single kind of entity
called a role. It is therefore no longer necessary to use the keyword GROUP to identify whether a grantee
is a user or a group. GROUP is still allowed in the command, but it is a noise word.

1544

GRANT

A user may perform SELECT, INSERT, etc. on a column if they hold that privilege for either the specific
column or its whole table. Granting the privilege at the table level and then revoking it for one column
will not do what one might wish: the table-level grant is unaffected by a column-level operation.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright
if the user has no privileges whatsoever on the object. As long as some privilege is available, the
command will proceed, but it will grant only those privileges for which the user has grant options. The
GRANT ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other
forms will issue a warning if grant options for any of the privileges specifically named in the command
are not held. (In principle these statements apply to the object owner as well, but since the owner is
always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings.
This is comparable to the rights of root in a Unix system. As with root, it's unwise to operate as a
superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it
were issued by the owner of the affected object. In particular, privileges granted via such a command
will appear to have been granted by the object owner. (For role membership, the membership appears
to have been granted by the containing role itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member
of the role that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on
the object. In this case the privileges will be recorded as having been granted by the role that actually
owns the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1,
of which role u1 is a member, then u1 can grant privileges on t1 to u2, but those privileges will appear
to have been granted directly by g1. Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one role membership
path, it is unspecified which containing role will be recorded as having done the grant. In such cases it
is best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Granting permission on a table does not automatically extend permissions to any sequences used by the
table, including sequences tied to SERIAL columns. Permissions on sequences must be set separately.

See Section 5.7 for more information about specific privilege types, as well as how to inspect objects'
privileges.

Examples
Grant insert privilege to all users on table films:
GRANT INSERT ON films TO PUBLIC;

Grant all available privileges to user manuel on view kinds:
GRANT ALL PRIVILEGES ON kinds TO manuel;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of
kinds, when executed by someone else it will only grant those permissions for which the someone else
has grant options.

Grant membership in role admins to user joe:
GRANT admins TO joe;

Compatibility
According to the SQL standard, the PRIVILEGES key word in ALL PRIVILEGES is required. The SQL
standard does not support setting the privileges on more than one object per command.

Postgres Pro allows an object owner to revoke their own ordinary privileges: for example, a table owner
can make the table read-only to themselves by revoking their own INSERT, UPDATE, DELETE, and TRUNCATE

1545

GRANT

privileges. This is not possible according to the SQL standard. The reason is that Postgres Pro treats
the owner's privileges as having been granted by the owner to themselves; therefore they can revoke
them too. In the SQL standard, the owner's privileges are granted by an assumed entity “_SYSTEM”.
Not being “_SYSTEM”, the owner cannot revoke these rights.

According to the SQL standard, grant options can be granted to PUBLIC; Postgres Pro only supports
granting grant options to roles.

The SQL standard allows the GRANTED BY option to be used in all forms of GRANT. Postgres Pro only
supports it when granting role membership, and even then only superusers may use it in nontrivial ways.

The SQL standard provides for a USAGE privilege on other kinds of objects: character sets, collations,
translations.

In the SQL standard, sequences only have a USAGE privilege, which controls the use of the NEXT VALUE
FOR expression, which is equivalent to the function nextval in Postgres Pro. The sequence privileges
SELECT and UPDATE are Postgres Pro extensions. The application of the sequence USAGE privilege to the
currval function is also a Postgres Pro extension (as is the function itself).

Privileges on databases, tablespaces, schemas, and languages are Postgres Pro extensions.

See Also
REVOKE, ALTER DEFAULT PRIVILEGES

1546

IMPORT FOREIGN SCHEMA
IMPORT FOREIGN SCHEMA — import table definitions from a foreign server

Synopsis
IMPORT FOREIGN SCHEMA remote_schema
 [{ LIMIT TO | EXCEPT } (table_name [, ...])]
 FROM SERVER server_name
 INTO local_schema
 [OPTIONS (option 'value' [, ...])]

Description
IMPORT FOREIGN SCHEMA creates foreign tables that represent tables existing on a foreign server. The
new foreign tables will be owned by the user issuing the command and are created with the correct
column definitions and options to match the remote tables.

By default, all tables and views existing in a particular schema on the foreign server are imported.
Optionally, the list of tables can be limited to a specified subset, or specific tables can be excluded. The
new foreign tables are all created in the target schema, which must already exist.

To use IMPORT FOREIGN SCHEMA, the user must have USAGE privilege on the foreign server, as well as
CREATE privilege on the target schema.

Parameters
remote_schema

The remote schema to import from. The specific meaning of a remote schema depends on the foreign
data wrapper in use.

LIMIT TO (table_name [, ...])

Import only foreign tables matching one of the given table names. Other tables existing in the foreign
schema will be ignored.

EXCEPT (table_name [, ...])

Exclude specified foreign tables from the import. All tables existing in the foreign schema will be
imported except the ones listed here.

server_name

The foreign server to import from.

local_schema

The schema in which the imported foreign tables will be created.

OPTIONS (option 'value' [, ...])

Options to be used during the import. The allowed option names and values are specific to each
foreign data wrapper.

Examples
Import table definitions from a remote schema foreign_films on server film_server, creating the
foreign tables in local schema films:

IMPORT FOREIGN SCHEMA foreign_films
 FROM SERVER film_server INTO films;

1547

IMPORT FOREIGN SCHEMA

As above, but import only the two tables actors and directors (if they exist):

IMPORT FOREIGN SCHEMA foreign_films LIMIT TO (actors, directors)
 FROM SERVER film_server INTO films;

Compatibility
The IMPORT FOREIGN SCHEMA command conforms to the SQL standard, except that the OPTIONS clause
is a Postgres Pro extension.

See Also
CREATE FOREIGN TABLE, CREATE SERVER

1548

INSERT
INSERT — create new rows in a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
INSERT INTO table_name [AS alias] [(column_name [, ...])]
 [OVERRIDING { SYSTEM | USER } VALUE]
 { DEFAULT VALUES | VALUES ({ expression | DEFAULT } [, ...]) [, ...] | query }
 [ON CONFLICT [conflict_target] conflict_action]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

where conflict_target can be one of:

 ({ index_column_name | (index_expression) } [COLLATE collation] [opclass]
 [, ...]) [WHERE index_predicate]
 ON CONSTRAINT constraint_name

and conflict_action is one of:

 DO NOTHING
 DO UPDATE SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT }
 [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [WHERE condition]

Description
INSERT inserts new rows into a table. One can insert one or more rows specified by value expressions,
or zero or more rows resulting from a query.

The target column names can be listed in any order. If no list of column names is given at all, the default
is all the columns of the table in their declared order; or the first N column names, if there are only N
columns supplied by the VALUES clause or query. The values supplied by the VALUES clause or query are
associated with the explicit or implicit column list left-to-right.

Each column not present in the explicit or implicit column list will be filled with a default value, either
its declared default value or null if there is none.

If the expression for any column is not of the correct data type, automatic type conversion will be
attempted.

ON CONFLICT can be used to specify an alternative action to raising a unique constraint or exclusion
constraint violation error. (See ON CONFLICT Clause below.)

The optional RETURNING clause causes INSERT to compute and return value(s) based on each row actually
inserted (or updated, if an ON CONFLICT DO UPDATE clause was used). This is primarily useful for obtaining
values that were supplied by defaults, such as a serial sequence number. However, any expression using
the table's columns is allowed. The syntax of the RETURNING list is identical to that of the output list of
SELECT. Only rows that were successfully inserted or updated will be returned. For example, if a row
was locked but not updated because an ON CONFLICT DO UPDATE ... WHERE clause condition was not
satisfied, the row will not be returned.

You must have INSERT privilege on a table in order to insert into it. If ON CONFLICT DO UPDATE is present,
UPDATE privilege on the table is also required.

1549

INSERT

If a column list is specified, you only need INSERT privilege on the listed columns. Similarly, when ON
CONFLICT DO UPDATE is specified, you only need UPDATE privilege on the column(s) that are listed to be
updated. However, ON CONFLICT DO UPDATE also requires SELECT privilege on any column whose values
are read in the ON CONFLICT DO UPDATE expressions or condition.

Use of the RETURNING clause requires SELECT privilege on all columns mentioned in RETURNING. If you
use the query clause to insert rows from a query, you of course need to have SELECT privilege on any
table or column used in the query.

Parameters
Inserting

This section covers parameters that may be used when only inserting new rows. Parameters exclusively
used with the ON CONFLICT clause are described separately.

with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
INSERT query. See Section 7.8 and SELECT for details.

It is possible for the query (SELECT statement) to also contain a WITH clause. In such a case both
sets of with_query can be referenced within the query, but the second one takes precedence since
it is more closely nested.

table_name

The name (optionally schema-qualified) of an existing table.

alias

A substitute name for table_name. When an alias is provided, it completely hides the actual name of
the table. This is particularly useful when ON CONFLICT DO UPDATE targets a table named excluded,
since that will otherwise be taken as the name of the special table representing rows proposed for
insertion.

column_name

The name of a column in the table named by table_name. The column name can be qualified with a
subfield name or array subscript, if needed. (Inserting into only some fields of a composite column
leaves the other fields null.) When referencing a column with ON CONFLICT DO UPDATE, do not include
the table's name in the specification of a target column. For example, INSERT INTO table_name ...
ON CONFLICT DO UPDATE SET table_name.col = 1 is invalid (this follows the general behavior
for UPDATE).

OVERRIDING SYSTEM VALUE

If this clause is specified, then any values supplied for identity columns will override the default
sequence-generated values.

For an identity column defined as GENERATED ALWAYS, it is an error to insert an explicit value (other
than DEFAULT) without specifying either OVERRIDING SYSTEM VALUE or OVERRIDING USER VALUE.
(For an identity column defined as GENERATED BY DEFAULT, OVERRIDING SYSTEM VALUE is the normal
behavior and specifying it does nothing, but PostgreSQL allows it as an extension.)

OVERRIDING USER VALUE

If this clause is specified, then any values supplied for identity columns are ignored and the default
sequence-generated values are applied.

This clause is useful for example when copying values between tables. Writing INSERT INTO tbl2
OVERRIDING USER VALUE SELECT * FROM tbl1 will copy from tbl1 all columns that are not identity

1550

INSERT

columns in tbl2 while values for the identity columns in tbl2 will be generated by the sequences
associated with tbl2.

DEFAULT VALUES

All columns will be filled with their default values, as if DEFAULT were explicitly specified for each
column. (An OVERRIDING clause is not permitted in this form.)

expression

An expression or value to assign to the corresponding column.

DEFAULT

The corresponding column will be filled with its default value. An identity column will be filled
with a new value generated by the associated sequence. For a generated column, specifying this is
permitted but merely specifies the normal behavior of computing the column from its generation
expression.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT statement
for a description of the syntax.

output_expression

An expression to be computed and returned by the INSERT command after each row is inserted or
updated. The expression can use any column names of the table named by table_name. Write * to
return all columns of the inserted or updated row(s).

output_name

A name to use for a returned column.

ON CONFLICT Clause
The optional ON CONFLICT clause specifies an alternative action to raising a unique violation or
exclusion constraint violation error. For each individual row proposed for insertion, either the insertion
proceeds, or, if an arbiter constraint or index specified by conflict_target is violated, the alternative
conflict_action is taken. ON CONFLICT DO NOTHING simply avoids inserting a row as its alternative
action. ON CONFLICT DO UPDATE updates the existing row that conflicts with the row proposed for
insertion as its alternative action.

conflict_target can perform unique index inference. When performing inference, it consists of
one or more index_column_name columns and/or index_expression expressions, and an optional
index_predicate. All table_name unique indexes that, without regard to order, contain exactly
the conflict_target-specified columns/expressions are inferred (chosen) as arbiter indexes. If an
index_predicate is specified, it must, as a further requirement for inference, satisfy arbiter indexes.
Note that this means a non-partial unique index (a unique index without a predicate) will be inferred
(and thus used by ON CONFLICT) if such an index satisfying every other criteria is available. If an attempt
at inference is unsuccessful, an error is raised.

ON CONFLICT DO UPDATE guarantees an atomic INSERT or UPDATE outcome; provided there is no
independent error, one of those two outcomes is guaranteed, even under high concurrency. This is also
known as UPSERT — “UPDATE or INSERT”.

conflict_target

Specifies which conflicts ON CONFLICT takes the alternative action on by choosing arbiter indexes.
Either performs unique index inference, or names a constraint explicitly. For ON CONFLICT DO
NOTHING, it is optional to specify a conflict_target; when omitted, conflicts with all usable
constraints (and unique indexes) are handled. For ON CONFLICT DO UPDATE, a conflict_target
must be provided.

1551

INSERT

conflict_action

conflict_action specifies an alternative ON CONFLICT action. It can be either DO NOTHING, or a
DO UPDATE clause specifying the exact details of the UPDATE action to be performed in case of a
conflict. The SET and WHERE clauses in ON CONFLICT DO UPDATE have access to the existing row
using the table's name (or an alias), and to rows proposed for insertion using the special excluded
table. SELECT privilege is required on any column in the target table where corresponding excluded
columns are read.

Note that the effects of all per-row BEFORE INSERT triggers are reflected in excluded values, since
those effects may have contributed to the row being excluded from insertion.

index_column_name

The name of a table_name column. Used to infer arbiter indexes. Follows CREATE INDEX format.
SELECT privilege on index_column_name is required.

index_expression

Similar to index_column_name, but used to infer expressions on table_name columns appearing
within index definitions (not simple columns). Follows CREATE INDEX format. SELECT privilege on any
column appearing within index_expression is required.

collation

When specified, mandates that corresponding index_column_name or index_expression use a
particular collation in order to be matched during inference. Typically this is omitted, as collations
usually do not affect whether or not a constraint violation occurs. Follows CREATE INDEX format.

opclass

When specified, mandates that corresponding index_column_name or index_expression use
particular operator class in order to be matched during inference. Typically this is omitted, as the
equality semantics are often equivalent across a type's operator classes anyway, or because it's
sufficient to trust that the defined unique indexes have the pertinent definition of equality. Follows
CREATE INDEX format.

index_predicate

Used to allow inference of partial unique indexes. Any indexes that satisfy the predicate (which need
not actually be partial indexes) can be inferred. Follows CREATE INDEX format. SELECT privilege on
any column appearing within index_predicate is required.

constraint_name

Explicitly specifies an arbiter constraint by name, rather than inferring a constraint or index.

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be updated, although all rows will be locked when the ON CONFLICT DO UPDATE action is taken.
Note that condition is evaluated last, after a conflict has been identified as a candidate to update.

Note that exclusion constraints are not supported as arbiters with ON CONFLICT DO UPDATE. In all cases,
only NOT DEFERRABLE constraints and unique indexes are supported as arbiters.

INSERT with an ON CONFLICT DO UPDATE clause is a “deterministic” statement. This means that the
command will not be allowed to affect any single existing row more than once; a cardinality violation
error will be raised when this situation arises. Rows proposed for insertion should not duplicate each
other in terms of attributes constrained by an arbiter index or constraint.

Note that it is currently not supported for the ON CONFLICT DO UPDATE clause of an INSERT applied
to a partitioned table to update the partition key of a conflicting row such that it requires the row be
moved to a new partition.

1552

INSERT

Tip
It is often preferable to use unique index inference rather than naming a constraint directly using
ON CONFLICT ON CONSTRAINT constraint_name. Inference will continue to work correctly when
the underlying index is replaced by another more or less equivalent index in an overlapping way,
for example when using CREATE UNIQUE INDEX ... CONCURRENTLY before dropping the index
being replaced.

Outputs
On successful completion, an INSERT command returns a command tag of the form

INSERT oid count

The count is the number of rows inserted or updated. oid is always 0 (it used to be the OID assigned to
the inserted row if count was exactly one and the target table was declared WITH OIDS and 0 otherwise,
but creating a table WITH OIDS is not supported anymore).

If the INSERT command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
inserted or updated by the command.

Notes
If the specified table is a partitioned table, each row is routed to the appropriate partition and inserted
into it. If the specified table is a partition, an error will occur if one of the input rows violates the partition
constraint.

Examples
Insert a single row into table films:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, '1971-07-13', 'Comedy', '82 minutes');

In this example, the len column is omitted and therefore it will have the default value:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

This example uses the DEFAULT clause for the date columns rather than specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes');
INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama');

To insert a row consisting entirely of default values:

INSERT INTO films DEFAULT VALUES;

To insert multiple rows using the multirow VALUES syntax:

INSERT INTO films (code, title, did, date_prod, kind) VALUES
 ('B6717', 'Tampopo', 110, '1985-02-10', 'Comedy'),
 ('HG120', 'The Dinner Game', 140, DEFAULT, 'Comedy');

This example inserts some rows into table films from a table tmp_films with the same column layout
as films:

INSERT INTO films SELECT * FROM tmp_films WHERE date_prod < '2004-05-07';

1553

INSERT

This example inserts into array columns:

-- Create an empty 3x3 gameboard for noughts-and-crosses
INSERT INTO tictactoe (game, board[1:3][1:3])
 VALUES (1, '{{" "," "," "},{" "," "," "},{" "," "," "}}');
-- The subscripts in the above example aren't really needed
INSERT INTO tictactoe (game, board)
 VALUES (2, '{{X," "," "},{" ",O," "},{" ",X," "}}');

Insert a single row into table distributors, returning the sequence number generated by the DEFAULT
clause:

INSERT INTO distributors (did, dname) VALUES (DEFAULT, 'XYZ Widgets')
 RETURNING did;

Increment the sales count of the salesperson who manages the account for Acme Corporation, and record
the whole updated row along with current time in a log table:

WITH upd AS (
 UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation')
 RETURNING *
)
INSERT INTO employees_log SELECT *, current_timestamp FROM upd;

Insert or update new distributors as appropriate. Assumes a unique index has been defined that
constrains values appearing in the did column. Note that the special excluded table is used to reference
values originally proposed for insertion:

INSERT INTO distributors (did, dname)
 VALUES (5, 'Gizmo Transglobal'), (6, 'Associated Computing, Inc')
 ON CONFLICT (did) DO UPDATE SET dname = EXCLUDED.dname;

Insert a distributor, or do nothing for rows proposed for insertion when an existing, excluded row (a row
with a matching constrained column or columns after before row insert triggers fire) exists. Example
assumes a unique index has been defined that constrains values appearing in the did column:

INSERT INTO distributors (did, dname) VALUES (7, 'Redline GmbH')
 ON CONFLICT (did) DO NOTHING;

Insert or update new distributors as appropriate. Example assumes a unique index has been defined that
constrains values appearing in the did column. WHERE clause is used to limit the rows actually updated
(any existing row not updated will still be locked, though):

-- Don't update existing distributors based in a certain ZIP code
INSERT INTO distributors AS d (did, dname) VALUES (8, 'Anvil Distribution')
 ON CONFLICT (did) DO UPDATE
 SET dname = EXCLUDED.dname || ' (formerly ' || d.dname || ')'
 WHERE d.zipcode <> '21201';

-- Name a constraint directly in the statement (uses associated
-- index to arbitrate taking the DO NOTHING action)
INSERT INTO distributors (did, dname) VALUES (9, 'Antwerp Design')
 ON CONFLICT ON CONSTRAINT distributors_pkey DO NOTHING;

Insert new distributor if possible; otherwise DO NOTHING. Example assumes a unique index has been
defined that constrains values appearing in the did column on a subset of rows where the is_active
Boolean column evaluates to true:

-- This statement could infer a partial unique index on "did"
-- with a predicate of "WHERE is_active", but it could also
-- just use a regular unique constraint on "did"

1554

INSERT

INSERT INTO distributors (did, dname) VALUES (10, 'Conrad International')
 ON CONFLICT (did) WHERE is_active DO NOTHING;

Compatibility
INSERT conforms to the SQL standard, except that the RETURNING clause is a Postgres Pro extension, as
is the ability to use WITH with INSERT, and the ability to specify an alternative action with ON CONFLICT.
Also, the case in which a column name list is omitted, but not all the columns are filled from the VALUES
clause or query, is disallowed by the standard.

The SQL standard specifies that OVERRIDING SYSTEM VALUE can only be specified if an identity column
that is generated always exists. Postgres Pro allows the clause in any case and ignores it if it is not
applicable.

Possible limitations of the query clause are documented under SELECT.

1555

LISTEN
LISTEN — listen for a notification

Synopsis
LISTEN channel

Description
LISTEN registers the current session as a listener on the notification channel named channel. If the
current session is already registered as a listener for this notification channel, nothing is done.

Whenever the command NOTIFY channel is invoked, either by this session or another one connected
to the same database, all the sessions currently listening on that notification channel are notified, and
each will in turn notify its connected client application.

A session can be unregistered for a given notification channel with the UNLISTEN command. A session's
listen registrations are automatically cleared when the session ends.

The method a client application must use to detect notification events depends on which Postgres Pro
application programming interface it uses. With the libpq library, the application issues LISTEN as an
ordinary SQL command, and then must periodically call the function PQnotifies to find out whether any
notification events have been received. Other interfaces such as libpgtcl provide higher-level methods for
handling notify events; indeed, with libpgtcl the application programmer should not even issue LISTEN
or UNLISTEN directly. See the documentation for the interface you are using for more details.

Parameters
channel

Name of a notification channel (any identifier).

Notes
LISTEN takes effect at transaction commit. If LISTEN or UNLISTEN is executed within a transaction that
later rolls back, the set of notification channels being listened to is unchanged.

A transaction that has executed LISTEN cannot be prepared for two-phase commit.

There is a race condition when first setting up a listening session: if concurrently-committing
transactions are sending notify events, exactly which of those will the newly listening session receive?
The answer is that the session will receive all events committed after an instant during the transaction's
commit step. But that is slightly later than any database state that the transaction could have observed
in queries. This leads to the following rule for using LISTEN: first execute (and commit!) that command,
then in a new transaction inspect the database state as needed by the application logic, then rely
on notifications to find out about subsequent changes to the database state. The first few received
notifications might refer to updates already observed in the initial database inspection, but this is usually
harmless.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

1556

LISTEN

Compatibility
There is no LISTEN statement in the SQL standard.

See Also
NOTIFY, UNLISTEN

1557

LOAD
LOAD — load a shared library file

Synopsis
LOAD 'filename'

Description
This command loads a shared library file into the Postgres Pro server's address space. If the file has been
loaded already, the command does nothing. Shared library files that contain C functions are automatically
loaded whenever one of their functions is called. Therefore, an explicit LOAD is usually only needed to load
a library that modifies the server's behavior through “hooks” rather than providing a set of functions.

The library file name is typically given as just a bare file name, which is sought in the server's library
search path (set by dynamic_library_path). Alternatively it can be given as a full path name. In either
case the platform's standard shared library file name extension may be omitted. See Section 35.10.1 for
more information on this topic.

Non-superusers can only apply LOAD to library files located in $libdir/plugins/ — the specified
filename must begin with exactly that string. (It is the database administrator's responsibility to ensure
that only “safe” libraries are installed there.)

Compatibility
LOAD is a Postgres Pro extension.

See Also
CREATE FUNCTION

1558

LOCK
LOCK — lock a table

Synopsis
LOCK [TABLE] [ONLY] name [*] [, ...] [IN lockmode MODE] [NOWAIT]

where lockmode is one of:

 ACCESS SHARE | ROW SHARE | ROW EXCLUSIVE | SHARE UPDATE EXCLUSIVE
 | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE | ACCESS EXCLUSIVE

Description
LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If
NOWAIT is specified, LOCK TABLE does not wait to acquire the desired lock: if it cannot be acquired
immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for the
remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released
at transaction end.)

When a view is locked, all relations appearing in the view definition query are also locked recursively
with the same lock mode.

When acquiring locks automatically for commands that reference tables, Postgres Pro always uses the
least restrictive lock mode possible. LOCK TABLE provides for cases when you might need more restrictive
locking. For example, suppose an application runs a transaction at the READ COMMITTED isolation level
and needs to ensure that data in a table remains stable for the duration of the transaction. To achieve
this you could obtain SHARE lock mode over the table before querying. This will prevent concurrent data
changes and ensure subsequent reads of the table see a stable view of committed data, because SHARE
lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN
SHARE MODE statement will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or
roll back. Thus, once you obtain the lock, there are no uncommitted writes outstanding; furthermore
none can begin until you release the lock.

To achieve a similar effect when running a transaction at the REPEATABLE READ or SERIALIZABLE isolation
level, you have to execute the LOCK TABLE statement before executing any SELECT or data modification
statement. A REPEATABLE READ or SERIALIZABLE transaction's view of data will be frozen when its first
SELECT or data modification statement begins. A LOCK TABLE later in the transaction will still prevent
concurrent writes — but it won't ensure that what the transaction reads corresponds to the latest
committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW
EXCLUSIVE lock mode instead of SHARE mode. This ensures that only one transaction of this type runs at a
time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode, and then be
unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a transaction's
own locks never conflict, so a transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode —
but not if anyone else holds SHARE mode.) To avoid deadlocks, make sure all transactions acquire locks
on the same objects in the same order, and if multiple lock modes are involved for a single object, then
transactions should always acquire the most restrictive mode first.

More information about the lock modes and locking strategies can be found in Section 13.3.

Parameters
name

The name (optionally schema-qualified) of an existing table to lock. If ONLY is specified before the
table name, only that table is locked. If ONLY is not specified, the table and all its descendant tables

1559

LOCK

(if any) are locked. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b;. The tables are
locked one-by-one in the order specified in the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with. Lock modes are described in
Section 13.3.

If no lock mode is specified, then ACCESS EXCLUSIVE, the most restrictive mode, is used.

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the specified
lock(s) cannot be acquired immediately without waiting, the transaction is aborted.

Notes
LOCK TABLE ... IN ACCESS SHARE MODE requires SELECT privileges on the target table. LOCK TABLE ...
IN ROW EXCLUSIVE MODE requires INSERT, UPDATE, DELETE, or TRUNCATE privileges on the target table.
All other forms of LOCK require table-level UPDATE, DELETE, or TRUNCATE privileges.

The user performing the lock on the view must have the corresponding privilege on the view. In addition
the view's owner must have the relevant privileges on the underlying base relations, but the user
performing the lock does not need any permissions on the underlying base relations.

LOCK TABLE is useless outside a transaction block: the lock would remain held only to the completion of
the statement. Therefore Postgres Pro reports an error if LOCK is used outside a transaction block. Use
BEGIN and COMMIT (or ROLLBACK) to define a transaction block.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers.
These mode names should generally be read as indicating the intention of the user to acquire row-level
locks within the locked table. Also, ROW EXCLUSIVE mode is a shareable table lock. Keep in mind that all
the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules
about which modes conflict with which. For information on how to acquire an actual row-level lock, see
Section 13.3.2 and The Locking Clause in the SELECT documentation.

Examples
Obtain a SHARE lock on a primary key table when going to perform inserts into a foreign key table:

BEGIN WORK;
LOCK TABLE films IN SHARE MODE;
SELECT id FROM films
 WHERE name = 'Star Wars: Episode I - The Phantom Menace';
-- Do ROLLBACK if record was not returned
INSERT INTO films_user_comments VALUES
 (_id_, 'GREAT! I was waiting for it for so long!');
COMMIT WORK;

Take a SHARE ROW EXCLUSIVE lock on a primary key table when going to perform a delete operation:

BEGIN WORK;
LOCK TABLE films IN SHARE ROW EXCLUSIVE MODE;
DELETE FROM films_user_comments WHERE id IN
 (SELECT id FROM films WHERE rating < 5);
DELETE FROM films WHERE rating < 5;
COMMIT WORK;

1560

LOCK

Compatibility
There is no LOCK TABLE in the SQL standard, which instead uses SET TRANSACTION to specify concurrency
levels on transactions. Postgres Pro supports that too; see SET TRANSACTION for details.

Except for ACCESS SHARE, ACCESS EXCLUSIVE, and SHARE UPDATE EXCLUSIVE lock modes, the Postgres
Pro lock modes and the LOCK TABLE syntax are compatible with those present in Oracle.

1561

MOVE
MOVE — position a cursor

Synopsis
MOVE [direction [FROM | IN]] cursor_name

where direction can be empty or one of:

 NEXT
 PRIOR
 FIRST
 LAST
 ABSOLUTE count
 RELATIVE count
 count
 ALL
 FORWARD
 FORWARD count
 FORWARD ALL
 BACKWARD
 BACKWARD count
 BACKWARD ALL

Description
MOVE repositions a cursor without retrieving any data. MOVE works exactly like the FETCH command,
except it only positions the cursor and does not return rows.

The parameters for the MOVE command are identical to those of the FETCH command; refer to FETCH
for details on syntax and usage.

Outputs
On successful completion, a MOVE command returns a command tag of the form

MOVE count

The count is the number of rows that a FETCH command with the same parameters would have returned
(possibly zero).

Examples
BEGIN WORK;
DECLARE liahona CURSOR FOR SELECT * FROM films;

-- Skip the first 5 rows:
MOVE FORWARD 5 IN liahona;
MOVE 5

-- Fetch the 6th row from the cursor liahona:
FETCH 1 FROM liahona;
 code | title | did | date_prod | kind | len
-------+--------+-----+------------+--------+-------
 P_303 | 48 Hrs | 103 | 1982-10-22 | Action | 01:37
(1 row)

1562

MOVE

-- Close the cursor liahona and end the transaction:
CLOSE liahona;
COMMIT WORK;

Compatibility
There is no MOVE statement in the SQL standard.

See Also
CLOSE, DECLARE, FETCH

1563

NOTIFY
NOTIFY — generate a notification

Synopsis
NOTIFY channel [, payload]

Description
The NOTIFY command sends a notification event together with an optional “payload” string to each client
application that has previously executed LISTEN channel for the specified channel name in the current
database. Notifications are visible to all users.

NOTIFY provides a simple interprocess communication mechanism for a collection of processes accessing
the same Postgres Pro database. A payload string can be sent along with the notification, and higher-level
mechanisms for passing structured data can be built by using tables in the database to pass additional
data from notifier to listener(s).

The information passed to the client for a notification event includes the notification channel name, the
notifying session's server process PID, and the payload string, which is an empty string if it has not
been specified.

It is up to the database designer to define the channel names that will be used in a given database
and what each one means. Commonly, the channel name is the same as the name of some table in the
database, and the notify event essentially means, “I changed this table, take a look at it to see what's
new”. But no such association is enforced by the NOTIFY and LISTEN commands. For example, a database
designer could use several different channel names to signal different sorts of changes to a single table.
Alternatively, the payload string could be used to differentiate various cases.

When NOTIFY is used to signal the occurrence of changes to a particular table, a useful programming
technique is to put the NOTIFY in a statement trigger that is triggered by table updates. In this way,
notification happens automatically when the table is changed, and the application programmer cannot
accidentally forget to do it.

NOTIFY interacts with SQL transactions in some important ways. Firstly, if a NOTIFY is executed inside
a transaction, the notify events are not delivered until and unless the transaction is committed. This
is appropriate, since if the transaction is aborted, all the commands within it have had no effect,
including NOTIFY. But it can be disconcerting if one is expecting the notification events to be delivered
immediately. Secondly, if a listening session receives a notification signal while it is within a transaction,
the notification event will not be delivered to its connected client until just after the transaction is
completed (either committed or aborted). Again, the reasoning is that if a notification were delivered
within a transaction that was later aborted, one would want the notification to be undone somehow —
but the server cannot “take back” a notification once it has sent it to the client. So notification events
are only delivered between transactions. The upshot of this is that applications using NOTIFY for real-
time signaling should try to keep their transactions short.

If the same channel name is signaled multiple times with identical payload strings within the same
transaction, only one instance of the notification event is delivered to listeners. On the other hand,
notifications with distinct payload strings will always be delivered as distinct notifications. Similarly,
notifications from different transactions will never get folded into one notification. Except for dropping
later instances of duplicate notifications, NOTIFY guarantees that notifications from the same transaction
get delivered in the order they were sent. It is also guaranteed that messages from different transactions
are delivered in the order in which the transactions committed.

It is common for a client that executes NOTIFY to be listening on the same notification channel itself.
In that case it will get back a notification event, just like all the other listening sessions. Depending on
the application logic, this could result in useless work, for example, reading a database table to find the

1564

NOTIFY

same updates that that session just wrote out. It is possible to avoid such extra work by noticing whether
the notifying session's server process PID (supplied in the notification event message) is the same as
one's own session's PID (available from libpq). When they are the same, the notification event is one's
own work bouncing back, and can be ignored.

Parameters
channel

Name of the notification channel to be signaled (any identifier).

payload

The “payload” string to be communicated along with the notification. This must be specified as a
simple string literal. In the default configuration it must be shorter than 8000 bytes. (If binary data
or large amounts of information need to be communicated, it's best to put it in a database table and
send the key of the record.)

Notes
There is a queue that holds notifications that have been sent but not yet processed by all listening
sessions. If this queue becomes full, transactions calling NOTIFY will fail at commit. The queue is quite
large (8GB in a standard installation) and should be sufficiently sized for almost every use case. However,
no cleanup can take place if a session executes LISTEN and then enters a transaction for a very long
time. Once the queue is half full you will see warnings in the log file pointing you to the session that
is preventing cleanup. In this case you should make sure that this session ends its current transaction
so that cleanup can proceed.

The function pg_notification_queue_usage returns the fraction of the queue that is currently occupied
by pending notifications. See Section 9.26 for more information.

A transaction that has executed NOTIFY cannot be prepared for two-phase commit.

pg_notify
To send a notification you can also use the function pg_notify(text, text). The function takes the
channel name as the first argument and the payload as the second. The function is much easier to use
than the NOTIFY command if you need to work with non-constant channel names and payloads.

Examples
Configure and execute a listen/notify sequence from psql:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.
NOTIFY virtual, 'This is the payload';
Asynchronous notification "virtual" with payload "This is the payload" received from
 server process with PID 8448.

LISTEN foo;
SELECT pg_notify('fo' || 'o', 'pay' || 'load');
Asynchronous notification "foo" with payload "payload" received from server process
 with PID 14728.

Compatibility
There is no NOTIFY statement in the SQL standard.

See Also
LISTEN, UNLISTEN

1565

PREPARE
PREPARE — prepare a statement for execution

Synopsis
PREPARE name [(data_type [, ...])] AS statement

Description
PREPARE creates a prepared statement. A prepared statement is a server-side object that can be used
to optimize performance. When the PREPARE statement is executed, the specified statement is parsed,
analyzed, and rewritten. When an EXECUTE command is subsequently issued, the prepared statement is
planned and executed. This division of labor avoids repetitive parse analysis work, while allowing the
execution plan to depend on the specific parameter values supplied.

Prepared statements can take parameters: values that are substituted into the statement when it is
executed. When creating the prepared statement, refer to parameters by position, using $1, $2, etc.
A corresponding list of parameter data types can optionally be specified. When a parameter's data
type is not specified or is declared as unknown, the type is inferred from the context in which the
parameter is first referenced (if possible). When executing the statement, specify the actual values for
these parameters in the EXECUTE statement. Refer to EXECUTE for more information about that.

Prepared statements only last for the duration of the current database session. When the session ends,
the prepared statement is forgotten, so it must be recreated before being used again. This also means
that a single prepared statement cannot be used by multiple simultaneous database clients; however,
each client can create their own prepared statement to use. Prepared statements can be manually
cleaned up using the DEALLOCATE command.

Prepared statements potentially have the largest performance advantage when a single session is being
used to execute a large number of similar statements. The performance difference will be particularly
significant if the statements are complex to plan or rewrite, e.g., if the query involves a join of many
tables or requires the application of several rules. If the statement is relatively simple to plan and rewrite
but relatively expensive to execute, the performance advantage of prepared statements will be less
noticeable.

Parameters
name

An arbitrary name given to this particular prepared statement. It must be unique within a single
session and is subsequently used to execute or deallocate a previously prepared statement.

data_type

The data type of a parameter to the prepared statement. If the data type of a particular parameter
is unspecified or is specified as unknown, it will be inferred from the context in which the parameter
is first referenced. To refer to the parameters in the prepared statement itself, use $1, $2, etc.

statement

Any SELECT, INSERT, UPDATE, DELETE, or VALUES statement.

Notes
A prepared statement can be executed with either a generic plan or a custom plan. A generic plan is the
same across all executions, while a custom plan is generated for a specific execution using the parameter
values given in that call. Use of a generic plan avoids planning overhead, but in some situations a custom
plan will be much more efficient to execute because the planner can make use of knowledge of the

1566

PREPARE

parameter values. (Of course, if the prepared statement has no parameters, then this is moot and a
generic plan is always used.)

By default (that is, when plan_cache_mode is set to auto), the server will automatically choose whether
to use a generic or custom plan for a prepared statement that has parameters. The current rule for this
is that the first five executions are done with custom plans and the average estimated cost of those plans
is calculated. Then a generic plan is created and its estimated cost is compared to the average custom-
plan cost. Subsequent executions use the generic plan if its cost is not so much higher than the average
custom-plan cost as to make repeated replanning seem preferable.

This heuristic can be overridden, forcing the server to use either generic or custom plans, by setting
plan_cache_mode to force_generic_plan or force_custom_plan respectively. This setting is primarily
useful if the generic plan's cost estimate is badly off for some reason, allowing it to be chosen even
though its actual cost is much more than that of a custom plan.

To examine the query plan Postgres Pro is using for a prepared statement, use EXPLAIN, for example
EXPLAIN EXECUTE name(parameter_values);

If a generic plan is in use, it will contain parameter symbols $n, while a custom plan will have the supplied
parameter values substituted into it.

For more information on query planning and the statistics collected by Postgres Pro for that purpose,
see the ANALYZE documentation.

Although the main point of a prepared statement is to avoid repeated parse analysis and planning of the
statement, Postgres Pro will force re-analysis and re-planning of the statement before using it whenever
database objects used in the statement have undergone definitional (DDL) changes since the previous
use of the prepared statement. Also, if the value of search_path changes from one use to the next, the
statement will be re-parsed using the new search_path. (This latter behavior is new as of PostgreSQL
9.3.) These rules make use of a prepared statement semantically almost equivalent to re-submitting the
same query text over and over, but with a performance benefit if no object definitions are changed,
especially if the best plan remains the same across uses. An example of a case where the semantic
equivalence is not perfect is that if the statement refers to a table by an unqualified name, and then a
new table of the same name is created in a schema appearing earlier in the search_path, no automatic
re-parse will occur since no object used in the statement changed. However, if some other change forces
a re-parse, the new table will be referenced in subsequent uses.

You can see all prepared statements available in the session by querying the pg_prepared_statements
system view.

Examples
Create a prepared statement for an INSERT statement, and then execute it:
PREPARE fooplan (int, text, bool, numeric) AS
 INSERT INTO foo VALUES($1, $2, $3, $4);
EXECUTE fooplan(1, 'Hunter Valley', 't', 200.00);

Create a prepared statement for a SELECT statement, and then execute it:
PREPARE usrrptplan (int) AS
 SELECT * FROM users u, logs l WHERE u.usrid=$1 AND u.usrid=l.usrid
 AND l.date = $2;
EXECUTE usrrptplan(1, current_date);

In this example, the data type of the second parameter is not specified, so it is inferred from the context
in which $2 is used.

Compatibility
The SQL standard includes a PREPARE statement, but it is only for use in embedded SQL. This version
of the PREPARE statement also uses a somewhat different syntax.

1567

PREPARE

See Also
DEALLOCATE, EXECUTE

1568

PREPARE TRANSACTION
PREPARE TRANSACTION — prepare the current transaction for two-phase commit

Synopsis
PREPARE TRANSACTION transaction_id

Description
PREPARE TRANSACTION prepares the current transaction for two-phase commit. After this command, the
transaction is no longer associated with the current session; instead, its state is fully stored on disk, and
there is a very high probability that it can be committed successfully, even if a database crash occurs
before the commit is requested.

Once prepared, a transaction can later be committed or rolled back with COMMIT PREPARED or
ROLLBACK PREPARED, respectively. Those commands can be issued from any session, not only the one
that executed the original transaction.

From the point of view of the issuing session, PREPARE TRANSACTION is not unlike a ROLLBACK command:
after executing it, there is no active current transaction, and the effects of the prepared transaction are
no longer visible. (The effects will become visible again if the transaction is committed.)

If the PREPARE TRANSACTION command fails for any reason, it becomes a ROLLBACK: the current
transaction is canceled.

Parameters
transaction_id

An arbitrary identifier that later identifies this transaction for COMMIT PREPARED or ROLLBACK
PREPARED. The identifier must be written as a string literal, and must be less than 200 bytes long. It
must not be the same as the identifier used for any currently prepared transaction.

Notes
PREPARE TRANSACTION is not intended for use in applications or interactive sessions. Its purpose is to
allow an external transaction manager to perform atomic global transactions across multiple databases
or other transactional resources. Unless you're writing a transaction manager, you probably shouldn't
be using PREPARE TRANSACTION.

This command must be used inside a transaction block. Use BEGIN to start one.

It is not currently allowed to PREPARE a transaction that has executed any operations involving temporary
tables or the session's temporary namespace, created any cursors WITH HOLD, or executed LISTEN,
UNLISTEN, or NOTIFY. Those features are too tightly tied to the current session to be useful in a transaction
to be prepared.

If the transaction modified any run-time parameters with SET (without the LOCAL option), those effects
persist after PREPARE TRANSACTION, and will not be affected by any later COMMIT PREPARED or ROLLBACK
PREPARED. Thus, in this one respect PREPARE TRANSACTION acts more like COMMIT than ROLLBACK.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Caution
It is unwise to leave transactions in the prepared state for a long time. This will interfere with the
ability of VACUUM to reclaim storage, and in extreme cases could cause the database to shut down

1569

PREPARE TRANSACTION

to prevent transaction ID wraparound (see Section 23.1.5). Keep in mind also that the transaction
continues to hold whatever locks it held. The intended usage of the feature is that a prepared
transaction will normally be committed or rolled back as soon as an external transaction manager
has verified that other databases are also prepared to commit.

If you have not set up an external transaction manager to track prepared transactions and ensure
they get closed out promptly, it is best to keep the prepared-transaction feature disabled by setting
max_prepared_transactions to zero. This will prevent accidental creation of prepared transactions
that might then be forgotten and eventually cause problems.

Examples
Prepare the current transaction for two-phase commit, using foobar as the transaction identifier:

PREPARE TRANSACTION 'foobar';

Compatibility
PREPARE TRANSACTION is a Postgres Pro extension. It is intended for use by external transaction
management systems, some of which are covered by standards (such as X/Open XA), but the SQL side
of those systems is not standardized.

See Also
COMMIT PREPARED, ROLLBACK PREPARED

1570

REASSIGN OWNED
REASSIGN OWNED — change the ownership of database objects owned by a database role

Synopsis
REASSIGN OWNED BY { old_role | CURRENT_USER | SESSION_USER } [, ...]
 TO { new_role | CURRENT_USER | SESSION_USER }

Description
REASSIGN OWNED instructs the system to change the ownership of database objects owned by any of the
old_roles to new_role.

Parameters
old_role

The name of a role. The ownership of all the objects within the current database, and of all shared
objects (databases, tablespaces), owned by this role will be reassigned to new_role.

new_role

The name of the role that will be made the new owner of the affected objects.

Notes
REASSIGN OWNED is often used to prepare for the removal of one or more roles. Because REASSIGN OWNED
does not affect objects within other databases, it is usually necessary to execute this command in each
database that contains objects owned by a role that is to be removed.

REASSIGN OWNED requires membership on both the source role(s) and the target role.

The DROP OWNED command is an alternative that simply drops all the database objects owned by one
or more roles.

The REASSIGN OWNED command does not affect any privileges granted to the old_roles on objects that
are not owned by them. Likewise, it does not affect default privileges created with ALTER DEFAULT
PRIVILEGES. Use DROP OWNED to revoke such privileges.

See Section 20.4 for more discussion.

Compatibility
The REASSIGN OWNED command is a Postgres Pro extension.

See Also
DROP OWNED, DROP ROLE, ALTER DATABASE

1571

REFRESH MATERIALIZED VIEW
REFRESH MATERIALIZED VIEW — replace the contents of a materialized view

Synopsis
REFRESH MATERIALIZED VIEW [CONCURRENTLY] name
 [WITH [NO] DATA]

Description
REFRESH MATERIALIZED VIEW completely replaces the contents of a materialized view. To execute this
command you must be the owner of the materialized view. The old contents are discarded. If WITH DATA is
specified (or defaults) the backing query is executed to provide the new data, and the materialized view
is left in a scannable state. If WITH NO DATA is specified no new data is generated and the materialized
view is left in an unscannable state.

CONCURRENTLY and WITH NO DATA may not be specified together.

Parameters
CONCURRENTLY

Refresh the materialized view without locking out concurrent selects on the materialized view.
Without this option a refresh which affects a lot of rows will tend to use fewer resources and complete
more quickly, but could block other connections which are trying to read from the materialized view.
This option may be faster in cases where a small number of rows are affected.

This option is only allowed if there is at least one UNIQUE index on the materialized view which uses
only column names and includes all rows; that is, it must not be an expression index or include a
WHERE clause.

This option may not be used when the materialized view is not already populated.

Even with this option only one REFRESH at a time may run against any one materialized view.

name

The name (optionally schema-qualified) of the materialized view to refresh.

Notes
If there is an ORDER BY clause in the materialized view's defining query, the original contents of the
materialized view will be ordered that way; but REFRESH MATERIALIZED VIEW does not guarantee to
preserve that ordering.

Examples
This command will replace the contents of the materialized view called order_summary using the query
from the materialized view's definition, and leave it in a scannable state:
REFRESH MATERIALIZED VIEW order_summary;

This command will free storage associated with the materialized view annual_statistics_basis and
leave it in an unscannable state:
REFRESH MATERIALIZED VIEW annual_statistics_basis WITH NO DATA;

Compatibility
REFRESH MATERIALIZED VIEW is a Postgres Pro extension.

1572

REFRESH MATERIALIZED VIEW

See Also
CREATE MATERIALIZED VIEW, ALTER MATERIALIZED VIEW, DROP MATERIALIZED VIEW

1573

REINDEX
REINDEX — rebuild indexes

Synopsis
REINDEX [(option [, ...])] { INDEX | TABLE | SCHEMA | DATABASE | SYSTEM }
 [CONCURRENTLY] name

where option can be one of:

 VERBOSE

Description
REINDEX rebuilds an index using the data stored in the index's table, replacing the old copy of the index.
There are several scenarios in which to use REINDEX:

• An index has become corrupted, and no longer contains valid data. Although in theory this should
never happen, in practice indexes can become corrupted due to software bugs or hardware
failures. REINDEX provides a recovery method.

• An index has become “bloated”, that is it contains many empty or nearly-empty pages. This can
occur with B-tree indexes in Postgres Pro under certain uncommon access patterns. REINDEX
provides a way to reduce the space consumption of the index by writing a new version of the index
without the dead pages. See Section 23.2 for more information.

• You have altered a storage parameter (such as fillfactor) for an index, and wish to ensure that the
change has taken full effect.

• If an index build fails with the CONCURRENTLY option, this index is left as “invalid”. Such indexes are
useless but it can be convenient to use REINDEX to rebuild them. Note that only REINDEX INDEX is
able to perform a concurrent build on an invalid index.

Parameters
INDEX

Recreate the specified index.

TABLE

Recreate all indexes of the specified table. If the table has a secondary “TOAST” table, that is
reindexed as well.

SCHEMA

Recreate all indexes of the specified schema. If a table of this schema has a secondary “TOAST”
table, that is reindexed as well. Indexes on shared system catalogs are also processed. This form of
REINDEX cannot be executed inside a transaction block.

DATABASE

Recreate all indexes within the current database. Indexes on shared system catalogs are also
processed. This form of REINDEX cannot be executed inside a transaction block.

SYSTEM

Recreate all indexes on system catalogs within the current database. Indexes on shared system
catalogs are included. Indexes on user tables are not processed. This form of REINDEX cannot be
executed inside a transaction block.

1574

REINDEX

name

The name of the specific index, table, or database to be reindexed. Index and table names can be
schema-qualified. Presently, REINDEX DATABASE and REINDEX SYSTEM can only reindex the current
database, so their parameter must match the current database's name.

CONCURRENTLY

When this option is used, Postgres Pro will rebuild the index without taking any locks that prevent
concurrent inserts, updates, or deletes on the table; whereas a standard index rebuild locks out
writes (but not reads) on the table until it's done. There are several caveats to be aware of when
using this option — see Rebuilding Indexes Concurrently below.

For temporary tables, REINDEX is always non-concurrent, as no other session can access them, and
non-concurrent reindex is cheaper.

VERBOSE

Prints a progress report as each index is reindexed.

Notes
If you suspect corruption of an index on a user table, you can simply rebuild that index, or all indexes
on the table, using REINDEX INDEX or REINDEX TABLE.

Things are more difficult if you need to recover from corruption of an index on a system table. In this
case it's important for the system to not have used any of the suspect indexes itself. (Indeed, in this sort
of scenario you might find that server processes are crashing immediately at start-up, due to reliance on
the corrupted indexes.) To recover safely, the server must be started with the -P option, which prevents
it from using indexes for system catalog lookups.

One way to do this is to shut down the server and start a single-user Postgres Pro server with the -P
option included on its command line. Then, REINDEX DATABASE, REINDEX SYSTEM, REINDEX TABLE, or
REINDEX INDEX can be issued, depending on how much you want to reconstruct. If in doubt, use REINDEX
SYSTEM to select reconstruction of all system indexes in the database. Then quit the single-user server
session and restart the regular server. See the postgres reference page for more information about how
to interact with the single-user server interface.

Alternatively, a regular server session can be started with -P included in its command line options.
The method for doing this varies across clients, but in all libpq-based clients, it is possible to set the
PGOPTIONS environment variable to -P before starting the client. Note that while this method does not
require locking out other clients, it might still be wise to prevent other users from connecting to the
damaged database until repairs have been completed.

REINDEX is similar to a drop and recreate of the index in that the index contents are rebuilt from scratch.
However, the locking considerations are rather different. REINDEX locks out writes but not reads of the
index's parent table. It also takes an ACCESS EXCLUSIVE lock on the specific index being processed, which
will block reads that attempt to use that index. In contrast, DROP INDEX momentarily takes an ACCESS
EXCLUSIVE lock on the parent table, blocking both writes and reads. The subsequent CREATE INDEX locks
out writes but not reads; since the index is not there, no read will attempt to use it, meaning that there
will be no blocking but reads might be forced into expensive sequential scans.

Reindexing a single index or table requires being the owner of that index or table. Reindexing a schema
or database requires being the owner of that schema or database. Note specifically that it's thus possible
for non-superusers to rebuild indexes of tables owned by other users. However, as a special exception,
when REINDEX DATABASE, REINDEX SCHEMA or REINDEX SYSTEM is issued by a non-superuser, indexes on
shared catalogs will be skipped unless the user owns the catalog (which typically won't be the case). Of
course, superusers can always reindex anything.

Reindexing partitioned tables or partitioned indexes is not supported. Each individual partition can be
reindexed separately instead.

1575

REINDEX

Rebuilding Indexes Concurrently
Rebuilding an index can interfere with regular operation of a database. Normally Postgres Pro locks the
table whose index is rebuilt against writes and performs the entire index build with a single scan of the
table. Other transactions can still read the table, but if they try to insert, update, or delete rows in the
table they will block until the index rebuild is finished. This could have a severe effect if the system is
a live production database. Very large tables can take many hours to be indexed, and even for smaller
tables, an index rebuild can lock out writers for periods that are unacceptably long for a production
system.

Postgres Pro supports rebuilding indexes with minimum locking of writes. This method is invoked by
specifying the CONCURRENTLY option of REINDEX. When this option is used, Postgres Pro must perform
two scans of the table for each index that needs to be rebuilt and wait for termination of all existing
transactions that could potentially use the index. This method requires more total work than a standard
index rebuild and takes significantly longer to complete as it needs to wait for unfinished transactions
that might modify the index. However, since it allows normal operations to continue while the index is
being rebuilt, this method is useful for rebuilding indexes in a production environment. Of course, the
extra CPU, memory and I/O load imposed by the index rebuild may slow down other operations.

The following steps occur in a concurrent reindex. Each step is run in a separate transaction. If there
are multiple indexes to be rebuilt, then each step loops through all the indexes before moving to the
next step.
1. A new transient index definition is added to the catalog pg_index. This definition will be used to

replace the old index. A SHARE UPDATE EXCLUSIVE lock at session level is taken on the indexes being
reindexed as well as their associated tables to prevent any schema modification while processing.

2. A first pass to build the index is done for each new index. Once the index is built, its flag
pg_index.indisready is switched to “true” to make it ready for inserts, making it visible to other
sessions once the transaction that performed the build is finished. This step is done in a separate
transaction for each index.

3. Then a second pass is performed to add tuples that were added while the first pass was running. This
step is also done in a separate transaction for each index.

4. All the constraints that refer to the index are changed to refer to the new index definition, and the
names of the indexes are changed. At this point, pg_index.indisvalid is switched to “true” for
the new index and to “false” for the old, and a cache invalidation is done causing all sessions that
referenced the old index to be invalidated.

5. The old indexes have pg_index.indisready switched to “false” to prevent any new tuple insertions,
after waiting for running queries that might reference the old index to complete.

6. The old indexes are dropped. The SHARE UPDATE EXCLUSIVE session locks for the indexes and the
table are released.

If a problem arises while rebuilding the indexes, such as a uniqueness violation in a unique index, the
REINDEX command will fail but leave behind an “invalid” new index in addition to the pre-existing one.
This index will be ignored for querying purposes because it might be incomplete; however it will still
consume update overhead. The psql \d command will report such an index as INVALID:
postgres=# \d tab
 Table "public.tab"
 Column | Type | Modifiers
--------+---------+-----------
 col | integer |
Indexes:
 "idx" btree (col)
 "idx_ccnew" btree (col) INVALID

If the index marked INVALID is suffixed ccnew, then it corresponds to the transient index created during
the concurrent operation, and the recommended recovery method is to drop it using DROP INDEX, then
attempt REINDEX CONCURRENTLY again. If the invalid index is instead suffixed ccold, it corresponds to

1576

REINDEX

the original index which could not be dropped; the recommended recovery method is to just drop said
index, since the rebuild proper has been successful.

Regular index builds permit other regular index builds on the same table to occur simultaneously, but
only one concurrent index build can occur on a table at a time. In both cases, no other types of schema
modification on the table are allowed meanwhile. Another difference is that a regular REINDEX TABLE
or REINDEX INDEX command can be performed within a transaction block, but REINDEX CONCURRENTLY
cannot.

Like any long-running transaction, REINDEX on a table can affect which tuples can be removed by
concurrent VACUUM on any other table.

REINDEX SYSTEM does not support CONCURRENTLY since system catalogs cannot be reindexed
concurrently.

Furthermore, indexes for exclusion constraints cannot be reindexed concurrently. If such an index is
named directly in this command, an error is raised. If a table or database with exclusion constraint
indexes is reindexed concurrently, those indexes will be skipped. (It is possible to reindex such indexes
without the CONCURRENTLY option.)

Examples
Rebuild a single index:

REINDEX INDEX my_index;

Rebuild all the indexes on the table my_table:

REINDEX TABLE my_table;

Rebuild all indexes in a particular database, without trusting the system indexes to be valid already:

$ export PGOPTIONS="-P"
$ psql broken_db
...
broken_db=> REINDEX DATABASE broken_db;
broken_db=> \q

Rebuild indexes for a table, without blocking read and write operations on involved relations while
reindexing is in progress:

REINDEX TABLE CONCURRENTLY my_broken_table;

Compatibility
There is no REINDEX command in the SQL standard.

See Also
CREATE INDEX, DROP INDEX, reindexdb

1577

RELEASE SAVEPOINT
RELEASE SAVEPOINT — destroy a previously defined savepoint

Synopsis
RELEASE [SAVEPOINT] savepoint_name

Description
RELEASE SAVEPOINT destroys a savepoint previously defined in the current transaction.

Destroying a savepoint makes it unavailable as a rollback point, but it has no other user visible behavior.
It does not undo the effects of commands executed after the savepoint was established. (To do that, see
ROLLBACK TO SAVEPOINT.) Destroying a savepoint when it is no longer needed allows the system to
reclaim some resources earlier than transaction end.

RELEASE SAVEPOINT also destroys all savepoints that were established after the named savepoint was
established.

Parameters
savepoint_name

The name of the savepoint to destroy.

Notes
Specifying a savepoint name that was not previously defined is an error.

It is not possible to release a savepoint when the transaction is in an aborted state.

If multiple savepoints have the same name, only the one that was most recently defined is released.

Examples
To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
This command conforms to the SQL standard. The standard specifies that the key word SAVEPOINT is
mandatory, but Postgres Pro allows it to be omitted.

See Also
BEGIN, COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT, SAVEPOINT

1578

RESET
RESET — restore the value of a run-time parameter to the default value

Synopsis
RESET configuration_parameter
RESET ALL

Description
RESET restores run-time parameters to their default values. RESET is an alternative spelling for

SET configuration_parameter TO DEFAULT

Refer to SET for details.

The default value is defined as the value that the parameter would have had, if no SET had ever been
issued for it in the current session. The actual source of this value might be a compiled-in default, the
configuration file, command-line options, or per-database or per-user default settings. This is subtly
different from defining it as “the value that the parameter had at session start”, because if the value
came from the configuration file, it will be reset to whatever is specified by the configuration file now.
See Chapter 18 for details.

The transactional behavior of RESET is the same as SET: its effects will be undone by transaction rollback.

Parameters
configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 18 and on
the SET reference page.

ALL

Resets all settable run-time parameters to default values.

Examples
Set the timezone configuration variable to its default value:

RESET timezone;

Compatibility
RESET is a Postgres Pro extension.

See Also
SET, SHOW

1579

REVOKE
REVOKE — remove access privileges

Synopsis
REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | DELETE | TRUNCATE | REFERENCES | TRIGGER }
 [, ...] | ALL [PRIVILEGES] }
 ON { [TABLE] table_name [, ...]
 | ALL TABLES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | INSERT | UPDATE | REFERENCES } (column_name [, ...])
 [, ...] | ALL [PRIVILEGES] (column_name [, ...]) }
 ON [TABLE] table_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { USAGE | SELECT | UPDATE }
 [, ...] | ALL [PRIVILEGES] }
 ON { SEQUENCE sequence_name [, ...]
 | ALL SEQUENCES IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | CONNECT | TEMPORARY | TEMP } [, ...] | ALL [PRIVILEGES] }
 ON DATABASE database_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON DOMAIN domain_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN DATA WRAPPER fdw_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON FOREIGN SERVER server_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { EXECUTE | ALL [PRIVILEGES] }
 ON { { FUNCTION | PROCEDURE | ROUTINE } function_name [([[argmode] [arg_name
] arg_type [, ...]])] [, ...]

1580

REVOKE

 | ALL { FUNCTIONS | PROCEDURES | ROUTINES } IN SCHEMA schema_name [, ...] }
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON LANGUAGE lang_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { SELECT | UPDATE } [, ...] | ALL [PRIVILEGES] }
 ON LARGE OBJECT loid [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { { CREATE | USAGE } [, ...] | ALL [PRIVILEGES] }
 ON SCHEMA schema_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { CREATE | ALL [PRIVILEGES] }
 ON TABLESPACE tablespace_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [GRANT OPTION FOR]
 { USAGE | ALL [PRIVILEGES] }
 ON TYPE type_name [, ...]
 FROM role_specification [, ...]
 [CASCADE | RESTRICT]

REVOKE [ADMIN OPTION FOR]
 role_name [, ...] FROM role_specification [, ...]
 [GRANTED BY role_specification]
 [CASCADE | RESTRICT]

where role_specification can be:

 [GROUP] role_name
 | PUBLIC
 | CURRENT_USER
 | SESSION_USER

Description
The REVOKE command revokes previously granted privileges from one or more roles. The key word PUBLIC
refers to the implicitly defined group of all roles.

See the description of the GRANT command for the meaning of the privilege types.

Note that any particular role will have the sum of privileges granted directly to it, privileges granted
to any role it is presently a member of, and privileges granted to PUBLIC. Thus, for example, revoking
SELECT privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege on the
object: those who have it granted directly or via another role will still have it. Similarly, revoking SELECT
from a user might not prevent that user from using SELECT if PUBLIC or another membership role still
has SELECT rights.

1581

REVOKE

If GRANT OPTION FOR is specified, only the grant option for the privilege is revoked, not the privilege
itself. Otherwise, both the privilege and the grant option are revoked.

If a user holds a privilege with grant option and has granted it to other users then the privileges held
by those other users are called dependent privileges. If the privilege or the grant option held by the
first user is being revoked and dependent privileges exist, those dependent privileges are also revoked
if CASCADE is specified; if it is not, the revoke action will fail. This recursive revocation only affects
privileges that were granted through a chain of users that is traceable to the user that is the subject of
this REVOKE command. Thus, the affected users might effectively keep the privilege if it was also granted
through other users.

When revoking privileges on a table, the corresponding column privileges (if any) are automatically
revoked on each column of the table, as well. On the other hand, if a role has been granted privileges
on a table, then revoking the same privileges from individual columns will have no effect.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION, but the behavior is
similar. This form of the command also allows a GRANTED BY option, but that option is currently ignored
(except for checking the existence of the named role). Note also that this form of the command does not
allow the noise word GROUP in role_specification.

Notes
A user can only revoke privileges that were granted directly by that user. If, for example, user A has
granted a privilege with grant option to user B, and user B has in turn granted it to user C, then user A
cannot revoke the privilege directly from C. Instead, user A could revoke the grant option from user B
and use the CASCADE option so that the privilege is in turn revoked from user C. For another example,
if both A and B have granted the same privilege to C, A can revoke their own grant but not B's grant,
so C will still effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail
outright if the user has no privileges whatsoever on the object. As long as some privilege is available,
the command will proceed, but it will revoke only those privileges for which the user has grant options.
The REVOKE ALL PRIVILEGES forms will issue a warning message if no grant options are held, while
the other forms will issue a warning if grant options for any of the privileges specifically named in the
command are not held. (In principle these statements apply to the object owner as well, but since the
owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it were
issued by the owner of the affected object. Since all privileges ultimately come from the object owner
(possibly indirectly via chains of grant options), it is possible for a superuser to revoke all privileges, but
this might require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role
that owns the object, or is a member of a role that holds privileges WITH GRANT OPTION on the object. In
this case the command is performed as though it were issued by the containing role that actually owns
the object or holds the privileges WITH GRANT OPTION. For example, if table t1 is owned by role g1, of
which role u1 is a member, then u1 can revoke privileges on t1 that are recorded as being granted by
g1. This would include grants made by u1 as well as by other members of role g1.

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is
unspecified which containing role will be used to perform the command. In such cases it is best practice
to use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so might lead to
revoking privileges other than the ones you intended, or not revoking anything at all.

See Section 5.7 for more information about specific privilege types, as well as how to inspect objects'
privileges.

Examples
Revoke insert privilege for the public on table films:

1582

REVOKE

REVOKE INSERT ON films FROM PUBLIC;

Revoke all privileges from user manuel on view kinds:

REVOKE ALL PRIVILEGES ON kinds FROM manuel;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe:

REVOKE admins FROM joe;

Compatibility
The compatibility notes of the GRANT command apply analogously to REVOKE. The keyword RESTRICT or
CASCADE is required according to the standard, but Postgres Pro assumes RESTRICT by default.

See Also
GRANT, ALTER DEFAULT PRIVILEGES

1583

ROLLBACK
ROLLBACK — abort the current transaction

Synopsis
ROLLBACK [WORK | TRANSACTION] [AND [NO] CHAIN]

Description
ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be
discarded.

Parameters
WORK
TRANSACTION

Optional key words. They have no effect.

AND CHAIN

If AND CHAIN is specified, a new transaction is immediately started with the same transaction
characteristics (see SET TRANSACTION) as the just finished one. Otherwise, no new transaction is
started.

Notes
Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK outside of a transaction block emits a warning and otherwise has no effect. ROLLBACK
AND CHAIN outside of a transaction block is an error.

Examples
To abort all changes:

ROLLBACK;

Compatibility
The command ROLLBACK conforms to the SQL standard. The form ROLLBACK TRANSACTION is a Postgres
Pro extension.

See Also
BEGIN, COMMIT, ROLLBACK TO SAVEPOINT

1584

ROLLBACK PREPARED
ROLLBACK PREPARED — cancel a transaction that was earlier prepared for two-phase commit

Synopsis
ROLLBACK PREPARED transaction_id

Description
ROLLBACK PREPARED rolls back a transaction that is in prepared state.

Parameters
transaction_id

The transaction identifier of the transaction that is to be rolled back.

Notes
To roll back a prepared transaction, you must be either the same user that executed the transaction
originally, or a superuser. But you do not have to be in the same session that executed the transaction.

This command cannot be executed inside a transaction block. The prepared transaction is rolled back
immediately.

All currently available prepared transactions are listed in the pg_prepared_xacts system view.

Examples
Roll back the transaction identified by the transaction identifier foobar:

ROLLBACK PREPARED 'foobar';

Compatibility
ROLLBACK PREPARED is a Postgres Pro extension. It is intended for use by external transaction
management systems, some of which are covered by standards (such as X/Open XA), but the SQL side
of those systems is not standardized.

See Also
PREPARE TRANSACTION, COMMIT PREPARED

1585

ROLLBACK TO SAVEPOINT
ROLLBACK TO SAVEPOINT — roll back to a savepoint

Synopsis
ROLLBACK [WORK | TRANSACTION] TO [SAVEPOINT] savepoint_name

Description
Roll back all commands that were executed after the savepoint was established. The savepoint remains
valid and can be rolled back to again later, if needed.

ROLLBACK TO SAVEPOINT implicitly destroys all savepoints that were established after the named
savepoint.

Parameters
savepoint_name

The savepoint to roll back to.

Notes
Use RELEASE SAVEPOINT to destroy a savepoint without discarding the effects of commands executed
after it was established.

Specifying a savepoint name that has not been established is an error.

Cursors have somewhat non-transactional behavior with respect to savepoints. Any cursor that is opened
inside a savepoint will be closed when the savepoint is rolled back. If a previously opened cursor is
affected by a FETCH or MOVE command inside a savepoint that is later rolled back, the cursor remains
at the position that FETCH left it pointing to (that is, the cursor motion caused by FETCH is not rolled
back). Closing a cursor is not undone by rolling back, either. However, other side-effects caused by the
cursor's query (such as side-effects of volatile functions called by the query) are rolled back if they occur
during a savepoint that is later rolled back. A cursor whose execution causes a transaction to abort is
put in a cannot-execute state, so while the transaction can be restored using ROLLBACK TO SAVEPOINT,
the cursor can no longer be used.

Examples
To undo the effects of the commands executed after my_savepoint was established:
ROLLBACK TO SAVEPOINT my_savepoint;

Cursor positions are not affected by savepoint rollback:
BEGIN;

DECLARE foo CURSOR FOR SELECT 1 UNION SELECT 2;

SAVEPOINT foo;

FETCH 1 FROM foo;
 ?column?

 1

ROLLBACK TO SAVEPOINT foo;

1586

ROLLBACK TO SAVEPOINT

FETCH 1 FROM foo;
 ?column?

 2

COMMIT;

Compatibility
The SQL standard specifies that the key word SAVEPOINT is mandatory, but Postgres Pro and Oracle
allow it to be omitted. SQL allows only WORK, not TRANSACTION, as a noise word after ROLLBACK. Also, SQL
has an optional clause AND [NO] CHAIN which is not currently supported by Postgres Pro. Otherwise,
this command conforms to the SQL standard.

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, SAVEPOINT

1587

SAVEPOINT
SAVEPOINT — define a new savepoint within the current transaction

Synopsis
SAVEPOINT savepoint_name

Description
SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was
established to be rolled back, restoring the transaction state to what it was at the time of the savepoint.

Parameters
savepoint_name

The name to give to the new savepoint.

Notes
Use ROLLBACK TO SAVEPOINT to rollback to a savepoint. Use RELEASE SAVEPOINT to destroy a
savepoint, keeping the effects of commands executed after it was established.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints
defined within a transaction.

Examples
To establish a savepoint and later undo the effects of all commands executed after it was established:

BEGIN;
 INSERT INTO table1 VALUES (1);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (2);
 ROLLBACK TO SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (3);
COMMIT;

The above transaction will insert the values 1 and 3, but not 2.

To establish and later destroy a savepoint:

BEGIN;
 INSERT INTO table1 VALUES (3);
 SAVEPOINT my_savepoint;
 INSERT INTO table1 VALUES (4);
 RELEASE SAVEPOINT my_savepoint;
COMMIT;

The above transaction will insert both 3 and 4.

Compatibility
SQL requires a savepoint to be destroyed automatically when another savepoint with the same name
is established. In Postgres Pro, the old savepoint is kept, though only the more recent one will be used
when rolling back or releasing. (Releasing the newer savepoint with RELEASE SAVEPOINT will cause the
older one to again become accessible to ROLLBACK TO SAVEPOINT and RELEASE SAVEPOINT.) Otherwise,
SAVEPOINT is fully SQL conforming.

1588

SAVEPOINT

See Also
BEGIN, COMMIT, RELEASE SAVEPOINT, ROLLBACK, ROLLBACK TO SAVEPOINT

1589

SECURITY LABEL
SECURITY LABEL — define or change a security label applied to an object

Synopsis
SECURITY LABEL [FOR provider] ON
{
 TABLE object_name |
 COLUMN table_name.column_name |
 AGGREGATE aggregate_name (aggregate_signature) |
 DATABASE object_name |
 DOMAIN object_name |
 EVENT TRIGGER object_name |
 FOREIGN TABLE object_name
 FUNCTION function_name [([[argmode] [argname] argtype [, ...]])] |
 LARGE OBJECT large_object_oid |
 MATERIALIZED VIEW object_name |
 [PROCEDURAL] LANGUAGE object_name |
 PROCEDURE procedure_name [([[argmode] [argname] argtype [, ...]])] |
 PUBLICATION object_name |
 ROLE object_name |
 ROUTINE routine_name [([[argmode] [argname] argtype [, ...]])] |
 SCHEMA object_name |
 SEQUENCE object_name |
 SUBSCRIPTION object_name |
 TABLESPACE object_name |
 TYPE object_name |
 VIEW object_name
} IS 'label'

where aggregate_signature is:

* |
[argmode] [argname] argtype [, ...] |
[[argmode] [argname] argtype [, ...]] ORDER BY [argmode] [argname] argtype
 [, ...]

Description
SECURITY LABEL applies a security label to a database object. An arbitrary number of security labels,
one per label provider, can be associated with a given database object. Label providers are loadable
modules which register themselves by using the function register_label_provider.

Note
register_label_provider is not an SQL function; it can only be called from C code loaded into
the backend.

The label provider determines whether a given label is valid and whether it is permissible to assign that
label to a given object. The meaning of a given label is likewise at the discretion of the label provider.
Postgres Pro places no restrictions on whether or how a label provider must interpret security labels; it
merely provides a mechanism for storing them. In practice, this facility is intended to allow integration
with label-based mandatory access control (MAC) systems such as SELinux. Such systems make all
access control decisions based on object labels, rather than traditional discretionary access control
(DAC) concepts such as users and groups.

1590

SECURITY LABEL

Parameters
object_name
table_name.column_name
aggregate_name
function_name
procedure_name
routine_name

The name of the object to be labeled. Names of tables, aggregates, domains, foreign tables, functions,
procedures, routines, sequences, types, and views can be schema-qualified.

provider

The name of the provider with which this label is to be associated. The named provider must be
loaded and must consent to the proposed labeling operation. If exactly one provider is loaded, the
provider name may be omitted for brevity.

argmode

The mode of a function, procedure, or aggregate argument: IN, OUT, INOUT, or VARIADIC. If omitted,
the default is IN. Note that SECURITY LABEL does not actually pay any attention to OUT arguments,
since only the input arguments are needed to determine the function's identity. So it is sufficient to
list the IN, INOUT, and VARIADIC arguments.

argname

The name of a function, procedure, or aggregate argument. Note that SECURITY LABEL does not
actually pay any attention to argument names, since only the argument data types are needed to
determine the function's identity.

argtype

The data type of a function, procedure, or aggregate argument.

large_object_oid

The OID of the large object.

PROCEDURAL

This is a noise word.

label

The new security label, written as a string literal; or NULL to drop the security label.

Examples
The following example shows how the security label of a table might be changed.

SECURITY LABEL FOR selinux ON TABLE mytable IS 'system_u:object_r:sepgsql_table_t:s0';

Compatibility
There is no SECURITY LABEL command in the SQL standard.

See Also
sepgsql

1591

SELECT
SELECT, TABLE, WITH — retrieve rows from a table or view

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 [* | expression [[AS] output_name] [, ...]]
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY grouping_element [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }]
 [FOR { UPDATE | NO KEY UPDATE | SHARE | KEY SHARE } [OF table_name [, ...]]
 [NOWAIT | SKIP LOCKED] [...]]

where from_item can be one of:

 [ONLY] table_name [*] [[AS] alias [(column_alias [, ...])]]
 [TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed
)]]
 [LATERAL] (select) [AS] alias [(column_alias [, ...])]
 with_query_name [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 [LATERAL] function_name ([argument [, ...]]) [AS] alias (column_definition
 [, ...])
 [LATERAL] function_name ([argument [, ...]]) AS (column_definition [, ...])
 [LATERAL] ROWS FROM(function_name ([argument [, ...]]) [AS
 (column_definition [, ...])] [, ...])
 [WITH ORDINALITY] [[AS] alias [(column_alias [, ...])]]
 from_item [NATURAL] join_type from_item [ON join_condition | USING (join_column
 [, ...])]

and grouping_element can be one of:

 ()
 expression
 (expression [, ...])
 ROLLUP ({ expression | (expression [, ...]) } [, ...])
 CUBE ({ expression | (expression [, ...]) } [, ...])
 GROUPING SETS (grouping_element [, ...])

and with_query is:

 with_query_name [(column_name [, ...])] AS [[NOT] MATERIALIZED] (select
 | values | insert | update | delete)

TABLE [ONLY] table_name [*]

1592

SELECT

Description
SELECT retrieves rows from zero or more tables. The general processing of SELECT is as follows:

1. All queries in the WITH list are computed. These effectively serve as temporary tables that can be
referenced in the FROM list. A WITH query that is referenced more than once in FROM is computed only
once, unless specified otherwise with NOT MATERIALIZED. (See WITH Clause below.)

2. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.)
If more than one element is specified in the FROM list, they are cross-joined together. (See FROM
Clause below.)

3. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the
output. (See WHERE Clause below.)

4. If the GROUP BY clause is specified, or if there are aggregate function calls, the output is combined
into groups of rows that match on one or more values, and the results of aggregate functions are
computed. If the HAVING clause is present, it eliminates groups that do not satisfy the given condition.
(See GROUP BY Clause and HAVING Clause below.)

5. The actual output rows are computed using the SELECT output expressions for each selected row or
row group. (See SELECT List below.)

6. SELECT DISTINCT eliminates duplicate rows from the result. SELECT DISTINCT ON eliminates rows
that match on all the specified expressions. SELECT ALL (the default) will return all candidate rows,
including duplicates. (See DISTINCT Clause below.)

7. Using the operators UNION, INTERSECT, and EXCEPT, the output of more than one SELECT statement
can be combined to form a single result set. The UNION operator returns all rows that are in one or
both of the result sets. The INTERSECT operator returns all rows that are strictly in both result sets.
The EXCEPT operator returns the rows that are in the first result set but not in the second. In all
three cases, duplicate rows are eliminated unless ALL is specified. The noise word DISTINCT can be
added to explicitly specify eliminating duplicate rows. Notice that DISTINCT is the default behavior
here, even though ALL is the default for SELECT itself. (See UNION Clause, INTERSECT Clause, and
EXCEPT Clause below.)

8. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY is
not given, the rows are returned in whatever order the system finds fastest to produce. (See ORDER
BY Clause below.)

9. If the LIMIT (or FETCH FIRST) or OFFSET clause is specified, the SELECT statement only returns a
subset of the result rows. (See LIMIT Clause below.)

10.If FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE or FOR KEY SHARE is specified, the SELECT statement
locks the selected rows against concurrent updates. (See The Locking Clause below.)

You must have SELECT privilege on each column used in a SELECT command. The use of FOR NO KEY
UPDATE, FOR UPDATE, FOR SHARE or FOR KEY SHARE requires UPDATE privilege as well (for at least one
column of each table so selected).

Parameters

WITH Clause
The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
primary query. The subqueries effectively act as temporary tables or views for the duration of the primary
query. Each subquery can be a SELECT, TABLE, VALUES, INSERT, UPDATE or DELETE statement. When
writing a data-modifying statement (INSERT, UPDATE or DELETE) in WITH, it is usual to include a RETURNING
clause. It is the output of RETURNING, not the underlying table that the statement modifies, that forms
the temporary table that is read by the primary query. If RETURNING is omitted, the statement is still
executed, but it produces no output so it cannot be referenced as a table by the primary query.

1593

SELECT

A name (without schema qualification) must be specified for each WITH query. Optionally, a list of column
names can be specified; if this is omitted, the column names are inferred from the subquery.

If RECURSIVE is specified, it allows a SELECT subquery to reference itself by name. Such a subquery must
have the form

non_recursive_term UNION [ALL | DISTINCT] recursive_term

where the recursive self-reference must appear on the right-hand side of the UNION. Only one recursive
self-reference is permitted per query. Recursive data-modifying statements are not supported, but you
can use the results of a recursive SELECT query in a data-modifying statement. See Section 7.8 for an
example.

Another effect of RECURSIVE is that WITH queries need not be ordered: a query can reference another
one that is later in the list. (However, circular references, or mutual recursion, are not implemented.)
Without RECURSIVE, WITH queries can only reference sibling WITH queries that are earlier in the WITH list.

When there are multiple queries in the WITH clause, RECURSIVE should be written only once, immediately
after WITH. It applies to all queries in the WITH clause, though it has no effect on queries that do not use
recursion or forward references.

The primary query and the WITH queries are all (notionally) executed at the same time. This implies that
the effects of a data-modifying statement in WITH cannot be seen from other parts of the query, other
than by reading its RETURNING output. If two such data-modifying statements attempt to modify the same
row, the results are unspecified.

A key property of WITH queries is that they are normally evaluated only once per execution of the primary
query, even if the primary query refers to them more than once. In particular, data-modifying statements
are guaranteed to be executed once and only once, regardless of whether the primary query reads all
or any of their output.

However, a WITH query can be marked NOT MATERIALIZED to remove this guarantee. In that case, the
WITH query can be folded into the primary query much as though it were a simple sub-SELECT in the
primary query's FROM clause. This results in duplicate computations if the primary query refers to that
WITH query more than once; but if each such use requires only a few rows of the WITH query's total
output, NOT MATERIALIZED can provide a net savings by allowing the queries to be optimized jointly. NOT
MATERIALIZED is ignored if it is attached to a WITH query that is recursive or is not side-effect-free (i.e.,
is not a plain SELECT containing no volatile functions).

By default, a side-effect-free WITH query is folded into the primary query if it is used exactly once in the
primary query's FROM clause. This allows joint optimization of the two query levels in situations where
that should be semantically invisible. However, such folding can be prevented by marking the WITH query
as MATERIALIZED. That might be useful, for example, if the WITH query is being used as an optimization
fence to prevent the planner from choosing a bad plan. Postgres Pro versions before v12 never did such
folding, so queries written for older versions might rely on WITH to act as an optimization fence.

See Section 7.8 for additional information.

FROM Clause
The FROM clause specifies one or more source tables for the SELECT. If multiple sources are specified,
the result is the Cartesian product (cross join) of all the sources. But usually qualification conditions are
added (via WHERE) to restrict the returned rows to a small subset of the Cartesian product.

The FROM clause can contain the following elements:

table_name

The name (optionally schema-qualified) of an existing table or view. If ONLY is specified before the
table name, only that table is scanned. If ONLY is not specified, the table and all its descendant tables

1594

SELECT

(if any) are scanned. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to eliminate
ambiguity for self-joins (where the same table is scanned multiple times). When an alias is provided,
it completely hides the actual name of the table or function; for example given FROM foo AS f, the
remainder of the SELECT must refer to this FROM item as f not foo. If an alias is written, a column
alias list can also be written to provide substitute names for one or more columns of the table.

TABLESAMPLE sampling_method (argument [, ...]) [REPEATABLE (seed)]

A TABLESAMPLE clause after a table_name indicates that the specified sampling_method should be
used to retrieve a subset of the rows in that table. This sampling precedes the application of any other
filters such as WHERE clauses. The standard Postgres Pro distribution includes two sampling methods,
BERNOULLI and SYSTEM, and other sampling methods can be installed in the database via extensions.

The BERNOULLI and SYSTEM sampling methods each accept a single argument which is the fraction
of the table to sample, expressed as a percentage between 0 and 100. This argument can be any
real-valued expression. (Other sampling methods might accept more or different arguments.) These
two methods each return a randomly-chosen sample of the table that will contain approximately the
specified percentage of the table's rows. The BERNOULLI method scans the whole table and selects
or ignores individual rows independently with the specified probability. The SYSTEM method does
block-level sampling with each block having the specified chance of being selected; all rows in each
selected block are returned. The SYSTEM method is significantly faster than the BERNOULLI method
when small sampling percentages are specified, but it may return a less-random sample of the table
as a result of clustering effects.

The optional REPEATABLE clause specifies a seed number or expression to use for generating random
numbers within the sampling method. The seed value can be any non-null floating-point value. Two
queries that specify the same seed and argument values will select the same sample of the table, if
the table has not been changed meanwhile. But different seed values will usually produce different
samples. If REPEATABLE is not given then a new random sample is selected for each query, based
upon a system-generated seed. Note that some add-on sampling methods do not accept REPEATABLE,
and will always produce new samples on each use.

select

A sub-SELECT can appear in the FROM clause. This acts as though its output were created as a
temporary table for the duration of this single SELECT command. Note that the sub-SELECT must be
surrounded by parentheses, and an alias must be provided for it. A VALUES command can also be
used here.

with_query_name

A WITH query is referenced by writing its name, just as though the query's name were a table name.
(In fact, the WITH query hides any real table of the same name for the purposes of the primary query.
If necessary, you can refer to a real table of the same name by schema-qualifying the table's name.)
An alias can be provided in the same way as for a table.

function_name

Function calls can appear in the FROM clause. (This is especially useful for functions that return
result sets, but any function can be used.) This acts as though the function's output were created
as a temporary table for the duration of this single SELECT command. If the function's result type is
composite (including the case of a function with multiple OUT parameters), each attribute becomes
a separate column in the implicit table.

When the optional WITH ORDINALITY clause is added to the function call, an additional column of
type bigint will be appended to the function's result column(s). This column numbers the rows of
the function's result set, starting from 1. By default, this column is named ordinality.

1595

SELECT

An alias can be provided in the same way as for a table. If an alias is written, a column alias list can
also be written to provide substitute names for one or more attributes of the function's composite
return type, including the ordinality column if present.

Multiple function calls can be combined into a single FROM-clause item by surrounding them with ROWS
FROM(...). The output of such an item is the concatenation of the first row from each function, then
the second row from each function, etc. If some of the functions produce fewer rows than others,
null values are substituted for the missing data, so that the total number of rows returned is always
the same as for the function that produced the most rows.

If the function has been defined as returning the record data type, then an alias or the key word
AS must be present, followed by a column definition list in the form (column_name data_type
[, ...]). The column definition list must match the actual number and types of columns returned
by the function.

When using the ROWS FROM(...) syntax, if one of the functions requires a column definition list,
it's preferred to put the column definition list after the function call inside ROWS FROM(...). A
column definition list can be placed after the ROWS FROM(...) construct only if there's just a single
function and no WITH ORDINALITY clause.

To use ORDINALITY together with a column definition list, you must use the ROWS FROM(...) syntax
and put the column definition list inside ROWS FROM(...).

join_type

One of
• [INNER] JOIN

• LEFT [OUTER] JOIN

• RIGHT [OUTER] JOIN

• FULL [OUTER] JOIN

• CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely exactly one of NATURAL,
ON join_condition, or USING (join_column [, ...]). See below for the meaning. For CROSS JOIN,
none of these clauses can appear.

A JOIN clause combines two FROM items, which for convenience we will refer to as “tables”, though
in reality they can be any type of FROM item. Use parentheses if necessary to determine the order of
nesting. In the absence of parentheses, JOINs nest left-to-right. In any case JOIN binds more tightly
than the commas separating FROM-list items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from
listing the two tables at the top level of FROM, but restricted by the join condition (if any). CROSS JOIN
is equivalent to INNER JOIN ON (TRUE), that is, no rows are removed by qualification. These join types
are just a notational convenience, since they do nothing you couldn't do with plain FROM and WHERE.

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that pass
its join condition), plus one copy of each row in the left-hand table for which there was no right-hand
row that passed the join condition. This left-hand row is extended to the full width of the joined table
by inserting null values for the right-hand columns. Note that only the JOIN clause's own condition
is considered while deciding which rows have matches. Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched right-
hand row (extended with nulls on the left). This is just a notational convenience, since you could
convert it to a LEFT OUTER JOIN by switching the left and right tables.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row
(extended with nulls on the right), plus one row for each unmatched right-hand row (extended with
nulls on the left).

1596

SELECT

ON join_condition

join_condition is an expression resulting in a value of type boolean (similar to a WHERE clause) that
specifies which rows in a join are considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a = right_table.a AND
left_table.b = right_table.b Also, USING implies that only one of each pair of equivalent
columns will be included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have matching
names. If there are no common column names, NATURAL is equivalent to ON TRUE.

LATERAL

The LATERAL key word can precede a sub-SELECT FROM item. This allows the sub-SELECT to refer to
columns of FROM items that appear before it in the FROM list. (Without LATERAL, each sub-SELECT is
evaluated independently and so cannot cross-reference any other FROM item.)

LATERAL can also precede a function-call FROM item, but in this case it is a noise word, because the
function expression can refer to earlier FROM items in any case.

A LATERAL item can appear at top level in the FROM list, or within a JOIN tree. In the latter case it can
also refer to any items that are on the left-hand side of a JOIN that it is on the right-hand side of.

When a FROM item contains LATERAL cross-references, evaluation proceeds as follows: for each row
of the FROM item providing the cross-referenced column(s), or set of rows of multiple FROM items
providing the columns, the LATERAL item is evaluated using that row or row set's values of the
columns. The resulting row(s) are joined as usual with the rows they were computed from. This is
repeated for each row or set of rows from the column source table(s).

The column source table(s) must be INNER or LEFT joined to the LATERAL item, else there would not
be a well-defined set of rows from which to compute each set of rows for the LATERAL item. Thus,
although a construct such as X RIGHT JOIN LATERAL Y is syntactically valid, it is not actually allowed
for Y to reference X.

WHERE Clause
The optional WHERE clause has the general form

WHERE condition

where condition is any expression that evaluates to a result of type boolean. Any row that does not
satisfy this condition will be eliminated from the output. A row satisfies the condition if it returns true
when the actual row values are substituted for any variable references.

GROUP BY Clause
The optional GROUP BY clause has the general form

GROUP BY grouping_element [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped
expressions. An expression used inside a grouping_element can be an input column name, or the name
or ordinal number of an output column (SELECT list item), or an arbitrary expression formed from input-
column values. In case of ambiguity, a GROUP BY name will be interpreted as an input-column name
rather than an output column name.

If any of GROUPING SETS, ROLLUP or CUBE are present as grouping elements, then the GROUP BY clause
as a whole defines some number of independent grouping sets. The effect of this is equivalent to

1597

SELECT

constructing a UNION ALL between subqueries with the individual grouping sets as their GROUP BY
clauses. For further details on the handling of grouping sets see Section 7.2.4.

Aggregate functions, if any are used, are computed across all rows making up each group, producing
a separate value for each group. (If there are aggregate functions but no GROUP BY clause, the query
is treated as having a single group comprising all the selected rows.) The set of rows fed to each
aggregate function can be further filtered by attaching a FILTER clause to the aggregate function call;
see Section 4.2.7 for more information. When a FILTER clause is present, only those rows matching it
are included in the input to that aggregate function.

When GROUP BY is present, or any aggregate functions are present, it is not valid for the SELECT list
expressions to refer to ungrouped columns except within aggregate functions or when the ungrouped
column is functionally dependent on the grouped columns, since there would otherwise be more than
one possible value to return for an ungrouped column. A functional dependency exists if the grouped
columns (or a subset thereof) are the primary key of the table containing the ungrouped column.

Keep in mind that all aggregate functions are evaluated before evaluating any “scalar” expressions in
the HAVING clause or SELECT list. This means that, for example, a CASE expression cannot be used to skip
evaluation of an aggregate function; see Section 4.2.14.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
GROUP BY.

HAVING Clause
The optional HAVING clause has the general form
HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the condition. HAVING is different from WHERE: WHERE
filters individual rows before the application of GROUP BY, while HAVING filters group rows created by
GROUP BY. Each column referenced in condition must unambiguously reference a grouping column,
unless the reference appears within an aggregate function or the ungrouped column is functionally
dependent on the grouping columns.

The presence of HAVING turns a query into a grouped query even if there is no GROUP BY clause. This
is the same as what happens when the query contains aggregate functions but no GROUP BY clause.
All the selected rows are considered to form a single group, and the SELECT list and HAVING clause can
only reference table columns from within aggregate functions. Such a query will emit a single row if the
HAVING condition is true, zero rows if it is not true.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
HAVING.

WINDOW Clause
The optional WINDOW clause has the general form
WINDOW window_name AS (window_definition) [, ...]

where window_name is a name that can be referenced from OVER clauses or subsequent window
definitions, and window_definition is
[existing_window_name]
[PARTITION BY expression [, ...]]
[ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
[frame_clause]

If an existing_window_name is specified it must refer to an earlier entry in the WINDOW list; the new
window copies its partitioning clause from that entry, as well as its ordering clause if any. In this case the

1598

SELECT

new window cannot specify its own PARTITION BY clause, and it can specify ORDER BY only if the copied
window does not have one. The new window always uses its own frame clause; the copied window must
not specify a frame clause.

The elements of the PARTITION BY list are interpreted in much the same fashion as elements of a GROUP
BY clause, except that they are always simple expressions and never the name or number of an output
column. Another difference is that these expressions can contain aggregate function calls, which are not
allowed in a regular GROUP BY clause. They are allowed here because windowing occurs after grouping
and aggregation.

Similarly, the elements of the ORDER BY list are interpreted in much the same fashion as elements of a
statement-level ORDER BY clause, except that the expressions are always taken as simple expressions
and never the name or number of an output column.

The optional frame_clause defines the window frame for window functions that depend on the frame
(not all do). The window frame is a set of related rows for each row of the query (called the current
row). The frame_clause can be one of
{ RANGE | ROWS | GROUPS } frame_start [frame_exclusion]
{ RANGE | ROWS | GROUPS } BETWEEN frame_start AND frame_end [frame_exclusion]

where frame_start and frame_end can be one of
UNBOUNDED PRECEDING
offset PRECEDING
CURRENT ROW
offset FOLLOWING
UNBOUNDED FOLLOWING

and frame_exclusion can be one of
EXCLUDE CURRENT ROW
EXCLUDE GROUP
EXCLUDE TIES
EXCLUDE NO OTHERS

If frame_end is omitted it defaults to CURRENT ROW. Restrictions are that frame_start cannot be
UNBOUNDED FOLLOWING, frame_end cannot be UNBOUNDED PRECEDING, and the frame_end choice cannot
appear earlier in the above list of frame_start and frame_end options than the frame_start choice
does — for example RANGE BETWEEN CURRENT ROW AND offset PRECEDING is not allowed.

The default framing option is RANGE UNBOUNDED PRECEDING, which is the same as RANGE BETWEEN
UNBOUNDED PRECEDING AND CURRENT ROW; it sets the frame to be all rows from the partition start up
through the current row's last peer (a row that the window's ORDER BY clause considers equivalent to the
current row; all rows are peers if there is no ORDER BY). In general, UNBOUNDED PRECEDING means that
the frame starts with the first row of the partition, and similarly UNBOUNDED FOLLOWING means that the
frame ends with the last row of the partition, regardless of RANGE, ROWS or GROUPS mode. In ROWS mode,
CURRENT ROW means that the frame starts or ends with the current row; but in RANGE or GROUPS mode it
means that the frame starts or ends with the current row's first or last peer in the ORDER BY ordering.
The offset PRECEDING and offset FOLLOWING options vary in meaning depending on the frame mode.
In ROWS mode, the offset is an integer indicating that the frame starts or ends that many rows before or
after the current row. In GROUPS mode, the offset is an integer indicating that the frame starts or ends
that many peer groups before or after the current row's peer group, where a peer group is a group of
rows that are equivalent according to the window's ORDER BY clause. In RANGE mode, use of an offset
option requires that there be exactly one ORDER BY column in the window definition. Then the frame
contains those rows whose ordering column value is no more than offset less than (for PRECEDING) or
more than (for FOLLOWING) the current row's ordering column value. In these cases the data type of the
offset expression depends on the data type of the ordering column. For numeric ordering columns it is
typically of the same type as the ordering column, but for datetime ordering columns it is an interval. In
all these cases, the value of the offset must be non-null and non-negative. Also, while the offset does
not have to be a simple constant, it cannot contain variables, aggregate functions, or window functions.

1599

SELECT

The frame_exclusion option allows rows around the current row to be excluded from the frame, even
if they would be included according to the frame start and frame end options. EXCLUDE CURRENT ROW
excludes the current row from the frame. EXCLUDE GROUP excludes the current row and its ordering
peers from the frame. EXCLUDE TIES excludes any peers of the current row from the frame, but not the
current row itself. EXCLUDE NO OTHERS simply specifies explicitly the default behavior of not excluding
the current row or its peers.

Beware that the ROWS mode can produce unpredictable results if the ORDER BY ordering does not order
the rows uniquely. The RANGE and GROUPS modes are designed to ensure that rows that are peers in the
ORDER BY ordering are treated alike: all rows of a given peer group will be in the frame or excluded
from it.

The purpose of a WINDOW clause is to specify the behavior of window functions appearing in the query's
SELECT list or ORDER BY clause. These functions can reference the WINDOW clause entries by name in
their OVER clauses. A WINDOW clause entry does not have to be referenced anywhere, however; if it is
not used in the query it is simply ignored. It is possible to use window functions without any WINDOW
clause at all, since a window function call can specify its window definition directly in its OVER clause.
However, the WINDOW clause saves typing when the same window definition is needed for more than one
window function.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
WINDOW.

Window functions are described in detail in Section 3.5, Section 4.2.8, and Section 7.2.5.

SELECT List
The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output
rows of the SELECT statement. The expressions can (and usually do) refer to columns computed in the
FROM clause.

Just as in a table, every output column of a SELECT has a name. In a simple SELECT this name is just used
to label the column for display, but when the SELECT is a sub-query of a larger query, the name is seen
by the larger query as the column name of the virtual table produced by the sub-query. To specify the
name to use for an output column, write AS output_name after the column's expression. (You can omit
AS, but only if the desired output name does not match any Postgres Pro keyword (see Appendix C). For
protection against possible future keyword additions, it is recommended that you always either write AS
or double-quote the output name.) If you do not specify a column name, a name is chosen automatically
by Postgres Pro. If the column's expression is a simple column reference then the chosen name is the
same as that column's name. In more complex cases a function or type name may be used, or the system
may fall back on a generated name such as ?column?.

An output column's name can be used to refer to the column's value in ORDER BY and GROUP BY clauses,
but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the
selected rows. Also, you can write table_name.* as a shorthand for the columns coming from just that
table. In these cases it is not possible to specify new names with AS; the output column names will be
the same as the table columns' names.

According to the SQL standard, the expressions in the output list should be computed before applying
DISTINCT, ORDER BY, or LIMIT. This is obviously necessary when using DISTINCT, since otherwise it's not
clear what values are being made distinct. However, in many cases it is convenient if output expressions
are computed after ORDER BY and LIMIT; particularly if the output list contains any volatile or expensive
functions. With that behavior, the order of function evaluations is more intuitive and there will not
be evaluations corresponding to rows that never appear in the output. Postgres Pro will effectively
evaluate output expressions after sorting and limiting, so long as those expressions are not referenced
in DISTINCT, ORDER BY or GROUP BY. (As a counterexample, SELECT f(x) FROM tab ORDER BY 1

1600

SELECT

clearly must evaluate f(x) before sorting.) Output expressions that contain set-returning functions are
effectively evaluated after sorting and before limiting, so that LIMIT will act to cut off the output from
a set-returning function.

Note
Postgres Pro versions before 9.6 did not provide any guarantees about the timing of evaluation of
output expressions versus sorting and limiting; it depended on the form of the chosen query plan.

DISTINCT Clause
If SELECT DISTINCT is specified, all duplicate rows are removed from the result set (one row is kept from
each group of duplicates). SELECT ALL specifies the opposite: all rows are kept; that is the default.

SELECT DISTINCT ON (expression [, ...]) keeps only the first row of each set of rows where the
given expressions evaluate to equal. The DISTINCT ON expressions are interpreted using the same rules
as for ORDER BY (see above). Note that the “first row” of each set is unpredictable unless ORDER BY is
used to ensure that the desired row appears first. For example:

SELECT DISTINCT ON (location) location, time, report
 FROM weather_reports
 ORDER BY location, time DESC;

retrieves the most recent weather report for each location. But if we had not used ORDER BY to force
descending order of time values for each location, we'd have gotten a report from an unpredictable time
for each location.

The DISTINCT ON expression(s) must match the leftmost ORDER BY expression(s). The ORDER BY clause
will normally contain additional expression(s) that determine the desired precedence of rows within
each DISTINCT ON group.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified with
DISTINCT.

UNION Clause
The UNION clause has this general form:

select_statement UNION [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause. (ORDER BY and LIMIT can be attached to a subexpression
if it is enclosed in parentheses. Without parentheses, these clauses will be taken to apply to the result
of the UNION, not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A
row is in the set union of two result sets if it appears in at least one of the result sets. The two SELECT
statements that represent the direct operands of the UNION must produce the same number of columns,
and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents
elimination of duplicates. (Therefore, UNION ALL is usually significantly quicker than UNION; use ALL when
you can.) DISTINCT can be written to explicitly specify the default behavior of eliminating duplicate rows.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise
indicated by parentheses.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for a UNION result or for any input of a UNION.

1601

SELECT

INTERSECT Clause
The INTERSECT clause has this general form:

select_statement INTERSECT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT
statements. A row is in the intersection of two result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows unless the ALL option is specified. With
ALL, a row that has m duplicates in the left table and n duplicates in the right table will appear min(m,n)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless
parentheses dictate otherwise. INTERSECT binds more tightly than UNION. That is, A UNION B INTERSECT
C will be read as A UNION (B INTERSECT C).

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for an INTERSECT result or for any input of an INTERSECT.

EXCEPT Clause
The EXCEPT clause has this general form:

select_statement EXCEPT [ALL | DISTINCT] select_statement

select_statement is any SELECT statement without an ORDER BY, LIMIT, FOR NO KEY UPDATE, FOR
UPDATE, FOR SHARE, or FOR KEY SHARE clause.

The EXCEPT operator computes the set of rows that are in the result of the left SELECT statement but
not in the result of the right one.

The result of EXCEPT does not contain any duplicate rows unless the ALL option is specified. With ALL,
a row that has m duplicates in the left table and n duplicates in the right table will appear max(m-n,0)
times in the result set. DISTINCT can be written to explicitly specify the default behavior of eliminating
duplicate rows.

Multiple EXCEPT operators in the same SELECT statement are evaluated left to right, unless parentheses
dictate otherwise. EXCEPT binds at the same level as UNION.

Currently, FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE and FOR KEY SHARE cannot be specified either
for an EXCEPT result or for any input of an EXCEPT.

ORDER BY Clause
The optional ORDER BY clause has this general form:

ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }] [, ...]

The ORDER BY clause causes the result rows to be sorted according to the specified expression(s). If
two rows are equal according to the leftmost expression, they are compared according to the next
expression and so on. If they are equal according to all specified expressions, they are returned in an
implementation-dependent order.

Each expression can be the name or ordinal number of an output column (SELECT list item), or it can
be an arbitrary expression formed from input-column values.

The ordinal number refers to the ordinal (left-to-right) position of the output column. This feature makes
it possible to define an ordering on the basis of a column that does not have a unique name. This is

1602

SELECT

never absolutely necessary because it is always possible to assign a name to an output column using
the AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not
appear in the SELECT output list. Thus the following statement is valid:

SELECT name FROM distributors ORDER BY code;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION, INTERSECT, or
EXCEPT clause can only specify an output column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both an output column name and an input
column name, ORDER BY will interpret it as the output column name. This is the opposite of the choice
that GROUP BY will make in the same situation. This inconsistency is made to be compatible with the
SQL standard.

Optionally one can add the key word ASC (ascending) or DESC (descending) after any expression in
the ORDER BY clause. If not specified, ASC is assumed by default. Alternatively, a specific ordering
operator name can be specified in the USING clause. An ordering operator must be a less-than or greater-
than member of some B-tree operator family. ASC is usually equivalent to USING < and DESC is usually
equivalent to USING >. (But the creator of a user-defined data type can define exactly what the default
sort ordering is, and it might correspond to operators with other names.)

If NULLS LAST is specified, null values sort after all non-null values; if NULLS FIRST is specified, null
values sort before all non-null values. If neither is specified, the default behavior is NULLS LAST when
ASC is specified or implied, and NULLS FIRST when DESC is specified (thus, the default is to act as though
nulls are larger than non-nulls). When USING is specified, the default nulls ordering depends on whether
the operator is a less-than or greater-than operator.

Note that ordering options apply only to the expression they follow; for example ORDER BY x, y DESC
does not mean the same thing as ORDER BY x DESC, y DESC.

Character-string data is sorted according to the collation that applies to the column being sorted. That
can be overridden at need by including a COLLATE clause in the expression, for example ORDER BY
mycolumn COLLATE "en_US". For more information see Section 4.2.10 and Section 22.2.

LIMIT Clause
The LIMIT clause consists of two independent sub-clauses:

LIMIT { count | ALL }
OFFSET start

The parameter count specifies the maximum number of rows to return, while start specifies the number
of rows to skip before starting to return rows. When both are specified, start rows are skipped before
starting to count the count rows to be returned.

If the count expression evaluates to NULL, it is treated as LIMIT ALL, i.e., no limit. If start evaluates
to NULL, it is treated the same as OFFSET 0.

SQL:2008 introduced a different syntax to achieve the same result, which Postgres Pro also supports.
It is:

OFFSET start { ROW | ROWS }
FETCH { FIRST | NEXT } [count] { ROW | ROWS } { ONLY | WITH TIES }

In this syntax, the start or count value is required by the standard to be a literal constant, a parameter,
or a variable name; as a Postgres Pro extension, other expressions are allowed, but will generally need
to be enclosed in parentheses to avoid ambiguity. If count is omitted in a FETCH clause, it defaults to 1.
The WITH TIES option is used to return any additional rows that tie for the last place in the result set
according to the ORDER BY clause; ORDER BY is mandatory in this case, and SKIP LOCKED is not allowed.
ROW and ROWS as well as FIRST and NEXT are noise words that don't influence the effects of these clauses.

1603

SELECT

According to the standard, the OFFSET clause must come before the FETCH clause if both are present;
but Postgres Pro is laxer and allows either order.

When using LIMIT, it is a good idea to use an ORDER BY clause that constrains the result rows into a
unique order. Otherwise you will get an unpredictable subset of the query's rows — you might be asking
for the tenth through twentieth rows, but tenth through twentieth in what ordering? You don't know
what ordering unless you specify ORDER BY.

The query planner takes LIMIT into account when generating a query plan, so you are very likely to get
different plans (yielding different row orders) depending on what you use for LIMIT and OFFSET. Thus,
using different LIMIT/OFFSET values to select different subsets of a query result will give inconsistent
results unless you enforce a predictable result ordering with ORDER BY. This is not a bug; it is an inherent
consequence of the fact that SQL does not promise to deliver the results of a query in any particular
order unless ORDER BY is used to constrain the order.

It is even possible for repeated executions of the same LIMIT query to return different subsets of the
rows of a table, if there is not an ORDER BY to enforce selection of a deterministic subset. Again, this is
not a bug; determinism of the results is simply not guaranteed in such a case.

The Locking Clause
FOR UPDATE, FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE are locking clauses; they affect how
SELECT locks rows as they are obtained from the table.

The locking clause has the general form

FOR lock_strength [OF table_name [, ...]] [NOWAIT | SKIP LOCKED]

where lock_strength can be one of

UPDATE
NO KEY UPDATE
SHARE
KEY SHARE

For more information on each row-level lock mode, refer to Section 13.3.2.

To prevent the operation from waiting for other transactions to commit, use either the NOWAIT or SKIP
LOCKED option. With NOWAIT, the statement reports an error, rather than waiting, if a selected row cannot
be locked immediately. With SKIP LOCKED, any selected rows that cannot be immediately locked are
skipped. Skipping locked rows provides an inconsistent view of the data, so this is not suitable for general
purpose work, but can be used to avoid lock contention with multiple consumers accessing a queue-like
table. Note that NOWAIT and SKIP LOCKED apply only to the row-level lock(s) — the required ROW SHARE
table-level lock is still taken in the ordinary way (see Chapter 13). You can use LOCK with the NOWAIT
option first, if you need to acquire the table-level lock without waiting.

If specific tables are named in a locking clause, then only rows coming from those tables are locked; any
other tables used in the SELECT are simply read as usual. A locking clause without a table list affects
all tables used in the statement. If a locking clause is applied to a view or sub-query, it affects all tables
used in the view or sub-query. However, these clauses do not apply to WITH queries referenced by the
primary query. If you want row locking to occur within a WITH query, specify a locking clause within
the WITH query.

Multiple locking clauses can be written if it is necessary to specify different locking behavior for different
tables. If the same table is mentioned (or implicitly affected) by more than one locking clause, then it
is processed as if it was only specified by the strongest one. Similarly, a table is processed as NOWAIT if
that is specified in any of the clauses affecting it. Otherwise, it is processed as SKIP LOCKED if that is
specified in any of the clauses affecting it.

The locking clauses cannot be used in contexts where returned rows cannot be clearly identified with
individual table rows; for example they cannot be used with aggregation.

1604

SELECT

When a locking clause appears at the top level of a SELECT query, the rows that are locked are exactly
those that are returned by the query; in the case of a join query, the rows locked are those that contribute
to returned join rows. In addition, rows that satisfied the query conditions as of the query snapshot will
be locked, although they will not be returned if they were updated after the snapshot and no longer
satisfy the query conditions. If a LIMIT is used, locking stops once enough rows have been returned to
satisfy the limit (but note that rows skipped over by OFFSET will get locked). Similarly, if a locking clause
is used in a cursor's query, only rows actually fetched or stepped past by the cursor will be locked.

When a locking clause appears in a sub-SELECT, the rows locked are those returned to the outer query
by the sub-query. This might involve fewer rows than inspection of the sub-query alone would suggest,
since conditions from the outer query might be used to optimize execution of the sub-query. For example,

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss WHERE col1 = 5;

will lock only rows having col1 = 5, even though that condition is not textually within the sub-query.

Previous releases failed to preserve a lock which is upgraded by a later savepoint. For example, this code:

BEGIN;
SELECT * FROM mytable WHERE key = 1 FOR UPDATE;
SAVEPOINT s;
UPDATE mytable SET ... WHERE key = 1;
ROLLBACK TO s;

would fail to preserve the FOR UPDATE lock after the ROLLBACK TO. This has been fixed in release 9.3.

Caution
It is possible for a SELECT command running at the READ COMMITTED transaction isolation level
and using ORDER BY and a locking clause to return rows out of order. This is because ORDER BY is
applied first. The command sorts the result, but might then block trying to obtain a lock on one or
more of the rows. Once the SELECT unblocks, some of the ordering column values might have been
modified, leading to those rows appearing to be out of order (though they are in order in terms
of the original column values). This can be worked around at need by placing the FOR UPDATE/
SHARE clause in a sub-query, for example

SELECT * FROM (SELECT * FROM mytable FOR UPDATE) ss ORDER BY column1;

Note that this will result in locking all rows of mytable, whereas FOR UPDATE at the top level
would lock only the actually returned rows. This can make for a significant performance difference,
particularly if the ORDER BY is combined with LIMIT or other restrictions. So this technique is
recommended only if concurrent updates of the ordering columns are expected and a strictly
sorted result is required.

At the REPEATABLE READ or SERIALIZABLE transaction isolation level this would cause a
serialization failure (with a SQLSTATE of '40001'), so there is no possibility of receiving rows out
of order under these isolation levels.

TABLE Command
The command

TABLE name

is equivalent to

SELECT * FROM name

It can be used as a top-level command or as a space-saving syntax variant in parts of complex queries.
Only the WITH, UNION, INTERSECT, EXCEPT, ORDER BY, LIMIT, OFFSET, FETCH and FOR locking clauses can
be used with TABLE; the WHERE clause and any form of aggregation cannot be used.

1605

SELECT

Examples
To join the table films with the table distributors:

SELECT f.title, f.did, d.name, f.date_prod, f.kind
 FROM distributors d, films f
 WHERE f.did = d.did

 title | did | name | date_prod | kind
-------------------+-----+--------------+------------+----------
 The Third Man | 101 | British Lion | 1949-12-23 | Drama
 The African Queen | 101 | British Lion | 1951-08-11 | Romantic
 ...

To sum the column len of all films and group the results by kind:

SELECT kind, sum(len) AS total FROM films GROUP BY kind;

 kind | total
----------+-------
 Action | 07:34
 Comedy | 02:58
 Drama | 14:28
 Musical | 06:42
 Romantic | 04:38

To sum the column len of all films, group the results by kind and show those group totals that are less
than 5 hours:

SELECT kind, sum(len) AS total
 FROM films
 GROUP BY kind
 HAVING sum(len) < interval '5 hours';

 kind | total
----------+-------
 Comedy | 02:58
 Romantic | 04:38

The following two examples are identical ways of sorting the individual results according to the contents
of the second column (name):

SELECT * FROM distributors ORDER BY name;
SELECT * FROM distributors ORDER BY 2;

 did | name
-----+------------------
 109 | 20th Century Fox
 110 | Bavaria Atelier
 101 | British Lion
 107 | Columbia
 102 | Jean Luc Godard
 113 | Luso films
 104 | Mosfilm
 103 | Paramount
 106 | Toho
 105 | United Artists
 111 | Walt Disney
 112 | Warner Bros.
 108 | Westward

1606

SELECT

The next example shows how to obtain the union of the tables distributors and actors, restricting
the results to those that begin with the letter W in each table. Only distinct rows are wanted, so the
key word ALL is omitted.
distributors: actors:
 did | name id | name
-----+-------------- ----+----------------
 108 | Westward 1 | Woody Allen
 111 | Walt Disney 2 | Warren Beatty
 112 | Warner Bros. 3 | Walter Matthau

SELECT distributors.name
 FROM distributors
 WHERE distributors.name LIKE 'W%'
UNION
SELECT actors.name
 FROM actors
 WHERE actors.name LIKE 'W%';

 name

 Walt Disney
 Walter Matthau
 Warner Bros.
 Warren Beatty
 Westward
 Woody Allen

This example shows how to use a function in the FROM clause, both with and without a column definition
list:
CREATE FUNCTION distributors(int) RETURNS SETOF distributors AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors(111);
 did | name
-----+-------------
 111 | Walt Disney

CREATE FUNCTION distributors_2(int) RETURNS SETOF record AS $$
 SELECT * FROM distributors WHERE did = $1;
$$ LANGUAGE SQL;

SELECT * FROM distributors_2(111) AS (f1 int, f2 text);
 f1 | f2
-----+-------------
 111 | Walt Disney

Here is an example of a function with an ordinality column added:
SELECT * FROM unnest(ARRAY['a','b','c','d','e','f']) WITH ORDINALITY;
 unnest | ordinality
--------+----------
 a | 1
 b | 2
 c | 3
 d | 4
 e | 5

1607

SELECT

 f | 6
(6 rows)

This example shows how to use a simple WITH clause:
WITH t AS (
 SELECT random() as x FROM generate_series(1, 3)
)
SELECT * FROM t
UNION ALL
SELECT * FROM t

 x

 0.534150459803641
 0.520092216785997
 0.0735620250925422
 0.534150459803641
 0.520092216785997
 0.0735620250925422

Notice that the WITH query was evaluated only once, so that we got two sets of the same three random
values.

This example uses WITH RECURSIVE to find all subordinates (direct or indirect) of the employee Mary,
and their level of indirectness, from a table that shows only direct subordinates:
WITH RECURSIVE employee_recursive(distance, employee_name, manager_name) AS (
 SELECT 1, employee_name, manager_name
 FROM employee
 WHERE manager_name = 'Mary'
 UNION ALL
 SELECT er.distance + 1, e.employee_name, e.manager_name
 FROM employee_recursive er, employee e
 WHERE er.employee_name = e.manager_name
)
SELECT distance, employee_name FROM employee_recursive;

Notice the typical form of recursive queries: an initial condition, followed by UNION, followed by the
recursive part of the query. Be sure that the recursive part of the query will eventually return no tuples,
or else the query will loop indefinitely. (See Section 7.8 for more examples.)

This example uses LATERAL to apply a set-returning function get_product_names() for each row of the
manufacturers table:
SELECT m.name AS mname, pname
FROM manufacturers m, LATERAL get_product_names(m.id) pname;

Manufacturers not currently having any products would not appear in the result, since it is an inner join.
If we wished to include the names of such manufacturers in the result, we could do:
SELECT m.name AS mname, pname
FROM manufacturers m LEFT JOIN LATERAL get_product_names(m.id) pname ON true;

Compatibility
Of course, the SELECT statement is compatible with the SQL standard. But there are some extensions
and some missing features.

Omitted FROM Clauses
Postgres Pro allows one to omit the FROM clause. It has a straightforward use to compute the results
of simple expressions:

1608

SELECT

SELECT 2+2;

 ?column?

 4

Some other SQL databases cannot do this except by introducing a dummy one-row table from which
to do the SELECT.

Note that if a FROM clause is not specified, the query cannot reference any database tables. For example,
the following query is invalid:

SELECT distributors.* WHERE distributors.name = 'Westward';

PostgreSQL releases prior to 8.1 would accept queries of this form, and add an implicit entry to the
query's FROM clause for each table referenced by the query. This is no longer allowed.

Empty SELECT Lists
The list of output expressions after SELECT can be empty, producing a zero-column result table. This is
not valid syntax according to the SQL standard. Postgres Pro allows it to be consistent with allowing
zero-column tables. However, an empty list is not allowed when DISTINCT is used.

Omitting the AS Key Word
In the SQL standard, the optional key word AS can be omitted before an output column name whenever
the new column name is a valid column name (that is, not the same as any reserved keyword). Postgres
Pro is slightly more restrictive: AS is required if the new column name matches any keyword at all,
reserved or not. Recommended practice is to use AS or double-quote output column names, to prevent
any possible conflict against future keyword additions.

In FROM items, both the standard and Postgres Pro allow AS to be omitted before an alias that is an
unreserved keyword. But this is impractical for output column names, because of syntactic ambiguities.

ONLY and Inheritance
The SQL standard requires parentheses around the table name when writing ONLY, for example SELECT
* FROM ONLY (tab1), ONLY (tab2) WHERE Postgres Pro considers these parentheses to be optional.

Postgres Pro allows a trailing * to be written to explicitly specify the non-ONLY behavior of including
child tables. The standard does not allow this.

(These points apply equally to all SQL commands supporting the ONLY option.)

TABLESAMPLE Clause Restrictions
The TABLESAMPLE clause is currently accepted only on regular tables and materialized views. According
to the SQL standard it should be possible to apply it to any FROM item.

Function Calls in FROM
Postgres Pro allows a function call to be written directly as a member of the FROM list. In the SQL standard
it would be necessary to wrap such a function call in a sub-SELECT; that is, the syntax FROM func(...)
alias is approximately equivalent to FROM LATERAL (SELECT func(...)) alias. Note that LATERAL is
considered to be implicit; this is because the standard requires LATERAL semantics for an UNNEST() item
in FROM. Postgres Pro treats UNNEST() the same as other set-returning functions.

Namespace Available to GROUP BY and ORDER BY
In the SQL-92 standard, an ORDER BY clause can only use output column names or numbers, while a GROUP
BY clause can only use expressions based on input column names. Postgres Pro extends each of these
clauses to allow the other choice as well (but it uses the standard's interpretation if there is ambiguity).

1609

SELECT

Postgres Pro also allows both clauses to specify arbitrary expressions. Note that names appearing in an
expression will always be taken as input-column names, not as output-column names.

SQL:1999 and later use a slightly different definition which is not entirely upward compatible with
SQL-92. In most cases, however, Postgres Pro will interpret an ORDER BY or GROUP BY expression the
same way SQL:1999 does.

Functional Dependencies
Postgres Pro recognizes functional dependency (allowing columns to be omitted from GROUP BY) only
when a table's primary key is included in the GROUP BY list. The SQL standard specifies additional
conditions that should be recognized.

LIMIT and OFFSET
The clauses LIMIT and OFFSET are Postgres Pro-specific syntax, also used by MySQL. The SQL:2008
standard has introduced the clauses OFFSET ... FETCH {FIRST|NEXT} ... for the same functionality,
as shown above in LIMIT Clause. This syntax is also used by IBM DB2. (Applications written for
Oracle frequently use a workaround involving the automatically generated rownum column, which is not
available in Postgres Pro, to implement the effects of these clauses.)

FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
Although FOR UPDATE appears in the SQL standard, the standard allows it only as an option of DECLARE
CURSOR. Postgres Pro allows it in any SELECT query as well as in sub-SELECTs, but this is an extension.
The FOR NO KEY UPDATE, FOR SHARE and FOR KEY SHARE variants, as well as the NOWAIT and SKIP LOCKED
options, do not appear in the standard.

Data-Modifying Statements in WITH
Postgres Pro allows INSERT, UPDATE, and DELETE to be used as WITH queries. This is not found in the
SQL standard.

Nonstandard Clauses
DISTINCT ON (...) is an extension of the SQL standard.

ROWS FROM(...) is an extension of the SQL standard.

The MATERIALIZED and NOT MATERIALIZED options of WITH are extensions of the SQL standard.

1610

SELECT INTO
SELECT INTO — define a new table from the results of a query

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
SELECT [ALL | DISTINCT [ON (expression [, ...])]]
 * | expression [[AS] output_name] [, ...]
 INTO [TEMPORARY | TEMP | UNLOGGED] [TABLE] new_table
 [FROM from_item [, ...]]
 [WHERE condition]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [WINDOW window_name AS (window_definition) [, ...]]
 [{ UNION | INTERSECT | EXCEPT } [ALL | DISTINCT] select]
 [ORDER BY expression [ASC | DESC | USING operator] [NULLS { FIRST | LAST }]
 [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]] [NOWAIT] [...]]

Description
SELECT INTO creates a new table and fills it with data computed by a query. The data is not returned
to the client, as it is with a normal SELECT. The new table's columns have the names and data types
associated with the output columns of the SELECT.

Parameters
TEMPORARY or TEMP

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

UNLOGGED

If specified, the table is created as an unlogged table. Refer to CREATE TABLE for details.

new_table

The name (optionally schema-qualified) of the table to be created.

All other parameters are described in detail under SELECT.

Notes
CREATE TABLE AS is functionally similar to SELECT INTO. CREATE TABLE AS is the recommended syntax,
since this form of SELECT INTO is not available in ECPG or PL/pgSQL, because they interpret the INTO
clause differently. Furthermore, CREATE TABLE AS offers a superset of the functionality provided by
SELECT INTO.

In contrast to CREATE TABLE AS, SELECT INTO does not allow specifying properties like a table's access
method with USING method or the table's tablespace with TABLESPACE tablespace_name. Use CREATE
TABLE AS if necessary. Therefore, the default table access method is chosen for the new table. See
default_table_access_method for more information.

Examples
Create a new table films_recent consisting of only recent entries from the table films:

1611

SELECT INTO

SELECT * INTO films_recent FROM films WHERE date_prod >= '2002-01-01';

Compatibility
The SQL standard uses SELECT INTO to represent selecting values into scalar variables of a host program,
rather than creating a new table. This indeed is the usage found in ECPG (see Chapter 33) and PL/pgSQL
(see Chapter 40). The Postgres Pro usage of SELECT INTO to represent table creation is historical. It is
best to use CREATE TABLE AS for this purpose in new code.

See Also
CREATE TABLE AS

1612

SET
SET — change a run-time parameter

Synopsis
SET [SESSION | LOCAL] configuration_parameter { TO | = } { value | 'value' |
 DEFAULT }
SET [SESSION | LOCAL] TIME ZONE { timezone | LOCAL | DEFAULT }

Description
The SET command changes run-time configuration parameters. Many of the run-time parameters listed
in Chapter 18 can be changed on-the-fly with SET. (But some require superuser privileges to change, and
others cannot be changed after server or session start.) SET only affects the value used by the current
session.

If SET (or equivalently SET SESSION) is issued within a transaction that is later aborted, the effects of
the SET command disappear when the transaction is rolled back. Once the surrounding transaction is
committed, the effects will persist until the end of the session, unless overridden by another SET.

The effects of SET LOCAL last only till the end of the current transaction, whether committed or not.
A special case is SET followed by SET LOCAL within a single transaction: the SET LOCAL value will be
seen until the end of the transaction, but afterwards (if the transaction is committed) the SET value will
take effect.

The effects of SET or SET LOCAL are also canceled by rolling back to a savepoint that is earlier than
the command.

If SET LOCAL is used within a function that has a SET option for the same variable (see CREATE
FUNCTION), the effects of the SET LOCAL command disappear at function exit; that is, the value in
effect when the function was called is restored anyway. This allows SET LOCAL to be used for dynamic or
repeated changes of a parameter within a function, while still having the convenience of using the SET
option to save and restore the caller's value. However, a regular SET command overrides any surrounding
function's SET option; its effects will persist unless rolled back.

Note
In PostgreSQL versions 8.0 through 8.2, the effects of a SET LOCAL would be canceled by releasing
an earlier savepoint, or by successful exit from a PL/pgSQL exception block. This behavior has
been changed because it was deemed unintuitive.

Parameters
SESSION

Specifies that the command takes effect for the current session. (This is the default if neither SESSION
nor LOCAL appears.)

LOCAL

Specifies that the command takes effect for only the current transaction. After COMMIT or ROLLBACK,
the session-level setting takes effect again. Issuing this outside of a transaction block emits a warning
and otherwise has no effect.

configuration_parameter

Name of a settable run-time parameter. Available parameters are documented in Chapter 18 and
below.

1613

SET

value

New value of parameter. Values can be specified as string constants, identifiers, numbers, or comma-
separated lists of these, as appropriate for the particular parameter. DEFAULT can be written to specify
resetting the parameter to its default value (that is, whatever value it would have had if no SET had
been executed in the current session).

Besides the configuration parameters documented in Chapter 18, there are a few that can only be
adjusted using the SET command or that have a special syntax:
SCHEMA

SET SCHEMA 'value' is an alias for SET search_path TO value. Only one schema can be specified
using this syntax.

NAMES

SET NAMES value is an alias for SET client_encoding TO value.

SEED

Sets the internal seed for the random number generator (the function random). Allowed values are
floating-point numbers between -1 and 1, which are then multiplied by 231-1.

The seed can also be set by invoking the function setseed:
SELECT setseed(value);

TIME ZONE

SET TIME ZONE value is an alias for SET timezone TO value. The syntax SET TIME ZONE allows
special syntax for the time zone specification. Here are examples of valid values:
'PST8PDT'

The time zone for Berkeley, California.

'Europe/Rome'

The time zone for Italy.

-7

The time zone 7 hours west from UTC (equivalent to PDT). Positive values are east from UTC.

INTERVAL '-08:00' HOUR TO MINUTE

The time zone 8 hours west from UTC (equivalent to PST).

LOCAL
DEFAULT

Set the time zone to your local time zone (that is, the server's default value of timezone).

Timezone settings given as numbers or intervals are internally translated to POSIX timezone syntax.
For example, after SET TIME ZONE -7, SHOW TIME ZONE would report <-07>+07.

See Section 8.5.3 for more information about time zones.

Notes
The function set_config provides equivalent functionality; see Section 9.27.1. Also, it is possible to
UPDATE the pg_settings system view to perform the equivalent of SET.

Examples
Set the schema search path:

1614

SET

SET search_path TO my_schema, public;

Set the style of date to traditional POSTGRES with “day before month” input convention:

SET datestyle TO postgres, dmy;

Set the time zone for Berkeley, California:

SET TIME ZONE 'PST8PDT';

Set the time zone for Italy:

SET TIME ZONE 'Europe/Rome';

Compatibility
SET TIME ZONE extends syntax defined in the SQL standard. The standard allows only numeric time
zone offsets while Postgres Pro allows more flexible time-zone specifications. All other SET features are
Postgres Pro extensions.

See Also
RESET, SHOW

1615

SET CONSTRAINTS
SET CONSTRAINTS — set constraint check timing for the current transaction

Synopsis
SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

Description
SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE
constraints are checked at the end of each statement. DEFERRED constraints are not checked until
transaction commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED,
DEFERRABLE INITIALLY IMMEDIATE, or NOT DEFERRABLE. The third class is always IMMEDIATE and is not
affected by the SET CONSTRAINTS command. The first two classes start every transaction in the indicated
mode, but their behavior can be changed within a transaction by SET CONSTRAINTS.

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which must
all be deferrable). Each constraint name can be schema-qualified. The current schema search path is
used to find the first matching name if no schema name is specified. SET CONSTRAINTS ALL changes the
mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE, the new mode
takes effect retroactively: any outstanding data modifications that would have been checked at the end of
the transaction are instead checked during the execution of the SET CONSTRAINTS command. If any such
constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET
CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a transaction.

Currently, only UNIQUE, PRIMARY KEY, REFERENCES (foreign key), and EXCLUDE constraints are affected
by this setting. NOT NULL and CHECK constraints are always checked immediately when a row is inserted
or modified (not at the end of the statement). Uniqueness and exclusion constraints that have not been
declared DEFERRABLE are also checked immediately.

The firing of triggers that are declared as “constraint triggers” is also controlled by this setting — they
fire at the same time that the associated constraint should be checked.

Notes
Because Postgres Pro does not require constraint names to be unique within a schema (but only per-
table), it is possible that there is more than one match for a specified constraint name. In this case SET
CONSTRAINTS will act on all matches. For a non-schema-qualified name, once a match or matches have
been found in some schema in the search path, schemas appearing later in the path are not searched.

This command only alters the behavior of constraints within the current transaction. Issuing this outside
of a transaction block emits a warning and otherwise has no effect.

Compatibility
This command complies with the behavior defined in the SQL standard, except for the limitation that,
in Postgres Pro, it does not apply to NOT NULL and CHECK constraints. Also, Postgres Pro checks non-
deferrable uniqueness constraints immediately, not at end of statement as the standard would suggest.

1616

SET ROLE
SET ROLE — set the current user identifier of the current session

Synopsis
SET [SESSION | LOCAL] ROLE role_name
SET [SESSION | LOCAL] ROLE NONE
RESET ROLE

Description
This command sets the current user identifier of the current SQL session to be role_name. The role
name can be written as either an identifier or a string literal. After SET ROLE, permissions checking for
SQL commands is carried out as though the named role were the one that had logged in originally.

The specified role_name must be a role that the current session user is a member of. (If the session user
is a superuser, any role can be selected.)

The SESSION and LOCAL modifiers act the same as for the regular SET command.

SET ROLE NONE sets the current user identifier to the current session user identifier, as returned by
session_user. RESET ROLE sets the current user identifier to the connection-time setting specified by
the command-line options, ALTER ROLE, or ALTER DATABASE, if any such settings exist. Otherwise, RESET
ROLE sets the current user identifier to the current session user identifier. These forms can be executed
by any user.

Notes
Using this command, it is possible to either add privileges or restrict one's privileges. If the session user
role has the INHERIT attribute, then it automatically has all the privileges of every role that it could SET
ROLE to; in this case SET ROLE effectively drops all the privileges assigned directly to the session user
and to the other roles it is a member of, leaving only the privileges available to the named role. On the
other hand, if the session user role has the NOINHERIT attribute, SET ROLE drops the privileges assigned
directly to the session user and instead acquires the privileges available to the named role.

In particular, when a superuser chooses to SET ROLE to a non-superuser role, they lose their superuser
privileges.

SET ROLE has effects comparable to SET SESSION AUTHORIZATION, but the privilege checks involved
are quite different. Also, SET SESSION AUTHORIZATION determines which roles are allowable for later
SET ROLE commands, whereas changing roles with SET ROLE does not change the set of roles allowed
to a later SET ROLE.

SET ROLE does not process session variables as specified by the role's ALTER ROLE settings; this only
happens during login.

SET ROLE cannot be used within a SECURITY DEFINER function.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET ROLE 'paul';

1617

SET ROLE

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | paul

Compatibility
Postgres Pro allows identifier syntax ("rolename"), while the SQL standard requires the role name to
be written as a string literal. SQL does not allow this command during a transaction; Postgres Pro does
not make this restriction because there is no reason to. The SESSION and LOCAL modifiers are a Postgres
Pro extension, as is the RESET syntax.

See Also
SET SESSION AUTHORIZATION

1618

SET SESSION AUTHORIZATION
SET SESSION AUTHORIZATION — set the session user identifier and the current user identifier of the
current session

Synopsis
SET [SESSION | LOCAL] SESSION AUTHORIZATION user_name
SET [SESSION | LOCAL] SESSION AUTHORIZATION DEFAULT
RESET SESSION AUTHORIZATION

Description
This command sets the session user identifier and the current user identifier of the current SQL session
to be user_name. The user name can be written as either an identifier or a string literal. Using this
command, it is possible, for example, to temporarily become an unprivileged user and later switch back
to being a superuser.

The session user identifier is initially set to be the (possibly authenticated) user name provided by the
client. The current user identifier is normally equal to the session user identifier, but might change
temporarily in the context of SECURITY DEFINER functions and similar mechanisms; it can also be
changed by SET ROLE. The current user identifier is relevant for permission checking.

The session user identifier can be changed only if the initial session user (the authenticated user) had
the superuser privilege. Otherwise, the command is accepted only if it specifies the authenticated user
name.

The SESSION and LOCAL modifiers act the same as for the regular SET command.

The DEFAULT and RESET forms reset the session and current user identifiers to be the originally
authenticated user name. These forms can be executed by any user.

Notes
SET SESSION AUTHORIZATION cannot be used within a SECURITY DEFINER function.

Examples
SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 peter | peter

SET SESSION AUTHORIZATION 'paul';

SELECT SESSION_USER, CURRENT_USER;

 session_user | current_user
--------------+--------------
 paul | paul

Compatibility
The SQL standard allows some other expressions to appear in place of the literal user_name, but these
options are not important in practice. Postgres Pro allows identifier syntax ("username"), which SQL does
not. SQL does not allow this command during a transaction; Postgres Pro does not make this restriction
because there is no reason to. The SESSION and LOCAL modifiers are a Postgres Pro extension, as is the
RESET syntax.

1619

SET SESSION AUTHORIZATION

The privileges necessary to execute this command are left implementation-defined by the standard.

See Also
SET ROLE

1620

SET TRANSACTION
SET TRANSACTION — set the characteristics of the current transaction

Synopsis
SET TRANSACTION transaction_mode [, ...]
SET TRANSACTION SNAPSHOT snapshot_id
SET SESSION CHARACTERISTICS AS TRANSACTION transaction_mode [, ...]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on
any subsequent transactions. SET SESSION CHARACTERISTICS sets the default transaction characteristics
for subsequent transactions of a session. These defaults can be overridden by SET TRANSACTION for an
individual transaction.

The available transaction characteristics are the transaction isolation level, the transaction access mode
(read/write or read-only), and the deferrable mode. In addition, a snapshot can be selected, though only
for the current transaction, not as a session default.

The isolation level of a transaction determines what data the transaction can see when other transactions
are running concurrently:
READ COMMITTED

A statement can only see rows committed before it began. This is the default.

REPEATABLE READ

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or data-
modification statement was executed in this transaction. If a pattern of reads and writes among
concurrent serializable transactions would create a situation which could not have occurred for
any serial (one-at-a-time) execution of those transactions, one of them will be rolled back with a
serialization_failure error.

The SQL standard defines one additional level, READ UNCOMMITTED. In Postgres Pro READ UNCOMMITTED
is treated as READ COMMITTED.

The transaction isolation level cannot be changed after the first query or data-modification statement
(SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of a transaction has been executed. See Chapter 13
for more information about transaction isolation and concurrency control.

The transaction access mode determines whether the transaction is read/write or read-only. Read/write
is the default. When a transaction is read-only, the following SQL commands are disallowed: INSERT,
UPDATE, DELETE, and COPY FROM if the table they would write to is not a temporary table; all CREATE,
ALTER, and DROP commands; COMMENT, GRANT, REVOKE, TRUNCATE; and EXPLAIN ANALYZE and EXECUTE if
the command they would execute is among those listed. This is a high-level notion of read-only that does
not prevent all writes to disk.

1621

SET TRANSACTION

The DEFERRABLE transaction property has no effect unless the transaction is also SERIALIZABLE and READ
ONLY. When all three of these properties are selected for a transaction, the transaction may block when
first acquiring its snapshot, after which it is able to run without the normal overhead of a SERIALIZABLE
transaction and without any risk of contributing to or being canceled by a serialization failure. This mode
is well suited for long-running reports or backups.

The SET TRANSACTION SNAPSHOT command allows a new transaction to run with the same snapshot
as an existing transaction. The pre-existing transaction must have exported its snapshot with the
pg_export_snapshot function (see Section 9.27.5). That function returns a snapshot identifier, which
must be given to SET TRANSACTION SNAPSHOT to specify which snapshot is to be imported. The identifier
must be written as a string literal in this command, for example '000003A1-1'. SET TRANSACTION
SNAPSHOT can only be executed at the start of a transaction, before the first query or data-modification
statement (SELECT, INSERT, DELETE, UPDATE, FETCH, or COPY) of the transaction. Furthermore, the
transaction must already be set to SERIALIZABLE or REPEATABLE READ isolation level (otherwise, the
snapshot would be discarded immediately, since READ COMMITTED mode takes a new snapshot for each
command). If the importing transaction uses SERIALIZABLE isolation level, then the transaction that
exported the snapshot must also use that isolation level. Also, a non-read-only serializable transaction
cannot import a snapshot from a read-only transaction.

Notes
If SET TRANSACTION is executed without a prior START TRANSACTION or BEGIN, it emits a warning and
otherwise has no effect.

It is possible to dispense with SET TRANSACTION by instead specifying the desired transaction_modes
in BEGIN or START TRANSACTION. But that option is not available for SET TRANSACTION SNAPSHOT.

The session default transaction modes can also be set or examined via the configuration parameters
default_transaction_isolation, default_transaction_read_only, and default_transaction_deferrable. (In
fact SET SESSION CHARACTERISTICS is just a verbose equivalent for setting these variables with SET.)
This means the defaults can be set in the configuration file, via ALTER DATABASE, etc. Consult Chapter 18
for more information.

The current transaction's modes can similarly be set or examined via the configuration parameters
transaction_isolation, transaction_read_only, and transaction_deferrable. Setting one of these
parameters acts the same as the corresponding SET TRANSACTION option, with the same restrictions on
when it can be done. However, these parameters cannot be set in the configuration file, or from any
source other than live SQL.

Examples
To begin a new transaction with the same snapshot as an already existing transaction, first export the
snapshot from the existing transaction. That will return the snapshot identifier, for example:
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SELECT pg_export_snapshot();
 pg_export_snapshot

 00000003-0000001B-1
(1 row)

Then give the snapshot identifier in a SET TRANSACTION SNAPSHOT command at the beginning of the
newly opened transaction:
BEGIN TRANSACTION ISOLATION LEVEL REPEATABLE READ;
SET TRANSACTION SNAPSHOT '00000003-0000001B-1';

Compatibility
These commands are defined in the SQL standard, except for the DEFERRABLE transaction mode and the
SET TRANSACTION SNAPSHOT form, which are Postgres Pro extensions.

1622

SET TRANSACTION

SERIALIZABLE is the default transaction isolation level in the standard. In Postgres Pro the default is
ordinarily READ COMMITTED, but you can change it as mentioned above.

In the SQL standard, there is one other transaction characteristic that can be set with these commands:
the size of the diagnostics area. This concept is specific to embedded SQL, and therefore is not
implemented in the Postgres Pro server.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
Postgres Pro allows the commas to be omitted.

1623

SHOW
SHOW — show the value of a run-time parameter

Synopsis
SHOW name
SHOW ALL

Description
SHOW will display the current setting of run-time parameters. These variables can be set using the SET
statement, by editing the postgresql.conf configuration file, through the PGOPTIONS environmental
variable (when using libpq or a libpq-based application), or through command-line flags when starting
the postgres server. See Chapter 18 for details.

Parameters
name

The name of a run-time parameter. Available parameters are documented in Chapter 18 and on the
SET reference page. In addition, there are a few parameters that can be shown but not set:

SERVER_VERSION

Shows the server's version number.

SERVER_ENCODING

Shows the server-side character set encoding. At present, this parameter can be shown but not
set, because the encoding is determined at database creation time.

LC_COLLATE

Shows the database's locale setting for collation (text ordering). At present, this parameter can
be shown but not set, because the setting is determined at database creation time.

LC_CTYPE

Shows the database's locale setting for character classification. At present, this parameter can
be shown but not set, because the setting is determined at database creation time.

IS_SUPERUSER

True if the current role has superuser privileges.

ALL

Show the values of all configuration parameters, with descriptions.

Notes
The function current_setting produces equivalent output; see Section 9.27.1. Also, the pg_settings
system view produces the same information.

Examples
Show the current setting of the parameter DateStyle:

SHOW DateStyle;
 DateStyle

 ISO, MDY

1624

SHOW

(1 row)

Show the current setting of the parameter geqo:

SHOW geqo;
 geqo

 on
(1 row)

Show all settings:

SHOW ALL;
 name | setting | description

-------------------------+---------+---
 allow_system_table_mods | off | Allows modifications of the structure of ...
 .
 .
 .
 xmloption | content | Sets whether XML data in implicit parsing ...
 zero_damaged_pages | off | Continues processing past damaged page headers.
(196 rows)

Compatibility
The SHOW command is a Postgres Pro extension.

See Also
SET, RESET

1625

START TRANSACTION
START TRANSACTION — start a transaction block

Synopsis
START TRANSACTION [transaction_mode [, ...]]

where transaction_mode is one of:

 ISOLATION LEVEL { SERIALIZABLE | REPEATABLE READ | READ COMMITTED | READ
 UNCOMMITTED }
 READ WRITE | READ ONLY
 [NOT] DEFERRABLE

Description
This command begins a new transaction block. If the isolation level, read/write mode, or deferrable mode
is specified, the new transaction has those characteristics, as if SET TRANSACTION was executed. This
is the same as the BEGIN command.

Parameters
Refer to SET TRANSACTION for information on the meaning of the parameters to this statement.

Compatibility
In the standard, it is not necessary to issue START TRANSACTION to start a transaction block: any SQL
command implicitly begins a block. Postgres Pro's behavior can be seen as implicitly issuing a COMMIT
after each command that does not follow START TRANSACTION (or BEGIN), and it is therefore often called
“autocommit”. Other relational database systems might offer an autocommit feature as a convenience.

The DEFERRABLE transaction_mode is a Postgres Pro language extension.

The SQL standard requires commas between successive transaction_modes, but for historical reasons
Postgres Pro allows the commas to be omitted.

See also the compatibility section of SET TRANSACTION.

See Also
BEGIN, COMMIT, ROLLBACK, SAVEPOINT, SET TRANSACTION

1626

TRUNCATE
TRUNCATE — empty a table or set of tables

Synopsis
TRUNCATE [TABLE] [ONLY] name [*] [, ...]
 [RESTART IDENTITY | CONTINUE IDENTITY] [CASCADE | RESTRICT]

Description
TRUNCATE quickly removes all rows from a set of tables. It has the same effect as an unqualified DELETE on
each table, but since it does not actually scan the tables it is faster. Furthermore, it reclaims disk space
immediately, rather than requiring a subsequent VACUUM operation. This is most useful on large tables.

Parameters
name

The name (optionally schema-qualified) of a table to truncate. If ONLY is specified before the table
name, only that table is truncated. If ONLY is not specified, the table and all its descendant tables
(if any) are truncated. Optionally, * can be specified after the table name to explicitly indicate that
descendant tables are included.

RESTART IDENTITY

Automatically restart sequences owned by columns of the truncated table(s).

CONTINUE IDENTITY

Do not change the values of sequences. This is the default.

CASCADE

Automatically truncate all tables that have foreign-key references to any of the named tables, or to
any tables added to the group due to CASCADE.

RESTRICT

Refuse to truncate if any of the tables have foreign-key references from tables that are not listed in
the command. This is the default.

Notes
You must have the TRUNCATE privilege on a table to truncate it.

TRUNCATE acquires an ACCESS EXCLUSIVE lock on each table it operates on, which blocks all other
concurrent operations on the table. When RESTART IDENTITY is specified, any sequences that are to be
restarted are likewise locked exclusively. If concurrent access to a table is required, then the DELETE
command should be used instead.

TRUNCATE cannot be used on a table that has foreign-key references from other tables, unless all such
tables are also truncated in the same command. Checking validity in such cases would require table
scans, and the whole point is not to do one. The CASCADE option can be used to automatically include all
dependent tables — but be very careful when using this option, or else you might lose data you did not
intend to! Note in particular that when the table to be truncated is a partition, siblings partitions are left
untouched, but cascading occurs to all referencing tables and all their partitions with no distinction.

TRUNCATE will not fire any ON DELETE triggers that might exist for the tables. But it will fire ON TRUNCATE
triggers. If ON TRUNCATE triggers are defined for any of the tables, then all BEFORE TRUNCATE triggers are

1627

TRUNCATE

fired before any truncation happens, and all AFTER TRUNCATE triggers are fired after the last truncation
is performed and any sequences are reset. The triggers will fire in the order that the tables are to be
processed (first those listed in the command, and then any that were added due to cascading).

TRUNCATE is not MVCC-safe. After truncation, the table will appear empty to concurrent transactions, if
they are using a snapshot taken before the truncation occurred. See Section 13.5 for more details.

TRUNCATE is transaction-safe with respect to the data in the tables: the truncation will be safely rolled
back if the surrounding transaction does not commit.

When RESTART IDENTITY is specified, the implied ALTER SEQUENCE RESTART operations are also done
transactionally; that is, they will be rolled back if the surrounding transaction does not commit. Be aware
that if any additional sequence operations are done on the restarted sequences before the transaction
rolls back, the effects of these operations on the sequences will be rolled back, but not their effects
on currval(); that is, after the transaction currval() will continue to reflect the last sequence value
obtained inside the failed transaction, even though the sequence itself may no longer be consistent with
that. This is similar to the usual behavior of currval() after a failed transaction.

TRUNCATE is not currently supported for foreign tables. This implies that if a specified table has any
descendant tables that are foreign, the command will fail.

Examples
Truncate the tables bigtable and fattable:

TRUNCATE bigtable, fattable;

The same, and also reset any associated sequence generators:

TRUNCATE bigtable, fattable RESTART IDENTITY;

Truncate the table othertable, and cascade to any tables that reference othertable via foreign-key
constraints:

TRUNCATE othertable CASCADE;

Compatibility
The SQL:2008 standard includes a TRUNCATE command with the syntax TRUNCATE TABLE tablename.
The clauses CONTINUE IDENTITY/RESTART IDENTITY also appear in that standard, but have slightly
different though related meanings. Some of the concurrency behavior of this command is left
implementation-defined by the standard, so the above notes should be considered and compared with
other implementations if necessary.

See Also
DELETE

1628

UNLISTEN
UNLISTEN — stop listening for a notification

Synopsis
UNLISTEN { channel | * }

Description
UNLISTEN is used to remove an existing registration for NOTIFY events. UNLISTEN cancels any existing
registration of the current Postgres Pro session as a listener on the notification channel named channel.
The special wildcard * cancels all listener registrations for the current session.

NOTIFY contains a more extensive discussion of the use of LISTEN and NOTIFY.

Parameters
channel

Name of a notification channel (any identifier).

*

All current listen registrations for this session are cleared.

Notes
You can unlisten something you were not listening for; no warning or error will appear.

At the end of each session, UNLISTEN * is automatically executed.

A transaction that has executed UNLISTEN cannot be prepared for two-phase commit.

Examples
To make a registration:

LISTEN virtual;
NOTIFY virtual;
Asynchronous notification "virtual" received from server process with PID 8448.

Once UNLISTEN has been executed, further NOTIFY messages will be ignored:

UNLISTEN virtual;
NOTIFY virtual;
-- no NOTIFY event is received

Compatibility
There is no UNLISTEN command in the SQL standard.

See Also
LISTEN, NOTIFY

1629

UPDATE
UPDATE — update rows of a table

Synopsis
[WITH [RECURSIVE] with_query [, ...]]
UPDATE [ONLY] table_name [*] [[AS] alias]
 SET { column_name = { expression | DEFAULT } |
 (column_name [, ...]) = [ROW] ({ expression | DEFAULT } [, ...]) |
 (column_name [, ...]) = (sub-SELECT)
 } [, ...]
 [FROM from_item [, ...]]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Description
UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the
columns to be modified need be mentioned in the SET clause; columns not explicitly modified retain their
previous values.

There are two ways to modify a table using information contained in other tables in the database: using
sub-selects, or specifying additional tables in the FROM clause. Which technique is more appropriate
depends on the specific circumstances.

The optional RETURNING clause causes UPDATE to compute and return value(s) based on each row actually
updated. Any expression using the table's columns, and/or columns of other tables mentioned in FROM,
can be computed. The new (post-update) values of the table's columns are used. The syntax of the
RETURNING list is identical to that of the output list of SELECT.

You must have the UPDATE privilege on the table, or at least on the column(s) that are listed to be updated.
You must also have the SELECT privilege on any column whose values are read in the expressions or
condition.

Parameters
with_query

The WITH clause allows you to specify one or more subqueries that can be referenced by name in the
UPDATE query. See Section 7.8 and SELECT for details.

table_name

The name (optionally schema-qualified) of the table to update. If ONLY is specified before the table
name, matching rows are updated in the named table only. If ONLY is not specified, matching rows
are also updated in any tables inheriting from the named table. Optionally, * can be specified after
the table name to explicitly indicate that descendant tables are included.

alias

A substitute name for the target table. When an alias is provided, it completely hides the actual name
of the table. For example, given UPDATE foo AS f, the remainder of the UPDATE statement must refer
to this table as f not foo.

column_name

The name of a column in the table named by table_name. The column name can be qualified with a
subfield name or array subscript, if needed. Do not include the table's name in the specification of a
target column — for example, UPDATE table_name SET table_name.col = 1 is invalid.

1630

UPDATE

expression

An expression to assign to the column. The expression can use the old values of this and other columns
in the table.

DEFAULT

Set the column to its default value (which will be NULL if no specific default expression has been
assigned to it). An identity column will be set to a new value generated by the associated sequence.
For a generated column, specifying this is permitted but merely specifies the normal behavior of
computing the column from its generation expression.

sub-SELECT

A SELECT sub-query that produces as many output columns as are listed in the parenthesized column
list preceding it. The sub-query must yield no more than one row when executed. If it yields one row,
its column values are assigned to the target columns; if it yields no rows, NULL values are assigned
to the target columns. The sub-query can refer to old values of the current row of the table being
updated.

from_item

A table expression allowing columns from other tables to appear in the WHERE condition and update
expressions. This uses the same syntax as the FROM clause of a SELECT statement; for example, an
alias for the table name can be specified. Do not repeat the target table as a from_item unless you
intend a self-join (in which case it must appear with an alias in the from_item).

condition

An expression that returns a value of type boolean. Only rows for which this expression returns true
will be updated.

cursor_name

The name of the cursor to use in a WHERE CURRENT OF condition. The row to be updated is the one
most recently fetched from this cursor. The cursor must be a non-grouping query on the UPDATE's
target table. Note that WHERE CURRENT OF cannot be specified together with a Boolean condition.
See DECLARE for more information about using cursors with WHERE CURRENT OF.

output_expression

An expression to be computed and returned by the UPDATE command after each row is updated. The
expression can use any column names of the table named by table_name or table(s) listed in FROM.
Write * to return all columns.

output_name

A name to use for a returned column.

Outputs
On successful completion, an UPDATE command returns a command tag of the form

UPDATE count

The count is the number of rows updated, including matched rows whose values did not change. Note
that the number may be less than the number of rows that matched the condition when updates were
suppressed by a BEFORE UPDATE trigger. If count is 0, no rows were updated by the query (this is not
considered an error).

If the UPDATE command contains a RETURNING clause, the result will be similar to that of a SELECT
statement containing the columns and values defined in the RETURNING list, computed over the row(s)
updated by the command.

1631

UPDATE

Notes
When a FROM clause is present, what essentially happens is that the target table is joined to the tables
mentioned in the from_item list, and each output row of the join represents an update operation for the
target table. When using FROM you should ensure that the join produces at most one output row for each
row to be modified. In other words, a target row shouldn't join to more than one row from the other
table(s). If it does, then only one of the join rows will be used to update the target row, but which one
will be used is not readily predictable.

Because of this indeterminacy, referencing other tables only within sub-selects is safer, though often
harder to read and slower than using a join.

In the case of a partitioned table, updating a row might cause it to no longer satisfy the partition
constraint of the containing partition. In that case, if there is some other partition in the partition tree
for which this row satisfies its partition constraint, then the row is moved to that partition. If there is
no such partition, an error will occur. Behind the scenes, the row movement is actually a DELETE and
INSERT operation.

There is a possibility that a concurrent UPDATE or DELETE on the row being moved will get a serialization
failure error. Suppose session 1 is performing an UPDATE on a partition key, and meanwhile a concurrent
session 2 for which this row is visible performs an UPDATE or DELETE operation on this row. In such case,
session 2's UPDATE or DELETE will detect the row movement and raise a serialization failure error (which
always returns with an SQLSTATE code '40001'). Applications may wish to retry the transaction if this
occurs. In the usual case where the table is not partitioned, or where there is no row movement, session 2
would have identified the newly updated row and carried out the UPDATE/DELETE on this new row version.

Note that while rows can be moved from local partitions to a foreign-table partition (provided the foreign
data wrapper supports tuple routing), they cannot be moved from a foreign-table partition to another
partition.

Examples
Change the word Drama to Dramatic in the column kind of the table films:
UPDATE films SET kind = 'Dramatic' WHERE kind = 'Drama';

Adjust temperature entries and reset precipitation to its default value in one row of the table weather:
UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Perform the same operation and return the updated entries:
UPDATE weather SET temp_lo = temp_lo+1, temp_hi = temp_lo+15, prcp = DEFAULT
 WHERE city = 'San Francisco' AND date = '2003-07-03'
 RETURNING temp_lo, temp_hi, prcp;

Use the alternative column-list syntax to do the same update:
UPDATE weather SET (temp_lo, temp_hi, prcp) = (temp_lo+1, temp_lo+15, DEFAULT)
 WHERE city = 'San Francisco' AND date = '2003-07-03';

Increment the sales count of the salesperson who manages the account for Acme Corporation, using
the FROM clause syntax:
UPDATE employees SET sales_count = sales_count + 1 FROM accounts
 WHERE accounts.name = 'Acme Corporation'
 AND employees.id = accounts.sales_person;

Perform the same operation, using a sub-select in the WHERE clause:
UPDATE employees SET sales_count = sales_count + 1 WHERE id =
 (SELECT sales_person FROM accounts WHERE name = 'Acme Corporation');

1632

UPDATE

Update contact names in an accounts table to match the currently assigned salesmen:

UPDATE accounts SET (contact_first_name, contact_last_name) =
 (SELECT first_name, last_name FROM salesmen
 WHERE salesmen.id = accounts.sales_id);

A similar result could be accomplished with a join:

UPDATE accounts SET contact_first_name = first_name,
 contact_last_name = last_name
 FROM salesmen WHERE salesmen.id = accounts.sales_id;

However, the second query may give unexpected results if salesmen.id is not a unique key, whereas the
first query is guaranteed to raise an error if there are multiple id matches. Also, if there is no match for
a particular accounts.sales_id entry, the first query will set the corresponding name fields to NULL,
whereas the second query will not update that row at all.

Update statistics in a summary table to match the current data:

UPDATE summary s SET (sum_x, sum_y, avg_x, avg_y) =
 (SELECT sum(x), sum(y), avg(x), avg(y) FROM data d
 WHERE d.group_id = s.group_id);

Attempt to insert a new stock item along with the quantity of stock. If the item already exists, instead
update the stock count of the existing item. To do this without failing the entire transaction, use
savepoints:

BEGIN;
-- other operations
SAVEPOINT sp1;
INSERT INTO wines VALUES('Chateau Lafite 2003', '24');
-- Assume the above fails because of a unique key violation,
-- so now we issue these commands:
ROLLBACK TO sp1;
UPDATE wines SET stock = stock + 24 WHERE winename = 'Chateau Lafite 2003';
-- continue with other operations, and eventually
COMMIT;

Change the kind column of the table films in the row on which the cursor c_films is currently
positioned:

UPDATE films SET kind = 'Dramatic' WHERE CURRENT OF c_films;

Compatibility
This command conforms to the SQL standard, except that the FROM and RETURNING clauses are Postgres
Pro extensions, as is the ability to use WITH with UPDATE.

Some other database systems offer a FROM option in which the target table is supposed to be listed again
within FROM. That is not how Postgres Pro interprets FROM. Be careful when porting applications that
use this extension.

According to the standard, the source value for a parenthesized sub-list of target column names can be
any row-valued expression yielding the correct number of columns. Postgres Pro only allows the source
value to be a row constructor or a sub-SELECT. An individual column's updated value can be specified as
DEFAULT in the row-constructor case, but not inside a sub-SELECT.

1633

VACUUM
VACUUM — garbage-collect and optionally analyze a database

Synopsis
VACUUM [(option [, ...])] [table_and_columns [, ...]]
VACUUM [FULL] [FREEZE] [VERBOSE] [ANALYZE] [table_and_columns [, ...]]

where option can be one of:

 FULL [boolean]
 FREEZE [boolean]
 VERBOSE [boolean]
 ANALYZE [boolean]
 DISABLE_PAGE_SKIPPING [boolean]
 SKIP_LOCKED [boolean]
 INDEX_CLEANUP [boolean]
 TRUNCATE [boolean]
 PARALLEL integer

and table_and_columns is:

 table_name [(column_name [, ...])]

Description
VACUUM reclaims storage occupied by dead tuples. In normal Postgres Pro operation, tuples that are
deleted or obsoleted by an update are not physically removed from their table; they remain present until
a VACUUM is done. Therefore it's necessary to do VACUUM periodically, especially on frequently-updated
tables.

Without a table_and_columns list, VACUUM processes every table and materialized view in the current
database that the current user has permission to vacuum. With a list, VACUUM processes only those
table(s).

VACUUM ANALYZE performs a VACUUM and then an ANALYZE for each selected table. This is a handy
combination form for routine maintenance scripts. See ANALYZE for more details about its processing.

Plain VACUUM (without FULL) simply reclaims space and makes it available for re-use. This form of the
command can operate in parallel with normal reading and writing of the table, as an exclusive lock is
not obtained. However, extra space is not returned to the operating system (in most cases); it's just kept
available for re-use within the same table. It also allows us to leverage multiple CPUs in order to process
indexes. This feature is known as parallel vacuum. To disable this feature, one can use PARALLEL option
and specify parallel workers as zero. VACUUM FULL rewrites the entire contents of the table into a new
disk file with no extra space, allowing unused space to be returned to the operating system. This form
is much slower and requires an ACCESS EXCLUSIVE lock on each table while it is being processed.

When the option list is surrounded by parentheses, the options can be written in any order. Without
parentheses, options must be specified in exactly the order shown above. The parenthesized syntax was
added in PostgreSQL 9.0; the unparenthesized syntax is deprecated.

Parameters
FULL

Selects “full” vacuum, which can reclaim more space, but takes much longer and exclusively locks
the table. This method also requires extra disk space, since it writes a new copy of the table and

1634

VACUUM

doesn't release the old copy until the operation is complete. Usually this should only be used when
a significant amount of space needs to be reclaimed from within the table.

FREEZE

Selects aggressive “freezing” of tuples. Specifying FREEZE is equivalent to performing VACUUM
with the vacuum_freeze_min_age and vacuum_freeze_table_age parameters set to zero. Aggressive
freezing is always performed when the table is rewritten, so this option is redundant when FULL is
specified.

VERBOSE

Prints a detailed vacuum activity report for each table.

ANALYZE

Updates statistics used by the planner to determine the most efficient way to execute a query.

DISABLE_PAGE_SKIPPING

Normally, VACUUM will skip pages based on the visibility map. Pages where all tuples are known
to be frozen can always be skipped, and those where all tuples are known to be visible to all
transactions may be skipped except when performing an aggressive vacuum. Furthermore, except
when performing an aggressive vacuum, some pages may be skipped in order to avoid waiting for
other sessions to finish using them. This option disables all page-skipping behavior, and is intended
to be used only when the contents of the visibility map are suspect, which should happen only if there
is a hardware or software issue causing database corruption.

SKIP_LOCKED

Specifies that VACUUM should not wait for any conflicting locks to be released when beginning work
on a relation: if a relation cannot be locked immediately without waiting, the relation is skipped. Note
that even with this option, VACUUM may still block when opening the relation's indexes. Additionally,
VACUUM ANALYZE may still block when acquiring sample rows from partitions, table inheritance
children, and some types of foreign tables. Also, while VACUUM ordinarily processes all partitions of
specified partitioned tables, this option will cause VACUUM to skip all partitions if there is a conflicting
lock on the partitioned table.

INDEX_CLEANUP

Specifies that VACUUM should attempt to remove index entries pointing to dead tuples. This is normally
the desired behavior and is the default unless the vacuum_index_cleanup option has been set to
false for the table to be vacuumed. Setting this option to false may be useful when it is necessary to
make vacuum run as quickly as possible, for example to avoid imminent transaction ID wraparound
(see Section 23.1.5). However, if index cleanup is not performed regularly, performance may suffer,
because as the table is modified, indexes will accumulate dead tuples and the table itself will
accumulate dead line pointers that cannot be removed until index cleanup is completed. This option
has no effect for tables that do not have an index and is ignored if the FULL option is used.

TRUNCATE

Specifies that VACUUM should attempt to truncate off any empty pages at the end of the table and
allow the disk space for the truncated pages to be returned to the operating system. This is normally
the desired behavior and is the default unless the vacuum_truncate option has been set to false for
the table to be vacuumed. Setting this option to false may be useful to avoid ACCESS EXCLUSIVE lock
on the table that the truncation requires. This option is ignored if the FULL option is used.

PARALLEL

Perform index vacuum and index cleanup phases of VACUUM in parallel using integer background
workers (for the details of each vacuum phase, please refer to Table 26.37). The number of workers
used to perform the operation is equal to the number of indexes on the relation that support parallel
vacuum which is limited by the number of workers specified with PARALLEL option if any which is

1635

VACUUM

further limited by max_parallel_maintenance_workers. An index can participate in parallel vacuum if
and only if the size of the index is more than min_parallel_index_scan_size. Please note that it is not
guaranteed that the number of parallel workers specified in integer will be used during execution.
It is possible for a vacuum to run with fewer workers than specified, or even with no workers at all.
Only one worker can be used per index. So parallel workers are launched only when there are at
least 2 indexes in the table. Workers for vacuum are launched before the start of each phase and
exit at the end of the phase. These behaviors might change in a future release. This option can't be
used with the FULL option.

boolean

Specifies whether the selected option should be turned on or off. You can write TRUE, ON, or 1 to
enable the option, and FALSE, OFF, or 0 to disable it. The boolean value can also be omitted, in which
case TRUE is assumed.

integer

Specifies a non-negative integer value passed to the selected option.

table_name

The name (optionally schema-qualified) of a specific table or materialized view to vacuum. If the
specified table is a partitioned table, all of its leaf partitions are vacuumed.

column_name

The name of a specific column to analyze. Defaults to all columns. If a column list is specified, ANALYZE
must also be specified.

Outputs
When VERBOSE is specified, VACUUM emits progress messages to indicate which table is currently being
processed. Various statistics about the tables are printed as well.

Notes
To vacuum a table, one must ordinarily be the table's owner or a superuser. However, database owners
are allowed to vacuum all tables in their databases, except shared catalogs. (The restriction for shared
catalogs means that a true database-wide VACUUM can only be performed by a superuser.) VACUUM will
skip over any tables that the calling user does not have permission to vacuum.

VACUUM cannot be executed inside a transaction block.

For tables with GIN indexes, VACUUM (in any form) also completes any pending index insertions, by moving
pending index entries to the appropriate places in the main GIN index structure. See Section 62.4.1
for details.

We recommend that active production databases be vacuumed frequently (at least nightly), in order to
remove dead rows. After adding or deleting a large number of rows, it might be a good idea to issue a
VACUUM ANALYZE command for the affected table. This will update the system catalogs with the results of
all recent changes, and allow the Postgres Pro query planner to make better choices in planning queries.

The FULL option is not recommended for routine use, but might be useful in special cases. An example
is when you have deleted or updated most of the rows in a table and would like the table to physically
shrink to occupy less disk space and allow faster table scans. VACUUM FULL will usually shrink the table
more than a plain VACUUM would.

The PARALLEL option is used only for vacuum purposes. If this option is specified with the ANALYZE option,
it does not affect ANALYZE.

VACUUM causes a substantial increase in I/O traffic, which might cause poor performance for other active
sessions. Therefore, it is sometimes advisable to use the cost-based vacuum delay feature. For parallel
vacuum, each worker sleeps in proportion to the work done by that worker. See Section 18.4.4 for details.

1636

VACUUM

Postgres Pro includes an “autovacuum” facility which can automate routine vacuum maintenance. For
more information about automatic and manual vacuuming, see Section 23.1.

Examples
To clean a single table onek, analyze it for the optimizer and print a detailed vacuum activity report:

VACUUM (VERBOSE, ANALYZE) onek;

Compatibility
There is no VACUUM statement in the SQL standard.

See Also
vacuumdb, Section 18.4.4, Section 23.1.6

1637

VALUES
VALUES — compute a set of rows

Synopsis
VALUES (expression [, ...]) [, ...]
 [ORDER BY sort_expression [ASC | DESC | USING operator] [, ...]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]

Description
VALUES computes a row value or set of row values specified by value expressions. It is most commonly
used to generate a “constant table” within a larger command, but it can be used on its own.

When more than one row is specified, all the rows must have the same number of elements. The data
types of the resulting table's columns are determined by combining the explicit or inferred types of the
expressions appearing in that column, using the same rules as for UNION (see Section 10.5).

Within larger commands, VALUES is syntactically allowed anywhere that SELECT is. Because it is treated
like a SELECT by the grammar, it is possible to use the ORDER BY, LIMIT (or equivalently FETCH FIRST),
and OFFSET clauses with a VALUES command.

Parameters
expression

A constant or expression to compute and insert at the indicated place in the resulting table (set of
rows). In a VALUES list appearing at the top level of an INSERT, an expression can be replaced by
DEFAULT to indicate that the destination column's default value should be inserted. DEFAULT cannot
be used when VALUES appears in other contexts.

sort_expression

An expression or integer constant indicating how to sort the result rows. This expression can refer to
the columns of the VALUES result as column1, column2, etc. For more details see ORDER BY Clause
in the SELECT documentation.

operator

A sorting operator. For details see ORDER BY Clause in the SELECT documentation.

count

The maximum number of rows to return. For details see LIMIT Clause in the SELECT documentation.

start

The number of rows to skip before starting to return rows. For details see LIMIT Clause in the
SELECT documentation.

Notes
VALUES lists with very large numbers of rows should be avoided, as you might encounter out-of-memory
failures or poor performance. VALUES appearing within INSERT is a special case (because the desired
column types are known from the INSERT's target table, and need not be inferred by scanning the VALUES
list), so it can handle larger lists than are practical in other contexts.

1638

VALUES

Examples
A bare VALUES command:

VALUES (1, 'one'), (2, 'two'), (3, 'three');

This will return a table of two columns and three rows. It's effectively equivalent to:

SELECT 1 AS column1, 'one' AS column2
UNION ALL
SELECT 2, 'two'
UNION ALL
SELECT 3, 'three';

More usually, VALUES is used within a larger SQL command. The most common use is in INSERT:

INSERT INTO films (code, title, did, date_prod, kind)
 VALUES ('T_601', 'Yojimbo', 106, '1961-06-16', 'Drama');

In the context of INSERT, entries of a VALUES list can be DEFAULT to indicate that the column default
should be used here instead of specifying a value:

INSERT INTO films VALUES
 ('UA502', 'Bananas', 105, DEFAULT, 'Comedy', '82 minutes'),
 ('T_601', 'Yojimbo', 106, DEFAULT, 'Drama', DEFAULT);

VALUES can also be used where a sub-SELECT might be written, for example in a FROM clause:

SELECT f.*
 FROM films f, (VALUES('MGM', 'Horror'), ('UA', 'Sci-Fi')) AS t (studio, kind)
 WHERE f.studio = t.studio AND f.kind = t.kind;

UPDATE employees SET salary = salary * v.increase
 FROM (VALUES(1, 200000, 1.2), (2, 400000, 1.4)) AS v (depno, target, increase)
 WHERE employees.depno = v.depno AND employees.sales >= v.target;

Note that an AS clause is required when VALUES is used in a FROM clause, just as is true for SELECT. It is
not required that the AS clause specify names for all the columns, but it's good practice to do so. (The
default column names for VALUES are column1, column2, etc in Postgres Pro, but these names might be
different in other database systems.)

When VALUES is used in INSERT, the values are all automatically coerced to the data type of the
corresponding destination column. When it's used in other contexts, it might be necessary to specify
the correct data type. If the entries are all quoted literal constants, coercing the first is sufficient to
determine the assumed type for all:

SELECT * FROM machines
WHERE ip_address IN (VALUES('192.168.0.1'::inet), ('192.168.0.10'), ('192.168.1.43'));

Tip
For simple IN tests, it's better to rely on the list-of-scalars form of IN than to write a VALUES query
as shown above. The list of scalars method requires less writing and is often more efficient.

Compatibility
VALUES conforms to the SQL standard. LIMIT and OFFSET are Postgres Pro extensions; see also under
SELECT.

See Also
INSERT, SELECT

1639

WAITLSN
WAITLSN — wait for the target LSN to be replayed

Synopsis
WAITLSN 'LSN' [INFINITELY]
WAITLSN 'LSN' TIMEOUT wait_time
WAITLSN 'LSN' NOWAIT

Description
WAITLSN provides a simple interprocess communication mechanism to wait for the target log sequence
number (LSN) on standby in Postgres Pro databases with master-standby asynchronous replication.
When run with the LSN option, the WAITLSN command waits for the specified LSN to be replayed.
By default, wait time is unlimited. Waiting can be interrupted using Ctrl+C, or by shutting down the
postgres server. You can also limit the wait time using the TIMEOUT option, or check the target LSN
status immediately using the NOWAIT option.

Important
The WAITLSN command is deprecated.

Parameters
LSN

Specify the target log sequence number to wait for.

INFINITELY
Wait until the target LSN is replayed on standby. This is an optional parameter reinforcing the default
behavior.

TIMEOUT wait_time

Limit the time to wait for the LSN to be replayed. The specified wait_time must be an integer and
is measured in milliseconds.

NOWAIT
Report whether the target LSN has been replayed already, without any waiting.

Examples
Run WAITLSN from psql, limiting wait time to 10000 milliseconds:

WAITLSN '0/3F07A6B1' TIMEOUT 10000;
NOTICE: LSN is not reached. Try to increase wait time.
LSN reached

 f
(1 row)

Wait until the specified LSN is replayed:

WAITLSN '0/3F07A611';
LSN reached

1640

WAITLSN

 t
(1 row)

Limit LSN wait time to 500000 milliseconds, and then cancel the command:

WAITLSN '0/3F0FF791' TIMEOUT 500000;
^CCancel request sent
NOTICE: LSN is not reached. Try to increase wait time.
ERROR: canceling statement due to user request
 LSN reached

 f
(1 row)

Compatibility
There is no WAITLSN statement in the SQL standard.

1641

Postgres Pro Client Applications
This part contains reference information for Postgres Pro client applications and utilities. Not all of these
commands are of general utility; some might require special privileges. The common feature of these
applications is that they can be run on any host, independent of where the database server resides.

When specified on the command line, user and database names have their case preserved — the presence
of spaces or special characters might require quoting. Table names and other identifiers do not have
their case preserved, except where documented, and might require quoting.

1642

clusterdb
clusterdb — cluster a Postgres Pro database

Synopsis
clusterdb [connection-option...] [--verbose | -v] [--table | -t table] ... [dbname]

clusterdb [connection-option...] [--verbose | -v] --all | -a

Description
clusterdb is a utility for reclustering tables in a Postgres Pro database. It finds tables that have previously
been clustered, and clusters them again on the same index that was last used. Tables that have never
been clustered are not affected.

clusterdb is a wrapper around the SQL command CLUSTER. There is no effective difference between
clustering databases via this utility and via other methods for accessing the server.

Options
clusterdb accepts the following command-line arguments:

-a
--all

Cluster all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be clustered, when -a/--all is not used. If this is not specified,
the database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo

Echo the commands that clusterdb generates and sends to the server.

-q
--quiet

Do not display progress messages.

-t table
--table=table

Cluster table only. Multiple tables can be clustered by writing multiple -t switches.

-v
--verbose

Print detailed information during processing.

-V
--version

Print the clusterdb version and exit.

1643

clusterdb

-?
--help

Show help about clusterdb command line arguments, and exit.

clusterdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force clusterdb to prompt for a password before connecting to a database.

This option is never essential, since clusterdb will automatically prompt for a password if the server
demands password authentication. However, clusterdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be clustered,
when -a/--all is used. If not specified, the postgres database will be used, or if that does not exist,
template1 will be used. This can be a connection string. If so, connection string parameters will
override any conflicting command line options. Also, connection string parameters other than the
database name itself will be re-used when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

1644

clusterdb

Diagnostics
In case of difficulty, see CLUSTER and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To cluster the database test:

$ clusterdb test

To cluster a single table foo in a database named xyzzy:

$ clusterdb --table=foo xyzzy

See Also
CLUSTER

1645

createdb
createdb — create a new Postgres Pro database

Synopsis
createdb [connection-option...] [option...] [dbname [description]]

Description
createdb creates a new Postgres Pro database.

Normally, the database user who executes this command becomes the owner of the new database.
However, a different owner can be specified via the -O option, if the executing user has appropriate
privileges.

createdb is a wrapper around the SQL command CREATE DATABASE. There is no effective difference
between creating databases via this utility and via other methods for accessing the server.

Options
createdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be created. The name must be unique among all Postgres Pro
databases in this cluster. The default is to create a database with the same name as the current
system user.

description

Specifies a comment to be associated with the newly created database.

-D tablespace
--tablespace=tablespace

Specifies the default tablespace for the database. (This name is processed as a double-quoted
identifier.)

-e
--echo

Echo the commands that createdb generates and sends to the server.

-E encoding
--encoding=encoding

Specifies the character encoding scheme to be used in this database. The character sets supported
by the Postgres Pro server are described in Section 22.3.1.

-l locale[@provider]
--locale=locale[@provider]

Specifies the locale to be used in this database. This is equivalent to specifying both --lc-collate
and --lc-ctype.

Optionally, you can specify the provider of the default collation after the @ symbol. Supported values
are icu and libc. For details, see Section 22.2.2.

--lc-collate=locale[@provider]

Specifies the LC_COLLATE setting to be used in this database.

1646

createdb

Optionally, you can specify the provider of the default collation after the @ symbol. Supported values
are icu and libc. For details, see Section 22.2.2.

--lc-ctype=locale

Specifies the LC_CTYPE setting to be used in this database.

-O owner
--owner=owner

Specifies the database user who will own the new database. (This name is processed as a double-
quoted identifier.)

-T template
--template=template

Specifies the template database from which to build this database. (This name is processed as a
double-quoted identifier.)

-V
--version

Print the createdb version and exit.

-?
--help

Show help about createdb command line arguments, and exit.

The options -D, -l, -E, -O, and -T correspond to options of the underlying SQL command CREATE
DATABASE; see there for more information about them.

createdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force createdb to prompt for a password before connecting to a database.

This option is never essential, since createdb will automatically prompt for a password if the server
demands password authentication. However, createdb will waste a connection attempt finding out

1647

createdb

that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to when creating the new database. If not specified,
the postgres database will be used; if that does not exist (or if it is the name of the new database
being created), template1 will be used. This can be a connection string. If so, connection string
parameters will override any conflicting command line options.

Environment
PGDATABASE

If set, the name of the database to create, unless overridden on the command line.

PGHOST
PGPORT
PGUSER

Default connection parameters. PGUSER also determines the name of the database to create, if it is
not specified on the command line or by PGDATABASE.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see CREATE DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples
To create the database demo using the default database server:

$ createdb demo

To create the database demo using the server on host eden, port 5000, using the template0 template
database, here is the command-line command and the underlying SQL command:

$ createdb -p 5000 -h eden -T template0 -e demo
CREATE DATABASE demo TEMPLATE template0;

See Also
dropdb, CREATE DATABASE

1648

createuser
createuser — define a new Postgres Pro user account

Synopsis
createuser [connection-option...] [option...] [username]

Description
createuser creates a new Postgres Pro user (or more precisely, a role). Only superusers and users with
CREATEROLE privilege can create new users, so createuser must be invoked by someone who can connect
as a superuser or a user with CREATEROLE privilege.

If you wish to create a new superuser, you must connect as a superuser, not merely with CREATEROLE
privilege. Being a superuser implies the ability to bypass all access permission checks within the
database, so superuser access should not be granted lightly.

createuser is a wrapper around the SQL command CREATE ROLE. There is no effective difference
between creating users via this utility and via other methods for accessing the server.

Options
createuser accepts the following command-line arguments:

username

Specifies the name of the Postgres Pro user to be created. This name must be different from all
existing roles in this Postgres Pro installation.

-c number
--connection-limit=number

Set a maximum number of connections for the new user. The default is to set no limit.

-d
--createdb

The new user will be allowed to create databases.

-D
--no-createdb

The new user will not be allowed to create databases. This is the default.

-e
--echo

Echo the commands that createuser generates and sends to the server.

-E
--encrypted

This option is obsolete but still accepted for backward compatibility.

-g role
--role=role

Indicates role to which this role will be added immediately as a new member. Multiple roles to which
this role will be added as a member can be specified by writing multiple -g switches.

1649

createuser

-i
--inherit

The new role will automatically inherit privileges of roles it is a member of. This is the default.

-I
--no-inherit

The new role will not automatically inherit privileges of roles it is a member of.

--interactive

Prompt for the user name if none is specified on the command line, and also prompt for whichever of
the options -d/-D, -r/-R, -s/-S is not specified on the command line. (This was the default behavior
up to PostgreSQL 9.1.)

-l
--login

The new user will be allowed to log in (that is, the user name can be used as the initial session user
identifier). This is the default.

-L
--no-login

The new user will not be allowed to log in. (A role without login privilege is still useful as a means
of managing database permissions.)

-P
--pwprompt

If given, createuser will issue a prompt for the password of the new user. This is not necessary if you
do not plan on using password authentication.

-r
--createrole

The new user will be allowed to create new roles (that is, this user will have CREATEROLE privilege).

-R
--no-createrole

The new user will not be allowed to create new roles. This is the default.

-s
--superuser

The new user will be a superuser.

-S
--no-superuser

The new user will not be a superuser. This is the default.

-V
--version

Print the createuser version and exit.

--replication

The new user will have the REPLICATION privilege, which is described more fully in the documentation
for CREATE ROLE.

--no-replication

The new user will not have the REPLICATION privilege, which is described more fully in the
documentation for CREATE ROLE.

1650

createuser

-?
--help

Show help about createuser command line arguments, and exit.

createuser also accepts the following command-line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as (not the user name to create).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force createuser to prompt for a password (for connecting to the server, not for the password of
the new user).

This option is never essential, since createuser will automatically prompt for a password if the server
demands password authentication. However, createuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see CREATE ROLE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples
To create a user joe on the default database server:

1651

createuser

$ createuser joe

To create a user joe on the default database server with prompting for some additional attributes:

$ createuser --interactive joe
Shall the new role be a superuser? (y/n) n
Shall the new role be allowed to create databases? (y/n) n
Shall the new role be allowed to create more new roles? (y/n) n

To create the same user joe using the server on host eden, port 5000, with attributes explicitly specified,
taking a look at the underlying command:

$ createuser -h eden -p 5000 -S -D -R -e joe
CREATE ROLE joe NOSUPERUSER NOCREATEDB NOCREATEROLE INHERIT LOGIN;

To create the user joe as a superuser, and assign a password immediately:

$ createuser -P -s -e joe
Enter password for new role: xyzzy
Enter it again: xyzzy
CREATE ROLE joe PASSWORD 'md5b5f5ba1a423792b526f799ae4eb3d59e' SUPERUSER CREATEDB
 CREATEROLE INHERIT LOGIN;

In the above example, the new password isn't actually echoed when typed, but we show what was typed
for clarity. As you see, the password is encrypted before it is sent to the client.

See Also
dropuser, CREATE ROLE

1652

dropdb
dropdb — remove a Postgres Pro database

Synopsis
dropdb [connection-option...] [option...] dbname

Description
dropdb destroys an existing Postgres Pro database. The user who executes this command must be a
database superuser or the owner of the database.

dropdb is a wrapper around the SQL command DROP DATABASE. There is no effective difference
between dropping databases via this utility and via other methods for accessing the server.

Options
dropdb accepts the following command-line arguments:

dbname

Specifies the name of the database to be removed.

-e
--echo

Echo the commands that dropdb generates and sends to the server.

-f
--force

Attempt to terminate all existing connections to the target database before dropping it. See DROP
DATABASE for more information on this option.

-i
--interactive

Issues a verification prompt before doing anything destructive.

-V
--version

Print the dropdb version and exit.

--if-exists

Do not throw an error if the database does not exist. A notice is issued in this case.

-?
--help

Show help about dropdb command line arguments, and exit.

dropdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

1653

dropdb

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropdb to prompt for a password before connecting to a database.

This option is never essential, since dropdb will automatically prompt for a password if the server
demands password authentication. However, dropdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to in order to drop the target database. If not specified,
the postgres database will be used; if that does not exist (or is the database being dropped),
template1 will be used. This can be a connection string. If so, connection string parameters will
override any conflicting command line options.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see DROP DATABASE and psql for discussions of potential problems and error
messages. The database server must be running at the targeted host. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

Examples
To destroy the database demo on the default database server:

$ dropdb demo

To destroy the database demo using the server on host eden, port 5000, with verification and a peek at
the underlying command:

1654

dropdb

$ dropdb -p 5000 -h eden -i -e demo
Database "demo" will be permanently deleted.
Are you sure? (y/n) y
DROP DATABASE demo;

See Also
createdb, DROP DATABASE

1655

dropuser
dropuser — remove a Postgres Pro user account

Synopsis
dropuser [connection-option...] [option...] [username]

Description
dropuser removes an existing Postgres Pro user. Only superusers and users with the CREATEROLE
privilege can remove Postgres Pro users. (To remove a superuser, you must yourself be a superuser.)

dropuser is a wrapper around the SQL command DROP ROLE. There is no effective difference between
dropping users via this utility and via other methods for accessing the server.

Options
dropuser accepts the following command-line arguments:

username

Specifies the name of the Postgres Pro user to be removed. You will be prompted for a name if none
is specified on the command line and the -i/--interactive option is used.

-e
--echo

Echo the commands that dropuser generates and sends to the server.

-i
--interactive

Prompt for confirmation before actually removing the user, and prompt for the user name if none
is specified on the command line.

-V
--version

Print the dropuser version and exit.

--if-exists

Do not throw an error if the user does not exist. A notice is issued in this case.

-?
--help

Show help about dropuser command line arguments, and exit.

dropuser also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

1656

dropuser

-U username
--username=username

User name to connect as (not the user name to drop).

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force dropuser to prompt for a password before connecting to a database.

This option is never essential, since dropuser will automatically prompt for a password if the server
demands password authentication. However, dropuser will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see DROP ROLE and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Examples
To remove user joe from the default database server:

$ dropuser joe

To remove user joe using the server on host eden, port 5000, with verification and a peek at the
underlying command:

$ dropuser -p 5000 -h eden -i -e joe
Role "joe" will be permanently removed.
Are you sure? (y/n) y
DROP ROLE joe;

See Also
createuser, DROP ROLE

1657

ecpg
ecpg — embedded SQL C preprocessor

Synopsis
ecpg [option...] file...

Description
ecpg is the embedded SQL preprocessor for C programs. It converts C programs with embedded SQL
statements to normal C code by replacing the SQL invocations with special function calls. The output
files can then be processed with any C compiler tool chain.

ecpg will convert each input file given on the command line to the corresponding C output file. If an
input file name does not have any extension, .pgc is assumed. The file's extension will be replaced by
.c to construct the output file name. But the output file name can be overridden using the -o option.

If an input file name is just -, ecpg reads the program from standard input (and writes to standard
output, unless that is overridden with -o).

This reference page does not describe the embedded SQL language. See Chapter 33 for more information
on that topic.

Options
ecpg accepts the following command-line arguments:
-c

Automatically generate certain C code from SQL code. Currently, this works for EXEC SQL TYPE.

-C mode

Set a compatibility mode. mode can be INFORMIX, INFORMIX_SE, or ORACLE.

-D symbol

Define a C preprocessor symbol.

-h

Process header files. When this option is specified, the output file extension becomes .h not .c, and
the default input file extension is .pgh not .pgc. Also, the -c option is forced on.

-i

Parse system include files as well.

-I directory

Specify an additional include path, used to find files included via EXEC SQL INCLUDE. Defaults are
. (current directory), /usr/local/include, the Postgres Pro include directory which is defined at
compile time (default: /usr/local/pgsql/include), and /usr/include, in that order.

-o filename

Specifies that ecpg should write all its output to the given filename. Write -o - to send all output
to standard output.

-r option

Selects run-time behavior. Option can be one of the following:

1658

ecpg

no_indicator

Do not use indicators but instead use special values to represent null values. Historically there
have been databases using this approach.

prepare

Prepare all statements before using them. Libecpg will keep a cache of prepared statements and
reuse a statement if it gets executed again. If the cache runs full, libecpg will free the least used
statement.

questionmarks

Allow question mark as placeholder for compatibility reasons. This used to be the default long ago.

-t

Turn on autocommit of transactions. In this mode, each SQL command is automatically committed
unless it is inside an explicit transaction block. In the default mode, commands are committed only
when EXEC SQL COMMIT is issued.

-v

Print additional information including the version and the "include" path.

--version

Print the ecpg version and exit.

-?
--help

Show help about ecpg command line arguments, and exit.

Notes
When compiling the preprocessed C code files, the compiler needs to be able to find the ECPG header
files in the Postgres Pro include directory. Therefore, you might have to use the -I option when invoking
the compiler (e.g., -I/usr/local/pgsql/include).

Programs using C code with embedded SQL have to be linked against the libecpg library, for example
using the linker options -L/usr/local/pgsql/lib -lecpg.

The value of either of these directories that is appropriate for the installation can be found out using
pg_config.

Examples
If you have an embedded SQL C source file named prog1.pgc, you can create an executable program
using the following sequence of commands:

ecpg prog1.pgc
cc -I/usr/local/pgsql/include -c prog1.c
cc -o prog1 prog1.o -L/usr/local/pgsql/lib -lecpg

1659

pg_basebackup
pg_basebackup — take a base backup of a Postgres Pro cluster

Synopsis
pg_basebackup [option...]

Description
pg_basebackup is used to take a base backup of a running Postgres Pro database cluster. The backup
is taken without affecting other clients of the database, and can be used both for point-in-time recovery
(see Section 24.3) and as the starting point for a log-shipping or streaming-replication standby server
(see Section 25.2).

pg_basebackup makes an exact copy of the database cluster's files, while making sure the server is put
into and out of backup mode automatically. Backups are always taken of the entire database cluster; it
is not possible to back up individual databases or database objects. For selective backups, another tool
such as pg_dump must be used.

The backup is made over a regular Postgres Pro connection that uses the replication protocol. The
connection must be made with a user ID that has REPLICATION permissions (see Section 20.2) or is a
superuser, and pg_hba.conf must permit the replication connection. The server must also be configured
with max_wal_senders set high enough to provide at least one walsender for the backup plus one for
WAL streaming (if used).

There can be multiple pg_basebackups running at the same time, but it is usually better from a
performance point of view to take only one backup, and copy the result.

pg_basebackup can make a base backup from not only a primary server but also a standby. To take a
backup from a standby, set up the standby so that it can accept replication connections (that is, set
max_wal_senders and hot_standby, and configure its pg_hba.conf appropriately). You will also need to
enable full_page_writes on the primary.

Note that there are some limitations in taking a backup from a standby:
• The backup history file is not created in the database cluster backed up.
• pg_basebackup cannot force the standby to switch to a new WAL file at the end of backup. When

you are using -X none, if write activity on the primary is low, pg_basebackup may need to wait a
long time for the last WAL file required for the backup to be switched and archived. In this case,
it may be useful to run pg_switch_wal on the primary in order to trigger an immediate WAL file
switch.

• If the standby is promoted to be primary during backup, the backup fails.
• All WAL records required for the backup must contain sufficient full-page writes, which requires

you to enable full_page_writes on the primary and not to use a tool like pg_compresslog as
archive_command to remove full-page writes from WAL files.

Whenever pg_basebackup is taking a base backup, the server's pg_stat_progress_basebackup view
will report the progress of the backup. See Section 26.4.5 for details.

Options
The following command-line options control the location and format of the output:
-D directory
--pgdata=directory

Sets the target directory to write the output to. pg_basebackup will create this directory (and any
missing parent directories) if it does not exist. If it already exists, it must be empty.

1660

pg_basebackup

When the backup is in tar format, the target directory may be specified as - (dash), causing the tar
file to be written to stdout.

This option is required.

-F format
--format=format

Selects the format for the output. format can be one of the following:
p
plain

Write the output as plain files, with the same layout as the source server's data directory and
tablespaces. When the cluster has no additional tablespaces, the whole database will be placed
in the target directory. If the cluster contains additional tablespaces, the main data directory will
be placed in the target directory, but all other tablespaces will be placed in the same absolute
path as they have on the source server. (See --tablespace-mapping to change that.)

This is the default format.

t
tar

Write the output as tar files in the target directory. The main data directory's contents will be
written to a file named base.tar, and each other tablespace will be written to a separate tar file
named after that tablespace's OID.

If the target directory is specified as - (dash), the tar contents will be written to standard output,
suitable for piping to (for example) gzip. This is only allowed if the cluster has no additional
tablespaces and WAL streaming is not used.

-R
--write-recovery-conf

Creates a standby.signal file and appends connection settings to the postgresql.auto.conf file
in the target directory (or within the base archive file when using tar format). This eases setting up
a standby server using the results of the backup.

The postgresql.auto.conf file will record the connection settings and, if specified, the replication
slot that pg_basebackup is using, so that streaming replication will use the same settings later on.

-T olddir=newdir
--tablespace-mapping=olddir=newdir

Relocates the tablespace in directory olddir to newdir during the backup. To be effective, olddir
must exactly match the path specification of the tablespace as it is defined on the source server.
(But it is not an error if there is no tablespace in olddir on the source server.) Meanwhile newdir
is a directory in the receiving host's filesystem. As with the main target directory, newdir need not
exist already, but if it does exist it must be empty. Both olddir and newdir must be absolute paths.
If either path needs to contain an equal sign (=), precede that with a backslash. This option can be
specified multiple times for multiple tablespaces.

If a tablespace is relocated in this way, the symbolic links inside the main data directory are updated
to point to the new location. So the new data directory is ready to be used for a new server instance
with all tablespaces in the updated locations.

Currently, this option only works with plain output format; it is ignored if tar format is selected.

--waldir=waldir

Sets the directory to write WAL (write-ahead log) files to. By default WAL files will be placed in the
pg_wal subdirectory of the target directory, but this option can be used to place them elsewhere.

1661

pg_basebackup

waldir must be an absolute path. As with the main target directory, waldir need not exist already, but
if it does exist it must be empty. This option can only be specified when the backup is in plain format.

-X method
--wal-method=method

Includes the required WAL (write-ahead log) files in the backup. This will include all write-ahead
logs generated during the backup. Unless the method none is specified, it is possible to start a
postmaster in the target directory without the need to consult the log archive, thus making the output
a completely standalone backup.

The following methods for collecting the write-ahead logs are supported:

n
none

Don't include write-ahead logs in the backup.

f
fetch

The write-ahead log files are collected at the end of the backup. Therefore, it is necessary for the
source server's wal_keep_size parameter to be set high enough that the required log data is not
removed before the end of the backup. If the required log data has been recycled before it's time
to transfer it, the backup will fail and be unusable.

When tar format is used, the write-ahead log files will be included in the base.tar file.

s
stream

Stream write-ahead log data while the backup is being taken. This method will open a second
connection to the server and start streaming the write-ahead log in parallel while running the
backup. Therefore, it will require two replication connections not just one. As long as the client
can keep up with the write-ahead log data, using this method requires no extra write-ahead logs
to be saved on the source server.

When tar format is used, the write-ahead log files will be written to a separate file named
pg_wal.tar (if the server is a version earlier than 10, the file will be named pg_xlog.tar).

This value is the default.

-z
--gzip

Enables gzip compression of tar file output, with the default compression level. Compression is only
available when using the tar format, and the suffix .gz will automatically be added to all tar filenames.

-Z level
--compress=level

Enables gzip compression of tar file output, and specifies the compression level (0 through 9, 0 being
no compression and 9 being best compression). Compression is only available when using the tar
format, and the suffix .gz will automatically be added to all tar filenames.

The following command-line options control the generation of the backup and the invocation of the
program:

-c fast|spread
--checkpoint=fast|spread

Sets checkpoint mode to fast (immediate) or spread (the default) (see Section 24.3.3).

1662

pg_basebackup

-C
--create-slot

Specifies that the replication slot named by the --slot option should be created before starting the
backup. An error is raised if the slot already exists.

-l label
--label=label

Sets the label for the backup. If none is specified, a default value of “pg_basebackup base backup”
will be used.

-n
--no-clean

By default, when pg_basebackup aborts with an error, it removes any directories it might have
created before discovering that it cannot finish the job (for example, the target directory and write-
ahead log directory). This option inhibits tidying-up and is thus useful for debugging.

Note that tablespace directories are not cleaned up either way.

-N
--no-sync

By default, pg_basebackup will wait for all files to be written safely to disk. This option causes
pg_basebackup to return without waiting, which is faster, but means that a subsequent operating
system crash can leave the base backup corrupt. Generally, this option is useful for testing but should
not be used when creating a production installation.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report during the
backup. Since the database may change during the backup, this is only an approximation and may
not end at exactly 100%. In particular, when WAL log is included in the backup, the total amount of
data cannot be estimated in advance, and in this case the estimated target size will increase once
it passes the total estimate without WAL.

-r rate
--max-rate=rate

Sets the maximum transfer rate at which data is collected from the source server. This can be useful
to limit the impact of pg_basebackup on the server. Values are in kilobytes per second. Use a suffix
of M to indicate megabytes per second. A suffix of k is also accepted, and has no effect. Valid values
are between 32 kilobytes per second and 1024 megabytes per second.

This option always affects transfer of the data directory. Transfer of WAL files is only affected if the
collection method is fetch.

-S slotname
--slot=slotname

This option can only be used together with -X stream. It causes WAL streaming to use the specified
replication slot. If the base backup is intended to be used as a streaming-replication standby using a
replication slot, the standby should then use the same replication slot name as primary_slot_name.
This ensures that the primary server does not remove any necessary WAL data in the time between
the end of the base backup and the start of streaming replication on the new standby.

The specified replication slot has to exist unless the option -C is also used.

If this option is not specified and the server supports temporary replication slots (version 10 and
later), then a temporary replication slot is automatically used for WAL streaming.

1663

pg_basebackup

-v
--verbose

Enables verbose mode. Will output some extra steps during startup and shutdown, as well as show
the exact file name that is currently being processed if progress reporting is also enabled.

--manifest-checksums=algorithm

Specifies the checksum algorithm that should be applied to each file included in the backup manifest.
Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and SHA512. The
default is CRC32C.

If NONE is selected, the backup manifest will not contain any checksums. Otherwise, it will contain
a checksum of each file in the backup using the specified algorithm. In addition, the manifest will
always contain a SHA256 checksum of its own contents. The SHA algorithms are significantly more
CPU-intensive than CRC32C, so selecting one of them may increase the time required to complete
the backup.

Using a SHA hash function provides a cryptographically secure digest of each file for users who
wish to verify that the backup has not been tampered with, while the CRC32C algorithm provides
a checksum that is much faster to calculate; it is good at catching errors due to accidental changes
but is not resistant to malicious modifications. Note that, to be useful against an adversary who has
access to the backup, the backup manifest would need to be stored securely elsewhere or otherwise
verified not to have been modified since the backup was taken.

pg_verifybackup can be used to check the integrity of a backup against the backup manifest.

--manifest-force-encode

Forces all filenames in the backup manifest to be hex-encoded. If this option is not specified, only
non-UTF8 filenames are hex-encoded. This option is mostly intended to test that tools which read a
backup manifest file properly handle this case.

--no-estimate-size

Prevents the server from estimating the total amount of backup data that will be streamed, resulting
in the backup_total column in the pg_stat_progress_basebackup view always being NULL.

Without this option, the backup will start by enumerating the size of the entire database, and then go
back and send the actual contents. This may make the backup take slightly longer, and in particular
it will take longer before the first data is sent. This option is useful to avoid such estimation time
if it's too long.

This option is not allowed when using --progress.

--no-manifest

Disables generation of a backup manifest. If this option is not specified, the server will generate and
send a backup manifest which can be verified using pg_verifybackup. The manifest is a list of every
file present in the backup with the exception of any WAL files that may be included. It also stores the
size, last modification time, and an optional checksum for each file.

--no-slot

Prevents the creation of a temporary replication slot for the backup.

By default, if log streaming is selected but no slot name is given with the -S option, then a temporary
replication slot is created (if supported by the source server).

The main purpose of this option is to allow taking a base backup when the server has no free
replication slots. Using a replication slot is almost always preferred, because it prevents needed WAL
from being removed by the server during the backup.

1664

pg_basebackup

--no-verify-checksums

Disables verification of checksums, if they are enabled on the server the base backup is taken from.

By default, checksums are verified and checksum failures will result in a non-zero exit status.
However, the base backup will not be removed in such a case, as if the --no-clean option had been
used. Checksum verification failures will also be reported in the pg_stat_database view.

The following command-line options control the connection to the source server:

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

The option is called --dbname for consistency with other client applications, but because
pg_basebackup doesn't connect to any particular database in the cluster, any database name in the
connection string will be ignored.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for a Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the source server. Smaller
values allow more accurate monitoring of backup progress from the server. A value of zero disables
periodic status updates completely, although an update will still be sent when requested by the server,
to avoid timeout-based disconnects. The default value is 10 seconds.

-U username
--username=username

Specifies the user name to connect as.

-w
--no-password

Prevents issuing a password prompt. If the server requires password authentication and a password
is not available by other means such as a .pgpass file, the connection attempt will fail. This option
can be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Forces pg_basebackup to prompt for a password before connecting to the source server.

This option is never essential, since pg_basebackup will automatically prompt for a password if the
server demands password authentication. However, pg_basebackup will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

Other options are also available:

1665

pg_basebackup

-V
--version

Prints the pg_basebackup version and exits.

-?
--help

Shows help about pg_basebackup command line arguments, and exits.

Environment
This utility, like most other Postgres Pro utilities, uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
At the beginning of the backup, a checkpoint needs to be performed on the source server. This can take
some time (especially if the option --checkpoint=fast is not used), during which pg_basebackup will
appear to be idle.

The backup will include all files in the data directory and tablespaces, including the configuration files
and any additional files placed in the directory by third parties, except certain temporary files managed
by Postgres Pro. But only regular files and directories are copied, except that symbolic links used for
tablespaces are preserved. Symbolic links pointing to certain directories known to Postgres Pro are
copied as empty directories. Other symbolic links and special device files are skipped. See Section 50.4
for the precise details.

In plain format, tablespaces will be backed up to the same path they have on the source server, unless
the option --tablespace-mapping is used. Without this option, running a plain format base backup on
the same host as the server will not work if tablespaces are in use, because the backup would have to
be written to the same directory locations as the original tablespaces.

When tar format is used, it is the user's responsibility to unpack each tar file before starting a Postgres
Pro server that uses the data. If there are additional tablespaces, the tar files for them need to be
unpacked in the correct locations. In this case the symbolic links for those tablespaces will be created
by the server according to the contents of the tablespace_map file that is included in the base.tar file.

pg_basebackup works with servers of the same or an older major version, down to 9.1. However, WAL
streaming mode (-X stream) only works with server version 9.3 and later, and tar format (--format=tar)
only works with server version 9.5 and later.

pg_basebackup will preserve group permissions for data files if group permissions are enabled on the
source cluster.

Examples
To create a base backup of the server at mydbserver and store it in the local directory /usr/local/
pgsql/data:
$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data

To create a backup of the local server with one compressed tar file for each tablespace, and store it in
the directory backup, showing a progress report while running:
$ pg_basebackup -D backup -Ft -z -P

To create a backup of a single-tablespace local database and compress this with bzip2:
$ pg_basebackup -D - -Ft -X fetch | bzip2 > backup.tar.bz2

1666

pg_basebackup

(This command will fail if there are multiple tablespaces in the database.)

To create a backup of a local database where the tablespace in /opt/ts is relocated to ./backup/ts:

$ pg_basebackup -D backup/data -T /opt/ts=$(pwd)/backup/ts

See Also
pg_dump

1667

pgbench
pgbench — run a benchmark test on Postgres Pro

Synopsis
pgbench -i [option...] [dbname]

pgbench [option...] [dbname]

Description
pgbench is a simple program for running benchmark tests on Postgres Pro. It runs the same sequence of
SQL commands over and over, possibly in multiple concurrent database sessions, and then calculates the
average transaction rate (transactions per second). By default, pgbench tests a scenario that is loosely
based on TPC-B, involving five SELECT, UPDATE, and INSERT commands per transaction. However, it is
easy to test other cases by writing your own transaction script files.

Typical output from pgbench looks like:

transaction type: <builtin: TPC-B (sort of)>
scaling factor: 10
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
tps = 85.184871 (including connections establishing)
tps = 85.296346 (excluding connections establishing)

The first six lines report some of the most important parameter settings. The next line reports the
number of transactions completed and intended (the latter being just the product of number of clients
and number of transactions per client); these will be equal unless the run failed before completion. (In
-T mode, only the actual number of transactions is printed.) The last two lines report the number of
transactions per second, figured with and without counting the time to start database sessions.

The default TPC-B-like transaction test requires specific tables to be set up beforehand. pgbench should
be invoked with the -i (initialize) option to create and populate these tables. (When you are testing a
custom script, you don't need this step, but will instead need to do whatever setup your test needs.)
Initialization looks like:

pgbench -i [other-options] dbname

where dbname is the name of the already-created database to test in. (You may also need -h, -p, and/or
-U options to specify how to connect to the database server.)

Caution
pgbench -i creates four tables pgbench_accounts, pgbench_branches, pgbench_history, and
pgbench_tellers, destroying any existing tables of these names. Be very careful to use another
database if you have tables having these names!

At the default “scale factor” of 1, the tables initially contain this many rows:

table # of rows

pgbench_branches 1
pgbench_tellers 10

1668

pgbench

pgbench_accounts 100000
pgbench_history 0

You can (and, for most purposes, probably should) increase the number of rows by using the -s (scale
factor) option. The -F (fillfactor) option might also be used at this point.

Once you have done the necessary setup, you can run your benchmark with a command that doesn't
include -i, that is

pgbench [options] dbname

In nearly all cases, you'll need some options to make a useful test. The most important options are -c
(number of clients), -t (number of transactions), -T (time limit), and -f (specify a custom script file).
See below for a full list.

Options
The following is divided into three subsections. Different options are used during database initialization
and while running benchmarks, but some options are useful in both cases.

Initialization Options
pgbench accepts the following command-line initialization arguments:

dbname

Specifies the name of the database to test in. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-i
--initialize

Required to invoke initialization mode.

-I init_steps
--init-steps=init_steps

Perform just a selected set of the normal initialization steps. init_steps specifies the initialization
steps to be performed, using one character per step. Each step is invoked in the specified order. The
default is dtgvp. The available steps are:

d (Drop)

Drop any existing pgbench tables.

t (create Tables)

Create the tables used by the standard pgbench scenario, namely pgbench_accounts,
pgbench_branches, pgbench_history, and pgbench_tellers.

g or G (Generate data, client-side or server-side)

Generate data and load it into the standard tables, replacing any data already present.

With g (client-side data generation), data is generated in pgbench client and then sent to the
server. This uses the client/server bandwidth extensively through a COPY. Using g causes logging
to print one message every 100,000 rows while generating data for the pgbench_accounts table.

With G (server-side data generation), only small queries are sent from the pgbench client and then
data is actually generated in the server. No significant bandwidth is required for this variant, but
the server will do more work. Using G causes logging not to print any progress message while
generating data.

The default initialization behavior uses client-side data generation (equivalent to g).

1669

pgbench

v (Vacuum)

Invoke VACUUM on the standard tables.

p (create Primary keys)

Create primary key indexes on the standard tables.

f (create Foreign keys)

Create foreign key constraints between the standard tables. (Note that this step is not performed
by default.)

-F fillfactor
--fillfactor=fillfactor

Create the pgbench_accounts, pgbench_tellers and pgbench_branches tables with the given
fillfactor. Default is 100.

-n
--no-vacuum

Perform no vacuuming during initialization. (This option suppresses the v initialization step, even if
it was specified in -I.)

-q
--quiet

Switch logging to quiet mode, producing only one progress message per 5 seconds. The default
logging prints one message each 100,000 rows, which often outputs many lines per second (especially
on good hardware).

This setting has no effect if G is specified in -I.

-s scale_factor
--scale=scale_factor

Multiply the number of rows generated by the scale factor. For example, -s 100 will create
10,000,000 rows in the pgbench_accounts table. Default is 1. When the scale is 20,000 or larger, the
columns used to hold account identifiers (aid columns) will switch to using larger integers (bigint),
in order to be big enough to hold the range of account identifiers.

--foreign-keys

Create foreign key constraints between the standard tables. (This option adds the f step to the
initialization step sequence, if it is not already present.)

--index-tablespace=index_tablespace

Create indexes in the specified tablespace, rather than the default tablespace.

--partition-method=NAME

Create a partitioned pgbench_accounts table with NAME method. Expected values are range or hash.
This option requires that --partitions is set to non-zero. If unspecified, default is range.

--partitions=NUM

Create a partitioned pgbench_accounts table with NUM partitions of nearly equal size for the scaled
number of accounts. Default is 0, meaning no partitioning.

--tablespace=tablespace

Create tables in the specified tablespace, rather than the default tablespace.

1670

pgbench

--unlogged-tables

Create all tables as unlogged tables, rather than permanent tables.

Benchmarking Options
pgbench accepts the following command-line benchmarking arguments:

-b scriptname[@weight]
--builtin=scriptname[@weight]

Add the specified built-in script to the list of scripts to be executed. Available built-in scripts are:
tpcb-like, simple-update and select-only. Unambiguous prefixes of built-in names are accepted.
With the special name list, show the list of built-in scripts and exit immediately.

Optionally, write an integer weight after @ to adjust the probability of selecting this script versus
other ones. The default weight is 1. See below for details.

-c clients
--client=clients

Number of clients simulated, that is, number of concurrent database sessions. Default is 1.

-C
--connect

Establish a new connection for each transaction, rather than doing it just once per client session.
This is useful to measure the connection overhead.

-d
--debug

Print debugging output.

-D varname=value
--define=varname=value

Define a variable for use by a custom script (see below). Multiple -D options are allowed.

-f filename[@weight]
--file=filename[@weight]

Add a transaction script read from filename to the list of scripts to be executed.

Optionally, write an integer weight after @ to adjust the probability of selecting this script versus
other ones. The default weight is 1. (To use a script file name that includes an @ character, append a
weight so that there is no ambiguity, for example filen@me@1.) See below for details.

-j threads
--jobs=threads

Number of worker threads within pgbench. Using more than one thread can be helpful on multi-CPU
machines. Clients are distributed as evenly as possible among available threads. Default is 1.

-l
--log

Write information about each transaction to a log file. See below for details.

-L limit
--latency-limit=limit

Transactions that last more than limit milliseconds are counted and reported separately, as late.

1671

pgbench

When throttling is used (--rate=...), transactions that lag behind schedule by more than limit ms,
and thus have no hope of meeting the latency limit, are not sent to the server at all. They are counted
and reported separately as skipped.

-M querymode
--protocol=querymode

Protocol to use for submitting queries to the server:

• simple: use simple query protocol.

• extended: use extended query protocol.

• prepared: use extended query protocol with prepared statements.

In the prepared mode, pgbench reuses the parse analysis result starting from the second query
iteration, so pgbench runs faster than in other modes.

The default is simple query protocol. (See Chapter 50 for more information.)

-n
--no-vacuum

Perform no vacuuming before running the test. This option is necessary if you are running a custom
test scenario that does not include the standard tables pgbench_accounts, pgbench_branches,
pgbench_history, and pgbench_tellers.

-N
--skip-some-updates

Run built-in simple-update script. Shorthand for -b simple-update.

-P sec
--progress=sec

Show progress report every sec seconds. The report includes the time since the beginning of the run,
the TPS since the last report, and the transaction latency average and standard deviation since the
last report. Under throttling (-R), the latency is computed with respect to the transaction scheduled
start time, not the actual transaction beginning time, thus it also includes the average schedule lag
time.

-r
--report-latencies

Report the average per-statement latency (execution time from the perspective of the client) of each
command after the benchmark finishes. See below for details.

-R rate
--rate=rate

Execute transactions targeting the specified rate instead of running as fast as possible (the default).
The rate is given in transactions per second. If the targeted rate is above the maximum possible rate,
the rate limit won't impact the results.

The rate is targeted by starting transactions along a Poisson-distributed schedule time line. The
expected start time schedule moves forward based on when the client first started, not when the
previous transaction ended. That approach means that when transactions go past their original
scheduled end time, it is possible for later ones to catch up again.

When throttling is active, the transaction latency reported at the end of the run is calculated from the
scheduled start times, so it includes the time each transaction had to wait for the previous transaction
to finish. The wait time is called the schedule lag time, and its average and maximum are also reported
separately. The transaction latency with respect to the actual transaction start time, i.e., the time

1672

pgbench

spent executing the transaction in the database, can be computed by subtracting the schedule lag
time from the reported latency.

If --latency-limit is used together with --rate, a transaction can lag behind so much that it is
already over the latency limit when the previous transaction ends, because the latency is calculated
from the scheduled start time. Such transactions are not sent to the server, but are skipped altogether
and counted separately.

A high schedule lag time is an indication that the system cannot process transactions at the specified
rate, with the chosen number of clients and threads. When the average transaction execution time
is longer than the scheduled interval between each transaction, each successive transaction will fall
further behind, and the schedule lag time will keep increasing the longer the test run is. When that
happens, you will have to reduce the specified transaction rate.

-s scale_factor
--scale=scale_factor

Report the specified scale factor in pgbench's output. With the built-in tests, this is not necessary;
the correct scale factor will be detected by counting the number of rows in the pgbench_branches
table. However, when testing only custom benchmarks (-f option), the scale factor will be reported
as 1 unless this option is used.

-S
--select-only

Run built-in select-only script. Shorthand for -b select-only.

-t transactions
--transactions=transactions

Number of transactions each client runs. Default is 10.

-T seconds
--time=seconds

Run the test for this many seconds, rather than a fixed number of transactions per client. -t and -
T are mutually exclusive.

-v
--vacuum-all

Vacuum all four standard tables before running the test. With neither -n nor -v, pgbench will vacuum
the pgbench_tellers and pgbench_branches tables, and will truncate pgbench_history.

--aggregate-interval=seconds

Length of aggregation interval (in seconds). May be used only with -l option. With this option, the
log contains per-interval summary data, as described below.

--log-prefix=prefix

Set the filename prefix for the log files created by --log. The default is pgbench_log.

--progress-timestamp

When showing progress (option -P), use a timestamp (Unix epoch) instead of the number of seconds
since the beginning of the run. The unit is in seconds, with millisecond precision after the dot. This
helps compare logs generated by various tools.

--random-seed=seed

Set random generator seed. Seeds the system random number generator, which then produces
a sequence of initial generator states, one for each thread. Values for seed may be: time (the

1673

pgbench

default, the seed is based on the current time), rand (use a strong random source, failing if none is
available), or an unsigned decimal integer value. The random generator is invoked explicitly from
a pgbench script (random... functions) or implicitly (for instance option --rate uses it to schedule
transactions). When explicitly set, the value used for seeding is shown on the terminal. Any value
allowed for seed may also be provided through the environment variable PGBENCH_RANDOM_SEED. To
ensure that the provided seed impacts all possible uses, put this option first or use the environment
variable.

Setting the seed explicitly allows to reproduce a pgbench run exactly, as far as random numbers
are concerned. As the random state is managed per thread, this means the exact same pgbench
run for an identical invocation if there is one client per thread and there are no external or data
dependencies. From a statistical viewpoint reproducing runs exactly is a bad idea because it can
hide the performance variability or improve performance unduly, e.g., by hitting the same pages as
a previous run. However, it may also be of great help for debugging, for instance re-running a tricky
case which leads to an error. Use wisely.

--sampling-rate=rate

Sampling rate, used when writing data into the log, to reduce the amount of log generated. If this
option is given, only the specified fraction of transactions are logged. 1.0 means all transactions will
be logged, 0.05 means only 5% of the transactions will be logged.

Remember to take the sampling rate into account when processing the log file. For example, when
computing TPS values, you need to multiply the numbers accordingly (e.g., with 0.01 sample rate,
you'll only get 1/100 of the actual TPS).

--show-script=scriptname

Show the actual code of builtin script scriptname on stderr, and exit immediately.

Common Options
pgbench also accepts the following common command-line arguments for connection parameters:

-h hostname
--host=hostname

The database server's host name

-p port
--port=port

The database server's port number

-U login
--username=login

The user name to connect as

-V
--version

Print the pgbench version and exit.

-?
--help

Show help about pgbench command line arguments, and exit.

Exit Status
A successful run will exit with status 0. Exit status 1 indicates static problems such as invalid command-
line options. Errors during the run such as database errors or problems in the script will result in exit
status 2. In the latter case, pgbench will print partial results.

1674

pgbench

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters.

This utility, like most other Postgres Pro utilities, uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
What Is the “Transaction” Actually Performed in pgbench?

pgbench executes test scripts chosen randomly from a specified list. The scripts may include built-in
scripts specified with -b and user-provided scripts specified with -f. Each script may be given a relative
weight specified after an @ so as to change its selection probability. The default weight is 1. Scripts with
a weight of 0 are ignored.

The default built-in transaction script (also invoked with -b tpcb-like) issues seven commands per
transaction over randomly chosen aid, tid, bid and delta. The scenario is inspired by the TPC-B
benchmark, but is not actually TPC-B, hence the name.

1. BEGIN;

2. UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;

3. SELECT abalance FROM pgbench_accounts WHERE aid = :aid;

4. UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;

5. UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;

6. INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
(:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);

7. END;

If you select the simple-update built-in (also -N), steps 4 and 5 aren't included in the transaction. This
will avoid update contention on these tables, but it makes the test case even less like TPC-B.

If you select the select-only built-in (also -S), only the SELECT is issued.

Custom Scripts
pgbench has support for running custom benchmark scenarios by replacing the default transaction script
(described above) with a transaction script read from a file (-f option). In this case a “transaction”
counts as one execution of a script file.

A script file contains one or more SQL commands terminated by semicolons. Empty lines and lines
beginning with -- are ignored. Script files can also contain “meta commands”, which are interpreted
by pgbench itself, as described below.

Note
Before Postgres Pro 9.6, SQL commands in script files were terminated by newlines, and so they
could not be continued across lines. Now a semicolon is required to separate consecutive SQL

1675

pgbench

commands (though a SQL command does not need one if it is followed by a meta command). If
you need to create a script file that works with both old and new versions of pgbench, be sure to
write each SQL command on a single line ending with a semicolon.

There is a simple variable-substitution facility for script files. Variable names must consist of letters
(including non-Latin letters), digits, and underscores, with the first character not being a digit. Variables
can be set by the command-line -D option, explained above, or by the meta commands explained below.
In addition to any variables preset by -D command-line options, there are a few variables that are preset
automatically, listed in Table 274. A value specified for these variables using -D takes precedence over
the automatic presets. Once set, a variable's value can be inserted into a SQL command by writing
:variablename. When running more than one client session, each session has its own set of variables.
pgbench supports up to 255 variable uses in one statement.

Table 274. pgbench Automatic Variables

Variable Description
client_id unique number identifying the client session (starts from zero)
default_seed seed used in hash functions by default
random_seed random generator seed (unless overwritten with -D)
scale current scale factor

Script file meta commands begin with a backslash (\) and normally extend to the end of the line, although
they can be continued to additional lines by writing backslash-return. Arguments to a meta command
are separated by white space. These meta commands are supported:

\gset [prefix] \aset [prefix]

These commands may be used to end SQL queries, taking the place of the terminating semicolon (;).

When the \gset command is used, the preceding SQL query is expected to return one row, the
columns of which are stored into variables named after column names, and prefixed with prefix
if provided.

When the \aset command is used, all combined SQL queries (separated by \;) have their columns
stored into variables named after column names, and prefixed with prefix if provided. If a query
returns no row, no assignment is made and the variable can be tested for existence to detect this. If
a query returns more than one row, the last value is kept.

The following example puts the final account balance from the first query into variable abalance, and
fills variables p_two and p_three with integers from the third query. The result of the second query
is discarded. The result of the two last combined queries are stored in variables four and five.

UPDATE pgbench_accounts
 SET abalance = abalance + :delta
 WHERE aid = :aid
 RETURNING abalance \gset
-- compound of two queries
SELECT 1 \;
SELECT 2 AS two, 3 AS three \gset p_
SELECT 4 AS four \; SELECT 5 AS five \aset

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks, similarly to psql's \if expression.
Conditional expressions are identical to those with \set, with non-zero values interpreted as true.

1676

pgbench

\set varname expression

Sets variable varname to a value calculated from expression. The expression may contain the NULL
constant, Boolean constants TRUE and FALSE, integer constants such as 5432, double constants such
as 3.14159, references to variables :variablename, operators with their usual SQL precedence and
associativity, function calls, SQL CASE generic conditional expressions and parentheses.

Functions and most operators return NULL on NULL input.

For conditional purposes, non zero numerical values are TRUE, zero numerical values and NULL are
FALSE.

Too large or small integer and double constants, as well as integer arithmetic operators (+, -, * and
/) raise errors on overflows.

When no final ELSE clause is provided to a CASE, the default value is NULL.

Examples:

\set ntellers 10 * :scale
\set aid (1021 * random(1, 100000 * :scale)) % \
 (100000 * :scale) + 1
\set divx CASE WHEN :x <> 0 THEN :y/:x ELSE NULL END

\sleep number [us | ms | s]

Causes script execution to sleep for the specified duration in microseconds (us), milliseconds (ms)
or seconds (s). If the unit is omitted then seconds are the default. number can be either an integer
constant or a :variablename reference to a variable having an integer value.

Example:

\sleep 10 ms

\setshell varname command [argument ...]

Sets variable varname to the result of the shell command command with the given argument(s). The
command must return an integer value through its standard output.

command and each argument can be either a text constant or a :variablename reference to a variable.
If you want to use an argument starting with a colon, write an additional colon at the beginning of
argument.

Example:

\setshell variable_to_be_assigned command
 literal_argument :variable ::literal_starting_with_colon

\shell command [argument ...]

Same as \setshell, but the result of the command is discarded.

Example:

\shell command literal_argument :variable ::literal_starting_with_colon

Built-in Operators
The arithmetic, bitwise, comparison and logical operators listed in Table 275 are built into pgbench
and may be used in expressions appearing in \set. The operators are listed in increasing precedence
order. Except as noted, operators taking two numeric inputs will produce a double value if either input
is double, otherwise they produce an integer result.

1677

pgbench

Table 275. pgbench Operators

Operator
Description
Example(s)

boolean OR boolean → boolean
Logical OR
5 or 0 → TRUE

boolean AND boolean → boolean
Logical AND
3 and 0 → FALSE

NOT boolean → boolean
Logical NOT
not false → TRUE

boolean IS [NOT] (NULL|TRUE|FALSE) → boolean
Boolean value tests
1 is null → FALSE

value ISNULL|NOTNULL → boolean
Nullness tests
1 notnull → TRUE

number = number → boolean
Equal
5 = 4 → FALSE

number <> number → boolean
Not equal
5 <> 4 → TRUE

number != number → boolean
Not equal
5 != 5 → FALSE

number < number → boolean
Less than
5 < 4 → FALSE

number <= number → boolean
Less than or equal to
5 <= 4 → FALSE

number > number → boolean
Greater than
5 > 4 → TRUE

number >= number → boolean
Greater than or equal to
5 >= 4 → TRUE

integer | integer → integer
Bitwise OR
1 | 2 → 3

integer # integer → integer
Bitwise XOR

1678

pgbench

Operator
Description
Example(s)
1 # 3 → 2

integer & integer → integer
Bitwise AND
1 & 3 → 1

~ integer → integer
Bitwise NOT
~ 1 → -2

integer << integer → integer
Bitwise shift left
1 << 2 → 4

integer >> integer → integer
Bitwise shift right
8 >> 2 → 2

number + number → number
Addition
5 + 4 → 9

number - number → number
Subtraction
3 - 2.0 → 1.0

number * number → number
Multiplication
5 * 4 → 20

number / number → number
Division (truncates the result towards zero if both inputs are integers)
5 / 3 → 1

integer % integer → integer
Modulo (remainder)
3 % 2 → 1

- number → number
Negation
- 2.0 → -2.0

Built-In Functions
The functions listed in Table 276 are built into pgbench and may be used in expressions appearing in
\set.

Table 276. pgbench Functions

Function
Description
Example(s)

abs (number) → same type as input
Absolute value
abs(-17) → 17

1679

pgbench

Function
Description
Example(s)

debug (number) → same type as input
Prints the argument to stderr, and returns the argument.
debug(5432.1) → 5432.1

double (number) → double
Casts to double.
double(5432) → 5432.0

exp (number) → double
Exponential (e raised to the given power)
exp(1.0) → 2.718281828459045

greatest (number [, ...]) → double if any argument is double, else integer
Selects the largest value among the arguments.
greatest(5, 4, 3, 2) → 5

hash (value [, seed]) → integer
This is an alias for hash_murmur2 .
hash(10, 5432) → -5817877081768721676

hash_fnv1a (value [, seed]) → integer
Computes FNV-1a hash.
hash_fnv1a(10, 5432) → -7793829335365542153

hash_murmur2 (value [, seed]) → integer
Computes MurmurHash2 hash.
hash_murmur2(10, 5432) → -5817877081768721676

int (number) → integer
Casts to integer.
int(5.4 + 3.8) → 9

least (number [, ...]) → double if any argument is double, else integer
Selects the smallest value among the arguments.
least(5, 4, 3, 2.1) → 2.1

ln (number) → double
Natural logarithm
ln(2.718281828459045) → 1.0

mod (integer, integer) → integer
Modulo (remainder)
mod(54, 32) → 22

pi () → double
Approximate value of π
pi() → 3.14159265358979323846

pow (x, y) → double
power (x, y) → double

x raised to the power of y
pow(2.0, 10) → 1024.0

random (lb, ub) → integer
Computes a uniformly-distributed random integer in [lb, ub] .

1680

https://en.wikipedia.org/wiki/Fowler%E2%80%93Noll%E2%80%93Vo_hash_function
https://en.wikipedia.org/wiki/MurmurHash

pgbench

Function
Description
Example(s)
random(1, 10) → an integer between 1 and 10

random_exponential (lb, ub, parameter) → integer
Computes an exponentially-distributed random integer in [lb, ub] , see below.
random_exponential(1, 10, 3.0) → an integer between 1 and 10

random_gaussian (lb, ub, parameter) → integer
Computes a Gaussian-distributed random integer in [lb, ub] , see below.
random_gaussian(1, 10, 2.5) → an integer between 1 and 10

random_zipfian (lb, ub, parameter) → integer
Computes a Zipfian-distributed random integer in [lb, ub] , see below.
random_zipfian(1, 10, 1.5) → an integer between 1 and 10

sqrt (number) → double
Square root
sqrt(2.0) → 1.414213562

The random function generates values using a uniform distribution, that is all the values are drawn
within the specified range with equal probability. The random_exponential, random_gaussian and
random_zipfian functions require an additional double parameter which determines the precise shape
of the distribution.

• For an exponential distribution, parameter controls the distribution by truncating a quickly-
decreasing exponential distribution at parameter, and then projecting onto integers between the
bounds. To be precise, with
f(x) = exp(-parameter * (x - min) / (max - min + 1)) / (1 - exp(-parameter))
Then value i between min and max inclusive is drawn with probability: f(i) - f(i + 1).

Intuitively, the larger the parameter, the more frequently values close to min are accessed, and
the less frequently values close to max are accessed. The closer to 0 parameter is, the flatter (more
uniform) the access distribution. A crude approximation of the distribution is that the most frequent
1% values in the range, close to min, are drawn parameter% of the time. The parameter value must
be strictly positive.

• For a Gaussian distribution, the interval is mapped onto a standard normal distribution (the
classical bell-shaped Gaussian curve) truncated at -parameter on the left and +parameter on the
right. Values in the middle of the interval are more likely to be drawn. To be precise, if PHI(x) is
the cumulative distribution function of the standard normal distribution, with mean mu defined as
(max + min) / 2.0, with
f(x) = PHI(2.0 * parameter * (x - mu) / (max - min + 1)) /
 (2.0 * PHI(parameter) - 1)
then value i between min and max inclusive is drawn with probability: f(i + 0.5) - f(i - 0.5).
Intuitively, the larger the parameter, the more frequently values close to the middle of the interval
are drawn, and the less frequently values close to the min and max bounds. About 67% of values
are drawn from the middle 1.0 / parameter, that is a relative 0.5 / parameter around the mean,
and 95% in the middle 2.0 / parameter, that is a relative 1.0 / parameter around the mean;
for instance, if parameter is 4.0, 67% of values are drawn from the middle quarter (1.0 / 4.0) of
the interval (i.e., from 3.0 / 8.0 to 5.0 / 8.0) and 95% from the middle half (2.0 / 4.0) of the
interval (second and third quartiles). The minimum allowed parameter value is 2.0.

• random_zipfian generates a bounded Zipfian distribution. parameter defines how skewed the
distribution is. The larger the parameter, the more frequently values closer to the beginning
of the interval are drawn. The distribution is such that, assuming the range starts from 1, the

1681

pgbench

ratio of the probability of drawing k versus drawing k+1 is ((k+1)/k)**parameter. For example,
random_zipfian(1, ..., 2.5) produces the value 1 about (2/1)**2.5 = 5.66 times more
frequently than 2, which itself is produced (3/2)**2.5 = 2.76 times more frequently than 3, and
so on.

pgbench's implementation is based on "Non-Uniform Random Variate Generation", Luc Devroye, p.
550-551, Springer 1986. Due to limitations of that algorithm, the parameter value is restricted to
the range [1.001, 1000].

Hash functions hash, hash_murmur2 and hash_fnv1a accept an input value and an optional seed
parameter. In case the seed isn't provided the value of :default_seed is used, which is initialized
randomly unless set by the command-line -D option. Hash functions can be used to scatter the
distribution of random functions such as random_zipfian or random_exponential. For instance, the
following pgbench script simulates possible real world workload typical for social media and blogging
platforms where few accounts generate excessive load:
\set r random_zipfian(0, 100000000, 1.07)
\set k abs(hash(:r)) % 1000000

In some cases several distinct distributions are needed which don't correlate with each other and this
is when implicit seed parameter comes in handy:
\set k1 abs(hash(:r, :default_seed + 123)) % 1000000
\set k2 abs(hash(:r, :default_seed + 321)) % 1000000

As an example, the full definition of the built-in TPC-B-like transaction is:
\set aid random(1, 100000 * :scale)
\set bid random(1, 1 * :scale)
\set tid random(1, 10 * :scale)
\set delta random(-5000, 5000)
BEGIN;
UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid = :aid;
SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid = :tid;
UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid = :bid;
INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
END;

This script allows each iteration of the transaction to reference different, randomly-chosen rows. (This
example also shows why it's important for each client session to have its own variables — otherwise
they'd not be independently touching different rows.)

Per-Transaction Logging
With the -l option (but without the --aggregate-interval option), pgbench writes information about
each transaction to a log file. The log file will be named prefix.nnn, where prefix defaults to
pgbench_log, and nnn is the PID of the pgbench process. The prefix can be changed by using the --
log-prefix option. If the -j option is 2 or higher, so that there are multiple worker threads, each will
have its own log file. The first worker will use the same name for its log file as in the standard single
worker case. The additional log files for the other workers will be named prefix.nnn.mmm, where mmm
is a sequential number for each worker starting with 1.

The format of the log is:
client_id transaction_no time script_no time_epoch time_us [schedule_lag]

where client_id indicates which client session ran the transaction, transaction_no counts how many
transactions have been run by that session, time is the total elapsed transaction time in microseconds,
script_no identifies which script file was used (useful when multiple scripts were specified with -f or
-b), and time_epoch/time_us are a Unix-epoch time stamp and an offset in microseconds (suitable for
creating an ISO 8601 time stamp with fractional seconds) showing when the transaction completed.

1682

pgbench

The schedule_lag field is the difference between the transaction's scheduled start time, and the time it
actually started, in microseconds. It is only present when the --rate option is used. When both --rate
and --latency-limit are used, the time for a skipped transaction will be reported as skipped.

Here is a snippet of a log file generated in a single-client run:
0 199 2241 0 1175850568 995598
0 200 2465 0 1175850568 998079
0 201 2513 0 1175850569 608
0 202 2038 0 1175850569 2663

Another example with --rate=100 and --latency-limit=5 (note the additional schedule_lag column):
0 81 4621 0 1412881037 912698 3005
0 82 6173 0 1412881037 914578 4304
0 83 skipped 0 1412881037 914578 5217
0 83 skipped 0 1412881037 914578 5099
0 83 4722 0 1412881037 916203 3108
0 84 4142 0 1412881037 918023 2333
0 85 2465 0 1412881037 919759 740

In this example, transaction 82 was late, because its latency (6.173 ms) was over the 5 ms limit. The
next two transactions were skipped, because they were already late before they were even started.

When running a long test on hardware that can handle a lot of transactions, the log files can become
very large. The --sampling-rate option can be used to log only a random sample of transactions.

Aggregated Logging
With the --aggregate-interval option, a different format is used for the log files:
interval_start num_transactions sum_latency sum_latency_2 min_latency max_latency
 [sum_lag sum_lag_2 min_lag max_lag [skipped]]

where interval_start is the start of the interval (as a Unix epoch time stamp), num_transactions
is the number of transactions within the interval, sum_latency is the sum of the transaction latencies
within the interval, sum_latency_2 is the sum of squares of the transaction latencies within the interval,
min_latency is the minimum latency within the interval, and max_latency is the maximum latency within
the interval. The next fields, sum_lag, sum_lag_2, min_lag, and max_lag, are only present if the --rate
option is used. They provide statistics about the time each transaction had to wait for the previous one to
finish, i.e., the difference between each transaction's scheduled start time and the time it actually started.
The very last field, skipped, is only present if the --latency-limit option is used, too. It counts the
number of transactions skipped because they would have started too late. Each transaction is counted
in the interval when it was committed.

Here is some example output:
1345828501 5601 1542744 483552416 61 2573
1345828503 7884 1979812 565806736 60 1479
1345828505 7208 1979422 567277552 59 1391
1345828507 7685 1980268 569784714 60 1398
1345828509 7073 1979779 573489941 236 1411

Notice that while the plain (unaggregated) log file shows which script was used for each transaction,
the aggregated log does not. Therefore if you need per-script data, you need to aggregate the data on
your own.

Per-Statement Latencies
With the -r option, pgbench collects the elapsed transaction time of each statement executed by every
client. It then reports an average of those values, referred to as the latency for each statement, after
the benchmark has finished.

For the default script, the output will look similar to this:

1683

pgbench

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 1
query mode: simple
number of clients: 10
number of threads: 1
number of transactions per client: 1000
number of transactions actually processed: 10000/10000
latency average = 15.844 ms
latency stddev = 2.715 ms
tps = 618.764555 (including connections establishing)
tps = 622.977698 (excluding connections establishing)
statement latencies in milliseconds:
 0.002 \set aid random(1, 100000 * :scale)
 0.005 \set bid random(1, 1 * :scale)
 0.002 \set tid random(1, 10 * :scale)
 0.001 \set delta random(-5000, 5000)
 0.326 BEGIN;
 0.603 UPDATE pgbench_accounts SET abalance = abalance + :delta WHERE aid
 = :aid;
 0.454 SELECT abalance FROM pgbench_accounts WHERE aid = :aid;
 5.528 UPDATE pgbench_tellers SET tbalance = tbalance + :delta WHERE tid
 = :tid;
 7.335 UPDATE pgbench_branches SET bbalance = bbalance + :delta WHERE bid
 = :bid;
 0.371 INSERT INTO pgbench_history (tid, bid, aid, delta, mtime) VALUES
 (:tid, :bid, :aid, :delta, CURRENT_TIMESTAMP);
 1.212 END;

If multiple script files are specified, the averages are reported separately for each script file.

Note that collecting the additional timing information needed for per-statement latency computation
adds some overhead. This will slow average execution speed and lower the computed TPS. The amount
of slowdown varies significantly depending on platform and hardware. Comparing average TPS values
with and without latency reporting enabled is a good way to measure if the timing overhead is significant.

Good Practices
It is very easy to use pgbench to produce completely meaningless numbers. Here are some guidelines
to help you get useful results.

In the first place, never believe any test that runs for only a few seconds. Use the -t or -T option to
make the run last at least a few minutes, so as to average out noise. In some cases you could need hours
to get numbers that are reproducible. It's a good idea to try the test run a few times, to find out if your
numbers are reproducible or not.

For the default TPC-B-like test scenario, the initialization scale factor (-s) should be at least as large as
the largest number of clients you intend to test (-c); else you'll mostly be measuring update contention.
There are only -s rows in the pgbench_branches table, and every transaction wants to update one of
them, so -c values in excess of -s will undoubtedly result in lots of transactions blocked waiting for
other transactions.

The default test scenario is also quite sensitive to how long it's been since the tables were initialized:
accumulation of dead rows and dead space in the tables changes the results. To understand the results
you must keep track of the total number of updates and when vacuuming happens. If autovacuum is
enabled it can result in unpredictable changes in measured performance.

A limitation of pgbench is that it can itself become the bottleneck when trying to test a large number
of client sessions. This can be alleviated by running pgbench on a different machine from the database

1684

pgbench

server, although low network latency will be essential. It might even be useful to run several pgbench
instances concurrently, on several client machines, against the same database server.

Security
If untrusted users have access to a database that has not adopted a secure schema usage pattern, do not
run pgbench in that database. pgbench uses unqualified names and does not manipulate the search path.

1685

pg_config
pg_config — retrieve information about the installed version of Postgres Pro

Synopsis
pg_config [option...]

Description
The pg_config utility prints configuration parameters of the currently installed version of Postgres Pro.
It is intended, for example, to be used by software packages that want to interface to Postgres Pro to
facilitate finding the required header files and libraries.

Options
To use pg_config, supply one or more of the following options:

--bindir

Print the location of user executables. Use this, for example, to find the psql program. This is
normally also the location where the pg_config program resides.

--docdir

Print the location of documentation files.

--htmldir

Print the location of HTML documentation files.

--includedir

Print the location of C header files of the client interfaces.

--pkgincludedir

Print the location of other C header files.

--includedir-server

Print the location of C header files for server programming.

--libdir

Print the location of object code libraries.

--pkglibdir

Print the location of dynamically loadable modules, or where the server would search for them. (Other
architecture-dependent data files might also be installed in this directory.)

--localedir

Print the location of locale support files. (This will be an empty string if locale support was not
configured when Postgres Pro was built.)

--mandir

Print the location of manual pages.

--sharedir

Print the location of architecture-independent support files.

1686

pg_config

--sysconfdir

Print the location of system-wide configuration files.

--pgxs

Print the location of extension makefiles.

--configure

Print the options that were given to the configure script when Postgres Pro was configured for
building. This can be used to reproduce the identical configuration, or to find out with what options a
binary package was built. (Note however that binary packages often contain vendor-specific custom
patches.) See also the examples below.

--cc

Print the value of the CC variable that was used for building Postgres Pro. This shows the C compiler
used.

--cppflags

Print the value of the CPPFLAGS variable that was used for building Postgres Pro. This shows C
compiler switches needed at preprocessing time (typically, -I switches).

--cflags

Print the value of the CFLAGS variable that was used for building Postgres Pro. This shows C compiler
switches.

--cflags_sl

Print the value of the CFLAGS_SL variable that was used for building Postgres Pro. This shows extra
C compiler switches used for building shared libraries.

--ldflags

Print the value of the LDFLAGS variable that was used for building Postgres Pro. This shows linker
switches.

--ldflags_ex

Print the value of the LDFLAGS_EX variable that was used for building Postgres Pro. This shows linker
switches used for building executables only.

--ldflags_sl

Print the value of the LDFLAGS_SL variable that was used for building Postgres Pro. This shows linker
switches used for building shared libraries only.

--libs

Print the value of the LIBS variable that was used for building Postgres Pro. This normally contains
-l switches for external libraries linked into Postgres Pro.

--version

Print the PostgreSQL version on which Postgres Pro is based.

--pgpro-version

Print the version of Postgres Pro.

--pgpro-edition

Print the edition of Postgres Pro.

1687

pg_config

-?
--help

Show help about pg_config command line arguments, and exit.

If more than one option is given, the information is printed in that order, one item per line. If no options
are given, all available information is printed, with labels.

Notes
The options --docdir, --pkgincludedir, --localedir, --mandir, --sharedir, --sysconfdir, --cc, --
cppflags, --cflags, --cflags_sl, --ldflags, --ldflags_sl, and --libs were added in PostgreSQL
8.1. The option --htmldir was added in PostgreSQL 8.4. The option --ldflags_ex was added in
PostgreSQL 9.0.

Example
To reproduce the build configuration of the current Postgres Pro installation, run the following command:

eval ./configure `pg_config --configure`

The output of pg_config --configure contains shell quotation marks so arguments with spaces are
represented correctly. Therefore, using eval is required for proper results.

1688

pg_dump
pg_dump — extract a Postgres Pro database into a script file or other archive file

Synopsis
pg_dump [connection-option...] [option...] [dbname]

Description
pg_dump is a utility for backing up a Postgres Pro database. It makes consistent backups even if
the database is being used concurrently. pg_dump does not block other users accessing the database
(readers or writers).

pg_dump only dumps a single database. To back up an entire cluster, or to back up global objects that
are common to all databases in a cluster (such as roles and tablespaces), use pg_dumpall.

Dumps can be output in script or archive file formats. Script dumps are plain-text files containing the
SQL commands required to reconstruct the database to the state it was in at the time it was saved. To
restore from such a script, feed it to psql. Script files can be used to reconstruct the database even on
other machines and other architectures; with some modifications, even on other SQL database products.

The alternative archive file formats must be used with pg_restore to rebuild the database. They allow
pg_restore to be selective about what is restored, or even to reorder the items prior to being restored.
The archive file formats are designed to be portable across architectures.

When used with one of the archive file formats and combined with pg_restore, pg_dump provides a
flexible archival and transfer mechanism. pg_dump can be used to backup an entire database, then
pg_restore can be used to examine the archive and/or select which parts of the database are to be
restored. The most flexible output file formats are the “custom” format (-Fc) and the “directory” format
(-Fd). They allow for selection and reordering of all archived items, support parallel restoration, and are
compressed by default. The “directory” format is the only format that supports parallel dumps.

While running pg_dump, one should examine the output for any warnings (printed on standard error),
especially in light of the limitations listed below.

Options
The following command-line options control the content and format of the output.

dbname

Specifies the name of the database to be dumped. If this is not specified, the environment variable
PGDATABASE is used. If that is not set, the user name specified for the connection is used.

-a
--data-only

Dump only the data, not the schema (data definitions). Table data, large objects, and sequence values
are dumped.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-b
--blobs

Include large objects in the dump. This is the default behavior except when --schema, --table, or --
schema-only is specified. The -b switch is therefore only useful to add large objects to dumps where

1689

pg_dump

a specific schema or table has been requested. Note that blobs are considered data and therefore
will be included when --data-only is used, but not when --schema-only is.

-B
--no-blobs

Exclude large objects in the dump.

When both -b and -B are given, the behavior is to output large objects, when data is being dumped,
see the -b documentation.

-c
--clean

Output commands to clean (drop) database objects prior to outputting the commands for creating
them. (Unless --if-exists is also specified, restore might generate some harmless error messages,
if any objects were not present in the destination database.)

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-C
--create

Begin the output with a command to create the database itself and reconnect to the created database.
(With a script of this form, it doesn't matter which database in the destination installation you connect
to before running the script.) If --clean is also specified, the script drops and recreates the target
database before reconnecting to it.

With --create, the output also includes the database's comment if any, and any configuration
variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and
ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database. Access privileges
for the database itself are also dumped, unless --no-acl is specified.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.)

-f file
--file=file

Send output to the specified file. This parameter can be omitted for file based output formats, in
which case the standard output is used. It must be given for the directory output format however,
where it specifies the target directory instead of a file. In this case the directory is created by pg_dump
and must not exist before.

-F format
--format=format

Selects the format of the output. format can be one of the following:

p
plain

Output a plain-text SQL script file (the default).

1690

pg_dump

c
custom

Output a custom-format archive suitable for input into pg_restore. Together with the directory
output format, this is the most flexible output format in that it allows manual selection and
reordering of archived items during restore. This format is also compressed by default.

d
directory

Output a directory-format archive suitable for input into pg_restore. This will create a directory
with one file for each table and blob being dumped, plus a so-called Table of Contents file
describing the dumped objects in a machine-readable format that pg_restore can read. A
directory format archive can be manipulated with standard Unix tools; for example, files in an
uncompressed archive can be compressed with the gzip tool. This format is compressed by default
and also supports parallel dumps.

t
tar

Output a tar-format archive suitable for input into pg_restore. The tar format is compatible with
the directory format: extracting a tar-format archive produces a valid directory-format archive.
However, the tar format does not support compression. Also, when using tar format the relative
order of table data items cannot be changed during restore.

-j njobs
--jobs=njobs

Run the dump in parallel by dumping njobs tables simultaneously. This option may reduce the time
needed to perform the dump but it also increases the load on the database server. You can only use
this option with the directory output format because this is the only output format where multiple
processes can write their data at the same time.

pg_dump will open njobs + 1 connections to the database, so make sure your max_connections
setting is high enough to accommodate all connections.

Requesting exclusive locks on database objects while running a parallel dump could cause the dump
to fail. The reason is that the pg_dump master process requests shared locks on the objects that the
worker processes are going to dump later in order to make sure that nobody deletes them and makes
them go away while the dump is running. If another client then requests an exclusive lock on a table,
that lock will not be granted but will be queued waiting for the shared lock of the master process to be
released. Consequently any other access to the table will not be granted either and will queue after
the exclusive lock request. This includes the worker process trying to dump the table. Without any
precautions this would be a classic deadlock situation. To detect this conflict, the pg_dump worker
process requests another shared lock using the NOWAIT option. If the worker process is not granted
this shared lock, somebody else must have requested an exclusive lock in the meantime and there is
no way to continue with the dump, so pg_dump has no choice but to abort the dump.

For a consistent backup, the database server needs to support synchronized snapshots, a feature
that was introduced in PostgreSQL 9.2 for primary servers and 10 for standbys. With this feature,
database clients can ensure they see the same data set even though they use different connections.
pg_dump -j uses multiple database connections; it connects to the database once with the master
process and once again for each worker job. Without the synchronized snapshot feature, the different
worker jobs wouldn't be guaranteed to see the same data in each connection, which could lead to
an inconsistent backup.

If you want to run a parallel dump of a pre-9.2 server, you need to make sure that the database content
doesn't change from between the time the master connects to the database until the last worker job
has connected to the database. The easiest way to do this is to halt any data modifying processes
(DDL and DML) accessing the database before starting the backup. You also need to specify the --no-
synchronized-snapshots parameter when running pg_dump -j against a pre-9.2 PostgreSQL server.

1691

pg_dump

-n pattern
--schema=pattern

Dump only schemas matching pattern; this selects both the schema itself, and all its contained
objects. When this option is not specified, all non-system schemas in the target database will be
dumped. Multiple schemas can be selected by writing multiple -n switches. The pattern parameter
is interpreted as a pattern according to the same rules used by psql's \d commands (see Patterns
below), so multiple schemas can also be selected by writing wildcard characters in the pattern. When
using wildcards, be careful to quote the pattern if needed to prevent the shell from expanding the
wildcards; see Examples below.

Note
When -n is specified, pg_dump makes no attempt to dump any other database objects that the
selected schema(s) might depend upon. Therefore, there is no guarantee that the results of a
specific-schema dump can be successfully restored by themselves into a clean database.

Note
Non-schema objects such as blobs are not dumped when -n is specified. You can add blobs
back to the dump with the --blobs switch.

-N pattern
--exclude-schema=pattern

Do not dump any schemas matching pattern. The pattern is interpreted according to the same rules
as for -n. -N can be given more than once to exclude schemas matching any of several patterns.

When both -n and -N are given, the behavior is to dump just the schemas that match at least one -
n switch but no -N switches. If -N appears without -n, then schemas matching -N are excluded from
what is otherwise a normal dump.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dump issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of created
database objects. These statements will fail when the script is run unless it is started by a superuser
(or the same user that owns all of the objects in the script). To make a script that can be restored by
any user, but will give that user ownership of all the objects, specify -O.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Dump only the object definitions (schema), not data.

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,
specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)

To exclude table data for only a subset of tables in the database, see --exclude-table-data.

1692

pg_dump

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used. (Usually, it's better to leave this out, and instead start the resulting script as
superuser.)

-t pattern
--table=pattern

Dump only tables with names matching pattern. Multiple tables can be selected by writing multiple
-t switches. The pattern parameter is interpreted as a pattern according to the same rules used by
psql's \d commands (see Patterns below), so multiple tables can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards; see Examples below.

As well as tables, this option can be used to dump the definition of matching views, materialized
views, foreign tables, and sequences. It will not dump the contents of views or materialized views,
and the contents of foreign tables will only be dumped if the corresponding foreign server is specified
with --include-foreign-data.

The -n and -N switches have no effect when -t is used, because tables selected by -t will be dumped
regardless of those switches, and non-table objects will not be dumped.

Note
When -t is specified, pg_dump makes no attempt to dump any other database objects that the
selected table(s) might depend upon. Therefore, there is no guarantee that the results of a
specific-table dump can be successfully restored by themselves into a clean database.

Note
The behavior of the -t switch is not entirely upward compatible with pre-8.2 PostgreSQL
versions. Formerly, writing -t tab would dump all tables named tab, but now it just dumps
whichever one is visible in your default search path. To get the old behavior you can write -
t '*.tab'. Also, you must write something like -t sch.tab to select a table in a particular
schema, rather than the old locution of -n sch -t tab.

-T pattern
--exclude-table=pattern

Do not dump any tables matching pattern. The pattern is interpreted according to the same rules
as for -t. -T can be given more than once to exclude tables matching any of several patterns.

When both -t and -T are given, the behavior is to dump just the tables that match at least one -
t switch but no -T switches. If -T appears without -t, then tables matching -T are excluded from
what is otherwise a normal dump.

-v
--verbose

Specifies verbose mode. This will cause pg_dump to output detailed object comments and start/stop
times to the dump file, and progress messages to standard error.

-V
--version

Print the pg_dump version and exit.

1693

pg_dump

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

-Z 0..9
--compress=0..9

Specify the compression level to use. Zero means no compression. For the custom and directory
archive formats, this specifies compression of individual table-data segments, and the default is to
compress at a moderate level. For plain text output, setting a nonzero compression level causes the
entire output file to be compressed, as though it had been fed through gzip; but the default is not to
compress. The tar archive format currently does not support compression at all.

--add-collprovider

If the provider for the default collation of the database to be dumped is implicit, explicitly specifies
this provider in the dump. This option is recommended if you are using pg_dump and pg_restore to
upgrade from previous versions of Postgres Pro or any version of PostgreSQL. It allows to preserve
the original provider of the default collation if the template0 database in the new cluster uses
different collation settings. Otherwise, check constraints that use the default collation may change
and the COPY command may end with a failure. For binary upgrades, this option is used automatically.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...)
VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can
be loaded into non-Postgres Pro databases. Any error during reloading will cause only rows that are
part of the problematic INSERT to be lost, rather than the entire table contents.

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dump to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should
also specify a superuser name with -S, or preferably be careful to start the resulting script as a
superuser.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

--enable-row-security

This option is relevant only when dumping the contents of a table which has row security. By default,
pg_dump will set row_security to off, to ensure that all data is dumped from the table. If the user
does not have sufficient privileges to bypass row security, then an error is thrown. This parameter
instructs pg_dump to set row_security to on instead, allowing the user to dump the parts of the
contents of the table that they have access to.

1694

pg_dump

Note that if you use this option currently, you probably also want the dump be in INSERT format, as
the COPY FROM during restore does not support row security.

--exclude-table-data=pattern

Do not dump data for any tables matching pattern. The pattern is interpreted according to the same
rules as for -t. --exclude-table-data can be given more than once to exclude tables matching
any of several patterns. This option is useful when you need the definition of a particular table even
though you do not need the data in it.

To exclude data for all tables in the database, see --schema-only.

--extra-float-digits=ndigits

Use the specified value of extra_float_digits when dumping floating-point data, instead of the
maximum available precision. Routine dumps made for backup purposes should not use this option.

--if-exists

Use conditional commands (i.e., add an IF EXISTS clause) when cleaning database objects. This
option is not valid unless --clean is also specified.

--include-foreign-data=foreignserver

Dump the data for any foreign table with a foreign server matching foreignserver pattern. Multiple
foreign servers can be selected by writing multiple --include-foreign-data switches. Also, the
foreignserver parameter is interpreted as a pattern according to the same rules used by psql's \d
commands (see Patterns below), so multiple foreign servers can also be selected by writing wildcard
characters in the pattern. When using wildcards, be careful to quote the pattern if needed to prevent
the shell from expanding the wildcards; see Examples below. The only exception is that an empty
pattern is disallowed.

Note
When --include-foreign-data is specified, pg_dump does not check that the foreign table
is writable. Therefore, there is no guarantee that the results of a foreign table dump can be
successfully restored.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is mainly
useful for making dumps that can be loaded into non-Postgres Pro databases. Any error during
reloading will cause only rows that are part of the problematic INSERT to be lost, rather than the
entire table contents. Note that the restore might fail altogether if you have rearranged column order.
The --column-inserts option is safe against column order changes, though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the
partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate
partition to be re-determined for each row when the data is loaded. This may be useful when reloading
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

It is best not to use parallelism when restoring from an archive made with this option, because
pg_restore will not know exactly which partition(s) a given archive data item will load data into. This
could result in inefficiency due to lock conflicts between parallel jobs, or perhaps even reload failures
due to foreign key constraints being set up before all the relevant data is loaded.

1695

pg_dump

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. (Allowed formats vary depending on the server version you
are dumping from, but an integer number of milliseconds is accepted by all versions.)

--no-comments

Do not dump comments.

--no-publications

Do not dump publications.

--no-security-labels

Do not dump security labels.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dump will wait for all files to be written safely to disk. This option causes pg_dump to
return without waiting, which is faster, but means that a subsequent operating system crash can
leave the dump corrupt. Generally, this option is useful for testing but should not be used when
dumping data from production installation.

--no-synchronized-snapshots

This option allows running pg_dump -j against a pre-9.2 server, see the documentation of the -j
parameter for more details.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

This option is ignored when emitting an archive (non-text) output file. For the archive formats, you
can specify the option when you call pg_restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data. Data in unlogged tables
is always excluded when dumping from a standby server.

--on-conflict-do-nothing

Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless --inserts, --
column-inserts or --rows-per-insert is also specified.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dump's, or when the output is intended to be
loaded into a server of a different major version. By default, pg_dump quotes only identifiers that
are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--rows-per-insert=nrows

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows per
INSERT command. The value specified must be a number greater than zero. Any error during

1696

pg_dump

reloading will cause only rows that are part of the problematic INSERT to be lost, rather than the
entire table contents.

--section=sectionname

Only dump the named section. The section name can be pre-data, data, or post-data. This option
can be specified more than once to select multiple sections. The default is to dump all sections.

The data section contains actual table data, large-object contents, and sequence values. Post-data
items include definitions of indexes, triggers, rules, and constraints other than validated check
constraints. Pre-data items include all other data definition items.

--serializable-deferrable

Use a serializable transaction for the dump, to ensure that the snapshot used is consistent with
later database states; but do this by waiting for a point in the transaction stream at which no
anomalies can be present, so that there isn't a risk of the dump failing or causing other transactions
to roll back with a serialization_failure. See Chapter 13 for more information about transaction
isolation and concurrency control.

This option is not beneficial for a dump which is intended only for disaster recovery. It could be useful
for a dump used to load a copy of the database for reporting or other read-only load sharing while
the original database continues to be updated. Without it the dump may reflect a state which is not
consistent with any serial execution of the transactions eventually committed. For example, if batch
processing techniques are used, a batch may show as closed in the dump without all of the items
which are in the batch appearing.

This option will make no difference if there are no read-write transactions active when pg_dump
is started. If read-write transactions are active, the start of the dump may be delayed for an
indeterminate length of time. Once running, performance with or without the switch is the same.

--snapshot=snapshotname

Use the specified synchronized snapshot when making a dump of the database (see Table 9.88 for
more details).

This option is useful when needing to synchronize the dump with a logical replication slot (see
Chapter 46) or with a concurrent session.

In the case of a parallel dump, the snapshot name defined by this option is used rather than taking
a new snapshot.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one schema/
table in the database to be dumped. Note that if none of the schema/table qualifiers find matches,
pg_dump will generate an error even without --strict-names.

This option has no effect on -N/--exclude-schema, -T/--exclude-table, or --exclude-table-data.
An exclude pattern failing to match any objects is not considered an error.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards-compatible, but depending on
the history of the objects in the dump, might not restore properly. Also, a dump using SET SESSION
AUTHORIZATION will certainly require superuser privileges to restore correctly, whereas ALTER OWNER
requires lesser privileges.

-?
--help

Show help about pg_dump command line arguments, and exit.

1697

pg_dump

The following command-line options control the database connection parameters.
-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dump to prompt for a password before connecting to a database.

This option is never essential, since pg_dump will automatically prompt for a password if the server
demands password authentication. However, pg_dump will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dump to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dump, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGDATABASE
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

1698

pg_dump

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
pg_dump internally executes SELECT statements. If you have problems running pg_dump, make sure you
are able to select information from the database using, for example, psql. Also, any default connection
settings and environment variables used by the libpq front-end library will apply.

The database activity of pg_dump is normally collected by the statistics collector. If this is undesirable,
you can set parameter track_counts to false via PGOPTIONS or the ALTER USER command.

Notes
If your database cluster has any local additions to the template1 database, be careful to restore the
output of pg_dump into a truly empty database; otherwise you are likely to get errors due to duplicate
definitions of the added objects. To make an empty database without any local additions, copy from
template0 not template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

When a data-only dump is chosen and the option --disable-triggers is used, pg_dump emits commands
to disable triggers on user tables before inserting the data, and then commands to re-enable them after
the data has been inserted. If the restore is stopped in the middle, the system catalogs might be left
in the wrong state.

The dump file produced by pg_dump does not contain the statistics used by the optimizer to make query
planning decisions. Therefore, it is wise to run ANALYZE after restoring from a dump file to ensure optimal
performance; see Section 23.1.3 and Section 23.1.6 for more information.

Because pg_dump is used to transfer data to newer versions of Postgres Pro, the output of pg_dump
can be expected to load into Postgres Pro server versions newer than pg_dump's version. pg_dump can
also dump from Postgres Pro servers older than its own version. (Currently, servers back to version 8.0
are supported.) However, pg_dump cannot dump from Postgres Pro servers newer than its own major
version; it will refuse to even try, rather than risk making an invalid dump. Also, it is not guaranteed
that pg_dump's output can be loaded into a server of an older major version — not even if the dump
was taken from a server of that version. Loading a dump file into an older server may require manual
editing of the dump file to remove syntax not understood by the older server. Use of the --quote-all-
identifiers option is recommended in cross-version cases, as it can prevent problems arising from
varying reserved-word lists in different PostgreSQL versions.

When dumping logical replication subscriptions, pg_dump will generate CREATE SUBSCRIPTION
commands that use the connect = false option, so that restoring the subscription does not make
remote connections for creating a replication slot or for initial table copy. That way, the dump can be
restored without requiring network access to the remote servers. It is then up to the user to reactivate
the subscriptions in a suitable way. If the involved hosts have changed, the connection information might
have to be changed. It might also be appropriate to truncate the target tables before initiating a new
full table copy.

Examples
To dump a database called mydb into a SQL-script file:

$ pg_dump mydb > db.sql

To reload such a script into a (freshly created) database named newdb:

$ psql -d newdb -f db.sql

To dump a database into a custom-format archive file:

$ pg_dump -Fc mydb > db.dump

1699

pg_dump

To dump a database into a directory-format archive:

$ pg_dump -Fd mydb -f dumpdir

To dump a database into a directory-format archive in parallel with 5 worker jobs:

$ pg_dump -Fd mydb -j 5 -f dumpdir

To reload an archive file into a (freshly created) database named newdb:

$ pg_restore -d newdb db.dump

To reload an archive file into the same database it was dumped from, discarding the current contents
of that database:

$ pg_restore -d postgres --clean --create db.dump

To dump a single table named mytab:

$ pg_dump -t mytab mydb > db.sql

To dump all tables whose names start with emp in the detroit schema, except for the table named
employee_log:

$ pg_dump -t 'detroit.emp*' -T detroit.employee_log mydb > db.sql

To dump all schemas whose names start with east or west and end in gsm, excluding any schemas whose
names contain the word test:

$ pg_dump -n 'east*gsm' -n 'west*gsm' -N '*test*' mydb > db.sql

The same, using regular expression notation to consolidate the switches:

$ pg_dump -n '(east|west)*gsm' -N '*test*' mydb > db.sql

To dump all database objects except for tables whose names begin with ts_:

$ pg_dump -T 'ts_*' mydb > db.sql

To specify an upper-case or mixed-case name in -t and related switches, you need to double-quote the
name; else it will be folded to lower case (see Patterns below). But double quotes are special to the
shell, so in turn they must be quoted. Thus, to dump a single table with a mixed-case name, you need
something like

$ pg_dump -t "\"MixedCaseName\"" mydb > mytab.sql

See Also
pg_dumpall, pg_restore, psql

1700

pg_dumpall
pg_dumpall — extract a Postgres Pro database cluster into a script file

Synopsis
pg_dumpall [connection-option...] [option...]

Description
pg_dumpall is a utility for writing out (“dumping”) all Postgres Pro databases of a cluster into one script
file. The script file contains SQL commands that can be used as input to psql to restore the databases.
It does this by calling pg_dump for each database in the cluster. pg_dumpall also dumps global objects
that are common to all databases, that is, database roles and tablespaces. (pg_dump does not save these
objects.)

Since pg_dumpall reads tables from all databases you will most likely have to connect as a database
superuser in order to produce a complete dump. Also you will need superuser privileges to execute the
saved script in order to be allowed to add roles and create databases.

The SQL script will be written to the standard output. Use the -f/--file option or shell operators to
redirect it into a file.

pg_dumpall needs to connect several times to the Postgres Pro server (once per database). If you use
password authentication it will ask for a password each time. It is convenient to have a ~/.pgpass file
in such cases. See Section 31.15 for more information.

Options
The following command-line options control the content and format of the output.
-a
--data-only

Dump only the data, not the schema (data definitions).

-c
--clean

Include SQL commands to clean (drop) databases before recreating them. DROP commands for roles
and tablespaces are added as well.

-E encoding
--encoding=encoding

Create the dump in the specified character set encoding. By default, the dump is created in the
database encoding. (Another way to get the same result is to set the PGCLIENTENCODING environment
variable to the desired dump encoding.)

-f filename
--file=filename

Send output to the specified file. If this is omitted, the standard output is used.

-g
--globals-only

Dump only global objects (roles and tablespaces), no databases.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_dumpall issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of

1701

pg_dumpall

created schema elements. These statements will fail when the script is run unless it is started by a
superuser (or the same user that owns all of the objects in the script). To make a script that can be
restored by any user, but will give that user ownership of all the objects, specify -O.

-r
--roles-only

Dump only roles, no databases or tablespaces.

-s
--schema-only

Dump only the object definitions (schema), not data.

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used. (Usually, it's better to leave this out, and instead start the resulting script as
superuser.)

-t
--tablespaces-only

Dump only tablespaces, no databases or roles.

-v
--verbose

Specifies verbose mode. This will cause pg_dumpall to output start/stop times to the dump file, and
progress messages to standard error. It will also enable verbose output in pg_dump.

-V
--version

Print the pg_dumpall version and exit.

-x
--no-privileges
--no-acl

Prevent dumping of access privileges (grant/revoke commands).

--add-collprovider

If the provider for the default collation of the database to be dumped is implicit, explicitly specifies
this provider in the dump. This option is recommended if you are using pg_dumpall and pg_restore to
upgrade from previous versions of Postgres Pro or any version of PostgreSQL. It allows to preserve
the original provider of the default collation if the template0 database in the new cluster uses
different collation settings. Otherwise, check constraints that use the default collation may change
and the COPY command may end with a failure. For binary upgrades, this option is used automatically.

--binary-upgrade

This option is for use by in-place upgrade utilities. Its use for other purposes is not recommended or
supported. The behavior of the option may change in future releases without notice.

--column-inserts
--attribute-inserts

Dump data as INSERT commands with explicit column names (INSERT INTO table (column, ...)
VALUES ...). This will make restoration very slow; it is mainly useful for making dumps that can be
loaded into non-Postgres Pro databases.

1702

pg_dumpall

--disable-dollar-quoting

This option disables the use of dollar quoting for function bodies, and forces them to be quoted using
SQL standard string syntax.

--disable-triggers

This option is relevant only when creating a data-only dump. It instructs pg_dumpall to include
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So, you should
also specify a superuser name with -S, or preferably be careful to start the resulting script as a
superuser.

--exclude-database=pattern

Do not dump databases whose name matches pattern. Multiple patterns can be excluded by writing
multiple --exclude-database switches. The pattern parameter is interpreted as a pattern according
to the same rules used by psql's \d commands (see Patterns below), so multiple databases can also
be excluded by writing wildcard characters in the pattern. When using wildcards, be careful to quote
the pattern if needed to prevent shell wildcard expansion.

--extra-float-digits=ndigits

Use the specified value of extra_float_digits when dumping floating-point data, instead of the
maximum available precision. Routine dumps made for backup purposes should not use this option.

--if-exists

Use conditional commands (i.e., add an IF EXISTS clause) to drop databases and other objects. This
option is not valid unless --clean is also specified.

--inserts

Dump data as INSERT commands (rather than COPY). This will make restoration very slow; it is mainly
useful for making dumps that can be loaded into non-Postgres Pro databases. Note that the restore
might fail altogether if you have rearranged column order. The --column-inserts option is safer,
though even slower.

--load-via-partition-root

When dumping data for a table partition, make the COPY or INSERT statements target the root of the
partitioning hierarchy that contains it, rather than the partition itself. This causes the appropriate
partition to be re-determined for each row when the data is loaded. This may be useful when reloading
data on a server where rows do not always fall into the same partitions as they did on the original
server. That could happen, for example, if the partitioning column is of type text and the two systems
have different definitions of the collation used to sort the partitioning column.

--lock-wait-timeout=timeout

Do not wait forever to acquire shared table locks at the beginning of the dump. Instead, fail if unable
to lock a table within the specified timeout. The timeout may be specified in any of the formats
accepted by SET statement_timeout. Allowed values vary depending on the server version you are
dumping from, but an integer number of milliseconds is accepted by all versions since 7.3. This option
is ignored when dumping from a pre-7.3 server.

--no-comments

Do not dump comments.

--no-publications

Do not dump publications.

1703

pg_dumpall

--no-role-passwords

Do not dump passwords for roles. When restored, roles will have a null password, and password
authentication will always fail until the password is set. Since password values aren't needed when
this option is specified, the role information is read from the catalog view pg_roles instead of
pg_authid. Therefore, this option also helps if access to pg_authid is restricted by some security
policy.

--no-security-labels

Do not dump security labels.

--no-subscriptions

Do not dump subscriptions.

--no-sync

By default, pg_dumpall will wait for all files to be written safely to disk. This option causes pg_dumpall
to return without waiting, which is faster, but means that a subsequent operating system crash can
leave the dump corrupt. Generally, this option is useful for testing but should not be used when
dumping data from production installation.

--no-tablespaces

Do not output commands to create tablespaces nor select tablespaces for objects. With this option,
all objects will be created in whichever tablespace is the default during restore.

--no-unlogged-table-data

Do not dump the contents of unlogged tables. This option has no effect on whether or not the table
definitions (schema) are dumped; it only suppresses dumping the table data.

--on-conflict-do-nothing

Add ON CONFLICT DO NOTHING to INSERT commands. This option is not valid unless --inserts or
--column-inserts is also specified.

--quote-all-identifiers

Force quoting of all identifiers. This option is recommended when dumping a database from a server
whose PostgreSQL major version is different from pg_dumpall's, or when the output is intended to be
loaded into a server of a different major version. By default, pg_dumpall quotes only identifiers that
are reserved words in its own major version. This sometimes results in compatibility issues when
dealing with servers of other versions that may have slightly different sets of reserved words. Using
--quote-all-identifiers prevents such issues, at the price of a harder-to-read dump script.

--rows-per-insert=nrows

Dump data as INSERT commands (rather than COPY). Controls the maximum number of rows per
INSERT command. The value specified must be a number greater than zero. Any error during
reloading will cause only rows that are part of the problematic INSERT to be lost, rather than the
entire table contents.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards compatible, but depending on
the history of the objects in the dump, might not restore properly.

-?
--help

Show help about pg_dumpall command line arguments, and exit.

1704

pg_dumpall

The following command-line options control the database connection parameters.

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

The option is called --dbname for consistency with other client applications, but because pg_dumpall
needs to connect to many databases, the database name in the connection string will be ignored. Use
the -l option to specify the name of the database used for the initial connection, which will dump
global objects and discover what other databases should be dumped.

-h host
--host=host

Specifies the host name of the machine on which the database server is running. If the value begins
with a slash, it is used as the directory for the Unix domain socket. The default is taken from the
PGHOST environment variable, if set, else a Unix domain socket connection is attempted.

-l dbname
--database=dbname

Specifies the name of the database to connect to for dumping global objects and discovering what
other databases should be dumped. If not specified, the postgres database will be used, and if that
does not exist, template1 will be used.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_dumpall to prompt for a password before connecting to a database.

This option is never essential, since pg_dumpall will automatically prompt for a password if the server
demands password authentication. However, pg_dumpall will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Note that the password prompt will occur again for each database to be dumped. Usually, it's better
to set up a ~/.pgpass file than to rely on manual password entry.

--role=rolename

Specifies a role name to be used to create the dump. This option causes pg_dumpall to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user
(specified by -U) lacks privileges needed by pg_dumpall, but can switch to a role with the required

1705

pg_dumpall

rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows dumps to be made without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Notes
Since pg_dumpall calls pg_dump internally, some diagnostic messages will refer to pg_dump.

The --clean option can be useful even when your intention is to restore the dump script into a fresh
cluster. Use of --clean authorizes the script to drop and re-create the built-in postgres and template1
databases, ensuring that those databases will retain the same properties (for instance, locale and
encoding) that they had in the source cluster. Without the option, those databases will retain their
existing database-level properties, as well as any pre-existing contents.

Once restored, it is wise to run ANALYZE on each database so the optimizer has useful statistics. You can
also run vacuumdb -a -z to analyze all databases.

The dump script should not be expected to run completely without errors. In particular, because the
script will issue CREATE ROLE for every role existing in the source cluster, it is certain to get a “role
already exists” error for the bootstrap superuser, unless the destination cluster was initialized with a
different bootstrap superuser name. This error is harmless and should be ignored. Use of the --clean
option is likely to produce additional harmless error messages about non-existent objects, although you
can minimize those by adding --if-exists.

pg_dumpall requires all needed tablespace directories to exist before the restore; otherwise, database
creation will fail for databases in non-default locations.

Examples
To dump all databases:

$ pg_dumpall > db.out

To reload database(s) from this file, you can use:

$ psql -f db.out postgres

It is not important to which database you connect here since the script file created by pg_dumpall will
contain the appropriate commands to create and connect to the saved databases. An exception is that
if you specified --clean, you must connect to the postgres database initially; the script will attempt to
drop other databases immediately, and that will fail for the database you are connected to.

See Also
Check pg_dump for details on possible error conditions.

1706

pg_isready
pg_isready — check the connection status of a Postgres Pro server

Synopsis
pg_isready [connection-option...] [option...]

Description
pg_isready is a utility for checking the connection status of a Postgres Pro database server. The exit
status specifies the result of the connection check.

Options
-d dbname
--dbname=dbname

Specifies the name of the database to connect to. The dbname can be a connection string. If so,
connection string parameters will override any conflicting command line options.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-q
--quiet

Do not display status message. This is useful when scripting.

-t seconds
--timeout=seconds

The maximum number of seconds to wait when attempting connection before returning that the
server is not responding. Setting to 0 disables. The default is 3 seconds.

-U username
--username=username

Connect to the database as the user username instead of the default.

-V
--version

Print the pg_isready version and exit.

-?
--help

Show help about pg_isready command line arguments, and exit.

1707

pg_isready

Exit Status
pg_isready returns 0 to the shell if the server is accepting connections normally, 1 if the server is rejecting
connections (for example during startup), 2 if there was no response to the connection attempt, and 3
if no attempt was made (for example due to invalid parameters).

Environment
pg_isready, like most other Postgres Pro utilities, also uses the environment variables supported by
libpq (see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
It is not necessary to supply correct user name, password, or database name values to obtain the server
status; however, if incorrect values are provided, the server will log a failed connection attempt.

Examples
Standard Usage:

$ pg_isready
/tmp:5432 - accepting connections
$ echo $?
0

Running with connection parameters to a Postgres Pro cluster in startup:

$ pg_isready -h localhost -p 5433
localhost:5433 - rejecting connections
$ echo $?
1

Running with connection parameters to a non-responsive Postgres Pro cluster:

$ pg_isready -h someremotehost
someremotehost:5432 - no response
$ echo $?
2

1708

pg_receivewal
pg_receivewal — stream write-ahead logs from a Postgres Pro server

Synopsis
pg_receivewal [option...]

Description
pg_receivewal is used to stream the write-ahead log from a running Postgres Pro cluster. The write-
ahead log is streamed using the streaming replication protocol, and is written to a local directory of
files. This directory can be used as the archive location for doing a restore using point-in-time recovery
(see Section 24.3).

pg_receivewal streams the write-ahead log in real time as it's being generated on the server, and does
not wait for segments to complete like archive_command does. For this reason, it is not necessary to set
archive_timeout when using pg_receivewal.

Unlike the WAL receiver of a Postgres Pro standby server, pg_receivewal by default flushes WAL data
only when a WAL file is closed. The option --synchronous must be specified to flush WAL data in real
time. Since pg_receivewal does not apply WAL, you should not allow it to become a synchronous standby
when synchronous_commit equals remote_apply. If it does, it will appear to be a standby that never
catches up, and will cause transaction commits to block. To avoid this, you should either configure an
appropriate value for synchronous_standby_names, or specify application_name for pg_receivewal that
does not match it, or change the value of synchronous_commit to something other than remote_apply.

The write-ahead log is streamed over a regular Postgres Pro connection and uses the replication protocol.
The connection must be made with a user having REPLICATION permissions (see Section 20.2) or a
superuser, and pg_hba.conf must permit the replication connection. The server must also be configured
with max_wal_senders set high enough to leave at least one session available for the stream.

The starting point of the write-ahead log streaming is calculated when pg_receivewal starts:
1. First, scan the directory where the WAL segment files are written and find the newest completed

segment file, using as the starting point the beginning of the next WAL segment file.
2. If a starting point cannot be calculated with the previous method, the latest WAL flush location is

used as reported by the server from an IDENTIFY_SYSTEM command.

If the connection is lost, or if it cannot be initially established, with a non-fatal error, pg_receivewal will
retry the connection indefinitely, and reestablish streaming as soon as possible. To avoid this behavior,
use the -n parameter.

In the absence of fatal errors, pg_receivewal will run until terminated by the SIGINT signal (Control+C).

Options
-D directory
--directory=directory

Directory to write the output to.

This parameter is required.

-E lsn
--endpos=lsn

Automatically stop replication and exit with normal exit status 0 when receiving reaches the specified
LSN.

1709

pg_receivewal

If there is a record with LSN exactly equal to lsn, the record will be processed.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

-n
--no-loop

Don't loop on connection errors. Instead, exit right away with an error.

--no-sync

This option causes pg_receivewal to not force WAL data to be flushed to disk. This is faster, but
means that a subsequent operating system crash can leave the WAL segments corrupt. Generally,
this option is useful for testing but should not be used when doing WAL archiving on a production
deployment.

This option is incompatible with --synchronous.

-s interval
--status-interval=interval

Specifies the number of seconds between status packets sent back to the server. This allows for
easier monitoring of the progress from server. A value of zero disables the periodic status updates
completely, although an update will still be sent when requested by the server, to avoid timeout
disconnect. The default value is 10 seconds.

-S slotname
--slot=slotname

Require pg_receivewal to use an existing replication slot (see Section 25.2.6). When this option is
used, pg_receivewal will report a flush position to the server, indicating when each segment has been
synchronized to disk so that the server can remove that segment if it is not otherwise needed.

When the replication client of pg_receivewal is configured on the server as a synchronous standby,
then using a replication slot will report the flush position to the server, but only when a WAL file is
closed. Therefore, that configuration will cause transactions on the primary to wait for a long time
and effectively not work satisfactorily. The option --synchronous (see below) must be specified in
addition to make this work correctly.

--synchronous

Flush the WAL data to disk immediately after it has been received. Also send a status packet back to
the server immediately after flushing, regardless of --status-interval.

This option should be specified if the replication client of pg_receivewal is configured on the server
as a synchronous standby, to ensure that timely feedback is sent to the server.

-v
--verbose

Enables verbose mode.

-Z level
--compress=level

Enables gzip compression of write-ahead logs, and specifies the compression level (0 through 9, 0
being no compression and 9 being best compression). The suffix .gz will automatically be added to
all filenames.

The following command-line options control the database connection parameters.

1710

pg_receivewal

-d connstr
--dbname=connstr

Specifies parameters used to connect to the server, as a connection string; these will override any
conflicting command line options.

The option is called --dbname for consistency with other client applications, but because
pg_receivewal doesn't connect to any particular database in the cluster, database name in the
connection string will be ignored.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_receivewal to prompt for a password before connecting to a database.

This option is never essential, since pg_receivewal will automatically prompt for a password if the
server demands password authentication. However, pg_receivewal will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

pg_receivewal can perform one of the two following actions in order to control physical replication slots:
--create-slot

Create a new physical replication slot with the name specified in --slot, then exit.

--drop-slot

Drop the replication slot with the name specified in --slot, then exit.

Other options are also available:
-V
--version

Print the pg_receivewal version and exit.

-?
--help

Show help about pg_receivewal command line arguments, and exit.

1711

pg_receivewal

Exit Status
pg_receivewal will exit with status 0 when terminated by the SIGINT signal. (That is the normal way to
end it. Hence it is not an error.) For fatal errors or other signals, the exit status will be nonzero.

Environment
This utility, like most other Postgres Pro utilities, uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
When using pg_receivewal instead of archive_command as the main WAL backup method, it is strongly
recommended to use replication slots. Otherwise, the server is free to recycle or remove write-ahead log
files before they are backed up, because it does not have any information, either from archive_command
or the replication slots, about how far the WAL stream has been archived. Note, however, that a
replication slot will fill up the server's disk space if the receiver does not keep up with fetching the
WAL data.

pg_receivewal will preserve group permissions on the received WAL files if group permissions are
enabled on the source cluster.

Examples
To stream the write-ahead log from the server at mydbserver and store it in the local directory /usr/
local/pgsql/archive:

$ pg_receivewal -h mydbserver -D /usr/local/pgsql/archive

See Also
pg_basebackup

1712

pg_recvlogical
pg_recvlogical — control Postgres Pro logical decoding streams

Synopsis
pg_recvlogical [option...]

Description
pg_recvlogical controls logical decoding replication slots and streams data from such replication slots.

It creates a replication-mode connection, so it is subject to the same constraints as pg_receivewal, plus
those for logical replication (see Chapter 46).

pg_recvlogical has no equivalent to the logical decoding SQL interface's peek and get modes. It sends
replay confirmations for data lazily as it receives it and on clean exit. To examine pending data on a slot
without consuming it, use pg_logical_slot_peek_changes.

Options
At least one of the following options must be specified to select an action:
--create-slot

Create a new logical replication slot with the name specified by --slot, using the output plugin
specified by --plugin, for the database specified by --dbname.

--drop-slot

Drop the replication slot with the name specified by --slot, then exit.

--start

Begin streaming changes from the logical replication slot specified by --slot, continuing until
terminated by a signal. If the server side change stream ends with a server shutdown or disconnect,
retry in a loop unless --no-loop is specified.

The stream format is determined by the output plugin specified when the slot was created.

The connection must be to the same database used to create the slot.

--create-slot and --start can be specified together. --drop-slot cannot be combined with another
action.

The following command-line options control the location and format of the output and other replication
behavior:
-E lsn
--endpos=lsn

In --start mode, automatically stop replication and exit with normal exit status 0 when receiving
reaches the specified LSN. If specified when not in --start mode, an error is raised.

If there's a record with LSN exactly equal to lsn, the record will be output.

The --endpos option is not aware of transaction boundaries and may truncate output partway
through a transaction. Any partially output transaction will not be consumed and will be replayed
again when the slot is next read from. Individual messages are never truncated.

-f filename
--file=filename

Write received and decoded transaction data into this file. Use - for stdout.

1713

pg_recvlogical

-F interval_seconds
--fsync-interval=interval_seconds

Specifies how often pg_recvlogical should issue fsync() calls to ensure the output file is safely
flushed to disk.

The server will occasionally request the client to perform a flush and report the flush position to the
server. This setting is in addition to that, to perform flushes more frequently.

Specifying an interval of 0 disables issuing fsync() calls altogether, while still reporting progress to
the server. In this case, data could be lost in the event of a crash.

-I lsn
--startpos=lsn

In --start mode, start replication from the given LSN. For details on the effect of this, see the
documentation in Chapter 46 and Section 50.4. Ignored in other modes.

--if-not-exists

Do not error out when --create-slot is specified and a slot with the specified name already exists.

-n
--no-loop

When the connection to the server is lost, do not retry in a loop, just exit.

-o name[=value]
--option=name[=value]

Pass the option name to the output plugin with, if specified, the option value value. Which options
exist and their effects depends on the used output plugin.

-P plugin
--plugin=plugin

When creating a slot, use the specified logical decoding output plugin. See Chapter 46. This option
has no effect if the slot already exists.

-s interval_seconds
--status-interval=interval_seconds

This option has the same effect as the option of the same name in pg_receivewal. See the description
there.

-S slot_name
--slot=slot_name

In --start mode, use the existing logical replication slot named slot_name. In --create-slot mode,
create the slot with this name. In --drop-slot mode, delete the slot with this name.

-v
--verbose

Enables verbose mode.

The following command-line options control the database connection parameters.

-d dbname
--dbname=dbname

The database to connect to. See the description of the actions for what this means in detail. The
dbname can be a connection string. If so, connection string parameters will override any conflicting
command line options. Defaults to the user name.

1714

pg_recvlogical

-h hostname-or-ip
--host=hostname-or-ip

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U user
--username=user

User name to connect as. Defaults to current operating system user name.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_recvlogical to prompt for a password before connecting to a database.

This option is never essential, since pg_recvlogical will automatically prompt for a password if the
server demands password authentication. However, pg_recvlogical will waste a connection attempt
finding out that the server wants a password. In some cases it is worth typing -W to avoid the extra
connection attempt.

The following additional options are available:

-V
--version

Print the pg_recvlogical version and exit.

-?
--help

Show help about pg_recvlogical command line arguments, and exit.

Environment
This utility, like most other Postgres Pro utilities, uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
pg_recvlogical will preserve group permissions on the received WAL files if group permissions are
enabled on the source cluster.

Examples
See Section 46.1 for an example.

1715

pg_recvlogical

See Also
pg_receivewal

1716

pg_restore
pg_restore — restore a Postgres Pro database from an archive file created by pg_dump

Synopsis
pg_restore [connection-option...] [option...] [filename]

Description
pg_restore is a utility for restoring a Postgres Pro database from an archive created by pg_dump in one
of the non-plain-text formats. It will issue the commands necessary to reconstruct the database to the
state it was in at the time it was saved. The archive files also allow pg_restore to be selective about what
is restored, or even to reorder the items prior to being restored. The archive files are designed to be
portable across architectures.

pg_restore can operate in two modes. If a database name is specified, pg_restore connects to that
database and restores archive contents directly into the database. Otherwise, a script containing the
SQL commands necessary to rebuild the database is created and written to a file or standard output. This
script output is equivalent to the plain text output format of pg_dump. Some of the options controlling
the output are therefore analogous to pg_dump options.

Obviously, pg_restore cannot restore information that is not present in the archive file. For instance, if
the archive was made using the “dump data as INSERT commands” option, pg_restore will not be able
to load the data using COPY statements.

Options
pg_restore accepts the following command line arguments.

filename

Specifies the location of the archive file (or directory, for a directory-format archive) to be restored.
If not specified, the standard input is used.

-a
--data-only

Restore only the data, not the schema (data definitions). Table data, large objects, and sequence
values are restored, if present in the archive.

This option is similar to, but for historical reasons not identical to, specifying --section=data.

-c
--clean

Clean (drop) database objects before recreating them. (Unless --if-exists is used, this might
generate some harmless error messages, if any objects were not present in the destination database.)

-C
--create

Create the database before restoring into it. If --clean is also specified, drop and recreate the target
database before connecting to it.

With --create, pg_restore also restores the database's comment if any, and any configuration
variable settings that are specific to this database, that is, any ALTER DATABASE ... SET ... and
ALTER ROLE ... IN DATABASE ... SET ... commands that mention this database. Access privileges
for the database itself are also restored, unless --no-acl is specified.

1717

pg_restore

When this option is used, the database named with -d is used only to issue the initial DROP DATABASE
and CREATE DATABASE commands. All data is restored into the database name that appears in the
archive.

-d dbname
--dbname=dbname

Connect to database dbname and restore directly into the database. The dbname can be a connection
string. If so, connection string parameters will override any conflicting command line options.

-e
--exit-on-error

Exit if an error is encountered while sending SQL commands to the database. The default is to
continue and to display a count of errors at the end of the restoration.

-f filename
--file=filename

Specify output file for generated script, or for the listing when used with -l. Use - for stdout.

-F format
--format=format

Specify format of the archive. It is not necessary to specify the format, since pg_restore will determine
the format automatically. If specified, it can be one of the following:

c
custom

The archive is in the custom format of pg_dump.

d
directory

The archive is a directory archive.

t
tar

The archive is a tar archive.

-I index
--index=index

Restore definition of named index only. Multiple indexes may be specified with multiple -I switches.

-j number-of-jobs
--jobs=number-of-jobs

Run the most time-consuming steps of pg_restore — those that load data, create indexes, or
create constraints — concurrently, using up to number-of-jobs concurrent sessions. This option can
dramatically reduce the time to restore a large database to a server running on a multiprocessor
machine. This option is ignored when emitting a script rather than connecting directly to a database
server.

Each job is one process or one thread, depending on the operating system, and uses a separate
connection to the server.

The optimal value for this option depends on the hardware setup of the server, of the client, and of
the network. Factors include the number of CPU cores and the disk setup. A good place to start is
the number of CPU cores on the server, but values larger than that can also lead to faster restore
times in many cases. Of course, values that are too high will lead to decreased performance because
of thrashing.

1718

pg_restore

Only the custom and directory archive formats are supported with this option. The input must be a
regular file or directory (not, for example, a pipe or standard input). Also, multiple jobs cannot be
used together with the option --single-transaction.

-l
--list

List the table of contents of the archive. The output of this operation can be used as input to the
-L option. Note that if filtering switches such as -n or -t are used with -l, they will restrict the
items listed.

-L list-file
--use-list=list-file

Restore only those archive elements that are listed in list-file, and restore them in the order they
appear in the file. Note that if filtering switches such as -n or -t are used with -L, they will further
restrict the items restored.

list-file is normally created by editing the output of a previous -l operation. Lines can be moved
or removed, and can also be commented out by placing a semicolon (;) at the start of the line. See
below for examples.

-n schema
--schema=schema

Restore only objects that are in the named schema. Multiple schemas may be specified with multiple
-n switches. This can be combined with the -t option to restore just a specific table.

-N schema
--exclude-schema=schema

Do not restore objects that are in the named schema. Multiple schemas to be excluded may be
specified with multiple -N switches.

When both -n and -N are given for the same schema name, the -N switch wins and the schema is
excluded.

-O
--no-owner

Do not output commands to set ownership of objects to match the original database. By default,
pg_restore issues ALTER OWNER or SET SESSION AUTHORIZATION statements to set ownership of
created schema elements. These statements will fail unless the initial connection to the database is
made by a superuser (or the same user that owns all of the objects in the script). With -O, any user
name can be used for the initial connection, and this user will own all the created objects.

-P function-name(argtype [, ...])
--function=function-name(argtype [, ...])

Restore the named function only. Be careful to spell the function name and arguments exactly as
they appear in the dump file's table of contents. Multiple functions may be specified with multiple
-P switches.

-R
--no-reconnect

This option is obsolete but still accepted for backwards compatibility.

-s
--schema-only

Restore only the schema (data definitions), not data, to the extent that schema entries are present
in the archive.

1719

pg_restore

This option is the inverse of --data-only. It is similar to, but for historical reasons not identical to,
specifying --section=pre-data --section=post-data.

(Do not confuse this with the --schema option, which uses the word “schema” in a different meaning.)

-S username
--superuser=username

Specify the superuser user name to use when disabling triggers. This is relevant only if --disable-
triggers is used.

-t table
--table=table

Restore definition and/or data of only the named table. For this purpose, “table” includes views,
materialized views, sequences, and foreign tables. Multiple tables can be selected by writing multiple
-t switches. This option can be combined with the -n option to specify table(s) in a particular schema.

Note
When -t is specified, pg_restore makes no attempt to restore any other database objects that
the selected table(s) might depend upon. Therefore, there is no guarantee that a specific-table
restore into a clean database will succeed.

Note
This flag does not behave identically to the -t flag of pg_dump. There is not currently any
provision for wild-card matching in pg_restore, nor can you include a schema name within its
-t. And, while pg_dump's -t flag will also dump subsidiary objects (such as indexes) of the
selected table(s), pg_restore's -t flag does not include such subsidiary objects.

Note
In versions prior to Postgres Pro 9.6, this flag matched only tables, not any other type of
relation.

-T trigger
--trigger=trigger

Restore named trigger only. Multiple triggers may be specified with multiple -T switches.

-v
--verbose

Specifies verbose mode.

-V
--version

Print the pg_restore version and exit.

-x
--no-privileges
--no-acl

Prevent restoration of access privileges (grant/revoke commands).

1720

pg_restore

-1
--single-transaction

Execute the restore as a single transaction (that is, wrap the emitted commands in BEGIN/COMMIT).
This ensures that either all the commands complete successfully, or no changes are applied. This
option implies --exit-on-error.

--disable-triggers

This option is relevant only when performing a data-only restore. It instructs pg_restore to execute
commands to temporarily disable triggers on the target tables while the data is reloaded. Use this if
you have referential integrity checks or other triggers on the tables that you do not want to invoke
during data reload.

Presently, the commands emitted for --disable-triggers must be done as superuser. So you should
also specify a superuser name with -S or, preferably, run pg_restore as a Postgres Pro superuser.

--enable-row-security

This option is relevant only when restoring the contents of a table which has row security. By default,
pg_restore will set row_security to off, to ensure that all data is restored in to the table. If the user
does not have sufficient privileges to bypass row security, then an error is thrown. This parameter
instructs pg_restore to set row_security to on instead, allowing the user to attempt to restore the
contents of the table with row security enabled. This might still fail if the user does not have the
right to insert the rows from the dump into the table.

Note that this option currently also requires the dump be in INSERT format, as COPY FROM does not
support row security.

--if-exists

Use conditional commands (i.e., add an IF EXISTS clause) to drop database objects. This option is
not valid unless --clean is also specified.

--no-comments

Do not output commands to restore comments, even if the archive contains them.

--no-data-for-failed-tables

By default, table data is restored even if the creation command for the table failed (e.g., because it
already exists). With this option, data for such a table is skipped. This behavior is useful if the target
database already contains the desired table contents. For example, auxiliary tables for Postgres Pro
extensions such as PostGIS might already be loaded in the target database; specifying this option
prevents duplicate or obsolete data from being loaded into them.

This option is effective only when restoring directly into a database, not when producing SQL script
output.

--no-publications

Do not output commands to restore publications, even if the archive contains them.

--no-security-labels

Do not output commands to restore security labels, even if the archive contains them.

--no-subscriptions

Do not output commands to restore subscriptions, even if the archive contains them.

--no-tablespaces

Do not output commands to select tablespaces. With this option, all objects will be created in
whichever tablespace is the default during restore.

1721

pg_restore

--section=sectionname

Only restore the named section. The section name can be pre-data, data, or post-data. This option
can be specified more than once to select multiple sections. The default is to restore all sections.

The data section contains actual table data as well as large-object definitions. Post-data items consist
of definitions of indexes, triggers, rules and constraints other than validated check constraints. Pre-
data items consist of all other data definition items.

--strict-names

Require that each schema (-n/--schema) and table (-t/--table) qualifier match at least one schema/
table in the backup file.

--use-set-session-authorization

Output SQL-standard SET SESSION AUTHORIZATION commands instead of ALTER OWNER commands
to determine object ownership. This makes the dump more standards-compatible, but depending on
the history of the objects in the dump, might not restore properly.

-?
--help

Show help about pg_restore command line arguments, and exit.

pg_restore also accepts the following command line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket. The default is taken from the PGHOST
environment variable, if set, else a Unix domain socket connection is attempted.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening for
connections. Defaults to the PGPORT environment variable, if set, or a compiled-in default.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_restore to prompt for a password before connecting to a database.

This option is never essential, since pg_restore will automatically prompt for a password if the server
demands password authentication. However, pg_restore will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--role=rolename

Specifies a role name to be used to perform the restore. This option causes pg_restore to issue a SET
ROLE rolename command after connecting to the database. It is useful when the authenticated user

1722

pg_restore

(specified by -U) lacks privileges needed by pg_restore, but can switch to a role with the required
rights. Some installations have a policy against logging in directly as a superuser, and use of this
option allows restores to be performed without violating the policy.

Environment
PGHOST
PGOPTIONS
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14). However, it does not read PGDATABASE when a database name is not supplied.

Diagnostics
When a direct database connection is specified using the -d option, pg_restore internally executes SQL
statements. If you have problems running pg_restore, make sure you are able to select information from
the database using, for example, psql. Also, any default connection settings and environment variables
used by the libpq front-end library will apply.

Notes
If your installation has any local additions to the template1 database, be careful to load the output of
pg_restore into a truly empty database; otherwise you are likely to get errors due to duplicate definitions
of the added objects. To make an empty database without any local additions, copy from template0 not
template1, for example:

CREATE DATABASE foo WITH TEMPLATE template0;

The limitations of pg_restore are detailed below.

• When restoring data to a pre-existing table and the option --disable-triggers is used, pg_restore
emits commands to disable triggers on user tables before inserting the data, then emits commands
to re-enable them after the data has been inserted. If the restore is stopped in the middle, the
system catalogs might be left in the wrong state.

• pg_restore cannot restore large objects selectively; for instance, only those for a specific table. If
an archive contains large objects, then all large objects will be restored, or none of them if they are
excluded via -L, -t, or other options.

See also the pg_dump documentation for details on limitations of pg_dump.

Once restored, it is wise to run ANALYZE on each restored table so the optimizer has useful statistics;
see Section 23.1.3 and Section 23.1.6 for more information.

Examples
Assume we have dumped a database called mydb into a custom-format dump file:

$ pg_dump -Fc mydb > db.dump

To drop the database and recreate it from the dump:

$ dropdb mydb
$ pg_restore -C -d postgres db.dump

1723

pg_restore

The database named in the -d switch can be any database existing in the cluster; pg_restore only uses
it to issue the CREATE DATABASE command for mydb. With -C, data is always restored into the database
name that appears in the dump file.

To reload the dump into a new database called newdb:

$ createdb -T template0 newdb
$ pg_restore -d newdb db.dump

Notice we don't use -C, and instead connect directly to the database to be restored into. Also note that
we clone the new database from template0 not template1, to ensure it is initially empty.

To reorder database items, it is first necessary to dump the table of contents of the archive:

$ pg_restore -l db.dump > db.list

The listing file consists of a header and one line for each item, e.g.:

;
; Archive created at Mon Sep 14 13:55:39 2009
; dbname: DBDEMOS
; TOC Entries: 81
; Compression: 9
; Dump Version: 1.10-0
; Format: CUSTOM
; Integer: 4 bytes
; Offset: 8 bytes
; Dumped from database version: 8.3.5
; Dumped by pg_dump version: 8.3.8
;
;
; Selected TOC Entries:
;
3; 2615 2200 SCHEMA - public pasha
1861; 0 0 COMMENT - SCHEMA public pasha
1862; 0 0 ACL - public pasha
317; 1247 17715 TYPE public composite pasha
319; 1247 25899 DOMAIN public domain0 pasha

Semicolons start a comment, and the numbers at the start of lines refer to the internal archive ID
assigned to each item.

Lines in the file can be commented out, deleted, and reordered. For example:

10; 145433 TABLE map_resolutions postgres
;2; 145344 TABLE species postgres
;4; 145359 TABLE nt_header postgres
6; 145402 TABLE species_records postgres
;8; 145416 TABLE ss_old postgres

could be used as input to pg_restore and would only restore items 10 and 6, in that order:

$ pg_restore -L db.list db.dump

See Also
pg_dump, pg_dumpall, psql

1724

pg-wrapper
pg-wrapper — manage Postgres Pro symbolic links

Synopsis
pg-wrapper links { update | remove }

Description
pg-wrapper is a shell script provided in the Postgres Pro distribution to manage Postgres Pro symbolic
links for the provided programs and adjust the handling of SQL man pages on Linux systems. Since
Postgres Pro is installed into /opt/pgpro/std-13, this is required to make client and server programs
available in the standard system PATH and find the new SQL man pages. This setup is not performed
automatically at installation time to avoid possible conflicts with other PostgreSQL-based products you
may have installed, unless you have opted for using the postgrespro-std-13 quick-install package.

pg-wrapper is provided as part of the postgrespro-std-13-client package. Once this package is
installed, you can find pg-wrapper in the install-dir/bin directory, where install-dir is /opt/pgpro/
std-13.

pg-wrapper must be run as root.

Options
pg-wrapper accepts the following command-line arguments:
links {update | remove}

Manage Postgres Pro symbolic links and SQL man pages:
• update — create or replace symbolic links for server and client programs provided with

Postgres Pro, as well as add SQL man pages to the man page configuration file.
• remove — remove symbolic links and SQL man page support for the current Postgres Pro

version.

Notes
If you are installing Postgres Pro from the postgrespro-std-13 package, pg-wrapper is invoked
automatically.

If you are installing individual Postgres Pro packages, you can run this script manually to create symbolic
links to the provided client and server programs, as well as add SQL man pages to the man page
configuration file.

For parallel installations with other PostgreSQL-based products, pg-wrapper behavior depends on
whether the update-alternatives utility is supported by your system and the already installed
PostgreSQL-based product:
• If update-alternatives is supported, pg-wrapper adds symbolic links to Postgres Pro programs into

the alternative system, in accordance with their priority, as well as adds SQL man pages to the man
page configuration file. For details on how to change the alternatives system priorities, see the man
page for update-alternatives on your system.

If SQL man pages are already installed from a different product, the pages unique for the new
installation will be displayed, while the previous installation will keep its priority for all the
coinciding man pages. For the new SQL documentation to be displayed for all pages, you have to
modify the system configuration, for example, change the MANPATH value.

• If update-alternatives is not supported, pg-wrapper updates the system configuration only if there
are no conflicts with any programs or man pages already installed. Otherwise, pg-wrapper does

1725

pg-wrapper

not create or update any program links and skips SQL man page integration. In this case, you can
either continue using the already available program versions and SQL man pages, or modify the
PATH and MANPATH settings manually.

For details on binary installation specifics on Linux, see Section 16.1.

1726

pg_verifybackup
pg_verifybackup — verify the integrity of a base backup of a PostgreSQL cluster

Synopsis
pg_verifybackup [option...]

Description
pg_verifybackup is used to check the integrity of a database cluster backup taken using pg_basebackup
against a backup_manifest generated by the server at the time of the backup. The backup must be
stored in the "plain" format; a "tar" format backup can be checked after extracting it.

It is important to note that the validation which is performed by pg_verifybackup does not and cannot
include every check which will be performed by a running server when attempting to make use of the
backup. Even if you use this tool, you should still perform test restores and verify that the resulting
databases work as expected and that they appear to contain the correct data. However, pg_verifybackup
can detect many problems that commonly occur due to storage problems or user error.

Backup verification proceeds in four stages. First, pg_verifybackup reads the backup_manifest file.
If that file does not exist, cannot be read, is malformed, or fails verification against its own internal
checksum, pg_verifybackup will terminate with a fatal error.

Second, pg_verifybackup will attempt to verify that the data files currently stored on disk are exactly
the same as the data files which the server intended to send, with some exceptions that are described
below. Extra and missing files will be detected, with a few exceptions. This step will ignore the presence
or absence of, or any modifications to, postgresql.auto.conf, standby.signal, and recovery.signal,
because it is expected that these files may have been created or modified as part of the process of taking
the backup. It also won't complain about a backup_manifest file in the target directory or about anything
inside pg_wal, even though these files won't be listed in the backup manifest. Only files are checked; the
presence or absence of directories is not verified, except indirectly: if a directory is missing, any files it
should have contained will necessarily also be missing.

Next, pg_verifybackup will checksum all the files, compare the checksums against the values in the
manifest, and emit errors for any files for which the computed checksum does not match the checksum
stored in the manifest. This step is not performed for any files which produced errors in the previous
step, since they are already known to have problems. Files which were ignored in the previous step are
also ignored in this step.

Finally, pg_verifybackup will use the manifest to verify that the write-ahead log records which will be
needed to recover the backup are present and that they can be read and parsed. The backup_manifest
contains information about which write-ahead log records will be needed, and pg_verifybackup will
use that information to invoke pg_waldump to parse those write-ahead log records. The --quiet flag
will be used, so that pg_waldump will only report errors, without producing any other output. While this
level of verification is sufficient to detect obvious problems such as a missing file or one whose internal
checksums do not match, they aren't extensive enough to detect every possible problem that might occur
when attempting to recover. For instance, a server bug that produces write-ahead log records that have
the correct checksums but specify nonsensical actions can't be detected by this method.

Note that if extra WAL files which are not required to recover the backup are present, they will not be
checked by this tool, although a separate invocation of pg_waldump could be used for that purpose. Also
note that WAL verification is version-specific: you must use the version of pg_verifybackup, and thus
of pg_waldump, which pertains to the backup being checked. In contrast, the data file integrity checks
should work with any version of the server that generates a backup_manifest file.

Options
pg_verifybackup accepts the following command-line arguments:

1727

pg_verifybackup

-e
--exit-on-error

Exit as soon as a problem with the backup is detected. If this option is not specified, pg_verifybackup
will continue checking the backup even after a problem has been detected, and will report all
problems detected as errors.

-i path
--ignore=path

Ignore the specified file or directory, which should be expressed as a relative path name, when
comparing the list of data files actually present in the backup to those listed in the backup_manifest
file. If a directory is specified, this option affects the entire subtree rooted at that location. Complaints
about extra files, missing files, file size differences, or checksum mismatches will be suppressed if
the relative path name matches the specified path name. This option can be specified multiple times.

-m path
--manifest-path=path

Use the manifest file at the specified path, rather than one located in the root of the backup directory.

-n
--no-parse-wal

Don't attempt to parse write-ahead log data that will be needed to recover from this backup.

-q
--quiet

Don't print anything when a backup is successfully verified.

-s
--skip-checksums

Do not verify data file checksums. The presence or absence of files and the sizes of those files will
still be checked. This is much faster, because the files themselves do not need to be read.

-w path
--wal-directory=path

Try to parse WAL files stored in the specified directory, rather than in pg_wal. This may be useful if
the backup is stored in a separate location from the WAL archive.

Other options are also available:

-V
--version

Print the pg_verifybackup version and exit.

-?
--help

Show help about pg_verifybackup command line arguments, and exit.

Examples
To create a base backup of the server at mydbserver and verify the integrity of the backup:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ pg_verifybackup /usr/local/pgsql/data

To create a base backup of the server at mydbserver, move the manifest somewhere outside the backup
directory, and verify the backup:

1728

pg_verifybackup

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/backup1234
$ mv /usr/local/pgsql/backup1234/backup_manifest /my/secure/location/
backup_manifest.1234
$ pg_verifybackup -m /my/secure/location/backup_manifest.1234 /usr/local/pgsql/
backup1234

To verify a backup while ignoring a file that was added manually to the backup directory, and also
skipping checksum verification:

$ pg_basebackup -h mydbserver -D /usr/local/pgsql/data
$ edit /usr/local/pgsql/data/note.to.self
$ pg_verifybackup --ignore=note.to.self --skip-checksums /usr/local/pgsql/data

See Also
pg_basebackup

1729

psql
psql — Postgres Pro interactive terminal

Synopsis
psql [option...] [dbname [username]]

Description
psql is a terminal-based front-end to Postgres Pro. It enables you to type in queries interactively, issue
them to Postgres Pro, and see the query results. Alternatively, input can be from a file or from command
line arguments. In addition, psql provides a number of meta-commands and various shell-like features
to facilitate writing scripts and automating a wide variety of tasks.

Options
-a
--echo-all

Print all nonempty input lines to standard output as they are read. (This does not apply to lines read
interactively.) This is equivalent to setting the variable ECHO to all.

-A
--no-align

Switches to unaligned output mode. (The default output mode is aligned.) This is equivalent to \pset
format unaligned.

-b
--echo-errors

Print failed SQL commands to standard error output. This is equivalent to setting the variable ECHO
to errors.

-c command
--command=command

Specifies that psql is to execute the given command string, command. This option can be repeated
and combined in any order with the -f option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence.

command must be either a command string that is completely parsable by the server (i.e., it contains
no psql-specific features), or a single backslash command. Thus you cannot mix SQL and psql meta-
commands within a -c option. To achieve that, you could use repeated -c options or pipe the string
into psql, for example:

psql -c '\x' -c 'SELECT * FROM foo;'

or

echo '\x \\ SELECT * FROM foo;' | psql

(\\ is the separator meta-command.)

Each SQL command string passed to -c is sent to the server as a single request. Because of this,
the server executes it as a single transaction even if the string contains multiple SQL commands,
unless there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple
transactions. (See Section 50.2.2.1 for more details about how the server handles multi-query
strings.) Also, psql only prints the result of the last SQL command in the string. This is different from

1730

psql

the behavior when the same string is read from a file or fed to psql's standard input, because then
psql sends each SQL command separately.

Because of this behavior, putting more than one SQL command in a single -c string often has
unexpected results. It's better to use repeated -c commands or feed multiple commands to psql's
standard input, either using echo as illustrated above, or via a shell here-document, for example:
psql <<EOF
\x
SELECT * FROM foo;
EOF

--csv

Switches to CSV (Comma-Separated Values) output mode. This is equivalent to \pset format csv.

-d dbname
--dbname=dbname

Specifies the name of the database to connect to. This is equivalent to specifying dbname as the first
non-option argument on the command line. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo-queries

Copy all SQL commands sent to the server to standard output as well. This is equivalent to setting
the variable ECHO to queries.

-E
--echo-hidden

Echo the actual queries generated by \d and other backslash commands. You can use this to study
psql's internal operations. This is equivalent to setting the variable ECHO_HIDDEN to on.

-f filename
--file=filename

Read commands from the file filename, rather than standard input. This option can be repeated
and combined in any order with the -c option. When either -c or -f is specified, psql does not read
commands from standard input; instead it terminates after processing all the -c and -f options in
sequence. Except for that, this option is largely equivalent to the meta-command \i.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note however that Readline
is not used in this case (much as if -n had been specified).

Using this option is subtly different from writing psql < filename. In general, both will do what you
expect, but using -f enables some nice features such as error messages with line numbers. There is
also a slight chance that using this option will reduce the start-up overhead. On the other hand, the
variant using the shell's input redirection is (in theory) guaranteed to yield exactly the same output
you would have received had you entered everything by hand.

-F separator
--field-separator=separator

Use separator as the field separator for unaligned output. This is equivalent to \pset fieldsep
or \f.

-h hostname
--host=hostname

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix-domain socket.

1731

psql

-H
--html

Switches to HTML output mode. This is equivalent to \pset format html or the \H command.

-l
--list

List all available databases, then exit. Other non-connection options are ignored. This is similar to
the meta-command \list.

When this option is used, psql will connect to the database postgres, unless a different database
is named on the command line (option -d or non-option argument, possibly via a service entry, but
not via an environment variable).

-L filename
--log-file=filename

Write all query output into file filename, in addition to the normal output destination.

-n
--no-readline

Do not use Readline for line editing and do not use the command history. This can be useful to turn
off tab expansion when cutting and pasting.

-o filename
--output=filename

Put all query output into file filename. This is equivalent to the command \o.

-p port
--port=port

Specifies the TCP port or the local Unix-domain socket file extension on which the server is listening
for connections. Defaults to the value of the PGPORT environment variable or, if not set, to the port
specified at compile time, usually 5432.

-P assignment
--pset=assignment

Specifies printing options, in the style of \pset. Note that here you have to separate name and value
with an equal sign instead of a space. For example, to set the output format to LaTeX, you could
write -P format=latex.

-q
--quiet

Specifies that psql should do its work quietly. By default, it prints welcome messages and various
informational output. If this option is used, none of this happens. This is useful with the -c option.
This is equivalent to setting the variable QUIET to on.

-R separator
--record-separator=separator

Use separator as the record separator for unaligned output. This is equivalent to \pset recordsep.

-s
--single-step

Run in single-step mode. That means the user is prompted before each command is sent to the server,
with the option to cancel execution as well. Use this to debug scripts.

1732

psql

-S
--single-line

Runs in single-line mode where a newline terminates an SQL command, as a semicolon does.

Note
This mode is provided for those who insist on it, but you are not necessarily encouraged to use
it. In particular, if you mix SQL and meta-commands on a line the order of execution might not
always be clear to the inexperienced user.

-t
--tuples-only

Turn off printing of column names and result row count footers, etc. This is equivalent to \t or \pset
tuples_only.

-T table_options
--table-attr=table_options

Specifies options to be placed within the HTML table tag. See \pset tableattr for details.

-U username
--username=username

Connect to the database as the user username instead of the default. (You must have permission to
do so, of course.)

-v assignment
--set=assignment
--variable=assignment

Perform a variable assignment, like the \set meta-command. Note that you must separate name and
value, if any, by an equal sign on the command line. To unset a variable, leave off the equal sign. To set
a variable with an empty value, use the equal sign but leave off the value. These assignments are done
during command line processing, so variables that reflect connection state will get overwritten later.

-V
--version

Print the psql version and exit.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available from other sources such as a .pgpass file, the connection attempt will fail. This option
can be useful in batch jobs and scripts where no user is present to enter a password.

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-W
--password

Force psql to prompt for a password before connecting to a database, even if the password will not
be used.

If the server requires password authentication and a password is not available from other sources
such as a .pgpass file, psql will prompt for a password in any case. However, psql will waste a
connection attempt finding out that the server wants a password. In some cases it is worth typing
-W to avoid the extra connection attempt.

1733

psql

Note that this option will remain set for the entire session, and so it affects uses of the meta-command
\connect as well as the initial connection attempt.

-x
--expanded

Turn on the expanded table formatting mode. This is equivalent to \x or \pset expanded.

-X,
--no-psqlrc

Do not read the start-up file (neither the system-wide psqlrc file nor the user's ~/.psqlrc file).

-z
--field-separator-zero

Set the field separator for unaligned output to a zero byte. This is equivalent to \pset fieldsep_zero.

-0
--record-separator-zero

Set the record separator for unaligned output to a zero byte. This is useful for interfacing, for
example, with xargs -0. This is equivalent to \pset recordsep_zero.

-1
--single-transaction

This option can only be used in combination with one or more -c and/or -f options. It causes psql to
issue a BEGIN command before the first such option and a COMMIT command after the last one, thereby
wrapping all the commands into a single transaction. This ensures that either all the commands
complete successfully, or no changes are applied.

If the commands themselves contain BEGIN, COMMIT, or ROLLBACK, this option will not have the desired
effects. Also, if an individual command cannot be executed inside a transaction block, specifying this
option will cause the whole transaction to fail.

-?
--help[=topic]

Show help about psql and exit. The optional topic parameter (defaulting to options) selects which
part of psql is explained: commands describes psql's backslash commands; options describes the
command-line options that can be passed to psql; and variables shows help about psql configuration
variables.

Exit Status
psql returns 0 to the shell if it finished normally, 1 if a fatal error of its own occurs (e.g., out of memory,
file not found), 2 if the connection to the server went bad and the session was not interactive, and 3 if
an error occurred in a script and the variable ON_ERROR_STOP was set.

Usage
Connecting to a Database

psql is a regular Postgres Pro client application. In order to connect to a database you need to know the
name of your target database, the host name and port number of the server, and what user name you
want to connect as. psql can be told about those parameters via command line options, namely -d, -h,
-p, and -U respectively. If an argument is found that does not belong to any option it will be interpreted
as the database name (or the user name, if the database name is already given). Not all of these options
are required; there are useful defaults. If you omit the host name, psql will connect via a Unix-domain
socket to a server on the local host, or via TCP/IP to localhost on machines that don't have Unix-domain
sockets. The default port number is determined at compile time. Since the database server uses the same
default, you will not have to specify the port in most cases. The default user name is your operating-

1734

psql

system user name, as is the default database name. Note that you cannot just connect to any database
under any user name. Your database administrator should have informed you about your access rights.

When the defaults aren't quite right, you can save yourself some typing by setting the environment
variables PGDATABASE, PGHOST, PGPORT and/or PGUSER to appropriate values. (For additional environment
variables, see Section 31.14.) It is also convenient to have a ~/.pgpass file to avoid regularly having to
type in passwords. See Section 31.15 for more information.

An alternative way to specify connection parameters is in a conninfo string or a URI, which is used
instead of a database name. This mechanism give you very wide control over the connection. For
example:
$ psql "service=myservice sslmode=require"
$ psql postgresql://dbmaster:5433/mydb?sslmode=require

This way you can also use LDAP for connection parameter lookup as described in Section 31.17. See
Section 31.1.2 for more information on all the available connection options.

If the connection could not be made for any reason (e.g., insufficient privileges, server is not running on
the targeted host, etc.), psql will return an error and terminate.

If both standard input and standard output are a terminal, then psql sets the client encoding to “auto”,
which will detect the appropriate client encoding from the locale settings (LC_CTYPE environment
variable on Unix systems). If this doesn't work out as expected, the client encoding can be overridden
using the environment variable PGCLIENTENCODING.

Entering SQL Commands
In normal operation, psql provides a prompt with the name of the database to which psql is currently
connected, followed by the string =>. For example:
$ psql testdb
psql (13.7.2)
Type "help" for help.

testdb=>

At the prompt, the user can type in SQL commands. Ordinarily, input lines are sent to the server when
a command-terminating semicolon is reached. An end of line does not terminate a command. Thus
commands can be spread over several lines for clarity. If the command was sent and executed without
error, the results of the command are displayed on the screen.

If untrusted users have access to a database that has not adopted a secure schema usage pattern,
begin your session by removing publicly-writable schemas from search_path. One can add options=-
csearch_path= to the connection string or issue SELECT pg_catalog.set_config('search_path',
'', false) before other SQL commands. This consideration is not specific to psql; it applies to every
interface for executing arbitrary SQL commands.

Whenever a command is executed, psql also polls for asynchronous notification events generated by
LISTEN and NOTIFY.

While C-style block comments are passed to the server for processing and removal, SQL-standard
comments are removed by psql.

Meta-Commands
Anything you enter in psql that begins with an unquoted backslash is a psql meta-command that is
processed by psql itself. These commands make psql more useful for administration or scripting. Meta-
commands are often called slash or backslash commands.

The format of a psql command is the backslash, followed immediately by a command verb, then any
arguments. The arguments are separated from the command verb and each other by any number of
whitespace characters.

1735

psql

To include whitespace in an argument you can quote it with single quotes. To include a single quote
in an argument, write two single quotes within single-quoted text. Anything contained in single quotes
is furthermore subject to C-like substitutions for \n (new line), \t (tab), \b (backspace), \r (carriage
return), \f (form feed), \digits (octal), and \xdigits (hexadecimal). A backslash preceding any other
character within single-quoted text quotes that single character, whatever it is.

If an unquoted colon (:) followed by a psql variable name appears within an argument, it is replaced
by the variable's value, as described in SQL Interpolation below. The forms :'variable_name' and
:"variable_name" described there work as well. The :{?variable_name} syntax allows testing whether
a variable is defined. It is substituted by TRUE or FALSE. Escaping the colon with a backslash protects
it from substitution.

Within an argument, text that is enclosed in backquotes (`) is taken as a command line that is passed
to the shell. The output of the command (with any trailing newline removed) replaces the backquoted
text. Within the text enclosed in backquotes, no special quoting or other processing occurs, except
that appearances of :variable_name where variable_name is a psql variable name are replaced by the
variable's value. Also, appearances of :'variable_name' are replaced by the variable's value suitably
quoted to become a single shell command argument. (The latter form is almost always preferable, unless
you are very sure of what is in the variable.) Because carriage return and line feed characters cannot
be safely quoted on all platforms, the :'variable_name' form prints an error message and does not
substitute the variable value when such characters appear in the value.

Some commands take an SQL identifier (such as a table name) as argument. These arguments follow the
syntax rules of SQL: Unquoted letters are forced to lowercase, while double quotes (") protect letters
from case conversion and allow incorporation of whitespace into the identifier. Within double quotes,
paired double quotes reduce to a single double quote in the resulting name. For example, FOO"BAR"BAZ
is interpreted as fooBARbaz, and "A weird"" name" becomes A weird" name.

Parsing for arguments stops at the end of the line, or when another unquoted backslash is found. An
unquoted backslash is taken as the beginning of a new meta-command. The special sequence \\ (two
backslashes) marks the end of arguments and continues parsing SQL commands, if any. That way SQL
and psql commands can be freely mixed on a line. But in any case, the arguments of a meta-command
cannot continue beyond the end of the line.

Many of the meta-commands act on the current query buffer. This is simply a buffer holding whatever
SQL command text has been typed but not yet sent to the server for execution. This will include previous
input lines as well as any text appearing before the meta-command on the same line.

The following meta-commands are defined:
\a

If the current table output format is unaligned, it is switched to aligned. If it is not unaligned, it is
set to unaligned. This command is kept for backwards compatibility. See \pset for a more general
solution.

\c or \connect [-reuse-previous=on|off] [dbname [username] [host] [port] |
conninfo]

Establishes a new connection to a Postgres Pro server. The connection parameters to use can be
specified either using a positional syntax (one or more of database name, user, host, and port), or
using a conninfo connection string as detailed in Section 31.1.1. If no arguments are given, a new
connection is made using the same parameters as before.

Specifying any of dbname, username, host or port as - is equivalent to omitting that parameter.

The new connection can re-use connection parameters from the previous connection; not only
database name, user, host, and port, but other settings such as sslmode. By default, parameters are
re-used in the positional syntax, but not when a conninfo string is given. Passing a first argument of -
reuse-previous=on or -reuse-previous=off overrides that default. If parameters are re-used, then
any parameter not explicitly specified as a positional parameter or in the conninfo string is taken

1736

psql

from the existing connection's parameters. An exception is that if the host setting is changed from its
previous value using the positional syntax, any hostaddr setting present in the existing connection's
parameters is dropped. Also, any password used for the existing connection will be re-used only if
the user, host, and port settings are not changed. When the command neither specifies nor reuses
a particular parameter, the libpq default is used.

If the new connection is successfully made, the previous connection is closed. If the connection
attempt fails (wrong user name, access denied, etc.), the previous connection will be kept if psql is
in interactive mode. But when executing a non-interactive script, processing will immediately stop
with an error. This distinction was chosen as a user convenience against typos on the one hand, and a
safety mechanism that scripts are not accidentally acting on the wrong database on the other hand.

Examples:

=> \c mydb myuser host.dom 6432
=> \c service=foo
=> \c "host=localhost port=5432 dbname=mydb connect_timeout=10 sslmode=disable"
=> \c -reuse-previous=on sslmode=require -- changes only sslmode
=> \c postgresql://tom@localhost/mydb?application_name=myapp

\C [title]

Sets the title of any tables being printed as the result of a query or unset any such title. This command
is equivalent to \pset title title. (The name of this command derives from “caption”, as it was
previously only used to set the caption in an HTML table.)

\cd [directory]

Changes the current working directory to directory. Without argument, changes to the current
user's home directory.

Tip
To print your current working directory, use \! pwd.

\conninfo

Outputs information about the current database connection.

\copy { table [(column_list)] } from { 'filename' | program 'command' | stdin |
pstdin } [[with] (option [, ...])] [where condition]
\copy { table [(column_list)] | (query) } to { 'filename' | program 'command' |
stdout | pstdout } [[with] (option [, ...])]

Performs a frontend (client) copy. This is an operation that runs an SQL COPY command, but instead
of the server reading or writing the specified file, psql reads or writes the file and routes the data
between the server and the local file system. This means that file accessibility and privileges are
those of the local user, not the server, and no SQL superuser privileges are required.

When program is specified, command is executed by psql and the data passed from or to command is
routed between the server and the client. Again, the execution privileges are those of the local user,
not the server, and no SQL superuser privileges are required.

For \copy ... from stdin, data rows are read from the same source that issued the command,
continuing until \. is read or the stream reaches EOF. This option is useful for populating tables in-
line within a SQL script file. For \copy ... to stdout, output is sent to the same place as psql
command output, and the COPY count command status is not printed (since it might be confused
with a data row). To read/write psql's standard input or output regardless of the current command
source or \o option, write from pstdin or to pstdout.

The syntax of this command is similar to that of the SQL COPY command. All options other than the
data source/destination are as specified for COPY. Because of this, special parsing rules apply to the

1737

psql

\copy meta-command. Unlike most other meta-commands, the entire remainder of the line is always
taken to be the arguments of \copy, and neither variable interpolation nor backquote expansion are
performed in the arguments.

Tip
Another way to obtain the same result as \copy ... to is to use the SQL COPY ... TO STDOUT
command and terminate it with \g filename or \g |program. Unlike \copy, this method allows
the command to span multiple lines; also, variable interpolation and backquote expansion can
be used.

Tip
These operations are not as efficient as the SQL COPY command with a file or program data
source or destination, because all data must pass through the client/server connection. For
large amounts of data the SQL command might be preferable.

\copyright

Shows the copyright and distribution terms of Postgres Pro.

\crosstabview [colV [colH [colD [sortcolH]]]]

Executes the current query buffer (like \g) and shows the results in a crosstab grid. The query must
return at least three columns. The output column identified by colV becomes a vertical header and
the output column identified by colH becomes a horizontal header. colD identifies the output column
to display within the grid. sortcolH identifies an optional sort column for the horizontal header.

Each column specification can be a column number (starting at 1) or a column name. The usual SQL
case folding and quoting rules apply to column names. If omitted, colV is taken as column 1 and colH
as column 2. colH must differ from colV. If colD is not specified, then there must be exactly three
columns in the query result, and the column that is neither colV nor colH is taken to be colD.

The vertical header, displayed as the leftmost column, contains the values found in column colV, in
the same order as in the query results, but with duplicates removed.

The horizontal header, displayed as the first row, contains the values found in column colH, with
duplicates removed. By default, these appear in the same order as in the query results. But if the
optional sortcolH argument is given, it identifies a column whose values must be integer numbers,
and the values from colH will appear in the horizontal header sorted according to the corresponding
sortcolH values.

Inside the crosstab grid, for each distinct value x of colH and each distinct value y of colV, the cell
located at the intersection (x,y) contains the value of the colD column in the query result row for
which the value of colH is x and the value of colV is y. If there is no such row, the cell is empty. If
there are multiple such rows, an error is reported.

\d[S+] [pattern]

For each relation (table, view, materialized view, index, sequence, or foreign table) or composite
type matching the pattern, show all columns, their types, the tablespace (if not the default) and any
special attributes such as NOT NULL or defaults. Associated indexes, constraints, rules, and triggers
are also shown. For foreign tables, the associated foreign server is shown as well. (“Matching the
pattern” is defined in Patterns below.)

For some types of relation, \d shows additional information for each column: column values for
sequences, indexed expressions for indexes, and foreign data wrapper options for foreign tables.

1738

psql

The command form \d+ is identical, except that more information is displayed: any comments
associated with the columns of the table are shown, as is the presence of OIDs in the table, the view
definition if the relation is a view, a non-default replica identity setting.

By default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Note
If \d is used without a pattern argument, it is equivalent to \dtvmsE which will show a list
of all visible tables, views, materialized views, sequences and foreign tables. This is purely a
convenience measure.

\da[S] [pattern]

Lists aggregate functions, together with their return type and the data types they operate on. If
pattern is specified, only aggregates whose names match the pattern are shown. By default, only
user-created objects are shown; supply a pattern or the S modifier to include system objects.

\dA[+] [pattern]

Lists access methods. If pattern is specified, only access methods whose names match the pattern
are shown. If + is appended to the command name, each access method is listed with its associated
handler function and description.

\dAc[+] [access-method-pattern [input-type-pattern]]

Lists operator classes (see Section 35.16.1). If access-method-pattern is specified, only operator
classes associated with access methods whose names match that pattern are listed. If input-type-
pattern is specified, only operator classes associated with input types whose names match that
pattern are listed. If + is appended to the command name, each operator class is listed with its
associated operator family and owner.

\dAf[+] [access-method-pattern [input-type-pattern]]

Lists operator families (see Section 35.16.5). If access-method-pattern is specified, only operator
families associated with access methods whose names match that pattern are listed. If input-type-
pattern is specified, only operator families associated with input types whose names match that
pattern are listed. If + is appended to the command name, each operator family is listed with its
owner.

\dAo[+] [access-method-pattern [operator-family-pattern]]

Lists operators associated with operator families (see Section 35.16.2). If access-method-pattern
is specified, only members of operator families associated with access methods whose names match
that pattern are listed. If operator-family-pattern is specified, only members of operator families
whose names match that pattern are listed. If + is appended to the command name, each operator
is listed with its sort operator family (if it is an ordering operator).

\dAp[+] [access-method-pattern [operator-family-pattern]]

Lists support functions associated with operator families (see Section 35.16.3). If access-method-
pattern is specified, only functions of operator families associated with access methods whose names
match that pattern are listed. If operator-family-pattern is specified, only functions of operator
families whose names match that pattern are listed. If + is appended to the command name, functions
are displayed verbosely, with their actual parameter lists.

\db[+] [pattern]

Lists tablespaces. If pattern is specified, only tablespaces whose names match the pattern are
shown. If + is appended to the command name, each tablespace is listed with its associated options,
on-disk size, permissions and description.

1739

psql

\dc[S+] [pattern]

Lists conversions between character-set encodings. If pattern is specified, only conversions whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If + is appended to the command name, each object is
listed with its associated description.

\dC[+] [pattern]

Lists type casts. If pattern is specified, only casts whose source or target types match the pattern
are listed. If + is appended to the command name, each object is listed with its associated description.

\dd[S] [pattern]

Shows the descriptions of objects of type constraint, operator class, operator family, rule,
and trigger. All other comments may be viewed by the respective backslash commands for those
object types.

\dd displays descriptions for objects matching the pattern, or of visible objects of the appropriate
type if no argument is given. But in either case, only objects that have a description are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects.

Descriptions for objects can be created with the COMMENT SQL command.

\dD[S+] [pattern]

Lists domains. If pattern is specified, only domains whose names match the pattern are shown. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each object is listed with its associated permissions
and description.

\ddp [pattern]

Lists default access privilege settings. An entry is shown for each role (and schema, if applicable)
for which the default privilege settings have been changed from the built-in defaults. If pattern is
specified, only entries whose role name or schema name matches the pattern are listed.

The ALTER DEFAULT PRIVILEGES command is used to set default access privileges. The meaning
of the privilege display is explained in Section 5.7.

\dE[S+] [pattern]
\di[S+] [pattern]
\dm[S+] [pattern]
\ds[S+] [pattern]
\dt[S+] [pattern]
\dv[S+] [pattern]

In this group of commands, the letters E, i, m, s, t, and v stand for foreign table, index, materialized
view, sequence, table, and view, respectively. You can specify any or all of these letters, in any order,
to obtain a listing of objects of these types. For example, \dti lists tables and indexes. If + is appended
to the command name, each object is listed with its persistence status (permanent, temporary, or
unlogged), physical size on disk, and associated description if any. If pattern is specified, only objects
whose names match the pattern are listed. By default, only user-created objects are shown; supply
a pattern or the S modifier to include system objects.

\des[+] [pattern]

Lists foreign servers (mnemonic: “external servers”). If pattern is specified, only those servers
whose name matches the pattern are listed. If the form \des+ is used, a full description of each server
is shown, including the server's access privileges, type, version, options, and description.

1740

psql

\det[+] [pattern]

Lists foreign tables (mnemonic: “external tables”). If pattern is specified, only entries whose table
name or schema name matches the pattern are listed. If the form \det+ is used, generic options and
the foreign table description are also displayed.

\deu[+] [pattern]

Lists user mappings (mnemonic: “external users”). If pattern is specified, only those mappings
whose user names match the pattern are listed. If the form \deu+ is used, additional information
about each mapping is shown.

Caution
\deu+ might also display the user name and password of the remote user, so care should be
taken not to disclose them.

\dew[+] [pattern]

Lists foreign-data wrappers (mnemonic: “external wrappers”). If pattern is specified, only those
foreign-data wrappers whose name matches the pattern are listed. If the form \dew+ is used, the
access privileges, options, and description of the foreign-data wrapper are also shown.

\df[anptwS+] [pattern]

Lists functions, together with their result data types, argument data types, and function types, which
are classified as “agg” (aggregate), “normal”, “procedure”, “trigger”, or “window”. To display only
functions of specific type(s), add the corresponding letters a, n, p, t, or w to the command. If pattern
is specified, only functions whose names match the pattern are shown. By default, only user-created
objects are shown; supply a pattern or the S modifier to include system objects. If the form \df+ is
used, additional information about each function is shown, including volatility, parallel safety, owner,
security classification, access privileges, language, source code and description.

Tip
To look up functions taking arguments or returning values of a specific data type, use your
pager's search capability to scroll through the \df output.

\dF[+] [pattern]

Lists text search configurations. If pattern is specified, only configurations whose names match
the pattern are shown. If the form \dF+ is used, a full description of each configuration is shown,
including the underlying text search parser and the dictionary list for each parser token type.

\dFd[+] [pattern]

Lists text search dictionaries. If pattern is specified, only dictionaries whose names match the
pattern are shown. If the form \dFd+ is used, additional information is shown about each selected
dictionary, including the underlying text search template and the option values.

\dFp[+] [pattern]

Lists text search parsers. If pattern is specified, only parsers whose names match the pattern are
shown. If the form \dFp+ is used, a full description of each parser is shown, including the underlying
functions and the list of recognized token types.

\dFt[+] [pattern]

Lists text search templates. If pattern is specified, only templates whose names match the pattern
are shown. If the form \dFt+ is used, additional information is shown about each template, including
the underlying function names.

1741

psql

\dg[S+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”,
this command is now equivalent to \du.) By default, only user-created roles are shown; supply the
S modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If the form \dg+ is used, additional information is shown about each role; currently
this adds the comment for each role.

\dl

This is an alias for \lo_list, which shows a list of large objects.

\dL[S+] [pattern]

Lists procedural languages. If pattern is specified, only languages whose names match the pattern
are listed. By default, only user-created languages are shown; supply the S modifier to include system
objects. If + is appended to the command name, each language is listed with its call handler, validator,
access privileges, and whether it is a system object.

\dn[S+] [pattern]

Lists schemas (namespaces). If pattern is specified, only schemas whose names match the pattern
are listed. By default, only user-created objects are shown; supply a pattern or the S modifier to
include system objects. If + is appended to the command name, each object is listed with its associated
permissions and description, if any.

\do[S+] [pattern]

Lists operators with their operand and result types. If pattern is specified, only operators whose
names match the pattern are listed. By default, only user-created objects are shown; supply a pattern
or the S modifier to include system objects. If + is appended to the command name, additional
information about each operator is shown, currently just the name of the underlying function.

\dO[S+] [pattern]

Lists collations. If pattern is specified, only collations whose names match the pattern are listed. By
default, only user-created objects are shown; supply a pattern or the S modifier to include system
objects. If + is appended to the command name, each collation is listed with its associated description,
if any. Note that only collations usable with the current database's encoding are shown, so the results
may vary in different databases of the same installation.

\dp [pattern]

Lists tables, views and sequences with their associated access privileges. If pattern is specified, only
tables, views and sequences whose names match the pattern are listed.

The GRANT and REVOKE commands are used to set access privileges. The meaning of the privilege
display is explained in Section 5.7.

\dP[itn+] [pattern]

Lists partitioned relations. If pattern is specified, only entries whose name matches the pattern are
listed. The modifiers t (tables) and i (indexes) can be appended to the command, filtering the kind
of relations to list. By default, partitioned tables and indexes are listed.

If the modifier n (“nested”) is used, or a pattern is specified, then non-root partitioned relations are
included, and a column is shown displaying the parent of each partitioned relation.

If + is appended to the command name, the sum of the sizes of each relation's partitions is also
displayed, along with the relation's description. If n is combined with +, two sizes are shown: one
including the total size of directly-attached leaf partitions, and another showing the total size of all
partitions, including indirectly attached sub-partitions.

1742

psql

\drds [role-pattern [database-pattern]]

Lists defined configuration settings. These settings can be role-specific, database-specific, or both.
role-pattern and database-pattern are used to select specific roles and databases to list,
respectively. If omitted, or if * is specified, all settings are listed, including those not role-specific
or database-specific, respectively.

The ALTER ROLE and ALTER DATABASE commands are used to define per-role and per-database
configuration settings.

\dRp[+] [pattern]

Lists replication publications. If pattern is specified, only those publications whose names match the
pattern are listed. If + is appended to the command name, the tables associated with each publication
are shown as well.

\dRs[+] [pattern]

Lists replication subscriptions. If pattern is specified, only those subscriptions whose names
match the pattern are listed. If + is appended to the command name, additional properties of the
subscriptions are shown.

\dT[S+] [pattern]

Lists data types. If pattern is specified, only types whose names match the pattern are listed. If +
is appended to the command name, each type is listed with its internal name and size, its allowed
values if it is an enum type, and its associated permissions. By default, only user-created objects are
shown; supply a pattern or the S modifier to include system objects.

\du[S+] [pattern]

Lists database roles. (Since the concepts of “users” and “groups” have been unified into “roles”,
this command is now equivalent to \dg.) By default, only user-created roles are shown; supply the
S modifier to include system roles. If pattern is specified, only those roles whose names match the
pattern are listed. If the form \du+ is used, additional information is shown about each role; currently
this adds the comment for each role.

\dx[+] [pattern]

Lists installed extensions. If pattern is specified, only those extensions whose names match the
pattern are listed. If the form \dx+ is used, all the objects belonging to each matching extension
are listed.

\dy[+] [pattern]

Lists event triggers. If pattern is specified, only those event triggers whose names match the pattern
are listed. If + is appended to the command name, each object is listed with its associated description.

\e or \edit [filename] [line_number]
If filename is specified, the file is edited; after the editor exits, the file's content is copied into the
current query buffer. If no filename is given, the current query buffer is copied to a temporary file
which is then edited in the same fashion. Or, if the current query buffer is empty, the most recently
executed query is copied to a temporary file and edited in the same fashion.

The new contents of the query buffer are then re-parsed according to the normal rules of psql,
treating the whole buffer as a single line. Any complete queries are immediately executed; that is,
if the query buffer contains or ends with a semicolon, everything up to that point is executed and
removed from the query buffer. Whatever remains in the query buffer is redisplayed. Type semicolon
or \g to send it, or \r to cancel it by clearing the query buffer.

Treating the buffer as a single line primarily affects meta-commands: whatever is in the buffer after
a meta-command will be taken as argument(s) to the meta-command, even if it spans multiple lines.
(Thus you cannot make meta-command-using scripts this way. Use \i for that.)

1743

psql

If a line number is specified, psql will position the cursor on the specified line of the file or query
buffer. Note that if a single all-digits argument is given, psql assumes it is a line number, not a file
name.

Tip
See Environment, below, for how to configure and customize your editor.

\echo text [...]

Prints the evaluated arguments to standard output, separated by spaces and followed by a newline.
This can be useful to intersperse information in the output of scripts. For example:

=> \echo `date`
Tue Oct 26 21:40:57 CEST 1999

If the first argument is an unquoted -n the trailing newline is not written (nor is the first argument).

Tip
If you use the \o command to redirect your query output you might wish to use \qecho instead
of this command. See also \warn.

\ef [function_description [line_number]]

This command fetches and edits the definition of the named function or procedure, in the form of a
CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. Editing is done in the
same way as for \edit. After the editor exits, the updated command is executed immediately if you
added a semicolon to it. Otherwise it is redisplayed; type semicolon or \g to send it, or \r to cancel.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of the
same name.

If no function is specified, a blank CREATE FUNCTION template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the function body.
(Note that the function body typically does not begin on the first line of the file.)

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \ef, and neither variable interpolation nor backquote expansion are performed in
the arguments.

Tip
See Environment, below, for how to configure and customize your editor.

\encoding [encoding]

Sets the client character set encoding. Without an argument, this command shows the current
encoding.

\errverbose

Repeats the most recent server error message at maximum verbosity, as though VERBOSITY were set
to verbose and SHOW_CONTEXT were set to always.

1744

psql

\ev [view_name [line_number]]

This command fetches and edits the definition of the named view, in the form of a CREATE OR REPLACE
VIEW command. Editing is done in the same way as for \edit. After the editor exits, the updated
command is executed immediately if you added a semicolon to it. Otherwise it is redisplayed; type
semicolon or \g to send it, or \r to cancel.

If no view is specified, a blank CREATE VIEW template is presented for editing.

If a line number is specified, psql will position the cursor on the specified line of the view definition.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \ev, and neither variable interpolation nor backquote expansion are performed in
the arguments.

\f [string]

Sets the field separator for unaligned query output. The default is the vertical bar (|). It is equivalent
to \pset fieldsep.

\g [(option=value [...])] [filename]
\g [(option=value [...])] [|command]

Sends the current query buffer to the server for execution.

If parentheses appear after \g, they surround a space-separated list of option=value formatting-
option clauses, which are interpreted in the same way as \pset option value commands, but take
effect only for the duration of this query. In this list, spaces are not allowed around = signs, but are
required between option clauses. If =value is omitted, the named option is changed in the same way
as for \pset option with no explicit value.

If a filename or |command argument is given, the query's output is written to the named file or piped
to the given shell command, instead of displaying it as usual. The file or command is written to only
if the query successfully returns zero or more tuples, not if the query fails or is a non-data-returning
SQL command.

If the current query buffer is empty, the most recently sent query is re-executed instead. Except for
that behavior, \g without any arguments is essentially equivalent to a semicolon. With arguments, \g
provides a “one-shot” alternative to the \o command, and additionally allows one-shot adjustments
of the output formatting options normally set by \pset.

When the last argument begins with |, the entire remainder of the line is taken to be the command
to execute, and neither variable interpolation nor backquote expansion are performed in it. The rest
of the line is simply passed literally to the shell.

\gdesc

Shows the description (that is, the column names and data types) of the result of the current query
buffer. The query is not actually executed; however, if it contains some type of syntax error, that error
will be reported in the normal way.

If the current query buffer is empty, the most recently sent query is described instead.

\gexec

Sends the current query buffer to the server, then treats each column of each row of the query's
output (if any) as a SQL statement to be executed. For example, to create an index on each column
of my_table:
=> SELECT format('create index on my_table(%I)', attname)
-> FROM pg_attribute
-> WHERE attrelid = 'my_table'::regclass AND attnum > 0
-> ORDER BY attnum

1745

psql

-> \gexec
CREATE INDEX
CREATE INDEX
CREATE INDEX
CREATE INDEX

The generated queries are executed in the order in which the rows are returned, and left-to-right
within each row if there is more than one column. NULL fields are ignored. The generated queries
are sent literally to the server for processing, so they cannot be psql meta-commands nor contain
psql variable references. If any individual query fails, execution of the remaining queries continues
unless ON_ERROR_STOP is set. Execution of each query is subject to ECHO processing. (Setting ECHO to
all or queries is often advisable when using \gexec.) Query logging, single-step mode, timing, and
other query execution features apply to each generated query as well.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gset [prefix]

Sends the current query buffer to the server and stores the query's output into psql variables (see
Variables below). The query to be executed must return exactly one row. Each column of the row is
stored into a separate variable, named the same as the column. For example:
=> SELECT 'hello' AS var1, 10 AS var2
-> \gset
=> \echo :var1 :var2
hello 10

If you specify a prefix, that string is prepended to the query's column names to create the variable
names to use:
=> SELECT 'hello' AS var1, 10 AS var2
-> \gset result_
=> \echo :result_var1 :result_var2
hello 10

If a column result is NULL, the corresponding variable is unset rather than being set.

If the query fails or does not return one row, no variables are changed.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\gx [(option=value [...])] [filename]
\gx [(option=value [...])] [|command]

\gx is equivalent to \g, except that it forces expanded output mode for this query, as if expanded=on
were included in the list of \pset options. See also \x.

\h or \help [command]
Gives syntax help on the specified SQL command. If command is not specified, then psql will list all
the commands for which syntax help is available. If command is an asterisk (*), then syntax help on
all SQL commands is shown.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \help, and neither variable interpolation nor backquote expansion are performed in
the arguments.

Note
To simplify typing, commands that consists of several words do not have to be quoted. Thus
it is fine to type \help alter table.

1746

psql

\H or \html
Turns on HTML query output format. If the HTML format is already on, it is switched back to the
default aligned text format. This command is for compatibility and convenience, but see \pset about
setting other output options.

\i or \include filename

Reads input from the file filename and executes it as though it had been typed on the keyboard.

If filename is - (hyphen), then standard input is read until an EOF indication or \q meta-command.
This can be used to intersperse interactive input with input from files. Note that Readline behavior
will be used only if it is active at the outermost level.

Note
If you want to see the lines on the screen as they are read you must set the variable ECHO to all.

\if expression
\elif expression
\else
\endif

This group of commands implements nestable conditional blocks. A conditional block must begin
with an \if and end with an \endif. In between there may be any number of \elif clauses, which
may optionally be followed by a single \else clause. Ordinary queries and other types of backslash
commands may (and usually do) appear between the commands forming a conditional block.

The \if and \elif commands read their argument(s) and evaluate them as a boolean expression.
If the expression yields true then processing continues normally; otherwise, lines are skipped until
a matching \elif, \else, or \endif is reached. Once an \if or \elif test has succeeded, the
arguments of later \elif commands in the same block are not evaluated but are treated as false.
Lines following an \else are processed only if no earlier matching \if or \elif succeeded.

The expression argument of an \if or \elif command is subject to variable interpolation and
backquote expansion, just like any other backslash command argument. After that it is evaluated like
the value of an on/off option variable. So a valid value is any unambiguous case-insensitive match for
one of: true, false, 1, 0, on, off, yes, no. For example, t, T, and tR will all be considered to be true.

Expressions that do not properly evaluate to true or false will generate a warning and be treated
as false.

Lines being skipped are parsed normally to identify queries and backslash commands, but queries
are not sent to the server, and backslash commands other than conditionals (\if, \elif, \else,
\endif) are ignored. Conditional commands are checked only for valid nesting. Variable references
in skipped lines are not expanded, and backquote expansion is not performed either.

All the backslash commands of a given conditional block must appear in the same source file. If EOF
is reached on the main input file or an \include-ed file before all local \if-blocks have been closed,
then psql will raise an error.

Here is an example:

-- check for the existence of two separate records in the database and store
-- the results in separate psql variables
SELECT
 EXISTS(SELECT 1 FROM customer WHERE customer_id = 123) as is_customer,
 EXISTS(SELECT 1 FROM employee WHERE employee_id = 456) as is_employee
\gset

1747

psql

\if :is_customer
 SELECT * FROM customer WHERE customer_id = 123;
\elif :is_employee
 \echo 'is not a customer but is an employee'
 SELECT * FROM employee WHERE employee_id = 456;
\else
 \if yes
 \echo 'not a customer or employee'
 \else
 \echo 'this will never print'
 \endif
\endif

\ir or \include_relative filename

The \ir command is similar to \i, but resolves relative file names differently. When executing in
interactive mode, the two commands behave identically. However, when invoked from a script, \ir
interprets file names relative to the directory in which the script is located, rather than the current
working directory.

\l[+] or \list[+] [pattern]

List the databases in the server and show their names, owners, character set encodings, and access
privileges. If pattern is specified, only databases whose names match the pattern are listed. If +
is appended to the command name, database sizes, default tablespaces, and descriptions are also
displayed. (Size information is only available for databases that the current user can connect to.)

\lo_export loid filename

Reads the large object with OID loid from the database and writes it to filename. Note that this is
subtly different from the server function lo_export, which acts with the permissions of the user that
the database server runs as and on the server's file system.

Tip
Use \lo_list to find out the large object's OID.

\lo_import filename [comment]

Stores the file into a Postgres Pro large object. Optionally, it associates the given comment with the
object. Example:

foo=> \lo_import '/home/peter/pictures/photo.xcf' 'a picture of me'
lo_import 152801

The response indicates that the large object received object ID 152801, which can be used to access
the newly-created large object in the future. For the sake of readability, it is recommended to always
associate a human-readable comment with every object. Both OIDs and comments can be viewed
with the \lo_list command.

Note that this command is subtly different from the server-side lo_import because it acts as the
local user on the local file system, rather than the server's user and file system.

\lo_list

Shows a list of all Postgres Pro large objects currently stored in the database, along with any
comments provided for them.

\lo_unlink loid

Deletes the large object with OID loid from the database.

1748

psql

Tip
Use \lo_list to find out the large object's OID.

\o or \out [filename]
\o or \out [|command]

Arranges to save future query results to the file filename or pipe future results to the shell command
command. If no argument is specified, the query output is reset to the standard output.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

“Query results” includes all tables, command responses, and notices obtained from the database
server, as well as output of various backslash commands that query the database (such as \d); but
not error messages.

Tip
To intersperse text output in between query results, use \qecho.

\p or \print

Print the current query buffer to the standard output. If the current query buffer is empty, the most
recently executed query is printed instead.

\password [username]

Changes the password of the specified user (by default, the current user). This command prompts
for the new password, encrypts it, and sends it to the server as an ALTER ROLE command. This makes
sure that the new password does not appear in cleartext in the command history, the server log, or
elsewhere.

\prompt [text] name

Prompts the user to supply text, which is assigned to the variable name. An optional prompt string,
text, can be specified. (For multiword prompts, surround the text with single quotes.)

By default, \prompt uses the terminal for input and output. However, if the -f command line switch
was used, \prompt uses standard input and standard output.

\pset [option [value]]

This command sets options affecting the output of query result tables. option indicates which option
is to be set. The semantics of value vary depending on the selected option. For some options, omitting
value causes the option to be toggled or unset, as described under the particular option. If no such
behavior is mentioned, then omitting value just results in the current setting being displayed.

\pset without any arguments displays the current status of all printing options.

Adjustable printing options are:

border

The value must be a number. In general, the higher the number the more borders and lines the
tables will have, but details depend on the particular format. In HTML format, this will translate
directly into the border=... attribute. In most other formats only values 0 (no border), 1 (internal
dividing lines), and 2 (table frame) make sense, and values above 2 will be treated the same

1749

psql

as border = 2. The latex and latex-longtable formats additionally allow a value of 3 to add
dividing lines between data rows.

columns

Sets the target width for the wrapped format, and also the width limit for determining whether
output is wide enough to require the pager or switch to the vertical display in expanded auto
mode. Zero (the default) causes the target width to be controlled by the environment variable
COLUMNS, or the detected screen width if COLUMNS is not set. In addition, if columns is zero then
the wrapped format only affects screen output. If columns is nonzero then file and pipe output
is wrapped to that width as well.

csv_fieldsep

Specifies the field separator to be used in CSV output format. If the separator character appears
in a field's value, that field is output within double quotes, following standard CSV rules. The
default is a comma.

expanded (or x)

If value is specified it must be either on or off, which will enable or disable expanded mode, or
auto. If value is omitted the command toggles between the on and off settings. When expanded
mode is enabled, query results are displayed in two columns, with the column name on the left
and the data on the right. This mode is useful if the data wouldn't fit on the screen in the normal
“horizontal” mode. In the auto setting, the expanded mode is used whenever the query output
has more than one column and is wider than the screen; otherwise, the regular mode is used.
The auto setting is only effective in the aligned and wrapped formats. In other formats, it always
behaves as if the expanded mode is off.

fieldsep

Specifies the field separator to be used in unaligned output format. That way one can create, for
example, tab-separated output, which other programs might prefer. To set a tab as field separator,
type \pset fieldsep '\t'. The default field separator is '|' (a vertical bar).

fieldsep_zero

Sets the field separator to use in unaligned output format to a zero byte.

footer

If value is specified it must be either on or off which will enable or disable display of the table
footer (the (n rows) count). If value is omitted the command toggles footer display on or off.

format

Sets the output format to one of aligned, asciidoc, csv, html, latex, latex-longtable, troff-
ms, unaligned, or wrapped. Unique abbreviations are allowed.

aligned format is the standard, human-readable, nicely formatted text output; this is the default.

unaligned format writes all columns of a row on one line, separated by the currently active
field separator. This is useful for creating output that might be intended to be read in by other
programs, for example, tab-separated or comma-separated format. However, the field separator
character is not treated specially if it appears in a column's value; so CSV format may be better
suited for such purposes.

csv format writes column values separated by commas, applying the quoting rules described in
RFC 4180. This output is compatible with the CSV format of the server's COPY command. A header
line with column names is generated unless the tuples_only parameter is on. Titles and footers
are not printed. Each row is terminated by the system-dependent end-of-line character, which is
typically a single newline (\n) for Unix-like systems or a carriage return and newline sequence

1750

https://tools.ietf.org/html/rfc4180

psql

(\r\n) for Microsoft Windows. Field separator characters other than comma can be selected with
\pset csv_fieldsep.

wrapped format is like aligned but wraps wide data values across lines to make the output fit in
the target column width. The target width is determined as described under the columns option.
Note that psql will not attempt to wrap column header titles; therefore, wrapped format behaves
the same as aligned if the total width needed for column headers exceeds the target.

The asciidoc, html, latex, latex-longtable, and troff-ms formats put out tables that are
intended to be included in documents using the respective mark-up language. They are not
complete documents! This might not be necessary in HTML, but in LaTeX you must have a
complete document wrapper. The latex format uses LaTeX's tabular environment. The latex-
longtable format requires the LaTeX longtable and booktabs packages.

linestyle

Sets the border line drawing style to one of ascii, old-ascii, or unicode. Unique abbreviations
are allowed. (That would mean one letter is enough.) The default setting is ascii. This option
only affects the aligned and wrapped output formats.

ascii style uses plain ASCII characters. Newlines in data are shown using a + symbol in the right-
hand margin. When the wrapped format wraps data from one line to the next without a newline
character, a dot (.) is shown in the right-hand margin of the first line, and again in the left-hand
margin of the following line.

old-ascii style uses plain ASCII characters, using the formatting style used in PostgreSQL
8.4 and earlier. Newlines in data are shown using a : symbol in place of the left-hand column
separator. When the data is wrapped from one line to the next without a newline character, a ;
symbol is used in place of the left-hand column separator.

unicode style uses Unicode box-drawing characters. Newlines in data are shown using a carriage
return symbol in the right-hand margin. When the data is wrapped from one line to the next
without a newline character, an ellipsis symbol is shown in the right-hand margin of the first line,
and again in the left-hand margin of the following line.

When the border setting is greater than zero, the linestyle option also determines the
characters with which the border lines are drawn. Plain ASCII characters work everywhere, but
Unicode characters look nicer on displays that recognize them.

null

Sets the string to be printed in place of a null value. The default is to print nothing, which can
easily be mistaken for an empty string. For example, one might prefer \pset null '(null)'.

numericlocale

If value is specified it must be either on or off which will enable or disable display of a locale-
specific character to separate groups of digits to the left of the decimal marker. If value is omitted
the command toggles between regular and locale-specific numeric output.

pager

Controls use of a pager program for query and psql help output. If the environment variable
PSQL_PAGER or PAGER is set, the output is piped to the specified program. Otherwise a platform-
dependent default program (such as more) is used.

When the pager option is off, the pager program is not used. When the pager option is on, the
pager is used when appropriate, i.e., when the output is to a terminal and will not fit on the
screen. The pager option can also be set to always, which causes the pager to be used for all
terminal output regardless of whether it fits on the screen. \pset pager without a value toggles
pager use on and off.

1751

psql

pager_min_lines

If pager_min_lines is set to a number greater than the page height, the pager program will not
be called unless there are at least this many lines of output to show. The default setting is 0.

recordsep

Specifies the record (line) separator to use in unaligned output format. The default is a newline
character.

recordsep_zero

Sets the record separator to use in unaligned output format to a zero byte.

tableattr (or T)

In HTML format, this specifies attributes to be placed inside the table tag. This could for example
be cellpadding or bgcolor. Note that you probably don't want to specify border here, as that is
already taken care of by \pset border. If no value is given, the table attributes are unset.

In latex-longtable format, this controls the proportional width of each column containing a left-
aligned data type. It is specified as a whitespace-separated list of values, e.g., '0.2 0.2 0.6'.
Unspecified output columns use the last specified value.

title (or C)

Sets the table title for any subsequently printed tables. This can be used to give your output
descriptive tags. If no value is given, the title is unset.

tuples_only (or t)

If value is specified it must be either on or off which will enable or disable tuples-only mode. If
value is omitted the command toggles between regular and tuples-only output. Regular output
includes extra information such as column headers, titles, and various footers. In tuples-only
mode, only actual table data is shown.

unicode_border_linestyle

Sets the border drawing style for the unicode line style to one of single or double.

unicode_column_linestyle

Sets the column drawing style for the unicode line style to one of single or double.

unicode_header_linestyle

Sets the header drawing style for the unicode line style to one of single or double.

Illustrations of how these different formats look can be seen in Examples, below.

Tip
There are various shortcut commands for \pset. See \a, \C, \f, \H, \t, \T, and \x.

\q or \quit

Quits the psql program. In a script file, only execution of that script is terminated.

\qecho text [...]

This command is identical to \echo except that the output will be written to the query output channel,
as set by \o.

1752

psql

\r or \reset
Resets (clears) the query buffer.

\s [filename]

Print psql's command line history to filename. If filename is omitted, the history is written to the
standard output (using the pager if appropriate). This command is not available if psql was built
without Readline support.

\set [name [value [...]]]

Sets the psql variable name to value, or if more than one value is given, to the concatenation of all of
them. If only one argument is given, the variable is set to an empty-string value. To unset a variable,
use the \unset command.

\set without any arguments displays the names and values of all currently-set psql variables.

Valid variable names can contain letters, digits, and underscores. See Variables below for details.
Variable names are case-sensitive.

Certain variables are special, in that they control psql's behavior or are automatically set to reflect
connection state. These variables are documented in Variables, below.

Note
This command is unrelated to the SQL command SET.

\setenv name [value]

Sets the environment variable name to value, or if the value is not supplied, unsets the environment
variable. Example:
testdb=> \setenv PAGER less
testdb=> \setenv LESS -imx4F

\sf[+] function_description

This command fetches and shows the definition of the named function or procedure, in the form of a
CREATE OR REPLACE FUNCTION or CREATE OR REPLACE PROCEDURE command. The definition is printed
to the current query output channel, as set by \o.

The target function can be specified by name alone, or by name and arguments, for example
foo(integer, text). The argument types must be given if there is more than one function of the
same name.

If + is appended to the command name, then the output lines are numbered, with the first line of
the function body being line 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \sf, and neither variable interpolation nor backquote expansion are performed in
the arguments.

\sv[+] view_name

This command fetches and shows the definition of the named view, in the form of a CREATE OR REPLACE
VIEW command. The definition is printed to the current query output channel, as set by \o.

If + is appended to the command name, then the output lines are numbered from 1.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \sv, and neither variable interpolation nor backquote expansion are performed in
the arguments.

1753

psql

\t

Toggles the display of output column name headings and row count footer. This command is
equivalent to \pset tuples_only and is provided for convenience.

\T table_options

Specifies attributes to be placed within the table tag in HTML output format. This command is
equivalent to \pset tableattr table_options.

\timing [on | off]

With a parameter, turns displaying of how long each SQL statement takes on or off. Without a
parameter, toggles the display between on and off. The display is in milliseconds; intervals longer
than 1 second are also shown in minutes:seconds format, with hours and days fields added if needed.

\unset name

Unsets (deletes) the psql variable name.

Most variables that control psql's behavior cannot be unset; instead, an \unset command is
interpreted as setting them to their default values. See Variables below.

\w or \write filename
\w or \write |command

Writes the current query buffer to the file filename or pipes it to the shell command command. If the
current query buffer is empty, the most recently executed query is written instead.

If the argument begins with |, then the entire remainder of the line is taken to be the command to
execute, and neither variable interpolation nor backquote expansion are performed in it. The rest of
the line is simply passed literally to the shell.

\warn text [...]

This command is identical to \echo except that the output will be written to psql's standard error
channel, rather than standard output.

\watch [seconds]

Repeatedly execute the current query buffer (as \g does) until interrupted or the query fails. Wait the
specified number of seconds (default 2) between executions. Each query result is displayed with a
header that includes the \pset title string (if any), the time as of query start, and the delay interval.

If the current query buffer is empty, the most recently sent query is re-executed instead.

\x [on | off | auto]

Sets or toggles expanded table formatting mode. As such it is equivalent to \pset expanded.

\z [pattern]

Lists tables, views and sequences with their associated access privileges. If a pattern is specified,
only tables, views and sequences whose names match the pattern are listed.

This is an alias for \dp (“display privileges”).

\! [command]

With no argument, escapes to a sub-shell; psql resumes when the sub-shell exits. With an argument,
executes the shell command command.

Unlike most other meta-commands, the entire remainder of the line is always taken to be the
argument(s) of \!, and neither variable interpolation nor backquote expansion are performed in the
arguments. The rest of the line is simply passed literally to the shell.

1754

psql

\? [topic]

Shows help information. The optional topic parameter (defaulting to commands) selects which part of
psql is explained: commands describes psql's backslash commands; options describes the command-
line options that can be passed to psql; and variables shows help about psql configuration variables.

\;

Backslash-semicolon is not a meta-command in the same way as the preceding commands; rather, it
simply causes a semicolon to be added to the query buffer without any further processing.

Normally, psql will dispatch a SQL command to the server as soon as it reaches the command-ending
semicolon, even if more input remains on the current line. Thus for example entering

select 1; select 2; select 3;

will result in the three SQL commands being individually sent to the server, with each one's results
being displayed before continuing to the next command. However, a semicolon entered as \; will
not trigger command processing, so that the command before it and the one after are effectively
combined and sent to the server in one request. So for example

select 1\; select 2\; select 3;

results in sending the three SQL commands to the server in a single request, when the non-
backslashed semicolon is reached. The server executes such a request as a single transaction,
unless there are explicit BEGIN/COMMIT commands included in the string to divide it into multiple
transactions. (See Section 50.2.2.1 for more details about how the server handles multi-query
strings.) psql prints only the last query result it receives for each request; in this example, although
all three SELECTs are indeed executed, psql only prints the 3.

Patterns

The various \d commands accept a pattern parameter to specify the object name(s) to be displayed.
In the simplest case, a pattern is just the exact name of the object. The characters within a pattern are
normally folded to lower case, just as in SQL names; for example, \dt FOO will display the table named
foo. As in SQL names, placing double quotes around a pattern stops folding to lower case. Should you
need to include an actual double quote character in a pattern, write it as a pair of double quotes within
a double-quote sequence; again this is in accord with the rules for SQL quoted identifiers. For example,
\dt "FOO""BAR" will display the table named FOO"BAR (not foo"bar). Unlike the normal rules for SQL
names, you can put double quotes around just part of a pattern, for instance \dt FOO"FOO"BAR will
display the table named fooFOObar.

Whenever the pattern parameter is omitted completely, the \d commands display all objects that are
visible in the current schema search path — this is equivalent to using * as the pattern. (An object is
said to be visible if its containing schema is in the search path and no object of the same kind and name
appears earlier in the search path. This is equivalent to the statement that the object can be referenced
by name without explicit schema qualification.) To see all objects in the database regardless of visibility,
use *.* as the pattern.

Within a pattern, * matches any sequence of characters (including no characters) and ? matches any
single character. (This notation is comparable to Unix shell file name patterns.) For example, \dt int*
displays tables whose names begin with int. But within double quotes, * and ? lose these special
meanings and are just matched literally.

A pattern that contains a dot (.) is interpreted as a schema name pattern followed by an object name
pattern. For example, \dt foo*.*bar* displays all tables whose table name includes bar that are in
schemas whose schema name starts with foo. When no dot appears, then the pattern matches only
objects that are visible in the current schema search path. Again, a dot within double quotes loses its
special meaning and is matched literally.

Advanced users can use regular-expression notations such as character classes, for example [0-9] to
match any digit. All regular expression special characters work as specified in Section 9.7.3, except for

1755

psql

. which is taken as a separator as mentioned above, * which is translated to the regular-expression
notation .*, ? which is translated to ., and $ which is matched literally. You can emulate these pattern
characters at need by writing ? for ., (R+|) for R*, or (R|) for R?. $ is not needed as a regular-expression
character since the pattern must match the whole name, unlike the usual interpretation of regular
expressions (in other words, $ is automatically appended to your pattern). Write * at the beginning and/
or end if you don't wish the pattern to be anchored. Note that within double quotes, all regular expression
special characters lose their special meanings and are matched literally. Also, the regular expression
special characters are matched literally in operator name patterns (i.e., the argument of \do).

Advanced Features

Variables
psql provides variable substitution features similar to common Unix command shells. Variables are
simply name/value pairs, where the value can be any string of any length. The name must consist of
letters (including non-Latin letters), digits, and underscores.

To set a variable, use the psql meta-command \set. For example,
testdb=> \set foo bar

sets the variable foo to the value bar. To retrieve the content of the variable, precede the name with
a colon, for example:
testdb=> \echo :foo
bar

This works in both regular SQL commands and meta-commands; there is more detail in SQL
Interpolation, below.

If you call \set without a second argument, the variable is set to an empty-string value. To unset (i.e.,
delete) a variable, use the command \unset. To show the values of all variables, call \set without any
argument.

Note
The arguments of \set are subject to the same substitution rules as with other commands. Thus
you can construct interesting references such as \set :foo 'something' and get “soft links” or
“variable variables” of Perl or PHP fame, respectively. Unfortunately (or fortunately?), there is no
way to do anything useful with these constructs. On the other hand, \set bar :foo is a perfectly
valid way to copy a variable.

A number of these variables are treated specially by psql. They represent certain option settings that
can be changed at run time by altering the value of the variable, or in some cases represent changeable
state of psql. By convention, all specially treated variables' names consist of all upper-case ASCII letters
(and possibly digits and underscores). To ensure maximum compatibility in the future, avoid using such
variable names for your own purposes.

Variables that control psql's behavior generally cannot be unset or set to invalid values. An \unset
command is allowed but is interpreted as setting the variable to its default value. A \set command
without a second argument is interpreted as setting the variable to on, for control variables that accept
that value, and is rejected for others. Also, control variables that accept the values on and off will also
accept other common spellings of Boolean values, such as true and false.

The specially treated variables are:

AUTOCOMMIT
When on (the default), each SQL command is automatically committed upon successful completion.
To postpone commit in this mode, you must enter a BEGIN or START TRANSACTION SQL command.
When off or unset, SQL commands are not committed until you explicitly issue COMMIT or END. The

1756

psql

autocommit-off mode works by issuing an implicit BEGIN for you, just before any command that is not
already in a transaction block and is not itself a BEGIN or other transaction-control command, nor a
command that cannot be executed inside a transaction block (such as VACUUM).

Note
In autocommit-off mode, you must explicitly abandon any failed transaction by entering ABORT
or ROLLBACK. Also keep in mind that if you exit the session without committing, your work will
be lost.

Note
The autocommit-on mode is Postgres Pro's traditional behavior, but autocommit-off is closer to
the SQL spec. If you prefer autocommit-off, you might wish to set it in the system-wide psqlrc
file or your ~/.psqlrc file.

COMP_KEYWORD_CASE

Determines which letter case to use when completing an SQL key word. If set to lower or upper, the
completed word will be in lower or upper case, respectively. If set to preserve-lower or preserve-
upper (the default), the completed word will be in the case of the word already entered, but words
being completed without anything entered will be in lower or upper case, respectively.

DBNAME

The name of the database you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

ECHO

If set to all, all nonempty input lines are printed to standard output as they are read. (This does not
apply to lines read interactively.) To select this behavior on program start-up, use the switch -a. If
set to queries, psql prints each query to standard output as it is sent to the server. The switch to
select this behavior is -e. If set to errors, then only failed queries are displayed on standard error
output. The switch for this behavior is -b. If set to none (the default), then no queries are displayed.

ECHO_HIDDEN

When this variable is set to on and a backslash command queries the database, the query is first
shown. This feature helps you to study Postgres Pro internals and provide similar functionality in
your own programs. (To select this behavior on program start-up, use the switch -E.) If you set this
variable to the value noexec, the queries are just shown but are not actually sent to the server and
executed. The default value is off.

ENCODING

The current client character set encoding. This is set every time you connect to a database (including
program start-up), and when you change the encoding with \encoding, but it can be changed or
unset.

ERROR

true if the last SQL query failed, false if it succeeded. See also SQLSTATE.

FETCH_COUNT

If this variable is set to an integer value greater than zero, the results of SELECT queries are fetched
and displayed in groups of that many rows, rather than the default behavior of collecting the entire
result set before display. Therefore only a limited amount of memory is used, regardless of the size of

1757

psql

the result set. Settings of 100 to 1000 are commonly used when enabling this feature. Keep in mind
that when using this feature, a query might fail after having already displayed some rows.

Tip
Although you can use any output format with this feature, the default aligned format tends
to look bad because each group of FETCH_COUNT rows will be formatted separately, leading to
varying column widths across the row groups. The other output formats work better.

HIDE_TABLEAM

If this variable is set to true, a table's access method details are not displayed. This is mainly useful
for regression tests.

HISTCONTROL

If this variable is set to ignorespace, lines which begin with a space are not entered into the history
list. If set to a value of ignoredups, lines matching the previous history line are not entered. A value
of ignoreboth combines the two options. If set to none (the default), all lines read in interactive mode
are saved on the history list.

Note
This feature was shamelessly plagiarized from Bash.

HISTFILE

The file name that will be used to store the history list. If unset, the file name is taken from the
PSQL_HISTORY environment variable. If that is not set either, the default is ~/.psql_history, or
%APPDATA%\postgresql\psql_history on Windows. For example, putting:
\set HISTFILE ~/.psql_history- :DBNAME

in ~/.psqlrc will cause psql to maintain a separate history for each database.

Note
This feature was shamelessly plagiarized from Bash.

HISTSIZE

The maximum number of commands to store in the command history (default 500). If set to a negative
value, no limit is applied.

Note
This feature was shamelessly plagiarized from Bash.

HOST

The database server host you are currently connected to. This is set every time you connect to a
database (including program start-up), but can be changed or unset.

IGNOREEOF

If set to 1 or less, sending an EOF character (usually Control+D) to an interactive session of psql will
terminate the application. If set to a larger numeric value, that many consecutive EOF characters
must be typed to make an interactive session terminate. If the variable is set to a non-numeric value,
it is interpreted as 10. The default is 0.

1758

psql

Note
This feature was shamelessly plagiarized from Bash.

LASTOID

The value of the last affected OID, as returned from an INSERT or \lo_import command. This variable
is only guaranteed to be valid until after the result of the next SQL command has been displayed.
Postgres Pro servers since version 12 do not support OID system columns anymore, thus LASTOID
will always be 0 following INSERT when targeting such servers.

LAST_ERROR_MESSAGE
LAST_ERROR_SQLSTATE

The primary error message and associated SQLSTATE code for the most recent failed query in the
current psql session, or an empty string and 00000 if no error has occurred in the current session.

ON_ERROR_ROLLBACK
When set to on, if a statement in a transaction block generates an error, the error is ignored and the
transaction continues. When set to interactive, such errors are only ignored in interactive sessions,
and not when reading script files. When set to off (the default), a statement in a transaction block
that generates an error aborts the entire transaction. The error rollback mode works by issuing an
implicit SAVEPOINT for you, just before each command that is in a transaction block, and then rolling
back to the savepoint if the command fails.

ON_ERROR_STOP

By default, command processing continues after an error. When this variable is set to on, processing
will instead stop immediately. In interactive mode, psql will return to the command prompt;
otherwise, psql will exit, returning error code 3 to distinguish this case from fatal error conditions,
which are reported using error code 1. In either case, any currently running scripts (the top-level
script, if any, and any other scripts which it may have in invoked) will be terminated immediately.
If the top-level command string contained multiple SQL commands, processing will stop with the
current command.

PORT

The database server port to which you are currently connected. This is set every time you connect
to a database (including program start-up), but can be changed or unset.

PROMPT1
PROMPT2
PROMPT3

These specify what the prompts psql issues should look like. See Prompting below.

QUIET

Setting this variable to on is equivalent to the command line option -q. It is probably not too useful
in interactive mode.

ROW_COUNT

The number of rows returned or affected by the last SQL query, or 0 if the query failed or did not
report a row count.

SERVER_VERSION_NAME
SERVER_VERSION_NUM

The server's version number as a string, for example 9.6.2, 10.1 or 11beta1, and in numeric form,
for example 90602 or 100001. These are set every time you connect to a database (including program
start-up), but can be changed or unset.

1759

psql

SHOW_CONTEXT

This variable can be set to the values never, errors, or always to control whether CONTEXT fields are
displayed in messages from the server. The default is errors (meaning that context will be shown in
error messages, but not in notice or warning messages). This setting has no effect when VERBOSITY
is set to terse or sqlstate. (See also \errverbose, for use when you want a verbose version of the
error you just got.)

SINGLELINE

Setting this variable to on is equivalent to the command line option -S.

SINGLESTEP

Setting this variable to on is equivalent to the command line option -s.

SQLSTATE

The error code (see Appendix A) associated with the last SQL query's failure, or 00000 if it succeeded.

USER

The database user you are currently connected as. This is set every time you connect to a database
(including program start-up), but can be changed or unset.

VERBOSITY

This variable can be set to the values default, verbose, terse, or sqlstate to control the verbosity
of error reports. (See also \errverbose, for use when you want a verbose version of the error you
just got.)

VERSION
VERSION_NAME
VERSION_NUM

These variables are set at program start-up to reflect psql's version, respectively as a verbose string,
a short string (e.g., 9.6.2, 10.1, or 11beta1), and a number (e.g., 90602 or 100001). They can be
changed or unset.

SQL Interpolation

A key feature of psql variables is that you can substitute (“interpolate”) them into regular SQL
statements, as well as the arguments of meta-commands. Furthermore, psql provides facilities for
ensuring that variable values used as SQL literals and identifiers are properly quoted. The syntax for
interpolating a value without any quoting is to prepend the variable name with a colon (:). For example,
testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :foo;

would query the table my_table. Note that this may be unsafe: the value of the variable is copied literally,
so it can contain unbalanced quotes, or even backslash commands. You must make sure that it makes
sense where you put it.

When a value is to be used as an SQL literal or identifier, it is safest to arrange for it to be quoted. To
quote the value of a variable as an SQL literal, write a colon followed by the variable name in single
quotes. To quote the value as an SQL identifier, write a colon followed by the variable name in double
quotes. These constructs deal correctly with quotes and other special characters embedded within the
variable value. The previous example would be more safely written this way:
testdb=> \set foo 'my_table'
testdb=> SELECT * FROM :"foo";

Variable interpolation will not be performed within quoted SQL literals and identifiers. Therefore, a
construction such as ':foo' doesn't work to produce a quoted literal from a variable's value (and it
would be unsafe if it did work, since it wouldn't correctly handle quotes embedded in the value).

1760

psql

One example use of this mechanism is to copy the contents of a file into a table column. First load the
file into a variable and then interpolate the variable's value as a quoted string:
testdb=> \set content `cat my_file.txt`
testdb=> INSERT INTO my_table VALUES (:'content');

(Note that this still won't work if my_file.txt contains NUL bytes. psql does not support embedded
NUL bytes in variable values.)

Since colons can legally appear in SQL commands, an apparent attempt at interpolation (that is, :name,
:'name', or :"name") is not replaced unless the named variable is currently set. In any case, you can
escape a colon with a backslash to protect it from substitution.

The :{?name} special syntax returns TRUE or FALSE depending on whether the variable exists or not,
and is thus always substituted, unless the colon is backslash-escaped.

The colon syntax for variables is standard SQL for embedded query languages, such as ECPG. The colon
syntaxes for array slices and type casts are Postgres Pro extensions, which can sometimes conflict with
the standard usage. The colon-quote syntax for escaping a variable's value as an SQL literal or identifier
is a psql extension.

Prompting

The prompts psql issues can be customized to your preference. The three variables PROMPT1, PROMPT2,
and PROMPT3 contain strings and special escape sequences that describe the appearance of the prompt.
Prompt 1 is the normal prompt that is issued when psql requests a new command. Prompt 2 is issued
when more input is expected during command entry, for example because the command was not
terminated with a semicolon or a quote was not closed. Prompt 3 is issued when you are running an SQL
COPY FROM STDIN command and you need to type in a row value on the terminal.

The value of the selected prompt variable is printed literally, except where a percent sign (%) is
encountered. Depending on the next character, certain other text is substituted instead. Defined
substitutions are:
%M

The full host name (with domain name) of the database server, or [local] if the connection is over
a Unix domain socket, or [local:/dir/name], if the Unix domain socket is not at the compiled in
default location.

%m

The host name of the database server, truncated at the first dot, or [local] if the connection is over
a Unix domain socket.

%>

The port number at which the database server is listening.

%n

The database session user name. (The expansion of this value might change during a database session
as the result of the command SET SESSION AUTHORIZATION.)

%/

The name of the current database.

%~

Like %/, but the output is ~ (tilde) if the database is your default database.

%#

If the session user is a database superuser, then a #, otherwise a >. (The expansion of this value might
change during a database session as the result of the command SET SESSION AUTHORIZATION.)

1761

psql

%p

The process ID of the backend currently connected to.

%R

In prompt 1 normally =, but @ if the session is in an inactive branch of a conditional block, or ^ if in
single-line mode, or ! if the session is disconnected from the database (which can happen if \connect
fails). In prompt 2 %R is replaced by a character that depends on why psql expects more input: - if
the command simply wasn't terminated yet, but * if there is an unfinished /* ... */ comment, a
single quote if there is an unfinished quoted string, a double quote if there is an unfinished quoted
identifier, a dollar sign if there is an unfinished dollar-quoted string, or (if there is an unmatched
left parenthesis. In prompt 3 %R doesn't produce anything.

%x

Transaction status: an empty string when not in a transaction block, or * when in a transaction block,
or ! when in a failed transaction block, or ? when the transaction state is indeterminate (for example,
because there is no connection).

%l

The line number inside the current statement, starting from 1.

%digits

The character with the indicated octal code is substituted.

%:name:

The value of the psql variable name. See Variables, above, for details.

%`command`

The output of command, similar to ordinary “back-tick” substitution.

%[... %]

Prompts can contain terminal control characters which, for example, change the color, background,
or style of the prompt text, or change the title of the terminal window. In order for the line editing
features of Readline to work properly, these non-printing control characters must be designated as
invisible by surrounding them with %[and %]. Multiple pairs of these can occur within the prompt.
For example:

testdb=> \set PROMPT1 '%[%033[1;33;40m%]%n@%/%R%[%033[0m%]%# '

results in a boldfaced (1;) yellow-on-black (33;40) prompt on VT100-compatible, color-capable
terminals.

%w

Whitespace of the same width as the most recent output of PROMPT1. This can be used as a PROMPT2
setting, so that multi-line statements are aligned with the first line, but there is no visible secondary
prompt.

To insert a percent sign into your prompt, write %%. The default prompts are '%/%R%x%# ' for prompts
1 and 2, and '>> ' for prompt 3.

Note
This feature was shamelessly plagiarized from tcsh.

1762

psql

Command-Line Editing

psql supports the Readline library for convenient line editing and retrieval. The command history
is automatically saved when psql exits and is reloaded when psql starts up. Tab-completion is also
supported, although the completion logic makes no claim to be an SQL parser. The queries generated by
tab-completion can also interfere with other SQL commands, e.g., SET TRANSACTION ISOLATION LEVEL.
If for some reason you do not like the tab completion, you can turn it off by putting this in a file named
.inputrc in your home directory:

$if psql
set disable-completion on
$endif

(This is not a psql but a Readline feature. Read its documentation for further details.)

Environment
COLUMNS

If \pset columns is zero, controls the width for the wrapped format and width for determining if
wide output requires the pager or should be switched to the vertical format in expanded auto mode.

PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters (see Section 31.14).

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

PSQL_EDITOR
EDITOR
VISUAL

Editor used by the \e, \ef, and \ev commands. These variables are examined in the order listed; the
first that is set is used. If none of them is set, the default is to use vi on Unix systems or notepad.exe
on Windows systems.

PSQL_EDITOR_LINENUMBER_ARG

When \e, \ef, or \ev is used with a line number argument, this variable specifies the command-line
argument used to pass the starting line number to the user's editor. For editors such as Emacs or
vi, this is a plus sign. Include a trailing space in the value of the variable if there needs to be space
between the option name and the line number. Examples:

PSQL_EDITOR_LINENUMBER_ARG='+'
PSQL_EDITOR_LINENUMBER_ARG='--line '

The default is + on Unix systems (corresponding to the default editor vi, and useful for many other
common editors); but there is no default on Windows systems.

PSQL_HISTORY

Alternative location for the command history file. Tilde (~) expansion is performed.

PSQL_PAGER
PAGER

If a query's results do not fit on the screen, they are piped through this command. Typical values are
more or less. Use of the pager can be disabled by setting PSQL_PAGER or PAGER to an empty string,
or by adjusting the pager-related options of the \pset command. These variables are examined in

1763

psql

the order listed; the first that is set is used. If none of them is set, the default is to use more on most
platforms, but less on Cygwin.

PSQLRC

Alternative location of the user's .psqlrc file. Tilde (~) expansion is performed.

SHELL

Command executed by the \! command.

TMPDIR

Directory for storing temporary files. The default is /tmp.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Files
psqlrc and ~/.psqlrc

Unless it is passed an -X option, psql attempts to read and execute commands from the system-wide
startup file (psqlrc) and then the user's personal startup file (~/.psqlrc), after connecting to the
database but before accepting normal commands. These files can be used to set up the client and/
or the server to taste, typically with \set and SET commands.

The system-wide startup file is named psqlrc and is sought in the installation's “system
configuration” directory, which is most reliably identified by running pg_config --sysconfdir.
By default this directory will be ../etc/ relative to the directory containing the Postgres Pro
executables. The name of this directory can be set explicitly via the PGSYSCONFDIR environment
variable.

The user's personal startup file is named .psqlrc and is sought in the invoking user's home directory.
On Windows, which lacks such a concept, the personal startup file is named %APPDATA%\postgresql
\psqlrc.conf. The location of the user's startup file can be set explicitly via the PSQLRC environment
variable.

Both the system-wide startup file and the user's personal startup file can be made psql-version-
specific by appending a dash and the Postgres Pro major or minor release number to the file name, for
example ~/.psqlrc-9.2 or ~/.psqlrc-9.2.5. The most specific version-matching file will be read
in preference to a non-version-specific file.

.psql_history

The command-line history is stored in the file ~/.psql_history, or %APPDATA%\postgresql
\psql_history on Windows.

The location of the history file can be set explicitly via the HISTFILE psql variable or the PSQL_HISTORY
environment variable.

Notes
• psql works best with servers of the same or an older major version. Backslash commands are

particularly likely to fail if the server is of a newer version than psql itself. However, backslash
commands of the \d family should work with servers of versions back to 7.4, though not necessarily
with servers newer than psql itself. The general functionality of running SQL commands and
displaying query results should also work with servers of a newer major version, but this cannot be
guaranteed in all cases.

If you want to use psql to connect to several servers of different major versions, it is recommended
that you use the newest version of psql. Alternatively, you can keep around a copy of psql from each

1764

psql

major version and be sure to use the version that matches the respective server. But in practice,
this additional complication should not be necessary.

• Before Postgres Pro 9.6, the -c option implied -X (--no-psqlrc); this is no longer the case.

• Before PostgreSQL 8.4, psql allowed the first argument of a single-letter backslash command
to start directly after the command, without intervening whitespace. Now, some whitespace is
required.

Notes for Windows Users
psql is built as a “console application”. Since the Windows console windows use a different encoding
than the rest of the system, you must take special care when using 8-bit characters within psql. If psql
detects a problematic console code page, it will warn you at startup. To change the console code page,
two things are necessary:

• Set the code page by entering cmd.exe /c chcp 1252. (1252 is a code page that is appropriate for
German; replace it with your value.) If you are using Cygwin, you can put this command in /etc/
profile.

• Set the console font to Lucida Console, because the raster font does not work with the ANSI code
page.

By default, psql works in the UTF-8 encoding and uses Windows Unicode API for console output. The
console code page must be set to 65001 to ensure the correct display of all characters supported by
your Windows console font.

Postgres Pro Windows installer ships the less.exe pager with UTF-8 support and provides a shortcut
that opens the console window with Lucida Console font and codepage 65001 settings. If you use a
different pager, make sure it also supports UTF-8.

You can override the default psql encoding by setting the PGCLIENTENCODING environment variable.

Examples
The first example shows how to spread a command over several lines of input. Notice the changing
prompt:

testdb=> CREATE TABLE my_table (
testdb(> first integer not null default 0,
testdb(> second text)
testdb-> ;
CREATE TABLE

Now look at the table definition again:

testdb=> \d my_table
 Table "public.my_table"
 Column | Type | Collation | Nullable | Default
--------+---------+-----------+----------+---------
 first | integer | | not null | 0
 second | text | | |

Now we change the prompt to something more interesting:

testdb=> \set PROMPT1 '%n@%m %~%R%# '
peter@localhost testdb=>

Let's assume you have filled the table with data and want to take a look at it:

peter@localhost testdb=> SELECT * FROM my_table;
 first | second
-------+--------
 1 | one

1765

psql

 2 | two
 3 | three
 4 | four
(4 rows)

You can display tables in different ways by using the \pset command:

peter@localhost testdb=> \pset border 2
Border style is 2.
peter@localhost testdb=> SELECT * FROM my_table;
+-------+--------+
| first | second |
+-------+--------+
1	one
2	two
3	three
4	four
+-------+--------+
(4 rows)

peter@localhost testdb=> \pset border 0
Border style is 0.
peter@localhost testdb=> SELECT * FROM my_table;
first second
----- ------
 1 one
 2 two
 3 three
 4 four
(4 rows)

peter@localhost testdb=> \pset border 1
Border style is 1.
peter@localhost testdb=> \pset format csv
Output format is csv.
peter@localhost testdb=> \pset tuples_only
Tuples only is on.
peter@localhost testdb=> SELECT second, first FROM my_table;
one,1
two,2
three,3
four,4
peter@localhost testdb=> \pset format unaligned
Output format is unaligned.
peter@localhost testdb=> \pset fieldsep '\t'
Field separator is " ".
peter@localhost testdb=> SELECT second, first FROM my_table;
one 1
two 2
three 3
four 4

Alternatively, use the short commands:

peter@localhost testdb=> \a \t \x
Output format is aligned.
Tuples only is off.
Expanded display is on.
peter@localhost testdb=> SELECT * FROM my_table;
-[RECORD 1]-

1766

psql

first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

Also, these output format options can be set for just one query by using \g:

peter@localhost testdb=> SELECT * FROM my_table
peter@localhost testdb-> \g (format=aligned tuples_only=off expanded=on)
-[RECORD 1]-
first | 1
second | one
-[RECORD 2]-
first | 2
second | two
-[RECORD 3]-
first | 3
second | three
-[RECORD 4]-
first | 4
second | four

When suitable, query results can be shown in a crosstab representation with the \crosstabview
command:

testdb=> SELECT first, second, first > 2 AS gt2 FROM my_table;
 first | second | gt2
-------+--------+-----
 1 | one | f
 2 | two | f
 3 | three | t
 4 | four | t
(4 rows)

testdb=> \crosstabview first second
 first | one | two | three | four
-------+-----+-----+-------+------
 1 | f | | |
 2 | | f | |
 3 | | | t |
 4 | | | | t
(4 rows)

This second example shows a multiplication table with rows sorted in reverse numerical order and
columns with an independent, ascending numerical order.

testdb=> SELECT t1.first as "A", t2.first+100 AS "B", t1.first*(t2.first+100) as "AxB",
testdb(> row_number() over(order by t2.first) AS ord
testdb(> FROM my_table t1 CROSS JOIN my_table t2 ORDER BY 1 DESC
testdb(> \crosstabview "A" "B" "AxB" ord
 A | 101 | 102 | 103 | 104
---+-----+-----+-----+-----
 4 | 404 | 408 | 412 | 416

1767

psql

 3 | 303 | 306 | 309 | 312
 2 | 202 | 204 | 206 | 208
 1 | 101 | 102 | 103 | 104
(4 rows)

1768

reindexdb
reindexdb — reindex a Postgres Pro database

Synopsis
reindexdb [connection-option...] [option...] [-S | --schema schema] ... [-t | --table table] ... [-
i | --index index] ... [dbname]

reindexdb [connection-option...] [option...] -a | --all

reindexdb [connection-option...] [option...] -s | --system [dbname]

Description
reindexdb is a utility for rebuilding indexes in a Postgres Pro database.

reindexdb is a wrapper around the SQL command REINDEX. There is no effective difference between
reindexing databases via this utility and via other methods for accessing the server.

Options
reindexdb accepts the following command-line arguments:
-a
--all

Reindex all databases.

--concurrently

Use the CONCURRENTLY option. See REINDEX, where all the caveats of this option are explained in
detail.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be reindexed, when -a/--all is not used. If this is not specified,
the database name is read from the environment variable PGDATABASE. If that is not set, the user
name specified for the connection is used. The dbname can be a connection string. If so, connection
string parameters will override any conflicting command line options.

-e
--echo

Echo the commands that reindexdb generates and sends to the server.

-i index
--index=index

Recreate index only. Multiple indexes can be recreated by writing multiple -i switches.

-j njobs
--jobs=njobs

Execute the reindex commands in parallel by running njobs commands simultaneously. This option
may reduce the processing time but it also increases the load on the database server.

reindexdb will open njobs connections to the database, so make sure your max_connections setting
is high enough to accommodate all connections.

Note that this option is incompatible with the --index and --system options.

1769

reindexdb

-q
--quiet

Do not display progress messages.

-s
--system

Reindex database's system catalogs only.

-S schema
--schema=schema

Reindex schema only. Multiple schemas can be reindexed by writing multiple -S switches.

-t table
--table=table

Reindex table only. Multiple tables can be reindexed by writing multiple -t switches.

-v
--verbose

Print detailed information during processing.

-V
--version

Print the reindexdb version and exit.

-?
--help

Show help about reindexdb command line arguments, and exit.

reindexdb also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force reindexdb to prompt for a password before connecting to a database.

1770

reindexdb

This option is never essential, since reindexdb will automatically prompt for a password if the server
demands password authentication. However, reindexdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be reindexed,
when -a/--all is used. If not specified, the postgres database will be used, or if that does not exist,
template1 will be used. This can be a connection string. If so, connection string parameters will
override any conflicting command line options. Also, connection string parameters other than the
database name itself will be re-used when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see REINDEX and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Notes
reindexdb might need to connect several times to the Postgres Pro server, asking for a password each
time. It is convenient to have a ~/.pgpass file in such cases. See Section 31.15 for more information.

Examples
To reindex the database test:

$ reindexdb test

To reindex the table foo and the index bar in a database named abcd:

$ reindexdb --table=foo --index=bar abcd

See Also
REINDEX

1771

vacuumdb
vacuumdb — garbage-collect and analyze a Postgres Pro database

Synopsis
vacuumdb [connection-option...] [option...] [-t | --table table [(column [,...])]] ... [dbname]

vacuumdb [connection-option...] [option...] -a | --all

Description
vacuumdb is a utility for cleaning a Postgres Pro database. vacuumdb will also generate internal statistics
used by the Postgres Pro query optimizer.

vacuumdb is a wrapper around the SQL command VACUUM. There is no effective difference between
vacuuming and analyzing databases via this utility and via other methods for accessing the server.

Options
vacuumdb accepts the following command-line arguments:
-a
--all

Vacuum all databases.

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be cleaned or analyzed, when -a/--all is not used. If this is
not specified, the database name is read from the environment variable PGDATABASE. If that is not
set, the user name specified for the connection is used. The dbname can be a connection string. If so,
connection string parameters will override any conflicting command line options.

--disable-page-skipping

Disable skipping pages based on the contents of the visibility map.

Note
This option is only available for servers running Postgres Pro 9.6 and later.

-e
--echo

Echo the commands that vacuumdb generates and sends to the server.

-f
--full

Perform “full” vacuuming.

-F
--freeze

Aggressively “freeze” tuples.

-j njobs
--jobs=njobs

Execute the vacuum or analyze commands in parallel by running njobs commands simultaneously.
This option may reduce the processing time but it also increases the load on the database server.

1772

vacuumdb

vacuumdb will open njobs connections to the database, so make sure your max_connections setting
is high enough to accommodate all connections.

Note that using this mode together with the -f (FULL) option might cause deadlock failures if certain
system catalogs are processed in parallel.

--min-mxid-age mxid_age

Only execute the vacuum or analyze commands on tables with a multixact ID age of at least mxid_age.
This setting is useful for prioritizing tables to process to prevent multixact ID wraparound (see
Section 23.1.5.1).

For the purposes of this option, the multixact ID age of a relation is the greatest of the ages of the
main relation and its associated TOAST table, if one exists. Since the commands issued by vacuumdb
will also process the TOAST table for the relation if necessary, it does not need to be considered
separately.

Note
This option is only available for servers running Postgres Pro 9.6 and later.

--min-xid-age xid_age

Only execute the vacuum or analyze commands on tables with a transaction ID age of at least
xid_age. This setting is useful for prioritizing tables to process to prevent transaction ID wraparound
(see Section 23.1.5).

For the purposes of this option, the transaction ID age of a relation is the greatest of the ages of the
main relation and its associated TOAST table, if one exists. Since the commands issued by vacuumdb
will also process the TOAST table for the relation if necessary, it does not need to be considered
separately.

Note
This option is only available for servers running Postgres Pro 9.6 and later.

-P parallel_workers
--parallel=parallel_workers

Specify the number of parallel workers for parallel vacuum. This allows the vacuum to leverage
multiple CPUs to process indexes. See VACUUM.

Note
This option is only available for servers running PostgreSQL 13 and later.

-q
--quiet

Do not display progress messages.

--skip-locked

Skip relations that cannot be immediately locked for processing.

Note
This option is only available for servers running Postgres Pro 12 and later.

1773

vacuumdb

-t table [(column [,...])]
--table=table [(column [,...])]

Clean or analyze table only. Column names can be specified only in conjunction with the --analyze
or --analyze-only options. Multiple tables can be vacuumed by writing multiple -t switches.

Tip
If you specify columns, you probably have to escape the parentheses from the shell. (See
examples below.)

-v
--verbose

Print detailed information during processing.

-V
--version

Print the vacuumdb version and exit.

-z
--analyze

Also calculate statistics for use by the optimizer.

-Z
--analyze-only

Only calculate statistics for use by the optimizer (no vacuum).

--analyze-in-stages

Only calculate statistics for use by the optimizer (no vacuum), like --analyze-only. Run several
(currently three) stages of analyze with different configuration settings, to produce usable statistics
faster.

This option is useful to analyze a database that was newly populated from a restored dump or by
pg_upgrade. This option will try to create some statistics as fast as possible, to make the database
usable, and then produce full statistics in the subsequent stages.

-?
--help

Show help about vacuumdb command line arguments, and exit.

vacuumdb also accepts the following command-line arguments for connection parameters:
-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

1774

vacuumdb

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force vacuumdb to prompt for a password before connecting to a database.

This option is never essential, since vacuumdb will automatically prompt for a password if the server
demands password authentication. However, vacuumdb will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

--maintenance-db=dbname

Specifies the name of the database to connect to to discover which databases should be vacuumed,
when -a/--all is used. If not specified, the postgres database will be used, or if that does not exist,
template1 will be used. This can be a connection string. If so, connection string parameters will
override any conflicting command line options. Also, connection string parameters other than the
database name itself will be re-used when connecting to other databases.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Diagnostics
In case of difficulty, see VACUUM and psql for discussions of potential problems and error messages.
The database server must be running at the targeted host. Also, any default connection settings and
environment variables used by the libpq front-end library will apply.

Notes
vacuumdb might need to connect several times to the Postgres Pro server, asking for a password each
time. It is convenient to have a ~/.pgpass file in such cases. See Section 31.15 for more information.

Examples
To clean the database test:
$ vacuumdb test

To clean and analyze for the optimizer a database named bigdb:
$ vacuumdb --analyze bigdb

To clean a single table foo in a database named xyzzy, and analyze a single column bar of the table
for the optimizer:

1775

vacuumdb

$ vacuumdb --analyze --verbose --table='foo(bar)' xyzzy

See Also
VACUUM

1776

Postgres Pro Server Applications
This part contains reference information for Postgres Pro server applications and support utilities. These
commands can only be run usefully on the host where the database server resides. Other utility programs
are listed in Postgres Pro Client Applications.

1777

initdb
initdb — create a new Postgres Pro database cluster

Synopsis
initdb [option...] [--pgdata | -D] directory

Description
initdb creates a new Postgres Pro database cluster. A database cluster is a collection of databases that
are managed by a single server instance.

Creating a database cluster consists of creating the directories in which the database data will live,
generating the shared catalog tables (tables that belong to the whole cluster rather than to any
particular database), and creating the template1 and postgres databases. When you later create a new
database, everything in the template1 database is copied. (Therefore, anything installed in template1
is automatically copied into each database created later.) The postgres database is a default database
meant for use by users, utilities and third party applications.

Although initdb will attempt to create the specified data directory, it might not have permission if the
parent directory of the desired data directory is root-owned. To initialize in such a setup, create an empty
data directory as root, then use chown to assign ownership of that directory to the database user account,
then su to become the database user to run initdb.

initdb must be run as the user that will own the server process, because the server needs to have access
to the files and directories that initdb creates. Since the server cannot be run as root, you must not run
initdb as root either. (It will in fact refuse to do so.)

For security reasons the new cluster created by initdb will only be accessible by the cluster owner by
default. The --allow-group-access option allows any user in the same group as the cluster owner to
read files in the cluster. This is useful for performing backups as a non-privileged user.

initdb initializes the database cluster's default locale and character set encoding. The character set
encoding, collation order (LC_COLLATE) and character set classes (LC_CTYPE, e.g., upper, lower, digit) can
be set separately for a database when it is created. initdb determines those settings for the template1
database, which will serve as the default for all other databases.

To alter the default collation order or character set classes, use the --lc-collate and --lc-ctype
options. Collation orders other than C or POSIX also have a performance penalty. For these reasons it is
important to choose the right locale when running initdb.

The remaining locale categories can be changed later when the server is started. You can also use --
locale to set the default for all locale categories, including collation order and character set classes. All
server locale values (lc_*) can be displayed via SHOW ALL. More details can be found in Section 22.1.

To alter the default encoding, use the --encoding. More details can be found in Section 22.3.

Options
-A authmethod
--auth=authmethod

This option specifies the default authentication method for local users used in pg_hba.conf (host
and local lines). initdb will prepopulate pg_hba.conf entries using the specified authentication
method for non-replication as well as replication connections.

Do not use trust unless you trust all local users on your system. trust is the default for ease of
installation.

1778

initdb

--auth-host=authmethod

This option specifies the authentication method for local users via TCP/IP connections used in
pg_hba.conf (host lines).

--auth-local=authmethod

This option specifies the authentication method for local users via Unix-domain socket connections
used in pg_hba.conf (local lines).

-D directory
--pgdata=directory

This option specifies the directory where the database cluster should be stored. This is the only
information required by initdb, but you can avoid writing it by setting the PGDATA environment
variable, which can be convenient since the database server (postgres) can find the database
directory later by the same variable.

-E encoding
--encoding=encoding

Selects the encoding of the template database. This will also be the default encoding of any database
you create later, unless you override it there. The default is derived from the locale, or SQL_ASCII
if that does not work. The character sets supported by the Postgres Pro server are described in
Section 22.3.1.

-g
--allow-group-access

Allows users in the same group as the cluster owner to read all cluster files created by initdb. This
option is ignored on Windows as it does not support POSIX-style group permissions.

-k
--data-checksums

Use checksums on data pages to help detect corruption by the I/O system that would otherwise
be silent. Enabling checksums may incur a noticeable performance penalty. If set, checksums
are calculated for all objects, in all databases. All checksum failures will be reported in the
pg_stat_database view.

By default, Postgres Pro clusters are initialized with checksums enabled. To change this behavior,
provide the --no-data-checksums option.

--no-data-checksums

Disable checksums on data pages.

By default, Postgres Pro clusters are initialized with checksums enabled.

--locale=locale[@provider]

Sets the default locale for the database cluster. If this option is not specified, the locale is inherited
from the environment that initdb runs in. Locale support is described in Section 22.1.

Optionally, you can specify the provider of the default collation after the @ symbol. Supported values
are icu and libc. For details, see Section 22.2.2.

--lc-collate=locale[@provider]
--lc-ctype=locale
--lc-messages=locale
--lc-monetary=locale
--lc-numeric=locale
--lc-time=locale

Like --locale, but only sets the locale in the specified category.

1779

initdb

--no-locale

Equivalent to --locale=C.

-N
--no-sync

By default, initdb will wait for all files to be written safely to disk. This option causes initdb to
return without waiting, which is faster, but means that a subsequent operating system crash can
leave the data directory corrupt. Generally, this option is useful for testing, but should not be used
when creating a production installation.

--pwfile=filename

Makes initdb read the database superuser's password from a file. The first line of the file is taken
as the password.

-S
--sync-only

Safely write all database files to disk and exit. This does not perform any of the normal initdb
operations.

-T config
--text-search-config=config

Sets the default text search configuration. See default_text_search_config for further information.

-U username
--username=username

Selects the user name of the database superuser. This defaults to the name of the effective user
running initdb. It is really not important what the superuser's name is, but one might choose to
keep the customary name postgres, even if the operating system user's name is different.

-W
--pwprompt

Makes initdb prompt for a password to give the database superuser. If you don't plan on using
password authentication, this is not important. Otherwise you won't be able to use password
authentication until you have a password set up.

-X directory
--waldir=directory

This option specifies the directory where the write-ahead log should be stored.

--wal-segsize=size

Set the WAL segment size, in megabytes. This is the size of each individual file in the WAL log. The
default size is 16 megabytes. The value must be a power of 2 between 1 and 1024 (megabytes). This
option can only be set during initialization, and cannot be changed later.

It may be useful to adjust this size to control the granularity of WAL log shipping or archiving. Also,
in databases with a high volume of WAL, the sheer number of WAL files per directory can become
a performance and management problem. Increasing the WAL file size will reduce the number of
WAL files.

Other, less commonly used, options are also available:
-d
--debug

Print debugging output from the bootstrap backend and a few other messages of lesser interest for
the general public. The bootstrap backend is the program initdb uses to create the catalog tables.
This option generates a tremendous amount of extremely boring output.

1780

initdb

-L directory

Specifies where initdb should find its input files to initialize the database cluster. This is normally
not necessary. You will be told if you need to specify their location explicitly.

-n
--no-clean

By default, when initdb determines that an error prevented it from completely creating the database
cluster, it removes any files it might have created before discovering that it cannot finish the job.
This option inhibits tidying-up and is thus useful for debugging.

Other options:

-V
--version

Print the initdb version and exit.

-?
--help

Show help about initdb command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is to be stored; can be overridden using the -
D option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

TZ

Specifies the default time zone of the created database cluster. The value should be a full time zone
name (see Section 8.5.3).

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Notes
initdb can also be invoked via pg_ctl initdb.

See Also
pg_ctl, postgres

1781

pg_archivecleanup
pg_archivecleanup — clean up Postgres Pro WAL archive files

Synopsis
pg_archivecleanup [option...] archivelocation oldestkeptwalfile

Description
pg_archivecleanup is designed to be used as an archive_cleanup_command to clean up WAL file archives
when running as a standby server (see Section 25.2). pg_archivecleanup can also be used as a standalone
program to clean WAL file archives.

To configure a standby server to use pg_archivecleanup, put this into its postgresql.conf configuration
file:

archive_cleanup_command = 'pg_archivecleanup archivelocation %r'

where archivelocation is the directory from which WAL segment files should be removed.

When used within archive_cleanup_command, all WAL files logically preceding the value of the %r
argument will be removed from archivelocation. This minimizes the number of files that need to
be retained, while preserving crash-restart capability. Use of this parameter is appropriate if the
archivelocation is a transient staging area for this particular standby server, but not when the
archivelocation is intended as a long-term WAL archive area, or when multiple standby servers are
recovering from the same archive location.

When used as a standalone program all WAL files logically preceding the oldestkeptwalfile will be
removed from archivelocation. In this mode, if you specify a .partial or .backup file name, then only
the file prefix will be used as the oldestkeptwalfile. This treatment of .backup file name allows you to
remove all WAL files archived prior to a specific base backup without error. For example, the following
example will remove all files older than WAL file name 000000010000003700000010:

pg_archivecleanup -d archive 000000010000003700000010.00000020.backup

pg_archivecleanup: keep WAL file "archive/000000010000003700000010" and later
pg_archivecleanup: removing file "archive/00000001000000370000000F"
pg_archivecleanup: removing file "archive/00000001000000370000000E"

pg_archivecleanup assumes that archivelocation is a directory readable and writable by the server-
owning user.

Options
pg_archivecleanup accepts the following command-line arguments:

-d

Print lots of debug logging output on stderr.

-n

Print the names of the files that would have been removed on stdout (performs a dry run).

-V
--version

Print the pg_archivecleanup version and exit.

1782

pg_archivecleanup

-x extension
Provide an extension that will be stripped from all file names before deciding if they should be deleted.
This is typically useful for cleaning up archives that have been compressed during storage, and
therefore have had an extension added by the compression program. For example: -x .gz.

-?
--help

Show help about pg_archivecleanup command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
pg_archivecleanup is designed to work with PostgreSQL 8.0 and later when used as a standalone utility,
or with PostgreSQL 9.0 and later when used as an archive cleanup command.

pg_archivecleanup is written in C and has an easy-to-modify source code, with specifically designated
sections to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_cleanup_command = 'pg_archivecleanup -d /mnt/standby/archive %r 2>>cleanup.log'

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby. This will:

• produce debugging output in cleanup.log
• remove no-longer-needed files from the archive directory

See Also
pg_standby

1783

pg_checksums
pg_checksums — enable, disable or check data checksums in a Postgres Pro database cluster

Synopsis
pg_checksums [option...] [[-D | --pgdata]datadir]

Description
pg_checksums checks, enables or disables data checksums in a Postgres Pro cluster. The server must be
shut down cleanly before running pg_checksums. When verifying checksums, the exit status is zero if
there are no checksum errors, and nonzero if at least one checksum failure is detected. When enabling
or disabling checksums, the exit status is nonzero if the operation failed.

When verifying checksums, every file in the cluster is scanned. When enabling checksums, every file in
the cluster is rewritten in-place. Disabling checksums only updates the file pg_control.

Options
The following command-line options are available:

-D directory
--pgdata=directory

Specifies the directory where the database cluster is stored.

-c
--check

Checks checksums. This is the default mode if nothing else is specified.

-d
--disable

Disables checksums.

-e
--enable

Enables checksums.

-f filenode
--filenode=filenode

Only validate checksums in the relation with filenode filenode.

-N
--no-sync

By default, pg_checksums will wait for all files to be written safely to disk. This option causes
pg_checksums to return without waiting, which is faster, but means that a subsequent operating
system crash can leave the updated data directory corrupt. Generally, this option is useful for testing
but should not be used on a production installation. This option has no effect when using --check.

-P
--progress

Enable progress reporting. Turning this on will deliver a progress report while checking or enabling
checksums.

1784

pg_checksums

-v
--verbose

Enable verbose output. Lists all checked files.

-V
--version

Print the pg_checksums version and exit.

-?
--help

Show help about pg_checksums command line arguments, and exit.

Environment
PGDATA

Specifies the directory where the database cluster is stored; can be overridden using the -D option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Enabling checksums in a large cluster can potentially take a long time. During this operation, the cluster
or other programs that write to the data directory must not be started or else data loss may occur.

When using a replication setup with tools which perform direct copies of relation file blocks (for example
pg_rewind), enabling or disabling checksums can lead to page corruptions in the shape of incorrect
checksums if the operation is not done consistently across all nodes. When enabling or disabling
checksums in a replication setup, it is thus recommended to stop all the clusters before switching them
all consistently. Destroying all standbys, performing the operation on the primary and finally recreating
the standbys from scratch is also safe.

If pg_checksums is aborted or killed while enabling or disabling checksums, the cluster's data checksum
configuration remains unchanged, and pg_checksums can be re-run to perform the same operation.

1785

pg_controldata
pg_controldata — display control information of a Postgres Pro database cluster

Synopsis
pg_controldata [option] [[-D | --pgdata]datadir]

Description
pg_controldata prints information initialized during initdb, such as the catalog version. It also shows
information about write-ahead logging and checkpoint processing. This information is cluster-wide, and
not specific to any one database.

This utility can only be run by the user who initialized the cluster because it requires read access to the
data directory. You can specify the data directory on the command line, or use the environment variable
PGDATA. This utility supports the options -V and --version, which print the pg_controldata version and
exit. It also supports options -? and --help, which output the supported arguments.

Note
It is recommended that you use pgpro_controldata instead since it can read control information
of different versions of PostgreSQL or Postgres Pro database clusters, including newer versions.

Environment
PGDATA

Default data directory location

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

See Also
pgpro_controldata

1786

pg_ctl
pg_ctl — initialize, start, stop, or control a Postgres Pro server

Synopsis
pg_ctl init[db] [-D datadir] [-s] [-o initdb-options]

pg_ctl start [-D datadir] [-l filename] [-W] [-t seconds] [-s] [-o options] [-p path] [-c]

pg_ctl stop [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s]

pg_ctl restart [-D datadir] [-m s[mart] | f[ast] | i[mmediate]] [-W] [-t seconds] [-s] [-o options]
[-c]

pg_ctl reload [-D datadir] [-s]

pg_ctl status [-D datadir]

pg_ctl promote [-D datadir] [-W] [-t seconds] [-s]

pg_ctl logrotate [-D datadir] [-s]

pg_ctl kill signal_name process_id

On Microsoft Windows, also:

pg_ctl register [-D datadir] [-N servicename] [-U username] [-P password] [-S a[uto] | d[emand]]
[-e source] [-W] [-t seconds] [-s] [-o options]

pg_ctl unregister [-N servicename]

Description
pg_ctl is a utility for initializing a Postgres Pro database cluster, starting, stopping, or restarting the
Postgres Pro database server (postgres), or displaying the status of a running server. Although the server
can be started manually, pg_ctl encapsulates tasks such as redirecting log output and properly detaching
from the terminal and process group. It also provides convenient options for controlled shutdown.

The init or initdb mode creates a new Postgres Pro database cluster, that is, a collection of databases
that will be managed by a single server instance. This mode invokes the initdb command. See initdb
for details.

start mode launches a new server. The server is started in the background, and its standard input is
attached to /dev/null (or nul on Windows). On Unix-like systems, by default, the server's standard
output and standard error are sent to pg_ctl's standard output (not standard error). The standard output
of pg_ctl should then be redirected to a file or piped to another process such as a log rotating program like
rotatelogs; otherwise postgres will write its output to the controlling terminal (from the background)
and will not leave the shell's process group. On Windows, by default the server's standard output and
standard error are sent to the terminal. These default behaviors can be changed by using -l to append
the server's output to a log file. Use of either -l or output redirection is recommended.

stop mode shuts down the server that is running in the specified data directory. Three different shutdown
methods can be selected with the -m option. “Smart” mode disallows new connections, then waits
for all existing clients to disconnect and any online backup to finish. If the server is in hot standby,
recovery and streaming replication will be terminated once all clients have disconnected. “Fast” mode
(the default) does not wait for clients to disconnect and will terminate an online backup in progress. All
active transactions are rolled back and clients are forcibly disconnected, then the server is shut down.
“Immediate” mode will abort all server processes immediately, without a clean shutdown. This choice
will lead to a crash-recovery cycle during the next server start.

1787

pg_ctl

restart mode effectively executes a stop followed by a start. This allows changing the postgres
command-line options, or changing configuration-file options that cannot be changed without restarting
the server. If relative paths were used on the command line during server start, restart might fail unless
pg_ctl is executed in the same current directory as it was during server start.

reload mode simply sends the postgres server process a SIGHUP signal, causing it to reread
its configuration files (postgresql.conf, pg_hba.conf, etc.). This allows changing configuration-file
options that do not require a full server restart to take effect.

status mode checks whether a server is running in the specified data directory. If it is, the server's PID
and the command line options that were used to invoke it are displayed. If the server is not running,
pg_ctl returns an exit status of 3. If an accessible data directory is not specified, pg_ctl returns an exit
status of 4.

promote mode commands the standby server that is running in the specified data directory to end
standby mode and begin read-write operations.

logrotate mode rotates the server log file. For details on how to use this mode with external log rotation
tools, see Section 23.3.

kill mode sends a signal to a specified process. This is primarily valuable on Microsoft Windows which
does not have a built-in kill command. Use --help to see a list of supported signal names.

register mode registers the Postgres Pro server as a system service on Microsoft Windows. The -S
option allows selection of service start type, either “auto” (start service automatically on system startup)
or “demand” (start service on demand).

unregister mode unregisters a system service on Microsoft Windows. This undoes the effects of the
register command.

Options
-c
--core-files

Attempt to allow server crashes to produce core files, on platforms where this is possible, by lifting
any soft resource limit placed on core files. This is useful in debugging or diagnosing problems by
allowing a stack trace to be obtained from a failed server process.

-D datadir
--pgdata=datadir

Specifies the file system location of the database configuration files. If this option is omitted, the
environment variable PGDATA is used.

-l filename
--log=filename

Append the server log output to filename. If the file does not exist, it is created. The umask is set to
077, so access to the log file is disallowed to other users by default.

-m mode
--mode=mode

Specifies the shutdown mode. mode can be smart, fast, or immediate, or the first letter of one of
these three. If this option is omitted, fast is the default.

-o options
--options=options

Specifies options to be passed directly to the postgres command. -o can be specified multiple times,
with all the given options being passed through.

1788

pg_ctl

The options should usually be surrounded by single or double quotes to ensure that they are passed
through as a group.

-o initdb-options
--options=initdb-options

Specifies options to be passed directly to the initdb command. -o can be specified multiple times,
with all the given options being passed through.

The initdb-options should usually be surrounded by single or double quotes to ensure that they
are passed through as a group.

-p path

Specifies the location of the postgres executable. By default the postgres executable is taken
from the same directory as pg_ctl, or failing that, the hard-wired installation directory. It is not
necessary to use this option unless you are doing something unusual and get errors that the postgres
executable was not found.

In init mode, this option analogously specifies the location of the initdb executable.

-s
--silent

Print only errors, no informational messages.

-t seconds
--timeout=seconds

Specifies the maximum number of seconds to wait when waiting for an operation to complete (see
option -w). Defaults to the value of the PGCTLTIMEOUT environment variable or, if not set, to 60
seconds.

-V
--version

Print the pg_ctl version and exit.

-w
--wait

Wait for the operation to complete. This is supported for the modes start, stop, restart, promote,
and register, and is the default for those modes.

When waiting, pg_ctl repeatedly checks the server's PID file, sleeping for a short amount of time
between checks. Startup is considered complete when the PID file indicates that the server is ready to
accept connections. Shutdown is considered complete when the server removes the PID file. pg_ctl
returns an exit code based on the success of the startup or shutdown.

If the operation does not complete within the timeout (see option -t), then pg_ctl exits with a
nonzero exit status. But note that the operation might continue in the background and eventually
succeed.

-W
--no-wait

Do not wait for the operation to complete. This is the opposite of the option -w.

If waiting is disabled, the requested action is triggered, but there is no feedback about its success.
In that case, the server log file or an external monitoring system would have to be used to check the
progress and success of the operation.

In prior releases of Postgres Pro, this was the default except for the stop mode.

1789

pg_ctl

-?
--help

Show help about pg_ctl command line arguments, and exit.

If an option is specified that is valid, but not relevant to the selected operating mode, pg_ctl ignores it.

Options for Windows
-e source

Name of the event source for pg_ctl to use for logging to the event log when running as a Windows
service. The default is Postgres Pro. Note that this only controls messages sent from pg_ctl itself;
once started, the server will use the event source specified by its event_source parameter. Should
the server fail very early in startup, before that parameter has been set, it might also log using the
default event source name Postgres Pro.

-N servicename

Name of the system service to register. This name will be used as both the service name and the
display name. The default is Postgres Pro.

-P password

Password for the user to run the service as.

-S start-type

Start type of the system service. start-type can be auto, or demand, or the first letter of one of these
two. If this option is omitted, auto is the default.

-U username

User name for the user to run the service as. For domain users, use the format DOMAIN\username.

Environment
PGCTLTIMEOUT

Default limit on the number of seconds to wait when waiting for startup or shutdown to complete.
If not set, the default is 60 seconds.

PGDATA

Default data directory location.

Most pg_ctl modes require knowing the data directory location; therefore, the -D option is required
unless PGDATA is set.

pg_ctl, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

For additional variables that affect the server, see postgres.

Files
postmaster.pid

pg_ctl examines this file in the data directory to determine whether the server is currently running.

postmaster.opts

If this file exists in the data directory, pg_ctl (in restart mode) will pass the contents of the file as
options to postgres, unless overridden by the -o option. The contents of this file are also displayed
in status mode.

1790

pg_ctl

Examples
Starting the Server

To start the server, waiting until the server is accepting connections:

$ pg_ctl start

To start the server using port 5433, and running without fsync, use:

$ pg_ctl -o "-F -p 5433" start

Stopping the Server
To stop the server, use:

$ pg_ctl stop

The -m option allows control over how the server shuts down:

$ pg_ctl stop -m smart

Restarting the Server
Restarting the server is almost equivalent to stopping the server and starting it again, except that by
default, pg_ctl saves and reuses the command line options that were passed to the previously-running
instance. To restart the server using the same options as before, use:

$ pg_ctl restart

But if -o is specified, that replaces any previous options. To restart using port 5433, disabling fsync
upon restart:

$ pg_ctl -o "-F -p 5433" restart

Showing the Server Status
Here is sample status output from pg_ctl:

$ pg_ctl status

pg_ctl: server is running (PID: 13718)
/usr/local/pgsql/bin/postgres "-D" "/usr/local/pgsql/data" "-p" "5433" "-B" "128"

The second line is the command that would be invoked in restart mode.

See Also
initdb, postgres

1791

pg_resetwal
pg_resetwal — reset the write-ahead log and other control information of a Postgres Pro database cluster

Synopsis
pg_resetwal [-f | --force] [-n | --dry-run] [option...] [-D | --pgdata]datadir

Description
pg_resetwal clears the write-ahead log (WAL) and optionally resets some other control information
stored in the pg_control file. This function is sometimes needed if these files have become corrupted.
It should be used only as a last resort, when the server will not start due to such corruption.

After running this command, it should be possible to start the server, but bear in mind that the database
might contain inconsistent data due to partially-committed transactions. You should immediately dump
your data, run initdb, and reload. After reload, check for inconsistencies and repair as needed.

This utility can only be run by the user who installed the server, because it requires read/write access
to the data directory. For safety reasons, you must specify the data directory on the command line.
pg_resetwal does not use the environment variable PGDATA.

If pg_resetwal complains that it cannot determine valid data for pg_control, you can force it to proceed
anyway by specifying the -f (force) option. In this case plausible values will be substituted for the missing
data. Most of the fields can be expected to match, but manual assistance might be needed for the next
OID, next transaction ID and epoch, next multitransaction ID and offset, and WAL starting location fields.
These fields can be set using the options discussed below. If you are not able to determine correct values
for all these fields, -f can still be used, but the recovered database must be treated with even more
suspicion than usual: an immediate dump and reload is imperative. Do not execute any data-modifying
operations in the database before you dump, as any such action is likely to make the corruption worse.

Options
-f
--force

Force pg_resetwal to proceed even if it cannot determine valid data for pg_control, as explained
above.

-n
--dry-run

The -n/--dry-run option instructs pg_resetwal to print the values reconstructed from pg_control
and values about to be changed, and then exit without modifying anything. This is mainly a debugging
tool, but can be useful as a sanity check before allowing pg_resetwal to proceed for real.

-V
--version

Display version information, then exit.

-?
--help

Show help, then exit.

The following options are only needed when pg_resetwal is unable to determine appropriate values by
reading pg_control. Safe values can be determined as described below. For values that take numeric
arguments, hexadecimal values can be specified by using the prefix 0x.

1792

pg_resetwal

-c xid,xid
--commit-timestamp-ids=xid,xid

Manually set the oldest and newest transaction IDs for which the commit time can be retrieved.

A safe value for the oldest transaction ID for which the commit time can be retrieved (first part) can
be determined by looking for the numerically smallest file name in the directory pg_commit_ts under
the data directory. Conversely, a safe value for the newest transaction ID for which the commit time
can be retrieved (second part) can be determined by looking for the numerically greatest file name
in the same directory. The file names are in hexadecimal.

-e xid_epoch
--epoch=xid_epoch

Manually set the next transaction ID's epoch.

The transaction ID epoch is not actually stored anywhere in the database except in the field that is set
by pg_resetwal, so any value will work so far as the database itself is concerned. You might need to
adjust this value to ensure that replication systems such as Slony-I and Skytools work correctly — if
so, an appropriate value should be obtainable from the state of the downstream replicated database.

-l walfile
--next-wal-file=walfile

Manually set the WAL starting location by specifying the name of the next WAL segment file.

The name of next WAL segment file should be larger than any WAL segment file name currently
existing in the directory pg_wal under the data directory. These names are also in hexadecimal and
have three parts. The first part is the “timeline ID” and should usually be kept the same. For example,
if 00000001000000320000004A is the largest entry in pg_wal, use -l 00000001000000320000004B
or higher.

Note that when using nondefault WAL segment sizes, the numbers in the WAL file names are different
from the LSNs that are reported by system functions and system views. This option takes a WAL file
name, not an LSN.

Note
pg_resetwal itself looks at the files in pg_wal and chooses a default -l setting beyond the last
existing file name. Therefore, manual adjustment of -l should only be needed if you are aware
of WAL segment files that are not currently present in pg_wal, such as entries in an offline
archive; or if the contents of pg_wal have been lost entirely.

-m mxid,mxid
--multixact-ids=mxid,mxid

Manually set the next and oldest multitransaction ID.

A safe value for the next multitransaction ID (first part) can be determined by looking for the
numerically largest file name in the directory pg_multixact/offsets under the data directory,
adding one, and then multiplying by 65536 (0x10000). Conversely, a safe value for the oldest
multitransaction ID (second part of -m) can be determined by looking for the numerically smallest
file name in the same directory and multiplying by 65536. The file names are in hexadecimal, so the
easiest way to do this is to specify the option value in hexadecimal and append four zeroes.

-o oid
--next-oid=oid

Manually set the next OID.

1793

pg_resetwal

There is no comparably easy way to determine a next OID that's beyond the largest one in the
database, but fortunately it is not critical to get the next-OID setting right.

-O mxoff
--multixact-offset=mxoff

Manually set the next multitransaction offset.

A safe value can be determined by looking for the numerically largest file name in the directory
pg_multixact/members under the data directory, adding one, and then multiplying by 52352
(0xCC80). The file names are in hexadecimal. There is no simple recipe such as the ones for other
options of appending zeroes.

--wal-segsize=wal_segment_size

Set the new WAL segment size, in megabytes. The value must be set to a power of 2 between 1 and
1024 (megabytes). See the same option of initdb for more information.

Note
While pg_resetwal will set the WAL starting address beyond the latest existing WAL segment
file, some segment size changes can cause previous WAL file names to be reused. It is
recommended to use -l together with this option to manually set the WAL starting address if
WAL file name overlap will cause problems with your archiving strategy.

-u xid
--oldest-transaction-id=xid

Manually set the oldest unfrozen transaction ID.

A safe value can be determined by looking for the numerically smallest file name in the directory
pg_xact under the data directory and then multiplying by 1048576 (0x100000). Note that the file
names are in hexadecimal. It is usually easiest to specify the option value in hexadecimal too. For
example, if 0007 is the smallest entry in pg_xact, -u 0x700000 will work (five trailing zeroes provide
the proper multiplier).

-x xid
--next-transaction-id=xid

Manually set the next transaction ID.

A safe value can be determined by looking for the numerically largest file name in the directory
pg_xact under the data directory, adding one, and then multiplying by 1048576 (0x100000). Note
that the file names are in hexadecimal. It is usually easiest to specify the option value in hexadecimal
too. For example, if 0011 is the largest entry in pg_xact, -x 0x1200000 will work (five trailing zeroes
provide the proper multiplier).

Environment
PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
This command must not be used when the server is running. pg_resetwal will refuse to start up if it
finds a server lock file in the data directory. If the server crashed then a lock file might have been left
behind; in that case you can remove the lock file to allow pg_resetwal to run. But before you do so,
make doubly certain that there is no server process still alive.

pg_resetwal works only with servers of the same major version.

1794

pg_resetwal

See Also
pg_controldata

1795

pg_rewind
pg_rewind — synchronize a Postgres Pro data directory with another data directory that was forked
from it

Synopsis
pg_rewind [option...] { -D | --target-pgdata } directory { --source-pgdata=directory | --source-
server=connstr }

Description
pg_rewind is a tool for synchronizing a Postgres Pro cluster with another copy of the same cluster, after
the clusters' timelines have diverged. A typical scenario is to bring an old master server back online
after failover as a standby that follows the new master.

After a successful rewind, the state of the target data directory is analogous to a base backup of the
source data directory. Unlike taking a new base backup or using a tool like rsync, pg_rewind does
not require comparing or copying unchanged relation blocks in the cluster. Only changed blocks from
existing relation files are copied; all other files, including new relation files, configuration files, and WAL
segments, are copied in full. As such the rewind operation is significantly faster than other approaches
when the database is large and only a small fraction of blocks differ between the clusters.

pg_rewind examines the timeline histories of the source and target clusters to determine the point where
they diverged, and expects to find WAL in the target cluster's pg_wal directory reaching all the way
back to the point of divergence. The point of divergence can be found either on the target timeline, the
source timeline, or their common ancestor. In the typical failover scenario where the target cluster was
shut down soon after the divergence, this is not a problem, but if the target cluster ran for a long time
after the divergence, its old WAL files might no longer be present. In this case, you can manually copy
them from the WAL archive to the pg_wal directory, or run pg_rewind with the -c option to automatically
retrieve them from the WAL archive. The use of pg_rewind is not limited to failover, e.g., a standby server
can be promoted, run some write transactions, and then rewound to become a standby again.

After running pg_rewind, WAL replay needs to complete for the data directory to be in a consistent state.
When the target server is started again it will enter archive recovery and replay all WAL generated
in the source server from the last checkpoint before the point of divergence. If some of the WAL was
no longer available in the source server when pg_rewind was run, and therefore could not be copied
by the pg_rewind session, it must be made available when the target server is started. This can be
done by creating a recovery.signal file in the target data directory and by configuring a suitable
restore_command in postgresql.conf.

pg_rewind requires that the target server either has the wal_log_hints option enabled in
postgresql.conf or data checksums enabled when the cluster was initialized with initdb. Neither of
these are currently on by default. full_page_writes must also be set to on, but is enabled by default.

Warning
If pg_rewind fails while processing, then the data folder of the target is likely not in a state that
can be recovered. In such a case, taking a new fresh backup is recommended.

As pg_rewind copies configuration files entirely from the source, it may be required to correct
the configuration used for recovery before restarting the target server, especially if the target is
reintroduced as a standby of the source. If you restart the server after the rewind operation has
finished but without configuring recovery, the target may again diverge from the primary.

pg_rewind will fail immediately if it finds files it cannot write directly to. This can happen for
example when the source and the target server use the same file mapping for read-only SSL keys

1796

pg_rewind

and certificates. If such files are present on the target server it is recommended to remove them
before running pg_rewind. After doing the rewind, some of those files may have been copied from
the source, in which case it may be necessary to remove the data copied and restore back the set
of links used before the rewind.

Options
pg_rewind accepts the following command-line arguments:

-D directory
--target-pgdata=directory

This option specifies the target data directory that is synchronized with the source. The target server
must be shut down cleanly before running pg_rewind

--source-pgdata=directory

Specifies the file system path to the data directory of the source server to synchronize the target
with. This option requires the source server to be cleanly shut down.

--source-server=connstr

Specifies a libpq connection string to connect to the source Postgres Pro server to synchronize
the target with. The connection must be a normal (non-replication) connection with a role having
sufficient permissions to execute the functions used by pg_rewind on the source server (see Notes
section for details) or a superuser role. This option requires the source server to be running and
not in recovery mode.

-R
--write-recovery-conf

Create standby.signal and append connection settings to postgresql.auto.conf in the output
directory. --source-server is mandatory with this option.

-n
--dry-run

Do everything except actually modifying the target directory.

-N
--no-sync

By default, pg_rewind will wait for all files to be written safely to disk. This option causes pg_rewind
to return without waiting, which is faster, but means that a subsequent operating system crash can
leave the data directory corrupt. Generally, this option is useful for testing but should not be used
on a production installation.

-P
--progress

Enables progress reporting. Turning this on will deliver an approximate progress report while
copying data from the source cluster.

-c
--restore-target-wal

Use restore_command defined in the target cluster configuration to retrieve WAL files from the WAL
archive if these files are no longer available in the pg_wal directory.

--debug

Print verbose debugging output that is mostly useful for developers debugging pg_rewind.

1797

pg_rewind

--no-ensure-shutdown

pg_rewind requires that the target server is cleanly shut down before rewinding. By default, if the
target server is not shut down cleanly, pg_rewind starts the target server in single-user mode to
complete crash recovery first, and stops it. By passing this option, pg_rewind skips this and errors
out immediately if the server is not cleanly shut down. Users are expected to handle the situation
themselves in that case.

-V
--version

Display version information, then exit.

-?
--help

Show help, then exit.

Environment
When --source-server option is used, pg_rewind also uses the environment variables supported by
libpq (see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
When executing pg_rewind using an online cluster as source, a role having sufficient permissions to
execute the functions used by pg_rewind on the source cluster can be used instead of a superuser. Here
is how to create such a role, named rewind_user here:
CREATE USER rewind_user LOGIN;
GRANT EXECUTE ON function pg_catalog.pg_ls_dir(text, boolean, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_stat_file(text, boolean) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO rewind_user;
GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text, bigint, bigint, boolean)
 TO rewind_user;

When executing pg_rewind using an online cluster as source which has been recently promoted, it is
necessary to execute a CHECKPOINT after promotion such that its control file reflects up-to-date timeline
information, which is used by pg_rewind to check if the target cluster can be rewound using the
designated source cluster.

How It Works
The basic idea is to copy all file system-level changes from the source cluster to the target cluster:

1. Scan the WAL log of the target cluster, starting from the last checkpoint before the point where the
source cluster's timeline history forked off from the target cluster. For each WAL record, record each
data block that was touched. This yields a list of all the data blocks that were changed in the target
cluster, after the source cluster forked off. If some of the WAL files are no longer available, try re-
running pg_rewind with the -c option to search for the missing files in the WAL archive.

2. Copy all those changed blocks from the source cluster to the target cluster, either using direct
file system access (--source-pgdata) or SQL (--source-server). Relation files are now in a state
equivalent to the moment of the last completed checkpoint prior to the point at which the WAL
timelines of the source and target diverged plus the current state on the source of any blocks changed
on the target after that divergence.

3. Copy all other files, including new relation files, WAL segments, pg_xact, and configuration files
from the source cluster to the target cluster. Similarly to base backups, the contents of the
directories pg_dynshmem/, pg_notify/, pg_replslot/, pg_serial/, pg_snapshots/, pg_stat_tmp/,

1798

pg_rewind

and pg_subtrans/ are omitted from the data copied from the source cluster. The files backup_label,
tablespace_map, pg_internal.init, postmaster.opts, and postmaster.pid, as well as any file or
directory beginning with pgsql_tmp, are omitted.

4. Create a backup_label file to begin WAL replay at the checkpoint created at failover and
configure the pg_control file with a minimum consistency LSN defined as the result of
pg_current_wal_insert_lsn() when rewinding from a live source or the last checkpoint LSN when
rewinding from a stopped source.

5. When starting the target, Postgres Pro Standard replays all the required WAL, resulting in a data
directory in a consistent state.

1799

pg-setup
pg-setup — set up a new Postgres Pro database cluster and manage the corresponding service

Synopsis
pg-setup initdb [initdb_options]

pg-setup find-free-port

pg-setup set-server-port port

pg-setup set parameter value

pg-setup service service_option

pg-setup tune conf

Description
pg-setup is a shell script provided in the Postgres Pro distribution to automate database cluster setup
on Linux systems. This script is provided as part of the postgrespro-std-13-server package. Once
Postgres Pro is installed, you can find pg-setup in the install-dir/bin directory, where install-dir
is /opt/pgpro/std-13.

pg-setup must be run as root, but performs database administration operations as user postgres. You
can run this script with different options to:

• initialize the database cluster
• check for available ports and change the port used by Postgres Pro server
• change server configuration parameters
• enable/disable automatic startup of Postgres Pro service
• start, stop, or restart Postgres Pro service
• configure the database cluster for a specific Postgres Pro product

Options
pg-setup accepts the following command-line arguments:

initdb [initdb_options]

Initialize the database cluster on behalf of the postgres user.

By default, the database cluster, configured for your Postgres Pro distribution, is initialized in the /
var/lib/pgpro/std-13/data directory, with checksums enabled, auth-local parameter set to peer,
and auth-host parameter set to md5. Localization settings are inherited from the LANG environment
variable for the current session. All the LC_* environment variables are ignored. Optionally, you can
provide initdb options to customize the installation.

If the default database is created using pg-setup, the path to its data directory is stored in the /etc/
default/postgrespro-standard-13 file, so all the subsequent pg-setup commands, as well as any
commands that manage Postgres Pro service, affect this database only. You cannot manage several
databases using pg-setup.

find-free-port

Search for a free port on your system. This option is useful if you are going to install more than one
server instance, or the default 5432 port is used by another program.

1800

pg-setup

set-server-port port
Specify the port number on which the server will listen for connections. Use this option to avoid
conflicts if you are installing more than one server instance on the same system.

Default: 5432

set name value

Set the specified configuration parameter to the provided value in the postgresql.conf file. If this
parameter has been already defined by the ALTER SYSTEM command, its previous value is removed
from the postgresql.auto.conf file.

service service_option

Manage Postgres Pro service using one of the following options:
• enable — enable automatic service startup upon system restart.
• disable — disable automatic service startup upon system restart.
• start — start the service.
• stop — stop the service.
• condrestart — restart the service if it is running when pg-setup is invoked.
• status — return the Postgres Pro service status.

tune conf

Set the specified configuration for the database cluster. Predefined values of conf depend on the
Postgres Pro edition and can be 1c, std or ent. The value of 1c can be specified for any product. By
default, the database cluster is configured for your Postgres Pro Standard edition. If you provide a
value different from any predefined, the cluster will get non-customized configuration settings.

For systems where more than one database server and/or application will run, you may need to
adjust the configuration since pg_setup chooses the configuration settings depending on hardware
characteristics, assuming that the system will use only one database server.

Notes
If you are installing Postgres Pro from the postgrespro-std-13 package, pg-setup is invoked
automatically with the default settings. As a result, the database cluster is initialized and the default
database is created in the /var/lib/pgpro/std-13/data directory, Postgres Pro service autostart is
enabled, and the service is started.

If you are installing Postgres Pro server directly from the postgrespro-std-13-server package, you
can run this script manually to initialize the database cluster or manage the Postgres Pro service.

For details on binary installation specifics on Linux, see Section 16.1.

1801

pg_test_fsync
pg_test_fsync — determine fastest wal_sync_method for Postgres Pro

Synopsis
pg_test_fsync [option...]

Description
pg_test_fsync is intended to give you a reasonable idea of what the fastest wal_sync_method is on your
specific system, as well as supplying diagnostic information in the event of an identified I/O problem.
However, differences shown by pg_test_fsync might not make any significant difference in real database
throughput, especially since many database servers are not speed-limited by their write-ahead logs.
pg_test_fsync reports average file sync operation time in microseconds for each wal_sync_method, which
can also be used to inform efforts to optimize the value of commit_delay.

Options
pg_test_fsync accepts the following command-line options:

-f
--filename

Specifies the file name to write test data in. This file should be in the same file system that the pg_wal
directory is or will be placed in. (pg_wal contains the WAL files.) The default is pg_test_fsync.out
in the current directory.

-s
--secs-per-test

Specifies the number of seconds for each test. The more time per test, the greater the test's accuracy,
but the longer it takes to run. The default is 5 seconds, which allows the program to complete in
under 2 minutes.

-V
--version

Print the pg_test_fsync version and exit.

-?
--help

Show help about pg_test_fsync command line arguments, and exit.

Environment
The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

See Also
postgres

1802

pg_test_timing
pg_test_timing — measure timing overhead

Synopsis
pg_test_timing [option...]

Description
pg_test_timing is a tool to measure the timing overhead on your system and confirm that the system time
never moves backwards. Systems that are slow to collect timing data can give less accurate EXPLAIN
ANALYZE results.

Options
pg_test_timing accepts the following command-line options:
-d duration
--duration=duration

Specifies the test duration, in seconds. Longer durations give slightly better accuracy, and are more
likely to discover problems with the system clock moving backwards. The default test duration is
3 seconds.

-V
--version

Print the pg_test_timing version and exit.

-?
--help

Show help about pg_test_timing command line arguments, and exit.

Usage
Interpreting Results

Good results will show most (>90%) individual timing calls take less than one microsecond. Average per
loop overhead will be even lower, below 100 nanoseconds. This example from an Intel i7-860 system
using a TSC clock source shows excellent performance:
Testing timing overhead for 3 seconds.
Per loop time including overhead: 35.96 ns
Histogram of timing durations:
 < us % of total count
 1 96.40465 80435604
 2 3.59518 2999652
 4 0.00015 126
 8 0.00002 13
 16 0.00000 2

Note that different units are used for the per loop time than the histogram. The loop can have resolution
within a few nanoseconds (ns), while the individual timing calls can only resolve down to one microsecond
(us).

Measuring Executor Timing Overhead
When the query executor is running a statement using EXPLAIN ANALYZE, individual operations are timed
as well as showing a summary. The overhead of your system can be checked by counting rows with the
psql program:

1803

pg_test_timing

CREATE TABLE t AS SELECT * FROM generate_series(1,100000);
\timing
SELECT COUNT(*) FROM t;
EXPLAIN ANALYZE SELECT COUNT(*) FROM t;

The i7-860 system measured runs the count query in 9.8 ms while the EXPLAIN ANALYZE version takes
16.6 ms, each processing just over 100,000 rows. That 6.8 ms difference means the timing overhead per
row is 68 ns, about twice what pg_test_timing estimated it would be. Even that relatively small amount
of overhead is making the fully timed count statement take almost 70% longer. On more substantial
queries, the timing overhead would be less problematic.

Changing Time Sources
On some newer Linux systems, it's possible to change the clock source used to collect timing data at
any time. A second example shows the slowdown possible from switching to the slower acpi_pm time
source, on the same system used for the fast results above:
cat /sys/devices/system/clocksource/clocksource0/available_clocksource
tsc hpet acpi_pm
echo acpi_pm > /sys/devices/system/clocksource/clocksource0/current_clocksource
pg_test_timing
Per loop time including overhead: 722.92 ns
Histogram of timing durations:
 < us % of total count
 1 27.84870 1155682
 2 72.05956 2990371
 4 0.07810 3241
 8 0.01357 563
 16 0.00007 3

In this configuration, the sample EXPLAIN ANALYZE above takes 115.9 ms. That's 1061 ns of timing
overhead, again a small multiple of what's measured directly by this utility. That much timing overhead
means the actual query itself is only taking a tiny fraction of the accounted for time, most of it is being
consumed in overhead instead. In this configuration, any EXPLAIN ANALYZE totals involving many timed
operations would be inflated significantly by timing overhead.

FreeBSD also allows changing the time source on the fly, and it logs information about the timer selected
during boot:
dmesg | grep "Timecounter"
Timecounter "ACPI-fast" frequency 3579545 Hz quality 900
Timecounter "i8254" frequency 1193182 Hz quality 0
Timecounters tick every 10.000 msec
Timecounter "TSC" frequency 2531787134 Hz quality 800
sysctl kern.timecounter.hardware=TSC
kern.timecounter.hardware: ACPI-fast -> TSC

Other systems may only allow setting the time source on boot. On older Linux systems the "clock" kernel
setting is the only way to make this sort of change. And even on some more recent ones, the only option
you'll see for a clock source is "jiffies". Jiffies are the older Linux software clock implementation, which
can have good resolution when it's backed by fast enough timing hardware, as in this example:
$ cat /sys/devices/system/clocksource/clocksource0/available_clocksource
jiffies
$ dmesg | grep time.c
time.c: Using 3.579545 MHz WALL PM GTOD PIT/TSC timer.
time.c: Detected 2400.153 MHz processor.
$ pg_test_timing
Testing timing overhead for 3 seconds.
Per timing duration including loop overhead: 97.75 ns
Histogram of timing durations:

1804

pg_test_timing

 < us % of total count
 1 90.23734 27694571
 2 9.75277 2993204
 4 0.00981 3010
 8 0.00007 22
 16 0.00000 1
 32 0.00000 1

Clock Hardware and Timing Accuracy
Collecting accurate timing information is normally done on computers using hardware clocks with
various levels of accuracy. With some hardware the operating systems can pass the system clock time
almost directly to programs. A system clock can also be derived from a chip that simply provides timing
interrupts, periodic ticks at some known time interval. In either case, operating system kernels provide
a clock source that hides these details. But the accuracy of that clock source and how quickly it can
return results varies based on the underlying hardware.

Inaccurate time keeping can result in system instability. Test any change to the clock source very
carefully. Operating system defaults are sometimes made to favor reliability over best accuracy. And if
you are using a virtual machine, look into the recommended time sources compatible with it. Virtual
hardware faces additional difficulties when emulating timers, and there are often per operating system
settings suggested by vendors.

The Time Stamp Counter (TSC) clock source is the most accurate one available on current generation
CPUs. It's the preferred way to track the system time when it's supported by the operating system and
the TSC clock is reliable. There are several ways that TSC can fail to provide an accurate timing source,
making it unreliable. Older systems can have a TSC clock that varies based on the CPU temperature,
making it unusable for timing. Trying to use TSC on some older multicore CPUs can give a reported
time that's inconsistent among multiple cores. This can result in the time going backwards, a problem
this program checks for. And even the newest systems can fail to provide accurate TSC timing with very
aggressive power saving configurations.

Newer operating systems may check for the known TSC problems and switch to a slower, more stable
clock source when they are seen. If your system supports TSC time but doesn't default to that, it may
be disabled for a good reason. And some operating systems may not detect all the possible problems
correctly, or will allow using TSC even in situations where it's known to be inaccurate.

The High Precision Event Timer (HPET) is the preferred timer on systems where it's available and TSC
is not accurate. The timer chip itself is programmable to allow up to 100 nanosecond resolution, but you
may not see that much accuracy in your system clock.

Advanced Configuration and Power Interface (ACPI) provides a Power Management (PM) Timer, which
Linux refers to as the acpi_pm. The clock derived from acpi_pm will at best provide 300 nanosecond
resolution.

Timers used on older PC hardware include the 8254 Programmable Interval Timer (PIT), the real-time
clock (RTC), the Advanced Programmable Interrupt Controller (APIC) timer, and the Cyclone timer.
These timers aim for millisecond resolution.

See Also
EXPLAIN

1805

pg_upgrade
pg_upgrade — upgrade a Postgres Pro server instance

Synopsis
pg_upgrade -b oldbindir [-B newbindir] -d oldconfigdir -D newconfigdir [option...]

Description
pg_upgrade (formerly called pg_migrator) allows data stored in PostgreSQL or Postgres Pro data files
to be upgraded to a later Postgres Pro major version without the data dump/reload typically required
for major version upgrades, e.g., from 9.5.8 to 9.6.4 or from 10.7 to 11.2. It is not required for minor
version upgrades, e.g., from 9.6.2 to 9.6.3 or from 10.1 to 10.2.

Major Postgres Pro releases regularly add new features that often change the layout of the system tables,
but the internal data storage format rarely changes. pg_upgrade uses this fact to perform rapid upgrades
by creating new system tables and simply reusing the old user data files. If a future major release ever
changes the data storage format in a way that makes the old data format unreadable, pg_upgrade will
not be usable for such upgrades. (The community will attempt to avoid such situations.)

pg_upgrade does its best to make sure the old and new clusters are binary-compatible, e.g., by checking
for compatible compile-time settings, including 32/64-bit binaries. It is important that any external
modules are also binary compatible, though this cannot be checked by pg_upgrade.

pg_upgrade supports upgrades from 8.4.X and later to the current major release of Postgres Pro,
including snapshot and beta releases.

Options
pg_upgrade accepts the following command-line arguments:
-b bindir
--old-bindir=bindir

the old Postgres Pro executable directory; environment variable PGBINOLD

-B bindir
--new-bindir=bindir

the new Postgres Pro executable directory; default is the directory where pg_upgrade resides;
environment variable PGBINNEW

-c
--check

check clusters only, don't change any data

-d configdir
--old-datadir=configdir

the old database cluster configuration directory; environment variable PGDATAOLD

-D configdir
--new-datadir=configdir

the new database cluster configuration directory; environment variable PGDATANEW

-j njobs
--jobs=njobs

number of simultaneous processes or threads to use

1806

pg_upgrade

-k
--link

use hard links instead of copying files to the new cluster

-o options
--old-options options

options to be passed directly to the old postgres command; multiple option invocations are appended

-O options
--new-options options

options to be passed directly to the new postgres command; multiple option invocations are
appended

-p port
--old-port=port

the old cluster port number; environment variable PGPORTOLD

-P port
--new-port=port

the new cluster port number; environment variable PGPORTNEW

-r
--retain

retain SQL and log files even after successful completion

-s dir
--socketdir=dir

directory to use for postmaster sockets during upgrade; default is current working directory;
environment variable PGSOCKETDIR

-U username
--username=username

cluster's install user name; environment variable PGUSER

-v
--verbose

enable verbose internal logging

-V
--version

display version information, then exit

--clone

Use efficient file cloning (also known as “reflinks” on some systems) instead of copying files to the new
cluster. This can result in near-instantaneous copying of the data files, giving the speed advantages
of -k/--link while leaving the old cluster untouched.

File cloning is only supported on some operating systems and file systems. If it is selected but not
supported, the pg_upgrade run will error. At present, it is supported on Linux (kernel 4.5 or later)
with Btrfs and XFS (on file systems created with reflink support), and on macOS with APFS.

-?
--help

show help, then exit

1807

pg_upgrade

Usage
These are the steps to perform an upgrade with pg_upgrade:

1. Optionally move the old cluster

If you are using a version-specific installation directory, e.g., /opt/PostgreSQL/13, you do not need
to move the old cluster. The graphical installers all use version-specific installation directories.

If your installation directory is not version-specific, e.g., /usr/local/pgsql, it is necessary to
move the current Postgres Pro install directory so it does not interfere with the new Postgres Pro
installation. Once the current Postgres Pro server is shut down, it is safe to rename the Postgres Pro
installation directory; assuming the old directory is /usr/local/pgsql, you can do:

mv /usr/local/pgsql /usr/local/pgsql.old

to rename the directory.

2. Install the new Postgres Pro binaries

Install the new server's binaries and support files. pg_upgrade is included in a default installation.

3. Initialize the new Postgres Pro cluster

Initialize the new cluster using initdb. Use compatible initdb flags that match the old cluster. Many
prebuilt installers do this step automatically. There is no need to start the new cluster.

4. Install extension shared object files

Many extensions and custom modules, whether from contrib or another source, use shared object
files (or DLLs), e.g., pgcrypto.so. If the old cluster used these, shared object files matching the new
server binary must be installed in the new cluster, usually via operating system commands. Do not
load the schema definitions, e.g., CREATE EXTENSION pgcrypto, because these will be duplicated
from the old cluster. If extension updates are available, pg_upgrade will report this and create a
script that can be run later to update them.

5. Copy custom full-text search files

Copy any custom full text search files (dictionary, synonym, thesaurus, stop words) from the old to
the new cluster.

6. Adjust authentication

pg_upgrade will connect to the old and new servers several times, so you might want to set
authentication to peer in pg_hba.conf or use a ~/.pgpass file (see Section 31.15).

7. Stop both servers

Make sure both database servers are stopped using, on Unix, e.g.:

pg_ctl -D /opt/PostgreSQL/9.6 stop
pg_ctl -D /opt/PostgreSQL/13 stop

or on Windows, using the proper service names:

NET STOP postgresql-9.6
NET STOP postgresql-13

Streaming replication and log-shipping standby servers can remain running until a later step.

8. Prepare for standby server upgrades

If you are upgrading standby servers using methods outlined in section Step 10, verify that the
old standby servers are caught up by running pg_controldata against the old primary and standby
clusters. Verify that the “Latest checkpoint location” values match in all clusters. (There will be a
mismatch if old standby servers were shut down before the old primary or if the old standby servers
are still running.) Also, make sure wal_level is not set to minimal in the postgresql.conf file on
the new primary cluster.

1808

pg_upgrade

9. Run pg_upgrade

Always run the pg_upgrade binary of the new server, not the old one. pg_upgrade requires the
specification of the old and new cluster's data and executable (bin) directories. You can also specify
user and port values, and whether you want the data files linked or cloned instead of the default
copy behavior.

If you use link mode, the upgrade will be much faster (no file copying) and use less disk space, but
you will not be able to access your old cluster once you start the new cluster after the upgrade.
Link mode also requires that the old and new cluster data directories be in the same file system.
(Tablespaces and pg_wal can be on different file systems.) Clone mode provides the same speed and
disk space advantages but does not cause the old cluster to be unusable once the new cluster is
started. Clone mode also requires that the old and new data directories be in the same file system.
This mode is only available on certain operating systems and file systems.

The --jobs option allows multiple CPU cores to be used for copying/linking of files and to dump and
reload database schemas in parallel; a good place to start is the maximum of the number of CPU
cores and tablespaces. This option can dramatically reduce the time to upgrade a multi-database
server running on a multiprocessor machine.

For Windows users, you must be logged into an administrative account, and then start a shell as the
postgres user and set the proper path:

RUNAS /USER:postgres "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\PostgreSQL\13\bin;

and then run pg_upgrade with quoted directories, e.g.:

pg_upgrade.exe
 --old-datadir "C:/Program Files/PostgreSQL/9.6/data"
 --new-datadir "C:/Program Files/PostgreSQL/13/data"
 --old-bindir "C:/Program Files/PostgreSQL/9.6/bin"
 --new-bindir "C:/Program Files/PostgreSQL/13/bin"

Once started, pg_upgrade will verify the two clusters are compatible and then do the upgrade. You
can use pg_upgrade --check to perform only the checks, even if the old server is still running.
pg_upgrade --check will also outline any manual adjustments you will need to make after the
upgrade. If you are going to be using link or clone mode, you should use the option --link or --
clone with --check to enable mode-specific checks. pg_upgrade requires write permission in the
current directory.

Obviously, no one should be accessing the clusters during the upgrade. pg_upgrade defaults to
running servers on port 50432 to avoid unintended client connections. You can use the same port
number for both clusters when doing an upgrade because the old and new clusters will not be running
at the same time. However, when checking an old running server, the old and new port numbers
must be different.

If an error occurs while restoring the database schema, pg_upgrade will exit and you will have to
revert to the old cluster as outlined in Step 16 below. To try pg_upgrade again, you will need to modify
the old cluster so the pg_upgrade schema restore succeeds. If the problem is a contrib module, you
might need to uninstall the contrib module from the old cluster and install it in the new cluster
after the upgrade, assuming the module is not being used to store user data.

10. Upgrade streaming replication and log-shipping standby servers

If you used link mode and have Streaming Replication (see Section 25.2.5) or Log-Shipping (see
Section 25.2) standby servers, you can follow these steps to quickly upgrade them. You will not
be running pg_upgrade on the standby servers, but rather rsync on the primary. Do not start any
servers yet.

1809

pg_upgrade

If you did not use link mode, do not have or do not want to use rsync, or want an easier solution, skip
the instructions in this section and simply recreate the standby servers once pg_upgrade completes
and the new primary is running.

a. Install the new Postgres Pro binaries on standby servers

Make sure the new binaries and support files are installed on all standby servers.

b. Make sure the new standby data directories do not exist

Make sure the new standby data directories do not exist or are empty. If initdb was run, delete
the standby servers' new data directories.

c. Install extension shared object files

Install the same extension shared object files on the new standbys that you installed in the new
primary cluster.

d. Stop standby servers

If the standby servers are still running, stop them now using the above instructions.

e. Save configuration files

Save any configuration files from the old standbys' configuration directories you need to keep,
e.g., postgresql.conf (and any files included by it), postgresql.auto.conf, pg_hba.conf,
because these will be overwritten or removed in the next step.

f. Run rsync

When using link mode, standby servers can be quickly upgraded using rsync. To accomplish this,
from a directory on the primary server that is above the old and new database cluster directories,
run this on the primary for each standby server:

rsync --archive --delete --hard-links --size-only --no-inc-recursive old_cluster
 new_cluster remote_dir

where old_cluster and new_cluster are relative to the current directory on the primary, and
remote_dir is above the old and new cluster directories on the standby. The directory structure
under the specified directories on the primary and standbys must match. Consult the rsync
manual page for details on specifying the remote directory, e.g.,

rsync --archive --delete --hard-links --size-only --no-inc-recursive /opt/
PostgreSQL/9.5 \
 /opt/PostgreSQL/9.6 standby.example.com:/opt/PostgreSQL

You can verify what the command will do using rsync's --dry-run option. While rsync must be
run on the primary for at least one standby, it is possible to run rsync on an upgraded standby
to upgrade other standbys, as long as the upgraded standby has not been started.

What this does is to record the links created by pg_upgrade's link mode that connect files in
the old and new clusters on the primary server. It then finds matching files in the standby's old
cluster and creates links for them in the standby's new cluster. Files that were not linked on
the primary are copied from the primary to the standby. (They are usually small.) This provides
rapid standby upgrades. Unfortunately, rsync needlessly copies files associated with temporary
and unlogged tables because these files don't normally exist on standby servers.

If you have tablespaces, you will need to run a similar rsync command for each tablespace
directory, e.g.:

rsync --archive --delete --hard-links --size-only --no-inc-recursive /vol1/
pg_tblsp/PG_9.5_201510051 \

1810

pg_upgrade

 /vol1/pg_tblsp/PG_9.6_201608131 standby.example.com:/vol1/pg_tblsp

If you have relocated pg_wal outside the data directories, rsync must be run on those directories
too.

g. Configure streaming replication and log-shipping standby servers
Configure the servers for log shipping. (You do not need to run pg_start_backup() and
pg_stop_backup() or take a file system backup as the standbys are still synchronized with the
primary.)

11. Restore pg_hba.conf
If you modified pg_hba.conf, restore its original settings. It might also be necessary to adjust other
configuration files in the new cluster to match the old cluster, e.g., postgresql.conf (and any files
included by it), postgresql.auto.conf.

12. Start the new server
The new server can now be safely started, and then any rsync'ed standby servers.

13. Post-upgrade processing
If any post-upgrade processing is required, pg_upgrade will issue warnings as it completes. It will
also generate script files that must be run by the administrator. The script files will connect to each
database that needs post-upgrade processing. Each script should be run using:
psql --username=postgres --file=script.sql postgres

The scripts can be run in any order and can be deleted once they have been run.

Caution
In general it is unsafe to access tables referenced in rebuild scripts until the rebuild scripts
have run to completion; doing so could yield incorrect results or poor performance. Tables not
referenced in rebuild scripts can be accessed immediately.

14. Statistics
Because optimizer statistics are not transferred by pg_upgrade, you will be instructed to run a
command to regenerate that information at the end of the upgrade. You might need to set connection
parameters to match your new cluster.

15. Delete old cluster
Once you are satisfied with the upgrade, you can delete the old cluster's data directories by running
the script mentioned when pg_upgrade completes. (Automatic deletion is not possible if you have
user-defined tablespaces inside the old data directory.) You can also delete the old installation
directories (e.g., bin, share).

16. Reverting to old cluster
If, after running pg_upgrade, you wish to revert to the old cluster, there are several options:
• If the --check option was used, the old cluster was unmodified; it can be restarted.
• If the --link option was not used, the old cluster was unmodified; it can be restarted.
• If the --link option was used, the data files might be shared between the old and new cluster:

• If pg_upgrade aborted before linking started, the old cluster was unmodified; it can be
restarted.

• If you did not start the new cluster, the old cluster was unmodified except that, when linking
started, a .old suffix was appended to $PGDATA/global/pg_control. To reuse the old
cluster, remove the .old suffix from $PGDATA/global/pg_control; you can then restart the
old cluster.

1811

pg_upgrade

• If you did start the new cluster, it has written to shared files and it is unsafe to use the old
cluster. The old cluster will need to be restored from backup in this case.

Notes
pg_upgrade creates various working files, such as schema dumps, in the current working directory. For
security, be sure that that directory is not readable or writable by any other users.

pg_upgrade launches short-lived postmasters in the old and new data directories. Temporary Unix socket
files for communication with these postmasters are, by default, made in the current working directory.
In some situations the path name for the current directory might be too long to be a valid socket name.
In that case you can use the -s option to put the socket files in some directory with a shorter path
name. For security, be sure that that directory is not readable or writable by any other users. (This is
not supported on Windows.)

All failure, rebuild, and reindex cases will be reported by pg_upgrade if they affect your installation;
post-upgrade scripts to rebuild tables and indexes will be generated automatically. If you are trying to
automate the upgrade of many clusters, you should find that clusters with identical database schemas
require the same post-upgrade steps for all cluster upgrades; this is because the post-upgrade steps are
based on the database schemas, and not user data.

For deployment testing, create a schema-only copy of the old cluster, insert dummy data, and upgrade
that.

pg_upgrade does not support upgrading of databases containing table columns using these reg* OID-
referencing system data types:

regcollation
regconfig
regdictionary
regnamespace
regoper
regoperator
regproc
regprocedure

(regclass, regrole, and regtype can be upgraded.)

If you are upgrading a pre-PostgreSQL 9.2 cluster that uses a configuration-file-only directory, you must
pass the real data directory location to pg_upgrade, and pass the configuration directory location to the
server, e.g., -d /real-data-directory -o '-D /configuration-directory'.

If using a pre-9.1 old server that is using a non-default Unix-domain socket directory or a default that
differs from the default of the new cluster, set PGHOST to point to the old server's socket location. (This
is not relevant on Windows.)

When performing an upgrade from Postgres Pro 9.6 or lower, for databases with a multibyte encoding,
pg_upgrade may generate SQL files with REINDEX/VALIDATE commands. You must run these files to
rebuild indexes and re-validate constraints. This can happen in the following cases:
• The old cluster uses indexes or constraints depending on collations other than the default collation

of the database, C, or POSIX.
• On Windows, the old cluster uses indexes or constraints depending on the default collation with a

verbose name, such as "Russian_Russia[.encoding]" or "English_United States[.encoding]".

If you want to use link mode and you do not want your old cluster to be modified when the new cluster
is started, consider using the clone mode. If that is not available, make a copy of the old cluster and
upgrade that in link mode. To make a valid copy of the old cluster, use rsync to create a dirty copy of the
old cluster while the server is running, then shut down the old server and run rsync --checksum again
to update the copy with any changes to make it consistent. (--checksum is necessary because rsync

1812

pg_upgrade

only has file modification-time granularity of one second.) You might want to exclude some files, e.g.,
postmaster.pid, as documented in Section 24.3.3. If your file system supports file system snapshots or
copy-on-write file copies, you can use that to make a backup of the old cluster and tablespaces, though
the snapshot and copies must be created simultaneously or while the database server is down.

See Also
initdb, pg_ctl, pg_dump, postgres

1813

pg_waldump
pg_waldump — display a human-readable rendering of the write-ahead log of a Postgres Pro database
cluster

Synopsis
pg_waldump [option...] [startseg [endseg]]

Description
pg_waldump displays the write-ahead log (WAL) and is mainly useful for debugging or educational
purposes.

This utility can only be run by the user who installed the server, because it requires read-only access
to the data directory.

Options
The following command-line options control the location and format of the output:

startseg

Start reading at the specified log segment file. This implicitly determines the path in which files will
be searched for, and the timeline to use.

endseg

Stop after reading the specified log segment file.

-b
--bkp-details

Output detailed information about backup blocks.

-e end
--end=end

Stop reading at the specified WAL location, instead of reading to the end of the log stream.

-f
--follow

After reaching the end of valid WAL, keep polling once per second for new WAL to appear.

-n limit
--limit=limit

Display the specified number of records, then stop.

-p path
--path=path

Specifies a directory to search for log segment files or a directory with a pg_wal subdirectory that
contains such files. The default is to search in the current directory, the pg_wal subdirectory of the
current directory, and the pg_wal subdirectory of PGDATA.

-q
--quiet

Do not print any output, except for errors. This option can be useful when you want to know whether
a range of WAL records can be successfully parsed but don't care about the record contents.

1814

pg_waldump

-r rmgr
--rmgr=rmgr

Only display records generated by the specified resource manager. If list is passed as name, print
a list of valid resource manager names, and exit.

-s start
--start=start

WAL location at which to start reading. The default is to start reading the first valid log record found
in the earliest file found.

-t timeline
--timeline=timeline

Timeline from which to read log records. The default is to use the value in startseg, if that is
specified; otherwise, the default is 1.

-V
--version

Print the pg_waldump version and exit.

-x xid
--xid=xid

Only display records marked with the given transaction ID.

-z
--stats[=record]

Display summary statistics (number and size of records and full-page images) instead of individual
records. Optionally generate statistics per-record instead of per-rmgr.

-?
--help

Show help about pg_waldump command line arguments, and exit.

Environment
PGDATA

Data directory; see also the -p option.

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

Notes
Can give wrong results when the server is running.

Only the specified timeline is displayed (or the default, if none is specified). Records in other timelines
are ignored.

pg_waldump cannot read WAL files with suffix .partial. If those files need to be read, .partial suffix
needs to be removed from the file name.

See Also
Section 28.5

1815

postgres
postgres — Postgres Pro database server

Synopsis
postgres [option...]

Description
postgres is the Postgres Pro database server. In order for a client application to access a database it
connects (over a network or locally) to a running postgres instance. The postgres instance then starts
a separate server process to handle the connection.

One postgres instance always manages the data of exactly one database cluster. A database cluster is
a collection of databases that is stored at a common file system location (the “data area”). More than
one postgres instance can run on a system at one time, so long as they use different data areas and
different communication ports (see below). When postgres starts it needs to know the location of the
data area. The location must be specified by the -D option or the PGDATA environment variable; there
is no default. Typically, -D or PGDATA points directly to the data area directory created by initdb. Other
possible file layouts are discussed in Section 18.2.

By default postgres starts in the foreground and prints log messages to the standard error stream. In
practical applications postgres should be started as a background process, perhaps at boot time.

The postgres command can also be called in single-user mode. The primary use for this mode is
during bootstrapping by initdb. Sometimes it is used for debugging or disaster recovery; note that
running a single-user server is not truly suitable for debugging the server, since no realistic interprocess
communication and locking will happen. When invoked in single-user mode from the shell, the user can
enter queries and the results will be printed to the screen, but in a form that is more useful for developers
than end users. In the single-user mode, the session user will be set to the user with ID 1, and implicit
superuser powers are granted to this user. This user does not actually have to exist, so the single-user
mode can be used to manually recover from certain kinds of accidental damage to the system catalogs.

Options
postgres accepts the following command-line arguments. For a detailed discussion of the options consult
Chapter 18. You can save typing most of these options by setting up a configuration file. Some (safe)
options can also be set from the connecting client in an application-dependent way to apply only for that
session. For example, if the environment variable PGOPTIONS is set, then libpq-based clients will pass
that string to the server, which will interpret it as postgres command-line options.

General Purpose
-B nbuffers

Sets the number of shared buffers for use by the server processes. The default value of this parameter
is chosen automatically by initdb. Specifying this option is equivalent to setting the shared_buffers
configuration parameter.

-c name=value

Sets a named run-time parameter. The configuration parameters supported by Postgres Pro are
described in Chapter 18. Most of the other command line options are in fact short forms of such a
parameter assignment. -c can appear multiple times to set multiple parameters.

-C name

Prints the value of the named run-time parameter, and exits. (See the -c option above for details.)
This can be used on a running server, and returns values from postgresql.conf, modified by any

1816

postgres

parameters supplied in this invocation. It does not reflect parameters supplied when the cluster was
started.

This option is meant for other programs that interact with a server instance, such as pg_ctl, to
query configuration parameter values. User-facing applications should instead use SHOW or the
pg_settings view.

-d debug-level

Sets the debug level. The higher this value is set, the more debugging output is written to the server
log. Values are from 1 to 5. It is also possible to pass -d 0 for a specific session, which will prevent
the server log level of the parent postgres process from being propagated to this session.

-D datadir

Specifies the file system location of the database configuration files. See Section 18.2 for details.

-e

Sets the default date style to “European”, that is DMY ordering of input date fields. This also causes
the day to be printed before the month in certain date output formats. See Section 8.5 for more
information.

-F

Disables fsync calls for improved performance, at the risk of data corruption in the event of a system
crash. Specifying this option is equivalent to disabling the fsync configuration parameter. Read the
detailed documentation before using this!

-h hostname

Specifies the IP host name or address on which postgres is to listen for TCP/IP connections from
client applications. The value can also be a comma-separated list of addresses, or * to specify listening
on all available interfaces. An empty value specifies not listening on any IP addresses, in which case
only Unix-domain sockets can be used to connect to the server. Defaults to listening only on localhost.
Specifying this option is equivalent to setting the listen_addresses configuration parameter.

-i

Allows remote clients to connect via TCP/IP (Internet domain) connections. Without this option,
only local connections are accepted. This option is equivalent to setting listen_addresses to * in
postgresql.conf or via -h.

This option is deprecated since it does not allow access to the full functionality of listen_addresses.
It's usually better to set listen_addresses directly.

-k directory

Specifies the directory of the Unix-domain socket on which postgres is to listen for connections
from client applications. The value can also be a comma-separated list of directories. An empty value
specifies not listening on any Unix-domain sockets, in which case only TCP/IP sockets can be used
to connect to the server. The default value is normally /tmp, but that can be changed at build time.
Specifying this option is equivalent to setting the unix_socket_directories configuration parameter.

-l

Enables secure connections using SSL. Postgres Pro must have been compiled with support for SSL
for this option to be available. For more information on using SSL, refer to Section 17.9.

-N max-connections

Sets the maximum number of client connections that this server will accept. The default value of
this parameter is chosen automatically by initdb. Specifying this option is equivalent to setting the
max_connections configuration parameter.

1817

postgres

-o extra-options

The command-line-style arguments specified in extra-options are passed to all server processes
started by this postgres process.

Spaces within extra-options are considered to separate arguments, unless escaped with a
backslash (\); write \\ to represent a literal backslash. Multiple arguments can also be specified via
multiple uses of -o.

The use of this option is obsolete; all command-line options for server processes can be specified
directly on the postgres command line.

-p port

Specifies the TCP/IP port or local Unix domain socket file extension on which postgres is to listen
for connections from client applications. Defaults to the value of the PGPORT environment variable,
or if PGPORT is not set, then defaults to the value established during compilation (normally 5432). If
you specify a port other than the default port, then all client applications must specify the same port
using either command-line options or PGPORT.

-s

Print time information and other statistics at the end of each command. This is useful for
benchmarking or for use in tuning the number of buffers.

-S work-mem
Specifies the base amount of memory to be used by sorts and hash tables before resorting to
temporary disk files. See the description of the work_mem configuration parameter in Section 18.4.1.

-V
--version

Print the postgres version and exit.

--name=value

Sets a named run-time parameter; a shorter form of -c.

--describe-config

This option dumps out the server's internal configuration variables, descriptions, and defaults in tab-
delimited COPY format. It is designed primarily for use by administration tools.

-?
--help

Show help about postgres command line arguments, and exit.

Semi-Internal Options
The options described here are used mainly for debugging purposes, and in some cases to assist with
recovery of severely damaged databases. There should be no reason to use them in a production database
setup. They are listed here only for use by Postgres Pro system developers. Furthermore, these options
might change or be removed in a future release without notice.

-f { s | i | o | b | t | n | m | h }

Forbids the use of particular scan and join methods: s and i disable sequential and index scans
respectively, o, b and t disable index-only scans, bitmap index scans, and TID scans respectively,
while n, m, and h disable nested-loop, merge and hash joins respectively.

Neither sequential scans nor nested-loop joins can be disabled completely; the -fs and -fn options
simply discourage the optimizer from using those plan types if it has any other alternative.

1818

postgres

-n

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could
have corrupted some shared state before terminating. This option specifies that postgres will not
reinitialize shared data structures. A knowledgeable system programmer can then use a debugger
to examine shared memory and semaphore state.

-O

Allows the structure of system tables to be modified. This is used by initdb.

-P

Ignore system indexes when reading system tables, but still update the indexes when modifying the
tables. This is useful when recovering from damaged system indexes.

-t pa[rser] | pl[anner] | e[xecutor]
Print timing statistics for each query relating to each of the major system modules. This option cannot
be used together with the -s option.

-T

This option is for debugging problems that cause a server process to die abnormally. The ordinary
strategy in this situation is to notify all other server processes that they must terminate and then
reinitialize the shared memory and semaphores. This is because an errant server process could have
corrupted some shared state before terminating. This option specifies that postgres will stop all
other server processes by sending the signal SIGSTOP, but will not cause them to terminate. This
permits system programmers to collect core dumps from all server processes by hand.

-v protocol
Specifies the version number of the frontend/backend protocol to be used for a particular session.
This option is for internal use only.

-W seconds
A delay of this many seconds occurs when a new server process is started, after it conducts the
authentication procedure. This is intended to give an opportunity to attach to the server process
with a debugger.

-Z

Verifies that the current postgres binary is compatible with the specified cluster. If the architecture
type or any compilation options that affect cluster compatibility do not match, returns an exit status
of 1 and provides an error message specifying the first detected incompatibility. Otherwise, reports
success and exits without starting the cluster.

You must provide the path to the data directory of the cluster to check.

The cluster and the binary must have the same byte order and architecture type for this option to
work correctly.

Tip
If the binary appears to be incompatible with the specified cluster, run pgpro_controldata
with the -P or -C command-line argument to view all parameters of the cluster that affect the
compatibility.

Options for Single-User Mode

1819

postgres

The following options only apply to the single-user mode (see Single-User Mode below).

--single

Selects the single-user mode. This must be the first argument on the command line.

database

Specifies the name of the database to be accessed. This must be the last argument on the command
line. If it is omitted it defaults to the user name.

-E

Echo all commands to standard output before executing them.

-j

Use semicolon followed by two newlines, rather than just newline, as the command entry terminator.

-r filename
Send all server log output to filename. This option is only honored when supplied as a command-
line option.

Environment
PGCLIENTENCODING

Default character encoding used by clients. (The clients can override this individually.) This value
can also be set in the configuration file.

PGDATA

Default data directory location

PGDATESTYLE

Default value of the DateStyle run-time parameter. (The use of this environment variable is
deprecated.)

PGPORT

Default port number (preferably set in the configuration file)

Diagnostics
A failure message mentioning semget or shmget probably indicates you need to configure your kernel
to provide adequate shared memory and semaphores. For more discussion see Section 17.4. You might
be able to postpone reconfiguring your kernel by decreasing shared_buffers to reduce the shared
memory consumption of Postgres Pro, and/or by reducing max_connections to reduce the semaphore
consumption.

A failure message suggesting that another server is already running should be checked carefully, for
example by using the command
$ ps ax | grep postgres

or
$ ps -ef | grep postgres

depending on your system. If you are certain that no conflicting server is running, you can remove the
lock file mentioned in the message and try again.

A failure message indicating inability to bind to a port might indicate that that port is already in use by
some non-Postgres Pro process. You might also get this error if you terminate postgres and immediately
restart it using the same port; in this case, you must simply wait a few seconds until the operating system

1820

postgres

closes the port before trying again. Finally, you might get this error if you specify a port number that your
operating system considers to be reserved. For example, many versions of Unix consider port numbers
under 1024 to be “trusted” and only permit the Unix superuser to access them.

Notes
The utility command pg_ctl can be used to start and shut down the postgres server safely and
comfortably.

If at all possible, do not use SIGKILL to kill the main postgres server. Doing so will prevent postgres from
freeing the system resources (e.g., shared memory and semaphores) that it holds before terminating.
This might cause problems for starting a fresh postgres run.

To terminate the postgres server normally, the signals SIGTERM, SIGINT, or SIGQUIT can be used. The
first will wait for all clients to terminate before quitting, the second will forcefully disconnect all clients,
and the third will quit immediately without proper shutdown, resulting in a recovery run during restart.

The SIGHUP signal will reload the server configuration files. It is also possible to send SIGHUP to an
individual server process, but that is usually not sensible.

To cancel a running query, send the SIGINT signal to the process running that command. To
terminate a backend process cleanly, send SIGTERM to that process. See also pg_cancel_backend and
pg_terminate_backend in Section 9.27.2 for the SQL-callable equivalents of these two actions.

The postgres server uses SIGQUIT to tell subordinate server processes to terminate without normal
cleanup. This signal should not be used by users. It is also unwise to send SIGKILL to a server process
— the main postgres process will interpret this as a crash and will force all the sibling processes to quit
as part of its standard crash-recovery procedure.

Bugs
The -- options will not work on FreeBSD or OpenBSD. Use -c instead. This is a bug in the affected
operating systems; a future release of Postgres Pro will provide a workaround if this is not fixed.

Single-User Mode
To start a single-user mode server, use a command like

postgres --single -D /usr/local/pgsql/data other-options my_database

Provide the correct path to the database directory with -D, or make sure that the environment variable
PGDATA is set. Also specify the name of the particular database you want to work in.

Normally, the single-user mode server treats newline as the command entry terminator; there is no
intelligence about semicolons, as there is in psql. To continue a command across multiple lines, you
must type backslash just before each newline except the last one. The backslash and adjacent newline
are both dropped from the input command. Note that this will happen even when within a string literal
or comment.

But if you use the -j command line switch, a single newline does not terminate command entry;
instead, the sequence semicolon-newline-newline does. That is, type a semicolon immediately followed
by a completely empty line. Backslash-newline is not treated specially in this mode. Again, there is no
intelligence about such a sequence appearing within a string literal or comment.

In either input mode, if you type a semicolon that is not just before or part of a command entry terminator,
it is considered a command separator. When you do type a command entry terminator, the multiple
statements you've entered will be executed as a single transaction.

To quit the session, type EOF (Control+D, usually). If you've entered any text since the last command
entry terminator, then EOF will be taken as a command entry terminator, and another EOF will be needed
to exit.

1821

postgres

Note that the single-user mode server does not provide sophisticated line-editing features (no command
history, for example). Single-user mode also does not do any background processing, such as automatic
checkpoints or replication.

Examples
To start postgres in the background using default values, type:

$ nohup postgres >logfile 2>&1 </dev/null &

To start postgres with a specific port, e.g., 1234:

$ postgres -p 1234

To connect to this server using psql, specify this port with the -p option:

$ psql -p 1234

or set the environment variable PGPORT:

$ export PGPORT=1234
$ psql

Named run-time parameters can be set in either of these styles:

$ postgres -c work_mem=1234
$ postgres --work-mem=1234

Either form overrides whatever setting might exist for work_mem in postgresql.conf. Notice that
underscores in parameter names can be written as either underscore or dash on the command line.
Except for short-term experiments, it's probably better practice to edit the setting in postgresql.conf
than to rely on a command-line switch to set a parameter.

See Also
initdb, pg_ctl

1822

postmaster
postmaster — Postgres Pro database server

Synopsis
postmaster [option...]

Description
postmaster is a deprecated alias of postgres.

See Also
postgres

1823

Part VII. Internals
This part contains assorted information that might be of use to Postgres Pro developers.

Chapter 48. Overview of Postgres Pro
Internals

Author
This chapter originated as part of sim98, Stefan Simkovics' Master's Thesis prepared at Vienna
University of Technology under the direction of O.Univ.Prof.Dr. Georg Gottlob and Univ.Ass. Mag.
Katrin Seyr.

This chapter gives an overview of the internal structure of the backend of Postgres Pro. After having
read the following sections you should have an idea of how a query is processed. This chapter does not
aim to provide a detailed description of the internal operation of Postgres Pro, as such a document would
be very extensive. Rather, this chapter is intended to help the reader understand the general sequence
of operations that occur within the backend from the point at which a query is received, to the point at
which the results are returned to the client.

48.1. The Path of a Query
Here we give a short overview of the stages a query has to pass in order to obtain a result.

1. A connection from an application program to the Postgres Pro server has to be established. The
application program transmits a query to the server and waits to receive the results sent back by
the server.

2. The parser stage checks the query transmitted by the application program for correct syntax and
creates a query tree.

3. The rewrite system takes the query tree created by the parser stage and looks for any rules (stored
in the system catalogs) to apply to the query tree. It performs the transformations given in the rule
bodies.

One application of the rewrite system is in the realization of views. Whenever a query against a view
(i.e., a virtual table) is made, the rewrite system rewrites the user's query to a query that accesses
the base tables given in the view definition instead.

4. The planner/optimizer takes the (rewritten) query tree and creates a query plan that will be the
input to the executor.

It does so by first creating all possible paths leading to the same result. For example if there is
an index on a relation to be scanned, there are two paths for the scan. One possibility is a simple
sequential scan and the other possibility is to use the index. Next the cost for the execution of each
path is estimated and the cheapest path is chosen. The cheapest path is expanded into a complete
plan that the executor can use.

5. The executor recursively steps through the plan tree and retrieves rows in the way represented by
the plan. The executor makes use of the storage system while scanning relations, performs sorts and
joins, evaluates qualifications and finally hands back the rows derived.

In the following sections we will cover each of the above listed items in more detail to give a better
understanding of Postgres Pro's internal control and data structures.

48.2. How Connections Are Established
Postgres Pro is implemented using a simple “process per user” client/server model. In this model there
is one client process connected to exactly one server process. As we do not know ahead of time how
many connections will be made, we have to use a master process that spawns a new server process
every time a connection is requested. This master process is called postgres and listens at a specified

1825

Overview of Postgres Pro Internals

TCP/IP port for incoming connections. Whenever a request for a connection is detected the postgres
process spawns a new server process. The server tasks communicate with each other using semaphores
and shared memory to ensure data integrity throughout concurrent data access.

The client process can be any program that understands the Postgres Pro protocol described
in Chapter 50. Many clients are based on the C-language library libpq, but several independent
implementations of the protocol exist, such as the Java JDBC driver.

Once a connection is established the client process can send a query to the backend (server). The query
is transmitted using plain text, i.e., there is no parsing done in the frontend (client). The server parses
the query, creates an execution plan, executes the plan and returns the retrieved rows to the client by
transmitting them over the established connection.

48.3. The Parser Stage
The parser stage consists of two parts:

• The parser defined in gram.y and scan.l is built using the Unix tools bison and flex.

• The transformation process does modifications and augmentations to the data structures returned
by the parser.

48.3.1. Parser
The parser has to check the query string (which arrives as plain text) for valid syntax. If the syntax is
correct a parse tree is built up and handed back; otherwise an error is returned. The parser and lexer
are implemented using the well-known Unix tools bison and flex.

The lexer is defined in the file scan.l and is responsible for recognizing identifiers, the SQL key words
etc. For every key word or identifier that is found, a token is generated and handed to the parser.

The parser is defined in the file gram.y and consists of a set of grammar rules and actions that are
executed whenever a rule is fired. The code of the actions (which is actually C code) is used to build
up the parse tree.

The file scan.l is transformed to the C source file scan.c using the program flex and gram.y is
transformed to gram.c using bison. After these transformations have taken place a normal C compiler
can be used to create the parser. Never make any changes to the generated C files as they will be
overwritten the next time flex or bison is called.

Note
The mentioned transformations and compilations are normally done automatically using the
makefiles shipped with the Postgres Pro source distribution.

A detailed description of bison or the grammar rules given in gram.y would be beyond the scope of
this paper. There are many books and documents dealing with flex and bison. You should be familiar
with bison before you start to study the grammar given in gram.y otherwise you won't understand what
happens there.

48.3.2. Transformation Process
The parser stage creates a parse tree using only fixed rules about the syntactic structure of SQL. It
does not make any lookups in the system catalogs, so there is no possibility to understand the detailed
semantics of the requested operations. After the parser completes, the transformation process takes the
tree handed back by the parser as input and does the semantic interpretation needed to understand
which tables, functions, and operators are referenced by the query. The data structure that is built to
represent this information is called the query tree.

1826

Overview of Postgres Pro Internals

The reason for separating raw parsing from semantic analysis is that system catalog lookups can only
be done within a transaction, and we do not wish to start a transaction immediately upon receiving a
query string. The raw parsing stage is sufficient to identify the transaction control commands (BEGIN,
ROLLBACK, etc), and these can then be correctly executed without any further analysis. Once we know
that we are dealing with an actual query (such as SELECT or UPDATE), it is okay to start a transaction if
we're not already in one. Only then can the transformation process be invoked.

The query tree created by the transformation process is structurally similar to the raw parse tree in most
places, but it has many differences in detail. For example, a FuncCall node in the parse tree represents
something that looks syntactically like a function call. This might be transformed to either a FuncExpr
or Aggref node depending on whether the referenced name turns out to be an ordinary function or an
aggregate function. Also, information about the actual data types of columns and expression results is
added to the query tree.

48.4. The Postgres Pro Rule System
Postgres Pro supports a powerful rule system for the specification of views and ambiguous view updates.
Originally the Postgres Pro rule system consisted of two implementations:

• The first one worked using row level processing and was implemented deep in the executor. The
rule system was called whenever an individual row had been accessed. This implementation was
removed in 1995 when the last official release of the Berkeley Postgres project was transformed
into Postgres95.

• The second implementation of the rule system is a technique called query rewriting. The rewrite
system is a module that exists between the parser stage and the planner/optimizer. This technique
is still implemented.

The query rewriter is discussed in some detail in Chapter 38, so there is no need to cover it here. We
will only point out that both the input and the output of the rewriter are query trees, that is, there is
no change in the representation or level of semantic detail in the trees. Rewriting can be thought of as
a form of macro expansion.

48.5. Planner/Optimizer
The task of the planner/optimizer is to create an optimal execution plan. A given SQL query (and hence,
a query tree) can be actually executed in a wide variety of different ways, each of which will produce
the same set of results. If it is computationally feasible, the query optimizer will examine each of these
possible execution plans, ultimately selecting the execution plan that is expected to run the fastest.

Note
In some situations, examining each possible way in which a query can be executed would take an
excessive amount of time and memory space. In particular, this occurs when executing queries
involving large numbers of join operations. In order to determine a reasonable (not necessarily
optimal) query plan in a reasonable amount of time, Postgres Pro uses a Genetic Query Optimizer
(see Chapter 55) when the number of joins exceeds a threshold (see geqo_threshold).

The planner's search procedure actually works with data structures called paths, which are simply cut-
down representations of plans containing only as much information as the planner needs to make its
decisions. After the cheapest path is determined, a full-fledged plan tree is built to pass to the executor.
This represents the desired execution plan in sufficient detail for the executor to run it. In the rest of
this section we'll ignore the distinction between paths and plans.

48.5.1. Generating Possible Plans
The planner/optimizer starts by generating plans for scanning each individual relation (table) used in
the query. The possible plans are determined by the available indexes on each relation. There is always

1827

Overview of Postgres Pro Internals

the possibility of performing a sequential scan on a relation, so a sequential scan plan is always created.
Assume an index is defined on a relation (for example a B-tree index) and a query contains the restriction
relation.attribute OPR constant. If relation.attribute happens to match the key of the B-tree
index and OPR is one of the operators listed in the index's operator class, another plan is created using
the B-tree index to scan the relation. If there are further indexes present and the restrictions in the
query happen to match a key of an index, further plans will be considered. Index scan plans are also
generated for indexes that have a sort ordering that can match the query's ORDER BY clause (if any), or
a sort ordering that might be useful for merge joining (see below).

If the query requires joining two or more relations, plans for joining relations are considered after all
feasible plans have been found for scanning single relations. The three available join strategies are:

• nested loop join: The right relation is scanned once for every row found in the left relation. This
strategy is easy to implement but can be very time consuming. (However, if the right relation can
be scanned with an index scan, this can be a good strategy. It is possible to use values from the
current row of the left relation as keys for the index scan of the right.)

• merge join: Each relation is sorted on the join attributes before the join starts. Then the two
relations are scanned in parallel, and matching rows are combined to form join rows. This kind of
join is more attractive because each relation has to be scanned only once. The required sorting
might be achieved either by an explicit sort step, or by scanning the relation in the proper order
using an index on the join key.

• hash join: the right relation is first scanned and loaded into a hash table, using its join attributes as
hash keys. Next the left relation is scanned and the appropriate values of every row found are used
as hash keys to locate the matching rows in the table.

When the query involves more than two relations, the final result must be built up by a tree of join steps,
each with two inputs. The planner examines different possible join sequences to find the cheapest one.

If the query uses fewer than geqo_threshold relations, a near-exhaustive search is conducted to find
the best join sequence. The planner preferentially considers joins between any two relations for which
there exist a corresponding join clause in the WHERE qualification (i.e., for which a restriction like where
rel1.attr1=rel2.attr2 exists). Join pairs with no join clause are considered only when there is no
other choice, that is, a particular relation has no available join clauses to any other relation. All possible
plans are generated for every join pair considered by the planner, and the one that is (estimated to be)
the cheapest is chosen.

When geqo_threshold is exceeded, the join sequences considered are determined by heuristics, as
described in Chapter 55. Otherwise the process is the same.

The finished plan tree consists of sequential or index scans of the base relations, plus nested-loop, merge,
or hash join nodes as needed, plus any auxiliary steps needed, such as sort nodes or aggregate-function
calculation nodes. Most of these plan node types have the additional ability to do selection (discarding
rows that do not meet a specified Boolean condition) and projection (computation of a derived column
set based on given column values, that is, evaluation of scalar expressions where needed). One of the
responsibilities of the planner is to attach selection conditions from the WHERE clause and computation
of required output expressions to the most appropriate nodes of the plan tree.

48.6. Executor
The executor takes the plan created by the planner/optimizer and recursively processes it to extract the
required set of rows. This is essentially a demand-pull pipeline mechanism. Each time a plan node is
called, it must deliver one more row, or report that it is done delivering rows.

To provide a concrete example, assume that the top node is a MergeJoin node. Before any merge can
be done two rows have to be fetched (one from each subplan). So the executor recursively calls itself to
process the subplans (it starts with the subplan attached to lefttree). The new top node (the top node
of the left subplan) is, let's say, a Sort node and again recursion is needed to obtain an input row. The
child node of the Sort might be a SeqScan node, representing actual reading of a table. Execution of this

1828

Overview of Postgres Pro Internals

node causes the executor to fetch a row from the table and return it up to the calling node. The Sort
node will repeatedly call its child to obtain all the rows to be sorted. When the input is exhausted (as
indicated by the child node returning a NULL instead of a row), the Sort code performs the sort, and
finally is able to return its first output row, namely the first one in sorted order. It keeps the remaining
rows stored so that it can deliver them in sorted order in response to later demands.

The MergeJoin node similarly demands the first row from its right subplan. Then it compares the two
rows to see if they can be joined; if so, it returns a join row to its caller. On the next call, or immediately if
it cannot join the current pair of inputs, it advances to the next row of one table or the other (depending
on how the comparison came out), and again checks for a match. Eventually, one subplan or the other
is exhausted, and the MergeJoin node returns NULL to indicate that no more join rows can be formed.

Complex queries can involve many levels of plan nodes, but the general approach is the same: each
node computes and returns its next output row each time it is called. Each node is also responsible for
applying any selection or projection expressions that were assigned to it by the planner.

The executor mechanism is used to evaluate all four basic SQL query types: SELECT, INSERT, UPDATE, and
DELETE. For SELECT, the top-level executor code only needs to send each row returned by the query plan
tree off to the client. INSERT ... SELECT, UPDATE, and DELETE are effectively SELECTs under a special
top-level plan node called ModifyTable.

INSERT ... SELECT feeds the rows up to ModifyTable for insertion. For UPDATE, the planner arranges
that each computed row includes all the updated column values, plus the TID (tuple ID, or row ID) of the
original target row; this data is fed up to the ModifyTable node, which uses the information to create a
new updated row and mark the old row deleted. For DELETE, the only column that is actually returned
by the plan is the TID, and the ModifyTable node simply uses the TID to visit each target row and mark
it deleted.

A simple INSERT ... VALUES command creates a trivial plan tree consisting of a single Result node,
which computes just one result row, feeding that up to ModifyTable to perform the insertion.

1829

Chapter 49. System Catalogs
The system catalogs are the place where a relational database management system stores schema
metadata, such as information about tables and columns, and internal bookkeeping information. Postgres
Pro's system catalogs are regular tables. You can drop and recreate the tables, add columns, insert
and update values, and severely mess up your system that way. Normally, one should not change the
system catalogs by hand, there are normally SQL commands to do that. (For example, CREATE DATABASE
inserts a row into the pg_database catalog — and actually creates the database on disk.) There are some
exceptions for particularly esoteric operations, but many of those have been made available as SQL
commands over time, and so the need for direct manipulation of the system catalogs is ever decreasing.

49.1. Overview
Table 49.1 lists the system catalogs. More detailed documentation of each catalog follows below.

Most system catalogs are copied from the template database during database creation and are thereafter
database-specific. A few catalogs are physically shared across all databases in a cluster; these are noted
in the descriptions of the individual catalogs.

Table 49.1. System Catalogs

Catalog Name Purpose
pg_aggregate aggregate functions
pg_am relation access methods
pg_amop access method operators
pg_amproc access method support functions
pg_attrdef column default values
pg_attribute table columns (“attributes”)
pg_authid authorization identifiers (roles)
pg_auth_members authorization identifier membership relationships
pg_cast casts (data type conversions)
pg_class tables, indexes, sequences, views (“relations”)
pg_collation collations (locale information)
pg_constraint check constraints, unique constraints, primary

key constraints, foreign key constraints
pg_conversion encoding conversion information
pg_database databases within this database cluster
pg_db_role_setting per-role and per-database settings
pg_default_acl default privileges for object types
pg_depend dependencies between database objects
pg_description descriptions or comments on database objects
pg_enum enum label and value definitions
pg_event_trigger event triggers
pg_extension installed extensions
pg_foreign_data_wrapper foreign-data wrapper definitions
pg_foreign_server foreign server definitions
pg_foreign_table additional foreign table information
pg_index additional index information

1830

System Catalogs

Catalog Name Purpose
pg_inherits table inheritance hierarchy
pg_init_privs object initial privileges
pg_language languages for writing functions
pg_largeobject data pages for large objects
pg_largeobject_metadata metadata for large objects
pg_namespace schemas
pg_opclass access method operator classes
pg_operator operators
pg_opfamily access method operator families
pg_partitioned_table information about partition key of tables
pg_policy row-security policies
pg_proc functions and procedures
pg_publication publications for logical replication
pg_publication_rel relation to publication mapping
pg_range information about range types
pg_replication_origin registered replication origins
pg_rewrite query rewrite rules
pg_seclabel security labels on database objects
pg_sequence information about sequences
pg_shdepend dependencies on shared objects
pg_shdescription comments on shared objects
pg_shseclabel security labels on shared database objects
pg_statistic planner statistics
pg_statistic_ext extended planner statistics (definition)
pg_statistic_ext_data extended planner statistics (built statistics)
pg_subscription logical replication subscriptions
pg_subscription_rel relation state for subscriptions
pg_tablespace tablespaces within this database cluster
pg_transform transforms (data type to procedural language

conversions)
pg_trigger triggers
pg_ts_config text search configurations
pg_ts_config_map text search configurations' token mappings
pg_ts_dict text search dictionaries
pg_ts_parser text search parsers
pg_ts_template text search templates
pg_type data types
pg_user_mapping mappings of users to foreign servers

49.2. pg_aggregate

1831

System Catalogs

The catalog pg_aggregate stores information about aggregate functions. An aggregate function is a
function that operates on a set of values (typically one column from each row that matches a query
condition) and returns a single value computed from all these values. Typical aggregate functions are
sum, count, and max. Each entry in pg_aggregate is an extension of an entry in pg_proc. The pg_proc
entry carries the aggregate's name, input and output data types, and other information that is similar
to ordinary functions.

Table 49.2. pg_aggregate Columns

Column Type
Description

aggfnoid regproc (references pg_proc .oid)
pg_proc OID of the aggregate function

aggkind char
Aggregate kind: n for “normal” aggregates, o for “ordered-set” aggregates, or h for
“hypothetical-set” aggregates

aggnumdirectargs int2
Number of direct (non-aggregated) arguments of an ordered-set or hypothetical-set
aggregate, counting a variadic array as one argument. If equal to pronargs, the aggregate
must be variadic and the variadic array describes the aggregated arguments as well as the
final direct arguments. Always zero for normal aggregates.

aggtransfn regproc (references pg_proc .oid)
Transition function

aggfinalfn regproc (references pg_proc .oid)
Final function (zero if none)

aggcombinefn regproc (references pg_proc .oid)
Combine function (zero if none)

aggserialfn regproc (references pg_proc .oid)
Serialization function (zero if none)

aggdeserialfn regproc (references pg_proc .oid)
Deserialization function (zero if none)

aggmtransfn regproc (references pg_proc .oid)
Forward transition function for moving-aggregate mode (zero if none)

aggminvtransfn regproc (references pg_proc .oid)
Inverse transition function for moving-aggregate mode (zero if none)

aggmfinalfn regproc (references pg_proc .oid)
Final function for moving-aggregate mode (zero if none)

aggfinalextra bool
True to pass extra dummy arguments to aggfinalfn

aggmfinalextra bool
True to pass extra dummy arguments to aggmfinalfn

aggfinalmodify char
Whether aggfinalfn modifies the transition state value: r if it is read-only, s if the
aggtransfn cannot be applied after the aggfinalfn, or w if it writes on the value

aggmfinalmodify char
Like aggfinalmodify, but for the aggmfinalfn

aggsortop oid (references pg_operator .oid)
Associated sort operator (zero if none)

aggtranstype oid (references pg_type .oid)
Data type of the aggregate function's internal transition (state) data

aggtransspace int4

1832

System Catalogs

Column Type
Description
Approximate average size (in bytes) of the transition state data, or zero to use a default
estimate

aggmtranstype oid (references pg_type .oid)
Data type of the aggregate function's internal transition (state) data for moving-aggregate
mode (zero if none)

aggmtransspace int4
Approximate average size (in bytes) of the transition state data for moving-aggregate mode,
 or zero to use a default estimate

agginitval text
The initial value of the transition state. This is a text field containing the initial value in its
external string representation. If this field is null, the transition state value starts out null.

aggminitval text
The initial value of the transition state for moving-aggregate mode. This is a text field
containing the initial value in its external string representation. If this field is null, the
transition state value starts out null.

New aggregate functions are registered with the CREATE AGGREGATE command. See Section 35.12
for more information about writing aggregate functions and the meaning of the transition functions, etc.

49.3. pg_am
The catalog pg_am stores information about relation access methods. There is one row for each
access method supported by the system. Currently, only tables and indexes have access methods. The
requirements for table and index access methods are discussed in detail in Chapter 56 and Chapter 57
respectively.

Table 49.3. pg_am Columns

Column Type
Description

oid oid
Row identifier

amname name
Name of the access method

amhandler regproc (references pg_proc .oid)
OID of a handler function that is responsible for supplying information about the access
method

amtype char
t = table (including materialized views), i = index.

Note
Before Postgres Pro 9.6, pg_am contained many additional columns representing properties of
index access methods. That data is now only directly visible at the C code level. However,
pg_index_column_has_property() and related functions have been added to allow SQL queries
to inspect index access method properties; see Table 9.68.

49.4. pg_amop
The catalog pg_amop stores information about operators associated with access method operator
families. There is one row for each operator that is a member of an operator family. A family member can

1833

System Catalogs

be either a search operator or an ordering operator. An operator can appear in more than one family,
but cannot appear in more than one search position nor more than one ordering position within a family.
(It is allowed, though unlikely, for an operator to be used for both search and ordering purposes.)

Table 49.4. pg_amop Columns

Column Type
Description

oid oid
Row identifier

amopfamily oid (references pg_opfamily .oid)
The operator family this entry is for

amoplefttype oid (references pg_type .oid)
Left-hand input data type of operator

amoprighttype oid (references pg_type .oid)
Right-hand input data type of operator

amopstrategy int2
Operator strategy number

amoppurpose char
Operator purpose, either s for search or o for ordering

amopopr oid (references pg_operator .oid)
OID of the operator

amopmethod oid (references pg_am .oid)
Index access method operator family is for

amopsortfamily oid (references pg_opfamily .oid)
The B-tree operator family this entry sorts according to, if an ordering operator; zero if a
search operator

A “search” operator entry indicates that an index of this operator family can be searched to find all rows
satisfying WHERE indexed_column operator constant. Obviously, such an operator must return boolean,
and its left-hand input type must match the index's column data type.

An “ordering” operator entry indicates that an index of this operator family can be scanned to return
rows in the order represented by ORDER BY indexed_column operator constant. Such an operator could
return any sortable data type, though again its left-hand input type must match the index's column data
type. The exact semantics of the ORDER BY are specified by the amopsortfamily column, which must
reference a B-tree operator family for the operator's result type.

Note
At present, it's assumed that the sort order for an ordering operator is the default for the
referenced operator family, i.e., ASC NULLS LAST. This might someday be relaxed by adding
additional columns to specify sort options explicitly.

An entry's amopmethod must match the opfmethod of its containing operator family (including
amopmethod here is an intentional denormalization of the catalog structure for performance reasons).
Also, amoplefttype and amoprighttype must match the oprleft and oprright fields of the referenced
pg_operator entry.

49.5. pg_amproc
The catalog pg_amproc stores information about support functions associated with access method
operator families. There is one row for each support function belonging to an operator family.

1834

System Catalogs

Table 49.5. pg_amproc Columns

Column Type
Description

oid oid
Row identifier

amprocfamily oid (references pg_opfamily .oid)
The operator family this entry is for

amproclefttype oid (references pg_type .oid)
Left-hand input data type of associated operator

amprocrighttype oid (references pg_type .oid)
Right-hand input data type of associated operator

amprocnum int2
Support function number

amproc regproc (references pg_proc .oid)
OID of the function

The usual interpretation of the amproclefttype and amprocrighttype fields is that they identify the left
and right input types of the operator(s) that a particular support function supports. For some access
methods these match the input data type(s) of the support function itself, for others not. There is a notion
of “default” support functions for an index, which are those with amproclefttype and amprocrighttype
both equal to the index operator class's opcintype.

49.6. pg_attrdef
The catalog pg_attrdef stores column default values. The main information about columns is stored in
pg_attribute. Only columns for which a default value has been explicitly set will have an entry here.

Table 49.6. pg_attrdef Columns

Column Type
Description

oid oid
Row identifier

adrelid oid (references pg_class .oid)
The table this column belongs to

adnum int2 (references pg_attribute .attnum)
The number of the column

adbin pg_node_tree
The column default value, in nodeToString() representation. Use pg_get_expr(adbin,
adrelid) to convert it to an SQL expression.

49.7. pg_attribute
The catalog pg_attribute stores information about table columns. There will be exactly one
pg_attribute row for every column in every table in the database. (There will also be attribute entries
for indexes, and indeed all objects that have pg_class entries.)

The term attribute is equivalent to column and is used for historical reasons.

Table 49.7. pg_attribute Columns

Column Type
Description

attrelid oid (references pg_class .oid)
The table this column belongs to

1835

System Catalogs

Column Type
Description

attname name
The column name

atttypid oid (references pg_type .oid)
The data type of this column

attstattarget int4
attstattarget controls the level of detail of statistics accumulated for this column by
ANALYZE. A zero value indicates that no statistics should be collected. A negative value says
to use the system default statistics target. The exact meaning of positive values is data type-
dependent. For scalar data types, attstattarget is both the target number of “most common
values” to collect, and the target number of histogram bins to create.

attlen int2
A copy of pg_type.typlen of this column's type

attnum int2
The number of the column. Ordinary columns are numbered from 1 up. System columns, such
as ctid, have (arbitrary) negative numbers.

attndims int4
Number of dimensions, if the column is an array type; otherwise 0. (Presently, the number
of dimensions of an array is not enforced, so any nonzero value effectively means “it's an
array”.)

attcacheoff int4
Always -1 in storage, but when loaded into a row descriptor in memory this might be updated
to cache the offset of the attribute within the row

atttypmod int4
atttypmod records type-specific data supplied at table creation time (for example, the
maximum length of a varchar column). It is passed to type-specific input functions and length
coercion functions. The value will generally be -1 for types that do not need atttypmod.

attbyval bool
A copy of pg_type.typbyval of this column's type

attstorage char
Normally a copy of pg_type.typstorage of this column's type. For TOAST-able data types,
 this can be altered after column creation to control storage policy.

attalign char
A copy of pg_type.typalign of this column's type

attnotnull bool
This represents a not-null constraint.

atthasdef bool
This column has a default expression or generation expression, in which case there will be a
corresponding entry in the pg_attrdef catalog that actually defines the expression. (Check
attgenerated to determine whether this is a default or a generation expression.)

atthasmissing bool
This column has a value which is used where the column is entirely missing from the row, as
happens when a column is added with a non-volatile DEFAULT value after the row is created.
The actual value used is stored in the attmissingval column.

attidentity char
If a zero byte (''), then not an identity column. Otherwise, a = generated always, d =
generated by default.

attgenerated char

1836

System Catalogs

Column Type
Description
If a zero byte (''), then not a generated column. Otherwise, s = stored. (Other values might
be added in the future.)

attisdropped bool
This column has been dropped and is no longer valid. A dropped column is still physically
present in the table, but is ignored by the parser and so cannot be accessed via SQL.

attislocal bool
This column is defined locally in the relation. Note that a column can be locally defined and
inherited simultaneously.

attinhcount int4
The number of direct ancestors this column has. A column with a nonzero number of
ancestors cannot be dropped nor renamed.

attcollation oid (references pg_collation .oid)
The defined collation of the column, or zero if the column is not of a collatable data type.

attacl aclitem[]
Column-level access privileges, if any have been granted specifically on this column

attoptions text[]
Attribute-level options, as “keyword=value” strings

attfdwoptions text[]
Attribute-level foreign data wrapper options, as “keyword=value” strings

attmissingval anyarray
This column has a one element array containing the value used when the column is entirely
missing from the row, as happens when the column is added with a non-volatile DEFAULT value
after the row is created. The value is only used when atthasmissing is true. If there is no
value the column is null.

In a dropped column's pg_attribute entry, atttypid is reset to zero, but attlen and the other fields
copied from pg_type are still valid. This arrangement is needed to cope with the situation where the
dropped column's data type was later dropped, and so there is no pg_type row anymore. attlen and
the other fields can be used to interpret the contents of a row of the table.

49.8. pg_authid
The catalog pg_authid contains information about database authorization identifiers (roles). A role
subsumes the concepts of “users” and “groups”. A user is essentially just a role with the rolcanlogin
flag set. Any role (with or without rolcanlogin) can have other roles as members; see pg_auth_members.

Since this catalog contains passwords, it must not be publicly readable. pg_roles is a publicly readable
view on pg_authid that blanks out the password field.

Chapter 20 contains detailed information about user and privilege management.

Because user identities are cluster-wide, pg_authid is shared across all databases of a cluster: there is
only one copy of pg_authid per cluster, not one per database.

Table 49.8. pg_authid Columns

Column Type
Description

oid oid
Row identifier

rolname name
Role name

1837

System Catalogs

Column Type
Description

rolsuper bool
Role has superuser privileges

rolinherit bool
Role automatically inherits privileges of roles it is a member of

rolcreaterole bool
Role can create more roles

rolcreatedb bool
Role can create databases

rolcanlogin bool
Role can log in. That is, this role can be given as the initial session authorization identifier.

rolreplication bool
Role is a replication role. A replication role can initiate replication connections and create
and drop replication slots.

rolbypassrls bool
Role bypasses every row level security policy, see Section 5.8 for more information.

rolconnlimit int4
For roles that can log in, this sets maximum number of concurrent connections this role can
make. -1 means no limit.

rolpassword text
Password (possibly encrypted); null if none. The format depends on the form of encryption
used.

rolvaliduntil timestamptz
Password expiry time (only used for password authentication); null if no expiration

For an MD5 encrypted password, rolpassword column will begin with the string md5 followed by a
32-character hexadecimal MD5 hash. The MD5 hash will be of the user's password concatenated to
their user name. For example, if user joe has password xyzzy, Postgres Pro will store the md5 hash
of xyzzyjoe.

If the password is encrypted with SCRAM-SHA-256, it has the format:
SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:<ServerKey>

where salt, StoredKey and ServerKey are in Base64 encoded format. This format is the same as that
specified by RFC 5803.

A password that does not follow either of those formats is assumed to be unencrypted.

49.9. pg_auth_members
The catalog pg_auth_members shows the membership relations between roles. Any non-circular set of
relationships is allowed.

Because user identities are cluster-wide, pg_auth_members is shared across all databases of a cluster:
there is only one copy of pg_auth_members per cluster, not one per database.

Table 49.9. pg_auth_members Columns

Column Type
Description

roleid oid (references pg_authid .oid)
ID of a role that has a member

member oid (references pg_authid .oid)
ID of a role that is a member of roleid

1838

System Catalogs

Column Type
Description

grantor oid (references pg_authid .oid)
ID of the role that granted this membership

admin_option bool
True if member can grant membership in roleid to others

49.10. pg_cast
The catalog pg_cast stores data type conversion paths, both built-in and user-defined.

It should be noted that pg_cast does not represent every type conversion that the system knows how
to perform; only those that cannot be deduced from some generic rule. For example, casting between a
domain and its base type is not explicitly represented in pg_cast. Another important exception is that
“automatic I/O conversion casts”, those performed using a data type's own I/O functions to convert to
or from text or other string types, are not explicitly represented in pg_cast.

Table 49.10. pg_cast Columns

Column Type
Description

oid oid
Row identifier

castsource oid (references pg_type .oid)
OID of the source data type

casttarget oid (references pg_type .oid)
OID of the target data type

castfunc oid (references pg_proc .oid)
The OID of the function to use to perform this cast. Zero is stored if the cast method doesn't
require a function.

castcontext char
Indicates what contexts the cast can be invoked in. e means only as an explicit cast (using
CAST or :: syntax). a means implicitly in assignment to a target column, as well as explicitly. i
means implicitly in expressions, as well as the other cases.

castmethod char
Indicates how the cast is performed. f means that the function specified in the castfunc field
is used. i means that the input/output functions are used. b means that the types are binary-
coercible, thus no conversion is required.

The cast functions listed in pg_cast must always take the cast source type as their first argument type,
and return the cast destination type as their result type. A cast function can have up to three arguments.
The second argument, if present, must be type integer; it receives the type modifier associated with the
destination type, or -1 if there is none. The third argument, if present, must be type boolean; it receives
true if the cast is an explicit cast, false otherwise.

It is legitimate to create a pg_cast entry in which the source and target types are the same, if the
associated function takes more than one argument. Such entries represent “length coercion functions”
that coerce values of the type to be legal for a particular type modifier value.

When a pg_cast entry has different source and target types and a function that takes more than one
argument, it represents converting from one type to another and applying a length coercion in a single
step. When no such entry is available, coercion to a type that uses a type modifier involves two steps,
one to convert between data types and a second to apply the modifier.

49.11. pg_class

1839

System Catalogs

The catalog pg_class catalogs tables and most everything else that has columns or is otherwise similar
to a table. This includes indexes (but see also pg_index), sequences (but see also pg_sequence), views,
materialized views, composite types, and TOAST tables; see relkind. Below, when we mean all of these
kinds of objects we speak of “relations”. Not all columns are meaningful for all relation types.

Table 49.11. pg_class Columns

Column Type
Description

oid oid
Row identifier

relname name
Name of the table, index, view, etc.

relnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this relation

reltype oid (references pg_type .oid)
The OID of the data type that corresponds to this table's row type, if any (zero for indexes,
 which have no pg_type entry)

reloftype oid (references pg_type .oid)
For typed tables, the OID of the underlying composite type, zero for all other relations

relowner oid (references pg_authid .oid)
Owner of the relation

relam oid (references pg_am .oid)
If this is a table or an index, the access method used (heap, B-tree, hash, etc.)

relfilenode oid
Name of the on-disk file of this relation; zero means this is a “mapped” relation whose disk
file name is determined by low-level state

reltablespace oid (references pg_tablespace .oid)
The tablespace in which this relation is stored. If zero, the database's default tablespace is
implied. (Not meaningful if the relation has no on-disk file.)

relpages int4
Size of the on-disk representation of this table in pages (of size BLCKSZ). This is only an
estimate used by the planner. It is updated by VACUUM, ANALYZE, and a few DDL commands
such as CREATE INDEX.

reltuples float4
Number of live rows in the table. This is only an estimate used by the planner. It is updated by
VACUUM, ANALYZE, and a few DDL commands such as CREATE INDEX.

relallvisible int4
Number of pages that are marked all-visible in the table's visibility map. This is only an
estimate used by the planner. It is updated by VACUUM, ANALYZE, and a few DDL commands
such as CREATE INDEX.

reltoastrelid oid (references pg_class .oid)
OID of the TOAST table associated with this table, 0 if none. The TOAST table stores large
attributes “out of line” in a secondary table.

relhasindex bool
True if this is a table and it has (or recently had) any indexes

relisshared bool
True if this table is shared across all databases in the cluster. Only certain system catalogs (
such as pg_database) are shared.

relpersistence char
p = permanent table, u = unlogged table, t = temporary table

1840

System Catalogs

Column Type
Description

relkind char
r = ordinary table, i = index, S = sequence, t = TOAST table, v = view, m = materialized
view, c = composite type, f = foreign table, p = partitioned table, I = partitioned index

relnatts int2
Number of user columns in the relation (system columns not counted). There must be this
many corresponding entries in pg_attribute . See also pg_attribute.attnum .

relchecks int2
Number of CHECK constraints on the table; see pg_constraint catalog

relhasrules bool
True if table has (or once had) rules; see pg_rewrite catalog

relhastriggers bool
True if table has (or once had) triggers; see pg_trigger catalog

relhassubclass bool
True if table or index has (or once had) any inheritance children

relrowsecurity bool
True if table has row level security enabled; see pg_policy catalog

relforcerowsecurity bool
True if row level security (when enabled) will also apply to table owner; see pg_policy
catalog

relispopulated bool
True if relation is populated (this is true for all relations other than some materialized views)

relreplident char
Columns used to form “replica identity” for rows: d = default (primary key, if any), n =
nothing, f = all columns, i = index with indisreplident set (same as nothing if the index
used has been dropped)

relispartition bool
True if table or index is a partition

relrewrite oid (references pg_class .oid)
For new relations being written during a DDL operation that requires a table rewrite, this
contains the OID of the original relation; otherwise 0. That state is only visible internally; this
field should never contain anything other than 0 for a user-visible relation.

relfrozenxid xid
All transaction IDs before this one have been replaced with a permanent (“frozen”)
transaction ID in this table. This is used to track whether the table needs to be vacuumed
in order to prevent transaction ID wraparound or to allow pg_xact to be shrunk. Zero (
InvalidTransactionId) if the relation is not a table.

relminmxid xid
All multixact IDs before this one have been replaced by a transaction ID in this table. This
is used to track whether the table needs to be vacuumed in order to prevent multixact ID
wraparound or to allow pg_multixact to be shrunk. Zero (InvalidMultiXactId) if the
relation is not a table.

relacl aclitem[]
Access privileges; see Section 5.7 for details

reloptions text[]
Access-method-specific options, as “keyword=value” strings

relpartbound pg_node_tree
If table is a partition (see relispartition), internal representation of the partition bound

1841

System Catalogs

Several of the Boolean flags in pg_class are maintained lazily: they are guaranteed to be true if that's
the correct state, but may not be reset to false immediately when the condition is no longer true. For
example, relhasindex is set by CREATE INDEX, but it is never cleared by DROP INDEX. Instead, VACUUM
clears relhasindex if it finds the table has no indexes. This arrangement avoids race conditions and
improves concurrency.

49.12. pg_collation
The catalog pg_collation describes the available collations, which are essentially mappings from an
SQL name to operating system locale categories. See Section 22.2 for more information.

Table 49.12. pg_collation Columns

Column Type
Description

oid oid
Row identifier

collname name
Collation name (unique per namespace and encoding)

collnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this collation

collowner oid (references pg_authid .oid)
Owner of the collation

collprovider char
Provider of the collation: d = database default, c = libc, i = icu

collisdeterministic bool
Is the collation deterministic?

collencoding int4
Encoding in which the collation is applicable, or -1 if it works for any encoding

collcollate name
LC_COLLATE for this collation object

collctype name
LC_CTYPE for this collation object

collversion text
Provider-specific version of the collation. This is recorded when the collation is created and
then checked when it is used, to detect changes in the collation definition that could lead to
data corruption.

Note that the unique key on this catalog is (collname, collencoding, collnamespace) not just (collname,
collnamespace). Postgres Pro generally ignores all collations that do not have collencoding equal to
either the current database's encoding or -1, and creation of new entries with the same name as an entry
with collencoding = -1 is forbidden. Therefore it is sufficient to use a qualified SQL name (schema.name)
to identify a collation, even though this is not unique according to the catalog definition. The reason
for defining the catalog this way is that initdb fills it in at cluster initialization time with entries for all
locales available on the system, so it must be able to hold entries for all encodings that might ever be
used in the cluster.

In the template0 database, it could be useful to create collations whose encoding does not match the
database encoding, since they could match the encodings of databases later cloned from template0.
This would currently have to be done manually.

49.13. pg_constraint

1842

System Catalogs

The catalog pg_constraint stores check, primary key, unique, foreign key, and exclusion constraints
on tables. (Column constraints are not treated specially. Every column constraint is equivalent to some
table constraint.) Not-null constraints are represented in the pg_attribute catalog, not here.

User-defined constraint triggers (created with CREATE CONSTRAINT TRIGGER) also give rise to an entry
in this table.

Check constraints on domains are stored here, too.

Table 49.13. pg_constraint Columns

Column Type
Description

oid oid
Row identifier

conname name
Constraint name (not necessarily unique!)

connamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this constraint

contype char
c = check constraint, f = foreign key constraint, p = primary key constraint, u = unique
constraint, t = constraint trigger, x = exclusion constraint

condeferrable bool
Is the constraint deferrable?

condeferred bool
Is the constraint deferred by default?

convalidated bool
Has the constraint been validated? Currently, can only be false for foreign keys and CHECK
constraints

conrelid oid (references pg_class .oid)
The table this constraint is on; 0 if not a table constraint

contypid oid (references pg_type .oid)
The domain this constraint is on; 0 if not a domain constraint

conindid oid (references pg_class .oid)
The index supporting this constraint, if it's a unique, primary key, foreign key, or exclusion
constraint; else 0

conparentid oid (references pg_constraint .oid)
The corresponding constraint in the parent partitioned table, if this is a constraint in a
partition; else 0

confrelid oid (references pg_class .oid)
If a foreign key, the referenced table; else 0

confupdtype char
Foreign key update action code: a = no action, r = restrict, c = cascade, n = set null, d = set
default

confdeltype char
Foreign key deletion action code: a = no action, r = restrict, c = cascade, n = set null, d = set
default

confmatchtype char
Foreign key match type: f = full, p = partial, s = simple

conislocal bool
This constraint is defined locally for the relation. Note that a constraint can be locally defined
and inherited simultaneously.

1843

System Catalogs

Column Type
Description

coninhcount int4
The number of direct inheritance ancestors this constraint has. A constraint with a nonzero
number of ancestors cannot be dropped nor renamed.

connoinherit bool
This constraint is defined locally for the relation. It is a non-inheritable constraint.

conkey int2[] (references pg_attribute .attnum)
If a table constraint (including foreign keys, but not constraint triggers), list of the
constrained columns

confkey int2[] (references pg_attribute .attnum)
If a foreign key, list of the referenced columns

conpfeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for PK = FK comparisons

conppeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for PK = PK comparisons

conffeqop oid[] (references pg_operator .oid)
If a foreign key, list of the equality operators for FK = FK comparisons

conexclop oid[] (references pg_operator .oid)
If an exclusion constraint, list of the per-column exclusion operators

conbin pg_node_tree
If a check constraint, an internal representation of the expression. (It's recommended to use
pg_get_constraintdef() to extract the definition of a check constraint.)

In the case of an exclusion constraint, conkey is only useful for constraint elements that are simple
column references. For other cases, a zero appears in conkey and the associated index must be consulted
to discover the expression that is constrained. (conkey thus has the same contents as pg_index.indkey
for the index.)

Note
pg_class.relchecks needs to agree with the number of check-constraint entries found in this
table for each relation.

49.14. pg_conversion
The catalog pg_conversion describes encoding conversion functions. See CREATE CONVERSION for
more information.

Table 49.14. pg_conversion Columns

Column Type
Description

oid oid
Row identifier

conname name
Conversion name (unique within a namespace)

connamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this conversion

conowner oid (references pg_authid .oid)
Owner of the conversion

conforencoding int4

1844

System Catalogs

Column Type
Description
Source encoding ID

contoencoding int4
Destination encoding ID

conproc regproc (references pg_proc .oid)
Conversion function

condefault bool
True if this is the default conversion

49.15. pg_database
The catalog pg_database stores information about the available databases. Databases are created with
the CREATE DATABASE command. Consult Chapter 21 for details about the meaning of some of the
parameters.

Unlike most system catalogs, pg_database is shared across all databases of a cluster: there is only one
copy of pg_database per cluster, not one per database.

Table 49.15. pg_database Columns

Column Type
Description

oid oid
Row identifier

datname name
Database name

datdba oid (references pg_authid .oid)
Owner of the database, usually the user who created it

encoding int4
Character encoding for this database (pg_encoding_to_char() can translate this
number to the encoding name)

datcollate name
LC_COLLATE for this database

datctype name
LC_CTYPE for this database

datistemplate bool
If true, then this database can be cloned by any user with CREATEDB privileges; if false, then
only superusers or the owner of the database can clone it.

datallowconn bool
If false then no one can connect to this database. This is used to protect the template0
database from being altered.

datconnlimit int4
Sets maximum number of concurrent connections that can be made to this database. -1
means no limit.

datlastsysoid oid
Last system OID in the database; useful particularly to pg_dump

datfrozenxid xid
All transaction IDs before this one have been replaced with a permanent (“frozen”)
transaction ID in this database. This is used to track whether the database needs to be
vacuumed in order to prevent transaction ID wraparound or to allow pg_xact to be shrunk.
It is the minimum of the per-table pg_class .relfrozenxid values.

1845

System Catalogs

Column Type
Description

datminmxid xid
All multixact IDs before this one have been replaced with a transaction ID in this database.
This is used to track whether the database needs to be vacuumed in order to prevent
multixact ID wraparound or to allow pg_multixact to be shrunk. It is the minimum of the
per-table pg_class .relminmxid values.

dattablespace oid (references pg_tablespace .oid)
The default tablespace for the database. Within this database, all tables for which pg_
class .reltablespace is zero will be stored in this tablespace; in particular, all the non-
shared system catalogs will be there.

datacl aclitem[]
Access privileges; see Section 5.7 for details

49.16. pg_db_role_setting
The catalog pg_db_role_setting records the default values that have been set for run-time
configuration variables, for each role and database combination.

Unlike most system catalogs, pg_db_role_setting is shared across all databases of a cluster: there is
only one copy of pg_db_role_setting per cluster, not one per database.

Table 49.16. pg_db_role_setting Columns

Column Type
Description

setdatabase oid (references pg_database .oid)
The OID of the database the setting is applicable to, or zero if not database-specific

setrole oid (references pg_authid .oid)
The OID of the role the setting is applicable to, or zero if not role-specific

setconfig text[]
Defaults for run-time configuration variables

49.17. pg_default_acl
The catalog pg_default_acl stores initial privileges to be assigned to newly created objects.

Table 49.17. pg_default_acl Columns

Column Type
Description

oid oid
Row identifier

defaclrole oid (references pg_authid .oid)
The OID of the role associated with this entry

defaclnamespace oid (references pg_namespace .oid)
The OID of the namespace associated with this entry, or 0 if none

defaclobjtype char
Type of object this entry is for: r = relation (table, view), S = sequence, f = function, T =
type, n = schema

defaclacl aclitem[]
Access privileges that this type of object should have on creation

A pg_default_acl entry shows the initial privileges to be assigned to an object belonging to the indicated
user. There are currently two types of entry: “global” entries with defaclnamespace = 0, and “per-

1846

System Catalogs

schema” entries that reference a particular schema. If a global entry is present then it overrides the
normal hard-wired default privileges for the object type. A per-schema entry, if present, represents
privileges to be added to the global or hard-wired default privileges.

Note that when an ACL entry in another catalog is null, it is taken to represent the hard-wired default
privileges for its object, not whatever might be in pg_default_acl at the moment. pg_default_acl is
only consulted during object creation.

49.18. pg_depend
The catalog pg_depend records the dependency relationships between database objects. This
information allows DROP commands to find which other objects must be dropped by DROP CASCADE or
prevent dropping in the DROP RESTRICT case.

See also pg_shdepend, which performs a similar function for dependencies involving objects that are
shared across a database cluster.

Table 49.18. pg_depend Columns

Column Type
Description

classid oid (references pg_class .oid)
The OID of the system catalog the dependent object is in

objid oid (references any OID column)
The OID of the specific dependent object

objsubid int4
For a table column, this is the column number (the objid and classid refer to the table
itself). For all other object types, this column is zero.

refclassid oid (references pg_class .oid)
The OID of the system catalog the referenced object is in

refobjid oid (references any OID column)
The OID of the specific referenced object

refobjsubid int4
For a table column, this is the column number (the refobjid and refclassid refer to the
table itself). For all other object types, this column is zero.

deptype char
A code defining the specific semantics of this dependency relationship; see text

In all cases, a pg_depend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:
DEPENDENCY_NORMAL (n)

A normal relationship between separately-created objects. The dependent object can be dropped
without affecting the referenced object. The referenced object can only be dropped by specifying
CASCADE, in which case the dependent object is dropped, too. Example: a table column has a normal
dependency on its data type.

DEPENDENCY_AUTO (a)
The dependent object can be dropped separately from the referenced object, and should be
automatically dropped (regardless of RESTRICT or CASCADE mode) if the referenced object is dropped.
Example: a named constraint on a table is made auto-dependent on the table, so that it will go away
if the table is dropped.

DEPENDENCY_INTERNAL (i)
The dependent object was created as part of creation of the referenced object, and is really just a
part of its internal implementation. A direct DROP of the dependent object will be disallowed outright

1847

System Catalogs

(we'll tell the user to issue a DROP against the referenced object, instead). A DROP of the referenced
object will result in automatically dropping the dependent object whether CASCADE is specified or not.
If the dependent object has to be dropped due to a dependency on some other object being removed,
its drop is converted to a drop of the referenced object, so that NORMAL and AUTO dependencies of
the dependent object behave much like they were dependencies of the referenced object. Example:
a view's ON SELECT rule is made internally dependent on the view, preventing it from being dropped
while the view remains. Dependencies of the rule (such as tables it refers to) act as if they were
dependencies of the view.

DEPENDENCY_PARTITION_PRI (P)
DEPENDENCY_PARTITION_SEC (S)

The dependent object was created as part of creation of the referenced object, and is really just a part
of its internal implementation; however, unlike INTERNAL, there is more than one such referenced
object. The dependent object must not be dropped unless at least one of these referenced objects is
dropped; if any one is, the dependent object should be dropped whether or not CASCADE is specified.
Also unlike INTERNAL, a drop of some other object that the dependent object depends on does not
result in automatic deletion of any partition-referenced object. Hence, if the drop does not cascade
to at least one of these objects via some other path, it will be refused. (In most cases, the dependent
object shares all its non-partition dependencies with at least one partition-referenced object, so that
this restriction does not result in blocking any cascaded delete.) Primary and secondary partition
dependencies behave identically except that the primary dependency is preferred for use in error
messages; hence, a partition-dependent object should have one primary partition dependency and
one or more secondary partition dependencies. Note that partition dependencies are made in
addition to, not instead of, any dependencies the object would normally have. This simplifies ATTACH/
DETACH PARTITION operations: the partition dependencies need only be added or removed. Example:
a child partitioned index is made partition-dependent on both the partition table it is on and the
parent partitioned index, so that it goes away if either of those is dropped, but not otherwise. The
dependency on the parent index is primary, so that if the user tries to drop the child partitioned
index, the error message will suggest dropping the parent index instead (not the table).

DEPENDENCY_EXTENSION (e)

The dependent object is a member of the extension that is the referenced object (see pg_extension).
The dependent object can be dropped only via DROP EXTENSION on the referenced object. Functionally
this dependency type acts the same as an INTERNAL dependency, but it's kept separate for clarity
and to simplify pg_dump.

DEPENDENCY_AUTO_EXTENSION (x)

The dependent object is not a member of the extension that is the referenced object (and so it
should not be ignored by pg_dump), but it cannot function without the extension and should be auto-
dropped if the extension is. The dependent object may be dropped on its own as well. Functionally
this dependency type acts the same as an AUTO dependency, but it's kept separate for clarity and
to simplify pg_dump.

DEPENDENCY_PIN (p)

There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

Other dependency flavors might be needed in future.

Note that it's quite possible for two objects to be linked by more than one pg_depend entry. For example,
a child partitioned index would have both a partition-type dependency on its associated partition table,
and an auto dependency on each column of that table that it indexes. This sort of situation expresses
the union of multiple dependency semantics. A dependent object can be dropped without CASCADE if
any of its dependencies satisfies its condition for automatic dropping. Conversely, all the dependencies'
restrictions about which objects must be dropped together must be satisfied.

1848

System Catalogs

49.19. pg_description
The catalog pg_description stores optional descriptions (comments) for each database object.
Descriptions can be manipulated with the COMMENT command and viewed with psql's \d commands.
Descriptions of many built-in system objects are provided in the initial contents of pg_description.

See also pg_shdescription, which performs a similar function for descriptions involving objects that
are shared across a database cluster.

Table 49.19. pg_description Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this description pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a comment on a table column, this is the column number (the objoid and classoid refer
to the table itself). For all other object types, this column is zero.

description text
Arbitrary text that serves as the description of this object

49.20. pg_enum
The pg_enum catalog contains entries showing the values and labels for each enum type. The internal
representation of a given enum value is actually the OID of its associated row in pg_enum.

Table 49.20. pg_enum Columns

Column Type
Description

oid oid
Row identifier

enumtypid oid (references pg_type .oid)
The OID of the pg_type entry owning this enum value

enumsortorder float4
The sort position of this enum value within its enum type

enumlabel name
The textual label for this enum value

The OIDs for pg_enum rows follow a special rule: even-numbered OIDs are guaranteed to be ordered in
the same way as the sort ordering of their enum type. That is, if two even OIDs belong to the same enum
type, the smaller OID must have the smaller enumsortorder value. Odd-numbered OID values need bear
no relationship to the sort order. This rule allows the enum comparison routines to avoid catalog lookups
in many common cases. The routines that create and alter enum types attempt to assign even OIDs to
enum values whenever possible.

When an enum type is created, its members are assigned sort-order positions 1..n. But members added
later might be given negative or fractional values of enumsortorder. The only requirement on these
values is that they be correctly ordered and unique within each enum type.

49.21. pg_event_trigger
The catalog pg_event_trigger stores event triggers. See Chapter 37 for more information.

1849

System Catalogs

Table 49.21. pg_event_trigger Columns

Column Type
Description

oid oid
Row identifier

evtname name
Trigger name (must be unique)

evtevent name
Identifies the event for which this trigger fires

evtowner oid (references pg_authid .oid)
Owner of the event trigger

evtfoid oid (references pg_proc .oid)
The function to be called

evtenabled char
Controls in which session_replication_role modes the event trigger fires. O = trigger fires in
“origin” and “local” modes, D = trigger is disabled, R = trigger fires in “replica” mode, A =
trigger fires always.

evttags text[]
Command tags for which this trigger will fire. If NULL, the firing of this trigger is not
restricted on the basis of the command tag.

49.22. pg_extension
The catalog pg_extension stores information about the installed extensions. See Section 35.17 for
details about extensions.

Table 49.22. pg_extension Columns

Column Type
Description

oid oid
Row identifier

extname name
Name of the extension

extowner oid (references pg_authid .oid)
Owner of the extension

extnamespace oid (references pg_namespace .oid)
Schema containing the extension's exported objects

extrelocatable bool
True if extension can be relocated to another schema

extversion text
Version name for the extension

extconfig oid[] (references pg_class .oid)
Array of regclass OIDs for the extension's configuration table(s), or NULL if none

extcondition text[]
Array of WHERE-clause filter conditions for the extension's configuration table(s), or NULL if
none

Note that unlike most catalogs with a “namespace” column, extnamespace is not meant to imply that the
extension belongs to that schema. Extension names are never schema-qualified. Rather, extnamespace
indicates the schema that contains most or all of the extension's objects. If extrelocatable is true, then
this schema must in fact contain all schema-qualifiable objects belonging to the extension.

1850

System Catalogs

49.23. pg_foreign_data_wrapper
The catalog pg_foreign_data_wrapper stores foreign-data wrapper definitions. A foreign-data wrapper
is the mechanism by which external data, residing on foreign servers, is accessed.

Table 49.23. pg_foreign_data_wrapper Columns

Column Type
Description

oid oid
Row identifier

fdwname name
Name of the foreign-data wrapper

fdwowner oid (references pg_authid .oid)
Owner of the foreign-data wrapper

fdwhandler oid (references pg_proc .oid)
References a handler function that is responsible for supplying execution routines for the
foreign-data wrapper. Zero if no handler is provided

fdwvalidator oid (references pg_proc .oid)
References a validator function that is responsible for checking the validity of the options
given to the foreign-data wrapper, as well as options for foreign servers and user mappings
using the foreign-data wrapper. Zero if no validator is provided

fdwacl aclitem[]
Access privileges; see Section 5.7 for details

fdwoptions text[]
Foreign-data wrapper specific options, as “keyword=value” strings

49.24. pg_foreign_server
The catalog pg_foreign_server stores foreign server definitions. A foreign server describes a source
of external data, such as a remote server. Foreign servers are accessed via foreign-data wrappers.

Table 49.24. pg_foreign_server Columns

Column Type
Description

oid oid
Row identifier

srvname name
Name of the foreign server

srvowner oid (references pg_authid .oid)
Owner of the foreign server

srvfdw oid (references pg_foreign_data_wrapper .oid)
OID of the foreign-data wrapper of this foreign server

srvtype text
Type of the server (optional)

srvversion text
Version of the server (optional)

srvacl aclitem[]
Access privileges; see Section 5.7 for details

srvoptions text[]
Foreign server specific options, as “keyword=value” strings

1851

System Catalogs

49.25. pg_foreign_table
The catalog pg_foreign_table contains auxiliary information about foreign tables. A foreign table is
primarily represented by a pg_class entry, just like a regular table. Its pg_foreign_table entry contains
the information that is pertinent only to foreign tables and not any other kind of relation.

Table 49.25. pg_foreign_table Columns

Column Type
Description

ftrelid oid (references pg_class .oid)
OID of the pg_class entry for this foreign table

ftserver oid (references pg_foreign_server .oid)
OID of the foreign server for this foreign table

ftoptions text[]
Foreign table options, as “keyword=value” strings

49.26. pg_index
The catalog pg_index contains part of the information about indexes. The rest is mostly in pg_class.

Table 49.26. pg_index Columns

Column Type
Description

indexrelid oid (references pg_class .oid)
The OID of the pg_class entry for this index

indrelid oid (references pg_class .oid)
The OID of the pg_class entry for the table this index is for

indnatts int2
The total number of columns in the index (duplicates pg_class.relnatts); this number
includes both key and included attributes

indnkeyatts int2
The number of key columns in the index, not counting any included columns, which are
merely stored and do not participate in the index semantics

indisunique bool
If true, this is a unique index

indisprimary bool
If true, this index represents the primary key of the table (indisunique should always be true
when this is true)

indisexclusion bool
If true, this index supports an exclusion constraint

indimmediate bool
If true, the uniqueness check is enforced immediately on insertion (irrelevant if indisunique
is not true)

indisclustered bool
If true, the table was last clustered on this index

indisvalid bool
If true, the index is currently valid for queries. False means the index is possibly incomplete:
it must still be modified by INSERT/UPDATE operations, but it cannot safely be used for queries.
If it is unique, the uniqueness property is not guaranteed true either.

indcheckxmin bool

1852

System Catalogs

Column Type
Description
If true, queries must not use the index until the xmin of this pg_index row is below their
TransactionXmin event horizon, because the table may contain broken HOT chains with
incompatible rows that they can see

indisready bool
If true, the index is currently ready for inserts. False means the index must be ignored by
INSERT/UPDATE operations.

indislive bool
If false, the index is in process of being dropped, and should be ignored for all purposes (
including HOT-safety decisions)

indisreplident bool
If true this index has been chosen as “replica identity” using ALTER TABLE ... REPLICA
IDENTITY USING INDEX ...

indkey int2vector (references pg_attribute .attnum)
This is an array of indnatts values that indicate which table columns this index indexes.
For example a value of 1 3 would mean that the first and the third table columns make up
the index entries. Key columns come before non-key (included) columns. A zero in this array
indicates that the corresponding index attribute is an expression over the table columns,
 rather than a simple column reference.

indcollation oidvector (references pg_collation .oid)
For each column in the index key (indnkeyatts values), this contains the OID of the collation
to use for the index, or zero if the column is not of a collatable data type.

indclass oidvector (references pg_opclass .oid)
For each column in the index key (indnkeyatts values), this contains the OID of the operator
class to use. See pg_opclass for details.

indoption int2vector
This is an array of indnkeyatts values that store per-column flag bits. The meaning of the
bits is defined by the index's access method.

indexprs pg_node_tree
Expression trees (in nodeToString() representation) for index attributes that are not simple
column references. This is a list with one element for each zero entry in indkey. Null if all
index attributes are simple references.

indpred pg_node_tree
Expression tree (in nodeToString() representation) for partial index predicate. Null if not a
partial index.

49.27. pg_inherits
The catalog pg_inherits records information about table and index inheritance hierarchies. There is
one entry for each direct parent-child table or index relationship in the database. (Indirect inheritance
can be determined by following chains of entries.)

Table 49.27. pg_inherits Columns

Column Type
Description

inhrelid oid (references pg_class .oid)
The OID of the child table or index

inhparent oid (references pg_class .oid)
The OID of the parent table or index

inhseqno int4

1853

System Catalogs

Column Type
Description
If there is more than one direct parent for a child table (multiple inheritance), this number
tells the order in which the inherited columns are to be arranged. The count starts at 1.
Indexes cannot have multiple inheritance, since they can only inherit when using declarative
partitioning.

49.28. pg_init_privs
The catalog pg_init_privs records information about the initial privileges of objects in the system.
There is one entry for each object in the database which has a non-default (non-NULL) initial set of
privileges.

Objects can have initial privileges either by having those privileges set when the system is initialized
(by initdb) or when the object is created during a CREATE EXTENSION and the extension script sets
initial privileges using the GRANT system. Note that the system will automatically handle recording of the
privileges during the extension script and that extension authors need only use the GRANT and REVOKE
statements in their script to have the privileges recorded. The privtype column indicates if the initial
privilege was set by initdb or during a CREATE EXTENSION command.

Objects which have initial privileges set by initdb will have entries where privtype is 'i', while objects
which have initial privileges set by CREATE EXTENSION will have entries where privtype is 'e'.

Table 49.28. pg_init_privs Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the specific object

classoid oid (references pg_class .oid)
The OID of the system catalog the object is in

objsubid int4
For a table column, this is the column number (the objoid and classoid refer to the table
itself). For all other object types, this column is zero.

privtype char
A code defining the type of initial privilege of this object; see text

initprivs aclitem[]
The initial access privileges; see Section 5.7 for details

49.29. pg_language
The catalog pg_language registers languages in which you can write functions or stored procedures.
See CREATE LANGUAGE and Chapter 39 for more information about language handlers.

Table 49.29. pg_language Columns

Column Type
Description

oid oid
Row identifier

lanname name
Name of the language

lanowner oid (references pg_authid .oid)
Owner of the language

lanispl bool

1854

System Catalogs

Column Type
Description
This is false for internal languages (such as SQL) and true for user-defined languages.
Currently, pg_dump still uses this to determine which languages need to be dumped, but this
might be replaced by a different mechanism in the future.

lanpltrusted bool
True if this is a trusted language, which means that it is believed not to grant access to
anything outside the normal SQL execution environment. Only superusers can create
functions in untrusted languages.

lanplcallfoid oid (references pg_proc .oid)
For noninternal languages this references the language handler, which is a special function
that is responsible for executing all functions that are written in the particular language

laninline oid (references pg_proc .oid)
This references a function that is responsible for executing “inline” anonymous code blocks (
DO blocks). Zero if inline blocks are not supported.

lanvalidator oid (references pg_proc .oid)
This references a language validator function that is responsible for checking the syntax and
validity of new functions when they are created. Zero if no validator is provided.

lanacl aclitem[]
Access privileges; see Section 5.7 for details

49.30. pg_largeobject
The catalog pg_largeobject holds the data making up “large objects”. A large object is identified by
an OID assigned when it is created. Each large object is broken into segments or “pages” small enough
to be conveniently stored as rows in pg_largeobject. The amount of data per page is defined to be
LOBLKSIZE (which is currently BLCKSZ/4, or typically 2 kB).

Prior to PostgreSQL 9.0, there was no permission structure associated with large objects. As a result,
pg_largeobject was publicly readable and could be used to obtain the OIDs (and contents) of all large
objects in the system. This is no longer the case; use pg_largeobject_metadata to obtain a list of large
object OIDs.

Table 49.30. pg_largeobject Columns

Column Type
Description

loid oid (references pg_largeobject_metadata .oid)
Identifier of the large object that includes this page

pageno int4
Page number of this page within its large object (counting from zero)

data bytea
Actual data stored in the large object. This will never be more than LOBLKSIZE bytes and
might be less.

Each row of pg_largeobject holds data for one page of a large object, beginning at byte offset (pageno
* LOBLKSIZE) within the object. The implementation allows sparse storage: pages might be missing, and
might be shorter than LOBLKSIZE bytes even if they are not the last page of the object. Missing regions
within a large object read as zeroes.

49.31. pg_largeobject_metadata
The catalog pg_largeobject_metadata holds metadata associated with large objects. The actual large
object data is stored in pg_largeobject.

1855

System Catalogs

Table 49.31. pg_largeobject_metadata Columns

Column Type
Description

oid oid
Row identifier

lomowner oid (references pg_authid .oid)
Owner of the large object

lomacl aclitem[]
Access privileges; see Section 5.7 for details

49.32. pg_namespace
The catalog pg_namespace stores namespaces. A namespace is the structure underlying SQL schemas:
each namespace can have a separate collection of relations, types, etc. without name conflicts.

Table 49.32. pg_namespace Columns

Column Type
Description

oid oid
Row identifier

nspname name
Name of the namespace

nspowner oid (references pg_authid .oid)
Owner of the namespace

nspacl aclitem[]
Access privileges; see Section 5.7 for details

49.33. pg_opclass
The catalog pg_opclass defines index access method operator classes. Each operator class defines
semantics for index columns of a particular data type and a particular index access method. An operator
class essentially specifies that a particular operator family is applicable to a particular indexable column
data type. The set of operators from the family that are actually usable with the indexed column are
whichever ones accept the column's data type as their left-hand input.

Operator classes are described at length in Section 35.16.

Table 49.33. pg_opclass Columns

Column Type
Description

oid oid
Row identifier

opcmethod oid (references pg_am .oid)
Index access method operator class is for

opcname name
Name of this operator class

opcnamespace oid (references pg_namespace .oid)
Namespace of this operator class

opcowner oid (references pg_authid .oid)
Owner of the operator class

opcfamily oid (references pg_opfamily .oid)

1856

System Catalogs

Column Type
Description
Operator family containing the operator class

opcintype oid (references pg_type .oid)
Data type that the operator class indexes

opcdefault bool
True if this operator class is the default for opcintype

opckeytype oid (references pg_type .oid)
Type of data stored in index, or zero if same as opcintype

An operator class's opcmethod must match the opfmethod of its containing operator family. Also, there
must be no more than one pg_opclass row having opcdefault true for any given combination of
opcmethod and opcintype.

49.34. pg_operator
The catalog pg_operator stores information about operators. See CREATE OPERATOR and
Section 35.14 for more information.

Table 49.34. pg_operator Columns

Column Type
Description

oid oid
Row identifier

oprname name
Name of the operator

oprnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this operator

oprowner oid (references pg_authid .oid)
Owner of the operator

oprkind char
b = infix (“both”), l = prefix (“left”), r = postfix (“right”)

oprcanmerge bool
This operator supports merge joins

oprcanhash bool
This operator supports hash joins

oprleft oid (references pg_type .oid)
Type of the left operand

oprright oid (references pg_type .oid)
Type of the right operand

oprresult oid (references pg_type .oid)
Type of the result

oprcom oid (references pg_operator .oid)
Commutator of this operator, if any

oprnegate oid (references pg_operator .oid)
Negator of this operator, if any

oprcode regproc (references pg_proc .oid)
Function that implements this operator

oprrest regproc (references pg_proc .oid)
Restriction selectivity estimation function for this operator

1857

System Catalogs

Column Type
Description

oprjoin regproc (references pg_proc .oid)
Join selectivity estimation function for this operator

Unused columns contain zeroes. For example, oprleft is zero for a prefix operator.

49.35. pg_opfamily
The catalog pg_opfamily defines operator families. Each operator family is a collection of operators
and associated support routines that implement the semantics specified for a particular index access
method. Furthermore, the operators in a family are all “compatible”, in a way that is specified by the
access method. The operator family concept allows cross-data-type operators to be used with indexes
and to be reasoned about using knowledge of access method semantics.

Operator families are described at length in Section 35.16.

Table 49.35. pg_opfamily Columns

Column Type
Description

oid oid
Row identifier

opfmethod oid (references pg_am .oid)
Index access method operator family is for

opfname name
Name of this operator family

opfnamespace oid (references pg_namespace .oid)
Namespace of this operator family

opfowner oid (references pg_authid .oid)
Owner of the operator family

The majority of the information defining an operator family is not in its pg_opfamily row, but in the
associated rows in pg_amop, pg_amproc, and pg_opclass.

49.36. pg_partitioned_table
The catalog pg_partitioned_table stores information about how tables are partitioned.

Table 49.36. pg_partitioned_table Columns

Column Type
Description

partrelid oid (references pg_class .oid)
The OID of the pg_class entry for this partitioned table

partstrat char
Partitioning strategy; h = hash partitioned table, l = list partitioned table, r = range
partitioned table

partnatts int2
The number of columns in partition key

partdefid oid (references pg_class .oid)
The OID of the pg_class entry for the default partition of this partitioned table, or zero if
this partitioned table does not have a default partition.

partattrs int2vector (references pg_attribute .attnum)
This is an array of partnatts values that indicate which table columns are part of the
partition key. For example, a value of 1 3 would mean that the first and the third table

1858

System Catalogs

Column Type
Description
columns make up the partition key. A zero in this array indicates that the corresponding
partition key column is an expression, rather than a simple column reference.

partclass oidvector (references pg_opclass .oid)
For each column in the partition key, this contains the OID of the operator class to use. See
pg_opclass for details.

partcollation oidvector (references pg_collation .oid)
For each column in the partition key, this contains the OID of the collation to use for
partitioning, or zero if the column is not of a collatable data type.

partexprs pg_node_tree
Expression trees (in nodeToString() representation) for partition key columns that are not
simple column references. This is a list with one element for each zero entry in partattrs.
Null if all partition key columns are simple references.

49.37. pg_policy
The catalog pg_policy stores row level security policies for tables. A policy includes the kind of command
that it applies to (possibly all commands), the roles that it applies to, the expression to be added as a
security-barrier qualification to queries that include the table, and the expression to be added as a WITH
CHECK option for queries that attempt to add new records to the table.

Table 49.37. pg_policy Columns

Column Type
Description

oid oid
Row identifier

polname name
The name of the policy

polrelid oid (references pg_class .oid)
The table to which the policy applies

polcmd char
The command type to which the policy is applied: r for SELECT, a for INSERT, w for UPDATE, d
for DELETE, or * for all

polpermissive bool
Is the policy permissive or restrictive?

polroles oid[] (references pg_authid .oid)
The roles to which the policy is applied

polqual pg_node_tree
The expression tree to be added to the security barrier qualifications for queries that use the
table

polwithcheck pg_node_tree
The expression tree to be added to the WITH CHECK qualifications for queries that attempt
to add rows to the table

Note
Policies stored in pg_policy are applied only when pg_class.relrowsecurity is set for their table.

49.38. pg_proc

1859

System Catalogs

The catalog pg_proc stores information about functions, procedures, aggregate functions, and window
functions (collectively also known as routines). See CREATE FUNCTION, CREATE PROCEDURE, and
Section 35.3 for more information.

If prokind indicates that the entry is for an aggregate function, there should be a matching row in
pg_aggregate.

Table 49.38. pg_proc Columns

Column Type
Description

oid oid
Row identifier

proname name
Name of the function

pronamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this function

proowner oid (references pg_authid .oid)
Owner of the function

prolang oid (references pg_language .oid)
Implementation language or call interface of this function

procost float4
Estimated execution cost (in units of cpu_operator_cost); if proretset, this is cost per row
returned

prorows float4
Estimated number of result rows (zero if not proretset)

provariadic oid (references pg_type .oid)
Data type of the variadic array parameter's elements, or zero if the function does not have a
variadic parameter

prosupport regproc (references pg_proc .oid)
Optional planner support function for this function (see Section 35.11)

prokind char
f for a normal function, p for a procedure, a for an aggregate function, or w for a window
function

prosecdef bool
Function is a security definer (i.e., a “setuid” function)

proleakproof bool
The function has no side effects. No information about the arguments is conveyed except
via the return value. Any function that might throw an error depending on the values of its
arguments is not leak-proof.

proisstrict bool
Function returns null if any call argument is null. In that case the function won't actually be
called at all. Functions that are not “strict” must be prepared to handle null inputs.

proretset bool
Function returns a set (i.e., multiple values of the specified data type)

provolatile char
provolatile tells whether the function's result depends only on its input arguments, or is
affected by outside factors. It is i for “immutable” functions, which always deliver the same
result for the same inputs. It is s for “stable” functions, whose results (for fixed inputs) do not
change within a scan. It is v for “volatile” functions, whose results might change at any time.
(Use v also for functions with side-effects, so that calls to them cannot get optimized away.)

proparallel char

1860

System Catalogs

Column Type
Description
proparallel tells whether the function can be safely run in parallel mode. It is s for functions
which are safe to run in parallel mode without restriction. It is r for functions which can be
run in parallel mode, but their execution is restricted to the parallel group leader; parallel
worker processes cannot invoke these functions. It is u for functions which are unsafe in
parallel mode; the presence of such a function forces a serial execution plan.

pronargs int2
Number of input arguments

pronargdefaults int2
Number of arguments that have defaults

prorettype oid (references pg_type .oid)
Data type of the return value

proargtypes oidvector (references pg_type .oid)
An array of the data types of the function arguments. This includes only input arguments
(including INOUT and VARIADIC arguments), and thus represents the call signature of the
function.

proallargtypes oid[] (references pg_type .oid)
An array of the data types of the function arguments. This includes all arguments (including
OUT and INOUT arguments); however, if all the arguments are IN arguments, this field will
be null. Note that subscripting is 1-based, whereas for historical reasons proargtypes is
subscripted from 0.

proargmodes char[]
An array of the modes of the function arguments, encoded as i for IN arguments, o for OUT
arguments, b for INOUT arguments, v for VARIADIC arguments, t for TABLE arguments. If all
the arguments are IN arguments, this field will be null. Note that subscripts correspond to
positions of proallargtypes not proargtypes.

proargnames text[]
An array of the names of the function arguments. Arguments without a name are set to empty
strings in the array. If none of the arguments have a name, this field will be null. Note that
subscripts correspond to positions of proallargtypes not proargtypes.

proargdefaults pg_node_tree
Expression trees (in nodeToString() representation) for default values. This is a list with
pronargdefaults elements, corresponding to the last N input arguments (i.e., the last N
proargtypes positions). If none of the arguments have defaults, this field will be null.

protrftypes oid[] (references pg_type .oid)
An array of the argument/result data type(s) for which to apply transforms (from the
function's TRANSFORM clause). Null if none.

prosrc text
This tells the function handler how to invoke the function. It might be the actual source code
of the function for interpreted languages, a link symbol, a file name, or just about anything
else, depending on the implementation language/call convention.

probin text
Additional information about how to invoke the function. Again, the interpretation is
language-specific.

proconfig text[]
Function's local settings for run-time configuration variables

proacl aclitem[]
Access privileges; see Section 5.7 for details

For compiled functions, both built-in and dynamically loaded, prosrc contains the function's C-language
name (link symbol). For all other currently-known language types, prosrc contains the function's source

1861

System Catalogs

text. probin is unused except for dynamically-loaded C functions, for which it gives the name of the
shared library file containing the function.

49.39. pg_publication
The catalog pg_publication contains all publications created in the database. For more on publications
see Section 29.1.

Table 49.39. pg_publication Columns

Column Type
Description

oid oid
Row identifier

pubname name
Name of the publication

pubowner oid (references pg_authid .oid)
Owner of the publication

puballtables bool
If true, this publication automatically includes all tables in the database, including any that
will be created in the future.

pubinsert bool
If true, INSERT operations are replicated for tables in the publication.

pubupdate bool
If true, UPDATE operations are replicated for tables in the publication.

pubdelete bool
If true, DELETE operations are replicated for tables in the publication.

pubtruncate bool
If true, TRUNCATE operations are replicated for tables in the publication.

pubviaroot bool
If true, operations on a leaf partition are replicated using the identity and schema of its
topmost partitioned ancestor mentioned in the publication instead of its own.

49.40. pg_publication_rel
The catalog pg_publication_rel contains the mapping between relations and publications in the
database. This is a many-to-many mapping. See also Section 49.78 for a more user-friendly view of this
information.

Table 49.40. pg_publication_rel Columns

Column Type
Description

oid oid
Row identifier

prpubid oid (references pg_publication .oid)
Reference to publication

prrelid oid (references pg_class .oid)
Reference to relation

49.41. pg_range
The catalog pg_range stores information about range types. This is in addition to the types' entries in
pg_type.

1862

System Catalogs

Table 49.41. pg_range Columns

Column Type
Description

rngtypid oid (references pg_type .oid)
OID of the range type

rngsubtype oid (references pg_type .oid)
OID of the element type (subtype) of this range type

rngcollation oid (references pg_collation .oid)
OID of the collation used for range comparisons, or 0 if none

rngsubopc oid (references pg_opclass .oid)
OID of the subtype's operator class used for range comparisons

rngcanonical regproc (references pg_proc .oid)
OID of the function to convert a range value into canonical form, or 0 if none

rngsubdiff regproc (references pg_proc .oid)
OID of the function to return the difference between two element values as double
precision, or 0 if none

rngsubopc (plus rngcollation, if the element type is collatable) determines the sort ordering used by
the range type. rngcanonical is used when the element type is discrete. rngsubdiff is optional but
should be supplied to improve performance of GiST indexes on the range type.

49.42. pg_replication_origin
The pg_replication_origin catalog contains all replication origins created. For more on replication
origins see Chapter 47.

Unlike most system catalogs, pg_replication_origin is shared across all databases of a cluster: there
is only one copy of pg_replication_origin per cluster, not one per database.

Table 49.42. pg_replication_origin Columns

Column Type
Description

roident oid
A unique, cluster-wide identifier for the replication origin. Should never leave the system.

roname text
The external, user defined, name of a replication origin.

49.43. pg_rewrite
The catalog pg_rewrite stores rewrite rules for tables and views.

Table 49.43. pg_rewrite Columns

Column Type
Description

oid oid
Row identifier

rulename name
Rule name

ev_class oid (references pg_class .oid)
The table this rule is for

ev_type char

1863

System Catalogs

Column Type
Description
Event type that the rule is for: 1 = SELECT, 2 = UPDATE, 3 = INSERT, 4 = DELETE

ev_enabled char
Controls in which session_replication_role modes the rule fires. O = rule fires in “origin” and
“local” modes, D = rule is disabled, R = rule fires in “replica” mode, A = rule fires always.

is_instead bool
True if the rule is an INSTEAD rule

ev_qual pg_node_tree
Expression tree (in the form of a nodeToString() representation) for the rule's qualifying
condition

ev_action pg_node_tree
Query tree (in the form of a nodeToString() representation) for the rule's action

Note
pg_class.relhasrules must be true if a table has any rules in this catalog.

49.44. pg_seclabel
The catalog pg_seclabel stores security labels on database objects. Security labels can be manipulated
with the SECURITY LABEL command. For an easier way to view security labels, see Section 49.83.

See also pg_shseclabel, which performs a similar function for security labels of database objects that
are shared across a database cluster.

Table 49.44. pg_seclabel Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a security label on a table column, this is the column number (the objoid and classoid
refer to the table itself). For all other object types, this column is zero.

provider text
The label provider associated with this label.

label text
The security label applied to this object.

49.45. pg_sequence
The catalog pg_sequence contains information about sequences. Some of the information about
sequences, such as the name and the schema, is in pg_class.

Table 49.45. pg_sequence Columns

Column Type
Description

seqrelid oid (references pg_class .oid)

1864

System Catalogs

Column Type
Description
The OID of the pg_class entry for this sequence

seqtypid oid (references pg_type .oid)
Data type of the sequence

seqstart int8
Start value of the sequence

seqincrement int8
Increment value of the sequence

seqmax int8
Maximum value of the sequence

seqmin int8
Minimum value of the sequence

seqcache int8
Cache size of the sequence

seqcycle bool
Whether the sequence cycles

49.46. pg_shdepend
The catalog pg_shdepend records the dependency relationships between database objects and shared
objects, such as roles. This information allows Postgres Pro to ensure that those objects are unreferenced
before attempting to delete them.

See also pg_depend, which performs a similar function for dependencies involving objects within a single
database.

Unlike most system catalogs, pg_shdepend is shared across all databases of a cluster: there is only one
copy of pg_shdepend per cluster, not one per database.

Table 49.46. pg_shdepend Columns

Column Type
Description

dbid oid (references pg_database .oid)
The OID of the database the dependent object is in, or zero for a shared object

classid oid (references pg_class .oid)
The OID of the system catalog the dependent object is in

objid oid (references any OID column)
The OID of the specific dependent object

objsubid int4
For a table column, this is the column number (the objid and classid refer to the table
itself). For all other object types, this column is zero.

refclassid oid (references pg_class .oid)
The OID of the system catalog the referenced object is in (must be a shared catalog)

refobjid oid (references any OID column)
The OID of the specific referenced object

deptype char
A code defining the specific semantics of this dependency relationship; see text

In all cases, a pg_shdepend entry indicates that the referenced object cannot be dropped without also
dropping the dependent object. However, there are several subflavors identified by deptype:

1865

System Catalogs

SHARED_DEPENDENCY_OWNER (o)
The referenced object (which must be a role) is the owner of the dependent object.

SHARED_DEPENDENCY_ACL (a)
The referenced object (which must be a role) is mentioned in the ACL (access control list, i.e.,
privileges list) of the dependent object. (A SHARED_DEPENDENCY_ACL entry is not made for the owner
of the object, since the owner will have a SHARED_DEPENDENCY_OWNER entry anyway.)

SHARED_DEPENDENCY_POLICY (r)
The referenced object (which must be a role) is mentioned as the target of a dependent policy object.

SHARED_DEPENDENCY_PIN (p)
There is no dependent object; this type of entry is a signal that the system itself depends on the
referenced object, and so that object must never be deleted. Entries of this type are created only by
initdb. The columns for the dependent object contain zeroes.

SHARED_DEPENDENCY_TABLESPACE (t)
The referenced object (which must be a tablespace) is mentioned as the tablespace for a relation
that doesn't have storage.

Other dependency flavors might be needed in future. Note in particular that the current definition only
supports roles and tablespaces as referenced objects.

49.47. pg_shdescription
The catalog pg_shdescription stores optional descriptions (comments) for shared database objects.
Descriptions can be manipulated with the COMMENT command and viewed with psql's \d commands.

See also pg_description, which performs a similar function for descriptions involving objects within
a single database.

Unlike most system catalogs, pg_shdescription is shared across all databases of a cluster: there is only
one copy of pg_shdescription per cluster, not one per database.

Table 49.47. pg_shdescription Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this description pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

description text
Arbitrary text that serves as the description of this object

49.48. pg_shseclabel
The catalog pg_shseclabel stores security labels on shared database objects. Security labels can be
manipulated with the SECURITY LABEL command. For an easier way to view security labels, see
Section 49.83.

See also pg_seclabel, which performs a similar function for security labels involving objects within a
single database.

Unlike most system catalogs, pg_shseclabel is shared across all databases of a cluster: there is only
one copy of pg_shseclabel per cluster, not one per database.

1866

System Catalogs

Table 49.48. pg_shseclabel Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

provider text
The label provider associated with this label.

label text
The security label applied to this object.

49.49. pg_statistic
The catalog pg_statistic stores statistical data about the contents of the database. Entries are created
by ANALYZE and subsequently used by the query planner. Note that all the statistical data is inherently
approximate, even assuming that it is up-to-date.

Normally there is one entry, with stainherit = false, for each table column that has been analyzed.
If the table has inheritance children, a second entry with stainherit = true is also created. This row
represents the column's statistics over the inheritance tree, i.e., statistics for the data you'd see with
SELECT column FROM table*, whereas the stainherit = false row represents the results of SELECT
column FROM ONLY table.

pg_statistic also stores statistical data about the values of index expressions. These are described as
if they were actual data columns; in particular, starelid references the index. No entry is made for
an ordinary non-expression index column, however, since it would be redundant with the entry for the
underlying table column. Currently, entries for index expressions always have stainherit = false.

Since different kinds of statistics might be appropriate for different kinds of data, pg_statistic is
designed not to assume very much about what sort of statistics it stores. Only extremely general statistics
(such as nullness) are given dedicated columns in pg_statistic. Everything else is stored in “slots”,
which are groups of associated columns whose content is identified by a code number in one of the
slot's columns.

pg_statistic should not be readable by the public, since even statistical information about a table's
contents might be considered sensitive. (Example: minimum and maximum values of a salary column
might be quite interesting.) pg_stats is a publicly readable view on pg_statistic that only exposes
information about those tables that are readable by the current user.

Table 49.49. pg_statistic Columns

Column Type
Description

starelid oid (references pg_class .oid)
The table or index that the described column belongs to

staattnum int2 (references pg_attribute .attnum)
The number of the described column

stainherit bool
If true, the stats include inheritance child columns, not just the values in the specified
relation

stanullfrac float4
The fraction of the column's entries that are null

stawidth int4

1867

System Catalogs

Column Type
Description
The average stored width, in bytes, of nonnull entries

stadistinct float4
The number of distinct nonnull data values in the column. A value greater than zero is the
actual number of distinct values. A value less than zero is the negative of a multiplier for
the number of rows in the table; for example, a column in which about 80% of the values
are nonnull and each nonnull value appears about twice on average could be represented by
stadistinct = -0.4. A zero value means the number of distinct values is unknown.

stakindN int2
A code number indicating the kind of statistics stored in the Nth “slot” of the pg_statistic
row.

staopN oid (references pg_operator .oid)
An operator used to derive the statistics stored in the Nth “slot”. For example, a histogram
slot would show the < operator that defines the sort order of the data.

stacollN oid (references pg_collation .oid)
The collation used to derive the statistics stored in the Nth “slot”. For example, a histogram
slot for a collatable column would show the collation that defines the sort order of the data.
Zero for noncollatable data.

stanumbersN float4[]
Numerical statistics of the appropriate kind for the Nth “slot”, or null if the slot kind does not
involve numerical values

stavaluesN anyarray
Column data values of the appropriate kind for the Nth “slot”, or null if the slot kind does not
store any data values. Each array's element values are actually of the specific column's data
type, or a related type such as an array's element type, so there is no way to define these
columns' type more specifically than anyarray.

49.50. pg_statistic_ext
The catalog pg_statistic_ext holds definitions of extended planner statistics. Each row in this catalog
corresponds to a statistics object created with CREATE STATISTICS.

Table 49.50. pg_statistic_ext Columns

Column Type
Description

oid oid
Row identifier

stxrelid oid (references pg_class .oid)
Table containing the columns described by this object

stxname name
Name of the statistics object

stxnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this statistics object

stxowner oid (references pg_authid .oid)
Owner of the statistics object

stxstattarget int4
stxstattarget controls the level of detail of statistics accumulated for this statistics object
by ANALYZE. A zero value indicates that no statistics should be collected. A negative value
says to use the maximum of the statistics targets of the referenced columns, if set, or the
system default statistics target. Positive values of stxstattarget determine the target
number of “most common values” to collect.

1868

System Catalogs

Column Type
Description

stxkeys int2vector (references pg_attribute .attnum)
An array of attribute numbers, indicating which table columns are covered by this statistics
object; for example a value of 1 3 would mean that the first and the third table columns are
covered

stxkind char[]
An array containing codes for the enabled statistics kinds; valid values are: d for n-distinct
statistics, f for functional dependency statistics, and m for most common values (MCV) list
statistics

The pg_statistic_ext entry is filled in completely during CREATE STATISTICS, but the actual statistical
values are not computed then. Subsequent ANALYZE commands compute the desired values and populate
an entry in the pg_statistic_ext_data catalog.

49.51. pg_statistic_ext_data
The catalog pg_statistic_ext_data holds data for extended planner statistics defined in
pg_statistic_ext. Each row in this catalog corresponds to a statistics object created with CREATE
STATISTICS.

Like pg_statistic, pg_statistic_ext_data should not be readable by the public, since the contents
might be considered sensitive. (Example: most common combinations of values in columns might be
quite interesting.) pg_stats_ext is a publicly readable view on pg_statistic_ext_data (after joining
with pg_statistic_ext) that only exposes information about those tables and columns that are readable
by the current user.

Table 49.51. pg_statistic_ext_data Columns

Column Type
Description

stxoid oid (references pg_statistic_ext .oid)
Extended statistic object containing the definition for this data

stxdndistinct pg_ndistinct
N-distinct counts, serialized as pg_ndistinct type

stxddependencies pg_dependencies
Functional dependency statistics, serialized as pg_dependencies type

stxdmcv pg_mcv_list
MCV (most-common values) list statistics, serialized as pg_mcv_list type

49.52. pg_subscription
The catalog pg_subscription contains all existing logical replication subscriptions. For more
information about logical replication see Chapter 29.

Unlike most system catalogs, pg_subscription is shared across all databases of a cluster: there is only
one copy of pg_subscription per cluster, not one per database.

Access to the column subconninfo is revoked from normal users, because it could contain plain-text
passwords.

Table 49.52. pg_subscription Columns

Column Type
Description

oid oid

1869

System Catalogs

Column Type
Description
Row identifier

subdbid oid (references pg_database .oid)
OID of the database which the subscription resides in

subname name
Name of the subscription

subowner oid (references pg_authid .oid)
Owner of the subscription

subenabled bool
If true, the subscription is enabled and should be replicating.

subconninfo text
Connection string to the upstream database

subslotname name
Name of the replication slot in the upstream database (also used for the local replication
origin name); null represents NONE

subsynccommit text
Contains the value of the synchronous_commit setting for the subscription workers.

subpublications text[]
Array of subscribed publication names. These reference the publications on the publisher
server. For more on publications see Section 29.1.

49.53. pg_subscription_rel
The catalog pg_subscription_rel contains the state for each replicated relation in each subscription.
This is a many-to-many mapping.

This catalog only contains tables known to the subscription after running either CREATE SUBSCRIPTION
or ALTER SUBSCRIPTION ... REFRESH PUBLICATION.

Table 49.53. pg_subscription_rel Columns

Column Type
Description

srsubid oid (references pg_subscription .oid)
Reference to subscription

srrelid oid (references pg_class .oid)
Reference to relation

srsubstate char
State code: i = initialize, d = data is being copied, s = synchronized, r = ready (normal
replication)

srsublsn pg_lsn
Remote LSN of the state change used for synchronization coordination when in s or r states,
 otherwise null

49.54. pg_tablespace
The catalog pg_tablespace stores information about the available tablespaces. Tables can be placed in
particular tablespaces to aid administration of disk layout.

Unlike most system catalogs, pg_tablespace is shared across all databases of a cluster: there is only
one copy of pg_tablespace per cluster, not one per database.

1870

System Catalogs

Table 49.54. pg_tablespace Columns

Column Type
Description

oid oid
Row identifier

spcname name
Tablespace name

spcowner oid (references pg_authid .oid)
Owner of the tablespace, usually the user who created it

spcacl aclitem[]
Access privileges; see Section 5.7 for details

spcoptions text[]
Tablespace-level options, as “keyword=value” strings

49.55. pg_transform
The catalog pg_transform stores information about transforms, which are a mechanism to adapt data
types to procedural languages. See CREATE TRANSFORM for more information.

Table 49.55. pg_transform Columns

Column Type
Description

oid oid
Row identifier

trftype oid (references pg_type .oid)
OID of the data type this transform is for

trflang oid (references pg_language .oid)
OID of the language this transform is for

trffromsql regproc (references pg_proc .oid)
The OID of the function to use when converting the data type for input to the procedural
language (e.g., function parameters). Zero is stored if this operation is not supported.

trftosql regproc (references pg_proc .oid)
The OID of the function to use when converting output from the procedural language (e.g.,
 return values) to the data type. Zero is stored if this operation is not supported.

49.56. pg_trigger
The catalog pg_trigger stores triggers on tables and views. See CREATE TRIGGER for more
information.

Table 49.56. pg_trigger Columns

Column Type
Description

oid oid
Row identifier

tgrelid oid (references pg_class .oid)
The table this trigger is on

tgparentid oid (references pg_trigger .oid)
Parent trigger that this trigger is cloned from, zero if not a clone; this happens when
partitions are created or attached to a partitioned table.

1871

System Catalogs

Column Type
Description

tgname name
Trigger name (must be unique among triggers of same table)

tgfoid oid (references pg_proc .oid)
The function to be called

tgtype int2
Bit mask identifying trigger firing conditions

tgenabled char
Controls in which session_replication_role modes the trigger fires. O = trigger fires in “origin”
and “local” modes, D = trigger is disabled, R = trigger fires in “replica” mode, A = trigger
fires always.

tgisinternal bool
True if trigger is internally generated (usually, to enforce the constraint identified by
tgconstraint)

tgconstrrelid oid (references pg_class .oid)
The table referenced by a referential integrity constraint

tgconstrindid oid (references pg_class .oid)
The index supporting a unique, primary key, referential integrity, or exclusion constraint

tgconstraint oid (references pg_constraint .oid)
The pg_constraint entry associated with the trigger, if any

tgdeferrable bool
True if constraint trigger is deferrable

tginitdeferred bool
True if constraint trigger is initially deferred

tgnargs int2
Number of argument strings passed to trigger function

tgattr int2vector (references pg_attribute .attnum)
Column numbers, if trigger is column-specific; otherwise an empty array

tgargs bytea
Argument strings to pass to trigger, each NULL-terminated

tgqual pg_node_tree
Expression tree (in nodeToString() representation) for the trigger's WHEN condition, or null
if none

tgoldtable name
REFERENCING clause name for OLD TABLE, or null if none

tgnewtable name
REFERENCING clause name for NEW TABLE, or null if none

Currently, column-specific triggering is supported only for UPDATE events, and so tgattr is relevant only
for that event type. tgtype might contain bits for other event types as well, but those are presumed to
be table-wide regardless of what is in tgattr.

Note
When tgconstraint is nonzero, tgconstrrelid, tgconstrindid, tgdeferrable, and
tginitdeferred are largely redundant with the referenced pg_constraint entry. However, it is
possible for a non-deferrable trigger to be associated with a deferrable constraint: foreign key
constraints can have some deferrable and some non-deferrable triggers.

1872

System Catalogs

Note
pg_class.relhastriggers must be true if a relation has any triggers in this catalog.

49.57. pg_ts_config
The pg_ts_config catalog contains entries representing text search configurations. A configuration
specifies a particular text search parser and a list of dictionaries to use for each of the parser's output
token types. The parser is shown in the pg_ts_config entry, but the token-to-dictionary mapping is
defined by subsidiary entries in pg_ts_config_map.

Postgres Pro's text search features are described at length in Chapter 12.

Table 49.57. pg_ts_config Columns

Column Type
Description

oid oid
Row identifier

cfgname name
Text search configuration name

cfgnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this configuration

cfgowner oid (references pg_authid .oid)
Owner of the configuration

cfgparser oid (references pg_ts_parser .oid)
The OID of the text search parser for this configuration

49.58. pg_ts_config_map
The pg_ts_config_map catalog contains entries showing which text search dictionaries should be
consulted, and in what order, for each output token type of each text search configuration's parser.

Postgres Pro's text search features are described at length in Chapter 12.

Table 49.58. pg_ts_config_map Columns

Column Type
Description

mapcfg oid (references pg_ts_config .oid)
The OID of the pg_ts_config entry owning this map entry

maptokentype int4
A token type emitted by the configuration's parser

mapseqno int4
Order in which to consult this entry (lower mapseqnos first)

mapdict oid (references pg_ts_dict .oid)
The OID of the text search dictionary to consult

49.59. pg_ts_dict
The pg_ts_dict catalog contains entries defining text search dictionaries. A dictionary depends on
a text search template, which specifies all the implementation functions needed; the dictionary itself
provides values for the user-settable parameters supported by the template. This division of labor
allows dictionaries to be created by unprivileged users. The parameters are specified by a text string
dictinitoption, whose format and meaning vary depending on the template.

1873

System Catalogs

Postgres Pro's text search features are described at length in Chapter 12.

Table 49.59. pg_ts_dict Columns

Column Type
Description

oid oid
Row identifier

dictname name
Text search dictionary name

dictnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this dictionary

dictowner oid (references pg_authid .oid)
Owner of the dictionary

dicttemplate oid (references pg_ts_template .oid)
The OID of the text search template for this dictionary

dictinitoption text
Initialization option string for the template

49.60. pg_ts_parser
The pg_ts_parser catalog contains entries defining text search parsers. A parser is responsible for
splitting input text into lexemes and assigning a token type to each lexeme. Since a parser must be
implemented by C-language-level functions, creation of new parsers is restricted to database superusers.

Postgres Pro's text search features are described at length in Chapter 12.

Table 49.60. pg_ts_parser Columns

Column Type
Description

oid oid
Row identifier

prsname name
Text search parser name

prsnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this parser

prsstart regproc (references pg_proc .oid)
OID of the parser's startup function

prstoken regproc (references pg_proc .oid)
OID of the parser's next-token function

prsend regproc (references pg_proc .oid)
OID of the parser's shutdown function

prsheadline regproc (references pg_proc .oid)
OID of the parser's headline function

prslextype regproc (references pg_proc .oid)
OID of the parser's lextype function

49.61. pg_ts_template
The pg_ts_template catalog contains entries defining text search templates. A template is the
implementation skeleton for a class of text search dictionaries. Since a template must be implemented
by C-language-level functions, creation of new templates is restricted to database superusers.

1874

System Catalogs

Postgres Pro's text search features are described at length in Chapter 12.

Table 49.61. pg_ts_template Columns

Column Type
Description

oid oid
Row identifier

tmplname name
Text search template name

tmplnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this template

tmplinit regproc (references pg_proc .oid)
OID of the template's initialization function

tmpllexize regproc (references pg_proc .oid)
OID of the template's lexize function

49.62. pg_type
The catalog pg_type stores information about data types. Base types and enum types (scalar types) are
created with CREATE TYPE, and domains with CREATE DOMAIN. A composite type is automatically
created for each table in the database, to represent the row structure of the table. It is also possible to
create composite types with CREATE TYPE AS.

Table 49.62. pg_type Columns

Column Type
Description

oid oid
Row identifier

typname name
Data type name

typnamespace oid (references pg_namespace .oid)
The OID of the namespace that contains this type

typowner oid (references pg_authid .oid)
Owner of the type

typlen int2
For a fixed-size type, typlen is the number of bytes in the internal representation of the type.
But for a variable-length type, typlen is negative. -1 indicates a “varlena” type (one that has
a length word), -2 indicates a null-terminated C string.

typbyval bool
typbyval determines whether internal routines pass a value of this type by value or by
reference. typbyval had better be false if typlen is not 1, 2, or 4 (or 8 on machines where
Datum is 8 bytes). Variable-length types are always passed by reference. Note that typbyval
can be false even if the length would allow pass-by-value.

typtype char
typtype is b for a base type, c for a composite type (e.g., a table's row type), d for a domain,
 e for an enum type, p for a pseudo-type, or r for a range type. See also typrelid and
typbasetype.

typcategory char
typcategory is an arbitrary classification of data types that is used by the parser to
determine which implicit casts should be “preferred”. See Table 49.63.

typispreferred bool

1875

System Catalogs

Column Type
Description
True if the type is a preferred cast target within its typcategory

typisdefined bool
True if the type is defined, false if this is a placeholder entry for a not-yet-defined type. When
typisdefined is false, nothing except the type name, namespace, and OID can be relied on.

typdelim char
Character that separates two values of this type when parsing array input. Note that the
delimiter is associated with the array element data type, not the array data type.

typrelid oid (references pg_class .oid)
If this is a composite type (see typtype), then this column points to the pg_class entry that
defines the corresponding table. (For a free-standing composite type, the pg_class entry
doesn't really represent a table, but it is needed anyway for the type's pg_attribute entries
to link to.) Zero for non-composite types.

typelem oid (references pg_type .oid)
If typelem is not 0 then it identifies another row in pg_type . The current type can then be
subscripted like an array yielding values of type typelem. A “true” array type is variable
length (typlen = -1), but some fixed-length (typlen > 0) types also have nonzero typelem, for
example name and point. If a fixed-length type has a typelem then its internal representation
must be some number of values of the typelem data type with no other data. Variable-length
array types have a header defined by the array subroutines.

typarray oid (references pg_type .oid)
If typarray is not 0 then it identifies another row in pg_type , which is the “true” array type
having this type as element

typinput regproc (references pg_proc .oid)
Input conversion function (text format)

typoutput regproc (references pg_proc .oid)
Output conversion function (text format)

typreceive regproc (references pg_proc .oid)
Input conversion function (binary format), or 0 if none

typsend regproc (references pg_proc .oid)
Output conversion function (binary format), or 0 if none

typmodin regproc (references pg_proc .oid)
Type modifier input function, or 0 if type does not support modifiers

typmodout regproc (references pg_proc .oid)
Type modifier output function, or 0 to use the standard format

typanalyze regproc (references pg_proc .oid)
Custom ANALYZE function, or 0 to use the standard function

typalign char
typalign is the alignment required when storing a value of this type. It applies to storage
on disk as well as most representations of the value inside Postgres Pro. When multiple
values are stored consecutively, such as in the representation of a complete row on disk,
 padding is inserted before a datum of this type so that it begins on the specified boundary.
The alignment reference is the beginning of the first datum in the sequence. Possible values
are:
• c = char alignment, i.e., no alignment needed.
• s = short alignment (2 bytes on most machines).
• i = int alignment (4 bytes on most machines).
• d = double alignment (8 bytes on many machines, but by no means all).

1876

System Catalogs

Column Type
Description

typstorage char
typstorage tells for varlena types (those with typlen = -1) if the type is prepared for toasting
and what the default strategy for attributes of this type should be. Possible values are:
• p (plain): Values must always be stored plain (non-varlena types always use this value).
• e (external): Values can be stored in a secondary “TOAST” relation (if relation has one, see

pg_class.reltoastrelid).
• m (main): Values can be compressed and stored inline.
• x (extended): Values can be compressed and/or moved to a secondary relation.

x is the usual choice for toast-able types. Note that m values can also be moved out to
secondary storage, but only as a last resort (e and x values are moved first).

typnotnull bool
typnotnull represents a not-null constraint on a type. Used for domains only.

typbasetype oid (references pg_type .oid)
If this is a domain (see typtype), then typbasetype identifies the type that this one is based
on. Zero if this type is not a domain.

typtypmod int4
Domains use typtypmod to record the typmod to be applied to their base type (-1 if base type
does not use a typmod). -1 if this type is not a domain.

typndims int4
typndims is the number of array dimensions for a domain over an array (that is, typbasetype
is an array type). Zero for types other than domains over array types.

typcollation oid (references pg_collation .oid)
typcollation specifies the collation of the type. If the type does not support collations, this
will be zero. A base type that supports collations will have a nonzero value here, typically
DEFAULT_COLLATION_OID . A domain over a collatable type can have a collation OID different
from its base type's, if one was specified for the domain.

typdefaultbin pg_node_tree
If typdefaultbin is not null, it is the nodeToString() representation of a default expression
for the type. This is only used for domains.

typdefault text
typdefault is null if the type has no associated default value. If typdefaultbin is not null,
 typdefault must contain a human-readable version of the default expression represented
by typdefaultbin. If typdefaultbin is null and typdefault is not, then typdefault is
the external representation of the type's default value, which can be fed to the type's input
converter to produce a constant.

typacl aclitem[]
Access privileges; see Section 5.7 for details

Note
For fixed-width types used in system tables, it is critical that the size and alignment defined in
pg_type agree with the way that the compiler will lay out the column in a structure representing
a table row.

Table 49.63 lists the system-defined values of typcategory. Any future additions to this list will also be
upper-case ASCII letters. All other ASCII characters are reserved for user-defined categories.

1877

System Catalogs

Table 49.63. typcategory Codes

Code Category
A Array types
B Boolean types
C Composite types
D Date/time types
E Enum types
G Geometric types
I Network address types
N Numeric types
P Pseudo-types
R Range types
S String types
T Timespan types
U User-defined types
V Bit-string types
X unknown type

49.63. pg_user_mapping
The catalog pg_user_mapping stores the mappings from local user to remote. Access to this catalog is
restricted from normal users, use the view pg_user_mappings instead.

Table 49.64. pg_user_mapping Columns

Column Type
Description

oid oid
Row identifier

umuser oid (references pg_authid .oid)
OID of the local role being mapped, 0 if the user mapping is public

umserver oid (references pg_foreign_server .oid)
The OID of the foreign server that contains this mapping

umoptions text[]
User mapping specific options, as “keyword=value” strings

49.64. System Views
In addition to the system catalogs, Postgres Pro provides a number of built-in views. Some system views
provide convenient access to some commonly used queries on the system catalogs. Other views provide
access to internal server state.

The information schema (Chapter 34) provides an alternative set of views which overlap the functionality
of the system views. Since the information schema is SQL-standard whereas the views described here are
Postgres Pro-specific, it's usually better to use the information schema if it provides all the information
you need.

Table 49.65 lists the system views described here. More detailed documentation of each view follows
below. There are some additional views that provide access to the results of the statistics collector; they
are described in Table 26.2.

1878

System Catalogs

Except where noted, all the views described here are read-only.

Table 49.65. System Views

View Name Purpose
pg_available_extensions available extensions
pg_available_extension_versions available versions of extensions
pg_config compile-time configuration parameters
pg_cursors open cursors
pg_file_settings summary of configuration file contents
pg_group groups of database users
pg_hba_file_rules summary of client authentication configuration

file contents
pg_indexes indexes
pg_locks locks currently held or awaited
pg_matviews materialized views
pg_policies policies
pg_prepared_statements prepared statements
pg_prepared_xacts prepared transactions
pg_publication_tables publications and their associated tables
pg_replication_origin_status information about replication origins, including

replication progress
pg_replication_slots replication slot information
pg_roles database roles
pg_rules rules
pg_seclabels security labels
pg_sequences sequences
pg_settings parameter settings
pg_shadow database users
pg_shmem_allocations shared memory allocations
pg_stats planner statistics
pg_stats_ext extended planner statistics
pg_tables tables
pg_timezone_abbrevs time zone abbreviations
pg_timezone_names time zone names
pg_user database users
pg_user_mappings user mappings
pg_views views

49.65. pg_available_extensions
The pg_available_extensions view lists the extensions that are available for installation. See also the
pg_extension catalog, which shows the extensions currently installed.

1879

System Catalogs

Table 49.66. pg_available_extensions Columns

Column Type
Description

name name
Extension name

default_version text
Name of default version, or NULL if none is specified

installed_version text
Currently installed version of the extension, or NULL if not installed

comment text
Comment string from the extension's control file

The pg_available_extensions view is read only.

49.66. pg_available_extension_versions
The pg_available_extension_versions view lists the specific extension versions that are available for
installation. See also the pg_extension catalog, which shows the extensions currently installed.

Table 49.67. pg_available_extension_versions Columns

Column Type
Description

name name
Extension name

version text
Version name

installed bool
True if this version of this extension is currently installed

superuser bool
True if only superusers are allowed to install this extension (but see trusted)

trusted bool
True if the extension can be installed by non-superusers with appropriate privileges

relocatable bool
True if extension can be relocated to another schema

schema name
Name of the schema that the extension must be installed into, or NULL if partially or fully
relocatable

requires name[]
Names of prerequisite extensions, or NULL if none

comment text
Comment string from the extension's control file

The pg_available_extension_versions view is read only.

49.67. pg_config
The view pg_config describes the compile-time configuration parameters of the currently installed
version of Postgres Pro. It is intended, for example, to be used by software packages that want to
interface to Postgres Pro to facilitate finding the required header files and libraries. It provides the same
basic information as the pg_config Postgres Pro client application.

By default, the pg_config view can be read only by superusers.

1880

System Catalogs

Table 49.68. pg_config Columns

Column Type
Description

name text
The parameter name

setting text
The parameter value

49.68. pg_cursors
The pg_cursors view lists the cursors that are currently available. Cursors can be defined in several
ways:
• via the DECLARE statement in SQL
• via the Bind message in the frontend/backend protocol, as described in Section 50.2.3
• via the Server Programming Interface (SPI), as described in Section 44.1
The pg_cursors view displays cursors created by any of these means. Cursors only exist for the duration
of the transaction that defines them, unless they have been declared WITH HOLD. Therefore non-holdable
cursors are only present in the view until the end of their creating transaction.

Note
Cursors are used internally to implement some of the components of Postgres Pro, such as
procedural languages. Therefore, the pg_cursors view might include cursors that have not been
explicitly created by the user.

Table 49.69. pg_cursors Columns

Column Type
Description

name text
The name of the cursor

statement text
The verbatim query string submitted to declare this cursor

is_holdable bool
true if the cursor is holdable (that is, it can be accessed after the transaction that declared
the cursor has committed); false otherwise

is_binary bool
true if the cursor was declared BINARY; false otherwise

is_scrollable bool
true if the cursor is scrollable (that is, it allows rows to be retrieved in a nonsequential
manner); false otherwise

creation_time timestamptz
The time at which the cursor was declared

The pg_cursors view is read only.

49.69. pg_file_settings
The view pg_file_settings provides a summary of the contents of the server's configuration file(s). A
row appears in this view for each “name = value” entry appearing in the files, with annotations indicating
whether the value could be applied successfully. Additional row(s) may appear for problems not linked
to a “name = value” entry, such as syntax errors in the files.

1881

System Catalogs

This view is helpful for checking whether planned changes in the configuration files will work, or for
diagnosing a previous failure. Note that this view reports on the current contents of the files, not on
what was last applied by the server. (The pg_settings view is usually sufficient to determine that.)

By default, the pg_file_settings view can be read only by superusers.

Table 49.70. pg_file_settings Columns

Column Type
Description

sourcefile text
Full path name of the configuration file

sourceline int4
Line number within the configuration file where the entry appears

seqno int4
Order in which the entries are processed (1..n)

name text
Configuration parameter name

setting text
Value to be assigned to the parameter

applied bool
True if the value can be applied successfully

error text
If not null, an error message indicating why this entry could not be applied

If the configuration file contains syntax errors or invalid parameter names, the server will not attempt to
apply any settings from it, and therefore all the applied fields will read as false. In such a case there will
be one or more rows with non-null error fields indicating the problem(s). Otherwise, individual settings
will be applied if possible. If an individual setting cannot be applied (e.g., invalid value, or the setting
cannot be changed after server start) it will have an appropriate message in the error field. Another way
that an entry might have applied = false is that it is overridden by a later entry for the same parameter
name; this case is not considered an error so nothing appears in the error field.

See Section 18.1 for more information about the various ways to change run-time parameters.

49.70. pg_group
The view pg_group exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows the names and members of all roles that are marked as not rolcanlogin,
which is an approximation to the set of roles that are being used as groups.

Table 49.71. pg_group Columns

Column Type
Description

groname name (references pg_authid .rolname)
Name of the group

grosysid oid (references pg_authid .oid)
ID of this group

grolist oid[] (references pg_authid .oid)
An array containing the IDs of the roles in this group

49.71. pg_hba_file_rules

1882

System Catalogs

The view pg_hba_file_rules provides a summary of the contents of the client authentication
configuration file, pg_hba.conf. A row appears in this view for each non-empty, non-comment line in the
file, with annotations indicating whether the rule could be applied successfully.

This view can be helpful for checking whether planned changes in the authentication configuration file
will work, or for diagnosing a previous failure. Note that this view reports on the current contents of
the file, not on what was last loaded by the server.

By default, the pg_hba_file_rules view can be read only by superusers.

Table 49.72. pg_hba_file_rules Columns

Column Type
Description

line_number int4
Line number of this rule in pg_hba.conf

type text
Type of connection

database text[]
List of database name(s) to which this rule applies

user_name text[]
List of user and group name(s) to which this rule applies

address text
Host name or IP address, or one of all, samehost, or samenet, or null for local connections

netmask text
IP address mask, or null if not applicable

auth_method text
Authentication method

options text[]
Options specified for authentication method, if any

error text
If not null, an error message indicating why this line could not be processed

Usually, a row reflecting an incorrect entry will have values for only the line_number and error fields.

See Chapter 19 for more information about client authentication configuration.

49.72. pg_indexes
The view pg_indexes provides access to useful information about each index in the database.

Table 49.73. pg_indexes Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table and index

tablename name (references pg_class .relname)
Name of table the index is for

indexname name (references pg_class .relname)
Name of index

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing index (null if default for database)

indexdef text
Index definition (a reconstructed CREATE INDEX command)

1883

System Catalogs

49.73. pg_locks
The view pg_locks provides access to information about the locks held by active processes within the
database server. See Chapter 13 for more discussion of locking.

pg_locks contains one row per active lockable object, requested lock mode, and relevant process. Thus,
the same lockable object might appear many times, if multiple processes are holding or waiting for locks
on it. However, an object that currently has no locks on it will not appear at all.

There are several distinct types of lockable objects: whole relations (e.g., tables), individual pages of
relations, individual tuples of relations, transaction IDs (both virtual and permanent IDs), and general
database objects (identified by class OID and object OID, in the same way as in pg_description or
pg_depend). Also, the right to extend a relation is represented as a separate lockable object, as is the
right to update pg_database.datfrozenxid. Also, “advisory” locks can be taken on numbers that have
user-defined meanings.

Table 49.74. pg_locks Columns

Column Type
Description

locktype text
Type of the lockable object: relation, extend, frozenid, page, tuple, transactionid,
 virtualxid, spectoken, object, userlock, or advisory. (See also Table 26.11.)

database oid (references pg_database .oid)
OID of the database in which the lock target exists, or zero if the target is a shared object, or
null if the target is a transaction ID

relation oid (references pg_class .oid)
OID of the relation targeted by the lock, or null if the target is not a relation or part of a
relation

page int4
Page number targeted by the lock within the relation, or null if the target is not a relation
page or tuple

tuple int2
Tuple number targeted by the lock within the page, or null if the target is not a tuple

virtualxid text
Virtual ID of the transaction targeted by the lock, or null if the target is not a virtual
transaction ID

transactionid xid
ID of the transaction targeted by the lock, or null if the target is not a transaction ID

classid oid (references pg_class .oid)
OID of the system catalog containing the lock target, or null if the target is not a general
database object

objid oid (references any OID column)
OID of the lock target within its system catalog, or null if the target is not a general database
object

objsubid int2
Column number targeted by the lock (the classid and objid refer to the table itself), or
zero if the target is some other general database object, or null if the target is not a general
database object

virtualtransaction text
Virtual ID of the transaction that is holding or awaiting this lock

pid int4
Process ID of the server process holding or awaiting this lock, or null if the lock is held by a
prepared transaction

1884

System Catalogs

Column Type
Description

mode text
Name of the lock mode held or desired by this process (see Section 13.3.1 and Section 13.2.3)

granted bool
True if lock is held, false if lock is awaited

fastpath bool
True if lock was taken via fast path, false if taken via main lock table

granted is true in a row representing a lock held by the indicated process. False indicates that this
process is currently waiting to acquire this lock, which implies that at least one other process is holding
or waiting for a conflicting lock mode on the same lockable object. The waiting process will sleep until
the other lock is released (or a deadlock situation is detected). A single process can be waiting to acquire
at most one lock at a time.

Throughout running a transaction, a server process holds an exclusive lock on the transaction's virtual
transaction ID. If a permanent ID is assigned to the transaction (which normally happens only if the
transaction changes the state of the database), it also holds an exclusive lock on the transaction's
permanent transaction ID until it ends. When a process finds it necessary to wait specifically for another
transaction to end, it does so by attempting to acquire share lock on the other transaction's ID (either
virtual or permanent ID depending on the situation). That will succeed only when the other transaction
terminates and releases its locks.

Although tuples are a lockable type of object, information about row-level locks is stored on disk, not
in memory, and therefore row-level locks normally do not appear in this view. If a process is waiting for
a row-level lock, it will usually appear in the view as waiting for the permanent transaction ID of the
current holder of that row lock.

Advisory locks can be acquired on keys consisting of either a single bigint value or two integer values.
A bigint key is displayed with its high-order half in the classid column, its low-order half in the objid
column, and objsubid equal to 1. The original bigint value can be reassembled with the expression
(classid::bigint << 32) | objid::bigint. Integer keys are displayed with the first key in the classid
column, the second key in the objid column, and objsubid equal to 2. The actual meaning of the keys
is up to the user. Advisory locks are local to each database, so the database column is meaningful for
an advisory lock.

pg_locks provides a global view of all locks in the database cluster, not only those relevant to the current
database. Although its relation column can be joined against pg_class.oid to identify locked relations,
this will only work correctly for relations in the current database (those for which the database column
is either the current database's OID or zero).

The pid column can be joined to the pid column of the pg_stat_activity view to get more information
on the session holding or awaiting each lock, for example
SELECT * FROM pg_locks pl LEFT JOIN pg_stat_activity psa
 ON pl.pid = psa.pid;

Also, if you are using prepared transactions, the virtualtransaction column can be joined to the
transaction column of the pg_prepared_xacts view to get more information on prepared transactions
that hold locks. (A prepared transaction can never be waiting for a lock, but it continues to hold the
locks it acquired while running.) For example:
SELECT * FROM pg_locks pl LEFT JOIN pg_prepared_xacts ppx
 ON pl.virtualtransaction = '-1/' || ppx.transaction;

While it is possible to obtain information about which processes block which other processes by joining
pg_locks against itself, this is very difficult to get right in detail. Such a query would have to encode
knowledge about which lock modes conflict with which others. Worse, the pg_locks view does not expose
information about which processes are ahead of which others in lock wait queues, nor information about
which processes are parallel workers running on behalf of which other client sessions. It is better to

1885

System Catalogs

use the pg_blocking_pids() function (see Table 9.63) to identify which process(es) a waiting process
is blocked behind.

The pg_locks view displays data from both the regular lock manager and the predicate lock manager,
which are separate systems; in addition, the regular lock manager subdivides its locks into regular and
fast-path locks. This data is not guaranteed to be entirely consistent. When the view is queried, data on
fast-path locks (with fastpath = true) is gathered from each backend one at a time, without freezing
the state of the entire lock manager, so it is possible for locks to be taken or released while information
is gathered. Note, however, that these locks are known not to conflict with any other lock currently
in place. After all backends have been queried for fast-path locks, the remainder of the regular lock
manager is locked as a unit, and a consistent snapshot of all remaining locks is collected as an atomic
action. After unlocking the regular lock manager, the predicate lock manager is similarly locked and all
predicate locks are collected as an atomic action. Thus, with the exception of fast-path locks, each lock
manager will deliver a consistent set of results, but as we do not lock both lock managers simultaneously,
it is possible for locks to be taken or released after we interrogate the regular lock manager and before
we interrogate the predicate lock manager.

Locking the regular and/or predicate lock manager could have some impact on database performance if
this view is very frequently accessed. The locks are held only for the minimum amount of time necessary
to obtain data from the lock managers, but this does not completely eliminate the possibility of a
performance impact.

49.74. pg_matviews
The view pg_matviews provides access to useful information about each materialized view in the
database.

Table 49.75. pg_matviews Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing materialized view

matviewname name (references pg_class .relname)
Name of materialized view

matviewowner name (references pg_authid .rolname)
Name of materialized view's owner

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing materialized view (null if default for database)

hasindexes bool
True if materialized view has (or recently had) any indexes

ispopulated bool
True if materialized view is currently populated

definition text
Materialized view definition (a reconstructed SELECT query)

49.75. pg_policies
The view pg_policies provides access to useful information about each row-level security policy in the
database.

Table 49.76. pg_policies Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)

1886

System Catalogs

Column Type
Description
Name of schema containing table policy is on

tablename name (references pg_class .relname)
Name of table policy is on

policyname name (references pg_policy .polname)
Name of policy

permissive text
Is the policy permissive or restrictive?

roles name[]
The roles to which this policy applies

cmd text
The command type to which the policy is applied

qual text
The expression added to the security barrier qualifications for queries that this policy applies
to

with_check text
The expression added to the WITH CHECK qualifications for queries that attempt to add rows
to this table

49.76. pg_prepared_statements
The pg_prepared_statements view displays all the prepared statements that are available in the current
session. See PREPARE for more information about prepared statements.

pg_prepared_statements contains one row for each prepared statement. Rows are added to the view
when a new prepared statement is created and removed when a prepared statement is released (for
example, via the DEALLOCATE command).

Table 49.77. pg_prepared_statements Columns

Column Type
Description

name text
The identifier of the prepared statement

statement text
The query string submitted by the client to create this prepared statement. For prepared
statements created via SQL, this is the PREPARE statement submitted by the client. For
prepared statements created via the frontend/backend protocol, this is the text of the
prepared statement itself.

prepare_time timestamptz
The time at which the prepared statement was created

parameter_types regtype[]
The expected parameter types for the prepared statement in the form of an array of regtype.
The OID corresponding to an element of this array can be obtained by casting the regtype
value to oid.

from_sql bool
true if the prepared statement was created via the PREPARE SQL command; false if the
statement was prepared via the frontend/backend protocol

The pg_prepared_statements view is read only.

49.77. pg_prepared_xacts

1887

System Catalogs

The view pg_prepared_xacts displays information about transactions that are currently prepared for
two-phase commit (see PREPARE TRANSACTION for details).

pg_prepared_xacts contains one row per prepared transaction. An entry is removed when the
transaction is committed or rolled back.

Table 49.78. pg_prepared_xacts Columns

Column Type
Description

transaction xid
Numeric transaction identifier of the prepared transaction

gid text
Global transaction identifier that was assigned to the transaction

prepared timestamptz
Time at which the transaction was prepared for commit

owner name (references pg_authid .rolname)
Name of the user that executed the transaction

database name (references pg_database .datname)
Name of the database in which the transaction was executed

When the pg_prepared_xacts view is accessed, the internal transaction manager data structures are
momentarily locked, and a copy is made for the view to display. This ensures that the view produces a
consistent set of results, while not blocking normal operations longer than necessary. Nonetheless there
could be some impact on database performance if this view is frequently accessed.

49.78. pg_publication_tables
The view pg_publication_tables provides information about the mapping between publications
and the tables they contain. Unlike the underlying catalog pg_publication_rel, this view expands
publications defined as FOR ALL TABLES, so for such publications there will be a row for each eligible
table.

Table 49.79. pg_publication_tables Columns

Column Type
Description

pubname name (references pg_publication .pubname)
Name of publication

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

49.79. pg_replication_origin_status
The pg_replication_origin_status view contains information about how far replay for a certain origin
has progressed. For more on replication origins see Chapter 47.

Table 49.80. pg_replication_origin_status Columns

Column Type
Description

local_id oid (references pg_replication_origin .roident)
internal node identifier

external_id text (references pg_replication_origin .roname)

1888

System Catalogs

Column Type
Description
external node identifier

remote_lsn pg_lsn
The origin node's LSN up to which data has been replicated.

local_lsn pg_lsn
This node's LSN at which remote_lsn has been replicated. Used to flush commit records
before persisting data to disk when using asynchronous commits.

49.80. pg_replication_slots
The pg_replication_slots view provides a listing of all replication slots that currently exist on the
database cluster, along with their current state.

For more on replication slots, see Section 25.2.6 and Chapter 46.

Table 49.81. pg_replication_slots Columns

Column Type
Description

slot_name name
A unique, cluster-wide identifier for the replication slot

plugin name
The base name of the shared object containing the output plugin this logical slot is using, or
null for physical slots.

slot_type text
The slot type: physical or logical

datoid oid (references pg_database .oid)
The OID of the database this slot is associated with, or null. Only logical slots have an
associated database.

database name (references pg_database .datname)
The name of the database this slot is associated with, or null. Only logical slots have an
associated database.

temporary bool
True if this is a temporary replication slot. Temporary slots are not saved to disk and are
automatically dropped on error or when the session has finished.

active bool
True if this slot is currently actively being used

active_pid int4
The process ID of the session using this slot if the slot is currently actively being used. NULL if
inactive.

xmin xid
The oldest transaction that this slot needs the database to retain. VACUUM cannot remove
tuples deleted by any later transaction.

catalog_xmin xid
The oldest transaction affecting the system catalogs that this slot needs the database to
retain. VACUUM cannot remove catalog tuples deleted by any later transaction.

restart_lsn pg_lsn
The address (LSN) of oldest WAL which still might be required by the consumer of this slot
and thus won't be automatically removed during checkpoints unless this LSN gets behind
more than max_slot_wal_keep_size from the current LSN. NULL if the LSN of this slot has never
been reserved.

1889

System Catalogs

Column Type
Description

confirmed_flush_lsn pg_lsn
The address (LSN) up to which the logical slot's consumer has confirmed receiving data. Data
older than this is not available anymore. NULL for physical slots.

wal_status text
Availability of WAL files claimed by this slot. Possible values are:
• reserved means that the claimed files are within max_wal_size .
• extended means that max_wal_size is exceeded but the files are still retained, either by

the replication slot or by wal_keep_size .
• unreserved means that the slot no longer retains the required WAL files and some of them

are to be removed at the next checkpoint. This state can return to reserved or extended.
• lost means that some required WAL files have been removed and this slot is no longer

usable.

The last two states are seen only when max_slot_wal_keep_size is non-negative. If restart_
lsn is NULL, this field is null.

safe_wal_size int8
The number of bytes that can be written to WAL such that this slot is not in danger of getting
in state "lost". It is NULL for lost slots, as well as if max_slot_wal_keep_size is -1.

49.81. pg_roles
The view pg_roles provides access to information about database roles. This is simply a publicly
readable view of pg_authid that blanks out the password field.

Table 49.82. pg_roles Columns

Column Type
Description

rolname name
Role name

rolsuper bool
Role has superuser privileges

rolinherit bool
Role automatically inherits privileges of roles it is a member of

rolcreaterole bool
Role can create more roles

rolcreatedb bool
Role can create databases

rolcanlogin bool
Role can log in. That is, this role can be given as the initial session authorization identifier

rolreplication bool
Role is a replication role. A replication role can initiate replication connections and create
and drop replication slots.

rolconnlimit int4
For roles that can log in, this sets maximum number of concurrent connections this role can
make. -1 means no limit.

rolpassword text
Not the password (always reads as ********)

rolvaliduntil timestamptz

1890

System Catalogs

Column Type
Description
Password expiry time (only used for password authentication); null if no expiration

rolbypassrls bool
Role bypasses every row level security policy, see Section 5.8 for more information.

rolconfig text[]
Role-specific defaults for run-time configuration variables

oid oid (references pg_authid .oid)
ID of role

49.82. pg_rules
The view pg_rules provides access to useful information about query rewrite rules.

Table 49.83. pg_rules Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table the rule is for

rulename name (references pg_rewrite .rulename)
Name of rule

definition text
Rule definition (a reconstructed creation command)

The pg_rules view excludes the ON SELECT rules of views and materialized views; those can be seen
in pg_views and pg_matviews.

49.83. pg_seclabels
The view pg_seclabels provides information about security labels. It as an easier-to-query version of
the pg_seclabel catalog.

Table 49.84. pg_seclabels Columns

Column Type
Description

objoid oid (references any OID column)
The OID of the object this security label pertains to

classoid oid (references pg_class .oid)
The OID of the system catalog this object appears in

objsubid int4
For a security label on a table column, this is the column number (the objoid and classoid
refer to the table itself). For all other object types, this column is zero.

objtype text
The type of object to which this label applies, as text.

objnamespace oid (references pg_namespace .oid)
The OID of the namespace for this object, if applicable; otherwise NULL.

objname text
The name of the object to which this label applies, as text.

provider text (references pg_seclabel .provider)

1891

System Catalogs

Column Type
Description
The label provider associated with this label.

label text (references pg_seclabel .label)
The security label applied to this object.

49.84. pg_sequences
The view pg_sequences provides access to useful information about each sequence in the database.

Table 49.85. pg_sequences Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing sequence

sequencename name (references pg_class .relname)
Name of sequence

sequenceowner name (references pg_authid .rolname)
Name of sequence's owner

data_type regtype (references pg_type .oid)
Data type of the sequence

start_value int8
Start value of the sequence

min_value int8
Minimum value of the sequence

max_value int8
Maximum value of the sequence

increment_by int8
Increment value of the sequence

cycle bool
Whether the sequence cycles

cache_size int8
Cache size of the sequence

last_value int8
The last sequence value written to disk. If caching is used, this value can be greater than the
last value handed out from the sequence. Null if the sequence has not been read from yet.
Also, if the current user does not have USAGE or SELECT privilege on the sequence, the value is
null.

49.85. pg_settings
The view pg_settings provides access to run-time parameters of the server. It is essentially an
alternative interface to the SHOW and SET commands. It also provides access to some facts about each
parameter that are not directly available from SHOW, such as minimum and maximum values.

Table 49.86. pg_settings Columns

Column Type
Description

name text
Run-time configuration parameter name

setting text

1892

System Catalogs

Column Type
Description
Current value of the parameter

unit text
Implicit unit of the parameter

category text
Logical group of the parameter

short_desc text
A brief description of the parameter

extra_desc text
Additional, more detailed, description of the parameter

context text
Context required to set the parameter's value (see below)

vartype text
Parameter type (bool, enum, integer, real, or string)

source text
Source of the current parameter value

min_val text
Minimum allowed value of the parameter (null for non-numeric values)

max_val text
Maximum allowed value of the parameter (null for non-numeric values)

enumvals text[]
Allowed values of an enum parameter (null for non-enum values)

boot_val text
Parameter value assumed at server startup if the parameter is not otherwise set

reset_val text
Value that RESET would reset the parameter to in the current session

sourcefile text
Configuration file the current value was set in (null for values set from sources other than
configuration files, or when examined by a user who is neither a superuser or a member of
pg_read_all_settings); helpful when using include directives in configuration files

sourceline int4
Line number within the configuration file the current value was set at (null for values set from
sources other than configuration files, or when examined by a user who is neither a superuser
or a member of pg_read_all_settings).

pending_restart bool
true if the value has been changed in the configuration file but needs a restart; or false
otherwise.

There are several possible values of context. In order of decreasing difficulty of changing the setting,
they are:

internal

These settings cannot be changed directly; they reflect internally determined values. Some of them
may be adjustable by rebuilding the server with different configuration options, or by changing
options supplied to initdb.

postmaster

These settings can only be applied when the server starts, so any change requires restarting the
server. Values for these settings are typically stored in the postgresql.conf file, or passed on the

1893

System Catalogs

command line when starting the server. Of course, settings with any of the lower context types can
also be set at server start time.

sighup

Changes to these settings can be made in postgresql.conf without restarting the server. Send a
SIGHUP signal to the postmaster to cause it to re-read postgresql.conf and apply the changes.
The postmaster will also forward the SIGHUP signal to its child processes so that they all pick up
the new value.

superuser-backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable), but only if the connecting user is a superuser. However, these
settings never change in a session after it is started. If you change them in postgresql.conf, send
a SIGHUP signal to the postmaster to cause it to re-read postgresql.conf. The new values will only
affect subsequently-launched sessions.

backend

Changes to these settings can be made in postgresql.conf without restarting the server. They
can also be set for a particular session in the connection request packet (for example, via libpq's
PGOPTIONS environment variable); any user can make such a change for their session. However, these
settings never change in a session after it is started. If you change them in postgresql.conf, send
a SIGHUP signal to the postmaster to cause it to re-read postgresql.conf. The new values will only
affect subsequently-launched sessions.

superuser

These settings can be set from postgresql.conf, or within a session via the SET command; but only
superusers can change them via SET. Changes in postgresql.conf will affect existing sessions only
if no session-local value has been established with SET.

user

These settings can be set from postgresql.conf, or within a session via the SET command. Any
user is allowed to change their session-local value. Changes in postgresql.conf will affect existing
sessions only if no session-local value has been established with SET.

See Section 18.1 for more information about the various ways to change these parameters.

The pg_settings view cannot be inserted into or deleted from, but it can be updated. An UPDATE applied
to a row of pg_settings is equivalent to executing the SET command on that named parameter. The
change only affects the value used by the current session. If an UPDATE is issued within a transaction that
is later aborted, the effects of the UPDATE command disappear when the transaction is rolled back. Once
the surrounding transaction is committed, the effects will persist until the end of the session, unless
overridden by another UPDATE or SET.

49.86. pg_shadow
The view pg_shadow exists for backwards compatibility: it emulates a catalog that existed in PostgreSQL
before version 8.1. It shows properties of all roles that are marked as rolcanlogin in pg_authid.

The name stems from the fact that this table should not be readable by the public since it contains
passwords. pg_user is a publicly readable view on pg_shadow that blanks out the password field.

Table 49.87. pg_shadow Columns

Column Type
Description

usename name (references pg_authid .rolname)

1894

System Catalogs

Column Type
Description
User name

usesysid oid (references pg_authid .oid)
ID of this user

usecreatedb bool
User can create databases

usesuper bool
User is a superuser

userepl bool
User can initiate streaming replication and put the system in and out of backup mode.

usebypassrls bool
User bypasses every row level security policy, see Section 5.8 for more information.

passwd text
Password (possibly encrypted); null if none. See pg_authid for details of how encrypted
passwords are stored.

valuntil timestamptz
Password expiry time (only used for password authentication)

useconfig text[]
Session defaults for run-time configuration variables

49.87. pg_shmem_allocations
The pg_shmem_allocations view shows allocations made from the server's main shared memory
segment. This includes both memory allocated by postgres itself and memory allocated by extensions
using the mechanisms detailed in Section 35.10.10.

Note that this view does not include memory allocated using the dynamic shared memory infrastructure.

Table 49.88. pg_shmem_allocations Columns

Column Type
Description

name text
The name of the shared memory allocation. NULL for unused memory and <anonymous> for
anonymous allocations.

off int8
The offset at which the allocation starts. NULL for anonymous allocations, since details
related to them are not known.

size int8
Size of the allocation

allocated_size int8
Size of the allocation including padding. For anonymous allocations, no information about
padding is available, so the size and allocated_size columns will always be equal. Padding
is not meaningful for free memory, so the columns will be equal in that case also.

Anonymous allocations are allocations that have been made with ShmemAlloc() directly, rather than via
ShmemInitStruct() or ShmemInitHash().

By default, the pg_shmem_allocations view can be read only by superusers.

49.88. pg_stats

1895

System Catalogs

The view pg_stats provides access to the information stored in the pg_statistic catalog. This view
allows access only to rows of pg_statistic that correspond to tables the user has permission to read,
and therefore it is safe to allow public read access to this view.

pg_stats is also designed to present the information in a more readable format than the underlying
catalog — at the cost that its schema must be extended whenever new slot types are defined for
pg_statistic.

Table 49.89. pg_stats Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

attname name (references pg_attribute .attname)
Name of the column described by this row

inherited bool
If true, this row includes inheritance child columns, not just the values in the specified table

null_frac float4
Fraction of column entries that are null

avg_width int4
Average width in bytes of column's entries

n_distinct float4
If greater than zero, the estimated number of distinct values in the column. If less than zero,
 the negative of the number of distinct values divided by the number of rows. (The negated
form is used when ANALYZE believes that the number of distinct values is likely to increase as
the table grows; the positive form is used when the column seems to have a fixed number of
possible values.) For example, -1 indicates a unique column in which the number of distinct
values is the same as the number of rows.

most_common_vals anyarray
A list of the most common values in the column. (Null if no values seem to be more common
than any others.)

most_common_freqs float4[]
A list of the frequencies of the most common values, i.e., number of occurrences of each
divided by total number of rows. (Null when most_common_vals is.)

histogram_bounds anyarray
A list of values that divide the column's values into groups of approximately equal population.
The values in most_common_vals , if present, are omitted from this histogram calculation.
(This column is null if the column data type does not have a < operator or if the most_
common_vals list accounts for the entire population.)

correlation float4
Statistical correlation between physical row ordering and logical ordering of the column
values. This ranges from -1 to +1. When the value is near -1 or +1, an index scan on the
column will be estimated to be cheaper than when it is near zero, due to reduction of random
access to the disk. (This column is null if the column data type does not have a < operator.)

most_common_elems anyarray
A list of non-null element values most often appearing within values of the column. (Null for
scalar types.)

most_common_elem_freqs float4[]
A list of the frequencies of the most common element values, i.e., the fraction of rows
containing at least one instance of the given value. Two or three additional values follow the

1896

System Catalogs

Column Type
Description
per-element frequencies; these are the minimum and maximum of the preceding per-element
frequencies, and optionally the frequency of null elements. (Null when most_common_elems
is.)

elem_count_histogram float4[]
A histogram of the counts of distinct non-null element values within the values of the column,
 followed by the average number of distinct non-null elements. (Null for scalar types.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

49.89. pg_stats_ext
The view pg_stats_ext provides access to the information stored in the pg_statistic_ext and
pg_statistic_ext_data catalogs. This view allows access only to rows of pg_statistic_ext and
pg_statistic_ext_data that correspond to tables the user has permission to read, and therefore it is
safe to allow public read access to this view.

pg_stats_ext is also designed to present the information in a more readable format than the underlying
catalogs — at the cost that its schema must be extended whenever new types of extended statistics are
added to pg_statistic_ext.

Table 49.90. pg_stats_ext Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

statistics_schemaname name (references pg_namespace .nspname)
Name of schema containing extended statistic

statistics_name name (references pg_statistic_ext .stxname)
Name of extended statistics

statistics_owner name (references pg_authid .rolname)
Owner of the extended statistics

attnames name[] (references pg_attribute .attname)
Names of the columns the extended statistics is defined on

kinds char[]
Types of extended statistics enabled for this record

n_distinct pg_ndistinct
N-distinct counts for combinations of column values. If greater than zero, the estimated
number of distinct values in the combination. If less than zero, the negative of the number
of distinct values divided by the number of rows. (The negated form is used when ANALYZE
believes that the number of distinct values is likely to increase as the table grows; the
positive form is used when the column seems to have a fixed number of possible values.)
For example, -1 indicates a unique combination of columns in which the number of distinct
combinations is the same as the number of rows.

dependencies pg_dependencies
Functional dependency statistics

most_common_vals text[]

1897

System Catalogs

Column Type
Description
A list of the most common combinations of values in the columns. (Null if no combinations
seem to be more common than any others.)

most_common_val_nulls bool[]
A list of NULL flags for the most common combinations of values. (Null when most_common_
vals is.)

most_common_freqs float8[]
A list of the frequencies of the most common combinations, i.e., number of occurrences of
each divided by total number of rows. (Null when most_common_vals is.)

most_common_base_freqs float8[]
A list of the base frequencies of the most common combinations, i.e., product of per-value
frequencies. (Null when most_common_vals is.)

The maximum number of entries in the array fields can be controlled on a column-by-column basis using
the ALTER TABLE SET STATISTICS command, or globally by setting the default_statistics_target run-
time parameter.

49.90. pg_tables
The view pg_tables provides access to useful information about each table in the database.

Table 49.91. pg_tables Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing table

tablename name (references pg_class .relname)
Name of table

tableowner name (references pg_authid .rolname)
Name of table's owner

tablespace name (references pg_tablespace .spcname)
Name of tablespace containing table (null if default for database)

hasindexes bool (references pg_class .relhasindex)
True if table has (or recently had) any indexes

hasrules bool (references pg_class .relhasrules)
True if table has (or once had) rules

hastriggers bool (references pg_class .relhastriggers)
True if table has (or once had) triggers

rowsecurity bool (references pg_class .relrowsecurity)
True if row security is enabled on the table

49.91. pg_timezone_abbrevs
The view pg_timezone_abbrevs provides a list of time zone abbreviations that are currently recognized
by the datetime input routines. The contents of this view change when the timezone_abbreviations run-
time parameter is modified.

Table 49.92. pg_timezone_abbrevs Columns

Column Type
Description

abbrev text

1898

System Catalogs

Column Type
Description
Time zone abbreviation

utc_offset interval
Offset from UTC (positive means east of Greenwich)

is_dst bool
True if this is a daylight-savings abbreviation

While most timezone abbreviations represent fixed offsets from UTC, there are some that have
historically varied in value (see Section B.4 for more information). In such cases this view presents their
current meaning.

49.92. pg_timezone_names
The view pg_timezone_names provides a list of time zone names that are recognized by SET TIMEZONE,
along with their associated abbreviations, UTC offsets, and daylight-savings status. (Technically,
Postgres Pro does not use UTC because leap seconds are not handled.) Unlike the abbreviations shown
in pg_timezone_abbrevs, many of these names imply a set of daylight-savings transition date rules.
Therefore, the associated information changes across local DST boundaries. The displayed information
is computed based on the current value of CURRENT_TIMESTAMP.

Table 49.93. pg_timezone_names Columns

Column Type
Description

name text
Time zone name

abbrev text
Time zone abbreviation

utc_offset interval
Offset from UTC (positive means east of Greenwich)

is_dst bool
True if currently observing daylight savings

49.93. pg_user
The view pg_user provides access to information about database users. This is simply a publicly readable
view of pg_shadow that blanks out the password field.

Table 49.94. pg_user Columns

Column Type
Description

usename name
User name

usesysid oid
ID of this user

usecreatedb bool
User can create databases

usesuper bool
User is a superuser

userepl bool
User can initiate streaming replication and put the system in and out of backup mode.

1899

System Catalogs

Column Type
Description

usebypassrls bool
User bypasses every row level security policy, see Section 5.8 for more information.

passwd text
Not the password (always reads as ********)

valuntil timestamptz
Password expiry time (only used for password authentication)

useconfig text[]
Session defaults for run-time configuration variables

49.94. pg_user_mappings
The view pg_user_mappings provides access to information about user mappings. This is essentially a
publicly readable view of pg_user_mapping that leaves out the options field if the user has no rights
to use it.

Table 49.95. pg_user_mappings Columns

Column Type
Description

umid oid (references pg_user_mapping .oid)
OID of the user mapping

srvid oid (references pg_foreign_server .oid)
The OID of the foreign server that contains this mapping

srvname name (references pg_foreign_server .srvname)
Name of the foreign server

umuser oid (references pg_authid .oid)
OID of the local role being mapped, 0 if the user mapping is public

usename name
Name of the local user to be mapped

umoptions text[]
User mapping specific options, as “keyword=value” strings

To protect password information stored as a user mapping option, the umoptions column will read as
null unless one of the following applies:
• current user is the user being mapped, and owns the server or holds USAGE privilege on it
• current user is the server owner and mapping is for PUBLIC
• current user is a superuser

49.95. pg_views
The view pg_views provides access to useful information about each view in the database.

Table 49.96. pg_views Columns

Column Type
Description

schemaname name (references pg_namespace .nspname)
Name of schema containing view

viewname name (references pg_class .relname)
Name of view

1900

System Catalogs

Column Type
Description

viewowner name (references pg_authid .rolname)
Name of view's owner

definition text
View definition (a reconstructed SELECT query)

1901

Chapter 50. Frontend/Backend Protocol
Postgres Pro uses a message-based protocol for communication between frontends and backends (clients
and servers). The protocol is supported over TCP/IP and also over Unix-domain sockets. Port number
5432 has been registered with IANA as the customary TCP port number for servers supporting this
protocol, but in practice any non-privileged port number can be used.

This document describes version 3.0 of the protocol, implemented in PostgreSQL 7.4 and later. For
descriptions of the earlier protocol versions, see previous releases of the PostgreSQL documentation. A
single server can support multiple protocol versions. The initial startup-request message tells the server
which protocol version the client is attempting to use. If the major version requested by the client is
not supported by the server, the connection will be rejected (for example, this would occur if the client
requested protocol version 4.0, which does not exist as of this writing). If the minor version requested
by the client is not supported by the server (e.g., the client requests version 3.1, but the server supports
only 3.0), the server may either reject the connection or may respond with a NegotiateProtocolVersion
message containing the highest minor protocol version which it supports. The client may then choose
either to continue with the connection using the specified protocol version or to abort the connection.

In order to serve multiple clients efficiently, the server launches a new “backend” process for each client.
In the current implementation, a new child process is created immediately after an incoming connection
is detected. This is transparent to the protocol, however. For purposes of the protocol, the terms
“backend” and “server” are interchangeable; likewise “frontend” and “client” are interchangeable.

50.1. Overview
The protocol has separate phases for startup and normal operation. In the startup phase, the frontend
opens a connection to the server and authenticates itself to the satisfaction of the server. (This might
involve a single message, or multiple messages depending on the authentication method being used.)
If all goes well, the server then sends status information to the frontend, and finally enters normal
operation. Except for the initial startup-request message, this part of the protocol is driven by the server.

During normal operation, the frontend sends queries and other commands to the backend, and the
backend sends back query results and other responses. There are a few cases (such as NOTIFY) wherein
the backend will send unsolicited messages, but for the most part this portion of a session is driven by
frontend requests.

Termination of the session is normally by frontend choice, but can be forced by the backend in certain
cases. In any case, when the backend closes the connection, it will roll back any open (incomplete)
transaction before exiting.

Within normal operation, SQL commands can be executed through either of two sub-protocols. In
the “simple query” protocol, the frontend just sends a textual query string, which is parsed and
immediately executed by the backend. In the “extended query” protocol, processing of queries is
separated into multiple steps: parsing, binding of parameter values, and execution. This offers flexibility
and performance benefits, at the cost of extra complexity.

Normal operation has additional sub-protocols for special operations such as COPY.

50.1.1. Messaging Overview
All communication is through a stream of messages. The first byte of a message identifies the message
type, and the next four bytes specify the length of the rest of the message (this length count includes
itself, but not the message-type byte). The remaining contents of the message are determined by the
message type. For historical reasons, the very first message sent by the client (the startup message) has
no initial message-type byte.

To avoid losing synchronization with the message stream, both servers and clients typically read an
entire message into a buffer (using the byte count) before attempting to process its contents. This allows

1902

Frontend/Backend Protocol

easy recovery if an error is detected while processing the contents. In extreme situations (such as not
having enough memory to buffer the message), the receiver can use the byte count to determine how
much input to skip before it resumes reading messages.

Conversely, both servers and clients must take care never to send an incomplete message. This
is commonly done by marshaling the entire message in a buffer before beginning to send it. If a
communications failure occurs partway through sending or receiving a message, the only sensible
response is to abandon the connection, since there is little hope of recovering message-boundary
synchronization.

50.1.2. Extended Query Overview
In the extended-query protocol, execution of SQL commands is divided into multiple steps. The state
retained between steps is represented by two types of objects: prepared statements and portals. A
prepared statement represents the result of parsing and semantic analysis of a textual query string.
A prepared statement is not in itself ready to execute, because it might lack specific values for
parameters. A portal represents a ready-to-execute or already-partially-executed statement, with any
missing parameter values filled in. (For SELECT statements, a portal is equivalent to an open cursor, but
we choose to use a different term since cursors don't handle non-SELECT statements.)

The overall execution cycle consists of a parse step, which creates a prepared statement from a textual
query string; a bind step, which creates a portal given a prepared statement and values for any needed
parameters; and an execute step that runs a portal's query. In the case of a query that returns rows
(SELECT, SHOW, etc), the execute step can be told to fetch only a limited number of rows, so that multiple
execute steps might be needed to complete the operation.

The backend can keep track of multiple prepared statements and portals (but note that these exist only
within a session, and are never shared across sessions). Existing prepared statements and portals are
referenced by names assigned when they were created. In addition, an “unnamed” prepared statement
and portal exist. Although these behave largely the same as named objects, operations on them are
optimized for the case of executing a query only once and then discarding it, whereas operations on
named objects are optimized on the expectation of multiple uses.

50.1.3. Formats and Format Codes
Data of a particular data type might be transmitted in any of several different formats. As of PostgreSQL
7.4 the only supported formats are “text” and “binary”, but the protocol makes provision for future
extensions. The desired format for any value is specified by a format code. Clients can specify a format
code for each transmitted parameter value and for each column of a query result. Text has format code
zero, binary has format code one, and all other format codes are reserved for future definition.

The text representation of values is whatever strings are produced and accepted by the input/output
conversion functions for the particular data type. In the transmitted representation, there is no trailing
null character; the frontend must add one to received values if it wants to process them as C strings.
(The text format does not allow embedded nulls, by the way.)

Binary representations for integers use network byte order (most significant byte first). For other data
types consult the documentation or source code to learn about the binary representation. Keep in mind
that binary representations for complex data types might change across server versions; the text format
is usually the more portable choice.

50.2. Message Flow
This section describes the message flow and the semantics of each message type. (Details of the exact
representation of each message appear in Section 50.7.) There are several different sub-protocols
depending on the state of the connection: start-up, query, function call, COPY, and termination. There
are also special provisions for asynchronous operations (including notification responses and command
cancellation), which can occur at any time after the start-up phase.

1903

Frontend/Backend Protocol

50.2.1. Start-up
To begin a session, a frontend opens a connection to the server and sends a startup message. This
message includes the names of the user and of the database the user wants to connect to; it also
identifies the particular protocol version to be used. (Optionally, the startup message can include
additional settings for run-time parameters.) The server then uses this information and the contents
of its configuration files (such as pg_hba.conf) to determine whether the connection is provisionally
acceptable, and what additional authentication is required (if any).

The server then sends an appropriate authentication request message, to which the frontend must
reply with an appropriate authentication response message (such as a password). For all authentication
methods except GSSAPI, SSPI and SASL, there is at most one request and one response. In some
methods, no response at all is needed from the frontend, and so no authentication request occurs. For
GSSAPI, SSPI and SASL, multiple exchanges of packets may be needed to complete the authentication.

The authentication cycle ends with the server either rejecting the connection attempt (ErrorResponse),
or sending AuthenticationOk.

The possible messages from the server in this phase are:

ErrorResponse

The connection attempt has been rejected. The server then immediately closes the connection.

AuthenticationOk

The authentication exchange is successfully completed.

AuthenticationKerberosV5

The frontend must now take part in a Kerberos V5 authentication dialog (not described here, part
of the Kerberos specification) with the server. If this is successful, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse. This is no longer supported.

AuthenticationCleartextPassword

The frontend must now send a PasswordMessage containing the password in clear-text form. If this
is the correct password, the server responds with an AuthenticationOk, otherwise it responds with
an ErrorResponse.

AuthenticationMD5Password

The frontend must now send a PasswordMessage containing the password (with user name)
encrypted via MD5, then encrypted again using the 4-byte random salt specified in the
AuthenticationMD5Password message. If this is the correct password, the server responds with an
AuthenticationOk, otherwise it responds with an ErrorResponse. The actual PasswordMessage can
be computed in SQL as concat('md5', md5(concat(md5(concat(password, username)), random-
salt))). (Keep in mind the md5() function returns its result as a hex string.)

AuthenticationSCMCredential

This response is only possible for local Unix-domain connections on platforms that support SCM
credential messages. The frontend must issue an SCM credential message and then send a single
data byte. (The contents of the data byte are uninteresting; it's only used to ensure that the server
waits long enough to receive the credential message.) If the credential is acceptable, the server
responds with an AuthenticationOk, otherwise it responds with an ErrorResponse. (This message
type is only issued by pre-9.1 servers. It may eventually be removed from the protocol specification.)

AuthenticationGSS

The frontend must now initiate a GSSAPI negotiation. The frontend will send a GSSResponse message
with the first part of the GSSAPI data stream in response to this. If further messages are needed,
the server will respond with AuthenticationGSSContinue.

1904

Frontend/Backend Protocol

AuthenticationSSPI

The frontend must now initiate a SSPI negotiation. The frontend will send a GSSResponse with the
first part of the SSPI data stream in response to this. If further messages are needed, the server will
respond with AuthenticationGSSContinue.

AuthenticationGSSContinue

This message contains the response data from the previous step of GSSAPI or SSPI negotiation
(AuthenticationGSS, AuthenticationSSPI or a previous AuthenticationGSSContinue). If the GSSAPI
or SSPI data in this message indicates more data is needed to complete the authentication, the
frontend must send that data as another GSSResponse message. If GSSAPI or SSPI authentication
is completed by this message, the server will next send AuthenticationOk to indicate successful
authentication or ErrorResponse to indicate failure.

AuthenticationSASL

The frontend must now initiate a SASL negotiation, using one of the SASL mechanisms listed in the
message. The frontend will send a SASLInitialResponse with the name of the selected mechanism,
and the first part of the SASL data stream in response to this. If further messages are needed, the
server will respond with AuthenticationSASLContinue. See Section 50.3 for details.

AuthenticationSASLContinue

This message contains challenge data from the previous step of SASL negotiation
(AuthenticationSASL, or a previous AuthenticationSASLContinue). The frontend must respond with
a SASLResponse message.

AuthenticationSASLFinal

SASL authentication has completed with additional mechanism-specific data for the client. The
server will next send AuthenticationOk to indicate successful authentication, or an ErrorResponse
to indicate failure. This message is sent only if the SASL mechanism specifies additional data to be
sent from server to client at completion.

NegotiateProtocolVersion

The server does not support the minor protocol version requested by the client, but does support
an earlier version of the protocol; this message indicates the highest supported minor version. This
message will also be sent if the client requested unsupported protocol options (i.e., beginning with
pq.) in the startup packet. This message will be followed by an ErrorResponse or a message
indicating the success or failure of authentication.

If the frontend does not support the authentication method requested by the server, then it should
immediately close the connection.

After having received AuthenticationOk, the frontend must wait for further messages from the server.
In this phase a backend process is being started, and the frontend is just an interested bystander. It
is still possible for the startup attempt to fail (ErrorResponse) or the server to decline support for the
requested minor protocol version (NegotiateProtocolVersion), but in the normal case the backend will
send some ParameterStatus messages, BackendKeyData, and finally ReadyForQuery.

During this phase the backend will attempt to apply any additional run-time parameter settings that
were given in the startup message. If successful, these values become session defaults. An error causes
ErrorResponse and exit.

The possible messages from the backend in this phase are:

BackendKeyData

This message provides secret-key data that the frontend must save if it wants to be able to issue
cancel requests later. The frontend should not respond to this message, but should continue listening
for a ReadyForQuery message.

1905

Frontend/Backend Protocol

ParameterStatus
This message informs the frontend about the current (initial) setting of backend parameters, such
as client_encoding or DateStyle. The frontend can ignore this message, or record the settings for its
future use; see Section 50.2.6 for more details. The frontend should not respond to this message, but
should continue listening for a ReadyForQuery message.

ReadyForQuery
Start-up is completed. The frontend can now issue commands.

ErrorResponse
Start-up failed. The connection is closed after sending this message.

NoticeResponse
A warning message has been issued. The frontend should display the message but continue listening
for ReadyForQuery or ErrorResponse.

The ReadyForQuery message is the same one that the backend will issue after each command cycle.
Depending on the coding needs of the frontend, it is reasonable to consider ReadyForQuery as starting
a command cycle, or to consider ReadyForQuery as ending the start-up phase and each subsequent
command cycle.

50.2.2. Simple Query
A simple query cycle is initiated by the frontend sending a Query message to the backend. The message
includes an SQL command (or commands) expressed as a text string. The backend then sends one
or more response messages depending on the contents of the query command string, and finally a
ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send a new
command. (It is not actually necessary for the frontend to wait for ReadyForQuery before issuing another
command, but the frontend must then take responsibility for figuring out what happens if the earlier
command fails and already-issued later commands succeed.)

The possible response messages from the backend are:
CommandComplete

An SQL command completed normally.

CopyInResponse
The backend is ready to copy data from the frontend to a table; see Section 50.2.5.

CopyOutResponse
The backend is ready to copy data from a table to the frontend; see Section 50.2.5.

RowDescription

Indicates that rows are about to be returned in response to a SELECT, FETCH, etc query. The contents
of this message describe the column layout of the rows. This will be followed by a DataRow message
for each row being returned to the frontend.

DataRow

One of the set of rows returned by a SELECT, FETCH, etc query.

EmptyQueryResponse
An empty query string was recognized.

ErrorResponse
An error has occurred.

1906

Frontend/Backend Protocol

ReadyForQuery
Processing of the query string is complete. A separate message is sent to indicate this because
the query string might contain multiple SQL commands. (CommandComplete marks the end of
processing one SQL command, not the whole string.) ReadyForQuery will always be sent, whether
processing terminates successfully or with an error.

NoticeResponse
A warning message has been issued in relation to the query. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

The response to a SELECT query (or other queries that return row sets, such as EXPLAIN or SHOW) normally
consists of RowDescription, zero or more DataRow messages, and then CommandComplete. COPY to or
from the frontend invokes special protocol as described in Section 50.2.5. All other query types normally
produce only a CommandComplete message.

Since a query string could contain several queries (separated by semicolons), there might be several
such response sequences before the backend finishes processing the query string. ReadyForQuery is
issued when the entire string has been processed and the backend is ready to accept a new query string.

If a completely empty (no contents other than whitespace) query string is received, the response is
EmptyQueryResponse followed by ReadyForQuery.

In the event of an error, ErrorResponse is issued followed by ReadyForQuery. All further processing of
the query string is aborted by ErrorResponse (even if more queries remained in it). Note that this might
occur partway through the sequence of messages generated by an individual query.

In simple Query mode, the format of retrieved values is always text, except when the given command is
a FETCH from a cursor declared with the BINARY option. In that case, the retrieved values are in binary
format. The format codes given in the RowDescription message tell which format is being used.

A frontend must be prepared to accept ErrorResponse and NoticeResponse messages whenever it is
expecting any other type of message. See also Section 50.2.6 concerning messages that the backend
might generate due to outside events.

Recommended practice is to code frontends in a state-machine style that will accept any message type
at any time that it could make sense, rather than wiring in assumptions about the exact sequence of
messages.

50.2.2.1. Multiple Statements in a Simple Query
When a simple Query message contains more than one SQL statement (separated by semicolons),
those statements are executed as a single transaction, unless explicit transaction control commands are
included to force a different behavior. For example, if the message contains
INSERT INTO mytable VALUES(1);
SELECT 1/0;
INSERT INTO mytable VALUES(2);

then the divide-by-zero failure in the SELECT will force rollback of the first INSERT. Furthermore, because
execution of the message is abandoned at the first error, the second INSERT is never attempted at all.

If instead the message contains
BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELECT 1/0;

then the first INSERT is committed by the explicit COMMIT command. The second INSERT and the SELECT
are still treated as a single transaction, so that the divide-by-zero failure will roll back the second INSERT,
but not the first one.

1907

Frontend/Backend Protocol

This behavior is implemented by running the statements in a multi-statement Query message in an
implicit transaction block unless there is some explicit transaction block for them to run in. The main
difference between an implicit transaction block and a regular one is that an implicit block is closed
automatically at the end of the Query message, either by an implicit commit if there was no error, or an
implicit rollback if there was an error. This is similar to the implicit commit or rollback that happens for
a statement executed by itself (when not in a transaction block).

If the session is already in a transaction block, as a result of a BEGIN in some previous message, then the
Query message simply continues that transaction block, whether the message contains one statement or
several. However, if the Query message contains a COMMIT or ROLLBACK closing the existing transaction
block, then any following statements are executed in an implicit transaction block. Conversely, if a BEGIN
appears in a multi-statement Query message, then it starts a regular transaction block that will only be
terminated by an explicit COMMIT or ROLLBACK, whether that appears in this Query message or a later
one. If the BEGIN follows some statements that were executed as an implicit transaction block, those
statements are not immediately committed; in effect, they are retroactively included into the new regular
transaction block.

A COMMIT or ROLLBACK appearing in an implicit transaction block is executed as normal, closing the
implicit block; however, a warning will be issued since a COMMIT or ROLLBACK without a previous BEGIN
might represent a mistake. If more statements follow, a new implicit transaction block will be started
for them.

Savepoints are not allowed in an implicit transaction block, since they would conflict with the behavior
of automatically closing the block upon any error.

Remember that, regardless of any transaction control commands that may be present, execution of the
Query message stops at the first error. Thus for example given
BEGIN;
SELECT 1/0;
ROLLBACK;

in a single Query message, the session will be left inside a failed regular transaction block, since the
ROLLBACK is not reached after the divide-by-zero error. Another ROLLBACK will be needed to restore the
session to a usable state.

Another behavior of note is that initial lexical and syntactic analysis is done on the entire query string
before any of it is executed. Thus simple errors (such as a misspelled keyword) in later statements
can prevent execution of any of the statements. This is normally invisible to users since the statements
would all roll back anyway when done as an implicit transaction block. However, it can be visible when
attempting to do multiple transactions within a multi-statement Query. For instance, if a typo turned
our previous example into
BEGIN;
INSERT INTO mytable VALUES(1);
COMMIT;
INSERT INTO mytable VALUES(2);
SELCT 1/0;

then none of the statements would get run, resulting in the visible difference that the first INSERT is not
committed. Errors detected at semantic analysis or later, such as a misspelled table or column name,
do not have this effect.

50.2.3. Extended Query
The extended query protocol breaks down the above-described simple query protocol into multiple steps.
The results of preparatory steps can be re-used multiple times for improved efficiency. Furthermore,
additional features are available, such as the possibility of supplying data values as separate parameters
instead of having to insert them directly into a query string.

In the extended protocol, the frontend first sends a Parse message, which contains a textual query string,
optionally some information about data types of parameter placeholders, and the name of a destination

1908

Frontend/Backend Protocol

prepared-statement object (an empty string selects the unnamed prepared statement). The response is
either ParseComplete or ErrorResponse. Parameter data types can be specified by OID; if not given, the
parser attempts to infer the data types in the same way as it would do for untyped literal string constants.

Note
A parameter data type can be left unspecified by setting it to zero, or by making the array of
parameter type OIDs shorter than the number of parameter symbols ($n) used in the query string.
Another special case is that a parameter's type can be specified as void (that is, the OID of the
void pseudo-type). This is meant to allow parameter symbols to be used for function parameters
that are actually OUT parameters. Ordinarily there is no context in which a void parameter could
be used, but if such a parameter symbol appears in a function's parameter list, it is effectively
ignored. For example, a function call such as foo($1,$2,$3,$4) could match a function with two
IN and two OUT arguments, if $3 and $4 are specified as having type void.

Note
The query string contained in a Parse message cannot include more than one SQL statement;
else a syntax error is reported. This restriction does not exist in the simple-query protocol, but it
does exist in the extended protocol, because allowing prepared statements or portals to contain
multiple commands would complicate the protocol unduly.

If successfully created, a named prepared-statement object lasts till the end of the current session,
unless explicitly destroyed. An unnamed prepared statement lasts only until the next Parse statement
specifying the unnamed statement as destination is issued. (Note that a simple Query message also
destroys the unnamed statement.) Named prepared statements must be explicitly closed before they
can be redefined by another Parse message, but this is not required for the unnamed statement. Named
prepared statements can also be created and accessed at the SQL command level, using PREPARE and
EXECUTE.

Once a prepared statement exists, it can be readied for execution using a Bind message. The Bind
message gives the name of the source prepared statement (empty string denotes the unnamed prepared
statement), the name of the destination portal (empty string denotes the unnamed portal), and the values
to use for any parameter placeholders present in the prepared statement. The supplied parameter set
must match those needed by the prepared statement. (If you declared any void parameters in the Parse
message, pass NULL values for them in the Bind message.) Bind also specifies the format to use for any
data returned by the query; the format can be specified overall, or per-column. The response is either
BindComplete or ErrorResponse.

Note
The choice between text and binary output is determined by the format codes given in Bind,
regardless of the SQL command involved. The BINARY attribute in cursor declarations is irrelevant
when using extended query protocol.

Query planning typically occurs when the Bind message is processed. If the prepared statement has
no parameters, or is executed repeatedly, the server might save the created plan and re-use it during
subsequent Bind messages for the same prepared statement. However, it will do so only if it finds that
a generic plan can be created that is not much less efficient than a plan that depends on the specific
parameter values supplied. This happens transparently so far as the protocol is concerned.

If successfully created, a named portal object lasts till the end of the current transaction, unless explicitly
destroyed. An unnamed portal is destroyed at the end of the transaction, or as soon as the next Bind
statement specifying the unnamed portal as destination is issued. (Note that a simple Query message
also destroys the unnamed portal.) Named portals must be explicitly closed before they can be redefined

1909

Frontend/Backend Protocol

by another Bind message, but this is not required for the unnamed portal. Named portals can also be
created and accessed at the SQL command level, using DECLARE CURSOR and FETCH.

Once a portal exists, it can be executed using an Execute message. The Execute message specifies the
portal name (empty string denotes the unnamed portal) and a maximum result-row count (zero meaning
“fetch all rows”). The result-row count is only meaningful for portals containing commands that return
row sets; in other cases the command is always executed to completion, and the row count is ignored.
The possible responses to Execute are the same as those described above for queries issued via simple
query protocol, except that Execute doesn't cause ReadyForQuery or RowDescription to be issued.

If Execute terminates before completing the execution of a portal (due to reaching a nonzero result-
row count), it will send a PortalSuspended message; the appearance of this message tells the frontend
that another Execute should be issued against the same portal to complete the operation. The
CommandComplete message indicating completion of the source SQL command is not sent until the
portal's execution is completed. Therefore, an Execute phase is always terminated by the appearance
of exactly one of these messages: CommandComplete, EmptyQueryResponse (if the portal was created
from an empty query string), ErrorResponse, or PortalSuspended.

At completion of each series of extended-query messages, the frontend should issue a Sync message.
This parameterless message causes the backend to close the current transaction if it's not inside a
BEGIN/COMMIT transaction block (“close” meaning to commit if no error, or roll back if error). Then a
ReadyForQuery response is issued. The purpose of Sync is to provide a resynchronization point for error
recovery. When an error is detected while processing any extended-query message, the backend issues
ErrorResponse, then reads and discards messages until a Sync is reached, then issues ReadyForQuery
and returns to normal message processing. (But note that no skipping occurs if an error is detected
while processing Sync — this ensures that there is one and only one ReadyForQuery sent for each Sync.)

Note
Sync does not cause a transaction block opened with BEGIN to be closed. It is possible to detect
this situation since the ReadyForQuery message includes transaction status information.

In addition to these fundamental, required operations, there are several optional operations that can be
used with extended-query protocol.

The Describe message (portal variant) specifies the name of an existing portal (or an empty string for the
unnamed portal). The response is a RowDescription message describing the rows that will be returned
by executing the portal; or a NoData message if the portal does not contain a query that will return
rows; or ErrorResponse if there is no such portal.

The Describe message (statement variant) specifies the name of an existing prepared statement (or an
empty string for the unnamed prepared statement). The response is a ParameterDescription message
describing the parameters needed by the statement, followed by a RowDescription message describing
the rows that will be returned when the statement is eventually executed (or a NoData message if the
statement will not return rows). ErrorResponse is issued if there is no such prepared statement. Note
that since Bind has not yet been issued, the formats to be used for returned columns are not yet known
to the backend; the format code fields in the RowDescription message will be zeroes in this case.

Tip
In most scenarios the frontend should issue one or the other variant of Describe before issuing
Execute, to ensure that it knows how to interpret the results it will get back.

The Close message closes an existing prepared statement or portal and releases resources. It is not
an error to issue Close against a nonexistent statement or portal name. The response is normally
CloseComplete, but could be ErrorResponse if some difficulty is encountered while releasing resources.
Note that closing a prepared statement implicitly closes any open portals that were constructed from
that statement.

1910

Frontend/Backend Protocol

The Flush message does not cause any specific output to be generated, but forces the backend to deliver
any data pending in its output buffers. A Flush must be sent after any extended-query command except
Sync, if the frontend wishes to examine the results of that command before issuing more commands.
Without Flush, messages returned by the backend will be combined into the minimum possible number
of packets to minimize network overhead.

Note
The simple Query message is approximately equivalent to the series Parse, Bind, portal Describe,
Execute, Close, Sync, using the unnamed prepared statement and portal objects and no
parameters. One difference is that it will accept multiple SQL statements in the query string,
automatically performing the bind/describe/execute sequence for each one in succession. Another
difference is that it will not return ParseComplete, BindComplete, CloseComplete, or NoData
messages.

50.2.4. Function Call
The Function Call sub-protocol allows the client to request a direct call of any function that exists in the
database's pg_proc system catalog. The client must have execute permission for the function.

Note
The Function Call sub-protocol is a legacy feature that is probably best avoided in new code.
Similar results can be accomplished by setting up a prepared statement that does SELECT
function($1, ...). The Function Call cycle can then be replaced with Bind/Execute.

A Function Call cycle is initiated by the frontend sending a FunctionCall message to the backend. The
backend then sends one or more response messages depending on the results of the function call, and
finally a ReadyForQuery response message. ReadyForQuery informs the frontend that it can safely send
a new query or function call.

The possible response messages from the backend are:
ErrorResponse

An error has occurred.

FunctionCallResponse
The function call was completed and returned the result given in the message. (Note that the Function
Call protocol can only handle a single scalar result, not a row type or set of results.)

ReadyForQuery
Processing of the function call is complete. ReadyForQuery will always be sent, whether processing
terminates successfully or with an error.

NoticeResponse
A warning message has been issued in relation to the function call. Notices are in addition to other
responses, i.e., the backend will continue processing the command.

50.2.5. COPY Operations
The COPY command allows high-speed bulk data transfer to or from the server. Copy-in and copy-out
operations each switch the connection into a distinct sub-protocol, which lasts until the operation is
completed.

Copy-in mode (data transfer to the server) is initiated when the backend executes a COPY FROM STDIN
SQL statement. The backend sends a CopyInResponse message to the frontend. The frontend should then

1911

Frontend/Backend Protocol

send zero or more CopyData messages, forming a stream of input data. (The message boundaries are not
required to have anything to do with row boundaries, although that is often a reasonable choice.) The
frontend can terminate the copy-in mode by sending either a CopyDone message (allowing successful
termination) or a CopyFail message (which will cause the COPY SQL statement to fail with an error). The
backend then reverts to the command-processing mode it was in before the COPY started, which will be
either simple or extended query protocol. It will next send either CommandComplete (if successful) or
ErrorResponse (if not).

In the event of a backend-detected error during copy-in mode (including receipt of a CopyFail message),
the backend will issue an ErrorResponse message. If the COPY command was issued via an extended-
query message, the backend will now discard frontend messages until a Sync message is received, then
it will issue ReadyForQuery and return to normal processing. If the COPY command was issued in a simple
Query message, the rest of that message is discarded and ReadyForQuery is issued. In either case, any
subsequent CopyData, CopyDone, or CopyFail messages issued by the frontend will simply be dropped.

The backend will ignore Flush and Sync messages received during copy-in mode. Receipt of any other
non-copy message type constitutes an error that will abort the copy-in state as described above. (The
exception for Flush and Sync is for the convenience of client libraries that always send Flush or Sync
after an Execute message, without checking whether the command to be executed is a COPY FROM STDIN.)

Copy-out mode (data transfer from the server) is initiated when the backend executes a COPY TO STDOUT
SQL statement. The backend sends a CopyOutResponse message to the frontend, followed by zero or
more CopyData messages (always one per row), followed by CopyDone. The backend then reverts to
the command-processing mode it was in before the COPY started, and sends CommandComplete. The
frontend cannot abort the transfer (except by closing the connection or issuing a Cancel request), but
it can discard unwanted CopyData and CopyDone messages.

In the event of a backend-detected error during copy-out mode, the backend will issue an ErrorResponse
message and revert to normal processing. The frontend should treat receipt of ErrorResponse as
terminating the copy-out mode.

It is possible for NoticeResponse and ParameterStatus messages to be interspersed between CopyData
messages; frontends must handle these cases, and should be prepared for other asynchronous message
types as well (see Section 50.2.6). Otherwise, any message type other than CopyData or CopyDone may
be treated as terminating copy-out mode.

There is another Copy-related mode called copy-both, which allows high-speed bulk data transfer to
and from the server. Copy-both mode is initiated when a backend in walsender mode executes a
START_REPLICATION statement. The backend sends a CopyBothResponse message to the frontend. Both
the backend and the frontend may then send CopyData messages until either end sends a CopyDone
message. After the client sends a CopyDone message, the connection goes from copy-both mode to copy-
out mode, and the client may not send any more CopyData messages. Similarly, when the server sends
a CopyDone message, the connection goes into copy-in mode, and the server may not send any more
CopyData messages. After both sides have sent a CopyDone message, the copy mode is terminated, and
the backend reverts to the command-processing mode. In the event of a backend-detected error during
copy-both mode, the backend will issue an ErrorResponse message, discard frontend messages until a
Sync message is received, and then issue ReadyForQuery and return to normal processing. The frontend
should treat receipt of ErrorResponse as terminating the copy in both directions; no CopyDone should
be sent in this case. See Section 50.4 for more information on the subprotocol transmitted over copy-
both mode.

The CopyInResponse, CopyOutResponse and CopyBothResponse messages include fields that inform
the frontend of the number of columns per row and the format codes being used for each column. (As
of the present implementation, all columns in a given COPY operation will use the same format, but the
message design does not assume this.)

50.2.6. Asynchronous Operations
There are several cases in which the backend will send messages that are not specifically prompted by
the frontend's command stream. Frontends must be prepared to deal with these messages at any time,

1912

Frontend/Backend Protocol

even when not engaged in a query. At minimum, one should check for these cases before beginning to
read a query response.

It is possible for NoticeResponse messages to be generated due to outside activity; for example, if the
database administrator commands a “fast” database shutdown, the backend will send a NoticeResponse
indicating this fact before closing the connection. Accordingly, frontends should always be prepared to
accept and display NoticeResponse messages, even when the connection is nominally idle.

ParameterStatus messages will be generated whenever the active value changes for any of the
parameters the backend believes the frontend should know about. Most commonly this occurs in
response to a SET SQL command executed by the frontend, and this case is effectively synchronous
— but it is also possible for parameter status changes to occur because the administrator changed a
configuration file and then sent the SIGHUP signal to the server. Also, if a SET command is rolled back,
an appropriate ParameterStatus message will be generated to report the current effective value.

At present there is a hard-wired set of parameters for which ParameterStatus will be
generated: they are server_version, server_encoding, client_encoding, application_name,
is_superuser, session_authorization, DateStyle, IntervalStyle, TimeZone, integer_datetimes,
and standard_conforming_strings. (server_encoding, TimeZone, and integer_datetimes were not
reported by releases before 8.0; standard_conforming_strings was not reported by releases before
8.1; IntervalStyle was not reported by releases before 8.4; application_name was not reported by
releases before 9.0.) Note that server_version, server_encoding and integer_datetimes are pseudo-
parameters that cannot change after startup. This set might change in the future, or even become
configurable. Accordingly, a frontend should simply ignore ParameterStatus for parameters that it does
not understand or care about.

If a frontend issues a LISTEN command, then the backend will send a NotificationResponse message (not
to be confused with NoticeResponse!) whenever a NOTIFY command is executed for the same channel
name.

Note
At present, NotificationResponse can only be sent outside a transaction, and thus it will not occur
in the middle of a command-response series, though it might occur just before ReadyForQuery.
It is unwise to design frontend logic that assumes that, however. Good practice is to be able to
accept NotificationResponse at any point in the protocol.

50.2.7. Canceling Requests in Progress
During the processing of a query, the frontend might request cancellation of the query. The cancel
request is not sent directly on the open connection to the backend for reasons of implementation
efficiency: we don't want to have the backend constantly checking for new input from the frontend
during query processing. Cancel requests should be relatively infrequent, so we make them slightly
cumbersome in order to avoid a penalty in the normal case.

To issue a cancel request, the frontend opens a new connection to the server and sends a CancelRequest
message, rather than the StartupMessage message that would ordinarily be sent across a new
connection. The server will process this request and then close the connection. For security reasons, no
direct reply is made to the cancel request message.

A CancelRequest message will be ignored unless it contains the same key data (PID and secret key)
passed to the frontend during connection start-up. If the request matches the PID and secret key
for a currently executing backend, the processing of the current query is aborted. (In the existing
implementation, this is done by sending a special signal to the backend process that is processing the
query.)

The cancellation signal might or might not have any effect — for example, if it arrives after the backend
has finished processing the query, then it will have no effect. If the cancellation is effective, it results in
the current command being terminated early with an error message.

1913

Frontend/Backend Protocol

The upshot of all this is that for reasons of both security and efficiency, the frontend has no direct way to
tell whether a cancel request has succeeded. It must continue to wait for the backend to respond to the
query. Issuing a cancel simply improves the odds that the current query will finish soon, and improves
the odds that it will fail with an error message instead of succeeding.

Since the cancel request is sent across a new connection to the server and not across the regular
frontend/backend communication link, it is possible for the cancel request to be issued by any process,
not just the frontend whose query is to be canceled. This might provide additional flexibility when
building multiple-process applications. It also introduces a security risk, in that unauthorized persons
might try to cancel queries. The security risk is addressed by requiring a dynamically generated secret
key to be supplied in cancel requests.

50.2.8. Termination
The normal, graceful termination procedure is that the frontend sends a Terminate message and
immediately closes the connection. On receipt of this message, the backend closes the connection and
terminates.

In rare cases (such as an administrator-commanded database shutdown) the backend might disconnect
without any frontend request to do so. In such cases the backend will attempt to send an error or notice
message giving the reason for the disconnection before it closes the connection.

Other termination scenarios arise from various failure cases, such as core dump at one end or the other,
loss of the communications link, loss of message-boundary synchronization, etc. If either frontend or
backend sees an unexpected closure of the connection, it should clean up and terminate. The frontend
has the option of launching a new backend by recontacting the server if it doesn't want to terminate
itself. Closing the connection is also advisable if an unrecognizable message type is received, since this
probably indicates loss of message-boundary sync.

For either normal or abnormal termination, any open transaction is rolled back, not committed. One
should note however that if a frontend disconnects while a non-SELECT query is being processed,
the backend will probably finish the query before noticing the disconnection. If the query is outside
any transaction block (BEGIN ... COMMIT sequence) then its results might be committed before the
disconnection is recognized.

50.2.9. SSL Session Encryption
If Postgres Pro was built with SSL support, frontend/backend communications can be encrypted using
SSL. This provides communication security in environments where attackers might be able to capture
the session traffic. For more information on encrypting Postgres Pro sessions with SSL, see Section 17.9.

To initiate an SSL-encrypted connection, the frontend initially sends an SSLRequest message rather than
a StartupMessage. The server then responds with a single byte containing S or N, indicating that it is
willing or unwilling to perform SSL, respectively. The frontend might close the connection at this point if
it is dissatisfied with the response. To continue after S, perform an SSL startup handshake (not described
here, part of the SSL specification) with the server. If this is successful, continue with sending the usual
StartupMessage. In this case the StartupMessage and all subsequent data will be SSL-encrypted. To
continue after N, send the usual StartupMessage and proceed without encryption. (Alternatively, it is
permissible to issue a GSSENCRequest message after an N response to try to use GSSAPI encryption
instead of SSL.)

The frontend should also be prepared to handle an ErrorMessage response to SSLRequest from the
server. This would only occur if the server predates the addition of SSL support to Postgres Pro. (Such
servers are now very ancient, and likely do not exist in the wild anymore.) In this case the connection
must be closed, but the frontend might choose to open a fresh connection and proceed without requesting
SSL.

When SSL encryption can be performed, the server is expected to send only the single S byte and
then wait for the frontend to initiate an SSL handshake. If additional bytes are available to read at
this point, it likely means that a man-in-the-middle is attempting to perform a buffer-stuffing attack
(CVE-2021-23222). Frontends should be coded either to read exactly one byte from the socket before

1914

https://www.postgresql.org/support/security/CVE-2021-23222/

Frontend/Backend Protocol

turning the socket over to their SSL library, or to treat it as a protocol violation if they find they have
read additional bytes.

An initial SSLRequest can also be used in a connection that is being opened to send a CancelRequest
message.

While the protocol itself does not provide a way for the server to force SSL encryption, the administrator
can configure the server to reject unencrypted sessions as a byproduct of authentication checking.

50.2.10. GSSAPI Session Encryption
If Postgres Pro was built with GSSAPI support, frontend/backend communications can be encrypted
using GSSAPI. This provides communication security in environments where attackers might be able
to capture the session traffic. For more information on encrypting Postgres Pro sessions with GSSAPI,
see Section 17.10.

To initiate a GSSAPI-encrypted connection, the frontend initially sends a GSSENCRequest message
rather than a StartupMessage. The server then responds with a single byte containing G or N, indicating
that it is willing or unwilling to perform GSSAPI encryption, respectively. The frontend might close
the connection at this point if it is dissatisfied with the response. To continue after G, using the
GSSAPI C bindings as discussed in RFC2744 or equivalent, perform a GSSAPI initialization by calling
gss_init_sec_context() in a loop and sending the result to the server, starting with an empty input
and then with each result from the server, until it returns no output. When sending the results of
gss_init_sec_context() to the server, prepend the length of the message as a four byte integer in
network byte order. To continue after N, send the usual StartupMessage and proceed without encryption.
(Alternatively, it is permissible to issue an SSLRequest message after an N response to try to use SSL
encryption instead of GSSAPI.)

The frontend should also be prepared to handle an ErrorMessage response to GSSENCRequest from
the server. This would only occur if the server predates the addition of GSSAPI encryption support to
Postgres Pro. In this case the connection must be closed, but the frontend might choose to open a fresh
connection and proceed without requesting GSSAPI encryption.

When GSSAPI encryption can be performed, the server is expected to send only the single G byte and
then wait for the frontend to initiate a GSSAPI handshake. If additional bytes are available to read at
this point, it likely means that a man-in-the-middle is attempting to perform a buffer-stuffing attack
(CVE-2021-23222). Frontends should be coded either to read exactly one byte from the socket before
turning the socket over to their GSSAPI library, or to treat it as a protocol violation if they find they
have read additional bytes.

An initial GSSENCRequest can also be used in a connection that is being opened to send a CancelRequest
message.

Once GSSAPI encryption has been successfully established, use gss_wrap() to encrypt the usual
StartupMessage and all subsequent data, prepending the length of the result from gss_wrap() as a four
byte integer in network byte order to the actual encrypted payload. Note that the server will only accept
encrypted packets from the client which are less than 16kB; gss_wrap_size_limit() should be used by
the client to determine the size of the unencrypted message which will fit within this limit and larger
messages should be broken up into multiple gss_wrap() calls. Typical segments are 8kB of unencrypted
data, resulting in encrypted packets of slightly larger than 8kB but well within the 16kB maximum. The
server can be expected to not send encrypted packets of larger than 16kB to the client.

While the protocol itself does not provide a way for the server to force GSSAPI encryption, the
administrator can configure the server to reject unencrypted sessions as a byproduct of authentication
checking.

50.3. SASL Authentication
SASL is a framework for authentication in connection-oriented protocols. At the moment, Postgres Pro
implements two SASL authentication mechanisms, SCRAM-SHA-256 and SCRAM-SHA-256-PLUS. More

1915

https://www.postgresql.org/support/security/CVE-2021-23222/

Frontend/Backend Protocol

might be added in the future. The below steps illustrate how SASL authentication is performed in
general, while the next subsection gives more details on SCRAM-SHA-256 and SCRAM-SHA-256-PLUS.

SASL Authentication Message Flow
1. To begin a SASL authentication exchange, the server sends an AuthenticationSASL message. It

includes a list of SASL authentication mechanisms that the server can accept, in the server's
preferred order.

2. The client selects one of the supported mechanisms from the list, and sends a SASLInitialResponse
message to the server. The message includes the name of the selected mechanism, and an optional
Initial Client Response, if the selected mechanism uses that.

3. One or more server-challenge and client-response message will follow. Each server-challenge is sent
in an AuthenticationSASLContinue message, followed by a response from client in an SASLResponse
message. The particulars of the messages are mechanism specific.

4. Finally, when the authentication exchange is completed successfully, the server sends an
AuthenticationSASLFinal message, followed immediately by an AuthenticationOk message. The
AuthenticationSASLFinal contains additional server-to-client data, whose content is particular to
the selected authentication mechanism. If the authentication mechanism doesn't use additional data
that's sent at completion, the AuthenticationSASLFinal message is not sent.

On error, the server can abort the authentication at any stage, and send an ErrorMessage.

50.3.1. SCRAM-SHA-256 Authentication
The implemented SASL mechanisms at the moment are SCRAM-SHA-256 and its variant with channel
binding SCRAM-SHA-256-PLUS. They are described in detail in RFC 7677 and RFC 5802.

When SCRAM-SHA-256 is used in Postgres Pro, the server will ignore the user name that the client
sends in the client-first-message. The user name that was already sent in the startup message is
used instead. Postgres Pro supports multiple character encodings, while SCRAM dictates UTF-8 to be
used for the user name, so it might be impossible to represent the Postgres Pro user name in UTF-8.

The SCRAM specification dictates that the password is also in UTF-8, and is processed with the SASLprep
algorithm. Postgres Pro, however, does not require UTF-8 to be used for the password. When a user's
password is set, it is processed with SASLprep as if it was in UTF-8, regardless of the actual encoding
used. However, if it is not a legal UTF-8 byte sequence, or it contains UTF-8 byte sequences that are
prohibited by the SASLprep algorithm, the raw password will be used without SASLprep processing,
instead of throwing an error. This allows the password to be normalized when it is in UTF-8, but still
allows a non-UTF-8 password to be used, and doesn't require the system to know which encoding the
password is in.

Channel binding is supported in Postgres Pro builds with SSL support. The SASL mechanism name for
SCRAM with channel binding is SCRAM-SHA-256-PLUS. The channel binding type used by Postgres Pro
is tls-server-end-point.

In SCRAM without channel binding, the server chooses a random number that is transmitted to the client
to be mixed with the user-supplied password in the transmitted password hash. While this prevents the
password hash from being successfully retransmitted in a later session, it does not prevent a fake server
between the real server and client from passing through the server's random value and successfully
authenticating.

SCRAM with channel binding prevents such man-in-the-middle attacks by mixing the signature of the
server's certificate into the transmitted password hash. While a fake server can retransmit the real
server's certificate, it doesn't have access to the private key matching that certificate, and therefore
cannot prove it is the owner, causing SSL connection failure.

Example
1. The server sends an AuthenticationSASL message. It includes a list of SASL authentication

mechanisms that the server can accept. This will be SCRAM-SHA-256-PLUS and SCRAM-SHA-256 if the
server is built with SSL support, or else just the latter.

1916

Frontend/Backend Protocol

2. The client responds by sending a SASLInitialResponse message, which indicates the chosen
mechanism, SCRAM-SHA-256 or SCRAM-SHA-256-PLUS. (A client is free to choose either mechanism,
but for better security it should choose the channel-binding variant if it can support it.) In the Initial
Client response field, the message contains the SCRAM client-first-message. The client-first-
message also contains the channel binding type chosen by the client.

3. Server sends an AuthenticationSASLContinue message, with a SCRAM server-first-message as
the content.

4. Client sends a SASLResponse message, with SCRAM client-final-message as the content.
5. Server sends an AuthenticationSASLFinal message, with the SCRAM server-final-message,

followed immediately by an AuthenticationOk message.

50.4. Streaming Replication Protocol
To initiate streaming replication, the frontend sends the replication parameter in the startup message.
A Boolean value of true (or on, yes, 1) tells the backend to go into physical replication walsender mode,
wherein a small set of replication commands, shown below, can be issued instead of SQL statements.

Passing database as the value for the replication parameter instructs the backend to go into logical
replication walsender mode, connecting to the database specified in the dbname parameter. In logical
replication walsender mode, the replication commands shown below as well as normal SQL commands
can be issued.

In either physical replication or logical replication walsender mode, only the simple query protocol can
be used.

For the purpose of testing replication commands, you can make a replication connection via psql or any
other libpq-using tool with a connection string including the replication option, e.g.:
psql "dbname=postgres replication=database" -c "IDENTIFY_SYSTEM;"

However, it is often more useful to use pg_receivewal (for physical replication) or pg_recvlogical (for
logical replication).

Replication commands are logged in the server log when log_replication_commands is enabled.

The commands accepted in replication mode are:
IDENTIFY_SYSTEM

Requests the server to identify itself. Server replies with a result set of a single row, containing four
fields:

systemid (text)
The unique system identifier identifying the cluster. This can be used to check that the base
backup used to initialize the standby came from the same cluster.

timeline (int4)
Current timeline ID. Also useful to check that the standby is consistent with the master.

xlogpos (text)
Current WAL flush location. Useful to get a known location in the write-ahead log where streaming
can start.

dbname (text)
Database connected to or null.

SHOW name
Requests the server to send the current setting of a run-time parameter. This is similar to the SQL
command SHOW.

1917

Frontend/Backend Protocol

name

The name of a run-time parameter. Available parameters are documented in Chapter 18.

TIMELINE_HISTORY tli
Requests the server to send over the timeline history file for timeline tli. Server replies with a
result set of a single row, containing two fields. While the fields are labeled as text and bytea, they
effectively return raw bytes, with no escaping or encoding conversion:

filename (text)
File name of the timeline history file, e.g., 00000002.history.

content (bytea)
Contents of the timeline history file.

CREATE_REPLICATION_SLOT slot_name [TEMPORARY] { PHYSICAL [RESERVE_WAL] | LOGICAL
output_plugin [EXPORT_SNAPSHOT | NOEXPORT_SNAPSHOT | USE_SNAPSHOT] }

Create a physical or logical replication slot. See Section 25.2.6 for more about replication slots.

slot_name

The name of the slot to create. Must be a valid replication slot name (see Section 25.2.6.1).

output_plugin

The name of the output plugin used for logical decoding (see Section 46.6).

TEMPORARY

Specify that this replication slot is a temporary one. Temporary slots are not saved to disk and
are automatically dropped on error or when the session has finished.

RESERVE_WAL

Specify that this physical replication slot reserves WAL immediately. Otherwise, WAL is only
reserved upon connection from a streaming replication client.

EXPORT_SNAPSHOT
NOEXPORT_SNAPSHOT
USE_SNAPSHOT

Decides what to do with the snapshot created during logical slot initialization. EXPORT_SNAPSHOT,
which is the default, will export the snapshot for use in other sessions. This option can't be used
inside a transaction. USE_SNAPSHOT will use the snapshot for the current transaction executing
the command. This option must be used in a transaction, and CREATE_REPLICATION_SLOT must be
the first command run in that transaction. Finally, NOEXPORT_SNAPSHOT will just use the snapshot
for logical decoding as normal but won't do anything else with it.

In response to this command, the server will send a one-row result set containing the following fields:
slot_name (text)

The name of the newly-created replication slot.

consistent_point (text)
The WAL location at which the slot became consistent. This is the earliest location from which
streaming can start on this replication slot.

snapshot_name (text)
The identifier of the snapshot exported by the command. The snapshot is valid until a new
command is executed on this connection or the replication connection is closed. Null if the created
slot is physical.

1918

Frontend/Backend Protocol

output_plugin (text)
The name of the output plugin used by the newly-created replication slot. Null if the created slot
is physical.

START_REPLICATION [SLOT slot_name] [PHYSICAL] XXX/XXX [TIMELINE tli]

Instructs server to start streaming WAL, starting at WAL location XXX/XXX. If TIMELINE option is
specified, streaming starts on timeline tli; otherwise, the server's current timeline is selected. The
server can reply with an error, for example if the requested section of WAL has already been recycled.
On success, the server responds with a CopyBothResponse message, and then starts to stream WAL
to the frontend.

If a slot's name is provided via slot_name, it will be updated as replication progresses so that the
server knows which WAL segments, and if hot_standby_feedback is on which transactions, are still
needed by the standby.

If the client requests a timeline that's not the latest but is part of the history of the server, the server
will stream all the WAL on that timeline starting from the requested start point up to the point where
the server switched to another timeline. If the client requests streaming at exactly the end of an old
timeline, the server responds immediately with CommandComplete without entering COPY mode.

After streaming all the WAL on a timeline that is not the latest one, the server will end streaming by
exiting the COPY mode. When the client acknowledges this by also exiting COPY mode, the server
sends a result set with one row and two columns, indicating the next timeline in this server's history.
The first column is the next timeline's ID (type int8), and the second column is the WAL location
where the switch happened (type text). Usually, the switch position is the end of the WAL that was
streamed, but there are corner cases where the server can send some WAL from the old timeline
that it has not itself replayed before promoting. Finally, the server sends two CommandComplete
messages (one that ends the CopyData and the other ends the START_REPLICATION itself), and is
ready to accept a new command.

WAL data is sent as a series of CopyData messages. (This allows other information to be intermixed;
in particular the server can send an ErrorResponse message if it encounters a failure after beginning
to stream.) The payload of each CopyData message from server to the client contains a message of
one of the following formats:

XLogData (B)
Byte1('w')

Identifies the message as WAL data.

Int64
The starting point of the WAL data in this message.

Int64
The current end of WAL on the server.

Int64
The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byten
A section of the WAL data stream.

A single WAL record is never split across two XLogData messages. When a WAL record crosses
a WAL page boundary, and is therefore already split using continuation records, it can be split
at the page boundary. In other words, the first main WAL record and its continuation records
can be sent in different XLogData messages.

1919

Frontend/Backend Protocol

Primary keepalive message (B)
Byte1('k')

Identifies the message as a sender keepalive.

Int64
The current end of WAL on the server.

Int64
The server's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1
1 means that the client should reply to this message as soon as possible, to avoid a timeout
disconnect. 0 otherwise.

The receiving process can send replies back to the sender at any time, using one of the following
message formats (also in the payload of a CopyData message):

Standby status update (F)
Byte1('r')

Identifies the message as a receiver status update.

Int64
The location of the last WAL byte + 1 received and written to disk in the standby.

Int64
The location of the last WAL byte + 1 flushed to disk in the standby.

Int64
The location of the last WAL byte + 1 applied in the standby.

Int64
The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Byte1
If 1, the client requests the server to reply to this message immediately. This can be used to
ping the server, to test if the connection is still healthy.

Hot Standby feedback message (F)
Byte1('h')

Identifies the message as a Hot Standby feedback message.

Int64
The client's system clock at the time of transmission, as microseconds since midnight on
2000-01-01.

Int32
The standby's current global xmin, excluding the catalog_xmin from any replication slots. If
both this value and the following catalog_xmin are 0 this is treated as a notification that Hot
Standby feedback will no longer be sent on this connection. Later non-zero messages may
reinitiate the feedback mechanism.

1920

Frontend/Backend Protocol

Int32
The epoch of the global xmin xid on the standby.

Int32
The lowest catalog_xmin of any replication slots on the standby. Set to 0 if no catalog_xmin
exists on the standby or if hot standby feedback is being disabled.

Int32
The epoch of the catalog_xmin xid on the standby.

START_REPLICATION SLOT slot_name LOGICAL XXX/XXX [(option_name [option_value] [, ...])]
Instructs server to start streaming WAL for logical replication, starting at WAL location XXX/XXX.
The server can reply with an error, for example if the requested section of WAL has already been
recycled. On success, server responds with a CopyBothResponse message, and then starts to stream
WAL to the frontend.

The messages inside the CopyBothResponse messages are of the same format documented for
START_REPLICATION ... PHYSICAL, including two CommandComplete messages.

The output plugin associated with the selected slot is used to process the output for streaming.

SLOT slot_name
The name of the slot to stream changes from. This parameter is required, and must correspond
to an existing logical replication slot created with CREATE_REPLICATION_SLOT in LOGICAL mode.

XXX/XXX

The WAL location to begin streaming at.

option_name

The name of an option passed to the slot's logical decoding plugin.

option_value

Optional value, in the form of a string constant, associated with the specified option.

DROP_REPLICATION_SLOT slot_name [WAIT]
Drops a replication slot, freeing any reserved server-side resources. If the slot is a logical slot that
was created in a database other than the database the walsender is connected to, this command fails.

slot_name

The name of the slot to drop.

WAIT

This option causes the command to wait if the slot is active until it becomes inactive, instead of
the default behavior of raising an error.

BASE_BACKUP [LABEL 'label'] [PROGRESS] [FAST] [WAL] [NOWAIT] [MAX_RATE rate] [TABLESPACE_MAP
] [NOVERIFY_CHECKSUMS] [MANIFEST manifest_option] [MANIFEST_CHECKSUMS checksum_algorithm]

Instructs the server to start streaming a base backup. The system will automatically be put in backup
mode before the backup is started, and taken out of it when the backup is complete. The following
options are accepted:
LABEL 'label'

Sets the label of the backup. If none is specified, a backup label of base backup will
be used. The quoting rules for the label are the same as a standard SQL string with
standard_conforming_strings turned on.

1921

Frontend/Backend Protocol

PROGRESS

Request information required to generate a progress report. This will send back an approximate
size in the header of each tablespace, which can be used to calculate how far along the stream is
done. This is calculated by enumerating all the file sizes once before the transfer is even started,
and might as such have a negative impact on the performance. In particular, it might take longer
before the first data is streamed. Since the database files can change during the backup, the size
is only approximate and might both grow and shrink between the time of approximation and the
sending of the actual files.

FAST

Request a fast checkpoint.

WAL

Include the necessary WAL segments in the backup. This will include all the files between start
and stop backup in the pg_wal directory of the base directory tar file.

NOWAIT

By default, the backup will wait until the last required WAL segment has been archived, or emit
a warning if log archiving is not enabled. Specifying NOWAIT disables both the waiting and the
warning, leaving the client responsible for ensuring the required log is available.

MAX_RATE rate

Limit (throttle) the maximum amount of data transferred from server to client per unit of time.
The expected unit is kilobytes per second. If this option is specified, the value must either be
equal to zero or it must fall within the range from 32 kB through 1 GB (inclusive). If zero is passed
or the option is not specified, no restriction is imposed on the transfer.

TABLESPACE_MAP

Include information about symbolic links present in the directory pg_tblspc in a file named
tablespace_map. The tablespace map file includes each symbolic link name as it exists in the
directory pg_tblspc/ and the full path of that symbolic link.

NOVERIFY_CHECKSUMS

By default, checksums are verified during a base backup if they are enabled. Specifying
NOVERIFY_CHECKSUMS disables this verification.

MANIFEST manifest_option

When this option is specified with a value of yes or force-encode, a backup manifest is created
and sent along with the backup. The manifest is a list of every file present in the backup with the
exception of any WAL files that may be included. It also stores the size, last modification time,
and optionally a checksum for each file. A value of force-encode forces all filenames to be hex-
encoded; otherwise, this type of encoding is performed only for files whose names are non-UTF8
octet sequences. force-encode is intended primarily for testing purposes, to be sure that clients
which read the backup manifest can handle this case. For compatibility with previous releases,
the default is MANIFEST 'no'.

MANIFEST_CHECKSUMS checksum_algorithm

Specifies the checksum algorithm that should be applied to each file included in the backup
manifest. Currently, the available algorithms are NONE, CRC32C, SHA224, SHA256, SHA384, and
SHA512. The default is CRC32C.

When the backup is started, the server will first send two ordinary result sets, followed by one or
more CopyResponse results.

1922

Frontend/Backend Protocol

The first ordinary result set contains the starting position of the backup, in a single row with two
columns. The first column contains the start position given in XLogRecPtr format, and the second
column contains the corresponding timeline ID.

The second ordinary result set has one row for each tablespace. The fields in this row are:

spcoid (oid)

The OID of the tablespace, or null if it's the base directory.

spclocation (text)

The full path of the tablespace directory, or null if it's the base directory.

size (int8)

The approximate size of the tablespace, in kilobytes (1024 bytes), if progress report has been
requested; otherwise it's null.

After the second regular result set, one or more CopyResponse results will be sent, one for the main
data directory and one for each additional tablespace other than pg_default and pg_global. The
data in the CopyResponse results will be a tar format (following the “ustar interchange format”
specified in the POSIX 1003.1-2008 standard) dump of the tablespace contents, except that the two
trailing blocks of zeroes specified in the standard are omitted. After the tar data is complete, and if a
backup manifest was requested, another CopyResponse result is sent, containing the manifest data
for the current base backup. In any case, a final ordinary result set will be sent, containing the WAL
end position of the backup, in the same format as the start position.

The tar archive for the data directory and each tablespace will contain all files in the directories,
regardless of whether they are Postgres Pro files or other files added to the same directory. The only
excluded files are:

• postmaster.pid
• postmaster.opts
• pg_internal.init (found in multiple directories)
• Various temporary files and directories created during the operation of the Postgres Pro server,

such as any file or directory beginning with pgsql_tmp and temporary relations.
• Unlogged relations, except for the init fork which is required to recreate the (empty) unlogged

relation on recovery.
• pg_wal, including subdirectories. If the backup is run with WAL files included, a synthesized

version of pg_wal will be included, but it will only contain the files necessary for the backup to
work, not the rest of the contents.

• pg_dynshmem, pg_notify, pg_replslot, pg_serial, pg_snapshots, pg_stat_tmp, and
pg_subtrans are copied as empty directories (even if they are symbolic links).

• Files other than regular files and directories, such as symbolic links (other than for the
directories listed above) and special device files, are skipped. (Symbolic links in pg_tblspc are
maintained.)

Owner, group, and file mode are set if the underlying file system on the server supports it.

50.5. Logical Streaming Replication Protocol
This section describes the logical replication protocol, which is the message flow started by the
START_REPLICATION SLOT slot_name LOGICAL replication command.

The logical streaming replication protocol builds on the primitives of the physical streaming replication
protocol.

50.5.1. Logical Streaming Replication Parameters
The logical replication START_REPLICATION command accepts following parameters:

1923

Frontend/Backend Protocol

proto_version

Protocol version. Currently only version 1 is supported.

publication_names

Comma separated list of publication names for which to subscribe (receive changes). The individual
publication names are treated as standard objects names and can be quoted the same as needed.

50.5.2. Logical Replication Protocol Messages
The individual protocol messages are discussed in the following subsections. Individual messages are
described in Section 50.9.

All top-level protocol messages begin with a message type byte. While represented in code as a character,
this is a signed byte with no associated encoding.

Since the streaming replication protocol supplies a message length there is no need for top-level protocol
messages to embed a length in their header.

50.5.3. Logical Replication Protocol Message Flow
With the exception of the START_REPLICATION command and the replay progress messages, all
information flows only from the backend to the frontend.

The logical replication protocol sends individual transactions one by one. This means that all messages
between a pair of Begin and Commit messages belong to the same transaction.

Every sent transaction contains zero or more DML messages (Insert, Update, Delete). In case of a
cascaded setup it can also contain Origin messages. The origin message indicates that the transaction
originated on different replication node. Since a replication node in the scope of logical replication
protocol can be pretty much anything, the only identifier is the origin name. It's downstream's
responsibility to handle this as needed (if needed). The Origin message is always sent before any DML
messages in the transaction.

Every DML message contains a relation OID, identifying the publisher's relation that was acted on.
Before the first DML message for a given relation OID, a Relation message will be sent, describing the
schema of that relation. Subsequently, a new Relation message will be sent if the relation's definition
has changed since the last Relation message was sent for it. (The protocol assumes that the client is
capable of remembering this metadata for as many relations as needed.)

Relation messages identify column types by their OIDs. In the case of a built-in type, it is assumed that
the client can look up that type OID locally, so no additional data is needed. For a non-built-in type OID,
a Type message will be sent before the Relation message, to provide the type name associated with
that OID. Thus, a client that needs to specifically identify the types of relation columns should cache the
contents of Type messages, and first consult that cache to see if the type OID is defined there. If not,
look up the type OID locally.

50.6. Message Data Types
This section describes the base data types used in messages.

Intn(i)

An n-bit integer in network byte order (most significant byte first). If i is specified it is the exact
value that will appear, otherwise the value is variable. Eg. Int16, Int32(42).

Intn[k]

An array of k n-bit integers, each in network byte order. The array length k is always determined by
an earlier field in the message. Eg. Int16[M].

1924

Frontend/Backend Protocol

String(s)

A null-terminated string (C-style string). There is no specific length limitation on strings. If s
is specified it is the exact value that will appear, otherwise the value is variable. Eg. String,
String("user").

Note
There is no predefined limit on the length of a string that can be returned by the backend.
Good coding strategy for a frontend is to use an expandable buffer so that anything that fits
in memory can be accepted. If that's not feasible, read the full string and discard trailing
characters that don't fit into your fixed-size buffer.

Byten(c)

Exactly n bytes. If the field width n is not a constant, it is always determinable from an earlier field
in the message. If c is specified it is the exact value. Eg. Byte2, Byte1('\n').

50.7. Message Formats
This section describes the detailed format of each message. Each is marked to indicate that it can be
sent by a frontend (F), a backend (B), or both (F & B). Notice that although each message includes a byte
count at the beginning, the message format is defined so that the message end can be found without
reference to the byte count. This aids validity checking. (The CopyData message is an exception, because
it forms part of a data stream; the contents of any individual CopyData message cannot be interpretable
on their own.)

AuthenticationOk (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(0)

Specifies that the authentication was successful.

AuthenticationKerberosV5 (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(2)

Specifies that Kerberos V5 authentication is required.

AuthenticationCleartextPassword (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

1925

Frontend/Backend Protocol

Int32(3)

Specifies that a clear-text password is required.

AuthenticationMD5Password (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(12)

Length of message contents in bytes, including self.

Int32(5)

Specifies that an MD5-encrypted password is required.

Byte4

The salt to use when encrypting the password.

AuthenticationSCMCredential (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(6)

Specifies that an SCM credentials message is required.

AuthenticationGSS (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(7)

Specifies that GSSAPI authentication is required.

AuthenticationSSPI (B)

Byte1('R')

Identifies the message as an authentication request.

Int32(8)

Length of message contents in bytes, including self.

Int32(9)

Specifies that SSPI authentication is required.

AuthenticationGSSContinue (B)

Byte1('R')

Identifies the message as an authentication request.

1926

Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Int32(8)

Specifies that this message contains GSSAPI or SSPI data.

Byten

GSSAPI or SSPI authentication data.

AuthenticationSASL (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(10)

Specifies that SASL authentication is required.

The message body is a list of SASL authentication mechanisms, in the server's order of preference.
A zero byte is required as terminator after the last authentication mechanism name. For each
mechanism, there is the following:

String

Name of a SASL authentication mechanism.

AuthenticationSASLContinue (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(11)

Specifies that this message contains a SASL challenge.

Byten

SASL data, specific to the SASL mechanism being used.

AuthenticationSASLFinal (B)

Byte1('R')

Identifies the message as an authentication request.

Int32

Length of message contents in bytes, including self.

Int32(12)

Specifies that SASL authentication has completed.

Byten

SASL outcome "additional data", specific to the SASL mechanism being used.

1927

Frontend/Backend Protocol

BackendKeyData (B)

Byte1('K')

Identifies the message as cancellation key data. The frontend must save these values if it wishes
to be able to issue CancelRequest messages later.

Int32(12)

Length of message contents in bytes, including self.

Int32

The process ID of this backend.

Int32

The secret key of this backend.

Bind (F)

Byte1('B')

Identifies the message as a Bind command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination portal (an empty string selects the unnamed portal).

String

The name of the source prepared statement (an empty string selects the unnamed prepared
statement).

Int16

The number of parameter format codes that follow (denoted C below). This can be zero to indicate
that there are no parameters or that the parameters all use the default format (text); or one,
in which case the specified format code is applied to all parameters; or it can equal the actual
number of parameters.

Int16[C]

The parameter format codes. Each must presently be zero (text) or one (binary).

Int16

The number of parameter values that follow (possibly zero). This must match the number of
parameters needed by the query.

Next, the following pair of fields appear for each parameter:

Int32

The length of the parameter value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL parameter value. No value bytes follow in the NULL case.

Byten

The value of the parameter, in the format indicated by the associated format code. n is the above
length.

After the last parameter, the following fields appear:

1928

Frontend/Backend Protocol

Int16

The number of result-column format codes that follow (denoted R below). This can be zero to
indicate that there are no result columns or that the result columns should all use the default
format (text); or one, in which case the specified format code is applied to all result columns (if
any); or it can equal the actual number of result columns of the query.

Int16[R]
The result-column format codes. Each must presently be zero (text) or one (binary).

BindComplete (B)
Byte1('2')

Identifies the message as a Bind-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

CancelRequest (F)
Int32(16)

Length of message contents in bytes, including self.

Int32(80877102)

The cancel request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5678 in the least significant 16 bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

Int32
The process ID of the target backend.

Int32
The secret key for the target backend.

Close (F)
Byte1('C')

Identifies the message as a Close command.

Int32
Length of message contents in bytes, including self.

Byte1

'S' to close a prepared statement; or 'P' to close a portal.

String
The name of the prepared statement or portal to close (an empty string selects the unnamed
prepared statement or portal).

CloseComplete (B)
Byte1('3')

Identifies the message as a Close-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

1929

Frontend/Backend Protocol

CommandComplete (B)

Byte1('C')

Identifies the message as a command-completed response.

Int32

Length of message contents in bytes, including self.

String

The command tag. This is usually a single word that identifies which SQL command was
completed.

For an INSERT command, the tag is INSERT oid rows, where rows is the number of rows inserted.
oid used to be the object ID of the inserted row if rows was 1 and the target table had OIDs, but
OIDs system columns are not supported anymore; therefore oid is always 0.

For a DELETE command, the tag is DELETE rows where rows is the number of rows deleted.

For an UPDATE command, the tag is UPDATE rows where rows is the number of rows updated.

For a SELECT or CREATE TABLE AS command, the tag is SELECT rows where rows is the number
of rows retrieved.

For a MOVE command, the tag is MOVE rows where rows is the number of rows the cursor's position
has been changed by.

For a FETCH command, the tag is FETCH rows where rows is the number of rows that have been
retrieved from the cursor.

For a COPY command, the tag is COPY rows where rows is the number of rows copied. (Note: the
row count appears only in PostgreSQL 8.2 and later.)

CopyData (F & B)

Byte1('d')

Identifies the message as COPY data.

Int32

Length of message contents in bytes, including self.

Byten

Data that forms part of a COPY data stream. Messages sent from the backend will always
correspond to single data rows, but messages sent by frontends might divide the data stream
arbitrarily.

CopyDone (F & B)

Byte1('c')

Identifies the message as a COPY-complete indicator.

Int32(4)

Length of message contents in bytes, including self.

CopyFail (F)

Byte1('f')

Identifies the message as a COPY-failure indicator.

1930

Frontend/Backend Protocol

Int32
Length of message contents in bytes, including self.

String
An error message to report as the cause of failure.

CopyInResponse (B)
Byte1('G')

Identifies the message as a Start Copy In response. The frontend must now send copy-in data (if
not prepared to do so, send a CopyFail message).

Int32
Length of message contents in bytes, including self.

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyOutResponse (B)
Byte1('H')

Identifies the message as a Start Copy Out response. This message will be followed by copy-out
data.

Int32
Length of message contents in bytes, including self.

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

CopyBothResponse (B)
Byte1('W')

Identifies the message as a Start Copy Both response. This message is used only for Streaming
Replication.

Int32
Length of message contents in bytes, including self.

1931

Frontend/Backend Protocol

Int8
0 indicates the overall COPY format is textual (rows separated by newlines, columns separated
by separator characters, etc). 1 indicates the overall copy format is binary (similar to DataRow
format). See COPY for more information.

Int16
The number of columns in the data to be copied (denoted N below).

Int16[N]
The format codes to be used for each column. Each must presently be zero (text) or one (binary).
All must be zero if the overall copy format is textual.

DataRow (B)
Byte1('D')

Identifies the message as a data row.

Int32
Length of message contents in bytes, including self.

Int16
The number of column values that follow (possibly zero).

Next, the following pair of fields appear for each column:
Int32

The length of the column value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL column value. No value bytes follow in the NULL case.

Byten
The value of the column, in the format indicated by the associated format code. n is the above
length.

Describe (F)
Byte1('D')

Identifies the message as a Describe command.

Int32
Length of message contents in bytes, including self.

Byte1
'S' to describe a prepared statement; or 'P' to describe a portal.

String
The name of the prepared statement or portal to describe (an empty string selects the unnamed
prepared statement or portal).

EmptyQueryResponse (B)
Byte1('I')

Identifies the message as a response to an empty query string. (This substitutes for
CommandComplete.)

Int32(4)
Length of message contents in bytes, including self.

1932

Frontend/Backend Protocol

ErrorResponse (B)
Byte1('E')

Identifies the message as an error.

Int32
Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:
Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows. The
presently defined field types are listed in Section 50.8. Since more field types might be added in
future, frontends should silently ignore fields of unrecognized type.

String
The field value.

Execute (F)
Byte1('E')

Identifies the message as an Execute command.

Int32
Length of message contents in bytes, including self.

String
The name of the portal to execute (an empty string selects the unnamed portal).

Int32
Maximum number of rows to return, if portal contains a query that returns rows (ignored
otherwise). Zero denotes “no limit”.

Flush (F)
Byte1('H')

Identifies the message as a Flush command.

Int32(4)
Length of message contents in bytes, including self.

FunctionCall (F)
Byte1('F')

Identifies the message as a function call.

Int32
Length of message contents in bytes, including self.

Int32
Specifies the object ID of the function to call.

Int16

The number of argument format codes that follow (denoted C below). This can be zero to indicate
that there are no arguments or that the arguments all use the default format (text); or one, in

1933

Frontend/Backend Protocol

which case the specified format code is applied to all arguments; or it can equal the actual number
of arguments.

Int16[C]
The argument format codes. Each must presently be zero (text) or one (binary).

Int16
Specifies the number of arguments being supplied to the function.

Next, the following pair of fields appear for each argument:
Int32

The length of the argument value, in bytes (this count does not include itself). Can be zero. As a
special case, -1 indicates a NULL argument value. No value bytes follow in the NULL case.

Byten

The value of the argument, in the format indicated by the associated format code. n is the above
length.

After the last argument, the following field appears:
Int16

The format code for the function result. Must presently be zero (text) or one (binary).

FunctionCallResponse (B)
Byte1('V')

Identifies the message as a function call result.

Int32
Length of message contents in bytes, including self.

Int32
The length of the function result value, in bytes (this count does not include itself). Can be zero.
As a special case, -1 indicates a NULL function result. No value bytes follow in the NULL case.

Byten

The value of the function result, in the format indicated by the associated format code. n is the
above length.

GSSResponse (F)
Byte1('p')

Identifies the message as a GSSAPI or SSPI response. Note that this is also used for SASL and
password response messages. The exact message type can be deduced from the context.

Int32
Length of message contents in bytes, including self.

Byten
GSSAPI/SSPI specific message data.

NegotiateProtocolVersion (B)
Byte1('v')

Identifies the message as a protocol version negotiation message.

1934

Frontend/Backend Protocol

Int32

Length of message contents in bytes, including self.

Int32

Newest minor protocol version supported by the server for the major protocol version requested
by the client.

Int32

Number of protocol options not recognized by the server.

Then, for protocol option not recognized by the server, there is the following:

String

The option name.

NoData (B)

Byte1('n')

Identifies the message as a no-data indicator.

Int32(4)

Length of message contents in bytes, including self.

NoticeResponse (B)

Byte1('N')

Identifies the message as a notice.

Int32

Length of message contents in bytes, including self.

The message body consists of one or more identified fields, followed by a zero byte as a terminator.
Fields can appear in any order. For each field there is the following:

Byte1

A code identifying the field type; if zero, this is the message terminator and no string follows. The
presently defined field types are listed in Section 50.8. Since more field types might be added in
future, frontends should silently ignore fields of unrecognized type.

String

The field value.

NotificationResponse (B)

Byte1('A')

Identifies the message as a notification response.

Int32

Length of message contents in bytes, including self.

Int32

The process ID of the notifying backend process.

String

The name of the channel that the notify has been raised on.

1935

Frontend/Backend Protocol

String

The “payload” string passed from the notifying process.

ParameterDescription (B)

Byte1('t')

Identifies the message as a parameter description.

Int32

Length of message contents in bytes, including self.

Int16

The number of parameters used by the statement (can be zero).

Then, for each parameter, there is the following:

Int32

Specifies the object ID of the parameter data type.

ParameterStatus (B)

Byte1('S')

Identifies the message as a run-time parameter status report.

Int32

Length of message contents in bytes, including self.

String

The name of the run-time parameter being reported.

String

The current value of the parameter.

Parse (F)

Byte1('P')

Identifies the message as a Parse command.

Int32

Length of message contents in bytes, including self.

String

The name of the destination prepared statement (an empty string selects the unnamed prepared
statement).

String

The query string to be parsed.

Int16

The number of parameter data types specified (can be zero). Note that this is not an indication
of the number of parameters that might appear in the query string, only the number that the
frontend wants to prespecify types for.

Then, for each parameter, there is the following:

1936

Frontend/Backend Protocol

Int32
Specifies the object ID of the parameter data type. Placing a zero here is equivalent to leaving
the type unspecified.

ParseComplete (B)
Byte1('1')

Identifies the message as a Parse-complete indicator.

Int32(4)
Length of message contents in bytes, including self.

PasswordMessage (F)
Byte1('p')

Identifies the message as a password response. Note that this is also used for GSSAPI, SSPI and
SASL response messages. The exact message type can be deduced from the context.

Int32
Length of message contents in bytes, including self.

String
The password (encrypted, if requested).

PortalSuspended (B)
Byte1('s')

Identifies the message as a portal-suspended indicator. Note this only appears if an Execute
message's row-count limit was reached.

Int32(4)
Length of message contents in bytes, including self.

Query (F)
Byte1('Q')

Identifies the message as a simple query.

Int32
Length of message contents in bytes, including self.

String
The query string itself.

ReadyForQuery (B)
Byte1('Z')

Identifies the message type. ReadyForQuery is sent whenever the backend is ready for a new
query cycle.

Int32(5)
Length of message contents in bytes, including self.

Byte1
Current backend transaction status indicator. Possible values are 'I' if idle (not in a transaction
block); 'T' if in a transaction block; or 'E' if in a failed transaction block (queries will be rejected
until block is ended).

1937

Frontend/Backend Protocol

RowDescription (B)

Byte1('T')

Identifies the message as a row description.

Int32

Length of message contents in bytes, including self.

Int16

Specifies the number of fields in a row (can be zero).

Then, for each field, there is the following:

String

The field name.

Int32

If the field can be identified as a column of a specific table, the object ID of the table; otherwise
zero.

Int16

If the field can be identified as a column of a specific table, the attribute number of the column;
otherwise zero.

Int32

The object ID of the field's data type.

Int16

The data type size (see pg_type.typlen). Note that negative values denote variable-width types.

Int32

The type modifier (see pg_attribute.atttypmod). The meaning of the modifier is type-specific.

Int16

The format code being used for the field. Currently will be zero (text) or one (binary). In a
RowDescription returned from the statement variant of Describe, the format code is not yet
known and will always be zero.

SASLInitialResponse (F)

Byte1('p')

Identifies the message as an initial SASL response. Note that this is also used for GSSAPI, SSPI
and password response messages. The exact message type is deduced from the context.

Int32

Length of message contents in bytes, including self.

String

Name of the SASL authentication mechanism that the client selected.

Int32

Length of SASL mechanism specific "Initial Client Response" that follows, or -1 if there is no
Initial Response.

1938

Frontend/Backend Protocol

Byten
SASL mechanism specific "Initial Response".

SASLResponse (F)
Byte1('p')

Identifies the message as a SASL response. Note that this is also used for GSSAPI, SSPI and
password response messages. The exact message type can be deduced from the context.

Int32
Length of message contents in bytes, including self.

Byten
SASL mechanism specific message data.

SSLRequest (F)
Int32(8)

Length of message contents in bytes, including self.

Int32(80877103)
The SSL request code. The value is chosen to contain 1234 in the most significant 16 bits, and
5679 in the least significant 16 bits. (To avoid confusion, this code must not be the same as any
protocol version number.)

GSSENCRequest (F)
Int32(8)

Length of message contents in bytes, including self.

Int32(80877104)
The GSSAPI Encryption request code. The value is chosen to contain 1234 in the most significant
16 bits, and 5680 in the least significant 16 bits. (To avoid confusion, this code must not be the
same as any protocol version number.)

StartupMessage (F)
Int32

Length of message contents in bytes, including self.

Int32(196608)
The protocol version number. The most significant 16 bits are the major version number (3 for
the protocol described here). The least significant 16 bits are the minor version number (0 for
the protocol described here).

The protocol version number is followed by one or more pairs of parameter name and value strings.
A zero byte is required as a terminator after the last name/value pair. Parameters can appear in any
order. user is required, others are optional. Each parameter is specified as:
String

The parameter name. Currently recognized names are:
user

The database user name to connect as. Required; there is no default.

database

The database to connect to. Defaults to the user name.

1939

Frontend/Backend Protocol

options

Command-line arguments for the backend. (This is deprecated in favor of setting individual
run-time parameters.) Spaces within this string are considered to separate arguments, unless
escaped with a backslash (\); write \\ to represent a literal backslash.

replication

Used to connect in streaming replication mode, where a small set of replication commands
can be issued instead of SQL statements. Value can be true, false, or database, and the
default is false. See Section 50.4 for details.

In addition to the above, other parameters may be listed. Parameter names beginning with _pq_.
are reserved for use as protocol extensions, while others are treated as run-time parameters to
be set at backend start time. Such settings will be applied during backend start (after parsing
the command-line arguments if any) and will act as session defaults.

String
The parameter value.

Sync (F)
Byte1('S')

Identifies the message as a Sync command.

Int32(4)
Length of message contents in bytes, including self.

Terminate (F)
Byte1('X')

Identifies the message as a termination.

Int32(4)
Length of message contents in bytes, including self.

50.8. Error and Notice Message Fields
This section describes the fields that can appear in ErrorResponse and NoticeResponse messages. Each
field type has a single-byte identification token. Note that any given field type should appear at most
once per message.

S

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING, NOTICE,
DEBUG, INFO, or LOG (in a notice message), or a localized translation of one of these. Always present.

V

Severity: the field contents are ERROR, FATAL, or PANIC (in an error message), or WARNING, NOTICE,
DEBUG, INFO, or LOG (in a notice message). This is identical to the S field except that the contents are
never localized. This is present only in messages generated by Postgres Pro versions 9.6 and later.

C

Code: the SQLSTATE code for the error (see Appendix A). Not localizable. Always present.

M

Message: the primary human-readable error message. This should be accurate but terse (typically
one line). Always present.

1940

Frontend/Backend Protocol

D

Detail: an optional secondary error message carrying more detail about the problem. Might run to
multiple lines.

H

Hint: an optional suggestion what to do about the problem. This is intended to differ from Detail in
that it offers advice (potentially inappropriate) rather than hard facts. Might run to multiple lines.

P

Position: the field value is a decimal ASCII integer, indicating an error cursor position as an index into
the original query string. The first character has index 1, and positions are measured in characters
not bytes.

p

Internal position: this is defined the same as the P field, but it is used when the cursor position refers
to an internally generated command rather than the one submitted by the client. The q field will
always appear when this field appears.

q

Internal query: the text of a failed internally-generated command. This could be, for example, a SQL
query issued by a PL/pgSQL function.

W

Where: an indication of the context in which the error occurred. Presently this includes a call stack
traceback of active procedural language functions and internally-generated queries. The trace is one
entry per line, most recent first.

s

Schema name: if the error was associated with a specific database object, the name of the schema
containing that object, if any.

t

Table name: if the error was associated with a specific table, the name of the table. (Refer to the
schema name field for the name of the table's schema.)

c

Column name: if the error was associated with a specific table column, the name of the column.
(Refer to the schema and table name fields to identify the table.)

d

Data type name: if the error was associated with a specific data type, the name of the data type.
(Refer to the schema name field for the name of the data type's schema.)

n

Constraint name: if the error was associated with a specific constraint, the name of the constraint.
Refer to fields listed above for the associated table or domain. (For this purpose, indexes are treated
as constraints, even if they weren't created with constraint syntax.)

F

File: the file name of the source-code location where the error was reported.

L

Line: the line number of the source-code location where the error was reported.

1941

Frontend/Backend Protocol

R

Routine: the name of the source-code routine reporting the error.

Note
The fields for schema name, table name, column name, data type name, and constraint name are
supplied only for a limited number of error types; see Appendix A. Frontends should not assume
that the presence of any of these fields guarantees the presence of another field. Core error sources
observe the interrelationships noted above, but user-defined functions may use these fields in
other ways. In the same vein, clients should not assume that these fields denote contemporary
objects in the current database.

The client is responsible for formatting displayed information to meet its needs; in particular it should
break long lines as needed. Newline characters appearing in the error message fields should be treated
as paragraph breaks, not line breaks.

50.9. Logical Replication Message Formats
This section describes the detailed format of each logical replication message. These messages are
returned either by the replication slot SQL interface or are sent by a walsender. In case of a walsender
they are encapsulated inside the replication protocol WAL messages as described in Section 50.4 and
generally obey same message flow as physical replication.

Begin
Byte1('B')

Identifies the message as a begin message.

Int64
The final LSN of the transaction.

Int64
Commit timestamp of the transaction. The value is in number of microseconds since Postgres
Pro epoch (2000-01-01).

Int32
Xid of the transaction.

Commit
Byte1('C')

Identifies the message as a commit message.

Int8
Flags; currently unused (must be 0).

Int64
The LSN of the commit.

Int64
The end LSN of the transaction.

Int64
Commit timestamp of the transaction. The value is in number of microseconds since Postgres
Pro epoch (2000-01-01).

1942

Frontend/Backend Protocol

Origin
Byte1('O')

Identifies the message as an origin message.

Int64
The LSN of the commit on the origin server.

String
Name of the origin.

Note that there can be multiple Origin messages inside a single transaction.

Relation
Byte1('R')

Identifies the message as a relation message.

Int32
ID of the relation.

String

Namespace (empty string for pg_catalog).

String
Relation name.

Int8

Replica identity setting for the relation (same as relreplident in pg_class).

Int16
Number of columns.

Next, the following message part appears for each column (except generated columns):
Int8

Flags for the column. Currently can be either 0 for no flags or 1 which marks the column as part
of the key.

String
Name of the column.

Int32
ID of the column's data type.

Int32

Type modifier of the column (atttypmod).

Type
Byte1('Y')

Identifies the message as a type message.

Int32
ID of the data type.

1943

Frontend/Backend Protocol

String
Namespace (empty string for pg_catalog).

String
Name of the data type.

Insert
Byte1('I')

Identifies the message as an insert message.

Int32
ID of the relation corresponding to the ID in the relation message.

Byte1('N')
Identifies the following TupleData message as a new tuple.

TupleData
TupleData message part representing the contents of new tuple.

Update
Byte1('U')

Identifies the message as an update message.

Int32
ID of the relation corresponding to the ID in the relation message.

Byte1('K')
Identifies the following TupleData submessage as a key. This field is optional and is only present
if the update changed data in any of the column(s) that are part of the REPLICA IDENTITY index.

Byte1('O')
Identifies the following TupleData submessage as an old tuple. This field is optional and is only
present if table in which the update happened has REPLICA IDENTITY set to FULL.

TupleData
TupleData message part representing the contents of the old tuple or primary key. Only present
if the previous 'O' or 'K' part is present.

Byte1('N')
Identifies the following TupleData message as a new tuple.

TupleData
TupleData message part representing the contents of a new tuple.

The Update message may contain either a 'K' message part or an 'O' message part or neither of them,
but never both of them.

Delete
Byte1('D')

Identifies the message as a delete message.

Int32
ID of the relation corresponding to the ID in the relation message.

1944

Frontend/Backend Protocol

Byte1('K')
Identifies the following TupleData submessage as a key. This field is present if the table in which
the delete has happened uses an index as REPLICA IDENTITY.

Byte1('O')
Identifies the following TupleData message as an old tuple. This field is present if the table in
which the delete happened has REPLICA IDENTITY set to FULL.

TupleData
TupleData message part representing the contents of the old tuple or primary key, depending
on the previous field.

The Delete message may contain either a 'K' message part or an 'O' message part, but never both
of them.

Truncate
Byte1('T')

Identifies the message as a truncate message.

Int32
Number of relations

Int8
Option bits for TRUNCATE: 1 for CASCADE, 2 for RESTART IDENTITY

Int32
ID of the relation corresponding to the ID in the relation message. This field is repeated for each
relation.

The following message parts are shared by the above messages.

TupleData
Int16

Number of columns.

Next, one of the following submessages appears for each column (except generated columns):
Byte1('n')

Identifies the data as NULL value.

Or
Byte1('u')

Identifies unchanged TOASTed value (the actual value is not sent).

Or
Byte1('t')

Identifies the data as text formatted value.

Int32
Length of the column value.

Byten
The value of the column, in text format. (A future release might support additional formats.) n
is the above length.

1945

Frontend/Backend Protocol

50.10. Summary of Changes since Protocol 2.0
This section provides a quick checklist of changes, for the benefit of developers trying to update existing
client libraries to protocol 3.0.

The initial startup packet uses a flexible list-of-strings format instead of a fixed format. Notice that
session default values for run-time parameters can now be specified directly in the startup packet.
(Actually, you could do that before using the options field, but given the limited width of options and
the lack of any way to quote whitespace in the values, it wasn't a very safe technique.)

All messages now have a length count immediately following the message type byte (except for startup
packets, which have no type byte). Also note that PasswordMessage now has a type byte.

ErrorResponse and NoticeResponse ('E' and 'N') messages now contain multiple fields, from which the
client code can assemble an error message of the desired level of verbosity. Note that individual fields
will typically not end with a newline, whereas the single string sent in the older protocol always did.

The ReadyForQuery ('Z') message includes a transaction status indicator.

The distinction between BinaryRow and DataRow message types is gone; the single DataRow message
type serves for returning data in all formats. Note that the layout of DataRow has changed to make it
easier to parse. Also, the representation of binary values has changed: it is no longer directly tied to
the server's internal representation.

There is a new “extended query” sub-protocol, which adds the frontend message types Parse,
Bind, Execute, Describe, Close, Flush, and Sync, and the backend message types ParseComplete,
BindComplete, PortalSuspended, ParameterDescription, NoData, and CloseComplete. Existing clients
do not have to concern themselves with this sub-protocol, but making use of it might allow improvements
in performance or functionality.

COPY data is now encapsulated into CopyData and CopyDone messages. There is a well-defined way
to recover from errors during COPY. The special “\.” last line is not needed anymore, and is not sent
during COPY OUT. (It is still recognized as a terminator during COPY IN, but its use is deprecated and will
eventually be removed.) Binary COPY is supported. The CopyInResponse and CopyOutResponse messages
include fields indicating the number of columns and the format of each column.

The layout of FunctionCall and FunctionCallResponse messages has changed. FunctionCall can now
support passing NULL arguments to functions. It also can handle passing parameters and retrieving
results in either text or binary format. There is no longer any reason to consider FunctionCall a potential
security hole, since it does not offer direct access to internal server data representations.

The backend sends ParameterStatus ('S') messages during connection startup for all parameters it
considers interesting to the client library. Subsequently, a ParameterStatus message is sent whenever
the active value changes for any of these parameters.

The RowDescription ('T') message carries new table OID and column number fields for each column of
the described row. It also shows the format code for each column.

The CursorResponse ('P') message is no longer generated by the backend.

The NotificationResponse ('A') message has an additional string field, which can carry a “payload” string
passed from the NOTIFY event sender.

The EmptyQueryResponse ('I') message used to include an empty string parameter; this has been
removed.

1946

Chapter 51. Writing a Procedural Language
Handler

All calls to functions that are written in a language other than the current “version 1” interface for
compiled languages (this includes functions in user-defined procedural languages and functions written
in SQL) go through a call handler function for the specific language. It is the responsibility of the call
handler to execute the function in a meaningful way, such as by interpreting the supplied source text.
This chapter outlines how a new procedural language's call handler can be written.

The call handler for a procedural language is a “normal” function that must be written in a compiled
language such as C, using the version-1 interface, and registered with Postgres Pro as taking no
arguments and returning the type language_handler. This special pseudo-type identifies the function
as a call handler and prevents it from being called directly in SQL commands. For more details on C
language calling conventions and dynamic loading, see Section 35.10.

The call handler is called in the same way as any other function: It receives a pointer to a
FunctionCallInfoBaseData struct containing argument values and information about the called
function, and it is expected to return a Datum result (and possibly set the isnull field of the
FunctionCallInfoBaseData structure, if it wishes to return an SQL null result). The difference
between a call handler and an ordinary callee function is that the flinfo->fn_oid field of the
FunctionCallInfoBaseData structure will contain the OID of the actual function to be called, not of
the call handler itself. The call handler must use this field to determine which function to execute. Also,
the passed argument list has been set up according to the declaration of the target function, not of the
call handler.

It's up to the call handler to fetch the entry of the function from the pg_proc system catalog and to
analyze the argument and return types of the called function. The AS clause from the CREATE FUNCTION
command for the function will be found in the prosrc column of the pg_proc row. This is commonly
source text in the procedural language, but in theory it could be something else, such as a path name
to a file, or anything else that tells the call handler what to do in detail.

Often, the same function is called many times per SQL statement. A call handler can avoid repeated
lookups of information about the called function by using the flinfo->fn_extra field. This will initially
be NULL, but can be set by the call handler to point at information about the called function. On
subsequent calls, if flinfo->fn_extra is already non-NULL then it can be used and the information
lookup step skipped. The call handler must make sure that flinfo->fn_extra is made to point at memory
that will live at least until the end of the current query, since an FmgrInfo data structure could be kept
that long. One way to do this is to allocate the extra data in the memory context specified by flinfo-
>fn_mcxt; such data will normally have the same lifespan as the FmgrInfo itself. But the handler could
also choose to use a longer-lived memory context so that it can cache function definition information
across queries.

When a procedural-language function is invoked as a trigger, no arguments are passed in the usual way,
but the FunctionCallInfoBaseData's context field points at a TriggerData structure, rather than being
NULL as it is in a plain function call. A language handler should provide mechanisms for procedural-
language functions to get at the trigger information.

This is a template for a procedural-language handler written in C:

#include "postgres.h"
#include "executor/spi.h"
#include "commands/trigger.h"
#include "fmgr.h"
#include "access/heapam.h"
#include "utils/syscache.h"
#include "catalog/pg_proc.h"
#include "catalog/pg_type.h"

1947

Writing a Procedural
Language Handler

PG_MODULE_MAGIC;

PG_FUNCTION_INFO_V1(plsample_call_handler);

Datum
plsample_call_handler(PG_FUNCTION_ARGS)
{
 Datum retval;

 if (CALLED_AS_TRIGGER(fcinfo))
 {
 /*
 * Called as a trigger function
 */
 TriggerData *trigdata = (TriggerData *) fcinfo->context;

 retval = ...
 }
 else
 {
 /*
 * Called as a function
 */

 retval = ...
 }

 return retval;
}

Only a few thousand lines of code have to be added instead of the dots to complete the call handler.

After having compiled the handler function into a loadable module (see Section 35.10.5), the following
commands then register the sample procedural language:

CREATE FUNCTION plsample_call_handler() RETURNS language_handler
 AS 'filename'
 LANGUAGE C;
CREATE LANGUAGE plsample
 HANDLER plsample_call_handler;

Although providing a call handler is sufficient to create a minimal procedural language, there are two
other functions that can optionally be provided to make the language more convenient to use. These are
a validator and an inline handler. A validator can be provided to allow language-specific checking to be
done during CREATE FUNCTION. An inline handler can be provided to allow the language to support
anonymous code blocks executed via the DO command.

If a validator is provided by a procedural language, it must be declared as a function taking a single
parameter of type oid. The validator's result is ignored, so it is customarily declared to return void.
The validator will be called at the end of a CREATE FUNCTION command that has created or updated
a function written in the procedural language. The passed-in OID is the OID of the function's pg_proc
row. The validator must fetch this row in the usual way, and do whatever checking is appropriate. First,
call CheckFunctionValidatorAccess() to diagnose explicit calls to the validator that the user could not
achieve through CREATE FUNCTION. Typical checks then include verifying that the function's argument
and result types are supported by the language, and that the function's body is syntactically correct in
the language. If the validator finds the function to be okay, it should just return. If it finds an error, it
should report that via the normal ereport() error reporting mechanism. Throwing an error will force a
transaction rollback and thus prevent the incorrect function definition from being committed.

1948

Writing a Procedural
Language Handler

Validator functions should typically honor the check_function_bodies parameter: if it is turned off then
any expensive or context-sensitive checking should be skipped. If the language provides for code
execution at compilation time, the validator must suppress checks that would induce such execution. In
particular, this parameter is turned off by pg_dump so that it can load procedural language functions
without worrying about side effects or dependencies of the function bodies on other database objects.
(Because of this requirement, the call handler should avoid assuming that the validator has fully checked
the function. The point of having a validator is not to let the call handler omit checks, but to notify
the user immediately if there are obvious errors in a CREATE FUNCTION command.) While the choice of
exactly what to check is mostly left to the discretion of the validator function, note that the core CREATE
FUNCTION code only executes SET clauses attached to a function when check_function_bodies is on.
Therefore, checks whose results might be affected by GUC parameters definitely should be skipped when
check_function_bodies is off, to avoid false failures when reloading a dump.

If an inline handler is provided by a procedural language, it must be declared as a function taking a
single parameter of type internal. The inline handler's result is ignored, so it is customarily declared to
return void. The inline handler will be called when a DO statement is executed specifying the procedural
language. The parameter actually passed is a pointer to an InlineCodeBlock struct, which contains
information about the DO statement's parameters, in particular the text of the anonymous code block to
be executed. The inline handler should execute this code and return.

It's recommended that you wrap all these function declarations, as well as the CREATE LANGUAGE
command itself, into an extension so that a simple CREATE EXTENSION command is sufficient to install
the language. See Section 35.17 for information about writing extensions.

The procedural languages included in the standard distribution are good references when trying to write
your own language handler. The CREATE LANGUAGE reference page has some useful details.

1949

Chapter 52. Writing a Foreign Data Wrapper
All operations on a foreign table are handled through its foreign data wrapper, which consists of a set
of functions that the core server calls. The foreign data wrapper is responsible for fetching data from
the remote data source and returning it to the Postgres Pro executor. If updating foreign tables is to be
supported, the wrapper must handle that, too. This chapter outlines how to write a new foreign data
wrapper.

The foreign data wrappers included in the standard distribution are good references when trying to
write your own. Look into the contrib subdirectory of the source tree. The CREATE FOREIGN DATA
WRAPPER reference page also has some useful details.

Note
The SQL standard specifies an interface for writing foreign data wrappers. However, Postgres Pro
does not implement that API, because the effort to accommodate it into Postgres Pro would be
large, and the standard API hasn't gained wide adoption anyway.

52.1. Foreign Data Wrapper Functions
The FDW author needs to implement a handler function, and optionally a validator function. Both
functions must be written in a compiled language such as C, using the version-1 interface. For details
on C language calling conventions and dynamic loading, see Section 35.10.

The handler function simply returns a struct of function pointers to callback functions that will be called
by the planner, executor, and various maintenance commands. Most of the effort in writing an FDW is
in implementing these callback functions. The handler function must be registered with Postgres Pro
as taking no arguments and returning the special pseudo-type fdw_handler. The callback functions are
plain C functions and are not visible or callable at the SQL level. The callback functions are described
in Section 52.2.

The validator function is responsible for validating options given in CREATE and ALTER commands for its
foreign data wrapper, as well as foreign servers, user mappings, and foreign tables using the wrapper.
The validator function must be registered as taking two arguments, a text array containing the options
to be validated, and an OID representing the type of object the options are associated with (in the form
of the OID of the system catalog the object would be stored in, either ForeignDataWrapperRelationId,
ForeignServerRelationId, UserMappingRelationId, or ForeignTableRelationId). If no validator
function is supplied, options are not checked at object creation time or object alteration time.

52.2. Foreign Data Wrapper Callback Routines
The FDW handler function returns a palloc'd FdwRoutine struct containing pointers to the callback
functions described below. The scan-related functions are required, the rest are optional.

The FdwRoutine struct type is declared in src/include/foreign/fdwapi.h, which see for additional
details.

52.2.1. FDW Routines for Scanning Foreign Tables
void
GetForeignRelSize(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

Obtain relation size estimates for a foreign table. This is called at the beginning of planning for a query
that scans a foreign table. root is the planner's global information about the query; baserel is the
planner's information about this table; and foreigntableid is the pg_class OID of the foreign table.

1950

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/foreign/fdwapi.h;hb=HEAD

Writing a Foreign Data Wrapper

(foreigntableid could be obtained from the planner data structures, but it's passed explicitly to save
effort.)

This function should update baserel->rows to be the expected number of rows returned by the table
scan, after accounting for the filtering done by the restriction quals. The initial value of baserel->rows
is just a constant default estimate, which should be replaced if at all possible. The function may also
choose to update baserel->width if it can compute a better estimate of the average result row width.
(The initial value is based on column data types and on column average-width values measured by the
last ANALYZE.) Also, this function may update baserel->tuples if it can compute a better estimate of
the foreign table's total row count. (The initial value is from pg_class.reltuples which represents the
total row count seen by the last ANALYZE.)

See Section 52.4 for additional information.

void
GetForeignPaths(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid);

Create possible access paths for a scan on a foreign table. This is called during query planning. The
parameters are the same as for GetForeignRelSize, which has already been called.

This function must generate at least one access path (ForeignPath node) for a scan on the foreign
table and must call add_path to add each such path to baserel->pathlist. It's recommended to use
create_foreignscan_path to build the ForeignPath nodes. The function can generate multiple access
paths, e.g., a path which has valid pathkeys to represent a pre-sorted result. Each access path must
contain cost estimates, and can contain any FDW-private information that is needed to identify the
specific scan method intended.

See Section 52.4 for additional information.

ForeignScan *
GetForeignPlan(PlannerInfo *root,
 RelOptInfo *baserel,
 Oid foreigntableid,
 ForeignPath *best_path,
 List *tlist,
 List *scan_clauses,
 Plan *outer_plan);

Create a ForeignScan plan node from the selected foreign access path. This is called at the end of query
planning. The parameters are as for GetForeignRelSize, plus the selected ForeignPath (previously
produced by GetForeignPaths, GetForeignJoinPaths, or GetForeignUpperPaths), the target list to be
emitted by the plan node, the restriction clauses to be enforced by the plan node, and the outer subplan
of the ForeignScan, which is used for rechecks performed by RecheckForeignScan. (If the path is for a
join rather than a base relation, foreigntableid is InvalidOid.)

This function must create and return a ForeignScan plan node; it's recommended to use
make_foreignscan to build the ForeignScan node.

See Section 52.4 for additional information.

void
BeginForeignScan(ForeignScanState *node,
 int eflags);

Begin executing a foreign scan. This is called during executor startup. It should perform any initialization
needed before the scan can start, but not start executing the actual scan (that should be done
upon the first call to IterateForeignScan). The ForeignScanState node has already been created,
but its fdw_state field is still NULL. Information about the table to scan is accessible through the
ForeignScanState node (in particular, from the underlying ForeignScan plan node, which contains

1951

Writing a Foreign Data Wrapper

any FDW-private information provided by GetForeignPlan). eflags contains flag bits describing the
executor's operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainForeignScan and EndForeignScan.

TupleTableSlot *
IterateForeignScan(ForeignScanState *node);

Fetch one row from the foreign source, returning it in a tuple table slot (the node's ScanTupleSlot should
be used for this purpose). Return NULL if no more rows are available. The tuple table slot infrastructure
allows either a physical or virtual tuple to be returned; in most cases the latter choice is preferable from
a performance standpoint. Note that this is called in a short-lived memory context that will be reset
between invocations. Create a memory context in BeginForeignScan if you need longer-lived storage,
or use the es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must
match the row type of the foreign table being scanned. If you choose to optimize away fetching columns
that are not needed, you should insert nulls in those column positions, or else generate a fdw_scan_tlist
list with those columns omitted.

Note that Postgres Pro's executor doesn't care whether the rows returned violate any constraints that
were defined on the foreign table — but the planner does care, and may optimize queries incorrectly
if there are rows visible in the foreign table that do not satisfy a declared constraint. If a constraint is
violated when the user has declared that the constraint should hold true, it may be appropriate to raise
an error (just as you would need to do in the case of a data type mismatch).

void
ReScanForeignScan(ForeignScanState *node);

Restart the scan from the beginning. Note that any parameters the scan depends on may have changed
value, so the new scan does not necessarily return exactly the same rows.

void
EndForeignScan(ForeignScanState *node);

End the scan and release resources. It is normally not important to release palloc'd memory, but for
example open files and connections to remote servers should be cleaned up.

52.2.2. FDW Routines for Scanning Foreign Joins
If an FDW supports performing foreign joins remotely (rather than by fetching both tables' data and
doing the join locally), it should provide this callback function:

void
GetForeignJoinPaths(PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,
 JoinPathExtraData *extra);

Create possible access paths for a join of two (or more) foreign tables that all belong to the same foreign
server. This optional function is called during query planning. As with GetForeignPaths, this function
should generate ForeignPath path(s) for the supplied joinrel (use create_foreign_join_path to build
them), and call add_path to add these paths to the set of paths considered for the join. But unlike
GetForeignPaths, it is not necessary that this function succeed in creating at least one path, since paths
involving local joining are always possible.

Note that this function will be invoked repeatedly for the same join relation, with different combinations
of inner and outer relations; it is the responsibility of the FDW to minimize duplicated work.

1952

Writing a Foreign Data Wrapper

If a ForeignPath path is chosen for the join, it will represent the entire join process; paths generated
for the component tables and subsidiary joins will not be used. Subsequent processing of the join path
proceeds much as it does for a path scanning a single foreign table. One difference is that the scanrelid
of the resulting ForeignScan plan node should be set to zero, since there is no single relation that it
represents; instead, the fs_relids field of the ForeignScan node represents the set of relations that
were joined. (The latter field is set up automatically by the core planner code, and need not be filled by
the FDW.) Another difference is that, because the column list for a remote join cannot be found from
the system catalogs, the FDW must fill fdw_scan_tlist with an appropriate list of TargetEntry nodes,
representing the set of columns it will supply at run time in the tuples it returns.

See Section 52.4 for additional information.

52.2.3. FDW Routines for Planning Post-Scan/Join Processing
If an FDW supports performing remote post-scan/join processing, such as remote aggregation, it should
provide this callback function:

void
GetForeignUpperPaths(PlannerInfo *root,
 UpperRelationKind stage,
 RelOptInfo *input_rel,
 RelOptInfo *output_rel,
 void *extra);

Create possible access paths for upper relation processing, which is the planner's term for all post-scan/
join query processing, such as aggregation, window functions, sorting, and table updates. This optional
function is called during query planning. Currently, it is called only if all base relation(s) involved in
the query belong to the same FDW. This function should generate ForeignPath path(s) for any post-
scan/join processing that the FDW knows how to perform remotely (use create_foreign_upper_path
to build them), and call add_path to add these paths to the indicated upper relation. As with
GetForeignJoinPaths, it is not necessary that this function succeed in creating any paths, since paths
involving local processing are always possible.

The stage parameter identifies which post-scan/join step is currently being considered. output_rel is
the upper relation that should receive paths representing computation of this step, and input_rel is the
relation representing the input to this step. The extra parameter provides additional details, currently,
it is set only for UPPERREL_PARTIAL_GROUP_AGG or UPPERREL_GROUP_AGG, in which case it points to a
GroupPathExtraData structure; or for UPPERREL_FINAL, in which case it points to a FinalPathExtraData
structure. (Note that ForeignPath paths added to output_rel would typically not have any direct
dependency on paths of the input_rel, since their processing is expected to be done externally. However,
examining paths previously generated for the previous processing step can be useful to avoid redundant
planning work.)

See Section 52.4 for additional information.

52.2.4. FDW Routines for Updating Foreign Tables
If an FDW supports writable foreign tables, it should provide some or all of the following callback
functions depending on the needs and capabilities of the FDW:

void
AddForeignUpdateTargets(Query *parsetree,
 RangeTblEntry *target_rte,
 Relation target_relation);

UPDATE and DELETE operations are performed against rows previously fetched by the table-scanning
functions. The FDW may need extra information, such as a row ID or the values of primary-key columns,
to ensure that it can identify the exact row to update or delete. To support that, this function can add
extra hidden, or “junk”, target columns to the list of columns that are to be retrieved from the foreign
table during an UPDATE or DELETE.

1953

Writing a Foreign Data Wrapper

To do that, add TargetEntry items to parsetree->targetList, containing expressions for the extra
values to be fetched. Each such entry must be marked resjunk = true, and must have a distinct resname
that will identify it at execution time. Avoid using names matching ctidN, wholerow, or wholerowN, as the
core system can generate junk columns of these names. If the extra expressions are more complex than
simple Vars, they must be run through eval_const_expressions before adding them to the target list.

Although this function is called during planning, the information provided is a bit different from that
available to other planning routines. parsetree is the parse tree for the UPDATE or DELETE command,
while target_rte and target_relation describe the target foreign table.

If the AddForeignUpdateTargets pointer is set to NULL, no extra target expressions are added. (This
will make it impossible to implement DELETE operations, though UPDATE may still be feasible if the FDW
relies on an unchanging primary key to identify rows.)

List *
PlanForeignModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

Perform any additional planning actions needed for an insert, update, or delete on a foreign table. This
function generates the FDW-private information that will be attached to the ModifyTable plan node that
performs the update action. This private information must have the form of a List, and will be delivered
to BeginForeignModify during the execution stage.

root is the planner's global information about the query. plan is the ModifyTable plan node, which is
complete except for the fdwPrivLists field. resultRelation identifies the target foreign table by its
range table index. subplan_index identifies which target of the ModifyTable plan node this is, counting
from zero; use this if you want to index into plan->plans or other substructure of the plan node.

See Section 52.4 for additional information.

If the PlanForeignModify pointer is set to NULL, no additional plan-time actions are taken, and the
fdw_private list delivered to BeginForeignModify will be NIL.

void
BeginForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 int eflags);

Begin executing a foreign table modification operation. This routine is called during executor startup.
It should perform any initialization needed prior to the actual table modifications. Subsequently,
ExecForeignInsert, ExecForeignUpdate or ExecForeignDelete will be called for each tuple to be
inserted, updated, or deleted.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the plan and
execution state is available via this structure. rinfo is the ResultRelInfo struct describing the target
foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to store any private state
it needs for this operation.) fdw_private contains the private data generated by PlanForeignModify, if
any. subplan_index identifies which target of the ModifyTable plan node this is. eflags contains flag
bits describing the executor's operating mode for this plan node.

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainForeignModify and EndForeignModify.

If the BeginForeignModify pointer is set to NULL, no action is taken during executor startup.

1954

Writing a Foreign Data Wrapper

TupleTableSlot *
ExecForeignInsert(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Insert one tuple into the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains the tuple to be inserted; it will
match the row-type definition of the foreign table. planSlot contains the tuple that was generated by the
ModifyTable plan node's subplan; it differs from slot in possibly containing additional “junk” columns.
(The planSlot is typically of little interest for INSERT cases, but is provided for completeness.)

The return value is either a slot containing the data that was actually inserted (this might differ from
the data supplied, for example as a result of trigger actions), or NULL if no row was actually inserted
(again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the INSERT statement has a RETURNING clause or involves a
view WITH CHECK OPTION; or if the foreign table has an AFTER ROW trigger. Triggers require all columns,
but the FDW could choose to optimize away returning some or all columns depending on the contents
of the RETURNING clause or WITH CHECK OPTION constraints. Regardless, some slot must be returned to
indicate success, or the query's reported row count will be wrong.

If the ExecForeignInsert pointer is set to NULL, attempts to insert into the foreign table will fail with
an error message.

Note that this function is also called when inserting routed tuples into a foreign-table partition or
executing COPY FROM on a foreign table, in which case it is called in a different way than it is in the
INSERT case. See the callback functions described below that allow the FDW to support that.

TupleTableSlot *
ExecForeignUpdate(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

Update one tuple in the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains the new data for the tuple; it will
match the row-type definition of the foreign table. planSlot contains the tuple that was generated by the
ModifyTable plan node's subplan; it differs from slot in possibly containing additional “junk” columns.
In particular, any junk columns that were requested by AddForeignUpdateTargets will be available from
this slot.

The return value is either a slot containing the row as it was actually updated (this might differ from
the data supplied, for example as a result of trigger actions), or NULL if no row was actually updated
(again, typically as a result of triggers). The passed-in slot can be re-used for this purpose.

The data in the returned slot is used only if the UPDATE statement has a RETURNING clause or involves a
view WITH CHECK OPTION; or if the foreign table has an AFTER ROW trigger. Triggers require all columns,
but the FDW could choose to optimize away returning some or all columns depending on the contents
of the RETURNING clause or WITH CHECK OPTION constraints. Regardless, some slot must be returned to
indicate success, or the query's reported row count will be wrong.

If the ExecForeignUpdate pointer is set to NULL, attempts to update the foreign table will fail with an
error message.

TupleTableSlot *
ExecForeignDelete(EState *estate,
 ResultRelInfo *rinfo,
 TupleTableSlot *slot,
 TupleTableSlot *planSlot);

1955

Writing a Foreign Data Wrapper

Delete one tuple from the foreign table. estate is global execution state for the query. rinfo is the
ResultRelInfo struct describing the target foreign table. slot contains nothing useful upon call,
but can be used to hold the returned tuple. planSlot contains the tuple that was generated by the
ModifyTable plan node's subplan; in particular, it will carry any junk columns that were requested by
AddForeignUpdateTargets. The junk column(s) must be used to identify the tuple to be deleted.

The return value is either a slot containing the row that was deleted, or NULL if no row was deleted
(typically as a result of triggers). The passed-in slot can be used to hold the tuple to be returned.

The data in the returned slot is used only if the DELETE query has a RETURNING clause or the foreign table
has an AFTER ROW trigger. Triggers require all columns, but the FDW could choose to optimize away
returning some or all columns depending on the contents of the RETURNING clause. Regardless, some
slot must be returned to indicate success, or the query's reported row count will be wrong.

If the ExecForeignDelete pointer is set to NULL, attempts to delete from the foreign table will fail with
an error message.

void
EndForeignModify(EState *estate,
 ResultRelInfo *rinfo);

End the table update and release resources. It is normally not important to release palloc'd memory, but
for example open files and connections to remote servers should be cleaned up.

If the EndForeignModify pointer is set to NULL, no action is taken during executor shutdown.

Tuples inserted into a partitioned table by INSERT or COPY FROM are routed to partitions. If an FDW
supports routable foreign-table partitions, it should also provide the following callback functions. These
functions are also called when COPY FROM is executed on a foreign table.

void
BeginForeignInsert(ModifyTableState *mtstate,
 ResultRelInfo *rinfo);

Begin executing an insert operation on a foreign table. This routine is called right before the first tuple
is inserted into the foreign table in both cases when it is the partition chosen for tuple routing and the
target specified in a COPY FROM command. It should perform any initialization needed prior to the actual
insertion. Subsequently, ExecForeignInsert will be called for each tuple to be inserted into the foreign
table.

mtstate is the overall state of the ModifyTable plan node being executed; global data about the plan and
execution state is available via this structure. rinfo is the ResultRelInfo struct describing the target
foreign table. (The ri_FdwState field of ResultRelInfo is available for the FDW to store any private
state it needs for this operation.)

When this is called by a COPY FROM command, the plan-related global data in mtstate is not provided
and the planSlot parameter of ExecForeignInsert subsequently called for each inserted tuple is NULL,
whether the foreign table is the partition chosen for tuple routing or the target specified in the command.

If the BeginForeignInsert pointer is set to NULL, no action is taken for the initialization.

Note that if the FDW does not support routable foreign-table partitions and/or executing COPY FROM on
foreign tables, this function or ExecForeignInsert subsequently called must throw error as needed.

void
EndForeignInsert(EState *estate,
 ResultRelInfo *rinfo);

End the insert operation and release resources. It is normally not important to release palloc'd memory,
but for example open files and connections to remote servers should be cleaned up.

1956

Writing a Foreign Data Wrapper

If the EndForeignInsert pointer is set to NULL, no action is taken for the termination.

int
IsForeignRelUpdatable(Relation rel);

Report which update operations the specified foreign table supports. The return value should be a bit
mask of rule event numbers indicating which operations are supported by the foreign table, using the
CmdType enumeration; that is, (1 << CMD_UPDATE) = 4 for UPDATE, (1 << CMD_INSERT) = 8 for INSERT,
and (1 << CMD_DELETE) = 16 for DELETE.

If the IsForeignRelUpdatable pointer is set to NULL, foreign tables are assumed to be
insertable, updatable, or deletable if the FDW provides ExecForeignInsert, ExecForeignUpdate, or
ExecForeignDelete respectively. This function is only needed if the FDW supports some tables that are
updatable and some that are not. (Even then, it's permissible to throw an error in the execution routine
instead of checking in this function. However, this function is used to determine updatability for display
in the information_schema views.)

Some inserts, updates, and deletes to foreign tables can be optimized by implementing an alternative set
of interfaces. The ordinary interfaces for inserts, updates, and deletes fetch rows from the remote server
and then modify those rows one at a time. In some cases, this row-by-row approach is necessary, but
it can be inefficient. If it is possible for the foreign server to determine which rows should be modified
without actually retrieving them, and if there are no local structures which would affect the operation
(row-level local triggers, stored generated columns, or WITH CHECK OPTION constraints from parent
views), then it is possible to arrange things so that the entire operation is performed on the remote
server. The interfaces described below make this possible.

bool
PlanDirectModify(PlannerInfo *root,
 ModifyTable *plan,
 Index resultRelation,
 int subplan_index);

Decide whether it is safe to execute a direct modification on the remote server. If so, return true
after performing planning actions needed for that. Otherwise, return false. This optional function is
called during query planning. If this function succeeds, BeginDirectModify, IterateDirectModify and
EndDirectModify will be called at the execution stage, instead. Otherwise, the table modification will
be executed using the table-updating functions described above. The parameters are the same as for
PlanForeignModify.

To execute the direct modification on the remote server, this function must rewrite the target subplan
with a ForeignScan plan node that executes the direct modification on the remote server. The operation
field of the ForeignScan must be set to the CmdType enumeration appropriately; that is, CMD_UPDATE for
UPDATE, CMD_INSERT for INSERT, and CMD_DELETE for DELETE.

See Section 52.4 for additional information.

If the PlanDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

void
BeginDirectModify(ForeignScanState *node,
 int eflags);

Prepare to execute a direct modification on the remote server. This is called during executor startup.
It should perform any initialization needed prior to the direct modification (that should be done upon
the first call to IterateDirectModify). The ForeignScanState node has already been created, but
its fdw_state field is still NULL. Information about the table to modify is accessible through the
ForeignScanState node (in particular, from the underlying ForeignScan plan node, which contains
any FDW-private information provided by PlanDirectModify). eflags contains flag bits describing the
executor's operating mode for this plan node.

1957

Writing a Foreign Data Wrapper

Note that when (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, this function should not perform any
externally-visible actions; it should only do the minimum required to make the node state valid for
ExplainDirectModify and EndDirectModify.

If the BeginDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

TupleTableSlot *
IterateDirectModify(ForeignScanState *node);

When the INSERT, UPDATE or DELETE query doesn't have a RETURNING clause, just return NULL after a
direct modification on the remote server. When the query has the clause, fetch one result containing the
data needed for the RETURNING calculation, returning it in a tuple table slot (the node's ScanTupleSlot
should be used for this purpose). The data that was actually inserted, updated or deleted must be stored
in the es_result_relation_info->ri_projectReturning->pi_exprContext->ecxt_scantuple of the
node's EState. Return NULL if no more rows are available. Note that this is called in a short-lived
memory context that will be reset between invocations. Create a memory context in BeginDirectModify
if you need longer-lived storage, or use the es_query_cxt of the node's EState.

The rows returned must match the fdw_scan_tlist target list if one was supplied, otherwise they must
match the row type of the foreign table being updated. If you choose to optimize away fetching columns
that are not needed for the RETURNING calculation, you should insert nulls in those column positions, or
else generate a fdw_scan_tlist list with those columns omitted.

Whether the query has the clause or not, the query's reported row count must be incremented by the
FDW itself. When the query doesn't have the clause, the FDW must also increment the row count for the
ForeignScanState node in the EXPLAIN ANALYZE case.

If the IterateDirectModify pointer is set to NULL, no attempts to execute a direct modification on the
remote server are taken.

void
EndDirectModify(ForeignScanState *node);

Clean up following a direct modification on the remote server. It is normally not important to release
palloc'd memory, but for example open files and connections to the remote server should be cleaned up.

If the EndDirectModify pointer is set to NULL, no attempts to execute a direct modification on the remote
server are taken.

52.2.5. FDW Routines for Row Locking
If an FDW wishes to support late row locking (as described in Section 52.5), it must provide the following
callback functions:

RowMarkType
GetForeignRowMarkType(RangeTblEntry *rte,
 LockClauseStrength strength);

Report which row-marking option to use for a foreign table. rte is the RangeTblEntry node for the table
and strength describes the lock strength requested by the relevant FOR UPDATE/SHARE clause, if any.
The result must be a member of the RowMarkType enum type.

This function is called during query planning for each foreign table that appears in an UPDATE, DELETE,
or SELECT FOR UPDATE/SHARE query and is not the target of UPDATE or DELETE.

If the GetForeignRowMarkType pointer is set to NULL, the ROW_MARK_COPY option is always used. (This
implies that RefetchForeignRow will never be called, so it need not be provided either.)

See Section 52.5 for more information.

1958

Writing a Foreign Data Wrapper

void
RefetchForeignRow(EState *estate,
 ExecRowMark *erm,
 Datum rowid,
 TupleTableSlot *slot,
 bool *updated);

Re-fetch one tuple slot from the foreign table, after locking it if required. estate is global execution
state for the query. erm is the ExecRowMark struct describing the target foreign table and the row lock
type (if any) to acquire. rowid identifies the tuple to be fetched. slot contains nothing useful upon call,
but can be used to hold the returned tuple. updated is an output parameter.

This function should store the tuple into the provided slot, or clear it if the row lock couldn't be obtained.
The row lock type to acquire is defined by erm->markType, which is the value previously returned by
GetForeignRowMarkType. (ROW_MARK_REFERENCE means to just re-fetch the tuple without acquiring any
lock, and ROW_MARK_COPY will never be seen by this routine.)

In addition, *updated should be set to true if what was fetched was an updated version of the tuple rather
than the same version previously obtained. (If the FDW cannot be sure about this, always returning true
is recommended.)

Note that by default, failure to acquire a row lock should result in raising an error; returning with an
empty slot is only appropriate if the SKIP LOCKED option is specified by erm->waitPolicy.

The rowid is the ctid value previously read for the row to be re-fetched. Although the rowid value is
passed as a Datum, it can currently only be a tid. The function API is chosen in hopes that it may be
possible to allow other data types for row IDs in future.

If the RefetchForeignRow pointer is set to NULL, attempts to re-fetch rows will fail with an error message.

See Section 52.5 for more information.

bool
RecheckForeignScan(ForeignScanState *node,
 TupleTableSlot *slot);

Recheck that a previously-returned tuple still matches the relevant scan and join qualifiers, and possibly
provide a modified version of the tuple. For foreign data wrappers which do not perform join pushdown,
it will typically be more convenient to set this to NULL and instead set fdw_recheck_quals appropriately.
When outer joins are pushed down, however, it isn't sufficient to reapply the checks relevant to all
the base tables to the result tuple, even if all needed attributes are present, because failure to match
some qualifier might result in some attributes going to NULL, rather than in no tuple being returned.
RecheckForeignScan can recheck qualifiers and return true if they are still satisfied and false otherwise,
but it can also store a replacement tuple into the supplied slot.

To implement join pushdown, a foreign data wrapper will typically construct an alternative local join plan
which is used only for rechecks; this will become the outer subplan of the ForeignScan. When a recheck
is required, this subplan can be executed and the resulting tuple can be stored in the slot. This plan need
not be efficient since no base table will return more than one row; for example, it may implement all joins
as nested loops. The function GetExistingLocalJoinPath may be used to search existing paths for a
suitable local join path, which can be used as the alternative local join plan. GetExistingLocalJoinPath
searches for an unparameterized path in the path list of the specified join relation. (If it does not find
such a path, it returns NULL, in which case a foreign data wrapper may build the local path by itself or
may choose not to create access paths for that join.)

52.2.6. FDW Routines for EXPLAIN
void
ExplainForeignScan(ForeignScanState *node,
 ExplainState *es);

1959

Writing a Foreign Data Wrapper

Print additional EXPLAIN output for a foreign table scan. This function can call ExplainPropertyText
and related functions to add fields to the EXPLAIN output. The flag fields in es can be used to determine
what to print, and the state of the ForeignScanState node can be inspected to provide run-time statistics
in the EXPLAIN ANALYZE case.

If the ExplainForeignScan pointer is set to NULL, no additional information is printed during EXPLAIN.

void
ExplainForeignModify(ModifyTableState *mtstate,
 ResultRelInfo *rinfo,
 List *fdw_private,
 int subplan_index,
 struct ExplainState *es);

Print additional EXPLAIN output for a foreign table update. This function can call ExplainPropertyText
and related functions to add fields to the EXPLAIN output. The flag fields in es can be used to determine
what to print, and the state of the ModifyTableState node can be inspected to provide run-time statistics
in the EXPLAIN ANALYZE case. The first four arguments are the same as for BeginForeignModify.

If the ExplainForeignModify pointer is set to NULL, no additional information is printed during EXPLAIN.

void
ExplainDirectModify(ForeignScanState *node,
 ExplainState *es);

Print additional EXPLAIN output for a direct modification on the remote server. This function can call
ExplainPropertyText and related functions to add fields to the EXPLAIN output. The flag fields in es
can be used to determine what to print, and the state of the ForeignScanState node can be inspected
to provide run-time statistics in the EXPLAIN ANALYZE case.

If the ExplainDirectModify pointer is set to NULL, no additional information is printed during EXPLAIN.

52.2.7. FDW Routines for ANALYZE
bool
AnalyzeForeignTable(Relation relation,
 AcquireSampleRowsFunc *func,
 BlockNumber *totalpages);

This function is called when ANALYZE is executed on a foreign table. If the FDW can collect statistics
for this foreign table, it should return true, and provide a pointer to a function that will collect sample
rows from the table in func, plus the estimated size of the table in pages in totalpages. Otherwise,
return false.

If the FDW does not support collecting statistics for any tables, the AnalyzeForeignTable pointer can
be set to NULL.

If provided, the sample collection function must have the signature

int
AcquireSampleRowsFunc(Relation relation,
 int elevel,
 HeapTuple *rows,
 int targrows,
 double *totalrows,
 double *totaldeadrows);

A random sample of up to targrows rows should be collected from the table and stored into the caller-
provided rows array. The actual number of rows collected must be returned. In addition, store estimates
of the total numbers of live and dead rows in the table into the output parameters totalrows and
totaldeadrows. (Set totaldeadrows to zero if the FDW does not have any concept of dead rows.)

1960

Writing a Foreign Data Wrapper

52.2.8. FDW Routines for IMPORT FOREIGN SCHEMA
List *
ImportForeignSchema(ImportForeignSchemaStmt *stmt, Oid serverOid);

Obtain a list of foreign table creation commands. This function is called when executing IMPORT
FOREIGN SCHEMA, and is passed the parse tree for that statement, as well as the OID of the foreign
server to use. It should return a list of C strings, each of which must contain a CREATE FOREIGN TABLE
command. These strings will be parsed and executed by the core server.

Within the ImportForeignSchemaStmt struct, remote_schema is the name of the remote schema from
which tables are to be imported. list_type identifies how to filter table names: FDW_IMPORT_SCHEMA_ALL
means that all tables in the remote schema should be imported (in this case table_list is
empty), FDW_IMPORT_SCHEMA_LIMIT_TO means to include only tables listed in table_list, and
FDW_IMPORT_SCHEMA_EXCEPT means to exclude the tables listed in table_list. options is a list of options
used for the import process. The meanings of the options are up to the FDW. For example, an FDW could
use an option to define whether the NOT NULL attributes of columns should be imported. These options
need not have anything to do with those supported by the FDW as database object options.

The FDW may ignore the local_schema field of the ImportForeignSchemaStmt, because the core server
will automatically insert that name into the parsed CREATE FOREIGN TABLE commands.

The FDW does not have to concern itself with implementing the filtering specified by list_type and
table_list, either, as the core server will automatically skip any returned commands for tables excluded
according to those options. However, it's often useful to avoid the work of creating commands for
excluded tables in the first place. The function IsImportableForeignTable() may be useful to test
whether a given foreign-table name will pass the filter.

If the FDW does not support importing table definitions, the ImportForeignSchema pointer can be set
to NULL.

52.2.9. FDW Routines for Parallel Execution
A ForeignScan node can, optionally, support parallel execution. A parallel ForeignScan will be executed
in multiple processes and must return each row exactly once across all cooperating processes. To do this,
processes can coordinate through fixed-size chunks of dynamic shared memory. This shared memory is
not guaranteed to be mapped at the same address in every process, so it must not contain pointers. The
following functions are all optional, but most are required if parallel execution is to be supported.

bool
IsForeignScanParallelSafe(PlannerInfo *root, RelOptInfo *rel,
 RangeTblEntry *rte);

Test whether a scan can be performed within a parallel worker. This function will only be called when
the planner believes that a parallel plan might be possible, and should return true if it is safe for that
scan to run within a parallel worker. This will generally not be the case if the remote data source has
transaction semantics, unless the worker's connection to the data can somehow be made to share the
same transaction context as the leader.

If this function is not defined, it is assumed that the scan must take place within the parallel leader.
Note that returning true does not mean that the scan itself can be done in parallel, only that the scan
can be performed within a parallel worker. Therefore, it can be useful to define this method even when
parallel execution is not supported.

Size
EstimateDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may be
higher than the amount that will actually be used, but it must not be lower. The return value is in bytes.
This function is optional, and can be omitted if not needed; but if it is omitted, the next three functions
must be omitted as well, because no shared memory will be allocated for the FDW's use.

1961

Writing a Foreign Data Wrapper

void
InitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points to
a shared memory area of size equal to the return value of EstimateDSMForeignScan. This function is
optional, and can be omitted if not needed.

void
ReInitializeDSMForeignScan(ForeignScanState *node, ParallelContext *pcxt,
 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the foreign-scan plan node
is about to be re-scanned. This function is optional, and can be omitted if not needed. Recommended
practice is that this function reset only shared state, while the ReScanForeignScan function resets only
local state. Currently, this function will be called before ReScanForeignScan, but it's best not to rely
on that ordering.

void
InitializeWorkerForeignScan(ForeignScanState *node, shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during
InitializeDSMForeignScan. This function is optional, and can be omitted if not needed.

void
ShutdownForeignScan(ForeignScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called
in all cases; sometimes, EndForeignScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, foreign
data wrappers that wish to take some action before the DSM segment goes away should implement this
method.

52.2.10. FDW Routines for Reparameterization of Paths
List *
ReparameterizeForeignPathByChild(PlannerInfo *root, List *fdw_private,
 RelOptInfo *child_rel);

This function is called while converting a path parameterized by the top-most parent of the
given child relation child_rel to be parameterized by the child relation. The function is used to
reparameterize any paths or translate any expression nodes saved in the given fdw_private member
of a ForeignPath. The callback may use reparameterize_path_by_child, adjust_appendrel_attrs or
adjust_appendrel_attrs_multilevel as required.

52.3. Foreign Data Wrapper Helper Functions
Several helper functions are exported from the core server so that authors of foreign data wrappers can
get easy access to attributes of FDW-related objects, such as FDW options. To use any of these functions,
you need to include the header file foreign/foreign.h in your source file. That header also defines the
struct types that are returned by these functions.

ForeignDataWrapper *
GetForeignDataWrapperExtended(Oid fdwid, bits16 flags);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID. A
ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for details). flags
is a bitwise-or'd bit mask indicating an extra set of options. It can take the value FDW_MISSING_OK, in
which case a NULL result is returned to the caller instead of an error for an undefined object.

ForeignDataWrapper *

1962

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/foreign/foreign.h;hb=HEAD

Writing a Foreign Data Wrapper

GetForeignDataWrapper(Oid fdwid);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given OID. A
ForeignDataWrapper object contains properties of the FDW (see foreign/foreign.h for details).

ForeignServer *
GetForeignServerExtended(Oid serverid, bits16 flags);

This function returns a ForeignServer object for the foreign server with the given OID. A ForeignServer
object contains properties of the server (see foreign/foreign.h for details). flags is a bitwise-or'd bit
mask indicating an extra set of options. It can take the value FSV_MISSING_OK, in which case a NULL
result is returned to the caller instead of an error for an undefined object.

ForeignServer *
GetForeignServer(Oid serverid);

This function returns a ForeignServer object for the foreign server with the given OID. A ForeignServer
object contains properties of the server (see foreign/foreign.h for details).

UserMapping *
GetUserMapping(Oid userid, Oid serverid);

This function returns a UserMapping object for the user mapping of the given role on the given server.
(If there is no mapping for the specific user, it will return the mapping for PUBLIC, or throw error if
there is none.) A UserMapping object contains properties of the user mapping (see foreign/foreign.h
for details).

ForeignTable *
GetForeignTable(Oid relid);

This function returns a ForeignTable object for the foreign table with the given OID. A ForeignTable
object contains properties of the foreign table (see foreign/foreign.h for details).

List *
GetForeignColumnOptions(Oid relid, AttrNumber attnum);

This function returns the per-column FDW options for the column with the given foreign table OID and
attribute number, in the form of a list of DefElem. NIL is returned if the column has no options.

Some object types have name-based lookup functions in addition to the OID-based ones:

ForeignDataWrapper *
GetForeignDataWrapperByName(const char *name, bool missing_ok);

This function returns a ForeignDataWrapper object for the foreign-data wrapper with the given name.
If the wrapper is not found, return NULL if missing_ok is true, otherwise raise an error.

ForeignServer *
GetForeignServerByName(const char *name, bool missing_ok);

This function returns a ForeignServer object for the foreign server with the given name. If the server
is not found, return NULL if missing_ok is true, otherwise raise an error.

52.4. Foreign Data Wrapper Query Planning
The FDW callback functions GetForeignRelSize, GetForeignPaths, GetForeignPlan,
PlanForeignModify, GetForeignJoinPaths, GetForeignUpperPaths, and PlanDirectModify must fit
into the workings of the Postgres Pro planner. Here are some notes about what they must do.

The information in root and baserel can be used to reduce the amount of information that has to
be fetched from the foreign table (and therefore reduce the cost). baserel->baserestrictinfo is
particularly interesting, as it contains restriction quals (WHERE clauses) that should be used to filter the

1963

Writing a Foreign Data Wrapper

rows to be fetched. (The FDW itself is not required to enforce these quals, as the core executor can
check them instead.) baserel->reltarget->exprs can be used to determine which columns need to be
fetched; but note that it only lists columns that have to be emitted by the ForeignScan plan node, not
columns that are used in qual evaluation but not output by the query.

Various private fields are available for the FDW planning functions to keep information in. Generally,
whatever you store in FDW private fields should be palloc'd, so that it will be reclaimed at the end of
planning.

baserel->fdw_private is a void pointer that is available for FDW planning functions to store
information relevant to the particular foreign table. The core planner does not touch it except to initialize
it to NULL when the RelOptInfo node is created. It is useful for passing information forward from
GetForeignRelSize to GetForeignPaths and/or GetForeignPaths to GetForeignPlan, thereby avoiding
recalculation.

GetForeignPaths can identify the meaning of different access paths by storing private information in
the fdw_private field of ForeignPath nodes. fdw_private is declared as a List pointer, but could
actually contain anything since the core planner does not touch it. However, best practice is to use
a representation that's dumpable by nodeToString, for use with debugging support available in the
backend.

GetForeignPlan can examine the fdw_private field of the selected ForeignPath node, and can generate
fdw_exprs and fdw_private lists to be placed in the ForeignScan plan node, where they will be available
at execution time. Both of these lists must be represented in a form that copyObject knows how to copy.
The fdw_private list has no other restrictions and is not interpreted by the core backend in any way.
The fdw_exprs list, if not NIL, is expected to contain expression trees that are intended to be executed
at run time. These trees will undergo post-processing by the planner to make them fully executable.

In GetForeignPlan, generally the passed-in target list can be copied into the plan node as-is. The passed
scan_clauses list contains the same clauses as baserel->baserestrictinfo, but may be re-ordered
for better execution efficiency. In simple cases the FDW can just strip RestrictInfo nodes from the
scan_clauses list (using extract_actual_clauses) and put all the clauses into the plan node's qual list,
which means that all the clauses will be checked by the executor at run time. More complex FDWs may
be able to check some of the clauses internally, in which case those clauses can be removed from the
plan node's qual list so that the executor doesn't waste time rechecking them.

As an example, the FDW might identify some restriction clauses of the form foreign_variable
= sub_expression, which it determines can be executed on the remote server given the locally-
evaluated value of the sub_expression. The actual identification of such a clause should happen during
GetForeignPaths, since it would affect the cost estimate for the path. The path's fdw_private field
would probably include a pointer to the identified clause's RestrictInfo node. Then GetForeignPlan
would remove that clause from scan_clauses, but add the sub_expression to fdw_exprs to ensure that
it gets massaged into executable form. It would probably also put control information into the plan node's
fdw_private field to tell the execution functions what to do at run time. The query transmitted to the
remote server would involve something like WHERE foreign_variable = $1, with the parameter value
obtained at run time from evaluation of the fdw_exprs expression tree.

Any clauses removed from the plan node's qual list must instead be added to fdw_recheck_quals or
rechecked by RecheckForeignScan in order to ensure correct behavior at the READ COMMITTED isolation
level. When a concurrent update occurs for some other table involved in the query, the executor may
need to verify that all of the original quals are still satisfied for the tuple, possibly against a different
set of parameter values. Using fdw_recheck_quals is typically easier than implementing checks inside
RecheckForeignScan, but this method will be insufficient when outer joins have been pushed down,
since the join tuples in that case might have some fields go to NULL without rejecting the tuple entirely.

Another ForeignScan field that can be filled by FDWs is fdw_scan_tlist, which describes the tuples
returned by the FDW for this plan node. For simple foreign table scans this can be set to NIL, implying
that the returned tuples have the row type declared for the foreign table. A non-NIL value must be a

1964

Writing a Foreign Data Wrapper

target list (list of TargetEntrys) containing Vars and/or expressions representing the returned columns.
This might be used, for example, to show that the FDW has omitted some columns that it noticed won't
be needed for the query. Also, if the FDW can compute expressions used by the query more cheaply than
can be done locally, it could add those expressions to fdw_scan_tlist. Note that join plans (created
from paths made by GetForeignJoinPaths) must always supply fdw_scan_tlist to describe the set of
columns they will return.

The FDW should always construct at least one path that depends only on the table's restriction clauses.
In join queries, it might also choose to construct path(s) that depend on join clauses, for example
foreign_variable = local_variable. Such clauses will not be found in baserel->baserestrictinfo
but must be sought in the relation's join lists. A path using such a clause is called a “parameterized path”.
It must identify the other relations used in the selected join clause(s) with a suitable value of param_info;
use get_baserel_parampathinfo to compute that value. In GetForeignPlan, the local_variable
portion of the join clause would be added to fdw_exprs, and then at run time the case works the same
as for an ordinary restriction clause.

If an FDW supports remote joins, GetForeignJoinPaths should produce ForeignPaths for potential
remote joins in much the same way as GetForeignPaths works for base tables. Information about the
intended join can be passed forward to GetForeignPlan in the same ways described above. However,
baserestrictinfo is not relevant for join relations; instead, the relevant join clauses for a particular
join are passed to GetForeignJoinPaths as a separate parameter (extra->restrictlist).

An FDW might additionally support direct execution of some plan actions that are above the level of scans
and joins, such as grouping or aggregation. To offer such options, the FDW should generate paths and
insert them into the appropriate upper relation. For example, a path representing remote aggregation
should be inserted into the UPPERREL_GROUP_AGG relation, using add_path. This path will be compared
on a cost basis with local aggregation performed by reading a simple scan path for the foreign relation
(note that such a path must also be supplied, else there will be an error at plan time). If the remote-
aggregation path wins, which it usually would, it will be converted into a plan in the usual way, by calling
GetForeignPlan. The recommended place to generate such paths is in the GetForeignUpperPaths
callback function, which is called for each upper relation (i.e., each post-scan/join processing step), if
all the base relations of the query come from the same FDW.

PlanForeignModify and the other callbacks described in Section 52.2.4 are designed around the
assumption that the foreign relation will be scanned in the usual way and then individual row updates
will be driven by a local ModifyTable plan node. This approach is necessary for the general case where
an update requires reading local tables as well as foreign tables. However, if the operation could be
executed entirely by the foreign server, the FDW could generate a path representing that and insert it
into the UPPERREL_FINAL upper relation, where it would compete against the ModifyTable approach.
This approach could also be used to implement remote SELECT FOR UPDATE, rather than using the row
locking callbacks described in Section 52.2.5. Keep in mind that a path inserted into UPPERREL_FINAL is
responsible for implementing all behavior of the query.

When planning an UPDATE or DELETE, PlanForeignModify and PlanDirectModify can look up the
RelOptInfo struct for the foreign table and make use of the baserel->fdw_private data previously
created by the scan-planning functions. However, in INSERT the target table is not scanned so there
is no RelOptInfo for it. The List returned by PlanForeignModify has the same restrictions as the
fdw_private list of a ForeignScan plan node, that is it must contain only structures that copyObject
knows how to copy.

INSERT with an ON CONFLICT clause does not support specifying the conflict target, as unique constraints
or exclusion constraints on remote tables are not locally known. This in turn implies that ON CONFLICT
DO UPDATE is not supported, since the specification is mandatory there.

52.5. Row Locking in Foreign Data Wrappers
If an FDW's underlying storage mechanism has a concept of locking individual rows to prevent
concurrent updates of those rows, it is usually worthwhile for the FDW to perform row-level locking with

1965

Writing a Foreign Data Wrapper

as close an approximation as practical to the semantics used in ordinary Postgres Pro tables. There are
multiple considerations involved in this.

One key decision to be made is whether to perform early locking or late locking. In early locking, a row
is locked when it is first retrieved from the underlying store, while in late locking, the row is locked only
when it is known that it needs to be locked. (The difference arises because some rows may be discarded
by locally-checked restriction or join conditions.) Early locking is much simpler and avoids extra round
trips to a remote store, but it can cause locking of rows that need not have been locked, resulting in
reduced concurrency or even unexpected deadlocks. Also, late locking is only possible if the row to be
locked can be uniquely re-identified later. Preferably the row identifier should identify a specific version
of the row, as Postgres Pro TIDs do.

By default, Postgres Pro ignores locking considerations when interfacing to FDWs, but an FDW can
perform early locking without any explicit support from the core code. The API functions described in
Section 52.2.5, which were added in Postgres Pro 9.5, allow an FDW to use late locking if it wishes.

An additional consideration is that in READ COMMITTED isolation mode, Postgres Pro may need to re-
check restriction and join conditions against an updated version of some target tuple. Rechecking join
conditions requires re-obtaining copies of the non-target rows that were previously joined to the target
tuple. When working with standard Postgres Pro tables, this is done by including the TIDs of the non-
target tables in the column list projected through the join, and then re-fetching non-target rows when
required. This approach keeps the join data set compact, but it requires inexpensive re-fetch capability,
as well as a TID that can uniquely identify the row version to be re-fetched. By default, therefore,
the approach used with foreign tables is to include a copy of the entire row fetched from a foreign
table in the column list projected through the join. This puts no special demands on the FDW but can
result in reduced performance of merge and hash joins. An FDW that is capable of meeting the re-fetch
requirements can choose to do it the first way.

For an UPDATE or DELETE on a foreign table, it is recommended that the ForeignScan operation on the
target table perform early locking on the rows that it fetches, perhaps via the equivalent of SELECT FOR
UPDATE. An FDW can detect whether a table is an UPDATE/DELETE target at plan time by comparing its relid
to root->parse->resultRelation, or at execution time by using ExecRelationIsTargetRelation(). An
alternative possibility is to perform late locking within the ExecForeignUpdate or ExecForeignDelete
callback, but no special support is provided for this.

For foreign tables that are specified to be locked by a SELECT FOR UPDATE/SHARE command,
the ForeignScan operation can again perform early locking by fetching tuples with the equivalent
of SELECT FOR UPDATE/SHARE. To perform late locking instead, provide the callback functions
defined in Section 52.2.5. In GetForeignRowMarkType, select rowmark option ROW_MARK_EXCLUSIVE,
ROW_MARK_NOKEYEXCLUSIVE, ROW_MARK_SHARE, or ROW_MARK_KEYSHARE depending on the requested lock
strength. (The core code will act the same regardless of which of these four options you choose.)
Elsewhere, you can detect whether a foreign table was specified to be locked by this type of command
by using get_plan_rowmark at plan time, or ExecFindRowMark at execution time; you must check not
only whether a non-null rowmark struct is returned, but that its strength field is not LCS_NONE.

Lastly, for foreign tables that are used in an UPDATE, DELETE or SELECT FOR UPDATE/SHARE command but
are not specified to be row-locked, you can override the default choice to copy entire rows by having
GetForeignRowMarkType select option ROW_MARK_REFERENCE when it sees lock strength LCS_NONE. This
will cause RefetchForeignRow to be called with that value for markType; it should then re-fetch the row
without acquiring any new lock. (If you have a GetForeignRowMarkType function but don't wish to re-
fetch unlocked rows, select option ROW_MARK_COPY for LCS_NONE.)

1966

Chapter 53. Writing a Table Sampling
Method

Postgres Pro's implementation of the TABLESAMPLE clause supports custom table sampling methods, in
addition to the BERNOULLI and SYSTEM methods that are required by the SQL standard. The sampling
method determines which rows of the table will be selected when the TABLESAMPLE clause is used.

At the SQL level, a table sampling method is represented by a single SQL function, typically implemented
in C, having the signature

method_name(internal) RETURNS tsm_handler

The name of the function is the same method name appearing in the TABLESAMPLE clause. The internal
argument is a dummy (always having value zero) that simply serves to prevent this function from
being called directly from a SQL command. The result of the function must be a palloc'd struct of
type TsmRoutine, which contains pointers to support functions for the sampling method. These support
functions are plain C functions and are not visible or callable at the SQL level. The support functions
are described in Section 53.1.

In addition to function pointers, the TsmRoutine struct must provide these additional fields:

List *parameterTypes

This is an OID list containing the data type OIDs of the parameter(s) that will be accepted by the
TABLESAMPLE clause when this sampling method is used. For example, for the built-in methods, this
list contains a single item with value FLOAT4OID, which represents the sampling percentage. Custom
sampling methods can have more or different parameters.

bool repeatable_across_queries

If true, the sampling method can deliver identical samples across successive queries, if the same
parameters and REPEATABLE seed value are supplied each time and the table contents have not
changed. When this is false, the REPEATABLE clause is not accepted for use with the sampling
method.

bool repeatable_across_scans

If true, the sampling method can deliver identical samples across successive scans in the same query
(assuming unchanging parameters, seed value, and snapshot). When this is false, the planner will
not select plans that would require scanning the sampled table more than once, since that might
result in inconsistent query output.

The table sampling methods included in the standard distribution are good references when trying to
write your own. Look into the contrib subdirectory for add-on methods.

53.1. Sampling Method Support Functions
The TSM handler function returns a palloc'd TsmRoutine struct containing pointers to the support
functions described below. Most of the functions are required, but some are optional, and those pointers
can be NULL.

void
SampleScanGetSampleSize (PlannerInfo *root,
 RelOptInfo *baserel,
 List *paramexprs,
 BlockNumber *pages,
 double *tuples);

This function is called during planning. It must estimate the number of relation pages that will be read
during a sample scan, and the number of tuples that will be selected by the scan. (For example, these

1967

Writing a Table Sampling Method

might be determined by estimating the sampling fraction, and then multiplying the baserel->pages and
baserel->tuples numbers by that, being sure to round the results to integral values.) The paramexprs
list holds the expression(s) that are parameters to the TABLESAMPLE clause. It is recommended to use
estimate_expression_value() to try to reduce these expressions to constants, if their values are
needed for estimation purposes; but the function must provide size estimates even if they cannot be
reduced, and it should not fail even if the values appear invalid (remember that they're only estimates
of what the run-time values will be). The pages and tuples parameters are outputs.

void
InitSampleScan (SampleScanState *node,
 int eflags);

Initialize for execution of a SampleScan plan node. This is called during executor startup. It should
perform any initialization needed before processing can start. The SampleScanState node has already
been created, but its tsm_state field is NULL. The InitSampleScan function can palloc whatever internal
state data is needed by the sampling method, and store a pointer to it in node->tsm_state. Information
about the table to scan is accessible through other fields of the SampleScanState node (but note that the
node->ss.ss_currentScanDesc scan descriptor is not set up yet). eflags contains flag bits describing
the executor's operating mode for this plan node.

When (eflags & EXEC_FLAG_EXPLAIN_ONLY) is true, the scan will not actually be performed, so
this function should only do the minimum required to make the node state valid for EXPLAIN and
EndSampleScan.

This function can be omitted (set the pointer to NULL), in which case BeginSampleScan must perform
all initialization needed by the sampling method.

void
BeginSampleScan (SampleScanState *node,
 Datum *params,
 int nparams,
 uint32 seed);

Begin execution of a sampling scan. This is called just before the first attempt to fetch a tuple, and may be
called again if the scan needs to be restarted. Information about the table to scan is accessible through
fields of the SampleScanState node (but note that the node->ss.ss_currentScanDesc scan descriptor
is not set up yet). The params array, of length nparams, contains the values of the parameters supplied
in the TABLESAMPLE clause. These will have the number and types specified in the sampling method's
parameterTypes list, and have been checked to not be null. seed contains a seed to use for any random
numbers generated within the sampling method; it is either a hash derived from the REPEATABLE value
if one was given, or the result of random() if not.

This function may adjust the fields node->use_bulkread and node->use_pagemode. If node-
>use_bulkread is true, which it is by default, the scan will use a buffer access strategy that encourages
recycling buffers after use. It might be reasonable to set this to false if the scan will visit only a small
fraction of the table's pages. If node->use_pagemode is true, which it is by default, the scan will perform
visibility checking in a single pass for all tuples on each visited page. It might be reasonable to set this
to false if the scan will select only a small fraction of the tuples on each visited page. That will result
in fewer tuple visibility checks being performed, though each one will be more expensive because it will
require more locking.

If the sampling method is marked repeatable_across_scans, it must be able to select the same set of
tuples during a rescan as it did originally, that is a fresh call of BeginSampleScan must lead to selecting
the same tuples as before (if the TABLESAMPLE parameters and seed don't change).

BlockNumber
NextSampleBlock (SampleScanState *node, BlockNumber nblocks);

Returns the block number of the next page to be scanned, or InvalidBlockNumber if no pages remain
to be scanned.

1968

Writing a Table Sampling Method

This function can be omitted (set the pointer to NULL), in which case the core code will perform a
sequential scan of the entire relation. Such a scan can use synchronized scanning, so that the sampling
method cannot assume that the relation pages are visited in the same order on each scan.

OffsetNumber
NextSampleTuple (SampleScanState *node,
 BlockNumber blockno,
 OffsetNumber maxoffset);

Returns the offset number of the next tuple to be sampled on the specified page, or InvalidOffsetNumber
if no tuples remain to be sampled. maxoffset is the largest offset number in use on the page.

Note
NextSampleTuple is not explicitly told which of the offset numbers in the range 1 .. maxoffset
actually contain valid tuples. This is not normally a problem since the core code ignores requests
to sample missing or invisible tuples; that should not result in any bias in the sample. However, if
necessary, the function can use node->donetuples to examine how many of the tuples it returned
were valid and visible.

Note
NextSampleTuple must not assume that blockno is the same page number returned by the most
recent NextSampleBlock call. It was returned by some previous NextSampleBlock call, but the
core code is allowed to call NextSampleBlock in advance of actually scanning pages, so as to
support prefetching. It is OK to assume that once sampling of a given page begins, successive
NextSampleTuple calls all refer to the same page until InvalidOffsetNumber is returned.

void
EndSampleScan (SampleScanState *node);

End the scan and release resources. It is normally not important to release palloc'd memory, but any
externally-visible resources should be cleaned up. This function can be omitted (set the pointer to NULL)
in the common case where no such resources exist.

1969

Chapter 54. Writing a Custom Scan Provider
Postgres Pro supports a set of experimental facilities which are intended to allow extension modules to
add new scan types to the system. Unlike a foreign data wrapper, which is only responsible for knowing
how to scan its own foreign tables, a custom scan provider can provide an alternative method of scanning
any relation in the system. Typically, the motivation for writing a custom scan provider will be to allow the
use of some optimization not supported by the core system, such as caching or some form of hardware
acceleration. This chapter outlines how to write a new custom scan provider.

Implementing a new type of custom scan is a three-step process. First, during planning, it is necessary
to generate access paths representing a scan using the proposed strategy. Second, if one of those access
paths is selected by the planner as the optimal strategy for scanning a particular relation, the access
path must be converted to a plan. Finally, it must be possible to execute the plan and generate the same
results that would have been generated for any other access path targeting the same relation.

54.1. Creating Custom Scan Paths
A custom scan provider will typically add paths for a base relation by setting the following hook, which
is called after the core code has generated all the access paths it can for the relation (except for Gather
paths, which are made after this call so that they can use partial paths added by the hook):
typedef void (*set_rel_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *rel,
 Index rti,
 RangeTblEntry *rte);
extern PGDLLIMPORT set_rel_pathlist_hook_type set_rel_pathlist_hook;

Although this hook function can be used to examine, modify, or remove paths generated by the core
system, a custom scan provider will typically confine itself to generating CustomPath objects and adding
them to rel using add_path. The custom scan provider is responsible for initializing the CustomPath
object, which is declared like this:
typedef struct CustomPath
{
 Path path;
 uint32 flags;
 List *custom_paths;
 List *custom_private;
 const CustomPathMethods *methods;
} CustomPath;

path must be initialized as for any other path, including the row-count estimate, start and
total cost, and sort ordering provided by this path. flags is a bit mask, which should
include CUSTOMPATH_SUPPORT_BACKWARD_SCAN if the custom path can support a backward scan and
CUSTOMPATH_SUPPORT_MARK_RESTORE if it can support mark and restore. Both capabilities are optional.
An optional custom_paths is a list of Path nodes used by this custom-path node; these will be transformed
into Plan nodes by planner. custom_private can be used to store the custom path's private data. Private
data should be stored in a form that can be handled by nodeToString, so that debugging routines that
attempt to print the custom path will work as designed. methods must point to a (usually statically
allocated) object implementing the required custom path methods, of which there is currently only one.

A custom scan provider can also provide join paths. Just as for base relations, such a path must produce
the same output as would normally be produced by the join it replaces. To do this, the join provider should
set the following hook, and then within the hook function, create CustomPath path(s) for the join relation.
typedef void (*set_join_pathlist_hook_type) (PlannerInfo *root,
 RelOptInfo *joinrel,
 RelOptInfo *outerrel,
 RelOptInfo *innerrel,
 JoinType jointype,

1970

Writing a Custom Scan Provider

 JoinPathExtraData *extra);
extern PGDLLIMPORT set_join_pathlist_hook_type set_join_pathlist_hook;

This hook will be invoked repeatedly for the same join relation, with different combinations of inner and
outer relations; it is the responsibility of the hook to minimize duplicated work.

54.1.1. Custom Scan Path Callbacks
Plan *(*PlanCustomPath) (PlannerInfo *root,
 RelOptInfo *rel,
 CustomPath *best_path,
 List *tlist,
 List *clauses,
 List *custom_plans);

Convert a custom path to a finished plan. The return value will generally be a CustomScan object, which
the callback must allocate and initialize. See Section 54.2 for more details.

54.2. Creating Custom Scan Plans
A custom scan is represented in a finished plan tree using the following structure:
typedef struct CustomScan
{
 Scan scan;
 uint32 flags;
 List *custom_plans;
 List *custom_exprs;
 List *custom_private;
 List *custom_scan_tlist;
 Bitmapset *custom_relids;
 const CustomScanMethods *methods;
} CustomScan;

scan must be initialized as for any other scan, including estimated costs, target lists, qualifications, and
so on. flags is a bit mask with the same meaning as in CustomPath. custom_plans can be used to store
child Plan nodes. custom_exprs should be used to store expression trees that will need to be fixed up
by setrefs.c and subselect.c, while custom_private should be used to store other private data that
is only used by the custom scan provider itself. custom_scan_tlist can be NIL when scanning a base
relation, indicating that the custom scan returns scan tuples that match the base relation's row type.
Otherwise it is a target list describing the actual scan tuples. custom_scan_tlist must be provided for
joins, and could be provided for scans if the custom scan provider can compute some non-Var expressions.
custom_relids is set by the core code to the set of relations (range table indexes) that this scan node
handles; except when this scan is replacing a join, it will have only one member. methods must point to a
(usually statically allocated) object implementing the required custom scan methods, which are further
detailed below.

When a CustomScan scans a single relation, scan.scanrelid must be the range table index of the table
to be scanned. When it replaces a join, scan.scanrelid should be zero.

Plan trees must be able to be duplicated using copyObject, so all the data stored within the “custom”
fields must consist of nodes that that function can handle. Furthermore, custom scan providers cannot
substitute a larger structure that embeds a CustomScan for the structure itself, as would be possible for
a CustomPath or CustomScanState.

54.2.1. Custom Scan Plan Callbacks
Node *(*CreateCustomScanState) (CustomScan *cscan);

Allocate a CustomScanState for this CustomScan. The actual allocation will often be larger than required
for an ordinary CustomScanState, because many providers will wish to embed that as the first field of

1971

Writing a Custom Scan Provider

a larger structure. The value returned must have the node tag and methods set appropriately, but other
fields should be left as zeroes at this stage; after ExecInitCustomScan performs basic initialization, the
BeginCustomScan callback will be invoked to give the custom scan provider a chance to do whatever
else is needed.

54.3. Executing Custom Scans
When a CustomScan is executed, its execution state is represented by a CustomScanState, which is
declared as follows:
typedef struct CustomScanState
{
 ScanState ss;
 uint32 flags;
 const CustomExecMethods *methods;
} CustomScanState;

ss is initialized as for any other scan state, except that if the scan is for a join rather than a base relation,
ss.ss_currentRelation is left NULL. flags is a bit mask with the same meaning as in CustomPath
and CustomScan. methods must point to a (usually statically allocated) object implementing the required
custom scan state methods, which are further detailed below. Typically, a CustomScanState, which need
not support copyObject, will actually be a larger structure embedding the above as its first member.

54.3.1. Custom Scan Execution Callbacks
void (*BeginCustomScan) (CustomScanState *node,
 EState *estate,
 int eflags);

Complete initialization of the supplied CustomScanState. Standard fields have been initialized by
ExecInitCustomScan, but any private fields should be initialized here.

TupleTableSlot *(*ExecCustomScan) (CustomScanState *node);

Fetch the next scan tuple. If any tuples remain, it should fill ps_ResultTupleSlot with the next tuple in
the current scan direction, and then return the tuple slot. If not, NULL or an empty slot should be returned.

void (*EndCustomScan) (CustomScanState *node);

Clean up any private data associated with the CustomScanState. This method is required, but it does
not need to do anything if there is no associated data or it will be cleaned up automatically.

void (*ReScanCustomScan) (CustomScanState *node);

Rewind the current scan to the beginning and prepare to rescan the relation.

void (*MarkPosCustomScan) (CustomScanState *node);

Save the current scan position so that it can subsequently be restored by the RestrPosCustomScan
callback. This callback is optional, and need only be supplied if the CUSTOMPATH_SUPPORT_MARK_RESTORE
flag is set.

void (*RestrPosCustomScan) (CustomScanState *node);

Restore the previous scan position as saved by the MarkPosCustomScan callback. This callback is
optional, and need only be supplied if the CUSTOMPATH_SUPPORT_MARK_RESTORE flag is set.

Size (*EstimateDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt);

Estimate the amount of dynamic shared memory that will be required for parallel operation. This may
be higher than the amount that will actually be used, but it must not be lower. The return value is in
bytes. This callback is optional, and need only be supplied if this custom scan provider supports parallel
execution.

1972

Writing a Custom Scan Provider

void (*InitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

Initialize the dynamic shared memory that will be required for parallel operation. coordinate points
to a shared memory area of size equal to the return value of EstimateDSMCustomScan. This callback is
optional, and need only be supplied if this custom scan provider supports parallel execution.

void (*ReInitializeDSMCustomScan) (CustomScanState *node,
 ParallelContext *pcxt,
 void *coordinate);

Re-initialize the dynamic shared memory required for parallel operation when the custom-scan plan
node is about to be re-scanned. This callback is optional, and need only be supplied if this custom scan
provider supports parallel execution. Recommended practice is that this callback reset only shared state,
while the ReScanCustomScan callback resets only local state. Currently, this callback will be called before
ReScanCustomScan, but it's best not to rely on that ordering.

void (*InitializeWorkerCustomScan) (CustomScanState *node,
 shm_toc *toc,
 void *coordinate);

Initialize a parallel worker's local state based on the shared state set up by the leader during
InitializeDSMCustomScan. This callback is optional, and need only be supplied if this custom scan
provider supports parallel execution.

void (*ShutdownCustomScan) (CustomScanState *node);

Release resources when it is anticipated the node will not be executed to completion. This is not called
in all cases; sometimes, EndCustomScan may be called without this function having been called first.
Since the DSM segment used by parallel query is destroyed just after this callback is invoked, custom
scan providers that wish to take some action before the DSM segment goes away should implement
this method.

void (*ExplainCustomScan) (CustomScanState *node,
 List *ancestors,
 ExplainState *es);

Output additional information for EXPLAIN of a custom-scan plan node. This callback is optional. Common
data stored in the ScanState, such as the target list and scan relation, will be shown even without this
callback, but the callback allows the display of additional, private state.

1973

Chapter 55. Genetic Query Optimizer
Author

Written by Martin Utesch (<utesch@aut.tu-freiberg.de>) for the Institute of Automatic Control
at the University of Mining and Technology in Freiberg, Germany.

55.1. Query Handling as a Complex Optimization Problem
Among all relational operators the most difficult one to process and optimize is the join. The number
of possible query plans grows exponentially with the number of joins in the query. Further optimization
effort is caused by the support of a variety of join methods (e.g., nested loop, hash join, merge join in
Postgres Pro) to process individual joins and a diversity of indexes (e.g., B-tree, hash, GiST and GIN in
Postgres Pro) as access paths for relations.

The normal Postgres Pro query optimizer performs a near-exhaustive search over the space of alternative
strategies. This algorithm, first introduced in IBM's System R database, produces a near-optimal join
order, but can take an enormous amount of time and memory space when the number of joins in the
query grows large. This makes the ordinary Postgres Pro query optimizer inappropriate for queries that
join a large number of tables.

The Institute of Automatic Control at the University of Mining and Technology, in Freiberg, Germany,
encountered some problems when it wanted to use PostgreSQL as the backend for a decision support
knowledge based system for the maintenance of an electrical power grid. The DBMS needed to handle
large join queries for the inference machine of the knowledge based system. The number of joins in
these queries made using the normal query optimizer infeasible.

In the following we describe the implementation of a genetic algorithm to solve the join ordering problem
in a manner that is efficient for queries involving large numbers of joins.

55.2. Genetic Algorithms
The genetic algorithm (GA) is a heuristic optimization method which operates through randomized
search. The set of possible solutions for the optimization problem is considered as a population of
individuals. The degree of adaptation of an individual to its environment is specified by its fitness.

The coordinates of an individual in the search space are represented by chromosomes, in essence a
set of character strings. A gene is a subsection of a chromosome which encodes the value of a single
parameter being optimized. Typical encodings for a gene could be binary or integer.

Through simulation of the evolutionary operations recombination, mutation, and selection new
generations of search points are found that show a higher average fitness than their ancestors.
Figure 55.1 illustrates these steps.

1974

Genetic Query Optimizer

Figure 55.1. Structure of a Genetic Algorithm

INITIALIZE t := 0

INITIALIZE P(t)

evaluate FITNESS of P(t)

STOPPING CRITERION

t := t + 1 end

true

P'(t) := RECOMBINATION{P(t)}

false

P''(t) := MUTATION{P'(t)}

P(t+1) := SELECTION{P''(t) + P(t)}

evaluate FITNESS of P''(t)

P(t): generation of ancestors at a time t
P''(t): generation of descendants at a time t

According to the comp.ai.genetic FAQ it cannot be stressed too strongly that a GA is not a pure random
search for a solution to a problem. A GA uses stochastic processes, but the result is distinctly non-random
(better than random).

55.3. Genetic Query Optimization (GEQO) in Postgres Pro
The GEQO module approaches the query optimization problem as though it were the well-known
traveling salesman problem (TSP). Possible query plans are encoded as integer strings. Each string
represents the join order from one relation of the query to the next. For example, the join tree
 /\
 /\ 2
 /\ 3

1975

Genetic Query Optimizer

4 1

is encoded by the integer string '4-1-3-2', which means, first join relation '4' and '1', then '3', and then
'2', where 1, 2, 3, 4 are relation IDs within the Postgres Pro optimizer.

Specific characteristics of the GEQO implementation in Postgres Pro are:
• Usage of a steady state GA (replacement of the least fit individuals in a population, not whole-

generational replacement) allows fast convergence towards improved query plans. This is essential
for query handling with reasonable time;

• Usage of edge recombination crossover which is especially suited to keep edge losses low for the
solution of the TSP by means of a GA;

• Mutation as genetic operator is deprecated so that no repair mechanisms are needed to generate
legal TSP tours.

Parts of the GEQO module are adapted from D. Whitley's Genitor algorithm.

The GEQO module allows the Postgres Pro query optimizer to support large join queries effectively
through non-exhaustive search.

55.3.1. Generating Possible Plans with GEQO
The GEQO planning process uses the standard planner code to generate plans for scans of individual
relations. Then join plans are developed using the genetic approach. As shown above, each candidate
join plan is represented by a sequence in which to join the base relations. In the initial stage, the GEQO
code simply generates some possible join sequences at random. For each join sequence considered,
the standard planner code is invoked to estimate the cost of performing the query using that join
sequence. (For each step of the join sequence, all three possible join strategies are considered; and all
the initially-determined relation scan plans are available. The estimated cost is the cheapest of these
possibilities.) Join sequences with lower estimated cost are considered “more fit” than those with higher
cost. The genetic algorithm discards the least fit candidates. Then new candidates are generated by
combining genes of more-fit candidates — that is, by using randomly-chosen portions of known low-
cost join sequences to create new sequences for consideration. This process is repeated until a preset
number of join sequences have been considered; then the best one found at any time during the search
is used to generate the finished plan.

This process is inherently nondeterministic, because of the randomized choices made during both
the initial population selection and subsequent “mutation” of the best candidates. To avoid surprising
changes of the selected plan, each run of the GEQO algorithm restarts its random number generator
with the current geqo_seed parameter setting. As long as geqo_seed and the other GEQO parameters
are kept fixed, the same plan will be generated for a given query (and other planner inputs such as
statistics). To experiment with different search paths, try changing geqo_seed.

55.3.2. Future Implementation Tasks for PostgreSQL GEQO
Work is still needed to improve the genetic algorithm parameter settings. We have to find a compromise
for the parameter settings to satisfy two competing demands:
• Optimality of the query plan
• Computing time

In the current implementation, the fitness of each candidate join sequence is estimated by running the
standard planner's join selection and cost estimation code from scratch. To the extent that different
candidates use similar sub-sequences of joins, a great deal of work will be repeated. This could be
made significantly faster by retaining cost estimates for sub-joins. The problem is to avoid expending
unreasonable amounts of memory on retaining that state.

At a more basic level, it is not clear that solving query optimization with a GA algorithm designed for TSP
is appropriate. In the TSP case, the cost associated with any substring (partial tour) is independent of
the rest of the tour, but this is certainly not true for query optimization. Thus it is questionable whether
edge recombination crossover is the most effective mutation procedure.

1976

Genetic Query Optimizer

55.4. Further Reading
The following resources contain additional information about genetic algorithms:
• The Hitch-Hiker's Guide to Evolutionary Computation, (FAQ for news://comp.ai.genetic)
• Evolutionary Computation and its application to art and design, by Craig Reynolds
• elma04
• fong

1977

http://www.faqs.org/faqs/ai-faq/genetic/part1/
news://comp.ai.genetic
https://www.red3d.com/cwr/evolve.html

Chapter 56. Table Access Method Interface
Definition

This chapter explains the interface between the core PostgreSQL system and table access methods,
which manage the storage for tables. The core system knows little about these access methods beyond
what is specified here, so it is possible to develop entirely new access method types by writing add-
on code.

Each table access method is described by a row in the pg_am system catalog. The pg_am entry specifies
a name and a handler function for the table access method. These entries can be created and deleted
using the CREATE ACCESS METHOD and DROP ACCESS METHOD SQL commands.

A table access method handler function must be declared to accept a single argument of type internal
and to return the pseudo-type table_am_handler. The argument is a dummy value that simply serves
to prevent handler functions from being called directly from SQL commands. The result of the function
must be a pointer to a struct of type TableAmRoutine, which contains everything that the core code needs
to know to make use of the table access method. The return value needs to be of server lifetime, which is
typically achieved by defining it as a static const variable in global scope. The TableAmRoutine struct,
also called the access method's API struct, defines the behavior of the access method using callbacks.
These callbacks are pointers to plain C functions and are not visible or callable at the SQL level. All the
callbacks and their behavior is defined in the TableAmRoutine structure (with comments inside the struct
defining the requirements for callbacks). Most callbacks have wrapper functions, which are documented
from the point of view of a user (rather than an implementor) of the table access method. For details,
please refer to the src/include/access/tableam.h file.

To implement an access method, an implementor will typically need to implement an AM-specific type of
tuple table slot (see src/include/executor/tuptable.h), which allows code outside the access method
to hold references to tuples of the AM, and to access the columns of the tuple.

Currently, the way an AM actually stores data is fairly unconstrained. For example, it's possible, but not
required, to use postgres' shared buffer cache. In case it is used, it likely makes sense to use PostgreSQL's
standard page layout as described in Section 65.6.

One fairly large constraint of the table access method API is that, currently, if the AM wants to support
modifications and/or indexes, it is necessary for each tuple to have a tuple identifier (TID) consisting
of a block number and an item number (see also Section 65.6). It is not strictly necessary that the sub-
parts of TIDs have the same meaning they e.g., have for heap, but if bitmap scan support is desired (it
is optional), the block number needs to provide locality.

For crash safety, an AM can use postgres' WAL, or a custom implementation. If WAL is chosen, either
Generic WAL Records can be used, or a new type of WAL records can be implemented. Generic WAL
Records are easy, but imply higher WAL volume. Implementation of a new type of WAL record currently
requires modifications to core code (specifically, src/include/access/rmgrlist.h).

To implement transactional support in a manner that allows different table access methods be accessed
within a single transaction, it likely is necessary to closely integrate with the machinery in src/backend/
access/transam/xlog.c.

Any developer of a new table access method can refer to the existing heap implementation present in
src/backend/access/heap/heapam_handler.c for details of its implementation.

1978

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/access/tableam.h;hb=HEAD
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/executor/tuptable.h;hb=HEAD

Chapter 57. Index Access Method Interface
Definition

This chapter defines the interface between the core Postgres Pro system and index access methods,
which manage individual index types. The core system knows nothing about indexes beyond what is
specified here, so it is possible to develop entirely new index types by writing add-on code.

All indexes in Postgres Pro are what are known technically as secondary indexes; that is, the index is
physically separate from the table file that it describes. Each index is stored as its own physical relation
and so is described by an entry in the pg_class catalog. The contents of an index are entirely under the
control of its index access method. In practice, all index access methods divide indexes into standard-
size pages so that they can use the regular storage manager and buffer manager to access the index
contents. (All the existing index access methods furthermore use the standard page layout described in
Section 65.6, and most use the same format for index tuple headers; but these decisions are not forced
on an access method.)

An index is effectively a mapping from some data key values to tuple identifiers, or TIDs, of row versions
(tuples) in the index's parent table. A TID consists of a block number and an item number within that
block (see Section 65.6). This is sufficient information to fetch a particular row version from the table.
Indexes are not directly aware that under MVCC, there might be multiple extant versions of the same
logical row; to an index, each tuple is an independent object that needs its own index entry. Thus, an
update of a row always creates all-new index entries for the row, even if the key values did not change.
(HOT tuples are an exception to this statement; but indexes do not deal with those, either.) Index entries
for dead tuples are reclaimed (by vacuuming) when the dead tuples themselves are reclaimed.

57.1. Basic API Structure for Indexes
Each index access method is described by a row in the pg_am system catalog. The pg_am entry specifies
a name and a handler function for the index access method. These entries can be created and deleted
using the CREATE ACCESS METHOD and DROP ACCESS METHOD SQL commands.

An index access method handler function must be declared to accept a single argument of type internal
and to return the pseudo-type index_am_handler. The argument is a dummy value that simply serves
to prevent handler functions from being called directly from SQL commands. The result of the function
must be a palloc'd struct of type IndexAmRoutine, which contains everything that the core code needs
to know to make use of the index access method. The IndexAmRoutine struct, also called the access
method's API struct, includes fields specifying assorted fixed properties of the access method, such as
whether it can support multicolumn indexes. More importantly, it contains pointers to support functions
for the access method, which do all of the real work to access indexes. These support functions are
plain C functions and are not visible or callable at the SQL level. The support functions are described
in Section 57.2.

The structure IndexAmRoutine is defined thus:
typedef struct IndexAmRoutine
{
 NodeTag type;

 /*
 * Total number of strategies (operators) by which we can traverse/search
 * this AM. Zero if AM does not have a fixed set of strategy assignments.
 */
 uint16 amstrategies;
 /* total number of support functions that this AM uses */
 uint16 amsupport;
 /* opclass options support function number or 0 */
 uint16 amoptsprocnum;
 /* does AM support ORDER BY indexed column's value? */

1979

Index Access Method
Interface Definition

 bool amcanorder;
 /* does AM support ORDER BY result of an operator on indexed column? */
 bool amcanorderbyop;
 /* does AM support backward scanning? */
 bool amcanbackward;
 /* does AM support UNIQUE indexes? */
 bool amcanunique;
 /* does AM support multi-column indexes? */
 bool amcanmulticol;
 /* does AM require scans to have a constraint on the first index column? */
 bool amoptionalkey;
 /* does AM handle ScalarArrayOpExpr quals? */
 bool amsearcharray;
 /* does AM handle IS NULL/IS NOT NULL quals? */
 bool amsearchnulls;
 /* can index storage data type differ from column data type? */
 bool amstorage;
 /* can an index of this type be clustered on? */
 bool amclusterable;
 /* does AM handle predicate locks? */
 bool ampredlocks;
 /* does AM support parallel scan? */
 bool amcanparallel;
 /* does AM support columns included with clause INCLUDE? */
 bool amcaninclude;
 /* does AM use maintenance_work_mem? */
 bool amusemaintenanceworkmem;
 /* OR of parallel vacuum flags */
 uint8 amparallelvacuumoptions;
 /* type of data stored in index, or InvalidOid if variable */
 Oid amkeytype;

 /* interface functions */
 ambuild_function ambuild;
 ambuildempty_function ambuildempty;
 aminsert_function aminsert;
 ambulkdelete_function ambulkdelete;
 amvacuumcleanup_function amvacuumcleanup;
 amcanreturn_function amcanreturn; /* can be NULL */
 amcostestimate_function amcostestimate;
 amoptions_function amoptions;
 amproperty_function amproperty; /* can be NULL */
 ambuildphasename_function ambuildphasename; /* can be NULL */
 amvalidate_function amvalidate;
 ambeginscan_function ambeginscan;
 amrescan_function amrescan;
 amgettuple_function amgettuple; /* can be NULL */
 amgetbitmap_function amgetbitmap; /* can be NULL */
 amendscan_function amendscan;
 ammarkpos_function ammarkpos; /* can be NULL */
 amrestrpos_function amrestrpos; /* can be NULL */

 /* interface functions to support parallel index scans */
 amestimateparallelscan_function amestimateparallelscan; /* can be NULL */
 aminitparallelscan_function aminitparallelscan; /* can be NULL */
 amparallelrescan_function amparallelrescan; /* can be NULL */
} IndexAmRoutine;

1980

Index Access Method
Interface Definition

To be useful, an index access method must also have one or more operator families and operator
classes defined in pg_opfamily, pg_opclass, pg_amop, and pg_amproc. These entries allow the planner
to determine what kinds of query qualifications can be used with indexes of this access method. Operator
families and classes are described in Section 35.16, which is prerequisite material for reading this
chapter.

An individual index is defined by a pg_class entry that describes it as a physical relation, plus a pg_index
entry that shows the logical content of the index — that is, the set of index columns it has and the
semantics of those columns, as captured by the associated operator classes. The index columns (key
values) can be either simple columns of the underlying table or expressions over the table rows. The index
access method normally has no interest in where the index key values come from (it is always handed
precomputed key values) but it will be very interested in the operator class information in pg_index.
Both of these catalog entries can be accessed as part of the Relation data structure that is passed to
all operations on the index.

Some of the flag fields of IndexAmRoutine have nonobvious implications. The requirements of
amcanunique are discussed in Section 57.5. The amcanmulticol flag asserts that the access method
supports multi-key-column indexes, while amoptionalkey asserts that it allows scans where no indexable
restriction clause is given for the first index column. When amcanmulticol is false, amoptionalkey
essentially says whether the access method supports full-index scans without any restriction clause.
Access methods that support multiple index columns must support scans that omit restrictions on any
or all of the columns after the first; however they are permitted to require some restriction to appear for
the first index column, and this is signaled by setting amoptionalkey false. One reason that an index AM
might set amoptionalkey false is if it doesn't index null values. Since most indexable operators are strict
and hence cannot return true for null inputs, it is at first sight attractive to not store index entries for
null values: they could never be returned by an index scan anyway. However, this argument fails when
an index scan has no restriction clause for a given index column. In practice this means that indexes
that have amoptionalkey true must index nulls, since the planner might decide to use such an index
with no scan keys at all. A related restriction is that an index access method that supports multiple index
columns must support indexing null values in columns after the first, because the planner will assume
the index can be used for queries that do not restrict these columns. For example, consider an index on
(a,b) and a query with WHERE a = 4. The system will assume the index can be used to scan for rows with
a = 4, which is wrong if the index omits rows where b is null. It is, however, OK to omit rows where the
first indexed column is null. An index access method that does index nulls may also set amsearchnulls,
indicating that it supports IS NULL and IS NOT NULL clauses as search conditions.

The amcaninclude flag indicates whether the access method supports “included” columns, that is
it can store (without processing) additional columns beyond the key column(s). The requirements
of the preceding paragraph apply only to the key columns. In particular, the combination of
amcanmulticol=false and amcaninclude=true is sensible: it means that there can only be one key
column, but there can also be included column(s). Also, included columns must be allowed to be null,
independently of amoptionalkey.

57.2. Index Access Method Functions
The index construction and maintenance functions that an index access method must provide in
IndexAmRoutine are:

IndexBuildResult *
ambuild (Relation heapRelation,
 Relation indexRelation,
 IndexInfo *indexInfo);

Build a new index. The index relation has been physically created, but is empty. It must be filled in with
whatever fixed data the access method requires, plus entries for all tuples already existing in the table.
Ordinarily the ambuild function will call table_index_build_scan() to scan the table for existing tuples
and compute the keys that need to be inserted into the index. The function must return a palloc'd struct
containing statistics about the new index.

1981

Index Access Method
Interface Definition

void
ambuildempty (Relation indexRelation);

Build an empty index, and write it to the initialization fork (INIT_FORKNUM) of the given relation. This
method is called only for unlogged indexes; the empty index written to the initialization fork will be
copied over the main relation fork on each server restart.

bool
aminsert (Relation indexRelation,
 Datum *values,
 bool *isnull,
 ItemPointer heap_tid,
 Relation heapRelation,
 IndexUniqueCheck checkUnique,
 IndexInfo *indexInfo);

Insert a new tuple into an existing index. The values and isnull arrays give the key values to be indexed,
and heap_tid is the TID to be indexed. If the access method supports unique indexes (its amcanunique
flag is true) then checkUnique indicates the type of uniqueness check to perform. This varies depending
on whether the unique constraint is deferrable; see Section 57.5 for details. Normally the access method
only needs the heapRelation parameter when performing uniqueness checking (since then it will have
to look into the heap to verify tuple liveness).

The function's Boolean result value is significant only when checkUnique is UNIQUE_CHECK_PARTIAL. In
this case a true result means the new entry is known unique, whereas false means it might be non-
unique (and a deferred uniqueness check must be scheduled). For other cases a constant false result
is recommended.

Some indexes might not index all tuples. If the tuple is not to be indexed, aminsert should just return
without doing anything.

If the index AM wishes to cache data across successive index insertions within a SQL statement, it can
allocate space in indexInfo->ii_Context and store a pointer to the data in indexInfo->ii_AmCache
(which will be NULL initially).

IndexBulkDeleteResult *
ambulkdelete (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats,
 IndexBulkDeleteCallback callback,
 void *callback_state);

Delete tuple(s) from the index. This is a “bulk delete” operation that is intended to be implemented by
scanning the whole index and checking each entry to see if it should be deleted. The passed-in callback
function must be called, in the style callback(TID, callback_state) returns bool, to determine
whether any particular index entry, as identified by its referenced TID, is to be deleted. Must return
either NULL or a palloc'd struct containing statistics about the effects of the deletion operation. It is OK
to return NULL if no information needs to be passed on to amvacuumcleanup.

Because of limited maintenance_work_mem, ambulkdelete might need to be called more than once when
many tuples are to be deleted. The stats argument is the result of the previous call for this index (it is
NULL for the first call within a VACUUM operation). This allows the AM to accumulate statistics across
the whole operation. Typically, ambulkdelete will modify and return the same struct if the passed stats
is not null.

IndexBulkDeleteResult *
amvacuumcleanup (IndexVacuumInfo *info,
 IndexBulkDeleteResult *stats);

Clean up after a VACUUM operation (zero or more ambulkdelete calls). This does not have to do anything
beyond returning index statistics, but it might perform bulk cleanup such as reclaiming empty index
pages. stats is whatever the last ambulkdelete call returned, or NULL if ambulkdelete was not called
because no tuples needed to be deleted. If the result is not NULL it must be a palloc'd struct. The

1982

Index Access Method
Interface Definition

statistics it contains will be used to update pg_class, and will be reported by VACUUM if VERBOSE is given.
It is OK to return NULL if the index was not changed at all during the VACUUM operation, but otherwise
correct stats should be returned.

As of PostgreSQL 8.4, amvacuumcleanup will also be called at completion of an ANALYZE operation. In
this case stats is always NULL and any return value will be ignored. This case can be distinguished
by checking info->analyze_only. It is recommended that the access method do nothing except post-
insert cleanup in such a call, and that only in an autovacuum worker process.

bool
amcanreturn (Relation indexRelation, int attno);

Check whether the index can support index-only scans on the given column, by returning the column's
original indexed value. The attribute number is 1-based, i.e., the first column's attno is 1. Returns true
if supported, else false. This function should always return true for included columns (if those are
supported), since there's little point in an included column that can't be retrieved. If the access method
does not support index-only scans at all, the amcanreturn field in its IndexAmRoutine struct can be set
to NULL.

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

Estimate the costs of an index scan. This function is described fully in Section 57.6, below.

bytea *
amoptions (ArrayType *reloptions,
 bool validate);

Parse and validate the reloptions array for an index. This is called only when a non-null reloptions array
exists for the index. reloptions is a text array containing entries of the form name=value. The function
should construct a bytea value, which will be copied into the rd_options field of the index's relcache
entry. The data contents of the bytea value are open for the access method to define; most of the standard
access methods use struct StdRdOptions. When validate is true, the function should report a suitable
error message if any of the options are unrecognized or have invalid values; when validate is false,
invalid entries should be silently ignored. (validate is false when loading options already stored in
pg_catalog; an invalid entry could only be found if the access method has changed its rules for options,
and in that case ignoring obsolete entries is appropriate.) It is OK to return NULL if default behavior
is wanted.

bool
amproperty (Oid index_oid, int attno,
 IndexAMProperty prop, const char *propname,
 bool *res, bool *isnull);

The amproperty method allows index access methods to override the default behavior of
pg_index_column_has_property and related functions. If the access method does not have any special
behavior for index property inquiries, the amproperty field in its IndexAmRoutine struct can be set
to NULL. Otherwise, the amproperty method will be called with index_oid and attno both zero for
pg_indexam_has_property calls, or with index_oid valid and attno zero for pg_index_has_property
calls, or with index_oid valid and attno greater than zero for pg_index_column_has_property calls.
prop is an enum value identifying the property being tested, while propname is the original property
name string. If the core code does not recognize the property name then prop is AMPROP_UNKNOWN. Access
methods can define custom property names by checking propname for a match (use pg_strcasecmp to
match, for consistency with the core code); for names known to the core code, it's better to inspect prop.

1983

Index Access Method
Interface Definition

If the amproperty method returns true then it has determined the property test result: it must set *res
to the boolean value to return, or set *isnull to true to return a NULL. (Both of the referenced variables
are initialized to false before the call.) If the amproperty method returns false then the core code will
proceed with its normal logic for determining the property test result.

Access methods that support ordering operators should implement AMPROP_DISTANCE_ORDERABLE
property testing, as the core code does not know how to do that and will return NULL. It may also
be advantageous to implement AMPROP_RETURNABLE testing, if that can be done more cheaply than
by opening the index and calling amcanreturn, which is the core code's default behavior. The default
behavior should be satisfactory for all other standard properties.

char *
ambuildphasename (int64 phasenum);

Return the textual name of the given build phase number. The phase numbers are those reported during
an index build via the pgstat_progress_update_param interface. The phase names are then exposed in
the pg_stat_progress_create_index view.

bool
amvalidate (Oid opclassoid);

Validate the catalog entries for the specified operator class, so far as the access method can reasonably
do that. For example, this might include testing that all required support functions are provided. The
amvalidate function must return false if the opclass is invalid. Problems should be reported with ereport
messages.

The purpose of an index, of course, is to support scans for tuples matching an indexable WHERE condition,
often called a qualifier or scan key. The semantics of index scanning are described more fully in
Section 57.3, below. An index access method can support “plain” index scans, “bitmap” index scans, or
both. The scan-related functions that an index access method must or may provide are:

IndexScanDesc
ambeginscan (Relation indexRelation,
 int nkeys,
 int norderbys);

Prepare for an index scan. The nkeys and norderbys parameters indicate the number of quals
and ordering operators that will be used in the scan; these may be useful for space allocation
purposes. Note that the actual values of the scan keys aren't provided yet. The result must be a
palloc'd struct. For implementation reasons the index access method must create this struct by calling
RelationGetIndexScan(). In most cases ambeginscan does little beyond making that call and perhaps
acquiring locks; the interesting parts of index-scan startup are in amrescan.

void
amrescan (IndexScanDesc scan,
 ScanKey keys,
 int nkeys,
 ScanKey orderbys,
 int norderbys);

Start or restart an index scan, possibly with new scan keys. (To restart using previously-passed keys,
NULL is passed for keys and/or orderbys.) Note that it is not allowed for the number of keys or order-
by operators to be larger than what was passed to ambeginscan. In practice the restart feature is used
when a new outer tuple is selected by a nested-loop join and so a new key comparison value is needed,
but the scan key structure remains the same.

bool
amgettuple (IndexScanDesc scan,
 ScanDirection direction);

Fetch the next tuple in the given scan, moving in the given direction (forward or backward in the index).
Returns true if a tuple was obtained, false if no matching tuples remain. In the true case the tuple TID

1984

Index Access Method
Interface Definition

is stored into the scan structure. Note that “success” means only that the index contains an entry that
matches the scan keys, not that the tuple necessarily still exists in the heap or will pass the caller's
snapshot test. On success, amgettuple must also set scan->xs_recheck to true or false. False means it
is certain that the index entry matches the scan keys. True means this is not certain, and the conditions
represented by the scan keys must be rechecked against the heap tuple after fetching it. This provision
supports “lossy” index operators. Note that rechecking will extend only to the scan conditions; a partial
index predicate (if any) is never rechecked by amgettuple callers.

If the index supports index-only scans (i.e., amcanreturn returns true for any of its columns), then on
success the AM must also check scan->xs_want_itup, and if that is true it must return the originally
indexed data for the index entry. Columns for which amcanreturn returns false can be returned as
nulls. The data can be returned in the form of an IndexTuple pointer stored at scan->xs_itup, with
tuple descriptor scan->xs_itupdesc; or in the form of a HeapTuple pointer stored at scan->xs_hitup,
with tuple descriptor scan->xs_hitupdesc. (The latter format should be used when reconstructing data
that might possibly not fit into an IndexTuple.) In either case, management of the data referenced by
the pointer is the access method's responsibility. The data must remain good at least until the next
amgettuple, amrescan, or amendscan call for the scan.

The amgettuple function need only be provided if the access method supports “plain” index scans. If it
doesn't, the amgettuple field in its IndexAmRoutine struct must be set to NULL.

int64
amgetbitmap (IndexScanDesc scan,
 TIDBitmap *tbm);

Fetch all tuples in the given scan and add them to the caller-supplied TIDBitmap (that is, OR the set
of tuple IDs into whatever set is already in the bitmap). The number of tuples fetched is returned (this
might be just an approximate count, for instance some AMs do not detect duplicates). While inserting
tuple IDs into the bitmap, amgetbitmap can indicate that rechecking of the scan conditions is required
for specific tuple IDs. This is analogous to the xs_recheck output parameter of amgettuple. Note: in
the current implementation, support for this feature is conflated with support for lossy storage of the
bitmap itself, and therefore callers recheck both the scan conditions and the partial index predicate
(if any) for recheckable tuples. That might not always be true, however. amgetbitmap and amgettuple
cannot be used in the same index scan; there are other restrictions too when using amgetbitmap, as
explained in Section 57.3.

The amgetbitmap function need only be provided if the access method supports “bitmap” index scans.
If it doesn't, the amgetbitmap field in its IndexAmRoutine struct must be set to NULL.

void
amendscan (IndexScanDesc scan);

End a scan and release resources. The scan struct itself should not be freed, but any locks or pins taken
internally by the access method must be released, as well as any other memory allocated by ambeginscan
and other scan-related functions.

void
ammarkpos (IndexScanDesc scan);

Mark current scan position. The access method need only support one remembered scan position per
scan.

The ammarkpos function need only be provided if the access method supports ordered scans. If it doesn't,
the ammarkpos field in its IndexAmRoutine struct may be set to NULL.

void
amrestrpos (IndexScanDesc scan);

Restore the scan to the most recently marked position.

The amrestrpos function need only be provided if the access method supports ordered scans. If it doesn't,
the amrestrpos field in its IndexAmRoutine struct may be set to NULL.

1985

Index Access Method
Interface Definition

In addition to supporting ordinary index scans, some types of index may wish to support parallel index
scans, which allow multiple backends to cooperate in performing an index scan. The index access method
should arrange things so that each cooperating process returns a subset of the tuples that would be
performed by an ordinary, non-parallel index scan, but in such a way that the union of those subsets is
equal to the set of tuples that would be returned by an ordinary, non-parallel index scan. Furthermore,
while there need not be any global ordering of tuples returned by a parallel scan, the ordering of that
subset of tuples returned within each cooperating backend must match the requested ordering. The
following functions may be implemented to support parallel index scans:

Size
amestimateparallelscan (void);

Estimate and return the number of bytes of dynamic shared memory which the access method will be
needed to perform a parallel scan. (This number is in addition to, not in lieu of, the amount of space
needed for AM-independent data in ParallelIndexScanDescData.)

It is not necessary to implement this function for access methods which do not support parallel scans or
for which the number of additional bytes of storage required is zero.

void
aminitparallelscan (void *target);

This function will be called to initialize dynamic shared memory at the beginning of a parallel scan.
target will point to at least the number of bytes previously returned by amestimateparallelscan, and
this function may use that amount of space to store whatever data it wishes.

It is not necessary to implement this function for access methods which do not support parallel scans or
in cases where the shared memory space required needs no initialization.

void
amparallelrescan (IndexScanDesc scan);

This function, if implemented, will be called when a parallel index scan must be restarted. It should reset
any shared state set up by aminitparallelscan such that the scan will be restarted from the beginning.

57.3. Index Scanning
In an index scan, the index access method is responsible for regurgitating the TIDs of all the tuples it
has been told about that match the scan keys. The access method is not involved in actually fetching
those tuples from the index's parent table, nor in determining whether they pass the scan's visibility
test or other conditions.

A scan key is the internal representation of a WHERE clause of the form index_key operator constant,
where the index key is one of the columns of the index and the operator is one of the members of the
operator family associated with that index column. An index scan has zero or more scan keys, which are
implicitly ANDed — the returned tuples are expected to satisfy all the indicated conditions.

The access method can report that the index is lossy, or requires rechecks, for a particular query. This
implies that the index scan will return all the entries that pass the scan key, plus possibly additional
entries that do not. The core system's index-scan machinery will then apply the index conditions again to
the heap tuple to verify whether or not it really should be selected. If the recheck option is not specified,
the index scan must return exactly the set of matching entries.

Note that it is entirely up to the access method to ensure that it correctly finds all and only the entries
passing all the given scan keys. Also, the core system will simply hand off all the WHERE clauses that
match the index keys and operator families, without any semantic analysis to determine whether they
are redundant or contradictory. As an example, given WHERE x > 4 AND x > 14 where x is a b-tree
indexed column, it is left to the b-tree amrescan function to realize that the first scan key is redundant
and can be discarded. The extent of preprocessing needed during amrescan will depend on the extent
to which the index access method needs to reduce the scan keys to a “normalized” form.

1986

Index Access Method
Interface Definition

Some access methods return index entries in a well-defined order, others do not. There are actually two
different ways that an access method can support sorted output:

• Access methods that always return entries in the natural ordering of their data (such as btree)
should set amcanorder to true. Currently, such access methods must use btree-compatible strategy
numbers for their equality and ordering operators.

• Access methods that support ordering operators should set amcanorderbyop to true. This indicates
that the index is capable of returning entries in an order satisfying ORDER BY index_key operator
constant. Scan modifiers of that form can be passed to amrescan as described previously.

The amgettuple function has a direction argument, which can be either ForwardScanDirection
(the normal case) or BackwardScanDirection. If the first call after amrescan specifies
BackwardScanDirection, then the set of matching index entries is to be scanned back-to-front rather
than in the normal front-to-back direction, so amgettuple must return the last matching tuple in the
index, rather than the first one as it normally would. (This will only occur for access methods that set
amcanorder to true.) After the first call, amgettuple must be prepared to advance the scan in either
direction from the most recently returned entry. (But if amcanbackward is false, all subsequent calls will
have the same direction as the first one.)

Access methods that support ordered scans must support “marking” a position in a scan and later
returning to the marked position. The same position might be restored multiple times. However, only one
position need be remembered per scan; a new ammarkpos call overrides the previously marked position.
An access method that does not support ordered scans need not provide ammarkpos and amrestrpos
functions in IndexAmRoutine; set those pointers to NULL instead.

Both the scan position and the mark position (if any) must be maintained consistently in the face of
concurrent insertions or deletions in the index. It is OK if a freshly-inserted entry is not returned by a
scan that would have found the entry if it had existed when the scan started, or for the scan to return
such an entry upon rescanning or backing up even though it had not been returned the first time through.
Similarly, a concurrent delete might or might not be reflected in the results of a scan. What is important is
that insertions or deletions not cause the scan to miss or multiply return entries that were not themselves
being inserted or deleted.

If the index stores the original indexed data values (and not some lossy representation of them), it is
useful to support index-only scans, in which the index returns the actual data not just the TID of the
heap tuple. This will only avoid I/O if the visibility map shows that the TID is on an all-visible page; else
the heap tuple must be visited anyway to check MVCC visibility. But that is no concern of the access
method's.

Instead of using amgettuple, an index scan can be done with amgetbitmap to fetch all tuples in one
call. This can be noticeably more efficient than amgettuple because it allows avoiding lock/unlock
cycles within the access method. In principle amgetbitmap should have the same effects as repeated
amgettuple calls, but we impose several restrictions to simplify matters. First of all, amgetbitmap returns
all tuples at once and marking or restoring scan positions isn't supported. Secondly, the tuples are
returned in a bitmap which doesn't have any specific ordering, which is why amgetbitmap doesn't take a
direction argument. (Ordering operators will never be supplied for such a scan, either.) Also, there is
no provision for index-only scans with amgetbitmap, since there is no way to return the contents of index
tuples. Finally, amgetbitmap does not guarantee any locking of the returned tuples, with implications
spelled out in Section 57.4.

Note that it is permitted for an access method to implement only amgetbitmap and not amgettuple, or
vice versa, if its internal implementation is unsuited to one API or the other.

57.4. Index Locking Considerations
Index access methods must handle concurrent updates of the index by multiple processes. The core
Postgres Pro system obtains AccessShareLock on the index during an index scan, and RowExclusiveLock
when updating the index (including plain VACUUM). Since these lock types do not conflict, the access

1987

Index Access Method
Interface Definition

method is responsible for handling any fine-grained locking it might need. An ACCESS EXCLUSIVE lock
on the index as a whole will be taken only during index creation, destruction, or REINDEX (SHARE UPDATE
EXCLUSIVE is taken instead with CONCURRENTLY).

Building an index type that supports concurrent updates usually requires extensive and subtle analysis
of the required behavior.

Aside from the index's own internal consistency requirements, concurrent updates create issues about
consistency between the parent table (the heap) and the index. Because Postgres Pro separates accesses
and updates of the heap from those of the index, there are windows in which the index might be
inconsistent with the heap. We handle this problem with the following rules:

• A new heap entry is made before making its index entries. (Therefore a concurrent index scan is
likely to fail to see the heap entry. This is okay because the index reader would be uninterested in
an uncommitted row anyway. But see Section 57.5.)

• When a heap entry is to be deleted (by VACUUM), all its index entries must be removed first.

• An index scan must maintain a pin on the index page holding the item last returned by amgettuple,
and ambulkdelete cannot delete entries from pages that are pinned by other backends. The need
for this rule is explained below.

Without the third rule, it is possible for an index reader to see an index entry just before it is removed
by VACUUM, and then to arrive at the corresponding heap entry after that was removed by VACUUM. This
creates no serious problems if that item number is still unused when the reader reaches it, since an
empty item slot will be ignored by heap_fetch(). But what if a third backend has already re-used the
item slot for something else? When using an MVCC-compliant snapshot, there is no problem because
the new occupant of the slot is certain to be too new to pass the snapshot test. However, with a non-
MVCC-compliant snapshot (such as SnapshotAny), it would be possible to accept and return a row that
does not in fact match the scan keys. We could defend against this scenario by requiring the scan keys
to be rechecked against the heap row in all cases, but that is too expensive. Instead, we use a pin on
an index page as a proxy to indicate that the reader might still be “in flight” from the index entry to
the matching heap entry. Making ambulkdelete block on such a pin ensures that VACUUM cannot delete
the heap entry before the reader is done with it. This solution costs little in run time, and adds blocking
overhead only in the rare cases where there actually is a conflict.

This solution requires that index scans be “synchronous”: we have to fetch each heap tuple immediately
after scanning the corresponding index entry. This is expensive for a number of reasons. An
“asynchronous” scan in which we collect many TIDs from the index, and only visit the heap tuples
sometime later, requires much less index locking overhead and can allow a more efficient heap access
pattern. Per the above analysis, we must use the synchronous approach for non-MVCC-compliant
snapshots, but an asynchronous scan is workable for a query using an MVCC snapshot.

In an amgetbitmap index scan, the access method does not keep an index pin on any of the returned
tuples. Therefore it is only safe to use such scans with MVCC-compliant snapshots.

When the ampredlocks flag is not set, any scan using that index access method within a serializable
transaction will acquire a nonblocking predicate lock on the full index. This will generate a read-write
conflict with the insert of any tuple into that index by a concurrent serializable transaction. If certain
patterns of read-write conflicts are detected among a set of concurrent serializable transactions, one of
those transactions may be canceled to protect data integrity. When the flag is set, it indicates that the
index access method implements finer-grained predicate locking, which will tend to reduce the frequency
of such transaction cancellations.

57.5. Index Uniqueness Checks
Postgres Pro enforces SQL uniqueness constraints using unique indexes, which are indexes that disallow
multiple entries with identical keys. An access method that supports this feature sets amcanunique true.
(At present, only b-tree supports it.) Columns listed in the INCLUDE clause are not considered when
enforcing uniqueness.

1988

Index Access Method
Interface Definition

Because of MVCC, it is always necessary to allow duplicate entries to exist physically in an index: the
entries might refer to successive versions of a single logical row. The behavior we actually want to
enforce is that no MVCC snapshot could include two rows with equal index keys. This breaks down into
the following cases that must be checked when inserting a new row into a unique index:

• If a conflicting valid row has been deleted by the current transaction, it's okay. (In particular, since
an UPDATE always deletes the old row version before inserting the new version, this will allow an
UPDATE on a row without changing the key.)

• If a conflicting row has been inserted by an as-yet-uncommitted transaction, the would-be inserter
must wait to see if that transaction commits. If it rolls back then there is no conflict. If it commits
without deleting the conflicting row again, there is a uniqueness violation. (In practice we just wait
for the other transaction to end and then redo the visibility check in toto.)

• Similarly, if a conflicting valid row has been deleted by an as-yet-uncommitted transaction, the
would-be inserter must wait for that transaction to commit or abort, and then repeat the test.

Furthermore, immediately before reporting a uniqueness violation according to the above rules, the
access method must recheck the liveness of the row being inserted. If it is committed dead then
no violation should be reported. (This case cannot occur during the ordinary scenario of inserting a
row that's just been created by the current transaction. It can happen during CREATE UNIQUE INDEX
CONCURRENTLY, however.)

We require the index access method to apply these tests itself, which means that it must reach into the
heap to check the commit status of any row that is shown to have a duplicate key according to the index
contents. This is without a doubt ugly and non-modular, but it saves redundant work: if we did a separate
probe then the index lookup for a conflicting row would be essentially repeated while finding the place
to insert the new row's index entry. What's more, there is no obvious way to avoid race conditions unless
the conflict check is an integral part of insertion of the new index entry.

If the unique constraint is deferrable, there is additional complexity: we need to be able to insert an
index entry for a new row, but defer any uniqueness-violation error until end of statement or even later.
To avoid unnecessary repeat searches of the index, the index access method should do a preliminary
uniqueness check during the initial insertion. If this shows that there is definitely no conflicting live
tuple, we are done. Otherwise, we schedule a recheck to occur when it is time to enforce the constraint.
If, at the time of the recheck, both the inserted tuple and some other tuple with the same key are live,
then the error must be reported. (Note that for this purpose, “live” actually means “any tuple in the
index entry's HOT chain is live”.) To implement this, the aminsert function is passed a checkUnique
parameter having one of the following values:

• UNIQUE_CHECK_NO indicates that no uniqueness checking should be done (this is not a unique
index).

• UNIQUE_CHECK_YES indicates that this is a non-deferrable unique index, and the uniqueness check
must be done immediately, as described above.

• UNIQUE_CHECK_PARTIAL indicates that the unique constraint is deferrable. Postgres Pro will use
this mode to insert each row's index entry. The access method must allow duplicate entries into
the index, and report any potential duplicates by returning false from aminsert. For each row for
which false is returned, a deferred recheck will be scheduled.

The access method must identify any rows which might violate the unique constraint, but it is not
an error for it to report false positives. This allows the check to be done without waiting for other
transactions to finish; conflicts reported here are not treated as errors and will be rechecked later,
by which time they may no longer be conflicts.

• UNIQUE_CHECK_EXISTING indicates that this is a deferred recheck of a row that was reported as
a potential uniqueness violation. Although this is implemented by calling aminsert, the access
method must not insert a new index entry in this case. The index entry is already present. Rather,
the access method must check to see if there is another live index entry. If so, and if the target row
is also still live, report error.

1989

Index Access Method
Interface Definition

It is recommended that in a UNIQUE_CHECK_EXISTING call, the access method further verify that the
target row actually does have an existing entry in the index, and report error if not. This is a good
idea because the index tuple values passed to aminsert will have been recomputed. If the index
definition involves functions that are not really immutable, we might be checking the wrong area of
the index. Checking that the target row is found in the recheck verifies that we are scanning for the
same tuple values as were used in the original insertion.

57.6. Index Cost Estimation Functions
The amcostestimate function is given information describing a possible index scan, including lists of
WHERE and ORDER BY clauses that have been determined to be usable with the index. It must return
estimates of the cost of accessing the index and the selectivity of the WHERE clauses (that is, the fraction
of parent-table rows that will be retrieved during the index scan). For simple cases, nearly all the work
of the cost estimator can be done by calling standard routines in the optimizer; the point of having an
amcostestimate function is to allow index access methods to provide index-type-specific knowledge, in
case it is possible to improve on the standard estimates.

Each amcostestimate function must have the signature:

void
amcostestimate (PlannerInfo *root,
 IndexPath *path,
 double loop_count,
 Cost *indexStartupCost,
 Cost *indexTotalCost,
 Selectivity *indexSelectivity,
 double *indexCorrelation,
 double *indexPages);

The first three parameters are inputs:

root

The planner's information about the query being processed.

path

The index access path being considered. All fields except cost and selectivity values are valid.

loop_count

The number of repetitions of the index scan that should be factored into the cost estimates. This
will typically be greater than one when considering a parameterized scan for use in the inside of
a nestloop join. Note that the cost estimates should still be for just one scan; a larger loop_count
means that it may be appropriate to allow for some caching effects across multiple scans.

The last five parameters are pass-by-reference outputs:

*indexStartupCost

Set to cost of index start-up processing

*indexTotalCost

Set to total cost of index processing

*indexSelectivity

Set to index selectivity

*indexCorrelation

Set to correlation coefficient between index scan order and underlying table's order

1990

Index Access Method
Interface Definition

*indexPages

Set to number of index leaf pages

Note that cost estimate functions must be written in C, not in SQL or any available procedural language,
because they must access internal data structures of the planner/optimizer.

The index access costs should be computed using the parameters: a sequential disk block fetch has
cost seq_page_cost, a nonsequential fetch has cost random_page_cost, and the cost of processing one
index row should usually be taken as cpu_index_tuple_cost. In addition, an appropriate multiple of
cpu_operator_cost should be charged for any comparison operators invoked during index processing
(especially evaluation of the indexquals themselves).

The “start-up cost” is the part of the total scan cost that must be expended before we can begin to fetch
the first row. For most indexes this can be taken as zero, but an index type with a high start-up cost
might want to set it nonzero.

The indexSelectivity should be set to the estimated fraction of the parent table rows that will be
retrieved during the index scan. In the case of a lossy query, this will typically be higher than the fraction
of rows that actually pass the given qual conditions.

The indexCorrelation should be set to the correlation (ranging between -1.0 and 1.0) between the
index order and the table order. This is used to adjust the estimate for the cost of fetching rows from
the parent table.

The indexPages should be set to the number of leaf pages. This is used to estimate the number of workers
for parallel index scan.

When loop_count is greater than one, the returned numbers should be averages expected for any one
scan of the index.

Cost Estimation
A typical cost estimator will proceed as follows:

1. Estimate and return the fraction of parent-table rows that will be visited based on the given qual
conditions. In the absence of any index-type-specific knowledge, use the standard optimizer function
clauselist_selectivity():
*indexSelectivity = clauselist_selectivity(root, path->indexquals,
 path->indexinfo->rel->relid,
 JOIN_INNER, NULL);

2. Estimate the number of index rows that will be visited during the scan. For many index types this is
the same as indexSelectivity times the number of rows in the index, but it might be more. (Note
that the index's size in pages and rows is available from the path->indexinfo struct.)

3. Estimate the number of index pages that will be retrieved during the scan. This might be just
indexSelectivity times the index's size in pages.

4. Compute the index access cost. A generic estimator might do this:
/*
 * Our generic assumption is that the index pages will be read
 * sequentially, so they cost seq_page_cost each, not random_page_cost.
 * Also, we charge for evaluation of the indexquals at each index row.
 * All the costs are assumed to be paid incrementally during the scan.
 */
cost_qual_eval(&index_qual_cost, path->indexquals, root);
*indexStartupCost = index_qual_cost.startup;
*indexTotalCost = seq_page_cost * numIndexPages +
 (cpu_index_tuple_cost + index_qual_cost.per_tuple) * numIndexTuples;

However, the above does not account for amortization of index reads across repeated index scans.

1991

Index Access Method
Interface Definition

5. Estimate the index correlation. For a simple ordered index on a single field, this can be retrieved
from pg_statistic. If the correlation is not known, the conservative estimate is zero (no correlation).

1992

Chapter 58. Generic WAL Records
Although all built-in WAL-logged modules have their own types of WAL records, there is also a generic
WAL record type, which describes changes to pages in a generic way. This is useful for extensions that
provide custom access methods, because they cannot register their own WAL redo routines.

The API for constructing generic WAL records is defined in access/generic_xlog.h and implemented
in access/transam/generic_xlog.c.

To perform a WAL-logged data update using the generic WAL record facility, follow these steps:
1. state = GenericXLogStart(relation) — start construction of a generic WAL record for the given

relation.
2. page = GenericXLogRegisterBuffer(state, buffer, flags) — register a buffer to be modified

within the current generic WAL record. This function returns a pointer to a temporary copy of the
buffer's page, where modifications should be made. (Do not modify the buffer's contents directly.)
The third argument is a bit mask of flags applicable to the operation. Currently the only such flag is
GENERIC_XLOG_FULL_IMAGE, which indicates that a full-page image rather than a delta update should
be included in the WAL record. Typically this flag would be set if the page is new or has been rewritten
completely. GenericXLogRegisterBuffer can be repeated if the WAL-logged action needs to modify
multiple pages.

3. Apply modifications to the page images obtained in the previous step.
4. GenericXLogFinish(state) — apply the changes to the buffers and emit the generic WAL record.

WAL record construction can be canceled between any of the above steps by calling
GenericXLogAbort(state). This will discard all changes to the page image copies.

Please note the following points when using the generic WAL record facility:
• No direct modifications of buffers are allowed! All modifications must be done in copies acquired

from GenericXLogRegisterBuffer(). In other words, code that makes generic WAL records should
never call BufferGetPage() for itself. However, it remains the caller's responsibility to pin/unpin
and lock/unlock the buffers at appropriate times. Exclusive lock must be held on each target buffer
from before GenericXLogRegisterBuffer() until after GenericXLogFinish().

• Registrations of buffers (step 2) and modifications of page images (step 3) can be mixed freely, i.e.,
both steps may be repeated in any sequence. Keep in mind that buffers should be registered in the
same order in which locks are to be obtained on them during replay.

• The maximum number of buffers that can be registered for a generic WAL record is
MAX_GENERIC_XLOG_PAGES. An error will be thrown if this limit is exceeded.

• Generic WAL assumes that the pages to be modified have standard layout, and in particular that
there is no useful data between pd_lower and pd_upper.

• Since you are modifying copies of buffer pages, GenericXLogStart() does not start a
critical section. Thus, you can safely do memory allocation, error throwing, etc. between
GenericXLogStart() and GenericXLogFinish(). The only actual critical section is present inside
GenericXLogFinish(). There is no need to worry about calling GenericXLogAbort() during an
error exit, either.

• GenericXLogFinish() takes care of marking buffers dirty and setting their LSNs. You do not need
to do this explicitly.

• For unlogged relations, everything works the same except that no actual WAL record is emitted.
Thus, you typically do not need to do any explicit checks for unlogged relations.

• The generic WAL redo function will acquire exclusive locks to buffers in the same order as they
were registered. After redoing all changes, the locks will be released in the same order.

• If GENERIC_XLOG_FULL_IMAGE is not specified for a registered buffer, the generic WAL record
contains a delta between the old and the new page images. This delta is based on byte-by-byte

1993

Generic WAL Records

comparison. This is not very compact for the case of moving data within a page, and might be
improved in the future.

1994

Chapter 59. B-Tree Indexes
59.1. Introduction

Postgres Pro includes an implementation of the standard btree (multi-way balanced tree) index data
structure. Any data type that can be sorted into a well-defined linear order can be indexed by a btree
index. The only limitation is that an index entry cannot exceed approximately one-third of a page (after
TOAST compression, if applicable).

Because each btree operator class imposes a sort order on its data type, btree operator classes (or, really,
operator families) have come to be used as Postgres Pro's general representation and understanding
of sorting semantics. Therefore, they've acquired some features that go beyond what would be needed
just to support btree indexes, and parts of the system that are quite distant from the btree AM make
use of them.

59.2. Behavior of B-Tree Operator Classes
As shown in Table 35.3, a btree operator class must provide five comparison operators, <, <=, =, >= and
>. One might expect that <> should also be part of the operator class, but it is not, because it would
almost never be useful to use a <> WHERE clause in an index search. (For some purposes, the planner
treats <> as associated with a btree operator class; but it finds that operator via the = operator's negator
link, rather than from pg_amop.)

When several data types share near-identical sorting semantics, their operator classes can be grouped
into an operator family. Doing so is advantageous because it allows the planner to make deductions about
cross-type comparisons. Each operator class within the family should contain the single-type operators
(and associated support functions) for its input data type, while cross-type comparison operators and
support functions are “loose” in the family. It is recommendable that a complete set of cross-type
operators be included in the family, thus ensuring that the planner can represent any comparison
conditions that it deduces from transitivity.

There are some basic assumptions that a btree operator family must satisfy:

• An = operator must be an equivalence relation; that is, for all non-null values A, B, C of the data
type:

• A = A is true (reflexive law)

• if A = B, then B = A (symmetric law)

• if A = B and B = C, then A = C (transitive law)

• A < operator must be a strong ordering relation; that is, for all non-null values A, B, C:

• A < A is false (irreflexive law)

• if A < B and B < C, then A < C (transitive law)

• Furthermore, the ordering is total; that is, for all non-null values A, B:

• exactly one of A < B, A = B, and B < A is true (trichotomy law)

(The trichotomy law justifies the definition of the comparison support function, of course.)

The other three operators are defined in terms of = and < in the obvious way, and must act consistently
with them.

For an operator family supporting multiple data types, the above laws must hold when A, B, C are taken
from any data types in the family. The transitive laws are the trickiest to ensure, as in cross-type situations
they represent statements that the behaviors of two or three different operators are consistent. As an
example, it would not work to put float8 and numeric into the same operator family, at least not with
the current semantics that numeric values are converted to float8 for comparison to a float8. Because

1995

B-Tree Indexes

of the limited accuracy of float8, this means there are distinct numeric values that will compare equal
to the same float8 value, and thus the transitive law would fail.

Another requirement for a multiple-data-type family is that any implicit or binary-coercion casts that are
defined between data types included in the operator family must not change the associated sort ordering.

It should be fairly clear why a btree index requires these laws to hold within a single data type: without
them there is no ordering to arrange the keys with. Also, index searches using a comparison key of a
different data type require comparisons to behave sanely across two data types. The extensions to three
or more data types within a family are not strictly required by the btree index mechanism itself, but the
planner relies on them for optimization purposes.

59.3. B-Tree Support Functions
As shown in Table 35.9, btree defines one required and four optional support functions. The five user-
defined methods are:

order

For each combination of data types that a btree operator family provides comparison operators for, it
must provide a comparison support function, registered in pg_amproc with support function number 1
and amproclefttype/amprocrighttype equal to the left and right data types for the comparison (i.e.,
the same data types that the matching operators are registered with in pg_amop). The comparison
function must take two non-null values A and B and return an int32 value that is < 0, 0, or > 0 when
A < B, A = B, or A > B, respectively. A null result is disallowed: all values of the data type must be
comparable.

If the compared values are of a collatable data type, the appropriate collation OID will be passed to
the comparison support function, using the standard PG_GET_COLLATION() mechanism.

sortsupport

Optionally, a btree operator family may provide sort support function(s), registered under support
function number 2. These functions allow implementing comparisons for sorting purposes in a more
efficient way than naively calling the comparison support function. The APIs involved in this are
defined in src/include/utils/sortsupport.h.

in_range

Optionally, a btree operator family may provide in_range support function(s), registered under
support function number 3. These are not used during btree index operations; rather, they extend the
semantics of the operator family so that it can support window clauses containing the RANGE offset
PRECEDING and RANGE offset FOLLOWING frame bound types (see Section 4.2.8). Fundamentally, the
extra information provided is how to add or subtract an offset value in a way that is compatible
with the family's data ordering.

An in_range function must have the signature
in_range(val type1, base type1, offset type2, sub bool, less bool)
returns bool

val and base must be of the same type, which is one of the types supported by the operator family
(i.e., a type for which it provides an ordering). However, offset could be of a different type, which
might be one otherwise unsupported by the family. An example is that the built-in time_ops family
provides an in_range function that has offset of type interval. A family can provide in_range
functions for any of its supported types and one or more offset types. Each in_range function should
be entered in pg_amproc with amproclefttype equal to type1 and amprocrighttype equal to type2.

The essential semantics of an in_range function depend on the two Boolean flag parameters. It
should add or subtract base and offset, then compare val to the result, as follows:
• if !sub and !less, return val >= (base + offset)

1996

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/sortsupport.h;hb=HEAD

B-Tree Indexes

• if !sub and less, return val <= (base + offset)
• if sub and !less, return val >= (base - offset)
• if sub and less, return val <= (base - offset)
Before doing so, the function should check the sign of offset: if it is less than zero, raise error
ERRCODE_INVALID_PRECEDING_OR_FOLLOWING_SIZE (22013) with error text like “invalid preceding or
following size in window function”. (This is required by the SQL standard, although nonstandard
operator families might perhaps choose to ignore this restriction, since there seems to be little
semantic necessity for it.) This requirement is delegated to the in_range function so that the core
code needn't understand what “less than zero” means for a particular data type.

An additional expectation is that in_range functions should, if practical, avoid throwing an error if
base + offset or base - offset would overflow. The correct comparison result can be determined
even if that value would be out of the data type's range. Note that if the data type includes concepts
such as “infinity” or “NaN”, extra care may be needed to ensure that in_range's results agree with
the normal sort order of the operator family.

The results of the in_range function must be consistent with the sort ordering imposed by the
operator family. To be precise, given any fixed values of offset and sub, then:
• If in_range with less = true is true for some val1 and base, it must be true for every val2 <=

val1 with the same base.
• If in_range with less = true is false for some val1 and base, it must be false for every val2 >=

val1 with the same base.
• If in_range with less = true is true for some val and base1, it must be true for every base2 >=

base1 with the same val.
• If in_range with less = true is false for some val and base1, it must be false for every base2 <=

base1 with the same val.
Analogous statements with inverted conditions hold when less = false.

If the type being ordered (type1) is collatable, the appropriate collation OID will be passed to the
in_range function, using the standard PG_GET_COLLATION() mechanism.

in_range functions need not handle NULL inputs, and typically will be marked strict.

equalimage

Optionally, a btree operator family may provide equalimage (“equality implies image equality”)
support functions, registered under support function number 4. These functions allow the core code
to determine when it is safe to apply the btree deduplication optimization. Currently, equalimage
functions are only called when building or rebuilding an index.

An equalimage function must have the signature
equalimage(opcintype oid) returns bool

The return value is static information about an operator class and collation. Returning true indicates
that the order function for the operator class is guaranteed to only return 0 (“arguments are equal”)
when its A and B arguments are also interchangeable without any loss of semantic information.
Not registering an equalimage function or returning false indicates that this condition cannot be
assumed to hold.

The opcintype argument is the pg_type.oid of the data type that the operator class indexes. This is
a convenience that allows reuse of the same underlying equalimage function across operator classes.
If opcintype is a collatable data type, the appropriate collation OID will be passed to the equalimage
function, using the standard PG_GET_COLLATION() mechanism.

As far as the operator class is concerned, returning true indicates that deduplication is safe (or safe
for the collation whose OID was passed to its equalimage function). However, the core code will

1997

B-Tree Indexes

only deem deduplication safe for an index when every indexed column uses an operator class that
registers an equalimage function, and each function actually returns true when called.

Image equality is almost the same condition as simple bitwise equality. There is one subtle difference:
When indexing a varlena data type, the on-disk representation of two image equal datums may not
be bitwise equal due to inconsistent application of TOAST compression on input. Formally, when an
operator class's equalimage function returns true, it is safe to assume that the datum_image_eq() C
function will always agree with the operator class's order function (provided that the same collation
OID is passed to both the equalimage and order functions).

The core code is fundamentally unable to deduce anything about the “equality implies image equality”
status of an operator class within a multiple-data-type family based on details from other operator
classes in the same family. Also, it is not sensible for an operator family to register a cross-type
equalimage function, and attempting to do so will result in an error. This is because “equality
implies image equality” status does not just depend on sorting/equality semantics, which are more
or less defined at the operator family level. In general, the semantics that one particular data type
implements must be considered separately.

The convention followed by the operator classes included with the core PostgreSQL distribution is to
register a stock, generic equalimage function. Most operator classes register btequalimage(), which
indicates that deduplication is safe unconditionally. Operator classes for collatable data types such as
text register btvarstrequalimage(), which indicates that deduplication is safe with deterministic
collations. Best practice for third-party extensions is to register their own custom function to retain
control.

options

Optionally, a B-tree operator family may provide options (“operator class specific options”) support
functions, registered under support function number 5. These functions define a set of user-visible
parameters that control operator class behavior.

An options support function must have the signature
options(relopts local_relopts *) returns void

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Currently, no B-Tree operator class has an options support function. B-tree doesn't allow flexible
representation of keys like GiST, SP-GiST, GIN and BRIN do. So, options probably doesn't have much
application in the current B-tree index access method. Nevertheless, this support function was added
to B-tree for uniformity, and will probably find uses during further evolution of B-tree in PostgreSQL.

59.4. Implementation
This section covers B-Tree index implementation details that may be of use to advanced users.

59.4.1. B-Tree Structure
PostgreSQL B-Tree indexes are multi-level tree structures, where each level of the tree can be used as a
doubly-linked list of pages. A single metapage is stored in a fixed position at the start of the first segment
file of the index. All other pages are either leaf pages or internal pages. Leaf pages are the pages on
the lowest level of the tree. All other levels consist of internal pages. Each leaf page contains tuples
that point to table rows. Each internal page contains tuples that point to the next level down in the tree.
Typically, over 99% of all pages are leaf pages. Both internal pages and leaf pages use the standard page
format described in Section 65.6.

New leaf pages are added to a B-Tree index when an existing leaf page cannot fit an incoming tuple. A
page split operation makes room for items that originally belonged on the overflowing page by moving
a portion of the items to a new page. Page splits must also insert a new downlink to the new page in the

1998

B-Tree Indexes

parent page, which may cause the parent to split in turn. Page splits “cascade upwards” in a recursive
fashion. When the root page finally cannot fit a new downlink, a root page split operation takes place.
This adds a new level to the tree structure by creating a new root page that is one level above the
original root page.

59.4.2. Deduplication
A duplicate is a leaf page tuple (a tuple that points to a table row) where all indexed key columns have
values that match corresponding column values from at least one other leaf page tuple in the same
index. Duplicate tuples are quite common in practice. B-Tree indexes can use a special, space-efficient
representation for duplicates when an optional technique is enabled: deduplication.

Deduplication works by periodically merging groups of duplicate tuples together, forming a single
posting list tuple for each group. The column key value(s) only appear once in this representation. This
is followed by a sorted array of TIDs that point to rows in the table. This significantly reduces the storage
size of indexes where each value (or each distinct combination of column values) appears several times
on average. The latency of queries can be reduced significantly. Overall query throughput may increase
significantly. The overhead of routine index vacuuming may also be reduced significantly.

Note
B-Tree deduplication is just as effective with “duplicates” that contain a NULL value, even though
NULL values are never equal to each other according to the = member of any B-Tree operator
class. As far as any part of the implementation that understands the on-disk B-Tree structure is
concerned, NULL is just another value from the domain of indexed values.

The deduplication process occurs lazily, when a new item is inserted that cannot fit on an existing leaf
page. This prevents (or at least delays) leaf page splits. Unlike GIN posting list tuples, B-Tree posting
list tuples do not need to expand every time a new duplicate is inserted; they are merely an alternative
physical representation of the original logical contents of the leaf page. This design prioritizes consistent
performance with mixed read-write workloads. Most client applications will at least see a moderate
performance benefit from using deduplication. Deduplication is enabled by default.

CREATE INDEX and REINDEX apply deduplication to create posting list tuples, though the strategy they
use is slightly different. Each group of duplicate ordinary tuples encountered in the sorted input taken
from the table is merged into a posting list tuple before being added to the current pending leaf page.
Individual posting list tuples are packed with as many TIDs as possible. Leaf pages are written out in
the usual way, without any separate deduplication pass. This strategy is well-suited to CREATE INDEX
and REINDEX because they are once-off batch operations.

Write-heavy workloads that don't benefit from deduplication due to having few or no duplicate values in
indexes will incur a small, fixed performance penalty (unless deduplication is explicitly disabled). The
deduplicate_items storage parameter can be used to disable deduplication within individual indexes.
There is never any performance penalty with read-only workloads, since reading posting list tuples is
at least as efficient as reading the standard tuple representation. Disabling deduplication isn't usually
helpful.

B-Tree indexes are not directly aware that under MVCC, there might be multiple extant versions of the
same logical table row; to an index, each tuple is an independent object that needs its own index entry.
“Version duplicates” may sometimes accumulate and adversely affect query latency and throughput.
This typically occurs with UPDATE-heavy workloads where most individual updates cannot apply the HOT
optimization (often because at least one indexed column gets modified, necessitating a new set of index
tuple versions — one new tuple for each and every index). In effect, B-Tree deduplication ameliorates
index bloat caused by version churn. Note that even the tuples from a unique index are not necessarily
physically unique when stored on disk due to version churn. The deduplication optimization is selectively
applied within unique indexes. It targets those pages that appear to have version duplicates. The high
level goal is to give VACUUM more time to run before an “unnecessary” page split caused by version churn
can take place.

1999

B-Tree Indexes

Tip
A special heuristic is applied to determine whether a deduplication pass in a unique index should
take place. It can often skip straight to splitting a leaf page, avoiding a performance penalty
from wasting cycles on unhelpful deduplication passes. If you're concerned about the overhead
of deduplication, consider setting deduplicate_items = off selectively. Leaving deduplication
enabled in unique indexes has little downside.

Deduplication cannot be used in all cases due to implementation-level restrictions. Deduplication safety
is determined when CREATE INDEX or REINDEX is run.

Note that deduplication is deemed unsafe and cannot be used in the following cases involving
semantically significant differences among equal datums:

• text, varchar, and char cannot use deduplication when a nondeterministic collation is used. Case
and accent differences must be preserved among equal datums.

• numeric cannot use deduplication. Numeric display scale must be preserved among equal datums.
• jsonb cannot use deduplication, since the jsonb B-Tree operator class uses numeric internally.
• float4 and float8 cannot use deduplication. These types have distinct representations for -0 and

0, which are nevertheless considered equal. This difference must be preserved.

There is one further implementation-level restriction that may be lifted in a future version of PostgreSQL:

• Container types (such as composite types, arrays, or range types) cannot use deduplication.

There is one further implementation-level restriction that applies regardless of the operator class or
collation used:

• INCLUDE indexes can never use deduplication.

2000

Chapter 60. GiST Indexes
60.1. Introduction

GiST stands for Generalized Search Tree. It is a balanced, tree-structured access method, that acts as
a base template in which to implement arbitrary indexing schemes. B-trees, R-trees and many other
indexing schemes can be implemented in GiST.

One advantage of GiST is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from the University of California at Berkeley's GiST Indexing
Project web site and Marcel Kornacker's thesis, Access Methods for Next-Generation Database Systems.
The GiST implementation in Postgres Pro is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site.

60.2. Built-in Operator Classes
The core Postgres Pro distribution includes the GiST operator classes shown in Table 60.1. (Some of the
optional modules described in Appendix F provide additional GiST operator classes.)

Table 60.1. Built-in GiST Operator Classes

Name Indexed Data Type Indexable Operators Ordering Operators
box_ops box && &> &< &<| >> << <<|

<@ @> @ |&> |>> ~ ~=
<->

circle_ops circle && &> &< &<| >> << <<|
<@ @> @ |&> |>> ~ ~=

<->

inet_ops inet, cidr && >> >>= > >= <> << <<=
< <= =

point_ops point >> >^ << <@ <@ <@ <^ ~= <->

poly_ops polygon && &> &< &<| >> << <<|
<@ @> @ |&> |>> ~ ~=

<->

range_ops any range type && &> &< >> << <@ -|- =
@> @>

tsquery_ops tsquery <@ @>
tsvector_ops tsvector @@

For historical reasons, the inet_ops operator class is not the default class for types inet and cidr. To
use it, mention the class name in CREATE INDEX, for example

CREATE INDEX ON my_table USING GIST (my_inet_column inet_ops);

60.3. Extensibility
Traditionally, implementing a new index access method meant a lot of difficult work. It was necessary to
understand the inner workings of the database, such as the lock manager and Write-Ahead Log. The GiST
interface has a high level of abstraction, requiring the access method implementer only to implement
the semantics of the data type being accessed. The GiST layer itself takes care of concurrency, logging
and searching the tree structure.

This extensibility should not be confused with the extensibility of the other standard search trees in terms
of the data they can handle. For example, Postgres Pro supports extensible B-trees and hash indexes.
That means that you can use Postgres Pro to build a B-tree or hash over any data type you want. But B-
trees only support range predicates (<, =, >), and hash indexes only support equality queries.

2001

http://gist.cs.berkeley.edu/
http://www.sai.msu.su/~megera/postgres/gist/papers/concurrency/access-methods-for-next-generation.pdf.gz
http://www.sai.msu.su/~megera/postgres/gist/

GiST Indexes

So if you index, say, an image collection with a Postgres Pro B-tree, you can only issue queries such as “is
imagex equal to imagey”, “is imagex less than imagey” and “is imagex greater than imagey”. Depending
on how you define “equals”, “less than” and “greater than” in this context, this could be useful. However,
by using a GiST based index, you could create ways to ask domain-specific questions, perhaps “find all
images of horses” or “find all over-exposed images”.

All it takes to get a GiST access method up and running is to implement several user-defined methods,
which define the behavior of keys in the tree. Of course these methods have to be pretty fancy to support
fancy queries, but for all the standard queries (B-trees, R-trees, etc.) they're relatively straightforward.
In short, GiST combines extensibility along with generality, code reuse, and a clean interface.

There are five methods that an index operator class for GiST must provide, and five that are optional.
Correctness of the index is ensured by proper implementation of the same, consistent and union
methods, while efficiency (size and speed) of the index will depend on the penalty and picksplit
methods. Two optional methods are compress and decompress, which allow an index to have internal
tree data of a different type than the data it indexes. The leaves are to be of the indexed data type, while
the other tree nodes can be of any C struct (but you still have to follow Postgres Pro data type rules
here, see about varlena for variable sized data). If the tree's internal data type exists at the SQL level,
the STORAGE option of the CREATE OPERATOR CLASS command can be used. The optional eighth method
is distance, which is needed if the operator class wishes to support ordered scans (nearest-neighbor
searches). The optional ninth method fetch is needed if the operator class wishes to support index-only
scans, except when the compress method is omitted. The optional tenth method options is needed if
the operator class provides the user-specified parameters.

consistent

Given an index entry p and a query value q, this function determines whether the index entry is
“consistent” with the query; that is, could the predicate “indexed_column indexable_operator q”
be true for any row represented by the index entry? For a leaf index entry this is equivalent to testing
the indexable condition, while for an internal tree node this determines whether it is necessary to
scan the subtree of the index represented by the tree node. When the result is true, a recheck flag
must also be returned. This indicates whether the predicate is certainly true or only possibly true.
If recheck = false then the index has tested the predicate condition exactly, whereas if recheck
= true the row is only a candidate match. In that case the system will automatically evaluate the
indexable_operator against the actual row value to see if it is really a match. This convention allows
GiST to support both lossless and lossy index structures.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_consistent(internal, data_type, smallint, oid,
 internal)
RETURNS bool
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_consistent);

Datum
my_consistent(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 bool *recheck = (bool *) PG_GETARG_POINTER(4);
 data_type *key = DatumGetDataType(entry->key);
 bool retval;

 /*

2002

GiST Indexes

 * determine return value as a function of strategy, key and query.
 *
 * Use GIST_LEAF(entry) to know where you're called in the index tree,
 * which comes handy when supporting the = operator for example (you could
 * check for non empty union() in non-leaf nodes and equality in leaf
 * nodes).
 */

 recheck = true; / or false if check is exact */

 PG_RETURN_BOOL(retval);
}

Here, key is an element in the index and query the value being looked up in the index. The
StrategyNumber parameter indicates which operator of your operator class is being applied — it
matches one of the operator numbers in the CREATE OPERATOR CLASS command.

Depending on which operators you have included in the class, the data type of query could vary with
the operator, since it will be whatever type is on the righthand side of the operator, which might
be different from the indexed data type appearing on the lefthand side. (The above code skeleton
assumes that only one type is possible; if not, fetching the query argument value would have to
depend on the operator.) It is recommended that the SQL declaration of the consistent function
use the opclass's indexed data type for the query argument, even though the actual type might be
something else depending on the operator.

union

This method consolidates information in the tree. Given a set of entries, this function generates a
new index entry that represents all the given entries.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_union(internal, internal)
RETURNS storage_type
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_union);

Datum
my_union(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GISTENTRY *ent = entryvec->vector;
 data_type *out,
 *tmp,
 *old;
 int numranges,
 i = 0;

 numranges = entryvec->n;
 tmp = DatumGetDataType(ent[0].key);
 out = tmp;

 if (numranges == 1)
 {
 out = data_type_deep_copy(tmp);

 PG_RETURN_DATA_TYPE_P(out);
 }

2003

GiST Indexes

 for (i = 1; i < numranges; i++)
 {
 old = out;
 tmp = DatumGetDataType(ent[i].key);
 out = my_union_implementation(out, tmp);
 }

 PG_RETURN_DATA_TYPE_P(out);
}

As you can see, in this skeleton we're dealing with a data type where union(X, Y, Z) =
union(union(X, Y), Z). It's easy enough to support data types where this is not the case, by
implementing the proper union algorithm in this GiST support method.

The result of the union function must be a value of the index's storage type, whatever that is (it
might or might not be different from the indexed column's type). The union function should return
a pointer to newly palloc()ed memory. You can't just return the input value as-is, even if there is
no type change.

As shown above, the union function's first internal argument is actually a GistEntryVector pointer.
The second argument is a pointer to an integer variable, which can be ignored. (It used to be required
that the union function store the size of its result value into that variable, but this is no longer
necessary.)

compress

Converts a data item into a format suitable for physical storage in an index page. If the compress
method is omitted, data items are stored in the index without modification.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_compress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *retval;

 if (entry->leafkey)
 {
 /* replace entry->key with a compressed version */
 compressed_data_type *compressed_data =
 palloc(sizeof(compressed_data_type));

 /* fill *compressed_data from entry->key ... */

 retval = palloc(sizeof(GISTENTRY));
 gistentryinit(*retval, PointerGetDatum(compressed_data),
 entry->rel, entry->page, entry->offset, FALSE);
 }
 else
 {
 /* typically we needn't do anything with non-leaf entries */

2004

GiST Indexes

 retval = entry;
 }

 PG_RETURN_POINTER(retval);
}

You have to adapt compressed_data_type to the specific type you're converting to in order to
compress your leaf nodes, of course.

decompress

Converts the stored representation of a data item into a format that can be manipulated by the other
GiST methods in the operator class. If the decompress method is omitted, it is assumed that the other
GiST methods can work directly on the stored data format. (decompress is not necessarily the reverse
of the compress method; in particular, if compress is lossy then it's impossible for decompress to
exactly reconstruct the original data. decompress is not necessarily equivalent to fetch, either, since
the other GiST methods might not require full reconstruction of the data.)

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_decompress(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_decompress);

Datum
my_decompress(PG_FUNCTION_ARGS)
{
 PG_RETURN_POINTER(PG_GETARG_POINTER(0));
}

The above skeleton is suitable for the case where no decompression is needed. (But, of course,
omitting the method altogether is even easier, and is recommended in such cases.)

penalty

Returns a value indicating the “cost” of inserting the new entry into a particular branch of the tree.
Items will be inserted down the path of least penalty in the tree. Values returned by penalty should
be non-negative. If a negative value is returned, it will be treated as zero.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_penalty(internal, internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT; -- in some cases penalty functions need not be strict

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_penalty);

Datum
my_penalty(PG_FUNCTION_ARGS)
{
 GISTENTRY *origentry = (GISTENTRY *) PG_GETARG_POINTER(0);
 GISTENTRY *newentry = (GISTENTRY *) PG_GETARG_POINTER(1);
 float *penalty = (float *) PG_GETARG_POINTER(2);
 data_type *orig = DatumGetDataType(origentry->key);
 data_type *new = DatumGetDataType(newentry->key);

 *penalty = my_penalty_implementation(orig, new);

2005

GiST Indexes

 PG_RETURN_POINTER(penalty);
}

For historical reasons, the penalty function doesn't just return a float result; instead it has to store
the value at the location indicated by the third argument. The return value per se is ignored, though
it's conventional to pass back the address of that argument.

The penalty function is crucial to good performance of the index. It'll get used at insertion time to
determine which branch to follow when choosing where to add the new entry in the tree. At query
time, the more balanced the index, the quicker the lookup.

picksplit

When an index page split is necessary, this function decides which entries on the page are to stay
on the old page, and which are to move to the new page.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_picksplit(internal, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_picksplit);

Datum
my_picksplit(PG_FUNCTION_ARGS)
{
 GistEntryVector *entryvec = (GistEntryVector *) PG_GETARG_POINTER(0);
 GIST_SPLITVEC *v = (GIST_SPLITVEC *) PG_GETARG_POINTER(1);
 OffsetNumber maxoff = entryvec->n - 1;
 GISTENTRY *ent = entryvec->vector;
 int i,
 nbytes;
 OffsetNumber *left,
 *right;
 data_type *tmp_union;
 data_type *unionL;
 data_type *unionR;
 GISTENTRY **raw_entryvec;

 maxoff = entryvec->n - 1;
 nbytes = (maxoff + 1) * sizeof(OffsetNumber);

 v->spl_left = (OffsetNumber *) palloc(nbytes);
 left = v->spl_left;
 v->spl_nleft = 0;

 v->spl_right = (OffsetNumber *) palloc(nbytes);
 right = v->spl_right;
 v->spl_nright = 0;

 unionL = NULL;
 unionR = NULL;

 /* Initialize the raw entry vector. */
 raw_entryvec = (GISTENTRY **) malloc(entryvec->n * sizeof(void *));
 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 raw_entryvec[i] = &(entryvec->vector[i]);

2006

GiST Indexes

 for (i = FirstOffsetNumber; i <= maxoff; i = OffsetNumberNext(i))
 {
 int real_index = raw_entryvec[i] - entryvec->vector;

 tmp_union = DatumGetDataType(entryvec->vector[real_index].key);
 Assert(tmp_union != NULL);

 /*
 * Choose where to put the index entries and update unionL and unionR
 * accordingly. Append the entries to either v->spl_left or
 * v->spl_right, and care about the counters.
 */

 if (my_choice_is_left(unionL, curl, unionR, curr))
 {
 if (unionL == NULL)
 unionL = tmp_union;
 else
 unionL = my_union_implementation(unionL, tmp_union);

 *left = real_index;
 ++left;
 ++(v->spl_nleft);
 }
 else
 {
 /*
 * Same on the right
 */
 }
 }

 v->spl_ldatum = DataTypeGetDatum(unionL);
 v->spl_rdatum = DataTypeGetDatum(unionR);
 PG_RETURN_POINTER(v);
}

Notice that the picksplit function's result is delivered by modifying the passed-in v structure. The
return value per se is ignored, though it's conventional to pass back the address of v.

Like penalty, the picksplit function is crucial to good performance of the index. Designing suitable
penalty and picksplit implementations is where the challenge of implementing well-performing
GiST indexes lies.

same

Returns true if two index entries are identical, false otherwise. (An “index entry” is a value of the
index's storage type, not necessarily the original indexed column's type.)

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_same(storage_type, storage_type, internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_same);

Datum
my_same(PG_FUNCTION_ARGS)

2007

GiST Indexes

{
 prefix_range *v1 = PG_GETARG_PREFIX_RANGE_P(0);
 prefix_range *v2 = PG_GETARG_PREFIX_RANGE_P(1);
 bool *result = (bool *) PG_GETARG_POINTER(2);

 *result = my_eq(v1, v2);
 PG_RETURN_POINTER(result);
}

For historical reasons, the same function doesn't just return a Boolean result; instead it has to store
the flag at the location indicated by the third argument. The return value per se is ignored, though
it's conventional to pass back the address of that argument.

distance

Given an index entry p and a query value q, this function determines the index entry's “distance”
from the query value. This function must be supplied if the operator class contains any ordering
operators. A query using the ordering operator will be implemented by returning index entries with
the smallest “distance” values first, so the results must be consistent with the operator's semantics.
For a leaf index entry the result just represents the distance to the index entry; for an internal tree
node, the result must be the smallest distance that any child entry could have.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_distance(internal, data_type, smallint, oid, internal)
RETURNS float8
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

And the matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_distance);

Datum
my_distance(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 data_type *query = PG_GETARG_DATA_TYPE_P(1);
 StrategyNumber strategy = (StrategyNumber) PG_GETARG_UINT16(2);
 /* Oid subtype = PG_GETARG_OID(3); */
 /* bool *recheck = (bool *) PG_GETARG_POINTER(4); */
 data_type *key = DatumGetDataType(entry->key);
 double retval;

 /*
 * determine return value as a function of strategy, key and query.
 */

 PG_RETURN_FLOAT8(retval);
}

The arguments to the distance function are identical to the arguments of the consistent function.

Some approximation is allowed when determining the distance, so long as the result is never greater
than the entry's actual distance. Thus, for example, distance to a bounding box is usually sufficient
in geometric applications. For an internal tree node, the distance returned must not be greater than
the distance to any of the child nodes. If the returned distance is not exact, the function must set
*recheck to true. (This is not necessary for internal tree nodes; for them, the calculation is always
assumed to be inexact.) In this case the executor will calculate the accurate distance after fetching
the tuple from the heap, and reorder the tuples if necessary.

If the distance function returns *recheck = true for any leaf node, the original ordering operator's
return type must be float8 or float4, and the distance function's result values must be comparable

2008

GiST Indexes

to those of the original ordering operator, since the executor will sort using both distance function
results and recalculated ordering-operator results. Otherwise, the distance function's result values
can be any finite float8 values, so long as the relative order of the result values matches the order
returned by the ordering operator. (Infinity and minus infinity are used internally to handle cases
such as nulls, so it is not recommended that distance functions return these values.)

fetch

Converts the compressed index representation of a data item into the original data type, for index-
only scans. The returned data must be an exact, non-lossy copy of the originally indexed value.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_fetch(internal)
RETURNS internal
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The argument is a pointer to a GISTENTRY struct. On entry, its key field contains a non-NULL leaf
datum in compressed form. The return value is another GISTENTRY struct, whose key field contains
the same datum in its original, uncompressed form. If the opclass's compress function does nothing
for leaf entries, the fetch method can return the argument as-is. Or, if the opclass does not have a
compress function, the fetch method can be omitted as well, since it would necessarily be a no-op.

The matching code in the C module could then follow this skeleton:
PG_FUNCTION_INFO_V1(my_fetch);

Datum
my_fetch(PG_FUNCTION_ARGS)
{
 GISTENTRY *entry = (GISTENTRY *) PG_GETARG_POINTER(0);
 input_data_type *in = DatumGetPointer(entry->key);
 fetched_data_type *fetched_data;
 GISTENTRY *retval;

 retval = palloc(sizeof(GISTENTRY));
 fetched_data = palloc(sizeof(fetched_data_type));

 /*
 * Convert 'fetched_data' into the a Datum of the original datatype.
 */

 /* fill *retval from fetched_data. */
 gistentryinit(*retval, PointerGetDatum(converted_datum),
 entry->rel, entry->page, entry->offset, FALSE);

 PG_RETURN_POINTER(retval);
}

If the compress method is lossy for leaf entries, the operator class cannot support index-only scans,
and must not define a fetch function.

options

Allows definition of user-visible parameters that control operator class behavior.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

2009

GiST Indexes

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

An example implementation of my_options() and parameters use from other support functions are
given below:
typedef enum MyEnumType
{
 MY_ENUM_ON,
 MY_ENUM_OFF,
 MY_ENUM_AUTO
} MyEnumType;

typedef struct
{
 int32 vl_len_; /* varlena header (do not touch directly!) */
 int int_param; /* integer parameter */
 double real_param; /* real parameter */
 MyEnumType enum_param; /* enum parameter */
 int str_param; /* string parameter */
} MyOptionsStruct;

/* String representation of enum values */
static relopt_enum_elt_def myEnumValues[] =
{
 {"on", MY_ENUM_ON},
 {"off", MY_ENUM_OFF},
 {"auto", MY_ENUM_AUTO},
 {(const char *) NULL} /* list terminator */
};

static char *str_param_default = "default";

/*
 * Sample validator: checks that string is not longer than 8 bytes.
 */
static void
validate_my_string_relopt(const char *value)
{
 if (strlen(value) > 8)
 ereport(ERROR,
 (errcode(ERRCODE_INVALID_PARAMETER_VALUE),
 errmsg("str_param must be at most 8 bytes")));
}

/*
 * Sample filler: switches characters to lower case.
 */
static Size
fill_my_string_relopt(const char *value, void *ptr)
{
 char *tmp = str_tolower(value, strlen(value), DEFAULT_COLLATION_OID);
 int len = strlen(tmp);

 if (ptr)
 strcpy((char *) ptr, tmp);

 pfree(tmp);

2010

GiST Indexes

 return len + 1;
}

PG_FUNCTION_INFO_V1(my_options);

Datum
my_options(PG_FUNCTION_ARGS)
{
 local_relopts *relopts = (local_relopts *) PG_GETARG_POINTER(0);

 init_local_reloptions(relopts, sizeof(MyOptionsStruct));
 add_local_int_reloption(relopts, "int_param", "integer parameter",
 100, 0, 1000000,
 offsetof(MyOptionsStruct, int_param));
 add_local_real_reloption(relopts, "real_param", "real parameter",
 1.0, 0.0, 1000000.0,
 offsetof(MyOptionsStruct, real_param));
 add_local_enum_reloption(relopts, "enum_param", "enum parameter",
 myEnumValues, MY_ENUM_ON,
 "Valid values are: \"on\", \"off\" and \"auto\".",
 offsetof(MyOptionsStruct, enum_param));
 add_local_string_reloption(relopts, "str_param", "string parameter",
 str_param_default,
 &validate_my_string_relopt,
 &fill_my_string_relopt,
 offsetof(MyOptionsStruct, str_param));

 PG_RETURN_VOID();
}

PG_FUNCTION_INFO_V1(my_compress);

Datum
my_compress(PG_FUNCTION_ARGS)
{
 int int_param = 100;
 double real_param = 1.0;
 MyEnumType enum_param = MY_ENUM_ON;
 char *str_param = str_param_default;

 /*
 * Normally, when opclass contains 'options' method, then options are always
 * passed to support functions. However, if you add 'options' method to
 * existing opclass, previously defined indexes have no options, so the
 * check is required.
 */
 if (PG_HAS_OPCLASS_OPTIONS())
 {
 MyOptionsStruct *options = (MyOptionsStruct *) PG_GET_OPCLASS_OPTIONS();

 int_param = options->int_param;
 real_param = options->real_param;
 enum_param = options->enum_param;
 str_param = GET_STRING_RELOPTION(options, str_param);
 }

 /* the rest implementation of support function */
}

2011

GiST Indexes

Since the representation of the key in GiST is flexible, it may depend on user-specified parameters.
For instance, the length of key signature may be specified. See gtsvector_options() for example.

All the GiST support methods are normally called in short-lived memory contexts; that is,
CurrentMemoryContext will get reset after each tuple is processed. It is therefore not very important to
worry about pfree'ing everything you palloc. However, in some cases it's useful for a support method to
cache data across repeated calls. To do that, allocate the longer-lived data in fcinfo->flinfo->fn_mcxt,
and keep a pointer to it in fcinfo->flinfo->fn_extra. Such data will survive for the life of the index
operation (e.g., a single GiST index scan, index build, or index tuple insertion). Be careful to pfree the
previous value when replacing a fn_extra value, or the leak will accumulate for the duration of the
operation.

60.4. Implementation
60.4.1. GiST Buffering Build

Building large GiST indexes by simply inserting all the tuples tends to be slow, because if the index
tuples are scattered across the index and the index is large enough to not fit in cache, the insertions
need to perform a lot of random I/O. Beginning in version 9.2, PostgreSQL supports a more efficient
method to build GiST indexes based on buffering, which can dramatically reduce the number of random
I/Os needed for non-ordered data sets. For well-ordered data sets the benefit is smaller or non-existent,
because only a small number of pages receive new tuples at a time, and those pages fit in cache even
if the index as whole does not.

However, buffering index build needs to call the penalty function more often, which consumes some
extra CPU resources. Also, the buffers used in the buffering build need temporary disk space, up to the
size of the resulting index. Buffering can also influence the quality of the resulting index, in both positive
and negative directions. That influence depends on various factors, like the distribution of the input data
and the operator class implementation.

By default, a GiST index build switches to the buffering method when the index size reaches
effective_cache_size. It can be manually turned on or off by the buffering parameter to the CREATE
INDEX command. The default behavior is good for most cases, but turning buffering off might speed up
the build somewhat if the input data is ordered.

60.5. Examples
The Postgres Pro core system currently provides text search support (indexing for tsvector and
tsquery) as well as R-Tree equivalent functionality for some of the built-in geometric data types. The
following contrib modules also contain GiST operator classes:

btree_gist

B-tree equivalent functionality for several data types

cube

Indexing for multidimensional cubes

hstore

Module for storing (key, value) pairs

intarray

RD-Tree for one-dimensional array of int4 values

ltree

Indexing for tree-like structures

2012

GiST Indexes

pg_trgm

Text similarity using trigram matching

seg

Indexing for “float ranges”

2013

Chapter 61. SP-GiST Indexes
61.1. Introduction

SP-GiST is an abbreviation for space-partitioned GiST. SP-GiST supports partitioned search trees, which
facilitate development of a wide range of different non-balanced data structures, such as quad-trees, k-
d trees, and radix trees (tries). The common feature of these structures is that they repeatedly divide
the search space into partitions that need not be of equal size. Searches that are well matched to the
partitioning rule can be very fast.

These popular data structures were originally developed for in-memory usage. In main memory, they
are usually designed as a set of dynamically allocated nodes linked by pointers. This is not suitable for
direct storing on disk, since these chains of pointers can be rather long which would require too many
disk accesses. In contrast, disk-based data structures should have a high fanout to minimize I/O. The
challenge addressed by SP-GiST is to map search tree nodes to disk pages in such a way that a search
need access only a few disk pages, even if it traverses many nodes.

Like GiST, SP-GiST is meant to allow the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert.

Some of the information here is derived from Purdue University's SP-GiST Indexing Project web site. The
SP-GiST implementation in Postgres Pro is primarily maintained by Teodor Sigaev and Oleg Bartunov,
and there is more information on their web site.

61.2. Built-in Operator Classes
The core Postgres Pro distribution includes the SP-GiST operator classes shown in Table 61.1.

Table 61.1. Built-in SP-GiST Operator Classes

Name Indexed Data Type Indexable Operators Ordering Operators
kd_point_ops point << <@ <^ >> >^ ~= <->

quad_point_ops point << <@ <^ >> >^ ~= <->

range_ops any range type && &< &> -|- << <@ = >>
@>

box_ops box << &< && &> >> ~= @> <@
&<| <<| |>> |&>

<->

poly_ops polygon << &< && &> >> ~= @> <@
&<| <<| |>> |&>

<->

text_ops text < <= = > >= ~<=~ ~<~
~>=~ ~>~ ^@

inet_ops inet, cidr && >> >>= > >= <> << <<=
< <= =

Of the two operator classes for type point, quad_point_ops is the default. kd_point_ops supports the
same operators but uses a different index data structure that may offer better performance in some
applications.

The quad_point_ops, kd_point_ops and poly_ops operator classes support the <-> ordering operator,
which enables the k-nearest neighbor (k-NN) search over indexed point or polygon data sets.

61.3. Extensibility
SP-GiST offers an interface with a high level of abstraction, requiring the access method developer to
implement only methods specific to a given data type. The SP-GiST core is responsible for efficient disk
mapping and searching the tree structure. It also takes care of concurrency and logging considerations.

2014

https://www.cs.purdue.edu/spgist/
http://www.sai.msu.su/~megera/wiki/spgist_dev

SP-GiST Indexes

Leaf tuples of an SP-GiST tree contain values of the same data type as the indexed column. Leaf tuples
at the root level will always contain the original indexed data value, but leaf tuples at lower levels might
contain only a compressed representation, such as a suffix. In that case the operator class support
functions must be able to reconstruct the original value using information accumulated from the inner
tuples that are passed through to reach the leaf level.

Inner tuples are more complex, since they are branching points in the search tree. Each inner tuple
contains a set of one or more nodes, which represent groups of similar leaf values. A node contains a
downlink that leads either to another, lower-level inner tuple, or to a short list of leaf tuples that all lie
on the same index page. Each node normally has a label that describes it; for example, in a radix tree
the node label could be the next character of the string value. (Alternatively, an operator class can omit
the node labels, if it works with a fixed set of nodes for all inner tuples; see Section 61.4.2.) Optionally,
an inner tuple can have a prefix value that describes all its members. In a radix tree this could be the
common prefix of the represented strings. The prefix value is not necessarily really a prefix, but can be
any data needed by the operator class; for example, in a quad-tree it can store the central point that
the four quadrants are measured with respect to. A quad-tree inner tuple would then also contain four
nodes corresponding to the quadrants around this central point.

Some tree algorithms require knowledge of level (or depth) of the current tuple, so the SP-GiST core
provides the possibility for operator classes to manage level counting while descending the tree. There
is also support for incrementally reconstructing the represented value when that is needed, and for
passing down additional data (called traverse values) during a tree descent.

Note
The SP-GiST core code takes care of null entries. Although SP-GiST indexes do store entries for
nulls in indexed columns, this is hidden from the index operator class code: no null index entries
or search conditions will ever be passed to the operator class methods. (It is assumed that SP-
GiST operators are strict and so cannot succeed for null values.) Null values are therefore not
discussed further here.

There are five user-defined methods that an index operator class for SP-GiST must provide, and two are
optional. All five mandatory methods follow the convention of accepting two internal arguments, the
first of which is a pointer to a C struct containing input values for the support method, while the second
argument is a pointer to a C struct where output values must be placed. Four of the mandatory methods
just return void, since all their results appear in the output struct; but leaf_consistent returns a
boolean result. The methods must not modify any fields of their input structs. In all cases, the output
struct is initialized to zeroes before calling the user-defined method. The optional sixth method compress
accepts a datum to be indexed as the only argument and returns a value suitable for physical storage
in a leaf tuple. The optional seventh method options accepts an internal pointer to a C struct, where
opclass-specific parameters should be placed, and returns void.

The five mandatory user-defined methods are:

config

Returns static information about the index implementation, including the data type OIDs of the prefix
and node label data types.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_config(internal, internal) RETURNS void ...

The first argument is a pointer to a spgConfigIn C struct, containing input data for the function. The
second argument is a pointer to a spgConfigOut C struct, which the function must fill with result data.

typedef struct spgConfigIn
{
 Oid attType; /* Data type to be indexed */

2015

SP-GiST Indexes

} spgConfigIn;

typedef struct spgConfigOut
{
 Oid prefixType; /* Data type of inner-tuple prefixes */
 Oid labelType; /* Data type of inner-tuple node labels */
 Oid leafType; /* Data type of leaf-tuple values */
 bool canReturnData; /* Opclass can reconstruct original data */
 bool longValuesOK; /* Opclass can cope with values > 1 page */
} spgConfigOut;

attType is passed in order to support polymorphic index operator classes; for ordinary fixed-data-
type operator classes, it will always have the same value and so can be ignored.

For operator classes that do not use prefixes, prefixType can be set to VOIDOID. Likewise, for
operator classes that do not use node labels, labelType can be set to VOIDOID. canReturnData should
be set true if the operator class is capable of reconstructing the originally-supplied index value.
longValuesOK should be set true only when the attType is of variable length and the operator class
is capable of segmenting long values by repeated suffixing (see Section 61.4.1).

leafType is typically the same as attType. For the reasons of backward compatibility, method
config can leave leafType uninitialized; that would give the same effect as setting leafType equal
to attType. When attType and leafType are different, then optional method compress must be
provided. Method compress is responsible for transformation of datums to be indexed from attType
to leafType. Note: both consistent functions will get scankeys unchanged, without transformation
using compress.

choose

Chooses a method for inserting a new value into an inner tuple.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_choose(internal, internal) RETURNS void ...

The first argument is a pointer to a spgChooseIn C struct, containing input data for the function. The
second argument is a pointer to a spgChooseOut C struct, which the function must fill with result data.

typedef struct spgChooseIn
{
 Datum datum; /* original datum to be indexed */
 Datum leafDatum; /* current datum to be stored at leaf */
 int level; /* current level (counting from zero) */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */
} spgChooseIn;

typedef enum spgChooseResultType
{
 spgMatchNode = 1, /* descend into existing node */
 spgAddNode, /* add a node to the inner tuple */
 spgSplitTuple /* split inner tuple (change its prefix) */
} spgChooseResultType;

typedef struct spgChooseOut
{

2016

SP-GiST Indexes

 spgChooseResultType resultType; /* action code, see above */
 union
 {
 struct /* results for spgMatchNode */
 {
 int nodeN; /* descend to this node (index from 0) */
 int levelAdd; /* increment level by this much */
 Datum restDatum; /* new leaf datum */
 } matchNode;
 struct /* results for spgAddNode */
 {
 Datum nodeLabel; /* new node's label */
 int nodeN; /* where to insert it (index from 0) */
 } addNode;
 struct /* results for spgSplitTuple */
 {
 /* Info to form new upper-level inner tuple with one child tuple */
 bool prefixHasPrefix; /* tuple should have a prefix? */
 Datum prefixPrefixDatum; /* if so, its value */
 int prefixNNodes; /* number of nodes */
 Datum *prefixNodeLabels; /* their labels (or NULL for
 * no labels) */
 int childNodeN; /* which node gets child tuple */

 /* Info to form new lower-level inner tuple with all old nodes */
 bool postfixHasPrefix; /* tuple should have a prefix? */
 Datum postfixPrefixDatum; /* if so, its value */
 } splitTuple;
 } result;
} spgChooseOut;

datum is the original datum of spgConfigIn.attType type that was to be inserted into the index.
leafDatum is a value of spgConfigOut.leafType type, which is initially a result of method compress
applied to datum when method compress is provided, or the same value as datum otherwise.
leafDatum can change at lower levels of the tree if the choose or picksplit methods change it.
When the insertion search reaches a leaf page, the current value of leafDatum is what will be stored
in the newly created leaf tuple. level is the current inner tuple's level, starting at zero for the root
level. allTheSame is true if the current inner tuple is marked as containing multiple equivalent nodes
(see Section 61.4.3). hasPrefix is true if the current inner tuple contains a prefix; if so, prefixDatum
is its value. nNodes is the number of child nodes contained in the inner tuple, and nodeLabels is an
array of their label values, or NULL if there are no labels.

The choose function can determine either that the new value matches one of the existing child nodes,
or that a new child node must be added, or that the new value is inconsistent with the tuple prefix
and so the inner tuple must be split to create a less restrictive prefix.

If the new value matches one of the existing child nodes, set resultType to spgMatchNode. Set nodeN
to the index (from zero) of that node in the node array. Set levelAdd to the increment in level caused
by descending through that node, or leave it as zero if the operator class does not use levels. Set
restDatum to equal leafDatum if the operator class does not modify datums from one level to the
next, or otherwise set it to the modified value to be used as leafDatum at the next level.

If a new child node must be added, set resultType to spgAddNode. Set nodeLabel to the label to
be used for the new node, and set nodeN to the index (from zero) at which to insert the node in the
node array. After the node has been added, the choose function will be called again with the modified
inner tuple; that call should result in an spgMatchNode result.

If the new value is inconsistent with the tuple prefix, set resultType to spgSplitTuple. This
action moves all the existing nodes into a new lower-level inner tuple, and replaces the existing

2017

SP-GiST Indexes

inner tuple with a tuple having a single downlink pointing to the new lower-level inner tuple.
Set prefixHasPrefix to indicate whether the new upper tuple should have a prefix, and if so set
prefixPrefixDatum to the prefix value. This new prefix value must be sufficiently less restrictive
than the original to accept the new value to be indexed. Set prefixNNodes to the number of nodes
needed in the new tuple, and set prefixNodeLabels to a palloc'd array holding their labels, or to
NULL if node labels are not required. Note that the total size of the new upper tuple must be no more
than the total size of the tuple it is replacing; this constrains the lengths of the new prefix and new
labels. Set childNodeN to the index (from zero) of the node that will downlink to the new lower-level
inner tuple. Set postfixHasPrefix to indicate whether the new lower-level inner tuple should have
a prefix, and if so set postfixPrefixDatum to the prefix value. The combination of these two prefixes
and the downlink node's label (if any) must have the same meaning as the original prefix, because
there is no opportunity to alter the node labels that are moved to the new lower-level tuple, nor to
change any child index entries. After the node has been split, the choose function will be called again
with the replacement inner tuple. That call may return an spgAddNode result, if no suitable node
was created by the spgSplitTuple action. Eventually choose must return spgMatchNode to allow the
insertion to descend to the next level.

picksplit

Decides how to create a new inner tuple over a set of leaf tuples.

The SQL declaration of the function must look like this:

CREATE FUNCTION my_picksplit(internal, internal) RETURNS void ...

The first argument is a pointer to a spgPickSplitIn C struct, containing input data for the function.
The second argument is a pointer to a spgPickSplitOut C struct, which the function must fill with
result data.

typedef struct spgPickSplitIn
{
 int nTuples; /* number of leaf tuples */
 Datum *datums; /* their datums (array of length nTuples) */
 int level; /* current level (counting from zero) */
} spgPickSplitIn;

typedef struct spgPickSplitOut
{
 bool hasPrefix; /* new inner tuple should have a prefix? */
 Datum prefixDatum; /* if so, its value */

 int nNodes; /* number of nodes for new inner tuple */
 Datum *nodeLabels; /* their labels (or NULL for no labels) */

 int *mapTuplesToNodes; /* node index for each leaf tuple */
 Datum *leafTupleDatums; /* datum to store in each new leaf tuple */
} spgPickSplitOut;

nTuples is the number of leaf tuples provided. datums is an array of their datum values of
spgConfigOut.leafType type. level is the current level that all the leaf tuples share, which will
become the level of the new inner tuple.

Set hasPrefix to indicate whether the new inner tuple should have a prefix, and if so set prefixDatum
to the prefix value. Set nNodes to indicate the number of nodes that the new inner tuple will contain,
and set nodeLabels to an array of their label values, or to NULL if node labels are not required.
Set mapTuplesToNodes to an array that gives the index (from zero) of the node that each leaf tuple
should be assigned to. Set leafTupleDatums to an array of the values to be stored in the new leaf
tuples (these will be the same as the input datums if the operator class does not modify datums from
one level to the next). Note that the picksplit function is responsible for palloc'ing the nodeLabels,
mapTuplesToNodes and leafTupleDatums arrays.

2018

SP-GiST Indexes

If more than one leaf tuple is supplied, it is expected that the picksplit function will classify them
into more than one node; otherwise it is not possible to split the leaf tuples across multiple pages,
which is the ultimate purpose of this operation. Therefore, if the picksplit function ends up placing
all the leaf tuples in the same node, the core SP-GiST code will override that decision and generate an
inner tuple in which the leaf tuples are assigned at random to several identically-labeled nodes. Such
a tuple is marked allTheSame to signify that this has happened. The choose and inner_consistent
functions must take suitable care with such inner tuples. See Section 61.4.3 for more information.

picksplit can be applied to a single leaf tuple only in the case that the config function set
longValuesOK to true and a larger-than-a-page input value has been supplied. In this case the point
of the operation is to strip off a prefix and produce a new, shorter leaf datum value. The call will
be repeated until a leaf datum short enough to fit on a page has been produced. See Section 61.4.1
for more information.

inner_consistent

Returns set of nodes (branches) to follow during tree search.

The SQL declaration of the function must look like this:
CREATE FUNCTION my_inner_consistent(internal, internal) RETURNS void ...

The first argument is a pointer to a spgInnerConsistentIn C struct, containing input data for the
function. The second argument is a pointer to a spgInnerConsistentOut C struct, which the function
must fill with result data.
typedef struct spgInnerConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison
 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 MemoryContext traversalMemoryContext; /* put new traverse values here */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 /* Data from current inner tuple */
 bool allTheSame; /* tuple is marked all-the-same? */
 bool hasPrefix; /* tuple has a prefix? */
 Datum prefixDatum; /* if so, the prefix value */
 int nNodes; /* number of nodes in the inner tuple */
 Datum *nodeLabels; /* node label values (NULL if none) */
} spgInnerConsistentIn;

typedef struct spgInnerConsistentOut
{
 int nNodes; /* number of child nodes to be visited */
 int *nodeNumbers; /* their indexes in the node array */
 int *levelAdds; /* increment level by this much for each */
 Datum *reconstructedValues; /* associated reconstructed values */
 void **traversalValues; /* opclass-specific traverse values */
 double **distances; /* associated distances */
} spgInnerConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them are interesting. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares

2019

SP-GiST Indexes

about the sk_strategy and sk_argument fields of each array entry, which respectively give the
indexable operator and comparison value. In particular it is not necessary to check sk_flags to
see if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
The array orderbys, of length norderbys, describes ordering operators (if any) in the same manner.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root level
or if the inner_consistent function did not provide a value at the parent level. reconstructedValue
is always of spgConfigOut.leafType type. traversalValue is a pointer to any traverse data passed
down from the previous call of inner_consistent on the parent index tuple, or NULL at the root
level. traversalMemoryContext is the memory context in which to store output traverse values (see
below). level is the current inner tuple's level, starting at zero for the root level. returnData is true
if reconstructed data is required for this query; this will only be so if the config function asserted
canReturnData. allTheSame is true if the current inner tuple is marked “all-the-same”; in this case
all the nodes have the same label (if any) and so either all or none of them match the query (see
Section 61.4.3). hasPrefix is true if the current inner tuple contains a prefix; if so, prefixDatum is
its value. nNodes is the number of child nodes contained in the inner tuple, and nodeLabels is an
array of their label values, or NULL if the nodes do not have labels.

nNodes must be set to the number of child nodes that need to be visited by the search, and
nodeNumbers must be set to an array of their indexes. If the operator class keeps track of levels,
set levelAdds to an array of the level increments required when descending to each node to be
visited. (Often these increments will be the same for all the nodes, but that's not necessarily so, so
an array is used.) If value reconstruction is needed, set reconstructedValues to an array of the
values of spgConfigOut.leafType type reconstructed for each child node to be visited; otherwise,
leave reconstructedValues as NULL. If ordered search is performed, set distances to an array of
distance values according to orderbys array (nodes with lowest distances will be processed first).
Leave it NULL otherwise. If it is desired to pass down additional out-of-band information (“traverse
values”) to lower levels of the tree search, set traversalValues to an array of the appropriate
traverse values, one for each child node to be visited; otherwise, leave traversalValues as NULL.
Note that the inner_consistent function is responsible for palloc'ing the nodeNumbers, levelAdds,
distances, reconstructedValues, and traversalValues arrays in the current memory context.
However, any output traverse values pointed to by the traversalValues array should be allocated
in traversalMemoryContext. Each traverse value must be a single palloc'd chunk.

leaf_consistent

Returns true if a leaf tuple satisfies a query.

The SQL declaration of the function must look like this:
CREATE FUNCTION my_leaf_consistent(internal, internal) RETURNS bool ...

The first argument is a pointer to a spgLeafConsistentIn C struct, containing input data for the
function. The second argument is a pointer to a spgLeafConsistentOut C struct, which the function
must fill with result data.
typedef struct spgLeafConsistentIn
{
 ScanKey scankeys; /* array of operators and comparison values */
 ScanKey orderbys; /* array of ordering operators and comparison
 * values */
 int nkeys; /* length of scankeys array */
 int norderbys; /* length of orderbys array */

 Datum reconstructedValue; /* value reconstructed at parent */
 void *traversalValue; /* opclass-specific traverse value */
 int level; /* current level (counting from zero) */
 bool returnData; /* original data must be returned? */

 Datum leafDatum; /* datum in leaf tuple */
} spgLeafConsistentIn;

2020

SP-GiST Indexes

typedef struct spgLeafConsistentOut
{
 Datum leafValue; /* reconstructed original data, if any */
 bool recheck; /* set true if operator must be rechecked */
 bool recheckDistances; /* set true if distances must be rechecked */
 double *distances; /* associated distances */
} spgLeafConsistentOut;

The array scankeys, of length nkeys, describes the index search condition(s). These conditions
are combined with AND — only index entries that satisfy all of them satisfy the query. (Note that
nkeys = 0 implies that all index entries satisfy the query.) Usually the consistent function only cares
about the sk_strategy and sk_argument fields of each array entry, which respectively give the
indexable operator and comparison value. In particular it is not necessary to check sk_flags to
see if the comparison value is NULL, because the SP-GiST core code will filter out such conditions.
The array orderbys, of length norderbys, describes the ordering operators in the same manner.
reconstructedValue is the value reconstructed for the parent tuple; it is (Datum) 0 at the root level
or if the inner_consistent function did not provide a value at the parent level. reconstructedValue
is always of spgConfigOut.leafType type. traversalValue is a pointer to any traverse data passed
down from the previous call of inner_consistent on the parent index tuple, or NULL at the root
level. level is the current leaf tuple's level, starting at zero for the root level. returnData is true
if reconstructed data is required for this query; this will only be so if the config function asserted
canReturnData. leafDatum is the key value of spgConfigOut.leafType stored in the current leaf
tuple.

The function must return true if the leaf tuple matches the query, or false if not. In the true case, if
returnData is true then leafValue must be set to the value of spgConfigIn.attType type originally
supplied to be indexed for this leaf tuple. Also, recheck may be set to true if the match is uncertain
and so the operator(s) must be re-applied to the actual heap tuple to verify the match. If ordered
search is performed, set distances to an array of distance values according to orderbys array. Leave
it NULL otherwise. If at least one of returned distances is not exact, set recheckDistances to true.
In this case, the executor will calculate the exact distances after fetching the tuple from the heap,
and will reorder the tuples if needed.

The optional user-defined method are:

Datum compress(Datum in)

Converts the data item into a format suitable for physical storage in a leaf tuple of index page. It
accepts spgConfigIn.attType value and returns spgConfigOut.leafType value. Output value should
not be toasted.

options

Defines a set of user-visible parameters that control operator class behavior.

The SQL declaration of the function must look like this:
CREATE OR REPLACE FUNCTION my_options(internal)
RETURNS void
AS 'MODULE_PATHNAME'
LANGUAGE C STRICT;

The function is passed a pointer to a local_relopts struct, which needs to be filled with a set of
operator class specific options. The options can be accessed from other support functions using the
PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since the representation of the key in SP-GiST is flexible, it may depend on user-specified parameters.

All the SP-GiST support methods are normally called in a short-lived memory context; that is,
CurrentMemoryContext will be reset after processing of each tuple. It is therefore not very important to

2021

SP-GiST Indexes

worry about pfree'ing everything you palloc. (The config method is an exception: it should try to avoid
leaking memory. But usually the config method need do nothing but assign constants into the passed
parameter struct.)

If the indexed column is of a collatable data type, the index collation will be passed to all the support
methods, using the standard PG_GET_COLLATION() mechanism.

61.4. Implementation
This section covers implementation details and other tricks that are useful for implementers of SP-GiST
operator classes to know.

61.4.1. SP-GiST Limits
Individual leaf tuples and inner tuples must fit on a single index page (8kB by default). Therefore, when
indexing values of variable-length data types, long values can only be supported by methods such as
radix trees, in which each level of the tree includes a prefix that is short enough to fit on a page, and
the final leaf level includes a suffix also short enough to fit on a page. The operator class should set
longValuesOK to true only if it is prepared to arrange for this to happen. Otherwise, the SP-GiST core
will reject any request to index a value that is too large to fit on an index page.

Likewise, it is the operator class's responsibility that inner tuples do not grow too large to fit on an index
page; this limits the number of child nodes that can be used in one inner tuple, as well as the maximum
size of a prefix value.

Another limitation is that when an inner tuple's node points to a set of leaf tuples, those tuples must all
be in the same index page. (This is a design decision to reduce seeking and save space in the links that
chain such tuples together.) If the set of leaf tuples grows too large for a page, a split is performed and
an intermediate inner tuple is inserted. For this to fix the problem, the new inner tuple must divide the
set of leaf values into more than one node group. If the operator class's picksplit function fails to do
that, the SP-GiST core resorts to extraordinary measures described in Section 61.4.3.

When longValuesOK is true, it is expected that successive levels of the SP-GiST tree will absorb more and
more information into the prefixes and node labels of the inner tuples, making the required leaf datum
smaller and smaller, so that eventually it will fit on a page. To prevent bugs in operator classes from
causing infinite insertion loops, the SP-GiST core will raise an error if the leaf datum does not become
any smaller within ten cycles of choose method calls.

61.4.2. SP-GiST Without Node Labels
Some tree algorithms use a fixed set of nodes for each inner tuple; for example, in a quad-tree there
are always exactly four nodes corresponding to the four quadrants around the inner tuple's centroid
point. In such a case the code typically works with the nodes by number, and there is no need for
explicit node labels. To suppress node labels (and thereby save some space), the picksplit function
can return NULL for the nodeLabels array, and likewise the choose function can return NULL for the
prefixNodeLabels array during a spgSplitTuple action. This will in turn result in nodeLabels being
NULL during subsequent calls to choose and inner_consistent. In principle, node labels could be used
for some inner tuples and omitted for others in the same index.

When working with an inner tuple having unlabeled nodes, it is an error for choose to return spgAddNode,
since the set of nodes is supposed to be fixed in such cases.

61.4.3. “All-the-Same” Inner Tuples
The SP-GiST core can override the results of the operator class's picksplit function when picksplit
fails to divide the supplied leaf values into at least two node categories. When this happens, the new
inner tuple is created with multiple nodes that each have the same label (if any) that picksplit gave to
the one node it did use, and the leaf values are divided at random among these equivalent nodes. The
allTheSame flag is set on the inner tuple to warn the choose and inner_consistent functions that the
tuple does not have the node set that they might otherwise expect.

2022

SP-GiST Indexes

When dealing with an allTheSame tuple, a choose result of spgMatchNode is interpreted to mean that the
new value can be assigned to any of the equivalent nodes; the core code will ignore the supplied nodeN
value and descend into one of the nodes at random (so as to keep the tree balanced). It is an error for
choose to return spgAddNode, since that would make the nodes not all equivalent; the spgSplitTuple
action must be used if the value to be inserted doesn't match the existing nodes.

When dealing with an allTheSame tuple, the inner_consistent function should return either all or none
of the nodes as targets for continuing the index search, since they are all equivalent. This may or may
not require any special-case code, depending on how much the inner_consistent function normally
assumes about the meaning of the nodes.

2023

Chapter 62. GIN Indexes
62.1. Introduction

GIN stands for Generalized Inverted Index. GIN is designed for handling cases where the items to be
indexed are composite values, and the queries to be handled by the index need to search for element
values that appear within the composite items. For example, the items could be documents, and the
queries could be searches for documents containing specific words.

We use the word item to refer to a composite value that is to be indexed, and the word key to refer to
an element value. GIN always stores and searches for keys, not item values per se.

A GIN index stores a set of (key, posting list) pairs, where a posting list is a set of row IDs in which the
key occurs. The same row ID can appear in multiple posting lists, since an item can contain more than
one key. Each key value is stored only once, so a GIN index is very compact for cases where the same
key appears many times.

GIN is generalized in the sense that the GIN access method code does not need to know the specific
operations that it accelerates. Instead, it uses custom strategies defined for particular data types. The
strategy defines how keys are extracted from indexed items and query conditions, and how to determine
whether a row that contains some of the key values in a query actually satisfies the query.

One advantage of GIN is that it allows the development of custom data types with the appropriate access
methods, by an expert in the domain of the data type, rather than a database expert. This is much the
same advantage as using GiST.

The GIN implementation in Postgres Pro is primarily maintained by Teodor Sigaev and Oleg Bartunov.
There is more information about GIN on their website.

62.2. Built-in Operator Classes
The core Postgres Pro distribution includes the GIN operator classes shown in Table 62.1. (Some of the
optional modules described in Appendix F provide additional GIN operator classes.)

Table 62.1. Built-in GIN Operator Classes

Name Indexed Data Type Indexable Operators
array_ops anyarray && <@ = @>
jsonb_ops jsonb ? ?& ?| @> @? @@
jsonb_path_ops jsonb @> @? @@
tsvector_ops tsvector @@ @@@

Of the two operator classes for type jsonb, jsonb_ops is the default. jsonb_path_ops supports fewer
operators but offers better performance for those operators. See Section 8.14.4 for details.

62.3. Extensibility
The GIN interface has a high level of abstraction, requiring the access method implementer only to
implement the semantics of the data type being accessed. The GIN layer itself takes care of concurrency,
logging and searching the tree structure.

All it takes to get a GIN access method working is to implement a few user-defined methods, which
define the behavior of keys in the tree and the relationships between keys, indexed items, and indexable
queries. In short, GIN combines extensibility with generality, code reuse, and a clean interface.

There are two methods that an operator class for GIN must provide:

2024

http://www.sai.msu.su/~megera/wiki/Gin

GIN Indexes

Datum *extractValue(Datum itemValue, int32 *nkeys, bool **nullFlags)

Returns a palloc'd array of keys given an item to be indexed. The number of returned keys must be
stored into *nkeys. If any of the keys can be null, also palloc an array of *nkeys bool fields, store its
address at *nullFlags, and set these null flags as needed. *nullFlags can be left NULL (its initial
value) if all keys are non-null. The return value can be NULL if the item contains no keys.

Datum *extractQuery(Datum query, int32 *nkeys, StrategyNumber n, bool **pmatch, Pointer
**extra_data, bool **nullFlags, int32 *searchMode)

Returns a palloc'd array of keys given a value to be queried; that is, query is the value on the right-
hand side of an indexable operator whose left-hand side is the indexed column. n is the strategy
number of the operator within the operator class (see Section 35.16.2). Often, extractQuery will
need to consult n to determine the data type of query and the method it should use to extract key
values. The number of returned keys must be stored into *nkeys. If any of the keys can be null, also
palloc an array of *nkeys bool fields, store its address at *nullFlags, and set these null flags as
needed. *nullFlags can be left NULL (its initial value) if all keys are non-null. The return value can
be NULL if the query contains no keys.

searchMode is an output argument that allows extractQuery to specify details about how the
search will be done. If *searchMode is set to GIN_SEARCH_MODE_DEFAULT (which is the value it is
initialized to before call), only items that match at least one of the returned keys are considered
candidate matches. If *searchMode is set to GIN_SEARCH_MODE_INCLUDE_EMPTY, then in addition
to items containing at least one matching key, items that contain no keys at all are considered
candidate matches. (This mode is useful for implementing is-subset-of operators, for example.) If
*searchMode is set to GIN_SEARCH_MODE_ALL, then all non-null items in the index are considered
candidate matches, whether they match any of the returned keys or not. (This mode is much slower
than the other two choices, since it requires scanning essentially the entire index, but it may be
necessary to implement corner cases correctly. An operator that needs this mode in most cases is
probably not a good candidate for a GIN operator class.) The symbols to use for setting this mode
are defined in access/gin.h.

pmatch is an output argument for use when partial match is supported. To use it, extractQuery must
allocate an array of *nkeys bools and store its address at *pmatch. Each element of the array should
be set to true if the corresponding key requires partial match, false if not. If *pmatch is set to NULL
then GIN assumes partial match is not required. The variable is initialized to NULL before call, so this
argument can simply be ignored by operator classes that do not support partial match.

extra_data is an output argument that allows extractQuery to pass additional data to the
consistent and comparePartial methods. To use it, extractQuery must allocate an array of *nkeys
pointers and store its address at *extra_data, then store whatever it wants to into the individual
pointers. The variable is initialized to NULL before call, so this argument can simply be ignored by
operator classes that do not require extra data. If *extra_data is set, the whole array is passed to
the consistent method, and the appropriate element to the comparePartial method.

An operator class must also provide a function to check if an indexed item matches the query. It comes
in two flavors, a Boolean consistent function, and a ternary triConsistent function. triConsistent
covers the functionality of both, so providing triConsistent alone is sufficient. However, if the Boolean
variant is significantly cheaper to calculate, it can be advantageous to provide both. If only the Boolean
variant is provided, some optimizations that depend on refuting index items before fetching all the keys
are disabled.
bool consistent(bool check[], StrategyNumber n, Datum query, int32 nkeys, Pointer
extra_data[], bool *recheck, Datum queryKeys[], bool nullFlags[])

Returns true if an indexed item satisfies the query operator with strategy number n (or might satisfy
it, if the recheck indication is returned). This function does not have direct access to the indexed
item's value, since GIN does not store items explicitly. Rather, what is available is knowledge about
which key values extracted from the query appear in a given indexed item. The check array has length
nkeys, which is the same as the number of keys previously returned by extractQuery for this query

2025

GIN Indexes

datum. Each element of the check array is true if the indexed item contains the corresponding query
key, i.e., if (check[i] == true) the i-th key of the extractQuery result array is present in the indexed
item. The original query datum is passed in case the consistent method needs to consult it, and so
are the queryKeys[] and nullFlags[] arrays previously returned by extractQuery. extra_data is
the extra-data array returned by extractQuery, or NULL if none.

When extractQuery returns a null key in queryKeys[], the corresponding check[] element is true
if the indexed item contains a null key; that is, the semantics of check[] are like IS NOT DISTINCT
FROM. The consistent function can examine the corresponding nullFlags[] element if it needs to
tell the difference between a regular value match and a null match.

On success, *recheck should be set to true if the heap tuple needs to be rechecked against the query
operator, or false if the index test is exact. That is, a false return value guarantees that the heap
tuple does not match the query; a true return value with *recheck set to false guarantees that the
heap tuple does match the query; and a true return value with *recheck set to true means that the
heap tuple might match the query, so it needs to be fetched and rechecked by evaluating the query
operator directly against the originally indexed item.

GinTernaryValue triConsistent(GinTernaryValue check[], StrategyNumber n, Datum query,
int32 nkeys, Pointer extra_data[], Datum queryKeys[], bool nullFlags[])

triConsistent is similar to consistent, but instead of Booleans in the check vector, there are three
possible values for each key: GIN_TRUE, GIN_FALSE and GIN_MAYBE. GIN_FALSE and GIN_TRUE have
the same meaning as regular Boolean values, while GIN_MAYBE means that the presence of that key is
not known. When GIN_MAYBE values are present, the function should only return GIN_TRUE if the item
certainly matches whether or not the index item contains the corresponding query keys. Likewise,
the function must return GIN_FALSE only if the item certainly does not match, whether or not it
contains the GIN_MAYBE keys. If the result depends on the GIN_MAYBE entries, i.e., the match cannot
be confirmed or refuted based on the known query keys, the function must return GIN_MAYBE.

When there are no GIN_MAYBE values in the check vector, a GIN_MAYBE return value is the equivalent
of setting the recheck flag in the Boolean consistent function.

In addition, GIN must have a way to sort the key values stored in the index. The operator class can define
the sort ordering by specifying a comparison method:
int compare(Datum a, Datum b)

Compares two keys (not indexed items!) and returns an integer less than zero, zero, or greater than
zero, indicating whether the first key is less than, equal to, or greater than the second. Null keys
are never passed to this function.

Alternatively, if the operator class does not provide a compare method, GIN will look up the default btree
operator class for the index key data type, and use its comparison function. It is recommended to specify
the comparison function in a GIN operator class that is meant for just one data type, as looking up the
btree operator class costs a few cycles. However, polymorphic GIN operator classes (such as array_ops)
typically cannot specify a single comparison function.

An operator class for GIN can optionally supply the following methods:
int comparePartial(Datum partial_key, Datum key, StrategyNumber n, Pointer extra_data)

Compare a partial-match query key to an index key. Returns an integer whose sign indicates the
result: less than zero means the index key does not match the query, but the index scan should
continue; zero means that the index key does match the query; greater than zero indicates that the
index scan should stop because no more matches are possible. The strategy number n of the operator
that generated the partial match query is provided, in case its semantics are needed to determine
when to end the scan. Also, extra_data is the corresponding element of the extra-data array made
by extractQuery, or NULL if none. Null keys are never passed to this function.

void options(local_relopts *relopts)

Defines a set of user-visible parameters that control operator class behavior.

2026

GIN Indexes

The options function is passed a pointer to a local_relopts struct, which needs to be filled with
a set of operator class specific options. The options can be accessed from other support functions
using the PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since both key extraction of indexed values and representation of the key in GIN are flexible, they
may depend on user-specified parameters.

To support “partial match” queries, an operator class must provide the comparePartial method, and
its extractQuery method must set the pmatch parameter when a partial-match query is encountered.
See Section 62.4.2 for details.

The actual data types of the various Datum values mentioned above vary depending on the operator
class. The item values passed to extractValue are always of the operator class's input type, and all key
values must be of the class's STORAGE type. The type of the query argument passed to extractQuery,
consistent and triConsistent is whatever is the right-hand input type of the class member operator
identified by the strategy number. This need not be the same as the indexed type, so long as key values
of the correct type can be extracted from it. However, it is recommended that the SQL declarations of
these three support functions use the opclass's indexed data type for the query argument, even though
the actual type might be something else depending on the operator.

62.4. Implementation
Internally, a GIN index contains a B-tree index constructed over keys, where each key is an element of
one or more indexed items (a member of an array, for example) and where each tuple in a leaf page
contains either a pointer to a B-tree of heap pointers (a “posting tree”), or a simple list of heap pointers
(a “posting list”) when the list is small enough to fit into a single index tuple along with the key value.
Figure 62.1 illustrates these components of a GIN index.

As of PostgreSQL 9.1, null key values can be included in the index. Also, placeholder nulls are included
in the index for indexed items that are null or contain no keys according to extractValue. This allows
searches that should find empty items to do so.

Multicolumn GIN indexes are implemented by building a single B-tree over composite values (column
number, key value). The key values for different columns can be of different types.

Figure 62.1. GIN Internals

entry tree

posting tree posting tree posting tree

pending list

meta page

posting list posting list posting list

heap ptr

heap ptr heap ptr heap ptr heap ptr

2027

GIN Indexes

62.4.1. GIN Fast Update Technique
Updating a GIN index tends to be slow because of the intrinsic nature of inverted indexes: inserting
or updating one heap row can cause many inserts into the index (one for each key extracted from the
indexed item). As of PostgreSQL 8.4, GIN is capable of postponing much of this work by inserting new
tuples into a temporary, unsorted list of pending entries. When the table is vacuumed or autoanalyzed,
or when gin_clean_pending_list function is called, or if the pending list becomes larger than
gin_pending_list_limit, the entries are moved to the main GIN data structure using the same bulk insert
techniques used during initial index creation. This greatly improves GIN index update speed, even
counting the additional vacuum overhead. Moreover the overhead work can be done by a background
process instead of in foreground query processing.

The main disadvantage of this approach is that searches must scan the list of pending entries in addition
to searching the regular index, and so a large list of pending entries will slow searches significantly.
Another disadvantage is that, while most updates are fast, an update that causes the pending list to
become “too large” will incur an immediate cleanup cycle and thus be much slower than other updates.
Proper use of autovacuum can minimize both of these problems.

If consistent response time is more important than update speed, use of pending entries can be disabled
by turning off the fastupdate storage parameter for a GIN index. See CREATE INDEX for details.

62.4.2. Partial Match Algorithm
GIN can support “partial match” queries, in which the query does not determine an exact match for one
or more keys, but the possible matches fall within a reasonably narrow range of key values (within the
key sorting order determined by the compare support method). The extractQuery method, instead of
returning a key value to be matched exactly, returns a key value that is the lower bound of the range to
be searched, and sets the pmatch flag true. The key range is then scanned using the comparePartial
method. comparePartial must return zero for a matching index key, less than zero for a non-match
that is still within the range to be searched, or greater than zero if the index key is past the range that
could match.

62.5. GIN Tips and Tricks
Create vs. insert

Insertion into a GIN index can be slow due to the likelihood of many keys being inserted for each
item. So, for bulk insertions into a table it is advisable to drop the GIN index and recreate it after
finishing bulk insertion.

As of PostgreSQL 8.4, this advice is less necessary since delayed indexing is used (see Section 62.4.1
for details). But for very large updates it may still be best to drop and recreate the index.

maintenance_work_mem

Build time for a GIN index is very sensitive to the maintenance_work_mem setting; it doesn't pay to
skimp on work memory during index creation.

gin_pending_list_limit

During a series of insertions into an existing GIN index that has fastupdate enabled, the system
will clean up the pending-entry list whenever the list grows larger than gin_pending_list_limit.
To avoid fluctuations in observed response time, it's desirable to have pending-list cleanup occur
in the background (i.e., via autovacuum). Foreground cleanup operations can be avoided by
increasing gin_pending_list_limit or making autovacuum more aggressive. However, enlarging
the threshold of the cleanup operation means that if a foreground cleanup does occur, it will take
even longer.

gin_pending_list_limit can be overridden for individual GIN indexes by changing storage
parameters, which allows each GIN index to have its own cleanup threshold. For example, it's possible

2028

GIN Indexes

to increase the threshold only for the GIN index which can be updated heavily, and decrease it
otherwise.

gin_fuzzy_search_limit
The primary goal of developing GIN indexes was to create support for highly scalable full-text search
in Postgres Pro, and there are often situations when a full-text search returns a very large set of
results. Moreover, this often happens when the query contains very frequent words, so that the large
result set is not even useful. Since reading many tuples from the disk and sorting them could take a
lot of time, this is unacceptable for production. (Note that the index search itself is very fast.)

To facilitate controlled execution of such queries, GIN has a configurable soft upper limit on the
number of rows returned: the gin_fuzzy_search_limit configuration parameter. It is set to 0
(meaning no limit) by default. If a non-zero limit is set, then the returned set is a subset of the whole
result set, chosen at random.

“Soft” means that the actual number of returned results could differ somewhat from the specified
limit, depending on the query and the quality of the system's random number generator.

From experience, values in the thousands (e.g., 5000 — 20000) work well.

62.6. Limitations
GIN assumes that indexable operators are strict. This means that extractValue will not be called at
all on a null item value (instead, a placeholder index entry is created automatically), and extractQuery
will not be called on a null query value either (instead, the query is presumed to be unsatisfiable). Note
however that null key values contained within a non-null composite item or query value are supported.

62.7. Examples
The core Postgres Pro distribution includes the GIN operator classes previously shown in Table 62.1.
The following contrib modules also contain GIN operator classes:

btree_gin

B-tree equivalent functionality for several data types

hstore

Module for storing (key, value) pairs

intarray

Enhanced support for int[]

pg_trgm

Text similarity using trigram matching

2029

Chapter 63. BRIN Indexes
63.1. Introduction

BRIN stands for Block Range Index. BRIN is designed for handling very large tables in which certain
columns have some natural correlation with their physical location within the table. A block range is
a group of pages that are physically adjacent in the table; for each block range, some summary info is
stored by the index. For example, a table storing a store's sale orders might have a date column on which
each order was placed, and most of the time the entries for earlier orders will appear earlier in the table
as well; a table storing a ZIP code column might have all codes for a city grouped together naturally.

BRIN indexes can satisfy queries via regular bitmap index scans, and will return all tuples in all pages
within each range if the summary info stored by the index is consistent with the query conditions. The
query executor is in charge of rechecking these tuples and discarding those that do not match the query
conditions — in other words, these indexes are lossy. Because a BRIN index is very small, scanning the
index adds little overhead compared to a sequential scan, but may avoid scanning large parts of the
table that are known not to contain matching tuples.

The specific data that a BRIN index will store, as well as the specific queries that the index will be able
to satisfy, depend on the operator class selected for each column of the index. Data types having a linear
sort order can have operator classes that store the minimum and maximum value within each block
range, for instance; geometrical types might store the bounding box for all the objects in the block range.

The size of the block range is determined at index creation time by the pages_per_range storage
parameter. The number of index entries will be equal to the size of the relation in pages divided by the
selected value for pages_per_range. Therefore, the smaller the number, the larger the index becomes
(because of the need to store more index entries), but at the same time the summary data stored can be
more precise and more data blocks can be skipped during an index scan.

63.1.1. Index Maintenance
At the time of creation, all existing heap pages are scanned and a summary index tuple is
created for each range, including the possibly-incomplete range at the end. As new pages are filled
with data, page ranges that are already summarized will cause the summary information to be
updated with data from the new tuples. When a new page is created that does not fall within
the last summarized range, that range does not automatically acquire a summary tuple; those
tuples remain unsummarized until a summarization run is invoked later, creating initial summaries.
This process can be invoked manually using the brin_summarize_range(regclass, bigint) or
brin_summarize_new_values(regclass) functions; automatically when VACUUM processes the table; or
by automatic summarization executed by autovacuum, as insertions occur. (This last trigger is disabled
by default and can be enabled with the autosummarize parameter.) Conversely, a range can be de-
summarized using the brin_desummarize_range(regclass, bigint) function, which is useful when
the index tuple is no longer a very good representation because the existing values have changed.

When autosummarization is enabled, each time a page range is filled a request is sent to autovacuum
for it to execute a targeted summarization for that range, to be fulfilled at the end of the next worker
run on the same database. If the request queue is full, the request is not recorded and a message is
sent to the server log:

LOG: request for BRIN range summarization for index "brin_wi_idx" page 128 was not
 recorded

When this happens, the range will be summarized normally during the next regular vacuum of the table.

63.2. Built-in Operator Classes
The core Postgres Pro distribution includes the BRIN operator classes shown in Table 63.1.

2030

BRIN Indexes

The minmax operator classes store the minimum and the maximum values appearing in the indexed
column within the range. The inclusion operator classes store a value which includes the values in the
indexed column within the range.

Table 63.1. Built-in BRIN Operator Classes

Name Indexed Data Type Indexable
Operators

int8_minmax_ops bigint < <= = >= >
bit_minmax_ops bit < <= = >= >
varbit_minmax_ops bit varying < <= = >= >
box_inclusion_ops box << &< && &> >> ~=

@> <@ &<| <<| |>> |
&>

bytea_minmax_ops bytea < <= = >= >
bpchar_minmax_ops character < <= = >= >
char_minmax_ops "char" < <= = >= >
date_minmax_ops date < <= = >= >
float8_minmax_ops double precision < <= = >= >
inet_minmax_ops inet < <= = >= >
network_inclusion_ops inet && >>= <<= = >> <<
int4_minmax_ops integer < <= = >= >
interval_minmax_ops interval < <= = >= >
macaddr_minmax_ops macaddr < <= = >= >
macaddr8_minmax_ops macaddr8 < <= = >= >
name_minmax_ops name < <= = >= >
numeric_minmax_ops numeric < <= = >= >
pg_lsn_minmax_ops pg_lsn < <= = >= >
oid_minmax_ops oid < <= = >= >
range_inclusion_ops any range type << &< && &> >> @>

<@ -|- = < <= = > >=
float4_minmax_ops real < <= = >= >
int2_minmax_ops smallint < <= = >= >
text_minmax_ops text < <= = >= >
tid_minmax_ops tid < <= = >= >
timestamp_minmax_ops timestamp without time zone < <= = >= >
timestamptz_minmax_ops timestamp with time zone < <= = >= >
time_minmax_ops time without time zone < <= = >= >
timetz_minmax_ops time with time zone < <= = >= >
uuid_minmax_ops uuid < <= = >= >

63.3. Extensibility
The BRIN interface has a high level of abstraction, requiring the access method implementer only to
implement the semantics of the data type being accessed. The BRIN layer itself takes care of concurrency,
logging and searching the index structure.

2031

BRIN Indexes

All it takes to get a BRIN access method working is to implement a few user-defined methods, which
define the behavior of summary values stored in the index and the way they interact with scan keys. In
short, BRIN combines extensibility with generality, code reuse, and a clean interface.

There are four methods that an operator class for BRIN must provide:

BrinOpcInfo *opcInfo(Oid type_oid)

Returns internal information about the indexed columns' summary data. The return value must point
to a palloc'd BrinOpcInfo, which has this definition:

typedef struct BrinOpcInfo
{
 /* Number of columns stored in an index column of this opclass */
 uint16 oi_nstored;

 /* Opaque pointer for the opclass' private use */
 void *oi_opaque;

 /* Type cache entries of the stored columns */
 TypeCacheEntry *oi_typcache[FLEXIBLE_ARRAY_MEMBER];
} BrinOpcInfo;

BrinOpcInfo.oi_opaque can be used by the operator class routines to pass information between
support functions during an index scan.

bool consistent(BrinDesc *bdesc, BrinValues *column, ScanKey key)

Returns whether the ScanKey is consistent with the given indexed values for a range. The attribute
number to use is passed as part of the scan key.

bool addValue(BrinDesc *bdesc, BrinValues *column, Datum newval, bool isnull)

Given an index tuple and an indexed value, modifies the indicated attribute of the tuple so that it
additionally represents the new value. If any modification was done to the tuple, true is returned.

bool unionTuples(BrinDesc *bdesc, BrinValues *a, BrinValues *b)

Consolidates two index tuples. Given two index tuples, modifies the indicated attribute of the first of
them so that it represents both tuples. The second tuple is not modified.

An operator class for BRIN can optionally specify the following method:

void options(local_relopts *relopts)

Defines a set of user-visible parameters that control operator class behavior.

The options function is passed a pointer to a local_relopts struct, which needs to be filled with
a set of operator class specific options. The options can be accessed from other support functions
using the PG_HAS_OPCLASS_OPTIONS() and PG_GET_OPCLASS_OPTIONS() macros.

Since both key extraction of indexed values and representation of the key in BRIN are flexible, they
may depend on user-specified parameters.

The core distribution includes support for two types of operator classes: minmax and inclusion. Operator
class definitions using them are shipped for in-core data types as appropriate. Additional operator classes
can be defined by the user for other data types using equivalent definitions, without having to write any
source code; appropriate catalog entries being declared is enough. Note that assumptions about the
semantics of operator strategies are embedded in the support functions' source code.

Operator classes that implement completely different semantics are also possible, provided
implementations of the four main support functions described above are written. Note that backwards
compatibility across major releases is not guaranteed: for example, additional support functions might
be required in later releases.

2032

BRIN Indexes

To write an operator class for a data type that implements a totally ordered set, it is possible to use the
minmax support functions alongside the corresponding operators, as shown in Table 63.2. All operator
class members (functions and operators) are mandatory.

Table 63.2. Function and Support Numbers for Minmax Operator Classes

Operator class member Object
Support Function 1 internal function brin_minmax_opcinfo()
Support Function 2 internal function brin_minmax_add_value()
Support Function 3 internal function brin_minmax_consistent()
Support Function 4 internal function brin_minmax_union()
Operator Strategy 1 operator less-than
Operator Strategy 2 operator less-than-or-equal-to
Operator Strategy 3 operator equal-to
Operator Strategy 4 operator greater-than-or-equal-to
Operator Strategy 5 operator greater-than

To write an operator class for a complex data type which has values included within another type,
it's possible to use the inclusion support functions alongside the corresponding operators, as shown in
Table 63.3. It requires only a single additional function, which can be written in any language. More
functions can be defined for additional functionality. All operators are optional. Some operators require
other operators, as shown as dependencies on the table.

Table 63.3. Function and Support Numbers for Inclusion Operator Classes

Operator class
member

Object Dependency

Support Function 1 internal function brin_inclusion_opcinfo()
Support Function 2 internal function brin_inclusion_add_value(

)

Support Function 3 internal function brin_inclusion_consistent(
)

Support Function 4 internal function brin_inclusion_union()
Support Function 11 function to merge two elements
Support Function 12 optional function to check whether two elements

are mergeable

Support Function 13 optional function to check if an element is
contained within another

Support Function 14 optional function to check whether an element is
empty

Operator Strategy 1 operator left-of Operator Strategy 4
Operator Strategy 2 operator does-not-extend-to-the-right-of Operator Strategy 5
Operator Strategy 3 operator overlaps
Operator Strategy 4 operator does-not-extend-to-the-left-of Operator Strategy 1
Operator Strategy 5 operator right-of Operator Strategy 2
Operator Strategy 6, 18 operator same-as-or-equal-to Operator Strategy 7
Operator Strategy 7, 13,
 16, 24, 25

operator contains-or-equal-to

Operator Strategy 8, 14,
 26, 27

operator is-contained-by-or-equal-to Operator Strategy 3

2033

BRIN Indexes

Operator class
member

Object Dependency

Operator Strategy 9 operator does-not-extend-above Operator Strategy 11
Operator Strategy 10 operator is-below Operator Strategy 12
Operator Strategy 11 operator is-above Operator Strategy 9
Operator Strategy 12 operator does-not-extend-below Operator Strategy 10
Operator Strategy 20 operator less-than Operator Strategy 5
Operator Strategy 21 operator less-than-or-equal-to Operator Strategy 5
Operator Strategy 22 operator greater-than Operator Strategy 1
Operator Strategy 23 operator greater-than-or-equal-to Operator Strategy 1

Support function numbers 1 through 10 are reserved for the BRIN internal functions, so the SQL level
functions start with number 11. Support function number 11 is the main function required to build the
index. It should accept two arguments with the same data type as the operator class, and return the
union of them. The inclusion operator class can store union values with different data types if it is defined
with the STORAGE parameter. The return value of the union function should match the STORAGE data type.

Support function numbers 12 and 14 are provided to support irregularities of built-in data types.
Function number 12 is used to support network addresses from different families which are not
mergeable. Function number 14 is used to support empty ranges. Function number 13 is an optional but
recommended one, which allows the new value to be checked before it is passed to the union function.
As the BRIN framework can shortcut some operations when the union is not changed, using this function
can improve index performance.

Both minmax and inclusion operator classes support cross-data-type operators, though with these the
dependencies become more complicated. The minmax operator class requires a full set of operators
to be defined with both arguments having the same data type. It allows additional data types to be
supported by defining extra sets of operators. Inclusion operator class operator strategies are dependent
on another operator strategy as shown in Table 63.3, or the same operator strategy as themselves. They
require the dependency operator to be defined with the STORAGE data type as the left-hand-side argument
and the other supported data type to be the right-hand-side argument of the supported operator. See
float4_minmax_ops as an example of minmax, and box_inclusion_ops as an example of inclusion.

2034

Chapter 64. Hash Indexes
64.1. Overview

Postgres Pro includes an implementation of persistent on-disk hash indexes, which are fully crash
recoverable. Any data type can be indexed by a hash index, including data types that do not have a well-
defined linear ordering. Hash indexes store only the hash value of the data being indexed, thus there
are no restrictions on the size of the data column being indexed.

Hash indexes support only single-column indexes and do not allow uniqueness checking.

Hash indexes support only the = operator, so WHERE clauses that specify range operations will not be
able to take advantage of hash indexes.

Each hash index tuple stores just the 4-byte hash value, not the actual column value. As a result, hash
indexes may be much smaller than B-trees when indexing longer data items such as UUIDs, URLs, etc.
The absence of the column value also makes all hash index scans lossy. Hash indexes may take part in
bitmap index scans and backward scans.

Hash indexes are best optimized for SELECT and UPDATE-heavy workloads that use equality scans on
larger tables. In a B-tree index, searches must descend through the tree until the leaf page is found. In
tables with millions of rows, this descent can increase access time to data. The equivalent of a leaf page
in a hash index is referred to as a bucket page. In contrast, a hash index allows accessing the bucket
pages directly, thereby potentially reducing index access time in larger tables. This reduction in "logical
I/O" becomes even more pronounced on indexes/data larger than shared_buffers/RAM.

Hash indexes have been designed to cope with uneven distributions of hash values. Direct access to the
bucket pages works well if the hash values are evenly distributed. When inserts mean that the bucket
page becomes full, additional overflow pages are chained to that specific bucket page, locally expanding
the storage for index tuples that match that hash value. When scanning a hash bucket during queries,
we need to scan through all of the overflow pages. Thus an unbalanced hash index might actually be
worse than a B-tree in terms of number of block accesses required, for some data.

As a result of the overflow cases, we can say that hash indexes are most suitable for unique, nearly
unique data or data with a low number of rows per hash bucket. One possible way to avoid problems
is to exclude highly non-unique values from the index using a partial index condition, but this may not
be suitable in many cases.

Like B-Trees, hash indexes perform simple index tuple deletion. This is a deferred maintenance operation
that deletes index tuples that are known to be safe to delete (those whose item identifier's LP_DEAD bit
is already set). If an insert finds no space is available on a page we try to avoid creating a new overflow
page by attempting to remove dead index tuples. Removal cannot occur if the page is pinned at that
time. Deletion of dead index pointers also occurs during VACUUM.

If it can, VACUUM will also try to squeeze the index tuples onto as few overflow pages as possible,
minimizing the overflow chain. If an overflow page becomes empty, overflow pages can be recycled for
reuse in other buckets, though we never return them to the operating system. There is currently no
provision to shrink a hash index, other than by rebuilding it with REINDEX. There is no provision for
reducing the number of buckets, either.

Hash indexes may expand the number of bucket pages as the number of rows indexed grows. The hash
key-to-bucket-number mapping is chosen so that the index can be incrementally expanded. When a new
bucket is to be added to the index, exactly one existing bucket will need to be "split", with some of its
tuples being transferred to the new bucket according to the updated key-to-bucket-number mapping.

The expansion occurs in the foreground, which could increase execution time for user inserts. Thus,
hash indexes may not be suitable for tables with rapidly increasing number of rows.

2035

Hash Indexes

64.2. Implementation
There are four kinds of pages in a hash index: the meta page (page zero), which contains statically
allocated control information; primary bucket pages; overflow pages; and bitmap pages, which keep
track of overflow pages that have been freed and are available for re-use. For addressing purposes,
bitmap pages are regarded as a subset of the overflow pages.

Both scanning the index and inserting tuples require locating the bucket where a given tuple ought to
be located. To do this, we need the bucket count, highmask, and lowmask from the metapage; however,
it's undesirable for performance reasons to have to have to lock and pin the metapage for every such
operation. Instead, we retain a cached copy of the metapage in each backend's relcache entry. This will
produce the correct bucket mapping as long as the target bucket hasn't been split since the last cache
refresh.

Primary bucket pages and overflow pages are allocated independently since any given index might need
more or fewer overflow pages relative to its number of buckets. The hash code uses an interesting set
of addressing rules to support a variable number of overflow pages while not having to move primary
bucket pages around after they are created.

Each row in the table indexed is represented by a single index tuple in the hash index. Hash index tuples
are stored in bucket pages, and if they exist, overflow pages. We speed up searches by keeping the index
entries in any one index page sorted by hash code, thus allowing binary search to be used within an
index page. Note however that there is *no* assumption about the relative ordering of hash codes across
different index pages of a bucket.

The bucket splitting algorithms to expand the hash index are too complex to be worthy of mention here.
The split algorithm is crash safe and can be restarted if not completed successfully.

2036

Chapter 65. Database Physical Storage
This chapter provides an overview of the physical storage format used by Postgres Pro databases.

65.1. Database File Layout
This section describes the storage format at the level of files and directories.

Traditionally, the configuration and data files used by a database cluster are stored together within the
cluster's data directory, commonly referred to as PGDATA (after the name of the environment variable
that can be used to define it). A common location for PGDATA is /var/lib/pgpro/std-13/data. Multiple
clusters, managed by different server instances, can exist on the same machine.

The PGDATA directory contains several subdirectories and control files, as shown in Table 65.1. In
addition to these required items, the cluster configuration files postgresql.conf, pg_hba.conf, and
pg_ident.conf are traditionally stored in PGDATA, although it is possible to place them elsewhere.

Table 65.1. Contents of PGDATA

Item Description
PG_VERSION A file containing the major version number of

Postgres Pro
base Subdirectory containing per-database

subdirectories
current_logfiles File recording the log file(s) currently written to

by the logging collector
global Subdirectory containing cluster-wide tables, such

as pg_database
pg_commit_ts Subdirectory containing transaction commit

timestamp data
pg_dynshmem Subdirectory containing files used by the dynamic

shared memory subsystem
pg_logical Subdirectory containing status data for logical

decoding
pg_multixact Subdirectory containing multitransaction status

data (used for shared row locks)
pg_notify Subdirectory containing LISTEN/NOTIFY status

data
pg_replslot Subdirectory containing replication slot data
pg_serial Subdirectory containing information about

committed serializable transactions
pg_snapshots Subdirectory containing exported snapshots
pg_stat Subdirectory containing permanent files for the

statistics subsystem
pg_stat_tmp Subdirectory containing temporary files for the

statistics subsystem
pg_subtrans Subdirectory containing subtransaction status

data
pg_tblspc Subdirectory containing symbolic links to

tablespaces
pg_twophase Subdirectory containing state files for prepared

transactions

2037

Database Physical Storage

Item Description
pg_wal Subdirectory containing WAL (Write Ahead Log)

files
pg_xact Subdirectory containing transaction commit

status data
postgresql.auto.conf A file used for storing configuration parameters

that are set by ALTER SYSTEM
postmaster.opts A file recording the command-line options the

server was last started with
postmaster.pid A lock file recording the current postmaster

process ID (PID), cluster data directory path,
 postmaster start timestamp, port number,
 Unix-domain socket directory path (could be
empty), first valid listen_address (IP address or
*, or empty if not listening on TCP), and shared
memory segment ID (this file is not present after
server shutdown)

For each database in the cluster there is a subdirectory within PGDATA/base, named after the database's
OID in pg_database. This subdirectory is the default location for the database's files; in particular, its
system catalogs are stored there.

Note that the following sections describe the behavior of the builtin heap table access method, and the
builtin index access methods. Due to the extensible nature of Postgres Pro, other access methods might
work differently.

Each table and index is stored in a separate file. For ordinary relations, these files are named after
the table or index's filenode number, which can be found in pg_class.relfilenode. But for temporary
relations, the file name is of the form tBBB_FFF, where BBB is the backend ID of the backend which
created the file, and FFF is the filenode number. In either case, in addition to the main file (a/k/a main
fork), each table and index has a free space map (see Section 65.3), which stores information about free
space available in the relation. The free space map is stored in a file named with the filenode number
plus the suffix _fsm. Tables also have a visibility map, stored in a fork with the suffix _vm, to track which
pages are known to have no dead tuples. The visibility map is described further in Section 65.4. Unlogged
tables and indexes have a third fork, known as the initialization fork, which is stored in a fork with the
suffix _init (see Section 65.5).

Caution
Note that while a table's filenode often matches its OID, this is not necessarily the case; some
operations, like TRUNCATE, REINDEX, CLUSTER and some forms of ALTER TABLE, can change the
filenode while preserving the OID. Avoid assuming that filenode and table OID are the same. Also,
for certain system catalogs including pg_class itself, pg_class.relfilenode contains zero. The
actual filenode number of these catalogs is stored in a lower-level data structure, and can be
obtained using the pg_relation_filenode() function.

When a table or index exceeds 1 GB, it is divided into gigabyte-sized segments. The first segment's
file name is the same as the filenode; subsequent segments are named filenode.1, filenode.2, etc. This
arrangement avoids problems on platforms that have file size limitations. (Actually, 1 GB is just the
default segment size. The segment size can be adjusted using the configuration option --with-segsize
when building Postgres Pro.) In principle, free space map and visibility map forks could require multiple
segments as well, though this is unlikely to happen in practice.

A table that has columns with potentially large entries will have an associated TOAST table, which
is used for out-of-line storage of field values that are too large to keep in the table rows proper.

2038

Database Physical Storage

pg_class.reltoastrelid links from a table to its TOAST table, if any. See Section 65.2 for more
information.

The contents of tables and indexes are discussed further in Section 65.6.

Tablespaces make the scenario more complicated. Each user-defined tablespace has a symbolic link
inside the PGDATA/pg_tblspc directory, which points to the physical tablespace directory (i.e., the
location specified in the tablespace's CREATE TABLESPACE command). This symbolic link is named after
the tablespace's OID. Inside the physical tablespace directory there is a subdirectory with a name
that depends on the Postgres Pro server version, such as PG_9.0_201008051. (The reason for using
this subdirectory is so that successive versions of the database can use the same CREATE TABLESPACE
location value without conflicts.) Within the version-specific subdirectory, there is a subdirectory for
each database that has elements in the tablespace, named after the database's OID. Tables and indexes
are stored within that directory, using the filenode naming scheme. The pg_default tablespace is not
accessed through pg_tblspc, but corresponds to PGDATA/base. Similarly, the pg_global tablespace is
not accessed through pg_tblspc, but corresponds to PGDATA/global.

The pg_relation_filepath() function shows the entire path (relative to PGDATA) of any relation. It is
often useful as a substitute for remembering many of the above rules. But keep in mind that this function
just gives the name of the first segment of the main fork of the relation — you may need to append a
segment number and/or _fsm, _vm, or _init to find all the files associated with the relation.

Temporary files (for operations such as sorting more data than can fit in memory) are created
within PGDATA/base/pgsql_tmp, or within a pgsql_tmp subdirectory of a tablespace directory if a
tablespace other than pg_default is specified for them. The name of a temporary file has the form
pgsql_tmpPPP.NNN, where PPP is the PID of the owning backend and NNN distinguishes different
temporary files of that backend.

65.2. TOAST
This section provides an overview of TOAST (The Oversized-Attribute Storage Technique).

Postgres Pro uses a fixed page size (commonly 8 kB), and does not allow tuples to span multiple pages.
Therefore, it is not possible to store very large field values directly. To overcome this limitation, large
field values are compressed and/or broken up into multiple physical rows. This happens transparently
to the user, with only small impact on most of the backend code. The technique is affectionately known
as TOAST (or “the best thing since sliced bread”). The TOAST infrastructure is also used to improve
handling of large data values in-memory.

Only certain data types support TOAST — there is no need to impose the overhead on data types
that cannot produce large field values. To support TOAST, a data type must have a variable-length
(varlena) representation, in which, ordinarily, the first four-byte word of any stored value contains the
total length of the value in bytes (including itself). TOAST does not constrain the rest of the data type's
representation. The special representations collectively called TOASTed values work by modifying or
reinterpreting this initial length word. Therefore, the C-level functions supporting a TOAST-able data
type must be careful about how they handle potentially TOASTed input values: an input might not actually
consist of a four-byte length word and contents until after it's been detoasted. (This is normally done by
invoking PG_DETOAST_DATUM before doing anything with an input value, but in some cases more efficient
approaches are possible. See Section 35.13.1 for more detail.)

TOAST usurps two bits of the varlena length word (the high-order bits on big-endian machines, the low-
order bits on little-endian machines), thereby limiting the logical size of any value of a TOAST-able data
type to 1 GB (230 - 1 bytes). When both bits are zero, the value is an ordinary un-TOASTed value of the data
type, and the remaining bits of the length word give the total datum size (including length word) in bytes.
When the highest-order or lowest-order bit is set, the value has only a single-byte header instead of the
normal four-byte header, and the remaining bits of that byte give the total datum size (including length
byte) in bytes. This alternative supports space-efficient storage of values shorter than 127 bytes, while
still allowing the data type to grow to 1 GB at need. Values with single-byte headers aren't aligned on any

2039

Database Physical Storage

particular boundary, whereas values with four-byte headers are aligned on at least a four-byte boundary;
this omission of alignment padding provides additional space savings that is significant compared to
short values. As a special case, if the remaining bits of a single-byte header are all zero (which would
be impossible for a self-inclusive length), the value is a pointer to out-of-line data, with several possible
alternatives as described below. The type and size of such a TOAST pointer are determined by a code
stored in the second byte of the datum. Lastly, when the highest-order or lowest-order bit is clear but
the adjacent bit is set, the content of the datum has been compressed and must be decompressed before
use. In this case the remaining bits of the four-byte length word give the total size of the compressed
datum, not the original data. Note that compression is also possible for out-of-line data but the varlena
header does not tell whether it has occurred — the content of the TOAST pointer tells that, instead.

As mentioned, there are multiple types of TOAST pointer datums. The oldest and most common type is
a pointer to out-of-line data stored in a TOAST table that is separate from, but associated with, the table
containing the TOAST pointer datum itself. These on-disk pointer datums are created by the TOAST
management code when a tuple to be stored on disk is too large to be stored as-is. Further details appear
in Section 65.2.1. Alternatively, a TOAST pointer datum can contain a pointer to out-of-line data that
appears elsewhere in memory. Such datums are necessarily short-lived, and will never appear on-disk,
but they are very useful for avoiding copying and redundant processing of large data values. Further
details appear in Section 65.2.2.

The compression technique used for either in-line or out-of-line compressed data is a fairly simple and
very fast member of the LZ family of compression techniques.

65.2.1. Out-of-Line, On-Disk TOAST Storage
If any of the columns of a table are TOAST-able, the table will have an associated TOAST table, whose
OID is stored in the table's pg_class.reltoastrelid entry. On-disk TOASTed values are kept in the
TOAST table, as described in more detail below.

Out-of-line values are divided (after compression if used) into chunks of at most TOAST_MAX_CHUNK_SIZE
bytes (by default this value is chosen so that four chunk rows will fit on a page, making it about 2000
bytes). Each chunk is stored as a separate row in the TOAST table belonging to the owning table. Every
TOAST table has the columns chunk_id (an OID identifying the particular TOASTed value), chunk_seq (a
sequence number for the chunk within its value), and chunk_data (the actual data of the chunk). A unique
index on chunk_id and chunk_seq provides fast retrieval of the values. A pointer datum representing
an out-of-line on-disk TOASTed value therefore needs to store the OID of the TOAST table in which to
look and the OID of the specific value (its chunk_id). For convenience, pointer datums also store the
logical datum size (original uncompressed data length) and physical stored size (different if compression
was applied). Allowing for the varlena header bytes, the total size of an on-disk TOAST pointer datum is
therefore 18 bytes regardless of the actual size of the represented value.

The TOAST management code is triggered only when a row value to be stored in a table is wider than
TOAST_TUPLE_THRESHOLD bytes (normally 2 kB). The TOAST code will compress and/or move field values
out-of-line until the row value is shorter than TOAST_TUPLE_TARGET bytes (also normally 2 kB, adjustable)
or no more gains can be had. During an UPDATE operation, values of unchanged fields are normally
preserved as-is; so an UPDATE of a row with out-of-line values incurs no TOAST costs if none of the out-
of-line values change.

The TOAST management code recognizes four different strategies for storing TOAST-able columns on
disk:

• PLAIN prevents either compression or out-of-line storage; furthermore it disables use of single-byte
headers for varlena types. This is the only possible strategy for columns of non-TOAST-able data
types.

• EXTENDED allows both compression and out-of-line storage. This is the default for most TOAST-able
data types. Compression will be attempted first, then out-of-line storage if the row is still too big.

• EXTERNAL allows out-of-line storage but not compression. Use of EXTERNAL will make substring
operations on wide text and bytea columns faster (at the penalty of increased storage space)

2040

Database Physical Storage

because these operations are optimized to fetch only the required parts of the out-of-line value
when it is not compressed.

• MAIN allows compression but not out-of-line storage. (Actually, out-of-line storage will still be
performed for such columns, but only as a last resort when there is no other way to make the row
small enough to fit on a page.)

Each TOAST-able data type specifies a default strategy for columns of that data type, but the strategy
for a given table column can be altered with ALTER TABLE ... SET STORAGE.

TOAST_TUPLE_TARGET can be adjusted for each table using ALTER TABLE ... SET (toast_tuple_target
= N)

This scheme has a number of advantages compared to a more straightforward approach such as allowing
row values to span pages. Assuming that queries are usually qualified by comparisons against relatively
small key values, most of the work of the executor will be done using the main row entry. The big values of
TOASTed attributes will only be pulled out (if selected at all) at the time the result set is sent to the client.
Thus, the main table is much smaller and more of its rows fit in the shared buffer cache than would be
the case without any out-of-line storage. Sort sets shrink also, and sorts will more often be done entirely
in memory. A little test showed that a table containing typical HTML pages and their URLs was stored
in about half of the raw data size including the TOAST table, and that the main table contained only
about 10% of the entire data (the URLs and some small HTML pages). There was no run time difference
compared to an un-TOASTed comparison table, in which all the HTML pages were cut down to 7 kB to fit.

65.2.2. Out-of-Line, In-Memory TOAST Storage
TOAST pointers can point to data that is not on disk, but is elsewhere in the memory of the current
server process. Such pointers obviously cannot be long-lived, but they are nonetheless useful. There are
currently two sub-cases: pointers to indirect data and pointers to expanded data.

Indirect TOAST pointers simply point at a non-indirect varlena value stored somewhere in memory. This
case was originally created merely as a proof of concept, but it is currently used during logical decoding
to avoid possibly having to create physical tuples exceeding 1 GB (as pulling all out-of-line field values
into the tuple might do). The case is of limited use since the creator of the pointer datum is entirely
responsible that the referenced data survives for as long as the pointer could exist, and there is no
infrastructure to help with this.

Expanded TOAST pointers are useful for complex data types whose on-disk representation is not
especially suited for computational purposes. As an example, the standard varlena representation of a
Postgres Pro array includes dimensionality information, a nulls bitmap if there are any null elements,
then the values of all the elements in order. When the element type itself is variable-length, the only way
to find the N'th element is to scan through all the preceding elements. This representation is appropriate
for on-disk storage because of its compactness, but for computations with the array it's much nicer
to have an “expanded” or “deconstructed” representation in which all the element starting locations
have been identified. The TOAST pointer mechanism supports this need by allowing a pass-by-reference
Datum to point to either a standard varlena value (the on-disk representation) or a TOAST pointer that
points to an expanded representation somewhere in memory. The details of this expanded representation
are up to the data type, though it must have a standard header and meet the other API requirements
given in src/include/utils/expandeddatum.h. C-level functions working with the data type can
choose to handle either representation. Functions that do not know about the expanded representation,
but simply apply PG_DETOAST_DATUM to their inputs, will automatically receive the traditional varlena
representation; so support for an expanded representation can be introduced incrementally, one function
at a time.

TOAST pointers to expanded values are further broken down into read-write and read-only pointers.
The pointed-to representation is the same either way, but a function that receives a read-write pointer
is allowed to modify the referenced value in-place, whereas one that receives a read-only pointer must
not; it must first create a copy if it wants to make a modified version of the value. This distinction and
some associated conventions make it possible to avoid unnecessary copying of expanded values during
query execution.

2041

https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/include/utils/expandeddatum.h;hb=HEAD

Database Physical Storage

For all types of in-memory TOAST pointer, the TOAST management code ensures that no such pointer
datum can accidentally get stored on disk. In-memory TOAST pointers are automatically expanded to
normal in-line varlena values before storage — and then possibly converted to on-disk TOAST pointers,
if the containing tuple would otherwise be too big.

65.3. Free Space Map
Each heap and index relation, except for hash indexes, has a Free Space Map (FSM) to keep track of
available space in the relation. It's stored alongside the main relation data in a separate relation fork,
named after the filenode number of the relation, plus a _fsm suffix. For example, if the filenode of a
relation is 12345, the FSM is stored in a file called 12345_fsm, in the same directory as the main relation
file.

The Free Space Map is organized as a tree of FSM pages. The bottom level FSM pages store the free
space available on each heap (or index) page, using one byte to represent each such page. The upper
levels aggregate information from the lower levels.

Within each FSM page is a binary tree, stored in an array with one byte per node. Each leaf node
represents a heap page, or a lower level FSM page. In each non-leaf node, the higher of its children's
values is stored. The maximum value in the leaf nodes is therefore stored at the root.

The pg_freespacemap module can be used to examine the information stored in free space maps.

65.4. Visibility Map
Each heap relation has a Visibility Map (VM) to keep track of which pages contain only tuples that are
known to be visible to all active transactions; it also keeps track of which pages contain only frozen
tuples. It's stored alongside the main relation data in a separate relation fork, named after the filenode
number of the relation, plus a _vm suffix. For example, if the filenode of a relation is 12345, the VM is
stored in a file called 12345_vm, in the same directory as the main relation file. Note that indexes do
not have VMs.

The visibility map stores two bits per heap page. The first bit, if set, indicates that the page is all-visible,
or in other words that the page does not contain any tuples that need to be vacuumed. This information
can also be used by index-only scans to answer queries using only the index tuple. The second bit, if set,
means that all tuples on the page have been frozen. That means that even an anti-wraparound vacuum
need not revisit the page.

The map is conservative in the sense that we make sure that whenever a bit is set, we know the condition
is true, but if a bit is not set, it might or might not be true. Visibility map bits are only set by vacuum,
but are cleared by any data-modifying operations on a page.

The pg_visibility module can be used to examine the information stored in the visibility map.

65.5. The Initialization Fork
Each unlogged table, and each index on an unlogged table, has an initialization fork. The initialization
fork is an empty table or index of the appropriate type. When an unlogged table must be reset to empty
due to a crash, the initialization fork is copied over the main fork, and any other forks are erased (they
will be recreated automatically as needed).

65.6. Database Page Layout
This section provides an overview of the page format used within Postgres Pro tables and indexes.1
Sequences and TOAST tables are formatted just like a regular table.

1 Actually, use of this page format is not required for either table or index access methods. The heap table access method always uses this format. All the existing
index methods also use the basic format, but the data kept on index metapages usually doesn't follow the item layout rules.

2042

Database Physical Storage

In the following explanation, a byte is assumed to contain 8 bits. In addition, the term item refers to
an individual data value that is stored on a page. In a table, an item is a row; in an index, an item is
an index entry.

Every table and index is stored as an array of pages of a fixed size (usually 8 kB, although a different
page size can be selected when compiling the server). In a table, all the pages are logically equivalent,
so a particular item (row) can be stored in any page. In indexes, the first page is generally reserved
as a metapage holding control information, and there can be different types of pages within the index,
depending on the index access method.

Table 65.2 shows the overall layout of a page. There are five parts to each page.

Table 65.2. Overall Page Layout

Item Description
PageHeaderData 24 bytes long. Contains general information about

the page, including free space pointers.
ItemIdData Array of item identifiers pointing to the actual

items. Each entry is an (offset,length) pair. 4 bytes
per item.

Free space The unallocated space. New item identifiers are
allocated from the start of this area, new items
from the end.

Items The actual items themselves.
Special space Index access method specific data. Different

methods store different data. Empty in ordinary
tables.

The first 24 bytes of each page consists of a page header (PageHeaderData). Its format is detailed in
Table 65.3. The first field tracks the most recent WAL entry related to this page. The second field contains
the page checksum if data checksums are enabled. Next is a 2-byte field containing flag bits. This is
followed by three 2-byte integer fields (pd_lower, pd_upper, and pd_special). These contain byte offsets
from the page start to the start of unallocated space, to the end of unallocated space, and to the start
of the special space. The next 2 bytes of the page header, pd_pagesize_version, store both the page
size and a version indicator. Beginning with PostgreSQL 8.3 the version number is 4; PostgreSQL 8.1
and 8.2 used version number 3; PostgreSQL 8.0 used version number 2; PostgreSQL 7.3 and 7.4 used
version number 1; prior releases used version number 0. (The basic page layout and header format has
not changed in most of these versions, but the layout of heap row headers has.) The page size is basically
only present as a cross-check; there is no support for having more than one page size in an installation.
The last field is a hint that shows whether pruning the page is likely to be profitable: it tracks the oldest
un-pruned XMAX on the page.

Table 65.3. PageHeaderData Layout

Field Type Length Description
pd_lsn PageXLogRecPtr 8 bytes LSN: next byte after last

byte of WAL record for
last change to this page

pd_checksum uint16 2 bytes Page checksum
pd_flags uint16 2 bytes Flag bits
pd_lower LocationIndex 2 bytes Offset to start of free

space
pd_upper LocationIndex 2 bytes Offset to end of free

space
pd_special LocationIndex 2 bytes Offset to start of special

space

2043

Database Physical Storage

Field Type Length Description
pd_pagesize_version uint16 2 bytes Page size and layout

version number
information

pd_prune_xid TransactionId 4 bytes Oldest unpruned XMAX
on page, or zero if none

Following the page header are item identifiers (ItemIdData), each requiring four bytes. An item identifier
contains a byte-offset to the start of an item, its length in bytes, and a few attribute bits which affect its
interpretation. New item identifiers are allocated as needed from the beginning of the unallocated space.
The number of item identifiers present can be determined by looking at pd_lower, which is increased
to allocate a new identifier. Because an item identifier is never moved until it is freed, its index can be
used on a long-term basis to reference an item, even when the item itself is moved around on the page
to compact free space. In fact, every pointer to an item (ItemPointer, also known as CTID) created by
Postgres Pro consists of a page number and the index of an item identifier.

The items themselves are stored in space allocated backwards from the end of unallocated space. The
exact structure varies depending on what the table is to contain. Tables and sequences both use a
structure named HeapTupleHeaderData, described below.

The final section is the “special section” which can contain anything the access method wishes to store.
For example, b-tree indexes store links to the page's left and right siblings, as well as some other data
relevant to the index structure. Ordinary tables do not use a special section at all (indicated by setting
pd_special to equal the page size).

Figure 65.1 illustrates how these parts are laid out in a page.

Figure 65.1. Page Layout

PageHeaderData

Item

ItemId ItemId

Item Special

65.6.1. Table Row Layout
All table rows are structured in the same way. There is a fixed-size header (occupying 23 bytes on most
machines), followed by an optional null bitmap, an optional object ID field, and the user data. The header
is detailed in Table 65.4. The actual user data (columns of the row) begins at the offset indicated by
t_hoff, which must always be a multiple of the MAXALIGN distance for the platform. The null bitmap
is only present if the HEAP_HASNULL bit is set in t_infomask. If it is present it begins just after the
fixed header and occupies enough bytes to have one bit per data column (that is, the number of bits
that equals the attribute count in t_infomask2). In this list of bits, a 1 bit indicates not-null, a 0 bit is a
null. When the bitmap is not present, all columns are assumed not-null. The object ID is only present if
the HEAP_HASOID_OLD bit is set in t_infomask. If present, it appears just before the t_hoff boundary.
Any padding needed to make t_hoff a MAXALIGN multiple will appear between the null bitmap and the
object ID. (This in turn ensures that the object ID is suitably aligned.)

2044

Database Physical Storage

Table 65.4. HeapTupleHeaderData Layout

Field Type Length Description
t_xmin TransactionId 4 bytes insert XID stamp
t_xmax TransactionId 4 bytes delete XID stamp
t_cid CommandId 4 bytes insert and/or delete CID

stamp (overlays with t_
xvac)

t_xvac TransactionId 4 bytes XID for VACUUM
operation moving a row
version

t_ctid ItemPointerData 6 bytes current TID of this or
newer row version

t_infomask2 uint16 2 bytes number of attributes,
 plus various flag bits

t_infomask uint16 2 bytes various flag bits
t_hoff uint8 1 byte offset to user data

Interpreting the actual data can only be done with information obtained from other tables, mostly
pg_attribute. The key values needed to identify field locations are attlen and attalign. There is no
way to directly get a particular attribute, except when there are only fixed width fields and no null values.
All this trickery is wrapped up in the functions heap_getattr, fastgetattr and heap_getsysattr.

To read the data you need to examine each attribute in turn. First check whether the field is NULL
according to the null bitmap. If it is, go to the next. Then make sure you have the right alignment. If the
field is a fixed width field, then all the bytes are simply placed. If it's a variable length field (attlen =
-1) then it's a bit more complicated. All variable-length data types share the common header structure
struct varlena, which includes the total length of the stored value and some flag bits. Depending on the
flags, the data can be either inline or in a TOAST table; it might be compressed, too (see Section 65.2).

2045

Chapter 66. How the Planner Uses Statistics
This chapter builds on the material covered in Section 14.1 and Section 14.2 to show some additional
details about how the planner uses the system statistics to estimate the number of rows each part of a
query might return. This is a significant part of the planning process, providing much of the raw material
for cost calculation.

The intent of this chapter is not to document the code in detail, but to present an overview of how it
works. This will perhaps ease the learning curve for someone who subsequently wishes to read the code.

66.1. Row Estimation Examples
The examples shown below use tables in the Postgres Pro regression test database. The outputs shown
are taken from version 8.3. The behavior of earlier (or later) versions might vary. Note also that since
ANALYZE uses random sampling while producing statistics, the results will change slightly after any new
ANALYZE.

Let's start with a very simple query:
EXPLAIN SELECT * FROM tenk1;

 QUERY PLAN

 Seq Scan on tenk1 (cost=0.00..458.00 rows=10000 width=244)

How the planner determines the cardinality of tenk1 is covered in Section 14.2, but is repeated here for
completeness. The number of pages and rows is looked up in pg_class:
SELECT relpages, reltuples FROM pg_class WHERE relname = 'tenk1';

 relpages | reltuples
----------+-----------
 358 | 10000

These numbers are current as of the last VACUUM or ANALYZE on the table. The planner then fetches the
actual current number of pages in the table (this is a cheap operation, not requiring a table scan). If
that is different from relpages then reltuples is scaled accordingly to arrive at a current number-of-
rows estimate. In the example above, the value of relpages is up-to-date so the rows estimate is the
same as reltuples.

Let's move on to an example with a range condition in its WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000;

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=24.06..394.64 rows=1007 width=244)
 Recheck Cond: (unique1 < 1000)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

The planner examines the WHERE clause condition and looks up the selectivity function for the operator
< in pg_operator. This is held in the column oprrest, and the entry in this case is scalarltsel. The
scalarltsel function retrieves the histogram for unique1 from pg_statistic. For manual queries it is
more convenient to look in the simpler pg_stats view:
SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='unique1';

 histogram_bounds
--
 {0,993,1997,3050,4040,5036,5957,7057,8029,9016,9995}

2046

How the Planner Uses Statistics

Next the fraction of the histogram occupied by “< 1000” is worked out. This is the selectivity. The
histogram divides the range into equal frequency buckets, so all we have to do is locate the bucket that
our value is in and count part of it and all of the ones before. The value 1000 is clearly in the second
bucket (993–1997). Assuming a linear distribution of values inside each bucket, we can calculate the
selectivity as:
selectivity = (1 + (1000 - bucket[2].min)/(bucket[2].max - bucket[2].min))/num_buckets
 = (1 + (1000 - 993)/(1997 - 993))/10
 = 0.100697

that is, one whole bucket plus a linear fraction of the second, divided by the number of buckets. The
estimated number of rows can now be calculated as the product of the selectivity and the cardinality
of tenk1:
rows = rel_cardinality * selectivity
 = 10000 * 0.100697
 = 1007 (rounding off)

Next let's consider an example with an equality condition in its WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'CRAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=30 width=244)
 Filter: (stringu1 = 'CRAAAA'::name)

Again the planner examines the WHERE clause condition and looks up the selectivity function for =, which
is eqsel. For equality estimation the histogram is not useful; instead the list of most common values
(MCVs) is used to determine the selectivity. Let's have a look at the MCVs, with some additional columns
that will be useful later:
SELECT null_frac, n_distinct, most_common_vals, most_common_freqs FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

null_frac | 0
n_distinct | 676
most_common_vals | {EJAAAA,BBAAAA,CRAAAA,FCAAAA,FEAAAA,GSAAAA,
JOAAAA,MCAAAA,NAAAAA,WGAAAA}
most_common_freqs | {0.00333333,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003,0.003}

Since CRAAAA appears in the list of MCVs, the selectivity is merely the corresponding entry in the list
of most common frequencies (MCFs):
selectivity = mcf[3]
 = 0.003

As before, the estimated number of rows is just the product of this with the cardinality of tenk1:
rows = 10000 * 0.003
 = 30

Now consider the same query, but with a constant that is not in the MCV list:
EXPLAIN SELECT * FROM tenk1 WHERE stringu1 = 'xxx';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=15 width=244)
 Filter: (stringu1 = 'xxx'::name)

This is quite a different problem: how to estimate the selectivity when the value is not in the MCV list.
The approach is to use the fact that the value is not in the list, combined with the knowledge of the
frequencies for all of the MCVs:

2047

How the Planner Uses Statistics

selectivity = (1 - sum(mvf))/(num_distinct - num_mcv)
 = (1 - (0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003 +
 0.003 + 0.003 + 0.003 + 0.003))/(676 - 10)
 = 0.0014559

That is, add up all the frequencies for the MCVs and subtract them from one, then divide by the number
of other distinct values. This amounts to assuming that the fraction of the column that is not any of the
MCVs is evenly distributed among all the other distinct values. Notice that there are no null values so
we don't have to worry about those (otherwise we'd subtract the null fraction from the numerator as
well). The estimated number of rows is then calculated as usual:

rows = 10000 * 0.0014559
 = 15 (rounding off)

The previous example with unique1 < 1000 was an oversimplification of what scalarltsel really does;
now that we have seen an example of the use of MCVs, we can fill in some more detail. The example
was correct as far as it went, because since unique1 is a unique column it has no MCVs (obviously, no
value is any more common than any other value). For a non-unique column, there will normally be both
a histogram and an MCV list, and the histogram does not include the portion of the column population
represented by the MCVs. We do things this way because it allows more precise estimation. In this
situation scalarltsel directly applies the condition (e.g., “< 1000”) to each value of the MCV list, and
adds up the frequencies of the MCVs for which the condition is true. This gives an exact estimate of the
selectivity within the portion of the table that is MCVs. The histogram is then used in the same way as
above to estimate the selectivity in the portion of the table that is not MCVs, and then the two numbers
are combined to estimate the overall selectivity. For example, consider

EXPLAIN SELECT * FROM tenk1 WHERE stringu1 < 'IAAAAA';

 QUERY PLAN
--
 Seq Scan on tenk1 (cost=0.00..483.00 rows=3077 width=244)
 Filter: (stringu1 < 'IAAAAA'::name)

We already saw the MCV information for stringu1, and here is its histogram:

SELECT histogram_bounds FROM pg_stats
WHERE tablename='tenk1' AND attname='stringu1';

 histogram_bounds
--
 {AAAAAA,CQAAAA,FRAAAA,IBAAAA,KRAAAA,NFAAAA,PSAAAA,SGAAAA,VAAAAA,XLAAAA,ZZAAAA}

Checking the MCV list, we find that the condition stringu1 < 'IAAAAA' is satisfied by the first six entries
and not the last four, so the selectivity within the MCV part of the population is

selectivity = sum(relevant mvfs)
 = 0.00333333 + 0.003 + 0.003 + 0.003 + 0.003 + 0.003
 = 0.01833333

Summing all the MCFs also tells us that the total fraction of the population represented by MCVs is
0.03033333, and therefore the fraction represented by the histogram is 0.96966667 (again, there are
no nulls, else we'd have to exclude them here). We can see that the value IAAAAA falls nearly at the end
of the third histogram bucket. Using some rather cheesy assumptions about the frequency of different
characters, the planner arrives at the estimate 0.298387 for the portion of the histogram population that
is less than IAAAAA. We then combine the estimates for the MCV and non-MCV populations:

selectivity = mcv_selectivity + histogram_selectivity * histogram_fraction
 = 0.01833333 + 0.298387 * 0.96966667
 = 0.307669

rows = 10000 * 0.307669
 = 3077 (rounding off)

2048

How the Planner Uses Statistics

In this particular example, the correction from the MCV list is fairly small, because the column
distribution is actually quite flat (the statistics showing these particular values as being more common
than others are mostly due to sampling error). In a more typical case where some values are significantly
more common than others, this complicated process gives a useful improvement in accuracy because
the selectivity for the most common values is found exactly.

Now let's consider a case with more than one condition in the WHERE clause:
EXPLAIN SELECT * FROM tenk1 WHERE unique1 < 1000 AND stringu1 = 'xxx';

 QUERY PLAN
--
 Bitmap Heap Scan on tenk1 (cost=23.80..396.91 rows=1 width=244)
 Recheck Cond: (unique1 < 1000)
 Filter: (stringu1 = 'xxx'::name)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..23.80 rows=1007 width=0)
 Index Cond: (unique1 < 1000)

The planner assumes that the two conditions are independent, so that the individual selectivities of the
clauses can be multiplied together:
selectivity = selectivity(unique1 < 1000) * selectivity(stringu1 = 'xxx')
 = 0.100697 * 0.0014559
 = 0.0001466

rows = 10000 * 0.0001466
 = 1 (rounding off)

Notice that the number of rows estimated to be returned from the bitmap index scan reflects only the
condition used with the index; this is important since it affects the cost estimate for the subsequent
heap fetches.

Finally we will examine a query that involves a join:
EXPLAIN SELECT * FROM tenk1 t1, tenk2 t2
WHERE t1.unique1 < 50 AND t1.unique2 = t2.unique2;

 QUERY PLAN
--
 Nested Loop (cost=4.64..456.23 rows=50 width=488)
 -> Bitmap Heap Scan on tenk1 t1 (cost=4.64..142.17 rows=50 width=244)
 Recheck Cond: (unique1 < 50)
 -> Bitmap Index Scan on tenk1_unique1 (cost=0.00..4.63 rows=50 width=0)
 Index Cond: (unique1 < 50)
 -> Index Scan using tenk2_unique2 on tenk2 t2 (cost=0.00..6.27 rows=1 width=244)
 Index Cond: (unique2 = t1.unique2)

The restriction on tenk1, unique1 < 50, is evaluated before the nested-loop join. This is handled
analogously to the previous range example. This time the value 50 falls into the first bucket of the
unique1 histogram:
selectivity = (0 + (50 - bucket[1].min)/(bucket[1].max - bucket[1].min))/num_buckets
 = (0 + (50 - 0)/(993 - 0))/10
 = 0.005035

rows = 10000 * 0.005035
 = 50 (rounding off)

The restriction for the join is t2.unique2 = t1.unique2. The operator is just our familiar =, however the
selectivity function is obtained from the oprjoin column of pg_operator, and is eqjoinsel. eqjoinsel
looks up the statistical information for both tenk2 and tenk1:
SELECT tablename, null_frac,n_distinct, most_common_vals FROM pg_stats

2049

How the Planner Uses Statistics

WHERE tablename IN ('tenk1', 'tenk2') AND attname='unique2';

tablename | null_frac | n_distinct | most_common_vals
-----------+-----------+------------+------------------
 tenk1 | 0 | -1 |
 tenk2 | 0 | -1 |

In this case there is no MCV information for unique2 because all the values appear to be unique, so
we use an algorithm that relies only on the number of distinct values for both relations together with
their null fractions:
selectivity = (1 - null_frac1) * (1 - null_frac2) * min(1/num_distinct1, 1/
num_distinct2)
 = (1 - 0) * (1 - 0) / max(10000, 10000)
 = 0.0001

This is, subtract the null fraction from one for each of the relations, and divide by the maximum of
the numbers of distinct values. The number of rows that the join is likely to emit is calculated as the
cardinality of the Cartesian product of the two inputs, multiplied by the selectivity:
rows = (outer_cardinality * inner_cardinality) * selectivity
 = (50 * 10000) * 0.0001
 = 50

Had there been MCV lists for the two columns, eqjoinsel would have used direct comparison of the
MCV lists to determine the join selectivity within the part of the column populations represented by the
MCVs. The estimate for the remainder of the populations follows the same approach shown here.

Notice that we showed inner_cardinality as 10000, that is, the unmodified size of tenk2. It might
appear from inspection of the EXPLAIN output that the estimate of join rows comes from 50 * 1, that is,
the number of outer rows times the estimated number of rows obtained by each inner index scan on
tenk2. But this is not the case: the join relation size is estimated before any particular join plan has been
considered. If everything is working well then the two ways of estimating the join size will produce about
the same answer, but due to round-off error and other factors they sometimes diverge significantly.

66.2. Multivariate Statistics Examples
66.2.1. Functional Dependencies

Multivariate correlation can be demonstrated with a very simple data set — a table with two columns,
both containing the same values:
CREATE TABLE t (a INT, b INT);
INSERT INTO t SELECT i % 100, i % 100 FROM generate_series(1, 10000) s(i);
ANALYZE t;

As explained in Section 14.2, the planner can determine cardinality of t using the number of pages and
rows obtained from pg_class:
SELECT relpages, reltuples FROM pg_class WHERE relname = 't';

 relpages | reltuples
----------+-----------
 45 | 10000

The data distribution is very simple; there are only 100 distinct values in each column, uniformly
distributed.

The following example shows the result of estimating a WHERE condition on the a column:
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1;
 QUERY PLAN

2050

How the Planner Uses Statistics

 Seq Scan on t (cost=0.00..170.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: (a = 1)
 Rows Removed by Filter: 9900

The planner examines the condition and determines the selectivity of this clause to be 1%. By comparing
this estimate and the actual number of rows, we see that the estimate is very accurate (in fact exact, as
the table is very small). Changing the WHERE condition to use the b column, an identical plan is generated.
But observe what happens if we apply the same condition on both columns, combining them with AND:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

The planner estimates the selectivity for each condition individually, arriving at the same 1% estimates
as above. Then it assumes that the conditions are independent, and so it multiplies their selectivities,
producing a final selectivity estimate of just 0.01%. This is a significant underestimate, as the actual
number of rows matching the conditions (100) is two orders of magnitude higher.

This problem can be fixed by creating a statistics object that directs ANALYZE to calculate functional-
dependency multivariate statistics on the two columns:

CREATE STATISTICS stts (dependencies) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

66.2.2. Multivariate N-Distinct Counts
A similar problem occurs with estimation of the cardinality of sets of multiple columns, such as the
number of groups that would be generated by a GROUP BY clause. When GROUP BY lists a single column,
the n-distinct estimate (which is visible as the estimated number of rows returned by the HashAggregate
node) is very accurate:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a;
 QUERY PLAN

 HashAggregate (cost=195.00..196.00 rows=100 width=12) (actual rows=100 loops=1)
 Group Key: a
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=4) (actual rows=10000
 loops=1)

But without multivariate statistics, the estimate for the number of groups in a query with two columns
in GROUP BY, as in the following example, is off by an order of magnitude:

EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

 HashAggregate (cost=220.00..230.00 rows=1000 width=16) (actual rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000
 loops=1)

2051

How the Planner Uses Statistics

By redefining the statistics object to include n-distinct counts for the two columns, the estimate is much
improved:

DROP STATISTICS stts;
CREATE STATISTICS stts (dependencies, ndistinct) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT COUNT(*) FROM t GROUP BY a, b;
 QUERY PLAN

 HashAggregate (cost=220.00..221.00 rows=100 width=16) (actual rows=100 loops=1)
 Group Key: a, b
 -> Seq Scan on t (cost=0.00..145.00 rows=10000 width=8) (actual rows=10000
 loops=1)

66.2.3. MCV Lists
As explained in Section 66.2.1, functional dependencies are very cheap and efficient type of statistics,
but their main limitation is their global nature (only tracking dependencies at the column level, not
between individual column values).

This section introduces multivariate variant of MCV (most-common values) lists, a straightforward
extension of the per-column statistics described in Section 66.1. These statistics address the limitation
by storing individual values, but it is naturally more expensive, both in terms of building the statistics
in ANALYZE, storage and planning time.

Let's look at the query from Section 66.2.1 again, but this time with a MCV list created on the same
set of columns (be sure to drop the functional dependencies, to make sure the planner uses the newly
created statistics).

DROP STATISTICS stts;
CREATE STATISTICS stts2 (mcv) ON a, b FROM t;
ANALYZE t;
EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 1;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=100 width=8) (actual rows=100 loops=1)
 Filter: ((a = 1) AND (b = 1))
 Rows Removed by Filter: 9900

The estimate is as accurate as with the functional dependencies, mostly thanks to the table being fairly
small and having a simple distribution with a low number of distinct values. Before looking at the second
query, which was not handled by functional dependencies particularly well, let's inspect the MCV list
a bit.

Inspecting the MCV list is possible using pg_mcv_list_items set-returning function.

SELECT m.* FROM pg_statistic_ext join pg_statistic_ext_data on (oid = stxoid),
 pg_mcv_list_items(stxdmcv) m WHERE stxname = 'stts2';
 index | values | nulls | frequency | base_frequency
-------+----------+-------+-----------+----------------
 0 | {0, 0} | {f,f} | 0.01 | 0.0001
 1 | {1, 1} | {f,f} | 0.01 | 0.0001
 ...
 49 | {49, 49} | {f,f} | 0.01 | 0.0001
 50 | {50, 50} | {f,f} | 0.01 | 0.0001
 ...
 97 | {97, 97} | {f,f} | 0.01 | 0.0001
 98 | {98, 98} | {f,f} | 0.01 | 0.0001
 99 | {99, 99} | {f,f} | 0.01 | 0.0001

2052

How the Planner Uses Statistics

(100 rows)

This confirms there are 100 distinct combinations in the two columns, and all of them are about equally
likely (1% frequency for each one). The base frequency is the frequency computed from per-column
statistics, as if there were no multi-column statistics. Had there been any null values in either of the
columns, this would be identified in the nulls column.

When estimating the selectivity, the planner applies all the conditions on items in the MCV list, and then
sums the frequencies of the matching ones.

Compared to functional dependencies, MCV lists have two major advantages. Firstly, the list stores actual
values, making it possible to decide which combinations are compatible.

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a = 1 AND b = 10;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
 Filter: ((a = 1) AND (b = 10))
 Rows Removed by Filter: 10000

Secondly, MCV lists handle a wider range of clause types, not just equality clauses like functional
dependencies. For example, consider the following range query for the same table:

EXPLAIN (ANALYZE, TIMING OFF) SELECT * FROM t WHERE a <= 49 AND b > 49;
 QUERY PLAN

 Seq Scan on t (cost=0.00..195.00 rows=1 width=8) (actual rows=0 loops=1)
 Filter: ((a <= 49) AND (b > 49))
 Rows Removed by Filter: 10000

66.3. Planner Statistics and Security
Access to the table pg_statistic is restricted to superusers, so that ordinary users cannot learn about
the contents of the tables of other users from it. Some selectivity estimation functions will use a user-
provided operator (either the operator appearing in the query or a related operator) to analyze the stored
statistics. For example, in order to determine whether a stored most common value is applicable, the
selectivity estimator will have to run the appropriate = operator to compare the constant in the query
to the stored value. Thus the data in pg_statistic is potentially passed to user-defined operators. An
appropriately crafted operator can intentionally leak the passed operands (for example, by logging them
or writing them to a different table), or accidentally leak them by showing their values in error messages,
in either case possibly exposing data from pg_statistic to a user who should not be able to see it.

In order to prevent this, the following applies to all built-in selectivity estimation functions. When
planning a query, in order to be able to use stored statistics, the current user must either have SELECT
privilege on the table or the involved columns, or the operator used must be LEAKPROOF (more accurately,
the function that the operator is based on). If not, then the selectivity estimator will behave as if no
statistics are available, and the planner will proceed with default or fall-back assumptions.

If a user does not have the required privilege on the table or columns, then in many cases the query will
ultimately receive a permission-denied error, in which case this mechanism is invisible in practice. But
if the user is reading from a security-barrier view, then the planner might wish to check the statistics
of an underlying table that is otherwise inaccessible to the user. In that case, the operator should be
leak-proof or the statistics will not be used. There is no direct feedback about that, except that the plan
might be suboptimal. If one suspects that this is the case, one could try running the query as a more
privileged user, to see if a different plan results.

This restriction applies only to cases where the planner would need to execute a user-defined operator
on one or more values from pg_statistic. Thus the planner is permitted to use generic statistical
information, such as the fraction of null values or the number of distinct values in a column, regardless
of access privileges.

2053

How the Planner Uses Statistics

Selectivity estimation functions contained in third-party extensions that potentially operate on statistics
with user-defined operators should follow the same security rules.

2054

Chapter 67. Backup Manifest Format
The backup manifest generated by pg_basebackup is primarily intended to permit the backup to be
verified using pg_verifybackup. However, it is also possible for other tools to read the backup manifest
file and use the information contained therein for their own purposes. To that end, this chapter describes
the format of the backup manifest file.

A backup manifest is a JSON document encoded as UTF-8. (Although in general JSON documents are
required to be Unicode, PostgreSQL permits the json and jsonb data types to be used with any supported
server encoding. There is no similar exception for backup manifests.) The JSON document is always an
object; the keys that are present in this object are described in the next section.

67.1. Backup Manifest Top-level Object
The backup manifest JSON document contains the following keys.

PostgreSQL-Backup-Manifest-Version

The associated value is always the integer 1.

Files

The associated value is always a list of objects, each describing one file that is present in the backup.
No entries are present in this list for the WAL files that are needed in order to use the backup, or for
the backup manifest itself. The structure of each object in the list is described in Section 67.2.

WAL-Ranges

The associated value is always a list of objects, each describing a range of WAL records that must
be readable from a particular timeline in order to make use of the backup. The structure of these
objects is further described in Section 67.3.

Manifest-Checksum

This key is always present on the last line of the backup manifest file. The associated value is
a SHA256 checksum of all the preceding lines. We use a fixed checksum method here to make
it possible for clients to do incremental parsing of the manifest. While a SHA256 checksum is
significantly more expensive than a CRC32C checksum, the manifest should normally be small
enough that the extra computation won't matter very much.

67.2. Backup Manifest File Object
The object which describes a single file contains either a Path key or an Encoded-Path key. Normally,
the Path key will be present. The associated string value is the path of the file relative to the root of the
backup directory. Files located in a user-defined tablespace will have paths whose first two components
are pg_tblspc and the OID of the tablespace. If the path is not a string that is legal in UTF-8, or if the
user requests that encoded paths be used for all files, then the Encoded-Path key will be present instead.
This stores the same data, but it is encoded as a string of hexadecimal digits. Each pair of hexadecimal
digits in the string represents a single octet.

The following two keys are always present:

Size

The expected size of this file, as an integer.

Last-Modified

The last modification time of the file as reported by the server at the time of the backup. Unlike the
other fields stored in the backup, this field is not used by pg_verifybackup. It is included only for
informational purposes.

2055

Backup Manifest Format

If the backup was taken with file checksums enabled, the following keys will be present:

Checksum-Algorithm

The checksum algorithm used to compute a checksum for this file. Currently, this will be the same for
every file in the backup manifest, but this may change in future releases. At present, the supported
checksum algorithms are CRC32C, SHA224, SHA256, SHA384, and SHA512.

Checksum

The checksum computed for this file, stored as a series of hexadecimal characters, two for each byte
of the checksum.

67.3. Backup Manifest WAL Range Object
The object which describes a WAL range always has three keys:

Timeline

The timeline for this range of WAL records, as an integer.

Start-LSN

The LSN at which replay must begin on the indicated timeline in order to make use of this backup.
The LSN is stored in the format normally used by PostgreSQL; that is, it is a string consisting of two
strings of hexadecimal characters, each with a length of between 1 and 8, separated by a slash.

End-LSN

The earliest LSN at which replay on the indicated timeline may end when making use of this backup.
This is stored in the same format as Start-LSN.

Ordinarily, there will be only a single WAL range. However, if a backup is taken from a standby which
switches timelines during the backup due to an upstream promotion, it is possible for multiple ranges
to be present, each with a different timeline. There will never be multiple WAL ranges present for the
same timeline.

2056

Part VIII. Appendixes

Appendix A. Postgres Pro Error Codes
All messages emitted by the Postgres Pro server are assigned five-character error codes that follow
the SQL standard's conventions for “SQLSTATE” codes. Applications that need to know which error
condition has occurred should usually test the error code, rather than looking at the textual error
message. The error codes are less likely to change across Postgres Pro releases, and also are not subject
to change due to localization of error messages. Note that some, but not all, of the error codes produced
by Postgres Pro are defined by the SQL standard; some additional error codes for conditions not defined
by the standard have been invented or borrowed from other databases.

According to the standard, the first two characters of an error code denote a class of errors, while the
last three characters indicate a specific condition within that class. Thus, an application that does not
recognize the specific error code might still be able to infer what to do from the error class.

Table A.1 lists all the error codes defined in Postgres Pro Standard 13.7.2. (Some are not actually used
at present, but are defined by the SQL standard.) The error classes are also shown. For each error class
there is a “standard” error code having the last three characters 000. This code is used only for error
conditions that fall within the class but do not have any more-specific code assigned.

The symbol shown in the column “Condition Name” is the condition name to use in PL/pgSQL. Condition
names can be written in either upper or lower case. (Note that PL/pgSQL does not recognize warning,
as opposed to error, condition names; those are classes 00, 01, and 02.)

For some types of errors, the server reports the name of a database object (a table, table column, data
type, or constraint) associated with the error; for example, the name of the unique constraint that caused
a unique_violation error. Such names are supplied in separate fields of the error report message so
that applications need not try to extract them from the possibly-localized human-readable text of the
message. As of PostgreSQL 9.3, complete coverage for this feature exists only for errors in SQLSTATE
class 23 (integrity constraint violation), but this is likely to be expanded in future.

Table A.1. Postgres Pro Error Codes

Error
Code

Condition Name

Class 00 — Successful Completion
00000 successful_completion

Class 01 — Warning
01000 warning

0100C dynamic_result_sets_returned

01008 implicit_zero_bit_padding

01003 null_value_eliminated_in_set_function

01007 privilege_not_granted

01006 privilege_not_revoked

01004 string_data_right_truncation

01P01 deprecated_feature

Class 02 — No Data (this is also a warning class per the SQL standard)
02000 no_data

02001 no_additional_dynamic_result_sets_returned

Class 03 — SQL Statement Not Yet Complete
03000 sql_statement_not_yet_complete

Class 08 — Connection Exception
08000 connection_exception

2058

Postgres Pro Error Codes

Error
Code

Condition Name

08003 connection_does_not_exist

08006 connection_failure

08001 sqlclient_unable_to_establish_sqlconnection

08004 sqlserver_rejected_establishment_of_sqlconnection

08007 transaction_resolution_unknown

08P01 protocol_violation

Class 09 — Triggered Action Exception
09000 triggered_action_exception

Class 0A — Feature Not Supported
0A000 feature_not_supported

Class 0B — Invalid Transaction Initiation
0B000 invalid_transaction_initiation

Class 0F — Locator Exception
0F000 locator_exception

0F001 invalid_locator_specification

Class 0L — Invalid Grantor
0L000 invalid_grantor

0LP01 invalid_grant_operation

Class 0P — Invalid Role Specification
0P000 invalid_role_specification

Class 0Z — Diagnostics Exception
0Z000 diagnostics_exception

0Z002 stacked_diagnostics_accessed_without_active_handler

Class 20 — Case Not Found
20000 case_not_found

Class 21 — Cardinality Violation
21000 cardinality_violation

Class 22 — Data Exception
22000 data_exception

2202E array_subscript_error

22021 character_not_in_repertoire

22008 datetime_field_overflow

22012 division_by_zero

22005 error_in_assignment

2200B escape_character_conflict

22022 indicator_overflow

22015 interval_field_overflow

2201E invalid_argument_for_logarithm

22014 invalid_argument_for_ntile_function

2059

Postgres Pro Error Codes

Error
Code

Condition Name

22016 invalid_argument_for_nth_value_function

2201F invalid_argument_for_power_function

2201G invalid_argument_for_width_bucket_function

22018 invalid_character_value_for_cast

22007 invalid_datetime_format

22019 invalid_escape_character

2200D invalid_escape_octet

22025 invalid_escape_sequence

22P06 nonstandard_use_of_escape_character

22010 invalid_indicator_parameter_value

22023 invalid_parameter_value

22013 invalid_preceding_or_following_size

2201B invalid_regular_expression

2201W invalid_row_count_in_limit_clause

2201X invalid_row_count_in_result_offset_clause

2202H invalid_tablesample_argument

2202G invalid_tablesample_repeat

22009 invalid_time_zone_displacement_value

2200C invalid_use_of_escape_character

2200G most_specific_type_mismatch

22004 null_value_not_allowed

22002 null_value_no_indicator_parameter

22003 numeric_value_out_of_range

2200H sequence_generator_limit_exceeded

22026 string_data_length_mismatch

22001 string_data_right_truncation

22011 substring_error

22027 trim_error

22024 unterminated_c_string

2200F zero_length_character_string

22P01 floating_point_exception

22P02 invalid_text_representation

22P03 invalid_binary_representation

22P04 bad_copy_file_format

22P05 untranslatable_character

2200L not_an_xml_document

2200M invalid_xml_document

2200N invalid_xml_content

2200S invalid_xml_comment

2060

Postgres Pro Error Codes

Error
Code

Condition Name

2200T invalid_xml_processing_instruction

22030 duplicate_json_object_key_value

22031 invalid_argument_for_sql_json_datetime_function

22032 invalid_json_text

22033 invalid_sql_json_subscript

22034 more_than_one_sql_json_item

22035 no_sql_json_item

22036 non_numeric_sql_json_item

22037 non_unique_keys_in_a_json_object

22038 singleton_sql_json_item_required

22039 sql_json_array_not_found

2203A sql_json_member_not_found

2203B sql_json_number_not_found

2203C sql_json_object_not_found

2203D too_many_json_array_elements

2203E too_many_json_object_members

2203F sql_json_scalar_required

Class 23 — Integrity Constraint Violation
23000 integrity_constraint_violation

23001 restrict_violation

23502 not_null_violation

23503 foreign_key_violation

23505 unique_violation

23514 check_violation

23P01 exclusion_violation

Class 24 — Invalid Cursor State
24000 invalid_cursor_state

Class 25 — Invalid Transaction State
25000 invalid_transaction_state

25001 active_sql_transaction

25002 branch_transaction_already_active

25008 held_cursor_requires_same_isolation_level

25003 inappropriate_access_mode_for_branch_transaction

25004 inappropriate_isolation_level_for_branch_transaction

25005 no_active_sql_transaction_for_branch_transaction

25006 read_only_sql_transaction

25007 schema_and_data_statement_mixing_not_supported

25P01 no_active_sql_transaction

25P02 in_failed_sql_transaction

2061

Postgres Pro Error Codes

Error
Code

Condition Name

25P03 idle_in_transaction_session_timeout

Class 26 — Invalid SQL Statement Name
26000 invalid_sql_statement_name

Class 27 — Triggered Data Change Violation
27000 triggered_data_change_violation

Class 28 — Invalid Authorization Specification
28000 invalid_authorization_specification

28P01 invalid_password

Class 2B — Dependent Privilege Descriptors Still Exist
2B000 dependent_privilege_descriptors_still_exist

2BP01 dependent_objects_still_exist

Class 2D — Invalid Transaction Termination
2D000 invalid_transaction_termination

Class 2F — SQL Routine Exception
2F000 sql_routine_exception

2F005 function_executed_no_return_statement

2F002 modifying_sql_data_not_permitted

2F003 prohibited_sql_statement_attempted

2F004 reading_sql_data_not_permitted

Class 34 — Invalid Cursor Name
34000 invalid_cursor_name

Class 38 — External Routine Exception
38000 external_routine_exception

38001 containing_sql_not_permitted

38002 modifying_sql_data_not_permitted

38003 prohibited_sql_statement_attempted

38004 reading_sql_data_not_permitted

Class 39 — External Routine Invocation Exception
39000 external_routine_invocation_exception

39001 invalid_sqlstate_returned

39004 null_value_not_allowed

39P01 trigger_protocol_violated

39P02 srf_protocol_violated

39P03 event_trigger_protocol_violated

Class 3B — Savepoint Exception
3B000 savepoint_exception

3B001 invalid_savepoint_specification

Class 3D — Invalid Catalog Name
3D000 invalid_catalog_name

2062

Postgres Pro Error Codes

Error
Code

Condition Name

Class 3F — Invalid Schema Name
3F000 invalid_schema_name

Class 40 — Transaction Rollback
40000 transaction_rollback

40002 transaction_integrity_constraint_violation

40001 serialization_failure

40003 statement_completion_unknown

40P01 deadlock_detected

Class 42 — Syntax Error or Access Rule Violation
42000 syntax_error_or_access_rule_violation

42601 syntax_error

42501 insufficient_privilege

42846 cannot_coerce

42803 grouping_error

42P20 windowing_error

42P19 invalid_recursion

42830 invalid_foreign_key

42602 invalid_name

42622 name_too_long

42939 reserved_name

42804 datatype_mismatch

42P18 indeterminate_datatype

42P21 collation_mismatch

42P22 indeterminate_collation

42809 wrong_object_type

428C9 generated_always

42703 undefined_column

42883 undefined_function

42P01 undefined_table

42P02 undefined_parameter

42704 undefined_object

42701 duplicate_column

42P03 duplicate_cursor

42P04 duplicate_database

42723 duplicate_function

42P05 duplicate_prepared_statement

42P06 duplicate_schema

42P07 duplicate_table

42712 duplicate_alias

2063

Postgres Pro Error Codes

Error
Code

Condition Name

42710 duplicate_object

42702 ambiguous_column

42725 ambiguous_function

42P08 ambiguous_parameter

42P09 ambiguous_alias

42P10 invalid_column_reference

42611 invalid_column_definition

42P11 invalid_cursor_definition

42P12 invalid_database_definition

42P13 invalid_function_definition

42P14 invalid_prepared_statement_definition

42P15 invalid_schema_definition

42P16 invalid_table_definition

42P17 invalid_object_definition

Class 44 — WITH CHECK OPTION Violation
44000 with_check_option_violation

Class 53 — Insufficient Resources
53000 insufficient_resources

53100 disk_full

53200 out_of_memory

53300 too_many_connections

53400 configuration_limit_exceeded

Class 54 — Program Limit Exceeded
54000 program_limit_exceeded

54001 statement_too_complex

54011 too_many_columns

54023 too_many_arguments

Class 55 — Object Not In Prerequisite State
55000 object_not_in_prerequisite_state

55006 object_in_use

55P02 cant_change_runtime_param

55P03 lock_not_available

55P04 unsafe_new_enum_value_usage

Class 57 — Operator Intervention
57000 operator_intervention

57014 query_canceled

57P01 admin_shutdown

57P02 crash_shutdown

57P03 cannot_connect_now

2064

Postgres Pro Error Codes

Error
Code

Condition Name

57P04 database_dropped

Class 58 — System Error (errors external to PostgreSQL itself)
58000 system_error

58030 io_error

58P01 undefined_file

58P02 duplicate_file

Class 72 — Snapshot Failure
72000 snapshot_too_old

Class F0 — Configuration File Error
F0000 config_file_error

F0001 lock_file_exists

Class HV — Foreign Data Wrapper Error (SQL/MED)
HV000 fdw_error

HV005 fdw_column_name_not_found

HV002 fdw_dynamic_parameter_value_needed

HV010 fdw_function_sequence_error

HV021 fdw_inconsistent_descriptor_information

HV024 fdw_invalid_attribute_value

HV007 fdw_invalid_column_name

HV008 fdw_invalid_column_number

HV004 fdw_invalid_data_type

HV006 fdw_invalid_data_type_descriptors

HV091 fdw_invalid_descriptor_field_identifier

HV00B fdw_invalid_handle

HV00C fdw_invalid_option_index

HV00D fdw_invalid_option_name

HV090 fdw_invalid_string_length_or_buffer_length

HV00A fdw_invalid_string_format

HV009 fdw_invalid_use_of_null_pointer

HV014 fdw_too_many_handles

HV001 fdw_out_of_memory

HV00P fdw_no_schemas

HV00J fdw_option_name_not_found

HV00K fdw_reply_handle

HV00Q fdw_schema_not_found

HV00R fdw_table_not_found

HV00L fdw_unable_to_create_execution

HV00M fdw_unable_to_create_reply

HV00N fdw_unable_to_establish_connection

2065

Postgres Pro Error Codes

Error
Code

Condition Name

Class P0 — PL/pgSQL Error
P0000 plpgsql_error

P0001 raise_exception

P0002 no_data_found

P0003 too_many_rows

P0004 assert_failure

Class XX — Internal Error
XX000 internal_error

XX001 data_corrupted

XX002 index_corrupted

2066

Appendix B. Date/Time Support
Postgres Pro uses an internal heuristic parser for all date/time input support. Dates and times are
input as strings, and are broken up into distinct fields with a preliminary determination of what kind of
information can be in the field. Each field is interpreted and either assigned a numeric value, ignored,
or rejected. The parser contains internal lookup tables for all textual fields, including months, days of
the week, and time zones.

This appendix includes information on the content of these lookup tables and describes the steps used
by the parser to decode dates and times.

B.1. Date/Time Input Interpretation
Date/time input strings are decoded using the following procedure.

1. Break the input string into tokens and categorize each token as a string, time, time zone, or number.

a. If the numeric token contains a colon (:), this is a time string. Include all subsequent digits and
colons.

b. If the numeric token contains a dash (-), slash (/), or two or more dots (.), this is a date string
which might have a text month. If a date token has already been seen, it is instead interpreted
as a time zone name (e.g., America/New_York).

c. If the token is numeric only, then it is either a single field or an ISO 8601 concatenated date
(e.g., 19990113 for January 13, 1999) or time (e.g., 141516 for 14:15:16).

d. If the token starts with a plus (+) or minus (-), then it is either a numeric time zone or a special
field.

2. If the token is an alphabetic string, match up with possible strings:

a. See if the token matches any known time zone abbreviation. These abbreviations are supplied
by the configuration file described in Section B.4.

b. If not found, search an internal table to match the token as either a special string (e.g., today),
day (e.g., Thursday), month (e.g., January), or noise word (e.g., at, on).

c. If still not found, throw an error.

3. When the token is a number or number field:

a. If there are eight or six digits, and if no other date fields have been previously read, then interpret
as a “concatenated date” (e.g., 19990118 or 990118). The interpretation is YYYYMMDD or YYMMDD.

b. If the token is three digits and a year has already been read, then interpret as day of year.

c. If four or six digits and a year has already been read, then interpret as a time (HHMM or HHMMSS).

d. If three or more digits and no date fields have yet been found, interpret as a year (this forces
yy-mm-dd ordering of the remaining date fields).

e. Otherwise the date field ordering is assumed to follow the DateStyle setting: mm-dd-yy, dd-mm-
yy, or yy-mm-dd. Throw an error if a month or day field is found to be out of range.

4. If BC has been specified, negate the year and add one for internal storage. (There is no year zero in
the Gregorian calendar, so numerically 1 BC becomes year zero.)

5. If BC was not specified, and if the year field was two digits in length, then adjust the year to four
digits. If the field is less than 70, then add 2000, otherwise add 1900.

2067

Date/Time Support

Tip
Gregorian years AD 1–99 can be entered by using 4 digits with leading zeros (e.g., 0099 is
AD 99).

B.2. Handling of Invalid or Ambiguous Timestamps
Ordinarily, if a date/time string is syntactically valid but contains out-of-range field values, an error will
be thrown. For example, input specifying the 31st of February will be rejected.

During a daylight-savings-time transition, it is possible for a seemingly valid timestamp string to
represent a nonexistent or ambiguous timestamp. Such cases are not rejected; the ambiguity is resolved
by determining which UTC offset to apply. For example, supposing that the TimeZone parameter is set
to America/New_York, consider

=> SELECT '2018-03-11 02:30'::timestamptz;
 timestamptz

 2018-03-11 03:30:00-04
(1 row)

Because that day was a spring-forward transition date in that time zone, there was no civil time instant
2:30AM; clocks jumped forward from 2AM EST to 3AM EDT. Postgres Pro interprets the given time as
if it were standard time (UTC-5), which then renders as 3:30AM EDT (UTC-4).

Conversely, consider the behavior during a fall-back transition:

=> SELECT '2018-11-04 01:30'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-05
(1 row)

On that date, there were two possible interpretations of 1:30AM; there was 1:30AM EDT, and then an
hour later after clocks jumped back from 2AM EDT to 1AM EST, there was 1:30AM EST. Again, Postgres
Pro interprets the given time as if it were standard time (UTC-5). We can force the other interpretation
by specifying daylight-savings time:

=> SELECT '2018-11-04 01:30 EDT'::timestamptz;
 timestamptz

 2018-11-04 01:30:00-04
(1 row)

The precise rule that is applied in such cases is that an invalid timestamp that appears to fall within
a jump-forward daylight savings transition is assigned the UTC offset that prevailed in the time zone
just before the transition, while an ambiguous timestamp that could fall on either side of a jump-back
transition is assigned the UTC offset that prevailed just after the transition. In most time zones this is
equivalent to saying that “the standard-time interpretation is preferred when in doubt”.

In all cases, the UTC offset associated with a timestamp can be specified explicitly, using either a numeric
UTC offset or a time zone abbreviation that corresponds to a fixed UTC offset. The rule just given applies
only when it is necessary to infer a UTC offset for a time zone in which the offset varies.

B.3. Date/Time Key Words
Table B.1 shows the tokens that are recognized as names of months.

2068

Date/Time Support

Table B.1. Month Names

Month Abbreviations
January Jan
February Feb
March Mar
April Apr
May
June Jun
July Jul
August Aug
September Sep, Sept
October Oct
November Nov
December Dec

Table B.2 shows the tokens that are recognized as names of days of the week.

Table B.2. Day of the Week Names

Day Abbreviations
Sunday Sun
Monday Mon
Tuesday Tue, Tues
Wednesday Wed, Weds
Thursday Thu, Thur, Thurs
Friday Fri
Saturday Sat

Table B.3 shows the tokens that serve various modifier purposes.

Table B.3. Date/Time Field Modifiers

Identifier Description
AM Time is before 12:00
AT Ignored
JULIAN, JD, J Next field is Julian Date
ON Ignored
PM Time is on or after 12:00
T Next field is time

B.4. Date/Time Configuration Files
Since timezone abbreviations are not well standardized, Postgres Pro provides a means to customize the
set of abbreviations accepted by the server. The timezone_abbreviations run-time parameter determines
the active set of abbreviations. While this parameter can be altered by any database user, the possible
values for it are under the control of the database administrator — they are in fact names of configuration
files stored in .../share/timezonesets/ of the installation directory. By adding or altering files in that
directory, the administrator can set local policy for timezone abbreviations.

2069

Date/Time Support

timezone_abbreviations can be set to any file name found in .../share/timezonesets/, if
the file's name is entirely alphabetic. (The prohibition against non-alphabetic characters in
timezone_abbreviations prevents reading files outside the intended directory, as well as reading editor
backup files and other extraneous files.)

A timezone abbreviation file can contain blank lines and comments beginning with #. Non-comment lines
must have one of these formats:

zone_abbreviation offset
zone_abbreviation offset D
zone_abbreviation time_zone_name
@INCLUDE file_name
@OVERRIDE

A zone_abbreviation is just the abbreviation being defined. An offset is an integer giving the
equivalent offset in seconds from UTC, positive being east from Greenwich and negative being west. For
example, -18000 would be five hours west of Greenwich, or North American east coast standard time. D
indicates that the zone name represents local daylight-savings time rather than standard time.

Alternatively, a time_zone_name can be given, referencing a zone name defined in the IANA timezone
database. The zone's definition is consulted to see whether the abbreviation is or has been in use in
that zone, and if so, the appropriate meaning is used — that is, the meaning that was currently in use
at the timestamp whose value is being determined, or the meaning in use immediately before that if
it wasn't current at that time, or the oldest meaning if it was used only after that time. This behavior
is essential for dealing with abbreviations whose meaning has historically varied. It is also allowed to
define an abbreviation in terms of a zone name in which that abbreviation does not appear; then using
the abbreviation is just equivalent to writing out the zone name.

Tip
Using a simple integer offset is preferred when defining an abbreviation whose offset from UTC
has never changed, as such abbreviations are much cheaper to process than those that require
consulting a time zone definition.

The @INCLUDE syntax allows inclusion of another file in the .../share/timezonesets/ directory.
Inclusion can be nested, to a limited depth.

The @OVERRIDE syntax indicates that subsequent entries in the file can override previous entries
(typically, entries obtained from included files). Without this, conflicting definitions of the same timezone
abbreviation are considered an error.

In an unmodified installation, the file Default contains all the non-conflicting time zone abbreviations
for most of the world. Additional files Australia and India are provided for those regions: these files
first include the Default file and then add or modify abbreviations as needed.

For reference purposes, a standard installation also contains files Africa.txt, America.txt, etc,
containing information about every time zone abbreviation known to be in use according to the
IANA timezone database. The zone name definitions found in these files can be copied and pasted
into a custom configuration file as needed. Note that these files cannot be directly referenced as
timezone_abbreviations settings, because of the dot embedded in their names.

Note
If an error occurs while reading the time zone abbreviation set, no new value is applied and the
old set is kept. If the error occurs while starting the database, startup fails.

2070

Date/Time Support

Caution
Time zone abbreviations defined in the configuration file override non-timezone meanings built
into Postgres Pro. For example, the Australia configuration file defines SAT (for South Australian
Standard Time). When this file is active, SAT will not be recognized as an abbreviation for Saturday.

Caution
If you modify files in .../share/timezonesets/, it is up to you to make backups — a normal
database dump will not include this directory.

B.5. POSIX Time Zone Specifications
Postgres Pro can accept time zone specifications that are written according to the POSIX standard's
rules for the TZ environment variable. POSIX time zone specifications are inadequate to deal with the
complexity of real-world time zone history, but there are sometimes reasons to use them.

A POSIX time zone specification has the form
STD offset [DST [dstoffset] [, rule]]

(For readability, we show spaces between the fields, but spaces should not be used in practice.) The
fields are:
• STD is the zone abbreviation to be used for standard time.
• offset is the zone's standard-time offset from UTC.
• DST is the zone abbreviation to be used for daylight-savings time. If this field and the following ones

are omitted, the zone uses a fixed UTC offset with no daylight-savings rule.
• dstoffset is the daylight-savings offset from UTC. This field is typically omitted, since it defaults to

one hour less than the standard-time offset, which is usually the right thing.
• rule defines the rule for when daylight savings is in effect, as described below.

In this syntax, a zone abbreviation can be a string of letters, such as EST, or an arbitrary string
surrounded by angle brackets, such as <UTC-05>. Note that the zone abbreviations given here are
only used for output, and even then only in some timestamp output formats. The zone abbreviations
recognized in timestamp input are determined as explained in Section B.4.

The offset fields specify the hours, and optionally minutes and seconds, difference from UTC. They have
the format hh[:mm[:ss]] optionally with a leading sign (+ or -). The positive sign is used for zones west of
Greenwich. (Note that this is the opposite of the ISO-8601 sign convention used elsewhere in Postgres
Pro.) hh can have one or two digits; mm and ss (if used) must have two.

The daylight-savings transition rule has the format
dstdate [/ dsttime] , stddate [/ stdtime]

(As before, spaces should not be included in practice.) The dstdate and dsttime fields define when
daylight-savings time starts, while stddate and stdtime define when standard time starts. (In some
cases, notably in zones south of the equator, the former might be later in the year than the latter.) The
date fields have one of these formats:
n

A plain integer denotes a day of the year, counting from zero to 364, or to 365 in leap years.

Jn

In this form, n counts from 1 to 365, and February 29 is not counted even if it is present. (Thus, a
transition occurring on February 29 could not be specified this way. However, days after February

2071

Date/Time Support

have the same numbers whether it's a leap year or not, so that this form is usually more useful than
the plain-integer form for transitions on fixed dates.)

Mm.n.d

This form specifies a transition that always happens during the same month and on the same day
of the week. m identifies the month, from 1 to 12. n specifies the n'th occurrence of the weekday
identified by d. n is a number between 1 and 4, or 5 meaning the last occurrence of that weekday in
the month (which could be the fourth or the fifth). d is a number between 0 and 6, with 0 indicating
Sunday. For example, M3.2.0 means “the second Sunday in March”.

Note
The M format is sufficient to describe many common daylight-savings transition laws. But note that
none of these variants can deal with daylight-savings law changes, so in practice the historical
data stored for named time zones (in the IANA time zone database) is necessary to interpret past
time stamps correctly.

The time fields in a transition rule have the same format as the offset fields described previously, except
that they cannot contain signs. They define the current local time at which the change to the other time
occurs. If omitted, they default to 02:00:00.

If a daylight-savings abbreviation is given but the transition rule field is omitted, the fallback behavior
is to use the rule M3.2.0,M11.1.0, which corresponds to USA practice as of 2020 (that is, spring forward
on the second Sunday of March, fall back on the first Sunday of November, both transitions occurring
at 2AM prevailing time). Note that this rule does not give correct USA transition dates for years before
2007.

As an example, CET-1CEST,M3.5.0,M10.5.0/3 describes current (as of 2020) timekeeping practice in
Paris. This specification says that standard time has the abbreviation CET and is one hour ahead (east) of
UTC; daylight savings time has the abbreviation CEST and is implicitly two hours ahead of UTC; daylight
savings time begins on the last Sunday in March at 2AM CET and ends on the last Sunday in October
at 3AM CEST.

The four timezone names EST5EDT, CST6CDT, MST7MDT, and PST8PDT look like they are POSIX zone
specifications. However, they actually are treated as named time zones because (for historical reasons)
there are files by those names in the IANA time zone database. The practical implication of this is that
these zone names will produce valid historical USA daylight-savings transitions, even when a plain POSIX
specification would not.

One should be wary that it is easy to misspell a POSIX-style time zone specification, since there is no
check on the reasonableness of the zone abbreviation(s). For example, SET TIMEZONE TO FOOBAR0 will
work, leaving the system effectively using a rather peculiar abbreviation for UTC.

B.6. History of Units
The SQL standard states that “Within the definition of a ‘datetime literal’, the ‘datetime values’ are
constrained by the natural rules for dates and times according to the Gregorian calendar”. Postgres Pro
follows the SQL standard's lead by counting dates exclusively in the Gregorian calendar, even for years
before that calendar was in use. This rule is known as the proleptic Gregorian calendar.

The Julian calendar was introduced by Julius Caesar in 45 BC. It was in common use in the Western
world until the year 1582, when countries started changing to the Gregorian calendar. In the Julian
calendar, the tropical year is approximated as 365 1/4 days = 365.25 days. This gives an error of about
1 day in 128 years.

The accumulating calendar error prompted Pope Gregory XIII to reform the calendar in accordance with
instructions from the Council of Trent. In the Gregorian calendar, the tropical year is approximated as

2072

Date/Time Support

365 + 97 / 400 days = 365.2425 days. Thus it takes approximately 3300 years for the tropical year to
shift one day with respect to the Gregorian calendar.

The approximation 365+97/400 is achieved by having 97 leap years every 400 years, using the following
rules:

Every year divisible by 4 is a leap year.
However, every year divisible by 100 is not a leap year.
However, every year divisible by 400 is a leap year after all.

So, 1700, 1800, 1900, 2100, and 2200 are not leap years. But 1600, 2000, and 2400 are leap years. By
contrast, in the older Julian calendar all years divisible by 4 are leap years.

The papal bull of February 1582 decreed that 10 days should be dropped from October 1582 so that
15 October should follow immediately after 4 October. This was observed in Italy, Poland, Portugal, and
Spain. Other Catholic countries followed shortly after, but Protestant countries were reluctant to change,
and the Greek Orthodox countries didn't change until the start of the 20th century. The reform was
observed by Great Britain and its dominions (including what is now the USA) in 1752. Thus 2 September
1752 was followed by 14 September 1752. This is why Unix systems that have the cal program produce
the following:

$ cal 9 1752
 September 1752
 S M Tu W Th F S
 1 2 14 15 16
17 18 19 20 21 22 23
24 25 26 27 28 29 30

But, of course, this calendar is only valid for Great Britain and dominions, not other places. Since it
would be difficult and confusing to try to track the actual calendars that were in use in various places
at various times, Postgres Pro does not try, but rather follows the Gregorian calendar rules for all dates,
even though this method is not historically accurate.

Different calendars have been developed in various parts of the world, many predating the Gregorian
system. For example, the beginnings of the Chinese calendar can be traced back to the 14th century
BC. Legend has it that the Emperor Huangdi invented that calendar in 2637 BC. The People's Republic
of China uses the Gregorian calendar for civil purposes. The Chinese calendar is used for determining
festivals.

B.7. Julian Dates
The Julian Date system is a method for numbering days. It is unrelated to the Julian calendar, though
it is confusingly named similarly to that calendar. The Julian Date system was invented by the French
scholar Joseph Justus Scaliger (1540–1609) and probably takes its name from Scaliger's father, the Italian
scholar Julius Caesar Scaliger (1484–1558).

In the Julian Date system, each day has a sequential number, starting from JD 0 (which is sometimes
called the Julian Date). JD 0 corresponds to 1 January 4713 BC in the Julian calendar, or 24 November
4714 BC in the Gregorian calendar. Julian Date counting is most often used by astronomers for labeling
their nightly observations, and therefore a date runs from noon UTC to the next noon UTC, rather than
from midnight to midnight: JD 0 designates the 24 hours from noon UTC on 24 November 4714 BC to
noon UTC on 25 November 4714 BC.

Although Postgres Pro supports Julian Date notation for input and output of dates (and also uses Julian
dates for some internal datetime calculations), it does not observe the nicety of having dates run from
noon to noon. Postgres Pro treats a Julian Date as running from local midnight to local midnight, the
same as a normal date.

This definition does, however, provide a way to obtain the astronomical definition when you need it: do
the arithmetic in time zone UTC+12. For example,

2073

Date/Time Support

=> SELECT extract(julian from '2021-06-23 7:00:00-04'::timestamptz at time zone 'UTC
+12');
 date_part

 2459388.9583333335
(1 row)
=> SELECT extract(julian from '2021-06-23 8:00:00-04'::timestamptz at time zone 'UTC
+12');
 date_part

 2459389
(1 row)
=> SELECT extract(julian from date '2021-06-23');
 date_part

 2459389
(1 row)

2074

Appendix C. SQL Key Words
Table C.1 lists all tokens that are key words in the SQL standard and in Postgres Pro Standard 13.7.2.
Background information can be found in Section 4.1.1. (For space reasons, only the latest two versions
of the SQL standard, and SQL-92 for historical comparison, are included. The differences between those
and the other intermediate standard versions are small.)

SQL distinguishes between reserved and non-reserved key words. According to the standard, reserved
key words are the only real key words; they are never allowed as identifiers. Non-reserved key words
only have a special meaning in particular contexts and can be used as identifiers in other contexts. Most
non-reserved key words are actually the names of built-in tables and functions specified by SQL. The
concept of non-reserved key words essentially only exists to declare that some predefined meaning is
attached to a word in some contexts.

In the Postgres Pro parser life is a bit more complicated. There are several different classes of tokens
ranging from those that can never be used as an identifier to those that have absolutely no special status
in the parser as compared to an ordinary identifier. (The latter is usually the case for functions specified
by SQL.) Even reserved key words are not completely reserved in Postgres Pro, but can be used as
column labels (for example, SELECT 55 AS CHECK, even though CHECK is a reserved key word).

In Table C.1 in the column for Postgres Pro we classify as “non-reserved” those key words that are
explicitly known to the parser but are allowed as column or table names. Some key words that are
otherwise non-reserved cannot be used as function or data type names and are marked accordingly.
(Most of these words represent built-in functions or data types with special syntax. The function or type
is still available but it cannot be redefined by the user.) Labeled “reserved” are those tokens that are
not allowed as column or table names. Some reserved key words are allowable as names for functions
or data types; this is also shown in the table. If not so marked, a reserved key word is only allowed as
an “AS” column label name.

As a general rule, if you get spurious parser errors for commands that contain any of the listed key words
as an identifier you should try to quote the identifier to see if the problem goes away.

It is important to understand before studying Table C.1 that the fact that a key word is not reserved in
Postgres Pro does not mean that the feature related to the word is not implemented. Conversely, the
presence of a key word does not indicate the existence of a feature.

Table C.1. SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
A non-reserved non-reserved
ABORT non-reserved
ABS reserved reserved
ABSENT non-reserved non-reserved
ABSOLUTE non-reserved non-reserved non-reserved reserved
ACCESS non-reserved
ACCORDING non-reserved non-reserved
ACOS reserved
ACTION non-reserved non-reserved non-reserved reserved
ADA non-reserved non-reserved non-reserved
ADD non-reserved non-reserved non-reserved reserved
ADMIN non-reserved non-reserved non-reserved
AFTER non-reserved non-reserved non-reserved
AGGREGATE non-reserved

2075

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
ALL reserved reserved reserved reserved
ALLOCATE reserved reserved reserved
ALSO non-reserved
ALTER non-reserved reserved reserved reserved
ALWAYS non-reserved non-reserved non-reserved
ANALYSE reserved
ANALYZE reserved
AND reserved reserved reserved reserved
ANY reserved reserved reserved reserved
APPLICATION non-reserved
ARE reserved reserved reserved
ARRAY reserved reserved reserved
ARRAY_AGG reserved reserved
ARRAY_MAX_CARDINALITY reserved reserved
AS reserved reserved reserved reserved
ASC reserved non-reserved non-reserved reserved
ASENSITIVE reserved reserved
ASIN reserved
ASSERTION non-reserved non-reserved non-reserved reserved
ASSIGNMENT non-reserved non-reserved non-reserved
ASYMMETRIC reserved reserved reserved
AT non-reserved reserved reserved reserved
ATAN reserved
ATOMIC reserved reserved
ATTACH non-reserved
ATTRIBUTE non-reserved non-reserved non-reserved
ATTRIBUTES non-reserved non-reserved
AUTHORIZATION reserved (can be

function or type)
reserved reserved reserved

AVG reserved reserved reserved
BACKWARD non-reserved
BASE64 non-reserved non-reserved
BEFORE non-reserved non-reserved non-reserved
BEGIN non-reserved reserved reserved reserved
BEGIN_FRAME reserved reserved
BEGIN_PARTITION reserved reserved
BERNOULLI non-reserved non-reserved
BETWEEN non-reserved (

cannot be function
or type)

reserved reserved reserved

2076

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
BIGINT non-reserved (

cannot be function
or type)

reserved reserved

BINARY reserved (can be
function or type)

reserved reserved

BIT non-reserved (
cannot be function
or type)

 reserved

BIT_LENGTH reserved
BLOB reserved reserved
BLOCKED non-reserved non-reserved
BOM non-reserved non-reserved
BOOLEAN non-reserved (

cannot be function
or type)

reserved reserved

BOTH reserved reserved reserved reserved
BREADTH non-reserved non-reserved
BY non-reserved reserved reserved reserved
C non-reserved non-reserved non-reserved
CACHE non-reserved
CALL non-reserved reserved reserved
CALLED non-reserved reserved reserved
CARDINALITY reserved reserved
CASCADE non-reserved non-reserved non-reserved reserved
CASCADED non-reserved reserved reserved reserved
CASE reserved reserved reserved reserved
CAST reserved reserved reserved reserved
CATALOG non-reserved non-reserved non-reserved reserved
CATALOG_NAME non-reserved non-reserved non-reserved
CEIL reserved reserved
CEILING reserved reserved
CHAIN non-reserved non-reserved non-reserved
CHAINING non-reserved
CHAR non-reserved (

cannot be function
or type)

reserved reserved reserved

CHARACTER non-reserved (
cannot be function
or type)

reserved reserved reserved

CHARACTERISTICS non-reserved non-reserved non-reserved
CHARACTERS non-reserved non-reserved
CHARACTER_LENGTH reserved reserved reserved
CHARACTER_SET_CATALOG non-reserved non-reserved non-reserved

2077

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
CHARACTER_SET_NAME non-reserved non-reserved non-reserved
CHARACTER_SET_SCHEMA non-reserved non-reserved non-reserved
CHAR_LENGTH reserved reserved reserved
CHECK reserved reserved reserved reserved
CHECKPOINT non-reserved
CLASS non-reserved
CLASSIFIER reserved
CLASS_ORIGIN non-reserved non-reserved non-reserved
CLOB reserved reserved
CLOSE non-reserved reserved reserved reserved
CLUSTER non-reserved
COALESCE non-reserved (

cannot be function
or type)

reserved reserved reserved

COBOL non-reserved non-reserved non-reserved
COLLATE reserved reserved reserved reserved
COLLATION reserved (can be

function or type)
non-reserved non-reserved reserved

COLLATION_CATALOG non-reserved non-reserved non-reserved
COLLATION_NAME non-reserved non-reserved non-reserved
COLLATION_SCHEMA non-reserved non-reserved non-reserved
COLLECT reserved reserved
COLUMN reserved reserved reserved reserved
COLUMNS non-reserved non-reserved non-reserved
COLUMN_NAME non-reserved non-reserved non-reserved
COMMAND_FUNCTION non-reserved non-reserved non-reserved
COMMAND_FUNCTION_CODE non-reserved non-reserved
COMMENT non-reserved
COMMENTS non-reserved
COMMIT non-reserved reserved reserved reserved
COMMITTED non-reserved non-reserved non-reserved non-reserved
CONCURRENTLY reserved (can be

function or type)

CONDITION reserved reserved
CONDITIONAL non-reserved
CONDITION_NUMBER non-reserved non-reserved non-reserved
CONFIGURATION non-reserved
CONFLICT non-reserved
CONNECT reserved reserved reserved
CONNECTION non-reserved non-reserved non-reserved reserved
CONNECTION_NAME non-reserved non-reserved non-reserved

2078

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
CONSTRAINT reserved reserved reserved reserved
CONSTRAINTS non-reserved non-reserved non-reserved reserved
CONSTRAINT_CATALOG non-reserved non-reserved non-reserved
CONSTRAINT_NAME non-reserved non-reserved non-reserved
CONSTRAINT_SCHEMA non-reserved non-reserved non-reserved
CONSTRUCTOR non-reserved non-reserved
CONTAINS reserved reserved
CONTENT non-reserved non-reserved non-reserved
CONTINUE non-reserved non-reserved non-reserved reserved
CONTROL non-reserved non-reserved
CONVERSION non-reserved
CONVERT reserved reserved reserved
COPY non-reserved reserved
CORR reserved reserved
CORRESPONDING reserved reserved reserved
COS reserved
COSH reserved
COST non-reserved
COUNT reserved reserved reserved
COVAR_POP reserved reserved
COVAR_SAMP reserved reserved
CREATE reserved reserved reserved reserved
CROSS reserved (can be

function or type)
reserved reserved reserved

CSV non-reserved
CUBE non-reserved reserved reserved
CUME_DIST reserved reserved
CURRENT non-reserved reserved reserved reserved
CURRENT_CATALOG reserved reserved reserved
CURRENT_DATE reserved reserved reserved reserved
CURRENT_DEFAULT_
TRANSFORM_GROUP

 reserved reserved

CURRENT_PATH reserved reserved
CURRENT_ROLE reserved reserved reserved
CURRENT_ROW reserved reserved
CURRENT_SCHEMA reserved (can be

function or type)
reserved reserved

CURRENT_TIME reserved reserved reserved reserved
CURRENT_TIMESTAMP reserved reserved reserved reserved
CURRENT_TRANSFORM_GROUP_
FOR_TYPE

 reserved reserved

2079

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
CURRENT_USER reserved reserved reserved reserved
CURSOR non-reserved reserved reserved reserved
CURSOR_NAME non-reserved non-reserved non-reserved
CYCLE non-reserved reserved reserved
DATA non-reserved non-reserved non-reserved non-reserved
DATABASE non-reserved
DATALINK reserved reserved
DATE reserved reserved reserved
DATETIME_INTERVAL_CODE non-reserved non-reserved non-reserved
DATETIME_INTERVAL_
PRECISION

 non-reserved non-reserved non-reserved

DAY non-reserved reserved reserved reserved
DB non-reserved non-reserved
DEALLOCATE non-reserved reserved reserved reserved
DEC non-reserved (

cannot be function
or type)

reserved reserved reserved

DECFLOAT reserved
DECIMAL non-reserved (

cannot be function
or type)

reserved reserved reserved

DECLARE non-reserved reserved reserved reserved
DEFAULT reserved reserved reserved reserved
DEFAULTS non-reserved non-reserved non-reserved
DEFERRABLE reserved non-reserved non-reserved reserved
DEFERRED non-reserved non-reserved non-reserved reserved
DEFINE reserved
DEFINED non-reserved non-reserved
DEFINER non-reserved non-reserved non-reserved
DEGREE non-reserved non-reserved
DELETE non-reserved reserved reserved reserved
DELIMITER non-reserved
DELIMITERS non-reserved
DENSE_RANK reserved reserved
DEPENDS non-reserved
DEPTH non-reserved non-reserved
DEREF reserved reserved
DERIVED non-reserved non-reserved
DESC reserved non-reserved non-reserved reserved
DESCRIBE reserved reserved reserved
DESCRIPTOR non-reserved non-reserved reserved

2080

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
DETACH non-reserved
DETERMINISTIC reserved reserved
DIAGNOSTICS non-reserved non-reserved reserved
DICTIONARY non-reserved
DISABLE non-reserved
DISCARD non-reserved
DISCONNECT reserved reserved reserved
DISPATCH non-reserved non-reserved
DISTINCT reserved reserved reserved reserved
DLNEWCOPY reserved reserved
DLPREVIOUSCOPY reserved reserved
DLURLCOMPLETE reserved reserved
DLURLCOMPLETEONLY reserved reserved
DLURLCOMPLETEWRITE reserved reserved
DLURLPATH reserved reserved
DLURLPATHONLY reserved reserved
DLURLPATHWRITE reserved reserved
DLURLSCHEME reserved reserved
DLURLSERVER reserved reserved
DLVALUE reserved reserved
DO reserved
DOCUMENT non-reserved non-reserved non-reserved
DOMAIN non-reserved non-reserved non-reserved reserved
DOUBLE non-reserved reserved reserved reserved
DROP non-reserved reserved reserved reserved
DYNAMIC reserved reserved
DYNAMIC_FUNCTION non-reserved non-reserved non-reserved
DYNAMIC_FUNCTION_CODE non-reserved non-reserved
EACH non-reserved reserved reserved
ELEMENT reserved reserved
ELSE reserved reserved reserved reserved
EMPTY reserved non-reserved
ENABLE non-reserved
ENCODING non-reserved non-reserved non-reserved
ENCRYPTED non-reserved
END reserved reserved reserved reserved
END-EXEC reserved reserved reserved
END_FRAME reserved reserved
END_PARTITION reserved reserved
ENFORCED non-reserved non-reserved

2081

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
ENUM non-reserved
EQUALS reserved reserved
ERROR non-reserved
ESCAPE non-reserved reserved reserved reserved
EVENT non-reserved
EVERY reserved reserved
EXCEPT reserved reserved reserved reserved
EXCEPTION reserved
EXCLUDE non-reserved non-reserved non-reserved
EXCLUDING non-reserved non-reserved non-reserved
EXCLUSIVE non-reserved
EXEC reserved reserved reserved
EXECUTE non-reserved reserved reserved reserved
EXISTS non-reserved (

cannot be function
or type)

reserved reserved reserved

EXP reserved reserved
EXPLAIN non-reserved
EXPRESSION non-reserved non-reserved non-reserved
EXTENSION non-reserved
EXTERNAL non-reserved reserved reserved reserved
EXTRACT non-reserved (

cannot be function
or type)

reserved reserved reserved

FALSE reserved reserved reserved reserved
FAMILY non-reserved
FETCH reserved reserved reserved reserved
FILE non-reserved non-reserved
FILTER non-reserved reserved reserved
FINAL non-reserved non-reserved
FINISH non-reserved
FIRST non-reserved non-reserved non-reserved reserved
FIRST_VALUE reserved reserved
FLAG non-reserved non-reserved
FLOAT non-reserved (

cannot be function
or type)

reserved reserved reserved

FLOOR reserved reserved
FOLLOWING non-reserved non-reserved non-reserved
FOR reserved reserved reserved reserved
FORCE non-reserved
FOREIGN reserved reserved reserved reserved

2082

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
FORMAT non-reserved
FORTRAN non-reserved non-reserved non-reserved
FORWARD non-reserved
FOUND non-reserved non-reserved reserved
FRAME_ROW reserved reserved
FREE reserved reserved
FREEZE reserved (can be

function or type)

FROM reserved reserved reserved reserved
FS non-reserved non-reserved
FULFILL non-reserved
FULL reserved (can be

function or type)
reserved reserved reserved

FUNCTION non-reserved reserved reserved
FUNCTIONS non-reserved
FUSION reserved reserved
G non-reserved non-reserved
GENERAL non-reserved non-reserved
GENERATED non-reserved non-reserved non-reserved
GET reserved reserved reserved
GLOBAL non-reserved reserved reserved reserved
GO non-reserved non-reserved reserved
GOTO non-reserved non-reserved reserved
GRANT reserved reserved reserved reserved
GRANTED non-reserved non-reserved non-reserved
GREATEST non-reserved (

cannot be function
or type)

GROUP reserved reserved reserved reserved
GROUPING non-reserved (

cannot be function
or type)

reserved reserved

GROUPS non-reserved reserved reserved
HANDLER non-reserved
HAVING reserved reserved reserved reserved
HEADER non-reserved
HEX non-reserved non-reserved
HIERARCHY non-reserved non-reserved
HOLD non-reserved reserved reserved
HOUR non-reserved reserved reserved reserved
ID non-reserved non-reserved
IDENTITY non-reserved reserved reserved reserved

2083

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
IF non-reserved
IGNORE non-reserved non-reserved
ILIKE reserved (can be

function or type)

IMMEDIATE non-reserved non-reserved non-reserved reserved
IMMEDIATELY non-reserved non-reserved
IMMUTABLE non-reserved
IMPLEMENTATION non-reserved non-reserved
IMPLICIT non-reserved
IMPORT non-reserved reserved reserved
IN reserved reserved reserved reserved
INCLUDE non-reserved
INCLUDING non-reserved non-reserved non-reserved
INCREMENT non-reserved non-reserved non-reserved
INDENT non-reserved non-reserved
INDEX non-reserved
INDEXES non-reserved
INDICATOR reserved reserved reserved
INFINITELY non-reserved
INHERIT non-reserved
INHERITS non-reserved
INITIAL reserved
INITIALLY reserved non-reserved non-reserved reserved
INLINE non-reserved
INNER reserved (can be

function or type)
reserved reserved reserved

INOUT non-reserved (
cannot be function
or type)

reserved reserved

INPUT non-reserved non-reserved non-reserved reserved
INSENSITIVE non-reserved reserved reserved reserved
INSERT non-reserved reserved reserved reserved
INSTANCE non-reserved non-reserved
INSTANTIABLE non-reserved non-reserved
INSTEAD non-reserved non-reserved non-reserved
INT non-reserved (

cannot be function
or type)

reserved reserved reserved

INTEGER non-reserved (
cannot be function
or type)

reserved reserved reserved

INTEGRITY non-reserved non-reserved

2084

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
INTERSECT reserved reserved reserved reserved
INTERSECTION reserved reserved
INTERVAL non-reserved (

cannot be function
or type)

reserved reserved reserved

INTO reserved reserved reserved reserved
INVOKER non-reserved non-reserved non-reserved
IS reserved (can be

function or type)
reserved reserved reserved

ISNULL reserved (can be
function or type)

ISOLATION non-reserved non-reserved non-reserved reserved
JOIN reserved (can be

function or type)
reserved reserved reserved

JSON non-reserved
JSON_ARRAY reserved
JSON_ARRAYAGG reserved
JSON_EXISTS reserved
JSON_OBJECT reserved
JSON_OBJECTAGG reserved
JSON_QUERY reserved
JSON_TABLE reserved
JSON_TABLE_PRIMITIVE reserved
JSON_VALUE reserved
K non-reserved non-reserved
KEEP non-reserved
KEY non-reserved non-reserved non-reserved reserved
KEYS non-reserved
KEY_MEMBER non-reserved non-reserved
KEY_TYPE non-reserved non-reserved
LABEL non-reserved
LAG reserved reserved
LANGUAGE non-reserved reserved reserved reserved
LARGE non-reserved reserved reserved
LAST non-reserved non-reserved non-reserved reserved
LAST_VALUE reserved reserved
LATERAL reserved reserved reserved
LEAD reserved reserved
LEADING reserved reserved reserved reserved
LEAKPROOF non-reserved

2085

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
LEAST non-reserved (

cannot be function
or type)

LEFT reserved (can be
function or type)

reserved reserved reserved

LENGTH non-reserved non-reserved non-reserved
LEVEL non-reserved non-reserved non-reserved reserved
LIBRARY non-reserved non-reserved
LIKE reserved (can be

function or type)
reserved reserved reserved

LIKE_REGEX reserved reserved
LIMIT reserved non-reserved non-reserved
LINK non-reserved non-reserved
LISTAGG reserved
LISTEN non-reserved
LN reserved reserved
LOAD non-reserved
LOCAL non-reserved reserved reserved reserved
LOCALTIME reserved reserved reserved
LOCALTIMESTAMP reserved reserved reserved
LOCATION non-reserved non-reserved non-reserved
LOCATOR non-reserved non-reserved
LOCK non-reserved
LOCKED non-reserved
LOG reserved
LOG10 reserved
LOGGED non-reserved
LOWER reserved reserved reserved
M non-reserved non-reserved
MAP non-reserved non-reserved
MAPPING non-reserved non-reserved non-reserved
MATCH non-reserved reserved reserved reserved
MATCHED non-reserved non-reserved
MATCHES reserved
MATCH_NUMBER reserved
MATCH_RECOGNIZE reserved
MATERIALIZED non-reserved
MAX reserved reserved reserved
MAXVALUE non-reserved non-reserved non-reserved
MEASURES reserved
MEMBER reserved reserved

2086

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
MERGE reserved reserved
MESSAGE_LENGTH non-reserved non-reserved non-reserved
MESSAGE_OCTET_LENGTH non-reserved non-reserved non-reserved
MESSAGE_TEXT non-reserved non-reserved non-reserved
METHOD non-reserved reserved reserved
MIN reserved reserved reserved
MINUTE non-reserved reserved reserved reserved
MINVALUE non-reserved non-reserved non-reserved
MOD reserved reserved
MODE non-reserved
MODIFIES reserved reserved
MODULE reserved reserved reserved
MONTH non-reserved reserved reserved reserved
MORE non-reserved non-reserved non-reserved
MOVE non-reserved
MULTISET reserved reserved
MUMPS non-reserved non-reserved non-reserved
NAME non-reserved non-reserved non-reserved non-reserved
NAMES non-reserved non-reserved non-reserved reserved
NAMESPACE non-reserved non-reserved
NATIONAL non-reserved (

cannot be function
or type)

reserved reserved reserved

NATURAL reserved (can be
function or type)

reserved reserved reserved

NCHAR non-reserved (
cannot be function
or type)

reserved reserved reserved

NCLOB reserved reserved
NESTED non-reserved
NESTING non-reserved non-reserved
NEW non-reserved reserved reserved
NEXT non-reserved non-reserved non-reserved reserved
NFC non-reserved non-reserved non-reserved
NFD non-reserved non-reserved non-reserved
NFKC non-reserved non-reserved non-reserved
NFKD non-reserved non-reserved non-reserved
NIL non-reserved non-reserved
NO non-reserved reserved reserved reserved
NONE non-reserved (

cannot be function
or type)

reserved reserved

2087

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
NORMALIZE non-reserved (

cannot be function
or type)

reserved reserved

NORMALIZED non-reserved non-reserved non-reserved
NOT reserved reserved reserved reserved
NOTHING non-reserved
NOTIFY non-reserved
NOTNULL reserved (can be

function or type)

NOWAIT non-reserved
NTH_VALUE reserved reserved
NTILE reserved reserved
NULL reserved reserved reserved reserved
NULLABLE non-reserved non-reserved non-reserved
NULLIF non-reserved (

cannot be function
or type)

reserved reserved reserved

NULLS non-reserved non-reserved non-reserved
NUMBER non-reserved non-reserved non-reserved
NUMERIC non-reserved (

cannot be function
or type)

reserved reserved reserved

OBJECT non-reserved non-reserved non-reserved
OCCURRENCES_REGEX reserved reserved
OCTETS non-reserved non-reserved
OCTET_LENGTH reserved reserved reserved
OF non-reserved reserved reserved reserved
OFF non-reserved non-reserved non-reserved
OFFSET reserved reserved reserved
OIDS non-reserved
OLD non-reserved reserved reserved
OMIT reserved
ON reserved reserved reserved reserved
ONE reserved
ONLY reserved reserved reserved reserved
OPEN reserved reserved reserved
OPERATOR non-reserved
OPTION non-reserved non-reserved non-reserved reserved
OPTIONS non-reserved non-reserved non-reserved
OR reserved reserved reserved reserved
ORDER reserved reserved reserved reserved
ORDERING non-reserved non-reserved

2088

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
ORDINALITY non-reserved non-reserved non-reserved
OTHERS non-reserved non-reserved non-reserved
OUT non-reserved (

cannot be function
or type)

reserved reserved

OUTER reserved (can be
function or type)

reserved reserved reserved

OUTPUT non-reserved non-reserved reserved
OVER non-reserved reserved reserved
OVERFLOW non-reserved
OVERLAPS reserved (can be

function or type)
reserved reserved reserved

OVERLAY non-reserved (
cannot be function
or type)

reserved reserved

OVERRIDING non-reserved non-reserved non-reserved
OWNED non-reserved
OWNER non-reserved
P non-reserved non-reserved
PAD non-reserved non-reserved reserved
PARALLEL non-reserved
PARAMETER reserved reserved
PARAMETER_MODE non-reserved non-reserved
PARAMETER_NAME non-reserved non-reserved
PARAMETER_ORDINAL_POSITION non-reserved non-reserved
PARAMETER_SPECIFIC_CATALOG non-reserved non-reserved
PARAMETER_SPECIFIC_NAME non-reserved non-reserved
PARAMETER_SPECIFIC_SCHEMA non-reserved non-reserved
PARSER non-reserved
PARTIAL non-reserved non-reserved non-reserved reserved
PARTITION non-reserved reserved reserved
PASCAL non-reserved non-reserved non-reserved
PASS non-reserved
PASSING non-reserved non-reserved non-reserved
PASSTHROUGH non-reserved non-reserved
PASSWORD non-reserved
PAST non-reserved
PATH non-reserved non-reserved
PATTERN reserved
PER reserved
PERCENT reserved reserved
PERCENTILE_CONT reserved reserved

2089

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
PERCENTILE_DISC reserved reserved
PERCENT_RANK reserved reserved
PERIOD reserved reserved
PERMISSION non-reserved non-reserved
PERMUTE reserved
PLACING reserved non-reserved non-reserved
PLAN non-reserved
PLANS non-reserved
PLI non-reserved non-reserved non-reserved
POLICY non-reserved
PORTION reserved reserved
POSITION non-reserved (

cannot be function
or type)

reserved reserved reserved

POSITION_REGEX reserved reserved
POWER reserved reserved
PRECEDES reserved reserved
PRECEDING non-reserved non-reserved non-reserved
PRECISION non-reserved (

cannot be function
or type)

reserved reserved reserved

PREPARE non-reserved reserved reserved reserved
PREPARED non-reserved
PRESERVE non-reserved non-reserved non-reserved reserved
PRIMARY reserved reserved reserved reserved
PRIOR non-reserved non-reserved non-reserved reserved
PRIVATE non-reserved
PRIVILEGES non-reserved non-reserved non-reserved reserved
PROCEDURAL non-reserved
PROCEDURE non-reserved reserved reserved reserved
PROCEDURES non-reserved
PROGRAM non-reserved
PRUNE non-reserved
PTF reserved
PUBLIC non-reserved non-reserved reserved
PUBLICATION non-reserved
QUOTE non-reserved
QUOTES non-reserved
RANGE non-reserved reserved reserved
RANK reserved reserved
READ non-reserved non-reserved non-reserved reserved

2090

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
READS reserved reserved
REAL non-reserved (

cannot be function
or type)

reserved reserved reserved

REASSIGN non-reserved
RECHECK non-reserved
RECOVERY non-reserved non-reserved
RECURSIVE non-reserved reserved reserved
REF non-reserved reserved reserved
REFERENCES reserved reserved reserved reserved
REFERENCING non-reserved reserved reserved
REFRESH non-reserved
REGR_AVGX reserved reserved
REGR_AVGY reserved reserved
REGR_COUNT reserved reserved
REGR_INTERCEPT reserved reserved
REGR_R2 reserved reserved
REGR_SLOPE reserved reserved
REGR_SXX reserved reserved
REGR_SXY reserved reserved
REGR_SYY reserved reserved
REINDEX non-reserved
RELATIVE non-reserved non-reserved non-reserved reserved
RELEASE non-reserved reserved reserved
RENAME non-reserved
REPEATABLE non-reserved non-reserved non-reserved non-reserved
REPLACE non-reserved
REPLICA non-reserved
REQUIRING non-reserved non-reserved
RESET non-reserved
RESPECT non-reserved non-reserved
RESTART non-reserved non-reserved non-reserved
RESTORE non-reserved non-reserved
RESTRICT non-reserved non-reserved non-reserved reserved
RESULT reserved reserved
RETURN reserved reserved
RETURNED_CARDINALITY non-reserved non-reserved
RETURNED_LENGTH non-reserved non-reserved non-reserved
RETURNED_OCTET_LENGTH non-reserved non-reserved non-reserved
RETURNED_SQLSTATE non-reserved non-reserved non-reserved

2091

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
RETURNING reserved non-reserved non-reserved
RETURNS non-reserved reserved reserved
REVOKE non-reserved reserved reserved reserved
RIGHT reserved (can be

function or type)
reserved reserved reserved

ROLE non-reserved non-reserved non-reserved
ROLLBACK non-reserved reserved reserved reserved
ROLLUP non-reserved reserved reserved
ROUTINE non-reserved non-reserved non-reserved
ROUTINES non-reserved
ROUTINE_CATALOG non-reserved non-reserved
ROUTINE_NAME non-reserved non-reserved
ROUTINE_SCHEMA non-reserved non-reserved
ROW non-reserved (

cannot be function
or type)

reserved reserved

ROWS non-reserved reserved reserved reserved
ROW_COUNT non-reserved non-reserved non-reserved
ROW_NUMBER reserved reserved
RULE non-reserved
RUNNING reserved
SAVEPOINT non-reserved reserved reserved
SCALAR non-reserved
SCALE non-reserved non-reserved non-reserved
SCHEMA non-reserved non-reserved non-reserved reserved
SCHEMAS non-reserved
SCHEMA_NAME non-reserved non-reserved non-reserved
SCOPE reserved reserved
SCOPE_CATALOG non-reserved non-reserved
SCOPE_NAME non-reserved non-reserved
SCOPE_SCHEMA non-reserved non-reserved
SCROLL non-reserved reserved reserved reserved
SEARCH non-reserved reserved reserved
SECOND non-reserved reserved reserved reserved
SECTION non-reserved non-reserved reserved
SECURITY non-reserved non-reserved non-reserved
SEEK reserved
SELECT reserved reserved reserved reserved
SELECTIVE non-reserved non-reserved
SELF non-reserved non-reserved
SENSITIVE reserved reserved

2092

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
SEQUENCE non-reserved non-reserved non-reserved
SEQUENCES non-reserved
SERIALIZABLE non-reserved non-reserved non-reserved non-reserved
SERVER non-reserved non-reserved non-reserved
SERVER_NAME non-reserved non-reserved non-reserved
SESSION non-reserved non-reserved non-reserved reserved
SESSION_USER reserved reserved reserved reserved
SET non-reserved reserved reserved reserved
SETOF non-reserved (

cannot be function
or type)

SETS non-reserved non-reserved non-reserved
SHARE non-reserved
SHOW non-reserved reserved
SIMILAR reserved (can be

function or type)
reserved reserved

SIMPLE non-reserved non-reserved non-reserved
SIN reserved
SINH reserved
SIZE non-reserved non-reserved reserved
SKIP non-reserved reserved
SMALLINT non-reserved (

cannot be function
or type)

reserved reserved reserved

SNAPSHOT non-reserved
SOME reserved reserved reserved reserved
SOURCE non-reserved non-reserved
SPACE non-reserved non-reserved reserved
SPECIFIC reserved reserved
SPECIFICTYPE reserved reserved
SPECIFIC_NAME non-reserved non-reserved
SQL non-reserved reserved reserved reserved
SQLCODE reserved
SQLERROR reserved
SQLEXCEPTION reserved reserved
SQLSTATE reserved reserved reserved
SQLWARNING reserved reserved
SQRT reserved reserved
STABLE non-reserved
STANDALONE non-reserved non-reserved non-reserved
START non-reserved reserved reserved

2093

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
STATE non-reserved non-reserved
STATEMENT non-reserved non-reserved non-reserved
STATIC reserved reserved
STATISTICS non-reserved
STDDEV_POP reserved reserved
STDDEV_SAMP reserved reserved
STDIN non-reserved
STDOUT non-reserved
STORAGE non-reserved
STORED non-reserved
STRICT non-reserved
STRING non-reserved
STRIP non-reserved non-reserved non-reserved
STRUCTURE non-reserved non-reserved
STYLE non-reserved non-reserved
SUBCLASS_ORIGIN non-reserved non-reserved non-reserved
SUBMULTISET reserved reserved
SUBSCRIPTION non-reserved
SUBSET reserved
SUBSTRING non-reserved (

cannot be function
or type)

reserved reserved reserved

SUBSTRING_REGEX reserved reserved
SUCCEEDS reserved reserved
SUM reserved reserved reserved
SUPPORT non-reserved
SYMMETRIC reserved reserved reserved
SYSID non-reserved
SYSTEM non-reserved reserved reserved
SYSTEM_TIME reserved reserved
SYSTEM_USER reserved reserved reserved
T non-reserved non-reserved
TABLE reserved reserved reserved reserved
TABLES non-reserved
TABLESAMPLE reserved (can be

function or type)
reserved reserved

TABLESPACE non-reserved
TABLE_NAME non-reserved non-reserved non-reserved
TAN reserved
TANH reserved
TEMP non-reserved

2094

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
TEMPLATE non-reserved
TEMPORARY non-reserved non-reserved non-reserved reserved
TEXT non-reserved
THEN reserved reserved reserved reserved
THROUGH non-reserved
TIES non-reserved non-reserved non-reserved
TIME non-reserved (

cannot be function
or type)

reserved reserved reserved

TIMEOUT non-reserved
TIMESTAMP non-reserved (

cannot be function
or type)

reserved reserved reserved

TIMEZONE_HOUR reserved reserved reserved
TIMEZONE_MINUTE reserved reserved reserved
TO reserved reserved reserved reserved
TOKEN non-reserved non-reserved
TOP_LEVEL_COUNT non-reserved non-reserved
TRAILING reserved reserved reserved reserved
TRANSACTION non-reserved non-reserved non-reserved reserved
TRANSACTIONS_COMMITTED non-reserved non-reserved
TRANSACTIONS_ROLLED_BACK non-reserved non-reserved
TRANSACTION_ACTIVE non-reserved non-reserved
TRANSFORM non-reserved non-reserved non-reserved
TRANSFORMS non-reserved non-reserved
TRANSLATE reserved reserved reserved
TRANSLATE_REGEX reserved reserved
TRANSLATION reserved reserved reserved
TREAT non-reserved (

cannot be function
or type)

reserved reserved

TRIGGER non-reserved reserved reserved
TRIGGER_CATALOG non-reserved non-reserved
TRIGGER_NAME non-reserved non-reserved
TRIGGER_SCHEMA non-reserved non-reserved
TRIM non-reserved (

cannot be function
or type)

reserved reserved reserved

TRIM_ARRAY reserved reserved
TRUE reserved reserved reserved reserved
TRUNCATE non-reserved reserved reserved
TRUSTED non-reserved

2095

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
TYPE non-reserved non-reserved non-reserved non-reserved
TYPES non-reserved
UESCAPE non-reserved reserved reserved
UNBOUNDED non-reserved non-reserved non-reserved
UNCOMMITTED non-reserved non-reserved non-reserved non-reserved
UNCONDITIONAL non-reserved
UNDER non-reserved non-reserved
UNENCRYPTED non-reserved
UNION reserved reserved reserved reserved
UNIQUE reserved reserved reserved reserved
UNKNOWN non-reserved reserved reserved reserved
UNLINK non-reserved non-reserved
UNLISTEN non-reserved
UNLOGGED non-reserved
UNMATCHED reserved
UNNAMED non-reserved non-reserved non-reserved
UNNEST reserved reserved
UNTIL non-reserved
UNTYPED non-reserved non-reserved
UPDATE non-reserved reserved reserved reserved
UPPER reserved reserved reserved
URI non-reserved non-reserved
USAGE non-reserved non-reserved reserved
USER reserved reserved reserved reserved
USER_DEFINED_TYPE_
CATALOG

 non-reserved non-reserved

USER_DEFINED_TYPE_CODE non-reserved non-reserved
USER_DEFINED_TYPE_NAME non-reserved non-reserved
USER_DEFINED_TYPE_SCHEMA non-reserved non-reserved
USING reserved reserved reserved reserved
UTF16 non-reserved
UTF32 non-reserved
UTF8 non-reserved
VACUUM non-reserved
VALID non-reserved non-reserved non-reserved
VALIDATE non-reserved
VALIDATOR non-reserved
VALUE non-reserved reserved reserved reserved
VALUES non-reserved (

cannot be function
or type)

reserved reserved reserved

2096

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
VALUE_OF reserved reserved
VARBINARY reserved reserved
VARCHAR non-reserved (

cannot be function
or type)

reserved reserved reserved

VARIADIC reserved
VARYING non-reserved reserved reserved reserved
VAR_POP reserved reserved
VAR_SAMP reserved reserved
VERBOSE reserved (can be

function or type)

VERSION non-reserved non-reserved non-reserved
VERSIONING reserved reserved
VIEW non-reserved non-reserved non-reserved reserved
VIEWS non-reserved
VOLATILE non-reserved
WAITLSN non-reserved
WHEN reserved reserved reserved reserved
WHENEVER reserved reserved reserved
WHERE reserved reserved reserved reserved
WHITESPACE non-reserved non-reserved non-reserved
WIDTH_BUCKET reserved reserved
WINDOW reserved reserved reserved
WITH reserved reserved reserved reserved
WITHIN non-reserved reserved reserved
WITHOUT non-reserved reserved reserved
WORK non-reserved non-reserved non-reserved reserved
WRAPPER non-reserved non-reserved non-reserved
WRITE non-reserved non-reserved non-reserved reserved
XML non-reserved reserved reserved
XMLAGG reserved reserved
XMLATTRIBUTES non-reserved (

cannot be function
or type)

reserved reserved

XMLBINARY reserved reserved
XMLCAST reserved reserved
XMLCOMMENT reserved reserved
XMLCONCAT non-reserved (

cannot be function
or type)

reserved reserved

XMLDECLARATION non-reserved non-reserved
XMLDOCUMENT reserved reserved

2097

SQL Key Words

Key Word PostgreSQL SQL:2016 SQL:2011 SQL-92
XMLELEMENT non-reserved (

cannot be function
or type)

reserved reserved

XMLEXISTS non-reserved (
cannot be function
or type)

reserved reserved

XMLFOREST non-reserved (
cannot be function
or type)

reserved reserved

XMLITERATE reserved reserved
XMLNAMESPACES non-reserved (

cannot be function
or type)

reserved reserved

XMLPARSE non-reserved (
cannot be function
or type)

reserved reserved

XMLPI non-reserved (
cannot be function
or type)

reserved reserved

XMLQUERY reserved reserved
XMLROOT non-reserved (

cannot be function
or type)

XMLSCHEMA non-reserved non-reserved
XMLSERIALIZE non-reserved (

cannot be function
or type)

reserved reserved

XMLTABLE non-reserved (
cannot be function
or type)

reserved reserved

XMLTEXT reserved reserved
XMLVALIDATE reserved reserved
YEAR non-reserved reserved reserved reserved
YES non-reserved non-reserved non-reserved
ZONE non-reserved non-reserved non-reserved reserved

2098

Appendix D. SQL Conformance
This section attempts to outline to what extent Postgres Pro conforms to the current SQL standard. The
following information is not a full statement of conformance, but it presents the main topics in as much
detail as is both reasonable and useful for users.

The formal name of the SQL standard is ISO/IEC 9075 “Database Language SQL”. A revised version of
the standard is released from time to time; the most recent update appearing in 2016. The 2016 version
is referred to as ISO/IEC 9075:2016, or simply as SQL:2016. The versions prior to that were SQL:2011,
SQL:2008, SQL:2006, SQL:2003, SQL:1999, and SQL-92. Each version replaces the previous one, so
claims of conformance to earlier versions have no official merit. Postgres Pro development aims for
conformance with the latest official version of the standard where such conformance does not contradict
traditional features or common sense. Many of the features required by the SQL standard are supported,
though sometimes with slightly differing syntax or function. Further moves towards conformance can
be expected over time.

SQL-92 defined three feature sets for conformance: Entry, Intermediate, and Full. Most database
management systems claiming SQL standard conformance were conforming at only the Entry level, since
the entire set of features in the Intermediate and Full levels was either too voluminous or in conflict
with legacy behaviors.

Starting with SQL:1999, the SQL standard defines a large set of individual features rather than the
ineffectively broad three levels found in SQL-92. A large subset of these features represents the “Core”
features, which every conforming SQL implementation must supply. The rest of the features are purely
optional.

The standard versions beginning with SQL:2003 are also split into a number of parts. Each is known by
a shorthand name. Note that these parts are not consecutively numbered.
• ISO/IEC 9075-1 Framework (SQL/Framework)

• ISO/IEC 9075-2 Foundation (SQL/Foundation)

• ISO/IEC 9075-3 Call Level Interface (SQL/CLI)

• ISO/IEC 9075-4 Persistent Stored Modules (SQL/PSM)

• ISO/IEC 9075-9 Management of External Data (SQL/MED)

• ISO/IEC 9075-10 Object Language Bindings (SQL/OLB)

• ISO/IEC 9075-11 Information and Definition Schemas (SQL/Schemata)

• ISO/IEC 9075-13 Routines and Types using the Java Language (SQL/JRT)

• ISO/IEC 9075-14 XML-related specifications (SQL/XML)

• ISO/IEC 9075-15 Multi-dimensional arrays (SQL/MDA)

The Postgres Pro core covers parts 1, 2, 9, 11, and 14. Part 3 is covered by the ODBC driver, and part
13 is covered by the PL/Java plug-in, but exact conformance is currently not being verified for these
components. There are currently no implementations of parts 4, 10, and 15 for Postgres Pro.

Postgres Pro supports most of the major features of SQL:2016. Out of 177 mandatory features required
for full Core conformance, Postgres Pro conforms to at least 170. In addition, there is a long list of
supported optional features. It might be worth noting that at the time of writing, no current version of
any database management system claims full conformance to Core SQL:2016.

2099

SQL Conformance

In the following two sections, we provide a list of those features that Postgres Pro supports, followed
by a list of the features defined in SQL:2016 which are not yet supported in Postgres Pro. Both of these
lists are approximate: There might be minor details that are nonconforming for a feature that is listed as
supported, and large parts of an unsupported feature might in fact be implemented. The main body of
the documentation always contains the most accurate information about what does and does not work.

Note
Feature codes containing a hyphen are subfeatures. Therefore, if a particular subfeature is not
supported, the main feature is listed as unsupported even if some other subfeatures are supported.

D.1. Supported Features
Identifier Core? Description Comment
B012 Embedded C
B021 Direct SQL
E011 Core Numeric data types
E011-01 Core INTEGER and SMALLINT data types
E011-02 Core REAL, DOUBLE PRECISION, and FLOAT data types
E011-03 Core DECIMAL and NUMERIC data types
E011-04 Core Arithmetic operators
E011-05 Core Numeric comparison
E011-06 Core Implicit casting among the numeric data types
E021 Core Character data types
E021-01 Core CHARACTER data type
E021-02 Core CHARACTER VARYING data type
E021-03 Core Character literals
E021-04 Core CHARACTER_LENGTH function trims trailing spaces

from CHARACTER
values before counting

E021-05 Core OCTET_LENGTH function
E021-06 Core SUBSTRING function
E021-07 Core Character concatenation
E021-08 Core UPPER and LOWER functions
E021-09 Core TRIM function
E021-10 Core Implicit casting among the character string types
E021-11 Core POSITION function
E021-12 Core Character comparison
E031 Core Identifiers
E031-01 Core Delimited identifiers
E031-02 Core Lower case identifiers
E031-03 Core Trailing underscore
E051 Core Basic query specification
E051-01 Core SELECT DISTINCT
E051-02 Core GROUP BY clause

2100

SQL Conformance

Identifier Core? Description Comment
E051-04 Core GROUP BY can contain columns not in <select list>
E051-05 Core Select list items can be renamed
E051-06 Core HAVING clause
E051-07 Core Qualified * in select list
E051-08 Core Correlation names in the FROM clause
E051-09 Core Rename columns in the FROM clause
E061 Core Basic predicates and search conditions
E061-01 Core Comparison predicate
E061-02 Core BETWEEN predicate
E061-03 Core IN predicate with list of values
E061-04 Core LIKE predicate
E061-05 Core LIKE predicate ESCAPE clause
E061-06 Core NULL predicate
E061-07 Core Quantified comparison predicate
E061-08 Core EXISTS predicate
E061-09 Core Subqueries in comparison predicate
E061-11 Core Subqueries in IN predicate
E061-12 Core Subqueries in quantified comparison predicate
E061-13 Core Correlated subqueries
E061-14 Core Search condition
E071 Core Basic query expressions
E071-01 Core UNION DISTINCT table operator
E071-02 Core UNION ALL table operator
E071-03 Core EXCEPT DISTINCT table operator
E071-05 Core Columns combined via table operators need not have

exactly the same data type

E071-06 Core Table operators in subqueries
E081 Core Basic Privileges
E081-01 Core SELECT privilege
E081-02 Core DELETE privilege
E081-03 Core INSERT privilege at the table level
E081-04 Core UPDATE privilege at the table level
E081-05 Core UPDATE privilege at the column level
E081-06 Core REFERENCES privilege at the table level
E081-07 Core REFERENCES privilege at the column level
E081-08 Core WITH GRANT OPTION
E081-09 Core USAGE privilege
E081-10 Core EXECUTE privilege
E091 Core Set functions
E091-01 Core AVG
E091-02 Core COUNT

2101

SQL Conformance

Identifier Core? Description Comment
E091-03 Core MAX
E091-04 Core MIN
E091-05 Core SUM
E091-06 Core ALL quantifier
E091-07 Core DISTINCT quantifier
E101 Core Basic data manipulation
E101-01 Core INSERT statement
E101-03 Core Searched UPDATE statement
E101-04 Core Searched DELETE statement
E111 Core Single row SELECT statement
E121 Core Basic cursor support
E121-01 Core DECLARE CURSOR
E121-02 Core ORDER BY columns need not be in select list
E121-03 Core Value expressions in ORDER BY clause
E121-04 Core OPEN statement
E121-06 Core Positioned UPDATE statement
E121-07 Core Positioned DELETE statement
E121-08 Core CLOSE statement
E121-10 Core FETCH statement implicit NEXT
E121-17 Core WITH HOLD cursors
E131 Core Null value support (nulls in lieu of values)
E141 Core Basic integrity constraints
E141-01 Core NOT NULL constraints
E141-02 Core UNIQUE constraints of NOT NULL columns
E141-03 Core PRIMARY KEY constraints
E141-04 Core Basic FOREIGN KEY constraint with the NO ACTION

default for both referential delete action and referential
update action

E141-06 Core CHECK constraints
E141-07 Core Column defaults
E141-08 Core NOT NULL inferred on PRIMARY KEY
E141-10 Core Names in a foreign key can be specified in any order
E151 Core Transaction support
E151-01 Core COMMIT statement
E151-02 Core ROLLBACK statement
E152 Core Basic SET TRANSACTION statement
E152-01 Core SET TRANSACTION statement: ISOLATION LEVEL

SERIALIZABLE clause

E152-02 Core SET TRANSACTION statement: READ ONLY and READ
WRITE clauses

E153 Core Updatable queries with subqueries
E161 Core SQL comments using leading double minus

2102

SQL Conformance

Identifier Core? Description Comment
E171 Core SQLSTATE support
E182 Core Host language binding
F021 Core Basic information schema
F021-01 Core COLUMNS view
F021-02 Core TABLES view
F021-03 Core VIEWS view
F021-04 Core TABLE_CONSTRAINTS view
F021-05 Core REFERENTIAL_CONSTRAINTS view
F021-06 Core CHECK_CONSTRAINTS view
F031 Core Basic schema manipulation
F031-01 Core CREATE TABLE statement to create persistent base

tables

F031-02 Core CREATE VIEW statement
F031-03 Core GRANT statement
F031-04 Core ALTER TABLE statement: ADD COLUMN clause
F031-13 Core DROP TABLE statement: RESTRICT clause
F031-16 Core DROP VIEW statement: RESTRICT clause
F031-19 Core REVOKE statement: RESTRICT clause
F032 CASCADE drop behavior
F033 ALTER TABLE statement: DROP COLUMN clause
F034 Extended REVOKE statement
F034-01 REVOKE statement performed by other than the owner

of a schema object

F034-02 REVOKE statement: GRANT OPTION FOR clause
F034-03 REVOKE statement to revoke a privilege that the

grantee has WITH GRANT OPTION

F041 Core Basic joined table
F041-01 Core Inner join (but not necessarily the INNER keyword)
F041-02 Core INNER keyword
F041-03 Core LEFT OUTER JOIN
F041-04 Core RIGHT OUTER JOIN
F041-05 Core Outer joins can be nested
F041-07 Core The inner table in a left or right outer join can also be

used in an inner join

F041-08 Core All comparison operators are supported (rather than
just =)

F051 Core Basic date and time
F051-01 Core DATE data type (including support of DATE literal)
F051-02 Core TIME data type (including support of TIME literal) with

fractional seconds precision of at least 0

F051-03 Core TIMESTAMP data type (including support of
TIMESTAMP literal) with fractional seconds precision of
at least 0 and 6

2103

SQL Conformance

Identifier Core? Description Comment
F051-04 Core Comparison predicate on DATE, TIME, and TIMESTAMP

data types

F051-05 Core Explicit CAST between datetime types and character
string types

F051-06 Core CURRENT_DATE
F051-07 Core LOCALTIME
F051-08 Core LOCALTIMESTAMP
F052 Intervals and datetime arithmetic
F053 OVERLAPS predicate
F081 Core UNION and EXCEPT in views
F111 Isolation levels other than SERIALIZABLE
F111-01 READ UNCOMMITTED isolation level
F111-02 READ COMMITTED isolation level
F111-03 REPEATABLE READ isolation level
F131 Core Grouped operations
F131-01 Core WHERE, GROUP BY, and HAVING clauses supported in

queries with grouped views

F131-02 Core Multiple tables supported in queries with grouped views
F131-03 Core Set functions supported in queries with grouped views
F131-04 Core Subqueries with GROUP BY and HAVING clauses and

grouped views

F131-05 Core Single row SELECT with GROUP BY and HAVING
clauses and grouped views

F171 Multiple schemas per user
F181 Core Multiple module support
F191 Referential delete actions
F200 TRUNCATE TABLE statement
F201 Core CAST function
F202 TRUNCATE TABLE: identity column restart option
F221 Core Explicit defaults
F222 INSERT statement: DEFAULT VALUES clause
F231 Privilege tables
F231-01 TABLE_PRIVILEGES view
F231-02 COLUMN_PRIVILEGES view
F231-03 USAGE_PRIVILEGES view
F251 Domain support
F261 Core CASE expression
F261-01 Core Simple CASE
F261-02 Core Searched CASE
F261-03 Core NULLIF
F261-04 Core COALESCE
F262 Extended CASE expression

2104

SQL Conformance

Identifier Core? Description Comment
F271 Compound character literals
F281 LIKE enhancements
F302 INTERSECT table operator
F302-01 INTERSECT DISTINCT table operator
F302-02 INTERSECT ALL table operator
F304 EXCEPT ALL table operator
F311 Core Schema definition statement
F311-01 Core CREATE SCHEMA
F311-02 Core CREATE TABLE for persistent base tables
F311-03 Core CREATE VIEW
F311-04 Core CREATE VIEW: WITH CHECK OPTION
F311-05 Core GRANT statement
F321 User authorization
F361 Subprogram support
F381 Extended schema manipulation
F381-01 ALTER TABLE statement: ALTER COLUMN clause
F381-02 ALTER TABLE statement: ADD CONSTRAINT clause
F381-03 ALTER TABLE statement: DROP CONSTRAINT clause
F382 Alter column data type
F383 Set column not null clause
F384 Drop identity property clause
F385 Drop column generation expression clause
F386 Set identity column generation clause
F391 Long identifiers
F392 Unicode escapes in identifiers
F393 Unicode escapes in literals
F394 Optional normal form specification
F401 Extended joined table
F401-01 NATURAL JOIN
F401-02 FULL OUTER JOIN
F401-04 CROSS JOIN
F402 Named column joins for LOBs, arrays, and multisets
F411 Time zone specification differences regarding

literal interpretation
F421 National character
F431 Read-only scrollable cursors
F431-01 FETCH with explicit NEXT
F431-02 FETCH FIRST
F431-03 FETCH LAST
F431-04 FETCH PRIOR
F431-05 FETCH ABSOLUTE

2105

SQL Conformance

Identifier Core? Description Comment
F431-06 FETCH RELATIVE
F441 Extended set function support
F442 Mixed column references in set functions
F471 Core Scalar subquery values
F481 Core Expanded NULL predicate
F491 Constraint management
F501 Core Features and conformance views
F501-01 Core SQL_FEATURES view
F501-02 Core SQL_SIZING view
F502 Enhanced documentation tables
F531 Temporary tables
F555 Enhanced seconds precision
F561 Full value expressions
F571 Truth value tests
F591 Derived tables
F611 Indicator data types
F641 Row and table constructors
F651 Catalog name qualifiers
F661 Simple tables
F672 Retrospective check constraints
F690 Collation support but no character set

support
F692 Extended collation support
F701 Referential update actions
F711 ALTER domain
F731 INSERT column privileges
F751 View CHECK enhancements
F761 Session management
F762 CURRENT_CATALOG
F763 CURRENT_SCHEMA
F771 Connection management
F781 Self-referencing operations
F791 Insensitive cursors
F801 Full set function
F850 Top-level <order by clause> in <query expression>
F851 <order by clause> in subqueries
F852 Top-level <order by clause> in views
F855 Nested <order by clause> in <query expression>
F856 Nested <fetch first clause> in <query expression>
F857 Top-level <fetch first clause> in <query expression>
F858 <fetch first clause> in subqueries

2106

SQL Conformance

Identifier Core? Description Comment
F859 Top-level <fetch first clause> in views
F860 <fetch first row count> in <fetch first clause>
F861 Top-level <result offset clause> in <query expression>
F862 <result offset clause> in subqueries
F863 Nested <result offset clause> in <query expression>
F864 Top-level <result offset clause> in views
F865 <offset row count> in <result offset clause>
F867 FETCH FIRST clause: WITH TIES option
S071 SQL paths in function and type name resolution
S092 Arrays of user-defined types
S095 Array constructors by query
S096 Optional array bounds
S098 ARRAY_AGG
S111 ONLY in query expressions
S201 SQL-invoked routines on arrays
S201-01 Array parameters
S201-02 Array as result type of functions
S211 User-defined cast functions
S301 Enhanced UNNEST
T031 BOOLEAN data type
T071 BIGINT data type
T121 WITH (excluding RECURSIVE) in query expression
T122 WITH (excluding RECURSIVE) in subquery
T131 Recursive query
T132 Recursive query in subquery
T141 SIMILAR predicate
T151 DISTINCT predicate
T152 DISTINCT predicate with negation
T171 LIKE clause in table definition
T172 AS subquery clause in table definition
T173 Extended LIKE clause in table definition
T174 Identity columns
T177 Sequence generator support: simple restart option
T178 Identity columns: simple restart option
T191 Referential action RESTRICT
T201 Comparable data types for referential constraints
T211-01 Triggers activated on UPDATE, INSERT, or DELETE of

one base table

T211-02 BEFORE triggers
T211-03 AFTER triggers
T211-04 FOR EACH ROW triggers

2107

SQL Conformance

Identifier Core? Description Comment
T211-05 Ability to specify a search condition that must be true

before the trigger is invoked

T211-07 TRIGGER privilege
T212 Enhanced trigger capability
T213 INSTEAD OF triggers
T231 Sensitive cursors
T241 START TRANSACTION statement
T261 Chained transactions
T271 Savepoints
T281 SELECT privilege with column granularity
T285 Enhanced derived column names
T312 OVERLAY function
T321-01 Core User-defined functions with no overloading
T321-02 Core User-defined stored procedures with no overloading
T321-03 Core Function invocation
T321-04 Core CALL statement
T321-06 Core ROUTINES view
T321-07 Core PARAMETERS view
T323 Explicit security for external routines
T325 Qualified SQL parameter references
T331 Basic roles
T341 Overloading of SQL-invoked functions and procedures
T351 Bracketed SQL comments (/*...*/ comments)
T431 Extended grouping capabilities
T432 Nested and concatenated GROUPING SETS
T433 Multiargument GROUPING function
T441 ABS and MOD functions
T461 Symmetric BETWEEN predicate
T491 LATERAL derived table
T501 Enhanced EXISTS predicate
T521 Named arguments in CALL statement
T523 Default values for INOUT parameters of SQL-invoked

procedures

T524 Named arguments in routine invocations other than a
CALL statement

T525 Default values for parameters of SQL-invoked functions
T551 Optional key words for default syntax
T581 Regular expression substring function
T591 UNIQUE constraints of possibly null columns
T611 Elementary OLAP operations
T612 Advanced OLAP operations
T613 Sampling

2108

SQL Conformance

Identifier Core? Description Comment
T614 NTILE function
T615 LEAD and LAG functions
T617 FIRST_VALUE and LAST_VALUE function
T620 WINDOW clause: GROUPS option
T621 Enhanced numeric functions
T622 Trigonometric functions
T623 General logarithm functions
T624 Common logarithm functions
T631 Core IN predicate with one list element
T651 SQL-schema statements in SQL routines
T653 SQL-schema statements in external routines
T655 Cyclically dependent routines
T831 SQL/JSON path language: strict mode
T832 SQL/JSON path language: item method
T833 SQL/JSON path language: multiple subscripts
T834 SQL/JSON path language: wildcard member accessor
T835 SQL/JSON path language: filter expressions
T836 SQL/JSON path language: starts with predicate
T837 SQL/JSON path language: regex_like predicate
X010 XML type
X011 Arrays of XML type
X014 Attributes of XML type
X016 Persistent XML values
X020 XMLConcat
X031 XMLElement
X032 XMLForest
X034 XMLAgg
X035 XMLAgg: ORDER BY option
X036 XMLComment
X037 XMLPI
X040 Basic table mapping
X041 Basic table mapping: nulls absent
X042 Basic table mapping: null as nil
X043 Basic table mapping: table as forest
X044 Basic table mapping: table as element
X045 Basic table mapping: with target namespace
X046 Basic table mapping: data mapping
X047 Basic table mapping: metadata mapping
X048 Basic table mapping: base64 encoding of binary strings
X049 Basic table mapping: hex encoding of binary strings
X050 Advanced table mapping

2109

SQL Conformance

Identifier Core? Description Comment
X051 Advanced table mapping: nulls absent
X052 Advanced table mapping: null as nil
X053 Advanced table mapping: table as forest
X054 Advanced table mapping: table as element
X055 Advanced table mapping: with target namespace
X056 Advanced table mapping: data mapping
X057 Advanced table mapping: metadata mapping
X058 Advanced table mapping: base64 encoding of binary

strings

X059 Advanced table mapping: hex encoding of binary strings
X060 XMLParse: character string input and CONTENT option
X061 XMLParse: character string input and DOCUMENT

option

X070 XMLSerialize: character string serialization and
CONTENT option

X071 XMLSerialize: character string serialization and
DOCUMENT option

X072 XMLSerialize: character string serialization
X090 XML document predicate
X120 XML parameters in SQL routines
X121 XML parameters in external routines
X221 XML passing mechanism BY VALUE
X301 XMLTable: derived column list option
X302 XMLTable: ordinality column option
X303 XMLTable: column default option
X304 XMLTable: passing a context item must be XML

DOCUMENT
X400 Name and identifier mapping
X410 Alter column data type: XML type

D.2. Unsupported Features
The following features defined in SQL:2016 are not implemented in this release of Postgres Pro. In a
few cases, equivalent functionality is available.

Identifier Core? Description Comment
B011 Embedded Ada
B013 Embedded COBOL
B014 Embedded Fortran
B015 Embedded MUMPS
B016 Embedded Pascal
B017 Embedded PL/I
B031 Basic dynamic SQL
B032 Extended dynamic SQL

2110

SQL Conformance

Identifier Core? Description Comment
B032-01 <describe input statement>
B033 Untyped SQL-invoked function arguments
B034 Dynamic specification of cursor attributes
B035 Non-extended descriptor names
B041 Extensions to embedded SQL exception declarations
B051 Enhanced execution rights
B111 Module language Ada
B112 Module language C
B113 Module language COBOL
B114 Module language Fortran
B115 Module language MUMPS
B116 Module language Pascal
B117 Module language PL/I
B121 Routine language Ada
B122 Routine language C
B123 Routine language COBOL
B124 Routine language Fortran
B125 Routine language MUMPS
B126 Routine language Pascal
B127 Routine language PL/I
B128 Routine language SQL
B200 Polymorphic table functions
B201 More than one PTF generic table parameter
B202 PTF Copartitioning
B203 More than one copartition specification
B204 PRUNE WHEN EMPTY
B205 Pass-through columns
B206 PTF descriptor parameters
B207 Cross products of partitionings
B208 PTF component procedure interface
B209 PTF extended names
B211 Module language Ada: VARCHAR and NUMERIC

support

B221 Routine language Ada: VARCHAR and NUMERIC
support

F054 TIMESTAMP in DATE type precedence list
F121 Basic diagnostics management
F121-01 GET DIAGNOSTICS statement
F121-02 SET TRANSACTION statement: DIAGNOSTICS SIZE

clause

F122 Enhanced diagnostics management
F123 All diagnostics

2111

SQL Conformance

Identifier Core? Description Comment
F263 Comma-separated predicates in simple CASE expression
F291 UNIQUE predicate
F301 CORRESPONDING in query expressions
F312 MERGE statement consider INSERT ...

ON CONFLICT DO
UPDATE

F313 Enhanced MERGE statement
F314 MERGE statement with DELETE branch
F341 Usage tables no ROUTINE_*_USAGE

tables
F403 Partitioned joined tables
F404 Range variable for common column names
F451 Character set definition
F461 Named character sets
F492 Optional table constraint enforcement
F521 Assertions
F671 Subqueries in CHECK intentionally omitted
F673 Reads SQL-data routine invocations in CHECK

constraints

F693 SQL-session and client module collations
F695 Translation support
F696 Additional translation documentation
F721 Deferrable constraints foreign and unique

keys only
F741 Referential MATCH types no partial match yet
F812 Core Basic flagging
F813 Extended flagging
F821 Local table references
F831 Full cursor update
F831-01 Updatable scrollable cursors
F831-02 Updatable ordered cursors
F841 LIKE_REGEX predicate
F842 OCCURRENCES_REGEX function
F843 POSITION_REGEX function
F844 SUBSTRING_REGEX function
F845 TRANSLATE_REGEX function
F846 Octet support in regular expression operators
F847 Nonconstant regular expressions
F866 FETCH FIRST clause: PERCENT option
R010 Row pattern recognition: FROM clause
R020 Row pattern recognition: WINDOW clause
R030 Row pattern recognition: full aggregate support

2112

SQL Conformance

Identifier Core? Description Comment
S011 Core Distinct data types
S011-01 Core USER_DEFINED_TYPES view
S023 Basic structured types
S024 Enhanced structured types
S025 Final structured types
S026 Self-referencing structured types
S027 Create method by specific method name
S028 Permutable UDT options list
S041 Basic reference types
S043 Enhanced reference types
S051 Create table of type partially supported
S081 Subtables
S091 Basic array support partially supported
S091-01 Arrays of built-in data types
S091-02 Arrays of distinct types
S091-03 Array expressions
S094 Arrays of reference types
S097 Array element assignment
S151 Type predicate
S161 Subtype treatment
S162 Subtype treatment for references
S202 SQL-invoked routines on multisets
S231 Structured type locators
S232 Array locators
S233 Multiset locators
S241 Transform functions
S242 Alter transform statement
S251 User-defined orderings
S261 Specific type method
S271 Basic multiset support
S272 Multisets of user-defined types
S274 Multisets of reference types
S275 Advanced multiset support
S281 Nested collection types
S291 Unique constraint on entire row
S401 Distinct types based on array types
S402 Distinct types based on distinct types
S403 ARRAY_MAX_CARDINALITY
S404 TRIM_ARRAY
T011 Timestamp in Information Schema
T021 BINARY and VARBINARY data types

2113

SQL Conformance

Identifier Core? Description Comment
T022 Advanced support for BINARY and VARBINARY data

types

T023 Compound binary literal
T024 Spaces in binary literals
T041 Basic LOB data type support
T041-01 BLOB data type
T041-02 CLOB data type
T041-03 POSITION, LENGTH, LOWER, TRIM, UPPER, and

SUBSTRING functions for LOB data types

T041-04 Concatenation of LOB data types
T041-05 LOB locator: non-holdable
T042 Extended LOB data type support
T043 Multiplier T
T044 Multiplier P
T051 Row types
T053 Explicit aliases for all-fields reference
T061 UCS support
T076 DECFLOAT data type
T101 Enhanced nullability determination
T111 Updatable joins, unions, and columns
T175 Generated columns mostly supported
T176 Sequence generator support supported except for

NEXT VALUE FOR
T180 System-versioned tables
T181 Application-time period tables
T211 Basic trigger capability
T211-06 Support for run-time rules for the interaction of triggers

and constraints

T211-08 Multiple triggers for the same event are executed in the
order in which they were created in the catalog

intentionally omitted

T251 SET TRANSACTION statement: LOCAL option
T272 Enhanced savepoint management
T301 Functional dependencies partially supported
T321 Core Basic SQL-invoked routines
T321-05 Core RETURN statement
T322 Declared data type attributes
T324 Explicit security for SQL routines
T326 Table functions
T332 Extended roles mostly supported
T434 GROUP BY DISTINCT
T471 Result sets return value
T472 DESCRIBE CURSOR

2114

SQL Conformance

Identifier Core? Description Comment
T495 Combined data change and retrieval different syntax
T502 Period predicates
T511 Transaction counts
T522 Default values for IN parameters of SQL-invoked

procedures
supported except
DEFAULT key word in
invocation

T561 Holdable locators
T571 Array-returning external SQL-invoked functions
T572 Multiset-returning external SQL-invoked functions
T601 Local cursor references
T616 Null treatment option for LEAD and LAG functions
T618 NTH_VALUE function function exists, but

some options missing
T619 Nested window functions
T625 LISTAGG
T641 Multiple column assignment only some syntax

variants supported
T652 SQL-dynamic statements in SQL routines
T654 SQL-dynamic statements in external routines
T811 Basic SQL/JSON constructor functions
T812 SQL/JSON: JSON_OBJECTAGG
T813 SQL/JSON: JSON_ARRAYAGG with ORDER BY
T814 Colon in JSON_OBJECT or JSON_OBJECTAGG
T821 Basic SQL/JSON query operators
T822 SQL/JSON: IS JSON WITH UNIQUE KEYS predicate
T823 SQL/JSON: PASSING clause
T824 JSON_TABLE: specific PLAN clause
T825 SQL/JSON: ON EMPTY and ON ERROR clauses
T826 General value expression in ON ERROR or ON EMPTY

clauses

T827 JSON_TABLE: sibling NESTED COLUMNS clauses
T828 JSON_QUERY
T829 JSON_QUERY: array wrapper options
T830 Enforcing unique keys in SQL/JSON constructor

functions

T838 JSON_TABLE: PLAN DEFAULT clause
T839 Formatted cast of datetimes to/from character strings
M001 Datalinks
M002 Datalinks via SQL/CLI
M003 Datalinks via Embedded SQL
M004 Foreign data support partially supported
M005 Foreign schema support

2115

SQL Conformance

Identifier Core? Description Comment
M006 GetSQLString routine
M007 TransmitRequest
M009 GetOpts and GetStatistics routines
M010 Foreign data wrapper support different API
M011 Datalinks via Ada
M012 Datalinks via C
M013 Datalinks via COBOL
M014 Datalinks via Fortran
M015 Datalinks via M
M016 Datalinks via Pascal
M017 Datalinks via PL/I
M018 Foreign data wrapper interface routines in Ada
M019 Foreign data wrapper interface routines in C different API
M020 Foreign data wrapper interface routines in COBOL
M021 Foreign data wrapper interface routines in Fortran
M022 Foreign data wrapper interface routines in MUMPS
M023 Foreign data wrapper interface routines in Pascal
M024 Foreign data wrapper interface routines in PL/I
M030 SQL-server foreign data support
M031 Foreign data wrapper general routines
X012 Multisets of XML type
X013 Distinct types of XML type
X015 Fields of XML type
X025 XMLCast
X030 XMLDocument
X038 XMLText
X065 XMLParse: BLOB input and CONTENT option
X066 XMLParse: BLOB input and DOCUMENT option
X068 XMLSerialize: BOM
X069 XMLSerialize: INDENT
X073 XMLSerialize: BLOB serialization and CONTENT option
X074 XMLSerialize: BLOB serialization and DOCUMENT

option

X075 XMLSerialize: BLOB serialization
X076 XMLSerialize: VERSION
X077 XMLSerialize: explicit ENCODING option
X078 XMLSerialize: explicit XML declaration
X080 Namespaces in XML publishing
X081 Query-level XML namespace declarations
X082 XML namespace declarations in DML
X083 XML namespace declarations in DDL

2116

SQL Conformance

Identifier Core? Description Comment
X084 XML namespace declarations in compound statements
X085 Predefined namespace prefixes
X086 XML namespace declarations in XMLTable
X091 XML content predicate
X096 XMLExists XPath 1.0 only
X100 Host language support for XML: CONTENT option
X101 Host language support for XML: DOCUMENT option
X110 Host language support for XML: VARCHAR mapping
X111 Host language support for XML: CLOB mapping
X112 Host language support for XML: BLOB mapping
X113 Host language support for XML: STRIP WHITESPACE

option

X114 Host language support for XML: PRESERVE
WHITESPACE option

X131 Query-level XMLBINARY clause
X132 XMLBINARY clause in DML
X133 XMLBINARY clause in DDL
X134 XMLBINARY clause in compound statements
X135 XMLBINARY clause in subqueries
X141 IS VALID predicate: data-driven case
X142 IS VALID predicate: ACCORDING TO clause
X143 IS VALID predicate: ELEMENT clause
X144 IS VALID predicate: schema location
X145 IS VALID predicate outside check constraints
X151 IS VALID predicate with DOCUMENT option
X152 IS VALID predicate with CONTENT option
X153 IS VALID predicate with SEQUENCE option
X155 IS VALID predicate: NAMESPACE without ELEMENT

clause

X157 IS VALID predicate: NO NAMESPACE with ELEMENT
clause

X160 Basic Information Schema for registered XML Schemas
X161 Advanced Information Schema for registered XML

Schemas

X170 XML null handling options
X171 NIL ON NO CONTENT option
X181 XML(DOCUMENT(UNTYPED)) type
X182 XML(DOCUMENT(ANY)) type
X190 XML(SEQUENCE) type
X191 XML(DOCUMENT(XMLSCHEMA)) type
X192 XML(CONTENT(XMLSCHEMA)) type
X200 XMLQuery

2117

SQL Conformance

Identifier Core? Description Comment
X201 XMLQuery: RETURNING CONTENT
X202 XMLQuery: RETURNING SEQUENCE
X203 XMLQuery: passing a context item
X204 XMLQuery: initializing an XQuery variable
X205 XMLQuery: EMPTY ON EMPTY option
X206 XMLQuery: NULL ON EMPTY option
X211 XML 1.1 support
X222 XML passing mechanism BY REF parser accepts BY REF

but ignores it; passing
is always BY VALUE

X231 XML(CONTENT(UNTYPED)) type
X232 XML(CONTENT(ANY)) type
X241 RETURNING CONTENT in XML publishing
X242 RETURNING SEQUENCE in XML publishing
X251 Persistent XML values of XML(DOCUMENT(UNTYPED))

type

X252 Persistent XML values of XML(DOCUMENT(ANY)) type
X253 Persistent XML values of XML(CONTENT(UNTYPED))

type

X254 Persistent XML values of XML(CONTENT(ANY)) type
X255 Persistent XML values of XML(SEQUENCE) type
X256 Persistent XML values of XML(DOCUMENT(

XMLSCHEMA)) type

X257 Persistent XML values of XML(CONTENT(
XMLSCHEMA)) type

X260 XML type: ELEMENT clause
X261 XML type: NAMESPACE without ELEMENT clause
X263 XML type: NO NAMESPACE with ELEMENT clause
X264 XML type: schema location
X271 XMLValidate: data-driven case
X272 XMLValidate: ACCORDING TO clause
X273 XMLValidate: ELEMENT clause
X274 XMLValidate: schema location
X281 XMLValidate with DOCUMENT option
X282 XMLValidate with CONTENT option
X283 XMLValidate with SEQUENCE option
X284 XMLValidate: NAMESPACE without ELEMENT clause
X286 XMLValidate: NO NAMESPACE with ELEMENT clause
X300 XMLTable XPath 1.0 only
X305 XMLTable: initializing an XQuery variable

D.3. XML Limits and Conformance to SQL/XML

2118

SQL Conformance

Significant revisions to the XML-related specifications in ISO/IEC 9075-14 (SQL/XML) were introduced
with SQL:2006. Postgres Pro's implementation of the XML data type and related functions largely follows
the earlier 2003 edition, with some borrowing from later editions. In particular:

• Where the current standard provides a family of XML data types to hold “document” or “content” in
untyped or XML Schema-typed variants, and a type XML(SEQUENCE) to hold arbitrary pieces of XML
content, Postgres Pro provides the single xml type, which can hold “document” or “content”. There
is no equivalent of the standard's “sequence” type.

• Postgres Pro provides two functions introduced in SQL:2006, but in variants that use the XPath 1.0
language, rather than XML Query as specified for them in the standard.

This section presents some of the resulting differences you may encounter.

D.3.1. Queries Are Restricted to XPath 1.0
The Postgres Pro-specific functions xpath() and xpath_exists() query XML documents using the
XPath language. Postgres Pro also provides XPath-only variants of the standard functions XMLEXISTS and
XMLTABLE, which officially use the XQuery language. For all of these functions, Postgres Pro relies on
the libxml2 library, which provides only XPath 1.0.

There is a strong connection between the XQuery language and XPath versions 2.0 and later: any
expression that is syntactically valid and executes successfully in both produces the same result
(with a minor exception for expressions containing numeric character references or predefined entity
references, which XQuery replaces with the corresponding character while XPath leaves them alone).
But there is no such connection between these languages and XPath 1.0; it was an earlier language and
differs in many respects.

There are two categories of limitation to keep in mind: the restriction from XQuery to XPath for the
functions specified in the SQL standard, and the restriction of XPath to version 1.0 for both the standard
and the Postgres Pro-specific functions.

D.3.1.1. Restriction of XQuery to XPath
Features of XQuery beyond those of XPath include:

• XQuery expressions can construct and return new XML nodes, in addition to all possible XPath
values. XPath can create and return values of the atomic types (numbers, strings, and so on)
but can only return XML nodes that were already present in documents supplied as input to the
expression.

• XQuery has control constructs for iteration, sorting, and grouping.

• XQuery allows declaration and use of local functions.

Recent XPath versions begin to offer capabilities overlapping with these (such as functional-style for-
each and sort, anonymous functions, and parse-xml to create a node from a string), but such features
were not available before XPath 3.0.

D.3.1.2. Restriction of XPath to 1.0
For developers familiar with XQuery and XPath 2.0 or later, XPath 1.0 presents a number of differences
to contend with:

• The fundamental type of an XQuery/XPath expression, the sequence, which can contain XML nodes,
atomic values, or both, does not exist in XPath 1.0. A 1.0 expression can only produce a node-set
(containing zero or more XML nodes), or a single atomic value.

• Unlike an XQuery/XPath sequence, which can contain any desired items in any desired order, an
XPath 1.0 node-set has no guaranteed order and, like any set, does not allow multiple appearances
of the same item.

2119

SQL Conformance

Note
The libxml2 library does seem to always return node-sets to Postgres Pro with their members
in the same relative order they had in the input document. Its documentation does not
commit to this behavior, and an XPath 1.0 expression cannot control it.

• While XQuery/XPath provides all of the types defined in XML Schema and many operators and
functions over those types, XPath 1.0 has only node-sets and the three atomic types boolean,
double, and string.

• XPath 1.0 has no conditional operator. An XQuery/XPath expression such as if (hat) then hat/
@size else "no hat" has no XPath 1.0 equivalent.

• XPath 1.0 has no ordering comparison operator for strings. Both "cat" < "dog" and "cat" >
"dog" are false, because each is a numeric comparison of two NaNs. In contrast, = and != do
compare the strings as strings.

• XPath 1.0 blurs the distinction between value comparisons and general comparisons as XQuery/
XPath define them. Both sale/@hatsize = 7 and sale/@customer = "alice" are existentially
quantified comparisons, true if there is any sale with the given value for the attribute, but sale/
@taxable = false() is a value comparison to the effective boolean value of a whole node-set. It is
true only if no sale has a taxable attribute at all.

• In the XQuery/XPath data model, a document node can have either document form (i.e., exactly one
top-level element, with only comments and processing instructions outside of it) or content form
(with those constraints relaxed). Its equivalent in XPath 1.0, the root node, can only be in document
form. This is part of the reason an xml value passed as the context item to any Postgres Pro XPath-
based function must be in document form.

The differences highlighted here are not all of them. In XQuery and the 2.0 and later versions of XPath,
there is an XPath 1.0 compatibility mode, and the W3C lists of function library changes and language
changes applied in that mode offer a more complete (but still not exhaustive) account of the differences.
The compatibility mode cannot make the later languages exactly equivalent to XPath 1.0.

D.3.1.3. Mappings between SQL and XML Data Types and Values
In SQL:2006 and later, both directions of conversion between standard SQL data types and the XML
Schema types are specified precisely. However, the rules are expressed using the types and semantics
of XQuery/XPath, and have no direct application to the different data model of XPath 1.0.

When Postgres Pro maps SQL data values to XML (as in xmlelement), or XML to SQL (as in the output
columns of xmltable), except for a few cases treated specially, Postgres Pro simply assumes that the
XML data type's XPath 1.0 string form will be valid as the text-input form of the SQL datatype, and
conversely. This rule has the virtue of simplicity while producing, for many data types, results similar
to the mappings specified in the standard.

Where interoperability with other systems is a concern, for some data types, it may be necessary to use
data type formatting functions (such as those in Section 9.8) explicitly to produce the standard mappings.

D.3.2. Incidental Limits of the Implementation
This section concerns limits that are not inherent in the libxml2 library, but apply to the current
implementation in Postgres Pro.

D.3.2.1. Only BY VALUE Passing Mechanism Is Supported
The SQL standard defines two passing mechanisms that apply when passing an XML argument from
SQL to an XML function or receiving a result: BY REF, in which a particular XML value retains its node
identity, and BY VALUE, in which the content of the XML is passed but node identity is not preserved.

2120

https://www.w3.org/TR/2010/REC-xpath-functions-20101214/#xpath1-compatibility
https://www.w3.org/TR/xpath20/#id-backwards-compatibility
https://www.w3.org/TR/xpath20/#id-backwards-compatibility

SQL Conformance

A mechanism can be specified before a list of parameters, as the default mechanism for all of them, or
after any parameter, to override the default.

To illustrate the difference, if x is an XML value, these two queries in an SQL:2006 environment would
produce true and false, respectively:

SELECT XMLQUERY('$a is $b' PASSING BY REF x AS a, x AS b NULL ON EMPTY);
SELECT XMLQUERY('$a is $b' PASSING BY VALUE x AS a, x AS b NULL ON EMPTY);

Postgres Pro will accept BY VALUE or BY REF in an XMLEXISTS or XMLTABLE construct, but it ignores
them. The xml data type holds a character-string serialized representation, so there is no node identity
to preserve, and passing is always effectively BY VALUE.

D.3.2.2. Cannot Pass Named Parameters to Queries
The XPath-based functions support passing one parameter to serve as the XPath expression's context
item, but do not support passing additional values to be available to the expression as named parameters.

D.3.2.3. No XML(SEQUENCE) Type
The Postgres Pro xml data type can only hold a value in DOCUMENT or CONTENT form. An XQuery/XPath
expression context item must be a single XML node or atomic value, but XPath 1.0 further restricts it to
be only an XML node, and has no node type allowing CONTENT. The upshot is that a well-formed DOCUMENT
is the only form of XML value that Postgres Pro can supply as an XPath context item.

2121

Appendix E. Release Notes
The release notes contain the significant changes in each Postgres Pro Standard release, with major
features and migration issues listed at the top. The release notes do not contain changes that affect only
a few users or changes that are internal and therefore not user-visible. For example, the optimizer is
improved in almost every release, but the improvements are usually observed by users as simply faster
queries.

E.1. Postgres Pro Standard 13.7.2
Release Date: 2022-06-08

E.1.1. Overview
This release is based on PostgreSQL 13.7 and Postgres Pro Standard 13.7.1. All improvements
inherited from PostgreSQL 13.7 are listed in PostgreSQL 13.7 Release Notes. Other major changes and
enhancements are as follows:

• Changed the algorithm of composite type name generation. This fixes an issue in the code of vanilla
PostgreSQL, which strictly limits the number of tables with the same long prefix in names.

• Upgraded pg_probackup to version 2.5.6, which provides the following new features and bugfixes
as compared to version 2.5.5:
• Added the --dry-run flag to the catchup command to allow you to estimate the size of data files

to be transferred, but make no changes on disk.
• Changed the level of detail of logging some catchup messages for user convenience of log

reading.
• Fixed a bug that prevented correct rereading of a block after a message “File: ... blknum ... have

wrong checksum, try again” was issued.

E.1.2. Migration to Version 13.7.2
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.2. Postgres Pro Standard 13.7.1
Release Date: 2022-05-26

E.2.1. Overview
This release is based on PostgreSQL 13.7 and Postgres Pro Standard 13.6.1. All improvements
inherited from PostgreSQL 13.7 are listed in PostgreSQL 13.7 Release Notes. Other major changes and
enhancements are as follows:

• Ended support for Ubuntu 21.04 and added support for Ubuntu 22.04.
• Ended support for OSnova 2.0.
• Ended support for GosLinux 7.
• Upgraded mamonsu to version 3.4.0. Notable changes are as follows:

2122

Release Notes

• Added a new timeout parameter to the [zabbix] section of the mamonsu configuration file. It
allows you to set maximum time to wait while connecting to the Zabbix server.

• Added a new mamonsu dashboard upload template_name command, which can be used to
upload a Zabbix dashboard with the mamonsu metrics to a template on the Zabbix server
version 6.0 or higher.

• Upgraded PTRACK to version 2.3.0, optimizing PTRACK map loading, which previously in some
cases could considerably slow down overall database loading. A substantial speed-up is observed
for large-size maps.

• Upgraded pgpro_stats to version 1.4, which provides the following new features and bugfixes:
• Added pgpro_stats_vacuum_tables and pgpro_stats_vacuum_indexes views, which show

statistics about vacuuming tables and indexes, respectively. Functions with the same names,
which define these views for any specified database and table/index, are also added and can
return statistics about vacuuming all tables/indexes in the specified database too.

• Fixed a bug in extra shared memory allocation. The size of this memory was calculated with an
error, which could cause memory corruption, incorrect computation of statistics or even a server
crash.

• Fixed an issue that caused a server crash when queries that only differ in constants contained in
the query text were sent one after another through the extended query protocol.

• Upgraded pgpro_pwr to version 3.9, which provides the following new features and bugfixes:
• Added statistics on invalidation messages and on vacuuming tables and indexes to the report.
• Optimized retention handling for obsolete dictionary entries in the pgpro_pwr historical

repository.
• Fixed the type of value in calculating the wait time while taking a sample. This prevents a yet

unlikely integer overflow error.

E.2.2. Migration to Version 13.7.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.3. Postgres Pro Standard 13.6.1
Release Date: 2022-02-25

E.3.1. Overview
This release is based on PostgreSQL 13.6 and Postgres Pro Standard 13.5.1. All improvements
inherited from PostgreSQL 13.6 are listed in PostgreSQL 13.6 Release Notes. Other major changes and
enhancements are as follows:

• Increased the number of partitions of the shared buffer mapping hash table to 1024, which can
improve performance on multi-core systems.

• Fixed the use of multi-column statistics by planner. Previously, when the optimizer estimated the
query selectivity using multi-column statistics and the query conditions only included part of the
columns involved, the cardinality could be considerably overestimated, so the created plan would
be non-optimal.

2123

Release Notes

• Fixed the out-of-memory (OOM) killer settings in system startup files. Previously the OOM score
adjustment value was set for all Postgres Pro processes rather than for postmaster only, so when
Postgres Pro exhausted all RAM, the OOM killer could start killing irrelevant processes, such as
sshd.

• Added support for Rocky Linux 8.

• Ended support for outdated operating systems Debian 8, Astra Linux Smolensk 1.5 and MSVSphere
6.3.

• Upgraded pg_probackup to version 2.5.5, which provides the following new features and bugfixes
as compared to the previous included version 2.5.3:

• Added the --checkunique option to the checkdb command to work together with --amcheck and
verify unique constraints during logical verification of indexes when the amcheck extension is
installed in the database and its version supports the verification of unique constraints. Check
the amcheck documentation for whether this verification is supported.

• Fixed an issue that could occur when the source database was not on the timeline 1 and the
destination database did not fall behind: probackup sanity checks on catchup timeline history
failed with the error “Destination is not in source timeline history”.

• Fixed the behavior of catchup in DELTA and PTRACK modes. The fixed issue could occur when
pg_probackup operated remotely via SSH and --destination-pgdata was the same as --
source-pgdata, caused corruption of the source instance (at least the global/pg_control,
global/pg_filenode.map and base/*/pg_filenode.map files got deleted) and resulted in the
error “Could not open file "/pgwal/test/global/pg_control" for reading: No such file or directory”.

E.3.2. Migration to Version 13.6.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.4. Postgres Pro Standard 13.5.1
Release Date: 2021-11-26

E.4.1. Overview
This release is based on PostgreSQL 13.5 and Postgres Pro Standard 13.4.1. All improvements
inherited from PostgreSQL 13.5 are listed in PostgreSQL 13.5 Release Notes. Other major changes and
enhancements are as follows:

• Dropped support for the sr_plan extension.

• Upgraded mamonsu to version 3.1.0. Notable changes are as follows:

• A new option for bootstrap is added. With this option, if -dbname is not explicitly specified, its
value will be automatically set to the database name defined in the [postgres] section of the
mamonsu configuration file.

• A critical issue is fixed that could arise when the bootstrap step was skipped. In this case,
although a user can work with mamonsu under superuser permissions, the special mamonsu
schema is not created, but after creating the auxiliary extension pg_buffercache in any other

2124

Release Notes

schema, running mamonsu resulted in errors “ERROR: relation "mamonsu.pg_buffercache"
does not exist...”.

• Added support for ALT Linux 10.
• Changed the minimum supported Windows versions to Windows 10 and Windows Server 2012 R2.
• Ended support for Ubuntu 20.10 and added support for Ubuntu 21.10.
• Fixed a pg_probackup issue with archiving WAL from a directory outside of the data directory.

Previously, multi-threaded and batch optimizations of archive-push prevented such archiving;
now it is possible to archive WAL from any directory, but if it is outside of the data directory, multi-
threaded and batch optimizations are automatically turned off.

• Fixed pg_dumpall to avoid using an insecure search path.
• Upgraded pgpro_pwr. Major enhancements are as follows:

• Added the “Load distribution” section to the report, which shows load distribution of different
resources (for example, total time or shared blocks written) for heavily loaded objects, such as
databases, applications, hosts, or users, in graphics, as stacked bar charts.

• Added the “Session statistics by database” and “WAL statistics” report tables, based on new
views and fields made available in Postgres Pro 14.

• Deprecated WAITLSN command.

E.4.2. Migration to Version 13.5.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.5. Postgres Pro Standard 13.4.1
Release Date: 2021-08-26

E.5.1. Overview
This release is based on PostgreSQL 13.4 and Postgres Pro Standard 13.3.1. All improvements
inherited from PostgreSQL 13.4 are listed in PostgreSQL 13.4 Release Notes. Other major changes and
enhancements are as follows:

• Added support for Debian 11.
• Upgraded mamonsu to version 3.0, which is incompatible with the previous one. Read mamonsu

Compatibility Considerations to learn what you need to do to continue using the application.
• Added support for Red OS Murom 7.3.
• Added support for Astra Linux Smolensk 1.7.
• Fixed the behavior of ALTER TABLE IF EXISTS table RENAME TO table1 command in the case

when the source table is missing and the pg_pathman extension was loaded. Previously, ERROR was
returned, and now NOTICE is generated, which is how Postgres Pro behaves with no pg_pathman
extension loaded.

• Upgraded pg_probackup to version 2.5.1, which added a new catchup command to copy a Postgres
Pro instance directly, without using the backup catalog. This allows you to add a new standby
server in a parallel mode or to have a fallen-behind standby server “catch up” with master.

2125

Release Notes

• Fixed a bug in the query optimizer, which overestimated the cost of index scan using a unique
index. This behavior was observed when between index scans using a unique index and using a
non-unique one, the non-unique index was chosen, which resulted in excessive disk accesses and a
considerable overall slowdown.

E.5.2. Migration to Version 13.4.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.6. Postgres Pro Standard 13.3.1
Release Date: 2021-05-28

E.6.1. Overview
This release is based on PostgreSQL 13.3 and Postgres Pro Standard 13.2.2. All improvements
inherited from PostgreSQL 13.3 are listed in PostgreSQL 13.3 Release Notes. Other major changes and
enhancements are as follows:

• Upgraded PTRACK to use a different algorithm for tracking changed pages. This greatly reduces
the number of false positives among the changed pages tracked in the PTRACK map and hence the
size of PTRACK backups.

• Fixed a bug that caused queries to fail with an error “geqo failed to make a valid plan” after
updating statistics with VACUUM ANALYZE when enable_compound_index_stats was on.

• Ended support for Ubuntu 16.04 and added support for Ubuntu 21.04.
• Fixed an issue of installing Postgres Pro on Alt Linux 8.2 SP. For this OS, Postgres Pro now provides

a separate package repository, which is different from the repositories of earlier Alt Linux SP
versions.

• Improved the planner's algorithm of self-join selectivity calculation, which ensures more accurate
estimates of the number of rows after joins.

• Upgraded mamonsu to version 2.7.1.
• Upgraded pgpro_controldata to version 13.2.0.
• On Windows systems, fixed an issue with updating temporary files for statistics if they are currently

in use.

E.6.2. Migration to Version 13.3.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

If you are upgrading from Postgres Pro versions 13.2.2 or lower and take PTRACK backups using
pg_probackup, retake a full backup after upgrade.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

2126

Release Notes

E.7. Postgres Pro Standard 13.2.2
Release Date: 2021-04-02

E.7.1. Overview
This release is based on PostgreSQL 13.2 and Postgres Pro Standard 13.2.1. All improvements
inherited from PostgreSQL 13.2 are listed in PostgreSQL 13.2 Release Notes. Other major changes and
enhancements are as follows:

• Fixed the signed integer overflow in ptrack that could occur when ptrack map data in RAM was
saved to disk. Previously, for large-size ptrack maps (ptrack.mapsize > 17200 MB), this resulted
in a “FATAL/ERROR ptrack checkpoint: stat_buf.st_size != ptrack_map_size XXX != YYY”
error during a checkpoint.

• Fixed building of covering indexes with included columns of type for which the collation is defined
in the table. The fixed defect could result in an “ERROR: could not determine which collation
to use for string comparison” error during the ANALYZE operation on the table, although
single columns could be successfully analyzed. To avoid this error in future, after upgrading,
rebuild indexes containing at least one included column of such types.

E.7.2. Migration to Version 13.2.2
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

When upgrading from Postgres Pro versions 13.2.1 or lower, rebuild indexes containing at least one
included column of type for which the collation was defined in the table.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.8. Postgres Pro Standard 13.2.1
Release Date: 2021-03-04

E.8.1. Overview
This release is based on PostgreSQL 13.2 and Postgres Pro Standard 13.1.1. All improvements
inherited from PostgreSQL 13.2 are listed in PostgreSQL 13.2 Release Notes. Other major changes and
enhancements are as follows:

• Upgraded pgpro_pwr. Major enhancements are as follows:
• Added export and import functionalities.
• The collection of relation sizes is now manageable, so that collecting them rarely is possible.
• Functions support server descriptions.
• Reporting now supports pg_stat_kcache 2.2.0 and provides more resource usage statistics.

• Upgraded pg_probackup to the latest version 2.4.10. Major improvements over the previously
included version 2.4.2 are as follows:

• Incremental restore with --force flag now allows you to overwrite the contents of the directory
specified by PGDATA in case of system ID mismatch. Previously this resulted in an error.

• It is now possible to restore and validate backups from a read-only filesystem.
• In-place merge is now disabled only if the storage format changed.
• Non-exclusive backup locks are implemented, which enables concurrent validate and restore.

Backup shared locks are now released at the process exit.

2127

Release Notes

• Streamed WAL segments are now added to the backup filelist on the fly and fsynced to disk at
the end of the backup.

See pg_probackup documentation for details.
• Fixed a bug that prevented setting ptrack.map_size to values higher than 1024 MB due to int32

overflow. See PTRACK for details.
• Added pgpro_controldata utility to display control information of a PostgreSQL/Postgres Pro

database cluster and compatibility information for a cluster and/or server.
• Added the pg_snapshot_any function to help superusers explore corrupted databases. See

Section 9.27.11 for details.
• Upgraded pgpro_stats. Now it shows resource usage statistics of statement planning and execution,

as well as cache invalidation metrics.

E.8.2. Migration to Version 13.2.1
If you are upgrading from Postgres Pro Standard based on the same PostgreSQL major version, it is
enough to install the new version into your current installation directory.

To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, see the instructions in Postgres Pro Standard 13.1.1 Release Notes.

E.9. Postgres Pro Standard 13.1.1
Release Date: 2020-12-17

E.9.1. Overview
This release is based on PostgreSQL 13.1 and includes all the new features introduced in PostgreSQL
13, as well as bug fixes implemented in PostgreSQL 13.1. For their detailed description, see PostgreSQL
13 Release Notes and PostgreSQL 13.1 Release Notes, respectively. Other major changes and
enhancements are as follows:

• Added pgpro_pwr extension. It enables you to generate workload reports, which help to discover
most resource-intensive activities in your database.

• Added pgpro_stats to Postgres Pro Standard. This extension combines tracking execution statistics
of SQL statements and calculating wait event statistics.

• Added support for OSnova 2.0. This is the first major release to support this OS family.
• Upgraded mchar to version 2.2. See Section E.9.2 for related upgrade instructions.
For the list of extension modules and utilities specific to Postgres Pro Standard, as well as the main user-
visible core changes as compared to vanilla PostgreSQL, see Section 2.

E.9.2. Migration to Version 13
To migrate from PostgreSQL or a Postgres Pro Standard release based on a previous PostgreSQL major
version, make sure to install its latest available minor version and then perform a dump/restore using
pg_dumpall or use the pg_upgrade utility:
• If you choose to run pg_upgrade, make sure to initialize the new database cluster with compatible

parameters. In particular, pay attention to the provider of the default collation and the checksum
settings in the cluster you are migrating from. If pg_upgrade creates any SQL files in its current
directory, run these files to complete the upgrade.

• If you are opting for a dump/restore, do not forget to use the --add-collprovider option to
correctly choose the provider for the default collation of the migrated database.

To find out the default collation and its provider in the original cluster, see the datcollate value for the
template0 database in the pg_database catalog. If you are upgrading from a version where provider of

2128

Release Notes

the default collation is not specified, use libc provider if upgrading from vanilla PostgreSQL, and omit
the provider if upgrading from earlier versions of Postgres Pro.

Besides, note the following collation-related upgrade specifics described below.

On Windows, Postgres Pro Standard installations could contain databases with default collations
provided by ICU, where the name of the database default collation used a syntactically correct BCP
47 language tag format, but had a wrong language code or other parameters, which invalidated the
database default collation name for ICU.

If this issue affects the template0 database, you will get the following error message when trying to
initialize the cluster with the same collation: failed to get the canonical name for collation
locale. In this case, you can only use dump/restore for upgrade, specifying a valid locale for the selected
collation provider.

If this issue affects other databases, you will get the same error message when Postgres Pro tries to
create these databases with invalid collation in the new cluster. In this case, you can try the following:
1. Make a dump of the database using pg_dump; it is required to use --create and --format=plain

options.
2. Change the provider for the default collation of the database in the dump file from '@icu' to '@libc'.
3. In psql, restore the modified dump to complete the upgrade. This operation may fail if any constraints

depending on the database collations are violated. In this case, you can try resolving the issues
manually.

In some corner cases, using dump/restore could lead to invalid constraints in the restored databases,
so you should use pg_upgrade. For example:
• If the installation of Postgres Pro Standard 9.6 or lower contained any indexes or constraints

depending on collations other than the default collation of the database, C, or POSIX in databases
with multibyte encodings, indexes and constraints in such databases could become inconsistent
when these databases are migrated to Postgres Pro 10 or higher. On Windows, this situation
can also happen if the database with a multibyte encoding contained any indexes or constraints
depending on the default collation with a verbose name, such as "Russian_Russia[.encoding]" or
"English_United States[.encoding]".

• For upgrades from Postgres Pro Standard 10, if the cluster has no information about the ICU
library version, the ICU collation versions are checked to ensure that indexes and constraints
remain valid after the upgrade. However, for clusters that contain databases with default ICU
collations but have no information about the ICU library version and/or its collation versions, it
is impossible to check that the current version of Postgres Pro uses the same version of the ICU
library.

• On Windows, in Postgres Pro Standard 10 clusters with default collations provided by ICU, the ICU
collation locale may not match the corresponding libc collation locale.

If you use pg_upgrade, it declares such indexes and constraints invalid and creates
reindex_text_indexes.sql and validate_text_constraints.sql, respectively. You have to run these
files to complete the upgrade.

Note
To avoid conflicts on Linux systems, do not use the postgrespro-std-13 package to install the new
Postgres Pro binaries. Use the individual packages instead. In this case, server autostart needs to
be enabled manually, if required. For details on the available packages, see Chapter 16.

If you used mchar, to ensure acceleration of the LIKE operator after upgrading from previous versions
of Postgres Pro, run:
ALTER EXTENSION mchar UPDATE;

2129

Release Notes

For upgrade requirements imposed by vanilla PostgreSQL, see Section E.17.

E.10. Release 13.7
Release date: 2022-05-12

This release contains a variety of fixes from 13.6. For information about new features in major release
13, see Section E.17.

E.10.1. Migration to Version 13.7
A dump/restore is not required for those running 13.X.

However, if you have any GiST indexes on columns of type ltree (supplied by the contrib/ltree
extension), you should re-index them after updating. See the second changelog entry below.

Also, if you are upgrading from a version earlier than 13.6, see Section E.11.

E.10.2. Changes
• Confine additional operations within “security restricted operation” sandboxes (Sergey Shinderuk,

Noah Misch)

Autovacuum, CLUSTER, CREATE INDEX, REINDEX, REFRESH MATERIALIZED VIEW, and pg_amcheck
activated the “security restricted operation” protection mechanism too late, or even not at all in
some code paths. A user having permission to create non-temporary objects within a database
could define an object that would execute arbitrary SQL code with superuser permissions the
next time that autovacuum processed the object, or that some superuser ran one of the affected
commands against it.

The PostgreSQL Project thanks Alexander Lakhin for reporting this problem. (CVE-2022-1552)
• Fix default signature length for gist_ltree_ops indexes (Tomas Vondra, Alexander Korotkov)

The default signature length (hash size) for GiST indexes on ltree columns was accidentally
changed while upgrading that operator class to support operator class parameters. If any
operations had been done on such an index without first upgrading the ltree extension to version
1.2, they were done assuming that the signature length was 28 bytes rather than the intended
8. This means it is very likely that such indexes are now corrupt. For safety we recommend re-
indexing all GiST indexes on ltree columns after installing this update. (Note that GiST indexes on
ltree[] columns, that is arrays of ltree, are not affected.)

• Stop using query-provided column aliases for the columns of whole-row variables that refer to plain
tables (Tom Lane)

The column names in tuples produced by a whole-row variable (such as tbl.* in contexts other
than the top level of a SELECT list) are now always those of the associated named composite type,
if there is one. We'd previously attempted to make them track any column aliases that had been
applied to the FROM entry the variable refers to. But that's semantically dubious, because really then
the output of the variable is not at all of the composite type it claims to be. Previous attempts to
deal with that inconsistency had bad results up to and including storing unreadable data on disk, so
just give up on the whole idea.

In cases where it's important to be able to relabel such columns, a workaround is to introduce an
extra level of sub-SELECT, so that the whole-row variable is referring to the sub-SELECT's output and
not to a plain table. Then the variable is of type record to begin with and there's no issue.

• Fix incorrect output for types timestamptz and timetz in table_to_xmlschema() and allied
functions (Renan Soares Lopes)

The xmlschema output for these types included a malformed regular expression.
• Avoid core dump in parser for a VALUES clause with zero columns (Tom Lane)

2130

Release Notes

• Fix planner errors for GROUPING() constructs that reference outer query levels (Richard Guo, Tom
Lane)

• Fix plan generation for index-only scans on indexes with both returnable and non-returnable
columns (Tom Lane)

The previous coding could try to read non-returnable columns in addition to the returnable ones.
This was fairly harmless because it didn't actually do anything with the bogus values, but it fell foul
of a recently-added error check that rejected such a plan.

• Avoid accessing a no-longer-pinned shared buffer while attempting to lock an outdated tuple during
EvalPlanQual (Tom Lane)

The code would touch the buffer a couple more times after releasing its pin. In theory another
process could recycle the buffer (or more likely, try to defragment its free space) as soon as the pin
is gone, probably leading to failure to find the newer version of the tuple.

• Fix query-lifespan memory leak in an IndexScan node that is performing reordering (Aliaksandr
Kalenik)

• Fix ALTER FUNCTION to support changing a function's parallelism property and its SET-variable list
in the same command (Tom Lane)

The parallelism property change was lost if the same command also updated the function's SET
clause.

• Fix bogus errors from attempts to alter system columns of tables (Tom Lane)

The system should just tell you that you can't do it, but sometimes it would report “no owned
sequence found” instead.

• Fix mis-sorting of table rows when CLUSTERing using an index whose leading key is an expression
(Peter Geoghegan, Thomas Munro)

The table would be rebuilt with the correct data, but in an order having little to do with the index
order.

• Fix risk of deadlock failures while dropping a partitioned index (Jimmy Yih, Gaurab Dey, Tom Lane)

Ensure that the required table and index locks are taken in the standard order (parents before
children, tables before indexes). The previous coding for DROP INDEX did it differently, and so could
deadlock against concurrent queries taking these locks in the standard order.

• Fix race condition between DROP TABLESPACE and checkpointing (Nathan Bossart)

The checkpoint forced by DROP TABLESPACE could sometimes fail to remove all dead files from the
tablespace's directory, leading to a bogus “tablespace is not empty” error.

• Fix possible trouble in crash recovery after a TRUNCATE command that overlaps a checkpoint
(Kyotaro Horiguchi, Heikki Linnakangas, Robert Haas)

TRUNCATE must ensure that the table's disk file is truncated before the checkpoint is allowed to
complete. Otherwise, replay starting from that checkpoint might find unexpected data in the
supposedly-removed pages, possibly causing replay failure.

• Fix unsafe toast-data accesses during temporary object cleanup (Andres Freund)

Temporary-object deletion during server process exit could fail with “FATAL: cannot fetch toast
data without an active snapshot”. This was usually harmless since the next use of that temporary
schema would clean up successfully.

• Improve wait logic in RegisterSyncRequest (Thomas Munro)

If we run out of space in the checkpointer sync request queue (which is hopefully rare on real
systems, but is common when testing with a very small buffer pool), we wait for it to drain. While
waiting, we should report that as a wait event so that users know what is going on, and also watch

2131

Release Notes

for postmaster death, since otherwise the loop might never terminate if the checkpointer has
already exited.

• Fix “PANIC: xlog flush request is not satisfied” failure during standby promotion when there is a
missing WAL continuation record (Sami Imseih)

• Fix possibility of self-deadlock in hot standby conflict handling (Andres Freund)

With unlucky timing, the WAL-applying process could get stuck while waiting for some other
process to release a buffer lock.

• Fix possible mis-identification of the correct ancestor relation to publish logical replication changes
through (Tomas Vondra, Hou zj, Amit Kapila)

If publish_via_partition_root is enabled, and there are multiple publications naming different
ancestors of the currently-modified relation, the wrong ancestor might be chosen for reporting the
change.

• Ensure that logical replication apply workers can be restarted even when we're up against the
max_sync_workers_per_subscription limit (Amit Kapila)

Faulty coding of the limit check caused a restarted worker to exit immediately, leaving fewer
workers than there should be.

• Include unchanged replica identity key columns in the WAL log for an update, if they are stored
out-of-line (Dilip Kumar, Amit Kapila)

Otherwise subscribers cannot see the values and will fail to replicate the update.
• Cope correctly with platforms that have no support for altering the server process's display in ps(1)

(Andrew Dunstan)

Few platforms are like this (the only supported one is Cygwin), so we'd managed not to notice that
refactoring introduced a potential memory clobber.

• Disallow execution of SPI functions during PL/Perl function compilation (Tom Lane)

Perl can be convinced to execute user-defined code during compilation of a PL/Perl function.
However, it's not okay for such code to try to invoke SQL operations via SPI. That results in a crash,
and if it didn't crash it would be a security hazard, because we really don't want code execution
during function validation. Put in a check to give a friendlier error message instead.

• Make libpq accept root-owned SSL private key files (David Steele)

This change synchronizes libpq's rules for safe ownership and permissions of SSL key files with
the rules the server has used since release 9.6. Namely, in addition to the current rules, allow the
case where the key file is owned by root and has permissions rw-r----- or less. This is helpful for
system-wide management of key files.

• Fix behavior of libpq's PQisBusy() function after a connection failure (Tom Lane)

If we'd detected a write failure, PQisBusy() would always return true, which is the wrong thing:
we want input processing to carry on normally until we've read whatever is available from the
server. The practical effect of this error is that applications using libpq's async-query API would
typically detect connection loss only when PQconsumeInput() returns a hard failure. With this fix,
a connection loss will normally be reported via an error PGresult object, which is a much cleaner
behavior for most applications.

• Make pg_ctl recheck postmaster aliveness while waiting for stop/restart/promote actions (Tom
Lane)

pg_ctl would verify that the postmaster is alive as a side-effect of sending the stop or promote
signal, but then it just naively waited to see the on-disk state change. If the postmaster died
uncleanly without having removed its PID file or updated the control file, pg_ctl would wait until
timeout. Instead make it recheck every so often that the postmaster process is still there.

2132

Release Notes

• Fix error handling in pg_waldump (Kyotaro Horiguchi, Andres Freund)

While trying to read a WAL file to determine the WAL segment size, pg_waldump would report an
incorrect error for the case of a too-short file. In addition, the file name reported in this and related
error messages could be garbage.

• Ensure that contrib/pageinspect functions cope with all-zero pages (Michael Paquier)

This is a legitimate edge case, but the module was mostly unprepared for it. Arrange to return
nulls, or no rows, as appropriate; that seems more useful than raising an error.

• In contrib/pageinspect, add defenses against incorrect page “special space” contents, tighten
checks for correct page size, and add some missing checks that an index is of the expected type
(Michael Paquier, Justin Pryzby, Julien Rouhaud)

These changes make it less likely that the module will crash on bad data.
• In contrib/postgres_fdw, verify that ORDER BY clauses are safe to ship before requesting a

remotely-ordered query, and include a USING clause if necessary (Ronan Dunklau)

This fix prevents situations where the remote server might sort in a different order than we intend.
While sometimes that would be only cosmetic, it could produce thoroughly wrong results if the
remote data is used as input for a locally-performed merge join.

• Update JIT code to work with LLVM 14 (Thomas Munro)
• Clean up assorted failures under clang's -fsanitize=undefined checks (Tom Lane, Andres Freund,

Zhihong Yu)

Most of these changes are just for pro-forma compliance with the letter of the C and POSIX
standards, and are unlikely to have any effect on production builds.

• Fix PL/Perl so it builds on C compilers that don't support statements nested within expressions
(Tom Lane)

• Fix possible build failure of pg_dumpall on Windows, when not using MSVC to build (Andres
Freund)

• In Windows builds, use gendef instead of pexports to build DEF files (Andrew Dunstan)

This adapts the build process to work on recent MSys tool chains.
• Prevent extra expansion of shell wildcard patterns in programs built under MinGW (Andrew

Dunstan)

For some reason the C library provided by MinGW will expand shell wildcard characters in a
program's command-line arguments by default. This is confusing, not least because it doesn't
happen under MSVC, so turn it off.

• Update time zone data files to tzdata release 2022a for DST law changes in Palestine, plus
historical corrections for Chile and Ukraine.

E.11. Release 13.6
Release date: 2022-02-10

This release contains a variety of fixes from 13.5. For information about new features in major release
13, see Section E.17.

E.11.1. Migration to Version 13.6
A dump/restore is not required for those running 13.X.

However, if you have applied REINDEX CONCURRENTLY to a TOAST table's index, or observe failures to
access TOAST datums, see the first changelog entry below.

2133

Release Notes

Also, if you are upgrading from a version earlier than 13.5, see Section E.12.

E.11.2. Changes
• Enforce standard locking protocol for TOAST table updates, to prevent problems with REINDEX

CONCURRENTLY (Michael Paquier)

If applied to a TOAST table or TOAST table's index, REINDEX CONCURRENTLY tended to produce
a corrupted index. This happened because sessions updating TOAST entries released their ROW
EXCLUSIVE locks immediately, rather than holding them until transaction commit as all other
updates do. The fix is to make TOAST updates hold the table lock according to the normal rule. Any
existing corrupted indexes can be repaired by reindexing again.

• Avoid null-pointer crash in ALTER STATISTICS when the statistics object is dropped concurrently
(Tomas Vondra)

• Fix incorrect plan creation for parallel single-child Append nodes (David Rowley)

In some cases the Append would be simplified away when it should not be, leading to wrong query
results (duplicated rows).

• Fix index-only scan plans for cases where not all index columns can be returned (Tom Lane)

If an index has both returnable and non-returnable columns, and one of the non-returnable columns
is an expression using a table column that appears in a returnable index column, then a query
using that expression could result in an index-only scan plan that attempts to read the non-
returnable column, instead of recomputing the expression from the returnable column as intended.
The non-returnable column would read as NULL, resulting in wrong query results.

• Ensure that casting to an unspecified typmod generates a RelabelType node rather than a length-
coercion function call (Tom Lane)

While the coercion function should do the right thing (nothing), this translation is undesirably
inefficient.

• Fix checking of anycompatible-family data type matches (Tom Lane)

In some cases the parser would think that a function or operator with anycompatible-family
polymorphic parameters matches a set of arguments that it really shouldn't match. In reported
cases, that led to matching more than one operator to a call, leading to ambiguous-operator errors;
but a failure later on is also possible.

• Fix WAL replay failure when database consistency is reached exactly at a WAL page boundary
(Álvaro Herrera)

• Fix startup of a physical replica to tolerate transaction ID wraparound (Abhijit Menon-Sen, Tomas
Vondra)

If a replica server is started while the set of active transactions on the primary crosses a
wraparound boundary (so that there are some newer transactions with smaller XIDs than older
ones), the replica would fail with “out-of-order XID insertion in KnownAssignedXids”. The replica
would retry, but could never get past that error.

• In logical replication, avoid double transmission of a child table's data (Hou Zhijie)

If a publication includes both child and parent tables, and has the publish_via_partition_root
option set, subscribers uselessly initiated synchronization on both child and parent tables. Ensure
that only the parent table is synchronized in such cases.

• Remove lexical limitations for SQL commands issued on a logical replication connection (Tom Lane)

The walsender process would fail for a SQL command containing an unquoted semicolon, or with
dollar-quoted literals containing odd numbers of single or double quote marks, or when the SQL
command starts with a comment. Moreover, faulty error recovery could lead to unexpected errors
in later commands too.

2134

Release Notes

• Fix possible loss of the commit timestamp for the last subtransaction of a transaction (Alex
Kingsborough, Kyotaro Horiguchi)

• Be sure to fsync the pg_logical/mappings subdirectory during checkpoints (Nathan Bossart)

On some filesystems this oversight could lead to losing logical rewrite status files after a system
crash.

• Build extended statistics for partitioned tables (Justin Pryzby)

A previous bug fix disabled building of extended statistics for old-style inheritance trees, but it
also prevented building them for partitioned tables, which was an unnecessary restriction. This
change allows ANALYZE to compute values for statistics objects for partitioned tables. (But note that
autovacuum does not process partitioned tables as such, so you must periodically issue manual
ANALYZE on the partitioned table if you want to maintain such statistics.)

• Ignore extended statistics for inheritance trees (Justin Pryzby)

Currently, extended statistics values are only computed locally for each table, not for entire
inheritance trees. However the values were mistakenly consulted when planning queries across
inheritance trees, possibly resulting in worse-than-default estimates.

• Disallow altering data type of a partitioned table's columns when the partitioned table's row type is
used as a composite type elsewhere (Tom Lane)

This restriction has long existed for regular tables, but through an oversight it was not checked for
partitioned tables.

• Disallow ALTER TABLE ... DROP NOT NULL for a column that is part of a replica identity index
(Haiying Tang, Hou Zhijie)

The same prohibition already existed for primary key indexes.

• Correctly update cached table state during ALTER TABLE ADD PRIMARY KEY USING INDEX (Hou
Zhijie)

Concurrent sessions failed to update their opinion of whether the table has a primary key, possibly
causing incorrect logical replication behavior.

• Correctly update cached table state when switching REPLICA IDENTITY index (Tang Haiying, Hou
Zhijie)

Concurrent sessions failed to update their opinion of which index is the replica identity one,
possibly causing incorrect logical replication behavior.

• Allow parallel vacuuming and concurrent index building to be ignored while computing oldest xmin
(Masahiko Sawada)

Non-parallelized instances of these operations were already ignored, but the logic did not work for
parallelized cases. Holding back the xmin horizon has undesirable effects such as delaying vacuum
cleanup.

• Avoid leaking memory during REASSIGN OWNED BY operations that reassign ownership of many
objects (Justin Pryzby)

• Improve performance of walsenders sending logical changes by avoiding unnecessary cache
accesses (Hou Zhijie)

• Fix display of cert authentication method's options in pg_hba_file_rules view (Magnus
Hagander)

The cert authentication method implies clientcert=verify-full, but the pg_hba_file_rules
view incorrectly reported clientcert=verify-ca.

• Fix display of whole-row variables appearing in INSERT ... VALUES rules (Tom Lane)

2135

Release Notes

A whole-row variable would be printed as “var.*”, but that allows it to be expanded to individual
columns when the rule is reloaded, resulting in different semantics. Attach an explicit cast to
prevent that, as we do elsewhere.

• Fix one-byte buffer overrun when applying Unicode string normalization to an empty string
(Michael Paquier)

The practical impact of this is limited thanks to alignment considerations; but in debug builds, a
warning was raised.

• Fix or remove some incorrect assertions (Simon Riggs, Michael Paquier, Alexander Lakhin)

These errors should affect only debug builds, not production.
• Fix race condition that could lead to failure to localize error messages that are reported early in

multi-threaded use of libpq or ecpglib (Tom Lane)
• Avoid calling strerror from libpq's PQcancel function (Tom Lane)

PQcancel is supposed to be safe to call from a signal handler, but strerror is not safe. The faulty
usage only occurred in the unlikely event of failure to send the cancel message to the server,
perhaps explaining the lack of reports.

• Make psql's \password command default to setting the password for CURRENT_USER, not the
connection's original user name (Tom Lane)

This agrees with the documented behavior, and avoids probable permissions failure if SET ROLE or
SET SESSION AUTHORIZATION has been done since the session began. To prevent confusion, the role
name to be acted on is now included in the password prompt.

• Fix psql \d command's query for identifying parent triggers (Justin Pryzby)

The previous coding failed with “more than one row returned by a subquery used as an expression”
if a partition had triggers and there were unrelated statement-level triggers of the same name on
some parent partitioned table.

• Fix psql's tab-completion of label values for enum types (Tom Lane)
• In psql and some other client programs, avoid trying to invoke gettext() from a control-C signal

handler (Tom Lane)

While no reported failures have been traced to this mistake, it seems highly unlikely to be a safe
thing to do.

• Allow canceling the initial password prompt in pg_receivewal and pg_recvlogical (Tom Lane,
Nathan Bossart)

Previously it was impossible to terminate these programs via control-C while they were prompting
for a password.

• Fix pg_dump's dump ordering for user-defined casts (Tom Lane)

In rare cases, the output script might refer to a user-defined cast before it had been created.
• Fix pg_dump's --inserts and --column-inserts modes to handle tables containing both

generated columns and dropped columns (Tom Lane)
• Fix possible mis-reporting of errors in pg_dump and pg_basebackup (Tom Lane)

The previous code failed to check for errors from some kernel calls, and could report the wrong
errno values in other cases.

• Fix results of index-only scans on contrib/btree_gist indexes on char(N) columns (Tom Lane)

Index-only scans returned column values with trailing spaces removed, which is not the expected
behavior. That happened because that's how the data was stored in the index. This fix changes the

2136

Release Notes

code to store char(N) values with the expected amount of space padding. The behavior of such an
index will not change immediately unless you REINDEX it; otherwise space-stripped values will be
gradually replaced over time during updates. Queries that do not use index-only scan plans will be
unaffected in any case.

• Change configure to use Python's sysconfig module, rather than the deprecated distutils module, to
determine how to build PL/Python (Peter Eisentraut, Tom Lane, Andres Freund)

With Python 3.10, this avoids configure-time warnings about distutils being deprecated and
scheduled for removal in Python 3.12. Presumably, once 3.12 is out, configure --with-python
would fail altogether. This future-proofing does come at a cost: sysconfig did not exist before
Python 2.7, nor before 3.2 in the Python 3 branch, so it is no longer possible to build PL/Python
against long-dead Python versions.

• Fix PL/Perl compile failure on Windows with Perl 5.28 and later (Victor Wagner)
• Fix PL/Python compile failure with Python 3.11 and later (Peter Eisentraut)
• Add support for building with Visual Studio 2022 (Hans Buschmann)
• Allow the .bat wrapper scripts in our MSVC build system to be called without first changing into

their directory (Anton Voloshin, Andrew Dunstan)

E.12. Release 13.5
Release date: 2021-11-11

This release contains a variety of fixes from 13.4. For information about new features in major release
13, see Section E.17.

E.12.1. Migration to Version 13.5
A dump/restore is not required for those running 13.X.

However, note that installations using physical replication should update standby servers before the
primary server, as explained in the third changelog entry below.

Also, several bugs have been found that may have resulted in corrupted indexes, as explained in the
next several changelog entries. If any of those cases apply to you, it's recommended to reindex possibly-
affected indexes after updating.

Also, if you are upgrading from a version earlier than 13.2, see Section E.15.

E.12.2. Changes
• Make the server reject extraneous data after an SSL or GSS encryption handshake (Tom Lane)

A man-in-the-middle with the ability to inject data into the TCP connection could stuff some
cleartext data into the start of a supposedly encryption-protected database session. This could be
abused to send faked SQL commands to the server, although that would only work if the server did
not demand any authentication data. (However, a server relying on SSL certificate authentication
might well not do so.)

The PostgreSQL Project thanks Jacob Champion for reporting this problem. (CVE-2021-23214)
• Make libpq reject extraneous data after an SSL or GSS encryption handshake (Tom Lane)

A man-in-the-middle with the ability to inject data into the TCP connection could stuff some
cleartext data into the start of a supposedly encryption-protected database session. This could
probably be abused to inject faked responses to the client's first few queries, although other details
of libpq's behavior make that harder than it sounds. A different line of attack is to exfiltrate the
client's password, or other sensitive data that might be sent early in the session. That has been
shown to be possible with a server vulnerable to CVE-2021-23214.

The PostgreSQL Project thanks Jacob Champion for reporting this problem. (CVE-2021-23222)

2137

Release Notes

• Fix physical replication for cases where the primary crashes after shipping a WAL segment that
ends with a partial WAL record (Álvaro Herrera)

If the primary did not survive long enough to finish writing the rest of the incomplete WAL record,
then the previous crash-recovery logic had it back up and overwrite WAL starting from the
beginning of the incomplete WAL record. This is problematic since standby servers may already
have copies of that WAL segment. They will then see an inconsistent next segment, and will not be
able to recover without manual intervention. To fix, do not back up over a WAL segment boundary
when restarting after a crash. Instead write a new type of WAL record at the start of the next WAL
segment, informing readers that the incomplete WAL record will never be finished and must be
disregarded.

When applying this update, it's best to update standby servers before the primary, so that they will
be ready to handle this new WAL record type if the primary happens to crash.

• Fix CREATE INDEX CONCURRENTLY to wait for the latest prepared transactions (Andrey Borodin)

Rows inserted by just-prepared transactions might be omitted from the new index, causing
queries relying on the index to miss such rows. The previous fix for this type of problem failed
to account for PREPARE TRANSACTION commands that were still in progress when CREATE
INDEX CONCURRENTLY checked for them. As before, in installations that have enabled prepared
transactions (max_prepared_transactions > 0), it's recommended to reindex any concurrently-
built indexes in case this problem occurred when they were built.

• Avoid race condition that can cause backends to fail to add entries for new rows to an index being
built concurrently (Noah Misch, Andrey Borodin)

While it's apparently rare in the field, this case could potentially affect any index built or reindexed
with the CONCURRENTLY option. It is recommended to reindex any such indexes to make sure they
are correct.

• Fix float4 and float8 hash functions to produce uniform results for NaNs (Tom Lane)

Since PostgreSQL's floating-point types deem all NaNs to be equal, it's important for the hash
functions to produce the same hash code for all bit-patterns that are NaNs according to the IEEE
754 standard. This failed to happen before, meaning that hash indexes and hash-based query plans
might produce incorrect results for non-canonical NaN values. ('-NaN'::float8 is one way to
produce such a value on most machines.) It is advisable to reindex hash indexes on floating-point
columns, if there is any possibility that they might contain such values.

• Fix REINDEX CONCURRENTLY to preserve operator class parameters that were attached to the target
index (Michael Paquier)

• Prevent data loss during crash recovery of CREATE TABLESPACE, when wal_level = minimal (Noah
Misch)

If the server crashed between CREATE TABLESPACE and the next checkpoint, replay would fully
remove the contents of the new tablespace's directory, relying on subsequent WAL replay to restore
everything within that directory. This interacts badly with optimizations that skip writing WAL (one
example is COPY into a just-created table). Such optimizations are applied only when wal_level is
minimal, which is not the default in v10 and later.

• Ensure that the relation cache is invalidated for a table being attached to or detached from a
partitioned table (Amit Langote, Álvaro Herrera)

This oversight could allow misbehavior of subsequent inserts/updates addressed directly to the
partition, but only in currently-existing sessions.

• Ensure that the relation cache is invalidated for all partitions of a partitioned table that is being
added to or removed from a publication (Hou Zhijie, Vignesh C)

This oversight could lead to improper replication behavior until all currently-existing sessions have
exited.

2138

Release Notes

• Ensure that the relation cache is invalidated when creating or dropping a FOR ALL TABLES
publication (Hou Zhijie, Vignesh C)

This oversight could lead to improper replication behavior until all currently-existing sessions have
exited.

• Don't discard a cast to the same type with unspecified type modifier (Tom Lane)

For example, if column f1 is of type numeric(18,3), the parser used to simply discard a cast like
f1::numeric, on the grounds that it would have no run-time effect. That's true, but the exposed
type of the expression should still be considered to be plain numeric, not numeric(18,3). This is
important for correctly resolving the type of larger constructs, such as recursive UNIONs.

• Fix updates of element fields in arrays of domain over composite (Tom Lane)

A command such as UPDATE tab SET fld[1].subfld = val failed if the array's elements were
domains rather than plain composites.

• Disallow the combination of FETCH FIRST WITH TIES and FOR UPDATE SKIP LOCKED (David
Christensen)

FETCH FIRST WITH TIES necessarily fetches one more row than requested, since it cannot stop
until it finds a row that is not a tie. In our current implementation, if FOR UPDATE is used then that
row will also get locked even though it is not returned. That results in undesirable behavior if the
SKIP LOCKED option is specified. It's difficult to change this without introducing a different set of
undesirable behaviors, so for now, forbid the combination.

• Disallow creating an ICU collation if the current database's encoding won't support it (Tom Lane)

Previously this was allowed, but then the collation could not be referenced because of the way
collation lookup works; you could not use the collation, nor even drop it.

• Disallow ALTER INDEX index ALTER COLUMN col SET (options) (Nathan Bossart, Michael
Paquier)

While the parser accepted this, it's undocumented and doesn't actually work.

• Fix corner-case loss of precision in numeric power() (Dean Rasheed)

The result could be inaccurate when the first argument is very close to 1.

• Avoid regular expression errors with capturing parentheses inside {0} (Tom Lane)

Regular expressions like (.){0}...\1 drew “invalid backreference number”. Other regexp engines
such as Perl don't complain, though, and for that matter ours doesn't either in some closely related
cases. Worse, it could throw an assertion failure instead. Fix it so that no error is thrown and
instead the back-reference is silently deemed to never match.

• Prevent regular expression back-references from sometimes matching when they shouldn't (Tom
Lane)

The regexp engine was careless about clearing match data for capturing parentheses after
rejecting a partial match. This could allow a later back-reference to match in places where it should
fail for lack of a defined referent.

• Fix regular expression performance bug with back-references inside iteration nodes (Tom Lane)

Incorrect back-tracking logic could result in exponential time spent looking for a match.
Fortunately the problem is masked in most cases by other optimizations.

• Fix incorrect results from AT TIME ZONE applied to a time with time zone value (Tom Lane)

The results were incorrect if the target time zone was specified by a dynamic timezone abbreviation
(that is, one that is defined as equivalent to a full time zone name, rather than a fixed UTC offset).

2139

Release Notes

• Fix planner error with pulling up subquery expressions into function rangetable entries (Tom Lane)

If a function in FROM laterally references the output of some sub-SELECT earlier in the FROM clause,
and we are able to flatten that sub-SELECT into the outer query, the expression(s) copied into the
function expression were not fully processed. This could lead to crashes at execution.

• Fix mistranslation of PlaceHolderVars to inheritance child relations (Tom Lane)

This error could result in assertion failures, or in mis-planning of queries having partitioned or
inherited tables on the nullable side of an outer join.

• Avoid using MCV-only statistics to estimate the range of a column (Tom Lane)

There are corner cases in which ANALYZE will build a most-common-values (MCV) list but not a
histogram, even though the MCV list does not account for all the observed values. In such cases,
keep the planner from using the MCV list alone to estimate the range of column values.

• Fix restoration of a Portal's snapshot inside a subtransaction (Bertrand Drouvot)

If a procedure commits or rolls back a transaction, and then its next significant action is inside a
new subtransaction, snapshot management went wrong, leading to a dangling pointer and probable
crash. A typical example in PL/pgSQL is a COMMIT immediately followed by a BEGIN ... EXCEPTION
block that performs a query.

• Clean up correctly if a transaction fails after exporting its snapshot (Dilip Kumar)

This oversight would only cause a problem if the same session attempted to export a snapshot
again. The most likely scenario for that is creation of a replication slot (followed by rollback) and
then creation of another replication slot.

• Prevent wraparound of overflowed-subtransaction tracking on standby servers (Kyotaro Horiguchi,
Alexander Korotkov)

This oversight could cause significant performance degradation (manifesting as excessive
SubtransSLRU traffic) on standby servers.

• Ensure that prepared transactions are properly accounted for during promotion of a standby server
(Michael Paquier, Andres Freund)

There was a narrow window where a prepared transaction could be omitted from a snapshot taken
by a concurrently-running session. If that session then used the snapshot to perform data updates,
erroneous results or data corruption could occur.

• Disallow LISTEN in background workers (Tom Lane)

There's no infrastructure to support this, so if someone did it, it would only result in preventing
cleanup of the NOTIFY queue.

• Send NOTIFY signals to other backends during transaction commit, not in the server's idle loop
(Artur Zakirov, Tom Lane)

This change allows notifications to be delivered immediately after an intra-procedure COMMIT. It
also allows logical replication workers to send notifications.

• Refuse to rewind a cursor marked NO SCROLL if it has been held over from a previous transaction
due to the WITH HOLD option (Tom Lane)

We have long forbidden fetching backwards from a NO SCROLL cursor, but for historical reasons
the prohibition didn't extend to cases in which we rewind the query altogether and then re-fetch
forwards. That exception leads to inconsistencies, particularly for held-over cursors which may
not have stored all the data necessary to rewind. Disallow rewinding for non-scrollable held-over
cursors to block the worst inconsistencies. (v15 will remove the exception altogether.)

• Fix possible failure while saving a WITH HOLD cursor at transaction end, if it had already been read
to completion (Tom Lane)

2140

Release Notes

• Fix detection of a relation that has grown to the maximum allowed length (Tom Lane)

An attempt to extend a table or index past the limit of 2^32-1 blocks was rejected, but not soon
enough to prevent inconsistent internal state from being created.

• Correctly track the presence of data-modifying CTEs when expanding a DO INSTEAD rule (Greg
Nancarrow, Tom Lane)

The previous failure to do this could lead to problems such as unsafely choosing a parallel plan.

• Fix incorrect reporting of permissions failures on extended statistics objects (Tomas Vondra)

The code typically produced “cache lookup error” rather than the intended message.

• Fix incorrect snapshot handling in parallel workers (Greg Nancarrow)

This oversight could lead to misbehavior in parallel queries if the transaction isolation level is less
than REPEATABLE READ.

• Fix logical decoding to correctly ignore toast-table changes for transient tables (Bertrand Drouvot)

Logical decoding normally ignores changes in transient tables such as those created during an
ALTER TABLE heap rewrite. But that filtering wasn't applied to the associated toast table if any,
leading to possible errors when rewriting a table that's being published.

• Fix logical decoding's memory usage accounting to handle TOAST data correctly (Bertrand
Drouvot)

• Ensure that walreceiver processes create all required archive notification files before exiting (Fujii
Masao)

If a walreceiver exited exactly at a WAL segment boundary, it failed to make a notification file for
the last-received segment, thus delaying archiving of that segment on the standby.

• Fix computation of the WAL range to include in a backup manifest when a timeline change is
involved (Kyotaro Horiguchi)

• Avoid trying to lock the OLD and NEW pseudo-relations in a rule that uses SELECT FOR UPDATE
(Masahiko Sawada, Tom Lane)

• Fix parser's processing of aggregate FILTER clauses (Tom Lane)

If the FILTER expression is a plain boolean column, the semantic level of the aggregate could be
mis-determined, leading to not-per-spec behavior. If the FILTER expression is itself a boolean-
returning aggregate, an error should be thrown but was not, likely resulting in a crash at
execution.

• Ensure that the correct lock level is used when renaming a table (Nathan Bossart, Álvaro Herrera)

For historical reasons, ALTER INDEX ... RENAME can be applied to any sort of relation. The lock
level required to rename an index is lower than that required to rename a table or other kind of
relation, but the code got this wrong and would use the weaker lock level whenever the command
is spelled ALTER INDEX.

• Prevent ALTER TYPE/DOMAIN/OPERATOR ... SET from changing extension membership (Tom Lane)

ALTER ... SET executed by an extension script would cause the target object to become a member
of the extension if it was not already. In itself this isn't too troubling, since there's little reason
for an extension script to touch an object not belonging to the extension. But ALTER TYPE SET
will recurse to dependent domains, thus causing them to also become extension members. This
causes unwanted side-effects from extension upgrade scripts that use that command to adjust the
properties of a base type belonging to the extension. Fix by redefining these ALTER cases to never
change extension membership.

• Avoid trying to clean up LLVM state after an error within LLVM (Andres Freund, Justin Pryzby)

2141

Release Notes

This prevents a likely crash during backend exit after a fatal LLVM error.
• Avoid null-pointer-dereference crash when dropping a role that owns objects being dropped

concurrently (Álvaro Herrera)
• Prevent “snapshot reference leak” warning when lo_export() or a related function fails (Heikki

Linnakangas)
• Ensure that scans of SP-GiST indexes are counted in the statistics views (Tom Lane)

Incrementing the number-of-index-scans counter was overlooked in the SP-GiST code, although per-
tuple counters were advanced correctly.

• Fix inefficient code generation for CoerceToDomain expression nodes (Ranier Vilela)
• Recalculate relevant wait intervals if recovery_min_apply_delay is changed during recovery

(Soumyadeep Chakraborty, Ashwin Agrawal)
• Fix infinite loop if a simplehash.h hash table reaches 2^32 elements (Yura Sokolov)

It seems unlikely that this bug has been hit in practice, as it would require work_mem settings of
hundreds of gigabytes for existing uses of simplehash.h.

• Avoid O(N^2) behavior in some list-manipulation operations (Nathan Bossart, Tom Lane)

These changes fix slow processing in several scenarios, including: when a standby replays a
transaction that held many exclusive locks on the primary; when many files are due to be unlinked
after a checkpoint; when hash aggregation involves many batches; and when pg_trgm extracts
indexable conditions from a complex regular expression. Only the first of these scenarios has
actually been reported from the field, but they all seem like plausible consequences of inefficient
list deletions.

• Reduce memory consumption during calculation of extended statistics (Justin Pryzby, Tomas
Vondra)

• Add more defensive checks around B-tree posting list splits (Peter Geoghegan)

This change should help detect index corruption involving duplicate table TIDs.
• Disallow setting huge_pages to on when shared_memory_type is sysv (Thomas Munro)

Previously, this setting was accepted, but it did nothing for lack of any implementation.
• Fix missing libpq functions on AIX (Tony Reix)

Code reorganization led to the following documented functions not being exported from
libpq on AIX: pg_encoding_to_char(), pg_utf_mblen(), pg_char_to_encoding(),
pg_valid_server_encoding(), and pg_valid_server_encoding_id(). Restore them to visibility.

• Fix ecpg to recover correctly after malloc() failure while establishing a connection (Michael
Paquier)

• Fix misevaluation of stable functions called in the arguments of a PL/pgSQL CALL statement (Tom
Lane)

They were being called with an out-of-date snapshot, so that they would not see any database
changes made since the start of the session's top-level command.

• Allow EXIT out of the outermost block in a PL/pgSQL routine (Tom Lane)

If the routine does not require an explicit RETURN, this usage should be valid, but it was rejected.
• Remove pg_ctl's hard-coded limits on the total length of generated commands (Phil Krylov)

For example, this removes a restriction on how many command-line options can be passed
through to the postmaster. Individual path names that pg_ctl deals with, such as the postmaster
executable's name or the data directory name, are still limited to MAXPGPATH bytes in most cases.

2142

Release Notes

• Fix pg_dump to dump non-global default privileges correctly (Neil Chen, Masahiko Sawada)

If a global (unrestricted) ALTER DEFAULT PRIVILEGES command revoked some present-by-default
privilege, for example EXECUTE for functions, and then a restricted ALTER DEFAULT PRIVILEGES
command granted that privilege again for a selected role or schema, pg_dump failed to dump the
restricted privilege grant correctly.

• Make pg_dump acquire shared lock on partitioned tables that are to be dumped (Tom Lane)

This oversight was usually pretty harmless, since once pg_dump has locked any of the leaf
partitions, that would suffice to prevent significant DDL on the partitioned table itself. However
problems could ensue when dumping a childless partitioned table, since no relevant lock would be
held.

• Improve pg_dump's performance by avoiding making per-table queries for RLS policies, and by
avoiding repetitive calls to format_type() (Tom Lane)

These changes provide only marginal improvement when dumping from a local server, but a dump
from a remote server can benefit substantially due to fewer network round-trips.

• Fix crash in pg_dump when attempting to dump trigger definitions from a pre-8.3 server (Tom
Lane)

• Fix incorrect filename in pg_restore's error message about an invalid large object TOC file (Daniel
Gustafsson)

• Ensure that pgbench exits with non-zero status after a socket-level failure (Yugo Nagata, Fabien
Coelho)

The desired behavior is to finish out the run but then exit with status 2. Also, fix the reporting of
such errors.

• Fix failure of contrib/btree_gin indexes on "char" (not char(n)) columns, when an indexscan
using the < or <= operator is performed (Tom Lane)

Such an indexscan failed to return all the entries it should.

• Change contrib/pg_stat_statements to read its “query texts” file in units of at most 1GB (Tom
Lane)

Such large query text files are very unusual, but if they do occur, the previous coding would fail on
Windows 64 (which rejects individual read requests of more than 2GB).

• Fix null-pointer crash when contrib/postgres_fdw tries to report a data conversion error (Tom
Lane)

• Add spinlock support for the RISC-V architecture (Marek Szuba)

This is essential for reasonable performance on that platform.

• Support OpenSSL 3.0.0 (Peter Eisentraut, Daniel Gustafsson, Michael Paquier)

• Set correct type identifier on OpenSSL BIO (I/O abstraction) objects created by PostgreSQL (Itamar
Gafni)

This oversight probably only matters for code that is doing tasks like auditing the OpenSSL
installation. But it's nominally a violation of the OpenSSL API, so fix it.

• Fix our pkg-config files to again support static linking of libpq (Peter Eisentraut)

• Make pg_regexec() robust against an out-of-range search_start parameter (Tom Lane)

Return REG_NOMATCH, instead of possibly crashing, when search_start is past the end of the string.
This case is probably unreachable within core PostgreSQL, but extensions might be more careless
about the parameter value.

2143

Release Notes

• Ensure that GetSharedSecurityLabel() can be used in a newly-started session that has not yet
built its critical relation cache entries (Jeff Davis)

• Use the CLDR project's data to map Windows time zone names to IANA time zones (Tom Lane)

When running on Windows, initdb attempts to set the new cluster's timezone parameter to the
IANA time zone matching the system's prevailing time zone. We were using a mapping table that
we'd generated years ago and updated only fitfully; unsurprisingly, it contained a number of errors
as well as omissions of recently-added zones. It turns out that CLDR has been tracking the most
appropriate mappings, so start using their data. This change will not affect any existing installation,
only newly-initialized clusters.

• Update time zone data files to tzdata release 2021e for DST law changes in Fiji, Jordan, Palestine,
and Samoa, plus historical corrections for Barbados, Cook Islands, Guyana, Niue, Portugal, and
Tonga.

Also, the Pacific/Enderbury zone has been renamed to Pacific/Kanton. Also, the following zones
have been merged into nearby, more-populous zones whose clocks have agreed with them since
1970: Africa/Accra, America/Atikokan, America/Blanc-Sablon, America/Creston, America/Curacao,
America/Nassau, America/Port_of_Spain, Antarctica/DumontDUrville, and Antarctica/Syowa. In all
these cases, the previous zone name remains as an alias.

E.13. Release 13.4
Release date: 2021-08-12

This release contains a variety of fixes from 13.3. For information about new features in major release
13, see Section E.17.

E.13.1. Migration to Version 13.4
A dump/restore is not required for those running 13.X.

However, if you are upgrading from a version earlier than 13.2, see Section E.15.

E.13.2. Changes
• Fix mis-planning of repeated application of a projection step (Tom Lane)

The planner could create an incorrect plan in cases where two ProjectionPaths were stacked on top
of each other. The only known way to trigger that situation involves parallel sort operations, but
there may be other instances. The result would be crashes or incorrect query results. Disclosure of
server memory contents is also possible. (CVE-2021-3677)

• Disallow SSL renegotiation more completely (Michael Paquier)

SSL renegotiation has been disabled for some time, but the server would still cooperate with a
client-initiated renegotiation request. A maliciously crafted renegotiation request could result in
a server crash (see OpenSSL issue CVE-2021-3449). Disable the feature altogether on OpenSSL
versions that permit doing so, which are 1.1.0h and newer.

• Restore the Portal-level snapshot after COMMIT or ROLLBACK within a procedure (Tom Lane)

This change fixes cases where an attempt to fetch a toasted value immediately after
COMMIT/ROLLBACK would fail with errors like “no known snapshots” or “missing chunk number 0 for
toast value”.

Some extensions may attempt to execute SQL code outside of any Portal. They are responsible
for ensuring that an outer snapshot exists before doing so. Previously, not providing a snapshot
might work or it might not; now it will consistently fail with “cannot execute SQL without an outer
snapshot or portal”.

2144

Release Notes

• Avoid misbehavior when persisting the output of a cursor that's reading a non-stable query (Tom
Lane)

Previously, we'd always rewind and re-read the whole query result, possibly getting results
different from the earlier execution, causing great confusion later. For a NO SCROLL cursor, we
can fix this by only storing the not-yet-read portion of the query output, which is sufficient since
a NO SCROLL cursor can't be backed up. Cursors with the SCROLL option remain at hazard, but
that was already documented to be an unsafe option to use with a non-stable query. Make those
documentation warnings stronger.

Also force NO SCROLL mode for the implicit cursor used by a PL/pgSQL FOR-over-query loop, to
avoid this type of problem when persisting such a cursor during an intra-procedure commit.

• Reject SELECT ... GROUP BY GROUPING SETS (()) FOR UPDATE (Tom Lane)

This should be disallowed, just as FOR UPDATE with a plain GROUP BY is disallowed, but the test
for that failed to handle empty grouping sets correctly. The end result would be a null-pointer
dereference in the executor.

• Reject cases where a query in WITH rewrites to just NOTIFY (Tom Lane)

Such cases previously crashed.
• In numeric multiplication, round the result rather than failing if it would have more than 16383

digits after the decimal point (Dean Rasheed)
• Fix corner-case errors and loss of precision when raising numeric values to very large powers

(Dean Rasheed)
• Fix division-by-zero failure in to_char() with EEEE format and a numeric input value less than

10^(-1001) (Dean Rasheed)
• Fix pg_size_pretty(bigint) to round negative values consistently with the way it rounds positive

ones (and consistently with the numeric version) (Dean Rasheed, David Rowley)
• Make pg_filenode_relation(0, 0) return NULL rather than failing (Justin Pryzby)
• Make ALTER EXTENSION lock the extension when adding or removing a member object (Tom Lane)

The previous coding allowed ALTER EXTENSION ADD/DROP to occur concurrently with DROP
EXTENSION, leading to a crash or corrupt catalog entries.

• Fix ALTER SUBSCRIPTION to reject an empty slot name (Japin Li)
• When cloning a partitioned table's triggers to a new partition, ensure that their enabled status is

copied (Álvaro Herrera)
• Avoid alias conflicts in queries generated for REFRESH MATERIALIZED VIEW CONCURRENTLY (Tom

Lane, Bharath Rupireddy)

This command failed on materialized views containing columns with certain names, notably mv and
newdata.

• Fix PREPARE TRANSACTION to check correctly for conflicting session-lifespan and transaction-
lifespan locks (Tom Lane)

A transaction cannot be prepared if it has both session-lifespan and transaction-lifespan locks
on the same advisory-lock ID value. This restriction was not fully checked, which could lead to a
PANIC during PREPARE TRANSACTION.

• Fix misbehavior of DROP OWNED BY when the target role is listed more than once in an RLS policy
(Tom Lane)

• Skip unnecessary error tests when removing a role from an RLS policy during DROP OWNED BY (Tom
Lane)

Notably, this fixes some cases where it was necessary to be a superuser to use DROP OWNED BY.

2145

Release Notes

• Re-allow old-style Windows locale names in CREATE COLLATION commands (Thomas Munro)

Previously we were failing because the operating system can't provide version information for such
locales. At some point we may decide to require version information, but no such policy exists yet,
so re-allow the case for now.

• Disallow whole-row variables in GENERATED expressions (Tom Lane)

Use of a whole-row variable clearly violates the rule that a generated column cannot depend on
itself, so such cases have no well-defined behavior. The actual behavior frequently included a crash.

• Fix usage of tableoid in GENERATED expressions (Tom Lane)

Some code paths failed to provide a valid value for this system column while evaluating a
GENERATED expression.

• Don't store a “fast default” when adding a column to a foreign table (Andrew Dunstan)

The fast default is useless since no local heap storage exists for such a table, but it confused
subsequent operations. In addition to suppressing creation of such catalog entries in ALTER TABLE
commands, adjust the downstream code to cope when one is incorrectly present.

• Allow index state flags to be updated transactionally (Michael Paquier, Andrey Lepikhov)

This avoids failures when dealing with index predicates that aren't really immutable. While that's
not considered a supported case, the original reason for using a non-transactional update here is
long gone, so we may as well change it.

• Avoid corrupting the plan cache entry when CREATE DOMAIN or ALTER DOMAIN appears in a cached
plan (Tom Lane)

• Make walsenders show their latest replication commands in pg_stat_activity (Tom Lane)

Previously, a walsender would show its latest SQL command, which was confusing if it's now doing
some replication operation instead. Now we show replication-protocol commands on the same
footing as SQL commands.

• Make pg_settings.pending_restart show as true when the pertinent entry in postgresql.conf
has been removed (Álvaro Herrera)

pending_restart correctly showed the case where an entry that cannot be changed without a
postmaster restart has been modified, but not where the entry had been removed altogether.

• On 64-bit Windows, allow the effective value of work_mem times hash_mem_multiplier to exceed
2GB (Tom Lane)

This allows hash_mem_multiplier to be used for its intended purpose of preventing large hash
aggregations from spilling to disk, even when “large” means multiple gigabytes.

• Fix mis-planning of queries involving regular tables that are inheritance children of foreign tables
(Amit Langote)

SELECT FOR UPDATE and related commands would fail with assertion failures or “could not find junk
column” errors in such cases.

• Fix pullup of constant function-in-FROM results when the FROM item is marked LATERAL (Tom
Lane)

• Fix corner-case failure of a new standby to follow a new primary (Dilip Kumar, Robert Haas)

Under a narrow combination of conditions, the standby could wind up trying to follow the wrong
WAL timeline.

• Update minimum recovery point when WAL replay of a transaction abort record causes file
truncation (Fujii Masao)

2146

Release Notes

File truncation is irreversible, so it's no longer safe to stop recovery at a point earlier than that
record. The corresponding case for transaction commit was fixed years ago, but this one was
overlooked.

• Advance oldest-required-WAL-segment horizon properly after a replication slot is invalidated
(Kyotaro Horiguchi)

If all slots were invalidated, the horizon would not move again, eventually allowing the server's
WAL storage to run out of space.

• In walreceivers, avoid attempting catalog lookups after an error (Masahiko Sawada, Bharath
Rupireddy)

• Ensure that a standby server's startup process will respond to a shutdown signal promptly while
waiting for WAL to arrive (Fujii Masao, Soumyadeep Chakraborty)

• Correctly clear shared state after failing to become a member of a transaction commit group (Amit
Kapila)

Given the right timing, this could cause an assertion failure when some later session re-uses the
same PGPROC object.

• Add locking to avoid reading incorrect relmapper data in the face of a concurrent write from
another process (Heikki Linnakangas)

• Improve progress reporting for the sort phase of a parallel btree index build (Matthias van de
Meent)

• Improve checks for violations of replication protocol (Tom Lane)

Logical replication workers frequently used Asserts to check for cases that could be triggered by
invalid or out-of-order replication commands. This seems unwise, so promote these tests to regular
error checks.

• Fix assorted crash cases in logical replication of partitioned-table updates (Amit Langote, Tom
Lane)

• Fix potential crash when firing AFTER triggers of partitioned tables in logical replication workers
(Tom Lane)

• Fix deadlock when multiple logical replication workers try to truncate the same table (Peter Smith,
Haiying Tang)

• Fix error cases and memory leaks in logical decoding of speculative insertions (Dilip Kumar)
• Fix memory leak in logical replication output (Amit Langote)
• Avoid leaving an invalid record-type hash table entry behind after an error (Sait Talha Nisanci)

This could lead to later crashes or memory leakage.
• Fix plan cache reference leaks in some error cases in CREATE TABLE ... AS EXECUTE (Tom Lane)
• Fix race condition in code for sharing tuple descriptors across parallel workers (Thomas Munro)

Given the right timing, a crash could result.
• Fix race condition when invalidating an obsolete replication slot concurrently with an attempt to

drop or update it (Andres Freund, Álvaro Herrera)
• Fix possible race condition when releasing BackgroundWorkerSlots (Tom Lane)

It's likely that this doesn't fix any observable bug on Intel hardware, but machines with weaker
memory ordering rules could have problems.

• Fix latent crash in sorting code (Ronan Dunklau)

One code path could attempt to free a null pointer. The case appears unreachable in the core
server's use of sorting, but perhaps it could be triggered by extensions.

2147

Release Notes

• Harden B-tree posting list split code against corrupt data (Peter Geoghegan)

Throw an error, rather than crashing, for an attempt to insert an item with a TID identical to an
existing entry. While that shouldn't ever happen, it has been reported to happen when the index is
inconsistent with its table.

• Prevent infinite loops in SP-GiST index insertion (Tom Lane)

In the event that INCLUDE columns take up enough space to prevent a leaf index tuple from ever
fitting on a page, the text_ops operator class would get into an infinite loop vainly trying to make
the tuple fit. While pre-v11 versions don't have INCLUDE columns, back-patch this anti-looping fix
to them anyway, as it seems like a good defense against bugs in operator classes.

• Ensure that SP-GiST index insertion can be terminated by a query cancel request (Tom Lane, Álvaro
Herrera)

• Fix uninitialized-variable bug that could cause PL/pgSQL to act as though an INTO clause specified
STRICT, even though it didn't (Tom Lane)

• Don't abort the process for an out-of-memory failure in libpq's printing functions (Tom Lane)
• In ecpg, allow the numeric value INT_MIN (usually -2147483648) to be converted to integer (John

Naylor)
• In psql and other client programs, avoid overrunning the ends of strings when dealing with

invalidly-encoded data (Tom Lane)

An incorrectly-encoded multibyte character near the end of a string could cause various processing
loops to run past the string's terminating NUL, with results ranging from no detectable issue to
a program crash, depending on what happens to be in the following memory. This is reminiscent
of CVE-2006-2313, although these particular cases do not appear to have interesting security
consequences.

• Fix pg_dump to correctly handle triggers on partitioned tables whose enabled status is different
from their parent triggers' status (Justin Pryzby, Álvaro Herrera)

• Avoid “invalid creation date in header” warnings observed when running pg_restore on an archive
file created in a different time zone (Tom Lane)

• Make pg_upgrade carry forward the old installation's oldestXID value (Bertrand Drouvot)

Previously, the new installation's oldestXID was set to a value old enough to (usually) force
immediate anti-wraparound autovacuuming. That's not desirable from a performance standpoint;
what's worse, installations using large values of autovacuum_freeze_max_age could suffer
unwanted forced shutdowns soon after an upgrade.

• Extend pg_upgrade to detect and warn about extensions that should be upgraded (Bruce Momjian)

A script file is now produced containing the ALTER EXTENSION UPDATE commands needed to bring
extensions up to the versions that are considered default in the new installation.

• Avoid problems when switching pg_receivewal between compressed and non-compressed WAL
storage (Michael Paquier)

• Fix contrib/postgres_fdw to work usefully with generated columns (Etsuro Fujita)

postgres_fdw will now behave reasonably with generated columns, so long as a generated column
in a foreign table represents a generated column in the remote table. IMPORT FOREIGN SCHEMA will
now import generated columns that way by default.

• In contrib/postgres_fdw, avoid attempting catalog lookups after an error (Tom Lane)

While this usually worked, it's not very safe since the error might have been one that made catalog
access nonfunctional. A side effect of the fix is that messages about data conversion errors will now
mention the query's table and column aliases (if used) rather than the true underlying name of a
foreign table or column.

2148

Release Notes

• Improve the isolation-test infrastructure (Tom Lane, Michael Paquier)

Allow isolation test steps to be annotated to show the expected completion order. This allows
getting stable results from otherwise-racy test cases, without the long delays that we previously
used (not entirely successfully) to fend off race conditions. Allow non-quoted identifiers as isolation
test session/step names (formerly, all such names had to be double-quoted). Detect and warn
about unused steps in isolation tests. Improve display of query results in isolation tests. Remove
isolationtester's “dry-run” mode. Remove memory leaks in isolationtester itself.

• Reduce overhead of cache-clobber testing (Tom Lane)
• Fix PL/Python's regression tests to pass with Python 3.10 (Honza Horak)
• Make printf("%s", NULL) print (null) instead of crashing (Tom Lane)

This should improve server robustness in corner cases, and it syncs our printf implementation
with common libraries.

• Fix incorrect log message when point-in-time recovery stops at a ROLLBACK PREPARED record
(Simon Riggs)

• Improve ALTER TABLE's messages for wrong-relation-kind errors (Kyotaro Horiguchi)
• Clarify error messages referring to “non-negative” values (Bharath Rupireddy)
• Fix configure to work with OpenLDAP 2.5, which no longer has a separate libldap_r library

(Adrian Ho, Tom Lane)

If there is no libldap_r library, we now silently assume that libldap is thread-safe.
• Add new make targets world-bin and install-world-bin (Andrew Dunstan)

These are the same as world and install-world respectively, except that they do not build or
install the documentation.

• Fix make rule for TAP tests (prove_installcheck) to work in PGXS usage (Andrew Dunstan)
• Adjust JIT code to prepare for forthcoming LLVM API change (Thomas Munro, Andres Freund)

LLVM 13 has made an incompatible API change that will cause crashing of our previous JIT
compiler.

• Avoid assuming that strings returned by GSSAPI libraries are null-terminated (Tom Lane)

The GSSAPI spec provides for a string pointer and length. It seems that in practice the next byte
after the string is usually zero, so that our previous coding didn't actually fail; but we do have a
report of AddressSanitizer complaints.

• Enable building with GSSAPI on MSVC (Michael Paquier)

Fix various incompatibilities with modern Kerberos builds.
• In MSVC builds, include --with-pgport in the set of configure options reported by pg_config, if it

had been specified (Andrew Dunstan)

E.14. Release 13.3
Release date: 2021-05-13

This release contains a variety of fixes from 13.2. For information about new features in major release
13, see Section E.17.

E.14.1. Migration to Version 13.3
A dump/restore is not required for those running 13.X.

However, if you are upgrading from a version earlier than 13.2, see Section E.15.

2149

Release Notes

E.14.2. Changes
• Prevent integer overflows in array subscripting calculations (Tom Lane)

The array code previously did not complain about cases where an array's lower bound plus length
overflows an integer. This resulted in later entries in the array becoming inaccessible (since
their subscripts could not be written as integers), but more importantly it confused subsequent
assignment operations. This could lead to memory overwrites, with ensuing crashes or unwanted
data modifications. (CVE-2021-32027)

• Fix mishandling of “junk” columns in INSERT ... ON CONFLICT ... UPDATE target lists (Tom Lane)

If the UPDATE list contains any multi-column sub-selects (which give rise to junk columns in addition
to the results proper), the UPDATE path would end up storing tuples that include the values of the
extra junk columns. That's fairly harmless in the short run, but if new columns are added to the
table then the values would become accessible, possibly leading to malfunctions if they don't match
the datatypes of the added columns.

In addition, in versions supporting cross-partition updates, a cross-partition update triggered
by such a case had the reverse problem: the junk columns were removed from the target list,
typically causing an immediate crash due to malfunction of the multi-column sub-select mechanism.
(CVE-2021-32028)

• Fix possibly-incorrect computation of UPDATE ... RETURNING outputs for joined cross-partition
updates (Amit Langote, Etsuro Fujita)

If an UPDATE for a partitioned table caused a row to be moved to another partition with a physically
different row type (for example, one with a different set of dropped columns), computation of
RETURNING results for that row could produce errors or wrong answers. No error is observed unless
the UPDATE involves other tables being joined to the target table. (CVE-2021-32029)

• Fix adjustment of constraint deferrability properties in partitioned tables (Álvaro Herrera)

When applied to a foreign-key constraint of a partitioned table, ALTER TABLE ... ALTER
CONSTRAINT failed to adjust the DEFERRABLE and/or INITIALLY DEFERRED markings of the
constraints and triggers of leaf partitions. This led to unexpected behavior of such constraints.
After updating to this version, any misbehaving partitioned tables can be fixed by executing a new
ALTER command to set the desired properties.

This change also disallows applying such an ALTER directly to the constraints of leaf partitions. The
only supported case is for the whole partitioning hierarchy to have identical constraint properties,
so such ALTERs must be applied at the partition root.

• When attaching a child table with ALTER TABLE ... INHERIT, insist that any generated columns in
the parent be generated the same way in the child (Peter Eisentraut)

• Forbid marking an identity column as nullable (Vik Fearing)

GENERATED ... AS IDENTITY implies NOT NULL, so don't allow it to be combined with an explicit
NULL specification.

• Allow ALTER ROLE/DATABASE ... SET to set the role, session_authorization, and temp_buffers
parameters (Tom Lane)

Previously, over-eager validity checks might reject these commands, even if the values would have
worked when used later. This created a command ordering hazard for dump/reload and upgrade
scenarios.

• Ensure that REINDEX CONCURRENTLY preserves any statistics target that's been set for the index
(Michael Paquier)

• Fix COMMIT AND CHAIN to work correctly when the current transaction has live savepoints (Fujii
Masao)

2150

Release Notes

• Fix list-manipulation bug in WITH RECURSIVE processing (Michael Paquier, Tom Lane)

Sufficiently deep nesting of WITH constructs (at least seven levels) triggered core dumps or
incorrect complaints of faulty WITH nesting.

• Fix bug with coercing the result of a COLLATE expression to a non-collatable type (Tom Lane)

This led to a parse tree in which the COLLATE appears to be applied to a non-collatable value.
While that normally has no real impact (since COLLATE has no effect at runtime), it was possible to
construct views that would be rejected during dump/reload.

• Fix use-after-free bug in saving tuples for AFTER triggers (Amit Langote)

This could cause crashes in some situations.
• Disallow calling window functions and procedures via the “fast path” wire protocol message (Tom

Lane)

Only plain functions are supported here. While trying to call an aggregate function failed already,
calling a window function would crash, and calling a procedure would work only if the procedure
did no transaction control.

• Extend pg_identify_object_as_address() to support event triggers (Joel Jacobson)
• Fix to_char()'s handling of Roman-numeral month format codes with negative intervals (Julien

Rouhaud)

Previously, such cases would usually cause a crash.
• Check that the argument of pg_import_system_collations() is a valid schema OID (Tom Lane)
• Fix use of uninitialized value while parsing an \{m,n\} quantifier in a BRE-mode regular expression

(Tom Lane)

This error could cause the quantifier to act non-greedy, that is behave like an {m,n}? quantifier
would do in full regular expressions.

• Fix “could not find pathkey item to sort” planner errors in some situations where the sort key
involves an aggregate or window function (James Coleman, Tom Lane)

• Don't ignore system columns when estimating the number of groups using extended statistics
(Tomas Vondra)

This led to strange estimates for queries such as SELECT ... GROUP BY a, b, ctid.
• Avoid divide-by-zero when estimating selectivity of a regular expression with a very long fixed

prefix (Tom Lane)

This typically led to a NaN selectivity value, causing assertion failures or strange planner behavior.
• Fix access-off-the-end-of-the-table error in BRIN index bitmap scans (Tomas Vondra)

If the page range size used by a BRIN index isn't a power of two, there were corner cases in which
a bitmap scan could try to fetch pages past the actual end of the table, leading to “could not open
file” errors.

• Fix potentially wrong answers from GIN tsvector index searches, when there are many matching
tuples (Tom Lane)

If the number of index matches became large enough to make the bitmap holding them become
lossy (a threshold that depends on work_mem), the code could get confused about whether rechecks
are required, allowing rows to be returned that don't actually match the query.

• Fix concurrency issues with WAL segment recycling on Windows (Michael Paquier)

This reverts a change that caused intermittent “could not rename file ...: Permission denied” log
messages. While there were not serious consequences, the log spam was annoying.

2151

Release Notes

• Avoid incorrect timeline change while recovering uncommitted two-phase transactions from WAL
(Soumyadeep Chakraborty, Jimmy Yih, Kevin Yeap)

This error could lead to subsequent WAL records being written under the wrong timeline ID,
leading to consistency problems, or even complete failure to be able to restart the server, later on.

• Ensure that locks are released while shutting down a standby server's startup process (Fujii
Masao)

When a standby server is shut down while still in recovery, some locks might be left held. This
causes assertion failures in debug builds; it's unclear whether any serious consequence could occur
in production builds.

• Fix crash when a logical replication worker does ALTER SUBSCRIPTION REFRESH (Peter Smith)

The core code won't do this, but a replica trigger could.
• Ensure we default to wal_sync_method = fdatasync on recent FreeBSD (Thomas Munro)

FreeBSD 13 supports open_datasync, which would normally become the default choice. However,
it's unclear whether that is actually an improvement for Postgres, so preserve the existing default
for now.

• Disable the vacuum_cleanup_index_scale_factor parameter and storage option (Peter
Geoghegan)

The notion of tracking “stale” index statistics proved to interact badly with the
autovacuum_vacuum_insert_threshold parameter, resulting in unnecessary full-index
scans and consequent degradation of autovacuum performance. The latter mechanism
seems superior, so remove the stale-statistics logic. The control parameter for that,
vacuum_cleanup_index_scale_factor, will be removed entirely in v14. In v13, it remains present
to avoid breaking existing configuration files, but it no longer does anything.

• Pass the correct trigger OID to object post-alter hooks during ALTER CONSTRAINT (Álvaro Herrera)

When updating trigger properties during ALTER CONSTRAINT, the post-alter hook was told that we
are updating a trigger, but the constraint's OID was passed instead of the trigger's.

• Ensure we finish cleaning up when interrupted while detaching a DSM segment (Thomas Munro)

This error could result in temporary files not being cleaned up promptly after a parallel query.
• Fix assorted minor memory leaks in the server (Tom Lane, Andres Freund)
• Fix uninitialized variable in walreceiver's statistics in shared memory (Fujii Masao)

This error was harmless on most platforms, but could cause issues on platforms lacking atomic
variables and/or spinlock support.

• Reduce the overhead of dtrace probes for LWLock operations, when dtrace support is compiled in
but not active (Peter Eisentraut)

• Fix failure when a PL/pgSQL DO block makes use of both composite-type variables and transaction
control (Tom Lane)

Previously, such cases led to errors about leaked tuple descriptors.
• Prevent infinite loop in libpq if a ParameterDescription message with a corrupt length is received

(Tom Lane)
• When initdb prints instructions about how to start the server, make the path shown for pg_ctl use

backslash separators on Windows (Nitin Jadhav)
• Fix psql to restore the previous behavior of \connect service=something (Tom Lane)

A previous bug fix caused environment variables (such as PGPORT) to override entries in the service
file in this context. Restore the previous behavior, in which the priority is the other way around.

2152

Release Notes

• Fix psql's ON_ERROR_ROLLBACK feature to handle COMMIT AND CHAIN commands correctly (Arthur
Nascimento)

Previously, this case failed with “savepoint "pg_psql_temporary_savepoint" does not exist”.
• In psql, avoid repeated “could not print result table” failures after the first such error (Álvaro

Herrera)
• Fix race condition in detection of file modification by psql's \e and related commands (Laurenz

Albe)

A very fast typist could fool the code's file-timestamp-based detection of whether the temporary
edit file was changed.

• Fix pg_dump's dumping of generated columns in partitioned tables (Peter Eisentraut)

A fix introduced in the previous minor release should not be applied to partitioned tables, only
traditionally-inherited tables.

• Fix missed file version check in pg_restore (Tom Lane)

When reading a custom-format archive from a non-seekable source, pg_restore neglected to check
the archive version. If it was fed a newer archive version than it can support, it would fail messily
later on.

• Add some more checks to pg_upgrade for user tables containing non-upgradable data types (Tom
Lane)

Fix detection of some cases where a non-upgradable data type is embedded within a container type
(such as an array or range). Also disallow upgrading when user tables contain columns of system-
defined composite types, since those types' OIDs are not stable across versions.

• Fix incorrect progress-reporting calculation in pg_checksums (Shinya Kato)
• Fix pg_waldump to count XACT records correctly when generating per-record statistics (Kyotaro

Horiguchi)
• Fix contrib/amcheck to not complain about the tuple flags HEAP_XMAX_LOCK_ONLY and

HEAP_KEYS_UPDATED both being set (Julien Rouhaud)

This is a valid state after SELECT FOR UPDATE.
• Adjust VPATH build rules to support recent Oracle Developer Studio compiler versions (Noah

Misch)
• Fix testing of PL/Python for Python 3 on Solaris (Noah Misch)

E.15. Release 13.2
Release date: 2021-02-11

This release contains a variety of fixes from 13.1. For information about new features in major release
13, see Section E.17.

E.15.1. Migration to Version 13.2
A dump/restore is not required for those running 13.X.

However, see the first changelog item below concerning a possible need to update stored views. Also
see the third and fourth changelog items, which describe cases in which reindexing indexes after the
upgrade may be advisable.

E.15.2. Changes
• Fix failure to check per-column SELECT privileges in some join queries (Tom Lane)

2153

Release Notes

In some cases involving joins, the parser failed to record all the columns read by a query in the
column-usage bitmaps that are used for permissions checking. Although the executor would still
insist on some sort of SELECT privilege to run the query, this meant that a user having SELECT
privilege on only one column of a table could nonetheless read all its columns through a suitably
crafted query.

A stored view that is subject to this problem will have incomplete column-usage bitmaps, and thus
permissions will still not be enforced properly on the view after updating. In installations that
depend on column-level permissions for security, it is recommended to CREATE OR REPLACE all user-
defined views to cause them to be re-parsed.

The PostgreSQL Project thanks Sven Klemm for reporting this problem. (CVE-2021-20229)
• Fix information leakage in constraint-violation error messages (Heikki Linnakangas)

If an UPDATE command attempts to move a row to a different partition but finds that it violates some
constraint on the new partition, and the columns in that partition are in different physical positions
than in the parent table, the error message could reveal the contents of columns that the user does
not have SELECT privilege on. (CVE-2021-3393)

• Fix incorrect detection of concurrent page splits while inserting into a GiST index (Heikki
Linnakangas)

Concurrent insertions could lead to a corrupt index with entries placed in the wrong pages. It's
recommended to reindex any GiST index that's been subject to concurrent insertions.

• Fix CREATE INDEX CONCURRENTLY to wait for concurrent prepared transactions (Andrey Borodin)

At the point where CREATE INDEX CONCURRENTLY waits for all concurrent transactions to complete
so that it can see rows they inserted, it must also wait for all prepared transactions to complete, for
the same reason. Its failure to do so meant that rows inserted by prepared transactions might be
omitted from the new index, causing queries relying on the index to miss such rows. In installations
that have enabled prepared transactions (max_prepared_transactions > 0), it's recommended to
reindex any concurrently-built indexes in case this problem occurred when they were built.

• Avoid crash when trying to rescan an aggregation plan node that has both hashed and sorted
grouping sets (Jeff Davis)

• Fix possible incorrect query results when a hash aggregation node spills some tuples to disk (Tom
Lane)

It was possible for aggregation grouping values to be replaced by nulls when the tuples are read
back in, leading to wrong answers.

• Fix edge case in incremental sort (Neil Chen)

If the last tuple of a sort batch chanced to be the first tuple of the next group of already-sorted
tuples, the code did the wrong thing. This could lead to “retrieved too many tuples in a bounded
sort” error messages, or to silently-wrong sorting results.

• Avoid crash when a CALL or DO statement that performs a transaction rollback is executed via
extended query protocol (Thomas Munro, Tom Lane)

In PostgreSQL 13, this case reliably caused a null-pointer dereference. In earlier versions the bug
seems to have no visible symptoms, but it's not quite clear that it could never cause a problem.

• Avoid unnecessary errors with BEFORE UPDATE triggers on partitioned tables (Álvaro Herrera)

A BEFORE UPDATE FOR EACH ROW trigger that modified the row in any way prevented UPDATE
from moving the row to another partition when needed; but there is no longer any reason for this
restriction.

• Fix partition pruning logic to handle asymmetric hash partition sets (Tom Lane)

2154

Release Notes

If a hash-partitioned table has unequally-sized partitions (that is, varying modulus values), or it
lacks partitions for some remainder values, then the planner's pruning logic could mistakenly
conclude that some partitions don't need to be scanned, leading to failure to find rows that the
query should find.

• Avoid incorrect results when WHERE CURRENT OF is applied to a cursor whose plan contains a
MergeAppend node (Tom Lane)

This case is unsupported (in general, a cursor using ORDER BY is not guaranteed to be simply
updatable); but the code previously did not reject it, and could silently give false matches.

• Fix crash when WHERE CURRENT OF is applied to a cursor whose plan contains a custom scan node
(David Geier)

• Fix planner's mishandling of placeholders whose evaluation should be delayed by an outer join
(Tom Lane)

This occurs in particular with trivial subqueries containing lateral references to outer-join outputs.
The mistake could result in a malformed plan. The known cases trigger a “failed to assign all
NestLoopParams to plan nodes” error, but other symptoms may be possible.

• Fix planner's handling of placeholders during removal of useless RESULT RTEs (Tom Lane)

This oversight could lead to “no relation entry for relid N” planner errors.
• Fix planner's handling of a placeholder that is computed at some join level and used only at that

same level (Tom Lane)

This oversight could lead to “failed to build any N-way joins” planner errors.
• Consider unsorted subpaths when planning a Gather Merge operation (James Coleman)

It's possible to use such a path by adding an explicit Sort node, and in some cases that gives rise to
a superior plan.

• Do not consider ORDER BY expressions involving parallel-restricted functions or set-returning
functions when trying to parallelize sorts (James Coleman)

Such cases cannot safely be pushed into worker processes, but the incremental sort feature
accidentally made us consider them.

• Be more careful about whether index AMs support mark/restore (Andrew Gierth)

This prevents errors about missing support functions in rare edge cases.
• Fix overestimate of the amount of shared memory needed for parallel queries (Takayuki

Tsunakawa)
• Fix ALTER DEFAULT PRIVILEGES to handle duplicated arguments safely (Michael Paquier)

Duplicate role or schema names within the same command could lead to “tuple already updated by
self” errors or unique-constraint violations.

• Flush ACL-related caches when pg_authid changes (Noah Misch)

This change ensures that permissions-related decisions will promptly reflect the results of ALTER
ROLE ... [NO] INHERIT.

• Fix failure to detect “snapshot too old” conditions in tables rewritten in the current transaction
(Kyotaro Horiguchi, Noah Misch)

This is only a hazard when wal_level is set to minimal and the rewrite is performed by ALTER
TABLE SET TABLESPACE.

• Fix spurious failure of CREATE PUBLICATION when applied to a table created or rewritten in the
current transaction (Kyotaro Horiguchi)

2155

Release Notes

This is only a hazard when wal_level is set to minimal.

• Prevent misprocessing of ambiguous CREATE TABLE LIKE clauses (Tom Lane)

A LIKE clause is re-examined after initial creation of the new table, to handle importation of indexes
and such. It was possible for this re-examination to find a different table of the same name, causing
unexpected behavior; one example is where the new table is a temporary table of the same name as
the LIKE target.

• Rearrange order of operations in CREATE TABLE LIKE so that indexes are cloned before building
foreign key constraints (Tom Lane)

This fixes the case where a self-referential foreign key constraint declared in the outer CREATE
TABLE depends on an index that's coming from the LIKE clause.

• Disallow CREATE STATISTICS on system catalogs (Tomas Vondra)

• Disallow converting an inheritance child table to a view (Tom Lane)

• Ensure that disk space allocated for a dropped relation is released promptly at commit (Thomas
Munro)

Previously, if the dropped relation spanned multiple 1GB segments, only the first segment was
truncated immediately. Other segments were simply unlinked, which doesn't authorize the kernel to
release the storage so long as any other backends still have the files open.

• Prevent dropping a tablespace that is referenced by a partitioned relation, but is not used for any
actual storage (Álvaro Herrera)

Previously this was allowed, but subsequent operations on the partitioned relation would fail.

• Fix progress reporting for CLUSTER (Matthias van de Meent)

• Fix handling of backslash-escaped multibyte characters in COPY FROM (Heikki Linnakangas)

A backslash followed by a multibyte character was not handled correctly. In some client character
encodings, this could lead to misinterpreting part of a multibyte character as a field separator or
end-of-copy-data marker.

• Avoid preallocating executor hash tables in EXPLAIN without ANALYZE (Alexey Bashtanov)

• Fix recently-introduced race condition in LISTEN/NOTIFY queue handling (Tom Lane)

A newly-listening backend could attempt to read SLRU pages that were in process of being
truncated, possibly causing an error.

• Allow the jsonb concatenation operator to handle all combinations of JSON data types (Tom Lane)

We can concatenate two JSON objects or two JSON arrays. Handle other cases by wrapping non-
array inputs in one-element arrays, then performing an array concatenation. Previously, some
combinations of inputs followed this rule but others arbitrarily threw an error.

• Fix use of uninitialized value while parsing a * quantifier in a BRE-mode regular expression (Tom
Lane)

This error could cause the quantifier to act non-greedy, that is behave like a *? quantifier would do
in full regular expressions.

• Fix numeric power() for the case where the exponent is exactly INT_MIN (-2147483648) (Dean
Rasheed)

Previously, a result with no significant digits was produced.

• Fix integer-overflow cases in substring() functions (Tom Lane, Pavel Stehule)

2156

Release Notes

If the specified starting index and length overflow an integer when added together, substring()
misbehaved, either throwing a bogus “negative substring length” error for a case that should
succeed, or failing to complain that a negative length is negative (and instead returning the whole
string, in most cases).

• Prevent possible data loss from incorrect detection of the wraparound point of an SLRU log (Noah
Misch)

The wraparound point typically falls in the middle of a page, which must be rounded off to a
page boundary, and that was not done correctly. No issue could arise unless an installation had
gotten to within one page of SLRU overflow, which is unlikely in a properly-functioning system. If
this did happen, it would manifest in later “apparent wraparound” or “could not access status of
transaction” errors.

• Fix WAL-reading logic to handle timeline switches correctly (Kyotaro Horiguchi, Fujii Masao)

Previously, if WAL archiving is enabled, a standby could fail to follow a primary running on a newer
timeline, with errors like “requested WAL segment has already been removed”.

• Fix memory leak in walsender processes while sending new snapshots for logical decoding (Amit
Kapila)

• Fix relation cache leak in walsender processes while sending row changes via the root of a
partitioned relation during logical replication (Amit Langote, Mark Zhao)

• Fix walsender to accept additional commands after terminating replication (Jeff Davis)
• Ensure detection of deadlocks between hot standby backends and the startup (WAL-application)

process (Fujii Masao)

The startup process did not run the deadlock detection code, so that in situations where the startup
process is last to join a circular wait situation, the deadlock might never be recognized.

• Fix possible failure to detect recovery conflicts while deleting an index entry that references a HOT
chain (Peter Geoghegan)

The code failed to traverse the HOT chain and might thus compute a too-old XID horizon, which
could lead to incorrect conflict processing in hot standby. The practical impact of this bug is
limited; in most cases the correct XID horizon would be found anyway from nearby operations.

• Ensure that a nonempty value of krb_server_keyfile always overrides any setting of KRB5_KTNAME
in the server's environment (Tom Lane)

Previously, which setting took precedence depended on whether the client requests GSS
encryption.

• In server log messages about failing to match connections to pg_hba.conf entries, include details
about whether GSS encryption has been activated (Kyotaro Horiguchi, Tom Lane)

This is relevant data if hostgssenc or hostnogssenc entries exist.
• Fix assorted issues in server's support for GSS encryption (Tom Lane)

Remove pointless restriction that only GSS authentication can be used on a GSS-encrypted
connection. Add GSS encryption information to connection-authorized log messages. Include GSS-
related space when computing the required size of shared memory (this omission could have
caused problems with very high max_connections settings). Avoid possible infinite recursion when
reporting an unrecoverable GSS encryption error.

• Ensure that unserviced requests for background workers are cleaned up when the postmaster
begins a “smart” or “fast” shutdown sequence (Tom Lane)

Previously, there was a race condition whereby a child process that had requested a background
worker just before shutdown could wait indefinitely, preventing shutdown from completing.

2157

Release Notes

• Fix portability problem in parsing of recovery_target_xid values (Michael Paquier)

The target XID is potentially 64 bits wide, but it was parsed with strtoul(), causing misbehavior
on platforms where long is 32 bits (such as Windows).

• Avoid trying to use parallel index build in a standalone backend (Yulin Pei)
• Allow index AMs to support included columns without necessarily supporting multiple key columns

(Tom Lane)
• While taking a base backup, avoid executing any SHA256 code if a backup manifest is not needed

(Michael Paquier)

When using OpenSSL operating in FIPS mode, SHA256 hashing is rejected, leading to an error.
This change makes it possible to take a base backup on such a platform, so long as --no-manifest
is specified.

• Avoid assertion failure during parallel aggregation of an aggregate with a non-strict deserialization
function (Andrew Gierth)

No such aggregate functions exist in core PostgreSQL, but some extensions such as PostGIS
provide some. The mistake is harmless anyway in a non-assert build.

• Avoid assertion failure in pg_get_functiondef() when examining a function with a TRANSFORM
option (Tom Lane)

• Fix data structure misallocation in PL/pgSQL's CALL statement (Tom Lane)

A CALL in a PL/pgSQL procedure, to another procedure that has OUT parameters, would fail if the
called procedure did a COMMIT or ROLLBACK.

• In libpq, do not skip trying SSL after GSS encryption (Tom Lane)

If we successfully made a GSS-encrypted connection, but then failed during authentication, we
would fall back to an unencrypted connection rather than next trying an SSL-encrypted connection.
This could lead to unexpected connection failure, or to silently getting an unencrypted connection
where an encrypted one is expected. Fortunately, GSS encryption could only succeed if both client
and server hold valid tickets in the same Kerberos infrastructure. It seems unlikely for that to be
true in an environment that requires SSL encryption instead.

• Make libpq's PQconndefaults() function report the correct default value for channel_binding
(Daniele Varrazzo)

• In psql, re-allow including a password in a connection_string argument of a \connect command
(Tom Lane)

This used to work, but a recent bug fix caused the password to be ignored (resulting in prompting
for a password).

• In psql's \d commands, don't truncate the display of column default values (Tom Lane)

Formerly, they were arbitrarily truncated at 128 characters.
• Fix assorted bugs in psql's \help command (Kyotaro Horiguchi, Tom Lane)

\help with two argument words failed to find a command description using only the first word, for
example \help reset all should show the help for RESET but did not. Also, \help often failed to
invoke the pager when it should. It also leaked memory.

• Fix pg_dump's dumping of inherited generated columns (Peter Eisentraut)

The previous behavior resulted in (harmless) errors during restore.
• In pg_dump, ensure that the restore script runs ALTER PUBLICATION ADD TABLE commands as the

owner of the publication, and similarly runs ALTER INDEX ATTACH PARTITION commands as the
owner of the partitioned index (Tom Lane)

2158

Release Notes

Previously, these commands would be run by the role that started the restore script; which will
usually work, but in corner cases that role might not have adequate permissions.

• Fix pg_dump to handle WITH GRANT OPTION in an extension's initial privileges (Noah Misch)

If an extension's script creates an object and grants privileges on it with grant option, then later
the user revokes such privileges, pg_dump would generate incorrect SQL for reproducing the
situation. (Few if any extensions do this today.)

• In pg_rewind, ensure that all WAL is accounted for when rewinding a standby server (Ian Barwick,
Heikki Linnakangas)

• In pgbench, disallow a digit as the first character of a variable name (Fabien Coelho)

This prevents trying to substitute variables into timestamp literal values, which may contain strings
like 12:34.

• Report the correct database name in connection failure error messages from some client programs
(Álvaro Herrera)

If the database name was defaulted rather than given on the command line, pg_dumpall, pgbench,
oid2name, and vacuumlo would produce misleading error messages after a connection failure.

• Fix memory leak in contrib/auto_explain (Japin Li)

Memory consumed while producing the EXPLAIN output was not freed until the end of the current
transaction (for a top-level statement) or the end of the surrounding statement (for a nested
statement). This was particularly a problem with log_nested_statements enabled.

• In contrib/postgres_fdw, avoid leaking open connections to remote servers when a user mapping
or foreign server object is dropped (Bharath Rupireddy)

Open connections that depend on a dropped user mapping or foreign server can no longer be
referenced, but formerly they were kept around anyway for the duration of the local session.

• Fix faulty assertion in contrib/postgres_fdw (Etsuro Fujita)

• In contrib/pgcrypto, check for error returns from OpenSSL's EVP functions (Michael Paquier)

We do not really expect errors here, but this change silences warnings from static analysis tools.

• Make contrib/pg_prewarm more robust when the cluster is shut down before prewarming is
complete (Tom Lane)

Previously, autoprewarm would rewrite its status file with only the block numbers that it had
managed to load so far, thus perhaps largely disabling the prewarm functionality in the next
startup. Instead, suppress status file updates until the initial loading pass is complete.

• In contrib/pg_trgm's GiST index support, avoid crash in the rare case that picksplit is called on
exactly two index items (Andrew Gierth, Alexander Korotkov)

• Fix miscalculation of timeouts in contrib/pg_prewarm and contrib/postgres_fdw (Alexey
Kondratov, Tom Lane)

The main loop in contrib/pg_prewarm's autoprewarm parent process underestimated its desired
sleep time by a factor of 1000, causing it to consume much more CPU than intended. When waiting
for a result from a remote server, contrib/postgres_fdw overestimated the desired timeout by a
factor of 1000 (though this error had been mitigated by imposing a clamp to 60 seconds).

Both of these errors stemmed from incorrectly converting seconds-and-microseconds to
milliseconds. Introduce a new API TimestampDifferenceMilliseconds() to make it easier to get
this right in the future.

• Improve configure's heuristics for selecting PG_SYSROOT on macOS (Tom Lane)

2159

Release Notes

The new method is more likely to produce desirable results when Xcode is newer than the
underlying operating system. Choosing a sysroot that does not match the OS version may result in
nonfunctional executables.

• While building on macOS, specify -isysroot in link steps as well as compile steps (James Hilliard)

This likewise improves the results when Xcode is out of sync with the operating system.
• Fix JIT compilation to be compatible with LLVM 11 and LLVM 12 (Andres Freund)
• Fix potential mishandling of references to boolean variables in JIT expression compilation (Andres

Freund)

No field reports attributable to this have been seen, but it seems likely that it could cause problems
on some architectures.

• Fix compile failure with ICU 68 and later (Tom Lane)
• Avoid memcpy() with a NULL source pointer and zero count during partitioned index creation

(Álvaro Herrera)

While such a call is not known to cause problems in itself, some compilers assume that the
arguments of memcpy() are never NULL, which could result in incorrect optimization of nearby
code.

• Update time zone data files to tzdata release 2021a for DST law changes in Russia (Volgograd
zone) and South Sudan, plus historical corrections for Australia, Bahamas, Belize, Bermuda, Ghana,
Israel, Kenya, Nigeria, Palestine, Seychelles, and Vanuatu.

Notably, the Australia/Currie zone has been corrected to the point where it is identical to Australia/
Hobart.

E.16. Release 13.1
Release date: 2020-11-12

This release contains a variety of fixes from 13.0. For information about new features in major release
13, see Section E.17.

E.16.1. Migration to Version 13.1
A dump/restore is not required for those running 13.X.

E.16.2. Changes
• Block DECLARE CURSOR ... WITH HOLD and firing of deferred triggers within index expressions and

materialized view queries (Noah Misch)

This is essentially a leak in the “security restricted operation” sandbox mechanism. An attacker
having permission to create non-temporary SQL objects could parlay this leak to execute arbitrary
SQL code as a superuser.

The PostgreSQL Project thanks Etienne Stalmans for reporting this problem. (CVE-2020-25695)
• Fix usage of complex connection-string parameters in pg_dump, pg_restore, clusterdb, reindexdb,

and vacuumdb (Tom Lane)

The -d parameter of pg_dump and pg_restore, or the --maintenance-db parameter of the other
programs mentioned, can be a “connection string” containing multiple connection parameters
rather than just a database name. In cases where these programs need to initiate additional
connections, such as parallel processing or processing of multiple databases, the connection string
was forgotten and just the basic connection parameters (database name, host, port, and username)
were used for the additional connections. This could lead to connection failures if the connection

2160

Release Notes

string included any other essential information, such as non-default SSL or GSS parameters. Worse,
the connection might succeed but not be encrypted as intended, or be vulnerable to man-in-the-
middle attacks that the intended connection parameters would have prevented. (CVE-2020-25694)

• When psql's \connect command re-uses connection parameters, ensure that all non-overridden
parameters from a previous connection string are re-used (Tom Lane)

This avoids cases where reconnection might fail due to omission of relevant parameters, such as
non-default SSL or GSS options. Worse, the reconnection might succeed but not be encrypted as
intended, or be vulnerable to man-in-the-middle attacks that the intended connection parameters
would have prevented. This is largely the same problem as just cited for pg_dump et al, although
psql's behavior is more complex since the user may intentionally override some connection
parameters. (CVE-2020-25694)

• Prevent psql's \gset command from modifying specially-treated variables (Noah Misch)

\gset without a prefix would overwrite whatever variables the server told it to. Thus, a
compromised server could set specially-treated variables such as PROMPT1, giving the ability to
execute arbitrary shell code in the user's session.

The PostgreSQL Project thanks Nick Cleaton for reporting this problem. (CVE-2020-25696)
• Fix unintended breakage of the replication protocol (Álvaro Herrera)

A walsender reports two command-completion events for START_REPLICATION. This was
undocumented and apparently unintentional; so we failed to notice that a late 13.0 change removed
the duplicate event. However it turns out that walreceivers require the extra event in some code
paths. The most practical fix is to decree that the extra event is part of the protocol and resume
generating it.

• Ensure that SLRU directories are properly fsync'd during checkpoints (Thomas Munro)

This prevents possible data loss in a subsequent operating system crash.
• Fix ALTER ROLE for users with the BYPASSRLS attribute (Tom Lane, Stephen Frost)

The BYPASSRLS attribute is only allowed to be changed by superusers, but other ALTER ROLE
operations, such as password changes, should be allowed with only ordinary permission checks.
The previous coding erroneously restricted all changes on such a role to superusers.

• Disallow ALTER TABLE ONLY ... DROP EXPRESSION when there are child tables (Peter Eisentraut)

The current implementation cannot handle this case correctly, so just forbid it for now.
• Ensure that ALTER TABLE ONLY ... ENABLE/DISABLE TRIGGER does not recurse to child tables

(Álvaro Herrera)

Previously the ONLY flag was ignored.
• Allow LOCK TABLE to succeed on a self-referential view (Tom Lane)

It previously threw an error complaining about infinite recursion, but there seems no need to
disallow the case.

• Retain statistics about an index across REINDEX CONCURRENTLY (Michael Paquier, Fabrízio de Royes
Mello)

Non-concurrent reindexing has always preserved such statistics.
• Fix incorrect progress reporting from REINDEX CONCURRENTLY (Matthias van de Meent, Michael

Paquier)
• Ensure that GENERATED columns are updated when the column(s) they depend on are updated via a

rule or an updatable view (Tom Lane)

This fix also takes care of possible failure to fire a column-specific trigger in such cases.

2161

Release Notes

• Fix failures with collation-dependent partition bound expressions (Tom Lane)
• Support hashing of text arrays (Peter Eisentraut)

Array hashing failed if the array element type is collatable. Notably, this prevented using hash
partitioning with a text array column as partition key.

• Prevent internal overflows in cross-type datetime comparisons (Nikita Glukhov, Alexander Korotkov,
Tom Lane)

Previously, comparing a date to a timestamp would fail if the date is past the valid range for
timestamps. There were also corner cases involving overflow of close-to-the-limit timestamp values
during timezone rotation.

• Fix off-by-one conversion of negative years to BC dates in to_date() and to_timestamp() (Dar
Alathar-Yemen, Tom Lane)

Also, arrange for the combination of a negative year and an explicit “BC” marker to cancel out and
produce AD.

• Allow the jsonpath .datetime() method to accept ISO 8601-format timestamps (Nikita Glukhov)

This is not required by SQL, but it seems appropriate since our to_json() functions generate that
timestamp format for Javascript compatibility.

• Ensure that standby servers will archive WAL timeline history files when archive_mode is set to
always (Grigory Smolkin, Fujii Masao)

This oversight could lead to failure of subsequent PITR recovery attempts.
• Fix edge cases in detecting premature death of the postmaster on platforms that use kqueue()

(Thomas Munro)
• Avoid generating an incorrect incremental-sort plan when the sort key is a volatile expression

(James Coleman)
• Fix possible crash when considering partition-wise joins during GEQO planning (Tom Lane)
• Fix possible infinite loop or corrupted output data in TOAST decompression (Tom Lane)
• Fix counting of the number of entries in B-tree indexes during cleanup-only VACUUMs (Peter

Geoghegan)
• Ensure that data is detoasted before being inserted into a BRIN index (Tomas Vondra)

Index entries are not supposed to contain out-of-line TOAST pointers, but BRIN didn't get that
memo. This could lead to errors like “missing chunk number 0 for toast value NNN”. (If you are
faced with such an error from an existing index, REINDEX should be enough to fix it.)

• Fix buffered GiST index builds to work when the index has included columns (Pavel Borisov)
• Fix unportable use of getnameinfo() in pg_hba_file_rules view (Tom Lane)

On FreeBSD 11, and possibly other platforms, the view's address and netmask columns were
always null due to this error.

• Avoid crash if debug_query_string is NULL when starting a parallel worker (Noah Misch)
• Avoid failures when a BEFORE ROW UPDATE trigger returns the “old” row of a table having dropped

or “missing” columns (Amit Langote, Tom Lane)

This method of suppressing an update could result in crashes, unexpected CHECK constraint
failures, or incorrect RETURNING output, because “missing” columns would read as NULLs for those
purposes. (A column is “missing” for this purpose if it was added by ALTER TABLE ADD COLUMN with
a non-NULL, but constant, default value.) Dropped columns could cause trouble as well.

• Fix EXPLAIN's output for incremental sort plans to have correct tag nesting in XML output mode
(Daniel Gustafsson)

2162

Release Notes

• Avoid unnecessary failure when transferring very large payloads through shared memory queues
(Markus Wanner)

• Fix omission of result data type coercion in some cases in SQL-language functions (Tom Lane)

This could lead to wrong results or crashes, depending on the data types involved.
• Fix incorrect handling of template function attributes in JIT code generation (Andres Freund)

This has been shown to cause crashes on s390x, and very possibly there are other cases on other
platforms.

• Improve code generated for compare_exchange and fetch_add operations on PPC (Noah Misch)
• Fix relation cache memory leaks with RLS policies (Tom Lane)
• Fix edge-case memory leak in index_get_partition() (Justin Pryzby)
• Fix small memory leak when SIGHUP processing decides that a new GUC variable value cannot be

applied without a restart (Tom Lane)
• Fix memory leaks in PL/pgsql's CALL processing (Pavel Stehule, Tom Lane)
• In libpq for Windows, call WSAStartup() once per process and WSACleanup() not at all (Tom Lane,

Alexander Lakhin)

Previously, libpq invoked WSAStartup() at connection start and WSACleanup() at connection
cleanup. However, it appears that calling WSACleanup() can interfere with other program
operations; notably, we have observed rare failures to emit expected output to stdout. There appear
to be no ill effects from omitting the call, so do that. (This also eliminates a performance issue from
repeated DLL loads and unloads when a program performs a series of database connections.)

• Fix ecpg library's per-thread initialization logic for Windows (Tom Lane, Alexander Lakhin)

Multi-threaded ecpg applications could suffer rare misbehavior due to incorrect locking.
• Fix ecpg's mis-processing of B'...' and X'...' literals (Shenhao Wang)
• On Windows, make psql read the output of a backtick command in text mode, not binary mode (Tom

Lane)

This ensures proper handling of newlines.
• Ensure that pg_dump collects per-column information about extension configuration tables

(Fabrízio de Royes Mello, Tom Lane)

Failure to do this led to crashes when specifying --inserts, or underspecified (though usually
correct) COPY commands when using COPY to reload the tables' data.

• Make pg_upgrade check for pre-existence of tablespace directories in the target cluster (Bruce
Momjian)

• Fix potential memory leak in contrib/pgcrypto (Michael Paquier)
• Add check for an unlikely failure case in contrib/pgcrypto (Daniel Gustafsson)
• Fix recently-added timetz test case so it works when the USA is not observing daylight savings

time (Tom Lane)
• Update time zone data files to tzdata release 2020d for DST law changes in Fiji, Morocco,

Palestine, the Canadian Yukon, Macquarie Island, and Casey Station (Antarctica); plus historical
corrections for France, Hungary, Monaco, and Palestine.

• Sync our copy of the timezone library with IANA tzcode release 2020d (Tom Lane)

This absorbs upstream's change of zic's default output option from “fat” to “slim”. That's just
cosmetic for our purposes, as we continue to select the “fat” mode in pre-v13 branches. This
change also ensures that strftime() does not change errno unless it fails.

2163

Release Notes

E.17. Release 13
Release date: 2020-09-24

E.17.1. Overview
PostgreSQL 13 contains many new features and enhancements, including:

• Space savings and performance gains from de-duplication of B-tree index entries
• Improved performance for queries that use aggregates or partitioned tables
• Better query planning when using extended statistics
• Parallelized vacuuming of indexes
• Incremental sorting
The above items and other new features of PostgreSQL 13 are explained in more detail in the sections
below.

E.17.2. Migration to Version 13
A dump/restore using pg_dumpall or use of pg_upgrade or logical replication is required for those
wishing to migrate data from any previous release. See Section 17.6 for general information on migrating
to new major releases.

Version 13 contains a number of changes that may affect compatibility with previous releases. Observe
the following incompatibilities:

• Change SIMILAR TO ... ESCAPE NULL to return NULL (Tom Lane)

This new behavior matches the SQL specification. Previously a null ESCAPE value was taken to
mean using the default escape string (a backslash character). This also applies to substring(text
FROM pattern ESCAPE text). The previous behavior has been retained in old views by keeping the
original function unchanged.

• Make json[b]_to_tsvector() fully check the spelling of its string option (Dominik Czarnota)
• Change the way non-default effective_io_concurrency values affect concurrency (Thomas Munro)

Previously, this value was adjusted before setting the number of concurrent requests. The value is
now used directly. Conversion of old values to new ones can be done using:

SELECT round(sum(OLDVALUE / n::float)) AS newvalue FROM generate_series(1, OLDVALUE)
 s(n);

• Prevent display of auxiliary processes in pg_stat_ssl and pg_stat_gssapi system views (Euler
Taveira)

Queries that join these views to pg_stat_activity and wish to see auxiliary processes will need to use
left joins.

• Rename various wait events to improve consistency (Fujii Masao, Tom Lane)
• Fix ALTER FOREIGN TABLE ... RENAME COLUMN to return a more appropriate command tag (Fujii

Masao)

Previously it returned ALTER TABLE; now it returns ALTER FOREIGN TABLE.
• Fix ALTER MATERIALIZED VIEW ... RENAME COLUMN to return a more appropriate command tag

(Fujii Masao)

Previously it returned ALTER TABLE; now it returns ALTER MATERIALIZED VIEW.
• Rename configuration parameter wal_keep_segments to wal_keep_size (Fujii Masao)

2164

Release Notes

This determines how much WAL to retain for standby servers. It is specified in megabytes, rather
than number of files as with the old parameter. If you previously used wal_keep_segments, the
following formula will give you an approximately equivalent setting:

wal_keep_size = wal_keep_segments * wal_segment_size (typically 16MB)

• Remove support for defining operator classes using pre-PostgreSQL 8.0 syntax (Daniel Gustafsson)

• Remove support for defining foreign key constraints using pre-PostgreSQL 7.3 syntax (Daniel
Gustafsson)

• Remove support for "opaque" pseudo-types used by pre-PostgreSQL 7.3 servers (Daniel Gustafsson)

• Remove support for upgrading unpackaged (pre-9.1) extensions (Tom Lane)

The FROM option of CREATE EXTENSION is no longer supported. Any installations still using
unpackaged extensions should upgrade them to a packaged version before updating to PostgreSQL
13.

• Remove support for posixrules files in the timezone database (Tom Lane)

IANA's timezone group has deprecated this feature, meaning that it will gradually disappear from
systems' timezone databases over the next few years. Rather than have a behavioral change appear
unexpectedly with a timezone data update, we have removed PostgreSQL's support for this feature
as of version 13. This affects only the behavior of POSIX-style time zone specifications that lack
an explicit daylight savings transition rule; formerly the transition rule could be determined by
installing a custom posixrules file, but now it is hard-wired. The recommended fix for any affected
installations is to start using a geographical time zone name.

• In ltree, when an lquery pattern contains adjacent asterisks with braces, e.g., *{2}.*{3}, properly
interpret that as *{5} (Nikita Glukhov)

• Fix pageinspect's bt_metap() to return more appropriate data types that are less likely to overflow
(Peter Geoghegan)

E.17.3. Changes
Below you will find a detailed account of the changes between PostgreSQL 13 and the previous major
release.

E.17.3.1. Server

E.17.3.1.1. Partitioning

• Allow pruning of partitions to happen in more cases (Yuzuko Hosoya, Amit Langote, Álvaro
Herrera)

• Allow partitionwise joins to happen in more cases (Ashutosh Bapat, Etsuro Fujita, Amit Langote,
Tom Lane)

For example, partitionwise joins can now happen between partitioned tables even when their
partition bounds do not match exactly.

• Support row-level BEFORE triggers on partitioned tables (Álvaro Herrera)

However, such a trigger is not allowed to change which partition is the destination.

• Allow partitioned tables to be logically replicated via publications (Amit Langote)

Previously, partitions had to be replicated individually. Now a partitioned table can be published
explicitly, causing all its partitions to be published automatically. Addition/removal of a partition
causes it to be likewise added to or removed from the publication. The CREATE PUBLICATION option
publish_via_partition_root controls whether changes to partitions are published as their own
changes or their parent's.

2165

Release Notes

• Allow logical replication into partitioned tables on subscribers (Amit Langote)

Previously, subscribers could only receive rows into non-partitioned tables.
• Allow whole-row variables (that is, table.*) to be used in partitioning expressions (Amit Langote)

E.17.3.1.2. Indexes
• More efficiently store duplicates in B-tree indexes (Anastasia Lubennikova, Peter Geoghegan)

This allows efficient B-tree indexing of low-cardinality columns by storing duplicate keys only once.
Users upgrading with pg_upgrade will need to use REINDEX to make an existing index use this
feature.

• Allow GiST and SP-GiST indexes on box columns to support ORDER BY box <-> point queries
(Nikita Glukhov)

• Allow GIN indexes to more efficiently handle ! (NOT) clauses in tsquery searches (Nikita Glukhov,
Alexander Korotkov, Tom Lane, Julien Rouhaud)

• Allow index operator classes to take parameters (Nikita Glukhov)
• Allow CREATE INDEX to specify the GiST signature length and maximum number of integer ranges

(Nikita Glukhov)

Indexes created on four and eight-byte integer array, tsvector, pg_trgm, ltree, and hstore columns
can now control these GiST index parameters, rather than using the defaults.

• Prevent indexes that use non-default collations from being added as a table's unique or primary key
constraint (Tom Lane)

The index's collation must match that of the underlying column, but ALTER TABLE previously failed
to check this.

E.17.3.1.3. Optimizer
• Improve the optimizer's selectivity estimation for containment/match operators (Tom Lane)
• Allow setting the statistics target for extended statistics (Tomas Vondra)

This is controlled with the new command option ALTER STATISTICS ... SET STATISTICS.
Previously this was computed based on more general statistics target settings.

• Allow use of multiple extended statistics objects in a single query (Tomas Vondra)
• Allow use of extended statistics objects for OR clauses and IN/ANY constant lists (Pierre Ducroquet,

Tomas Vondra)
• Allow functions in FROM clauses to be pulled up (inlined) if they evaluate to constants (Alexander

Kuzmenkov, Aleksandr Parfenov)

E.17.3.1.4. General Performance
• Implement incremental sorting (James Coleman, Alexander Korotkov, Tomas Vondra)

If an intermediate query result is known to be sorted by one or more leading keys of a required sort
ordering, the additional sorting can be done considering only the remaining keys, if the rows are
sorted in batches that have equal leading keys.

If necessary, this can be controlled using enable_incremental_sort.
• Improve the performance of sorting inet values (Brandur Leach)
• Allow hash aggregation to use disk storage for large aggregation result sets (Jeff Davis)

Previously, hash aggregation was avoided if it was expected to use more than work_mem memory.
Now, a hash aggregation plan can be chosen despite that. The hash table will be spilled to disk if it
exceeds work_mem times hash_mem_multiplier.

2166

Release Notes

This behavior is normally preferable to the old behavior, in which once hash aggregation had been
chosen, the hash table would be kept in memory no matter how large it got — which could be very
large if the planner had misestimated. If necessary, behavior similar to that can be obtained by
increasing hash_mem_multiplier.

• Allow inserts, not only updates and deletes, to trigger vacuuming activity in autovacuum (Laurenz
Albe, Darafei Praliaskouski)

Previously, insert-only activity would trigger auto-analyze but not auto-vacuum, on the grounds
that there could not be any dead tuples to remove. However, a vacuum scan has other useful side-
effects such as setting page-all-visible bits, which improves the efficiency of index-only scans.
Also, allowing an insert-only table to receive periodic vacuuming helps to spread out the work of
“freezing” old tuples, so that there is not suddenly a large amount of freezing work to do when the
entire table reaches the anti-wraparound threshold all at once.

If necessary, this behavior can be adjusted with the new parameters
autovacuum_vacuum_insert_threshold and autovacuum_vacuum_insert_scale_factor, or the
equivalent table storage options.

• Add maintenance_io_concurrency parameter to control I/O concurrency for maintenance operations
(Thomas Munro)

• Allow WAL writes to be skipped during a transaction that creates or rewrites a relation, if wal_level
is minimal (Kyotaro Horiguchi)

Relations larger than wal_skip_threshold will have their files fsync'ed rather than generating WAL.
Previously this was done only for COPY operations, but the implementation had a bug that could
cause data loss during crash recovery.

• Improve performance when replaying DROP DATABASE commands when many tablespaces are in use
(Fujii Masao)

• Improve performance for truncation of very large relations (Kirk Jamison)
• Improve retrieval of the leading bytes of TOAST'ed values (Binguo Bao, Andrey Borodin)

Previously, compressed out-of-line TOAST values were fully fetched even when it's known that only
some leading bytes are needed. Now, only enough data to produce the result is fetched.

• Improve performance of LISTEN/NOTIFY (Martijn van Oosterhout, Tom Lane)
• Speed up conversions of integers to text (David Fetter)
• Reduce memory usage for query strings and extension scripts that contain many SQL statements

(Amit Langote)

E.17.3.1.5. Monitoring
• Allow EXPLAIN, auto_explain, autovacuum, and pg_stat_statements to track WAL usage statistics

(Kirill Bychik, Julien Rouhaud)
• Allow a sample of SQL statements, rather than all statements, to be logged (Adrien Nayrat)

A log_statement_sample_rate fraction of those statements taking more than
log_min_duration_sample duration will be logged.

• Add the backend type to csvlog and optionally log_line_prefix log output (Peter Eisentraut)
• Improve control of prepared statement parameter logging (Alexey Bashtanov, Álvaro Herrera)

The GUC setting log_parameter_max_length controls the maximum length of parameter values
output during logging of non-error statements, while log_parameter_max_length_on_error does the
same for logging of statements with errors. Previously, prepared statement parameters were never
logged during errors.

• Allow function call backtraces to be logged after errors (Peter Eisentraut, Álvaro Herrera)

2167

Release Notes

The new parameter backtrace_functions specifies which C functions should generate backtraces on
error.

• Make vacuum buffer counters 64-bits wide to avoid overflow (Álvaro Herrera)

E.17.3.1.6. System Views

• Add leader_pid to pg_stat_activity to report a parallel worker's leader process (Julien Rouhaud)
• Add system view pg_stat_progress_basebackup to report the progress of streaming base backups

(Fujii Masao)
• Add system view pg_stat_progress_analyze to report ANALYZE progress (Álvaro Herrera,

Tatsuro Yamada, Vinayak Pokale)
• Add system view pg_shmem_allocations to display shared memory usage (Andres Freund, Robert

Haas)
• Add system view pg_stat_slru to monitor internal SLRU caches (Tomas Vondra)
• Allow track_activity_query_size to be set as high as 1MB (Vyacheslav Makarov)

The previous maximum was 100kB.

E.17.3.1.7. Wait Events

• Report a wait event while creating a DSM segment with posix_fallocate() (Thomas Munro)
• Add wait event VacuumDelay to report on cost-based vacuum delay (Justin Pryzby)
• Add wait events for WAL archive and recovery pause (Fujii Masao)

The new events are BackupWaitWalArchive and RecoveryPause.
• Add wait events RecoveryConflictSnapshot and RecoveryConflictTablespace to monitor recovery

conflicts (Masahiko Sawada)
• Improve performance of wait events on BSD-based systems (Thomas Munro)

E.17.3.1.8. Authentication

• Allow only superusers to view the ssl_passphrase_command setting (Insung Moon)

This was changed as a security precaution.
• Change the server's default minimum TLS version for encrypted connections from 1.0 to 1.2 (Peter

Eisentraut)

This choice can be controlled by ssl_min_protocol_version.

E.17.3.1.9. Server Configuration

• Tighten rules on which utility commands are allowed in read-only transaction mode (Robert Haas)

This change also increases the number of utility commands that can run in parallel queries.
• Allow allow_system_table_mods to be changed after server start (Peter Eisentraut)
• Disallow non-superusers from modifying system tables when allow_system_table_mods is set (Peter

Eisentraut)

Previously, if allow_system_table_mods was set at server start, non-superusers could issue
INSERT/UPDATE/DELETE commands on system tables.

• Enable support for Unix-domain sockets on Windows (Peter Eisentraut)

E.17.3.2. Streaming Replication and Recovery
• Allow streaming replication configuration settings to be changed by reload (Sergei Kornilov)

2168

Release Notes

Previously, a server restart was required to change primary_conninfo and primary_slot_name.

• Allow WAL receivers to use a temporary replication slot when a permanent one is not specified
(Peter Eisentraut, Sergei Kornilov)

This behavior can be enabled using wal_receiver_create_temp_slot.

• Allow WAL storage for replication slots to be limited by max_slot_wal_keep_size (Kyotaro
Horiguchi)

Replication slots that would require exceeding this value are marked invalid.

• Allow standby promotion to cancel any requested pause (Fujii Masao)

Previously, promotion could not happen while the standby was in paused state.

• Generate an error if recovery does not reach the specified recovery target (Leif Gunnar Erlandsen,
Peter Eisentraut)

Previously, a standby would promote itself upon reaching the end of WAL, even if the target was not
reached.

• Allow control over how much memory is used by logical decoding before it is spilled to disk (Tomas
Vondra, Dilip Kumar, Amit Kapila)

This is controlled by logical_decoding_work_mem.

• Allow recovery to continue even if invalid pages are referenced by WAL (Fujii Masao)

This is enabled using ignore_invalid_pages.

E.17.3.3. Utility Commands
• Allow VACUUM to process a table's indexes in parallel (Masahiko Sawada, Amit Kapila)

The new PARALLEL option controls this.

• Allow FETCH FIRST to use WITH TIES to return any additional rows that match the last result row
(Surafel Temesgen)

• Report planning-time buffer usage in EXPLAIN's BUFFER output (Julien Rouhaud)

• Make CREATE TABLE LIKE propagate a CHECK constraint's NO INHERIT property to the created table
(Ildar Musin, Chris Travers)

• When using LOCK TABLE on a partitioned table, do not check permissions on the child tables (Amit
Langote)

• Allow OVERRIDING USER VALUE on inserts into identity columns (Dean Rasheed)

• Add ALTER TABLE ... DROP EXPRESSION to allow removing the GENERATED property from a column
(Peter Eisentraut)

• Fix bugs in multi-step ALTER TABLE commands (Tom Lane)

IF NOT EXISTS clauses now work as expected, in that derived actions (such as index creation) do
not execute if the column already exists. Also, certain cases of combining related actions into one
ALTER TABLE now work when they did not before.

• Add ALTER VIEW syntax to rename view columns (Fujii Masao)

Renaming view columns was already possible, but one had to write ALTER TABLE RENAME COLUMN,
which is confusing.

• Add ALTER TYPE options to modify a base type's TOAST properties and support functions (Tomas
Vondra, Tom Lane)

2169

Release Notes

• Add CREATE DATABASE LOCALE option (Peter Eisentraut)

This combines the existing options LC_COLLATE and LC_CTYPE into a single option.
• Allow DROP DATABASE to disconnect sessions using the target database, allowing the drop to

succeed (Pavel Stehule, Amit Kapila)

This is enabled by the FORCE option.
• Add structure member tg_updatedcols to allow C-language update triggers to know which

column(s) were updated (Peter Eisentraut)

E.17.3.4. Data Types
• Add polymorphic data types for use by functions requiring compatible arguments (Pavel Stehule)

The new data types are anycompatible, anycompatiblearray, anycompatiblenonarray, and
anycompatiblerange.

• Add SQL data type xid8 to expose FullTransactionId (Thomas Munro)

The existing xid data type is only four bytes so it does not provide the transaction epoch.
• Add data type regcollation and associated functions, to represent OIDs of collation objects (Julien

Rouhaud)
• Use the glibc version in some cases as a collation version identifier (Thomas Munro)

If the glibc version changes, a warning will be issued about possible corruption of collation-
dependent indexes.

• Add support for collation versions on Windows (Thomas Munro)
• Allow ROW expressions to have their members extracted with suffix notation (Tom Lane)

For example, (ROW(4, 5.0)).f1 now returns 4.

E.17.3.5. Functions
• Add alternate version of jsonb_set() with improved NULL handling (Andrew Dunstan)

The new function, jsonb_set_lax(), handles a NULL new value by either setting the specified key
to a JSON null, deleting the key, raising an exception, or returning the jsonb value unmodified, as
requested.

• Add jsonpath .datetime() method (Nikita Glukhov, Teodor Sigaev, Oleg Bartunov, Alexander
Korotkov)

This function allows JSON values to be converted to timestamps, which can then be processed in
jsonpath expressions. This change also adds jsonpath functions that support time-zone-aware
output.

• Add SQL functions NORMALIZE() to normalize Unicode strings, and IS NORMALIZED to check for
normalization (Peter Eisentraut)

• Add min() and max() aggregates for pg_lsn (Fabrízio de Royes Mello)

These are particularly useful in monitoring queries.
• Allow Unicode escapes, e.g., E'\unnnn' or U&'\nnnn', to specify any character available in the

database encoding, even when the database encoding is not UTF-8 (Tom Lane)
• Allow to_date() and to_timestamp() to recognize non-English month/day names (Juan José

Santamaría Flecha, Tom Lane)

The names recognized are the same as those output by to_char() with the same format patterns.

2170

Release Notes

• Add datetime format patterns FF1 – FF6 to specify input or output of 1 to 6 fractional-second digits
(Alexander Korotkov, Nikita Glukhov, Teodor Sigaev, Oleg Bartunov)

These patterns can be used by to_char(), to_timestamp(), and jsonpath's .datetime().

• Add SSSSS datetime format pattern as an SQL-standard alias for SSSS (Nikita Glukhov, Alexander
Korotkov)

• Add function gen_random_uuid() to generate version-4 UUIDs (Peter Eisentraut)

Previously UUID generation functions were only available in the external modules uuid-ossp and
pgcrypto.

• Add greatest-common-denominator (gcd) and least-common-multiple (lcm) functions (Vik Fearing)

• Improve the performance and accuracy of the numeric type's square root (sqrt) and natural log
(ln) functions (Dean Rasheed)

• Add function min_scale() that returns the number of digits to the right of the decimal point that
are required to represent a numeric value with full accuracy (Pavel Stehule)

• Add function trim_scale() to reduce the scale of a numeric value by removing trailing zeros (Pavel
Stehule)

• Add commutators of distance operators (Nikita Glukhov)

For example, previously only point <-> line was supported, now line <-> point works too.

• Create xid8 versions of all transaction ID functions (Thomas Munro)

The old xid-based functions still exist, for backward compatibility.

• Allow get_bit() and set_bit() to set bits beyond the first 256MB of a bytea value (Movead Li)

• Allow advisory-lock functions to be used in some parallel operations (Tom Lane)

• Add the ability to remove an object's dependency on an extension (Álvaro Herrera)

The object can be a function, materialized view, index, or trigger. The syntax is ALTER .. NO
DEPENDS ON.

E.17.3.6. PL/pgSQL
• Improve performance of simple PL/pgSQL expressions (Tom Lane, Amit Langote)

• Improve performance of PL/pgSQL functions that use immutable expressions (Konstantin Knizhnik)

E.17.3.7. Client Interfaces
• Allow libpq clients to require channel binding for encrypted connections (Jeff Davis)

Using the libpq connection parameter channel_binding forces the other end of the TLS connection
to prove it knows the user's password. This prevents man-in-the-middle attacks.

• Add libpq connection parameters to control the minimum and maximum TLS version allowed for an
encrypted connection (Daniel Gustafsson)

The settings are ssl_min_protocol_version and ssl_max_protocol_version. By default, the minimum
TLS version is 1.2 (this represents a behavioral change from previous releases).

• Allow use of passwords to unlock client certificates (Craig Ringer, Andrew Dunstan)

This is enabled by libpq's sslpassword connection parameter.

• Allow libpq to use DER-encoded client certificates (Craig Ringer, Andrew Dunstan)

• Fix ecpg's EXEC SQL elif directive to work correctly (Tom Lane)

2171

Release Notes

Previously it behaved the same as endif followed by ifdef, so that a successful previous branch of
the same if construct did not prevent expansion of the elif branch or following branches.

E.17.3.8. Client Applications

• Add transaction status (%x) to psql's default prompts (Vik Fearing)
• Allow the secondary psql prompt to be blank but the same width as the primary prompt (Thomas

Munro)

This is accomplished by setting PROMPT2 to %w.
• Allow psql's \g and \gx commands to change \pset output options for the duration of that single

command (Tom Lane)

This feature allows syntax like \g (expand=on), which is equivalent to \gx.
• Add psql commands to display operator classes and operator families (Sergey Cherkashin, Nikita

Glukhov, Alexander Korotkov)

The new commands are \dAc, \dAf, \dAo, and \dAp.
• Show table persistence in psql's \dt+ and related commands (David Fetter)

In verbose mode, the table/index/view shows if the object is permanent, temporary, or unlogged.
• Improve output of psql's \d for TOAST tables (Justin Pryzby)
• Fix redisplay after psql's \e command (Tom Lane)

When exiting the editor, if the query doesn't end with a semicolon or \g, the query buffer contents
will now be displayed.

• Add \warn command to psql (David Fetter)

This is like \echo except that the text is sent to stderr instead of stdout.
• Add the PostgreSQL home page to command-line --help output (Peter Eisentraut)

E.17.3.8.2. pgbench

• Allow pgbench to partition its “accounts” table (Fabien Coelho)

This allows performance testing of partitioning.
• Add pgbench command \aset, which behaves like \gset, but for multiple queries (Fabien Coelho)
• Allow pgbench to generate its initial data server-side, rather than client-side (Fabien Coelho)
• Allow pgbench to show script contents using option --show-script (Fabien Coelho)

E.17.3.9. Server Applications
• Generate backup manifests for base backups, and verify them (Robert Haas)

A new tool pg_verifybackup can verify backups.
• Have pg_basebackup estimate the total backup size by default (Fujii Masao)

This computation allows pg_stat_progress_basebackup to show progress. If that is not needed, it
can be disabled by using the --no-estimate-size option. Previously, this computation happened
only if the --progress option was used.

• Add an option to pg_rewind to configure standbys (Paul Guo, Jimmy Yih, Ashwin Agrawal)

This matches pg_basebackup's --write-recovery-conf option.

2172

Release Notes

• Allow pg_rewind to use the target cluster's restore_command to retrieve needed WAL (Alexey
Kondratov)

This is enabled using the -c/--restore-target-wal option.
• Have pg_rewind automatically run crash recovery before rewinding (Paul Guo, Jimmy Yih, Ashwin

Agrawal)

This can be disabled by using --no-ensure-shutdown.
• Increase the PREPARE TRANSACTION-related information reported by pg_waldump (Fujii Masao)
• Add pg_waldump option --quiet to suppress non-error output (Andres Freund, Robert Haas)
• Add pg_dump option --include-foreign-data to dump data from foreign servers (Luis Carril)
• Allow vacuum commands run by vacuumdb to operate in parallel mode (Masahiko Sawada)

This is enabled with the new --parallel option.
• Allow reindexdb to operate in parallel (Julien Rouhaud)

Parallel mode is enabled with the new --jobs option.
• Allow dropdb to disconnect sessions using the target database, allowing the drop to succeed (Pavel

Stehule)

This is enabled with the -f option.
• Remove --adduser and --no-adduser from createuser (Alexander Lakhin)

The long-supported preferred options for this are called --superuser and --no-superuser.
• Use the directory of the pg_upgrade program as the default --new-bindir setting when running

pg_upgrade (Daniel Gustafsson)

E.17.3.10. Documentation
• Add a glossary to the documentation (Corey Huinker, Jürgen Purtz, Roger Harkavy, Álvaro Herrera)
• Reformat tables containing function and operator information for better clarity (Tom Lane)
• Upgrade to use DocBook 4.5 (Peter Eisentraut)

E.17.3.11. Source Code
• Add support for building on Visual Studio 2019 (Haribabu Kommi)
• Add build support for MSYS2 (Peter Eisentraut)
• Add compare_exchange and fetch_add assembly language code for Power PC compilers (Noah

Misch)
• Update Snowball stemmer dictionaries used by full text search (Panagiotis Mavrogiorgos)

This adds Greek stemming and improves Danish and French stemming.
• Remove support for Windows 2000 (Michael Paquier)
• Remove support for non-ELF BSD systems (Peter Eisentraut)
• Remove support for Python versions 2.5.X and earlier (Peter Eisentraut)
• Remove support for OpenSSL 0.9.8 and 1.0.0 (Michael Paquier)
• Remove configure options --disable-float8-byval and --disable-float4-byval (Peter

Eisentraut)

These were needed for compatibility with some version-zero C functions, but those are no longer
supported.

• Pass the query string to planner hook functions (Pascal Legrand, Julien Rouhaud)

2173

Release Notes

• Add TRUNCATE command hook (Yuli Khodorkovskiy)
• Add TLS init hook (Andrew Dunstan)
• Allow building with no predefined Unix-domain socket directory (Peter Eisentraut)
• Reduce the probability of SysV resource key collision on Unix platforms (Tom Lane)
• Use operating system functions to reliably erase memory that contains sensitive information (Peter

Eisentraut)

For example, this is used for clearing passwords stored in memory.
• Add headerscheck script to test C header-file compatibility (Tom Lane)
• Implement internal lists as arrays, rather than a chain of cells (Tom Lane)

This improves performance for queries that access many objects.
• Change the API for TS_execute() (Tom Lane, Pavel Borisov)

TS_execute callbacks must now provide ternary (yes/no/maybe) logic. Calculating NOT queries
accurately is now the default.

E.17.3.12. Additional Modules
• Allow extensions to be specified as trusted (Tom Lane)

Such extensions can be installed in a database by users with database-level CREATE privileges, even
if they are not superusers. This change also removes the pg_pltemplate system catalog.

• Allow non-superusers to connect to postgres_fdw foreign servers without using a password (Craig
Ringer)

Specifically, allow a superuser to set password_required to false for a user mapping. Care must
still be taken to prevent non-superusers from using superuser credentials to connect to the foreign
server.

• Allow postgres_fdw to use certificate authentication (Craig Ringer)

Different users can use different certificates.
• Allow sepgsql to control access to the TRUNCATE command (Yuli Khodorkovskiy)
• Add extension bool_plperl which transforms SQL booleans to/from PL/Perl booleans (Ivan

Panchenko)
• Have pg_stat_statements treat SELECT ... FOR UPDATE commands as distinct from those without

FOR UPDATE (Andrew Gierth, Vik Fearing)
• Allow pg_stat_statements to optionally track the planning time of statements (Julien Rouhaud,

Pascal Legrand, Thomas Munro, Fujii Masao)

Previously only execution time was tracked.
• Overhaul ltree's lquery syntax to treat NOT (!) more logically (Filip Rembialkowski, Tom Lane, Nikita

Glukhov)

Also allow non-* queries to use a numeric range ({}) of matches.
• Add support for binary I/O of ltree, lquery, and ltxtquery types (Nino Floris)
• Add an option to dict_int to ignore the sign of integers (Jeff Janes)
• Add adminpack function pg_file_sync() to allow fsync'ing a file (Fujii Masao)
• Add pageinspect functions to output t_infomask/t_infomask2 values in human-readable format

(Craig Ringer, Sawada Masahiko, Michael Paquier)
• Add B-tree index de-duplication processing columns to pageinspect output (Peter Geoghegan)

2174

Release Notes

E.17.4. Acknowledgments
The following individuals (in alphabetical order) have contributed to this release as patch authors,
committers, reviewers, testers, or reporters of issues.

Abhijit Menon-Sen
Adam Lee
Adam Scott
Adé Heyward
Adrien Nayrat
Ahsan Hadi
Alastair McKinley
Aleksandr Parfenov
Alex Aktsipetrov
Alex Macy
Alex Shulgin
Alexander Korotkov
Alexander Kukushkin
Alexander Kuzmenkov
Alexander Lakhin
Alexey Bashtanov
Alexey Kondratov
Álvaro Herrera
Amit Kapila
Amit Khandekar
Amit Langote
Amul Sul
Anastasia Lubennikova
Andreas Joseph Krogh
Andreas Karlsson
Andreas Kunert
Andreas Seltenreich
Andrei Zubkov
Andres Freund
Andrew Bille
Andrew Dunstan
Andrew Gierth
Andrey Borodin
Andrey Klychkov
Andrey Lepikhov
Anna Akenteva
Anna Endo
Anthony Nowocien
Anton Vlasov
Antonin Houska
Ants Aasma
Arne Roland
Arnold Müller
Arseny Sher
Arthur Nascimento
Arthur Zakirov
Ashutosh Bapat
Ashutosh Sharma
Ashwin Agrawal
Asif Rehman
Asim Praveen
Atsushi Torikoshi
Augustinas Jokubauskas

2175

Release Notes

Austin Drenski
Basil Bourque
Beena Emerson
Ben Cornett
Benjie Gillam
Benoît Lobréau
Bernd Helmle
Bharath Rupireddy
Bhargav Kamineni
Binguo Bao
Brad DeJong
Brandur Leach
Brent Bates
Brian Williams
Bruce Momjian
Cameron Ezell
Cary Huang
Chapman Flack
Charles Offenbacher
Chen Huajun
Chenyang Lu
Chris Bandy
Chris Travers
Christoph Berg
Christophe Courtois
Corey Huinker
Craig Ringer
Cuiping Lin
Dagfinn Ilmari Mannsåker
Daniel Fiori
Daniel Gustafsson
Daniel Vérité
Daniel Westermann
Darafei Praliaskouski
Daryl Waycott
Dave Cramer
David Christensen
David Fetter
David G. Johnston
David Gilman
David Harper
David Rowley
David Steele
David Zhang
Davinder Singh
Dean Rasheed
Denis Stuchalin
Dent John
Didier Gautheron
Dilip Kumar
Dmitry Belyavsky
Dmitry Dolgov
Dmitry Ivanov
Dmitry Telpt
Dmitry Uspenskiy
Dominik Czarnota
Dongming Liu
Ed Morley

2176

Release Notes

Edmund Horner
Emre Hasegeli
Eric Gillum
Erik Rijkers
Erwin Brandstetter
Ethan Waldo
Etsuro Fujita
Eugen Konkov
Euler Taveira
Fabien Coelho
Fabrízio de Royes Mello
Felix Lechner
Filip Janus
Filip Rembialkowski
Frank Gagnepain
Georgios Kokolatos
Gilles Darold
Greg Nancarrow
Grigory Smolkin
Guancheng Luo
Guillaume Lelarge
Hadi Moshayedi
Haiying Tang
Hamid Akhtar
Hans Buschmann
Hao Wu
Haribabu Kommi
Haruka Takatsuka
Heath Lord
Heikki Linnakangas
Himanshu Upadhyaya
Hironobu Suzuki
Hugh McMaster
Hugh Ranalli
Hugh Wang
Ian Barwick
Ibrar Ahmed
Ildar Musin
Insung Moon
Ireneusz Pluta
Isaac Morland
Ivan Kartyshov
Ivan Panchenko
Ivan Sergio Borgonovo
Jaime Casanova
James Coleman
James Gray
James Hunter
James Inform
James Lucas
Jan Mussler
Jaroslav Sivy
Jeevan Chalke
Jeevan Ladhe
Jeff Davis
Jeff Janes
Jehan-Guillaume de Rorthais
Jeremy Evans

2177

Release Notes

Jeremy Schneider
Jeremy Smith
Jerry Sievers
Jesper Pedersen
Jesse Kinkead
Jesse Zhang
Jian Zhang
Jie Zhang
Jim Nasby
Jimmy Yih
Jobin Augustine
Joe Conway
John Hsu
John Naylor
Jon Jensen
Jonathan Katz
Jorge Gustavo Rocha
Josef Šimánek
Joseph Nahmias
Juan José Santamaría Flecha
Julian Backes
Julien Rouhaud
Jürgen Purtz
Justin King
Justin Pryzby
Karl O. Pinc
Keisuke Kuroda
Keith Fiske
Kelly Min
Ken Tanzer
Kirill Bychik
Kirk Jamison
Konstantin Knizhnik
Kuntal Ghosh
Kyle Kingsbury
Kyotaro Horiguchi
Lars Kanis
Laurenz Albe
Leif Gunnar Erlandsen
Li Japin
Liudmila Mantrova
Lucas Viecelli
Luis M. Carril
Lukáš Sobotka
Maciek Sakrejda
Magnus Hagander
Mahadevan Ramachandran
Mahendra Singh Thalor
Manuel Rigger
Marc Munro
Marcos David
Marina Polyakova
Mark Dilger
Mark Wong
Marko Tiikkaja
Markus Winand
Marti Raudsepp
Martijn van Oosterhout

2178

Release Notes

Masahiko Sawada
Masahiro Ikeda
Masao Fujii
Mateusz Guzik
Matt Jibson
Matteo Beccati
Maxence Ahlouche
Melanie Plageman
Michael Banck
Michael Luo
Michael Meskes
Michael Paquier
Michail Nikolaev
Mike Palmiotto
Mithun Cy
Movead Li
Nathan Bossart
Nazli Ugur Koyluoglu
Neha Sharma
Nicola Contu
Nicolás Alvarez
Nikhil Sontakke
Nikita Glukhov
Nikolay Shaplov
Nino Floris
Noah Misch
Noriyoshi Shinoda
Oleg Bartunov
Oleg Samoilov
Oleksii Kliukin
Ondrej Jirman
Panagiotis Mavrogiorgos
Pascal Legrand
Patrick McHardy
Paul Guo
Paul Jungwirth
Paul Ramsey
Paul Sivash
Paul Spencer
Pavan Deolasee
Pavel Borisov
Pavel Luzanov
Pavel Stehule
Pavel Suderevsky
Peifeng Qiu
Pengzhou Tang
Peter Billen
Peter Eisentraut
Peter Geoghegan
Peter Smith
Petr Fedorov
Petr Jelínek
Phil Bayer
Philip Semanchuk
Philippe Beaudoin
Pierre Ducroquet
Pierre Giraud
Piotr Gabriel Kosinski

2179

Release Notes

Piotr Wlodarczyk
Prabhat Sahu
Quan Zongliang
Quentin Rameau
Rafael Castro
Rafia Sabih
Raj Mohite
Rajkumar Raghuwanshi
Ramanarayana M
Ranier Vilela
Rares Salcudean
Raúl Marín Rodríguez
Raymond Martin
Reijo Suhonen
Richard Guo
Robert Ford
Robert Haas
Robert Kahlert
Robert Treat
Robin Abbi
Robins Tharakan
Roger Harkavy
Roman Peshkurov
Rui DeSousa
Rui Hai Jiang
Rushabh Lathia
Ryan Lambert
Ryohei Takahashi
Scott Ribe
Sean Farrell
Sehrope Sarkuni
Sergei Agalakov
Sergei Kornilov
Sergey Cherkashin
Shawn Debnath
Shawn Wang
Shay Rojansky
Shenhao Wang
Simon Riggs
Slawomir Chodnicki
Soumyadeep Chakraborty
Stéphane Lorek
Stephen Frost
Steve Rogerson
Steven Winfield
Surafel Temesgen
Suraj Kharage
Takanori Asaba
Takao Fujii
Takayuki Tsunakawa
Takuma Hoshiai
Tatsuhito Kasahara
Tatsuo Ishii
Tatsuro Yamada
Taylor Vesely
Teodor Sigaev
Tham Nguyen
Thibaut Madelaine

2180

Release Notes

Thom Brown
Thomas Kellerer
Thomas Munro
Tiago Anastacio
Tim Clarke
Tim Möhlmann
Tom Ellis
Tom Gottfried
Tom Lane
Tomas Vondra
Tuomas Leikola
Tushar Ahuja
Victor Wagner
Victor Yegorov
Vignesh C
Vik Fearing
Vinay Banakar
Vladimir Leskov
Vladimir Sitnikov
Vyacheslav Makarov
Vyacheslav Shablistyy
Will Leinweber
William Crowell
Wyatt Alt
Yang Xiao
Yaroslav Schekin
Yi Huang
Yigong Hu
Yoann La Cancellera
Yoshikazu Imai
Yu Kimura
Yugo Nagata
Yuli Khodorkovskiy
Yusuke Egashira
Yuya Watari
Yuzuko Hosoya
ZhenHua Cai

E.18. Prior Releases
Release notes for prior versions can be found online. At the time of Postgres Pro Standard 13 release,
these prior versions were supported:
• Postgres Pro Standard 12: https://postgrespro.com/docs/postgrespro/12/release.html
• Postgres Pro Standard 11: https://postgrespro.com/docs/postgrespro/11/release.html
• Postgres Pro Standard 10: https://postgrespro.com/docs/postgrespro/10/release.html
• Postgres Pro Standard 9.6: https://postgrespro.com/docs/postgrespro/9.6/release.html
• Postgres Pro Standard 9.5: https://postgrespro.com/docs/postgrespro/9.5/release.html

2181

https://postgrespro.com/docs/postgrespro/12/release.html
https://postgrespro.com/docs/postgrespro/11/release.html
https://postgrespro.com/docs/postgrespro/10/release.html
https://postgrespro.com/docs/postgrespro/9.6/release.html
https://postgrespro.com/docs/postgrespro/9.5/release.html

Appendix F. Additional Supplied
Modules

This appendix and the next one contain information regarding additional modules available in the
Postgres Pro Standard distribution. These include porting tools, analysis utilities, and plug-in features
that are not part of the core Postgres Pro system, mainly because they address a limited audience or are
too experimental to be part of the main source tree. This does not preclude their usefulness.

This appendix covers the extensions and other server plug-in modules. Appendix G covers the utility
programs.

In Postgres Pro Standard, these modules are made available as a separate subpackage postgrespro-
std-13-contrib.

Many modules supply new user-defined functions, operators, or types. To make use of one of these
modules, after you have installed the code you need to register the new SQL objects in the database
system. This is done by executing a CREATE EXTENSION command. In a fresh database, you can simply
do
CREATE EXTENSION module_name;

This command registers the new SQL objects in the current database only, so you need to run it in
each database that you want the module's facilities to be available in. Alternatively, run it in database
template1 so that the extension will be copied into subsequently-created databases by default.

For all these modules, CREATE EXTENSION must be run by a database superuser, unless the module is
considered “trusted”, in which case it can be run by any user who has CREATE privilege on the current
database. Modules that are trusted are identified as such in the sections that follow. Generally, trusted
modules are ones that cannot provide access to outside-the-database functionality.

Many modules allow you to install their objects in a schema of your choice. To do that, add SCHEMA
schema_name to the CREATE EXTENSION command. By default, the objects will be placed in your current
creation target schema, which in turn defaults to public.

Note, however, that some of these modules are not “extensions” in this sense, but are loaded into the
server in some other way, for instance by way of shared_preload_libraries. See the documentation of
each module for details.

F.1. adminpack
adminpack provides a number of support functions which pgAdmin and other administration and
management tools can use to provide additional functionality, such as remote management of server log
files. Use of all these functions is only allowed to the superuser by default but may be allowed to other
users by using the GRANT command.

The functions shown in Table F.1 provide write access to files on the machine hosting the server. (See
also the functions in Table 9.95, which provide read-only access.) Only files within the database cluster
directory can be accessed, unless the user is a superuser or given one of the pg_read_server_files, or
pg_write_server_files roles, as appropriate for the function, but either a relative or absolute path is
allowable.

Table F.1. adminpack Functions

Function
Description

pg_catalog.pg_file_write (filename text, data text, append boolean) → bigint
Writes, or appends to, a text file.

pg_catalog.pg_file_sync (filename text) → void

2182

Additional Supplied Modules

Function
Description
Flushes a file or directory to disk.

pg_catalog.pg_file_rename (oldname text, newname text [, archivename text]) → boolean
Renames a file.

pg_catalog.pg_file_unlink (filename text) → boolean
Removes a file.

pg_catalog.pg_logdir_ls () → setof record
Lists the log files in the log_directory directory.

pg_file_write writes the specified data into the file named by filename. If append is false, the file must
not already exist. If append is true, the file can already exist, and will be appended to if so. Returns the
number of bytes written.

pg_file_sync fsyncs the specified file or directory named by filename. An error is thrown on failure
(e.g., the specified file is not present). Note that data_sync_retry has no effect on this function, and
therefore a PANIC-level error will not be raised even on failure to flush database files.

pg_file_rename renames a file. If archivename is omitted or NULL, it simply renames oldname to
newname (which must not already exist). If archivename is provided, it first renames newname to
archivename (which must not already exist), and then renames oldname to newname. In event of failure
of the second rename step, it will try to rename archivename back to newname before reporting the error.
Returns true on success, false if the source file(s) are not present or not writable; other cases throw
errors.

pg_file_unlink removes the specified file. Returns true on success, false if the specified file is not
present or the unlink() call fails; other cases throw errors.

pg_logdir_ls returns the start timestamps and path names of all the log files in the log_directory
directory. The log_filename parameter must have its default setting (postgresql-%Y-%m-%d_%H%M%S.log)
to use this function.

F.2. amcheck
The amcheck module provides functions that allow you to verify the logical consistency of the structure
of relations. If the structure appears to be valid, no error is raised.

The functions verify various invariants in the structure of the representation of particular relations. The
correctness of the access method functions behind index scans and other important operations relies
on these invariants always holding. For example, certain functions verify, among other things, that all
B-Tree pages have items in “logical” order (e.g., for B-Tree indexes on text, index tuples should be in
collated lexical order). If that particular invariant somehow fails to hold, we can expect binary searches
on the affected page to incorrectly guide index scans, resulting in wrong answers to SQL queries.

Verification is performed using the same procedures as those used by index scans themselves, which
may be user-defined operator class code. For example, B-Tree index verification relies on comparisons
made with one or more B-Tree support function 1 routines. See Section 35.16.3 for details of operator
class support functions.

amcheck functions may only be used by superusers.

F.2.1. Functions
bt_index_check(index regclass, heapallindexed boolean) returns void

bt_index_check tests that its target, a B-Tree index, respects a variety of invariants. Example usage:

2183

Additional Supplied Modules

test=# SELECT bt_index_check(index => c.oid, heapallindexed => i.indisunique),
 c.relname,
 c.relpages
FROM pg_index i
JOIN pg_opclass op ON i.indclass[0] = op.oid
JOIN pg_am am ON op.opcmethod = am.oid
JOIN pg_class c ON i.indexrelid = c.oid
JOIN pg_namespace n ON c.relnamespace = n.oid
WHERE am.amname = 'btree' AND n.nspname = 'pg_catalog'
-- Don't check temp tables, which may be from another session:
AND c.relpersistence != 't'
-- Function may throw an error when this is omitted:
AND c.relkind = 'i' AND i.indisready AND i.indisvalid
ORDER BY c.relpages DESC LIMIT 10;
 bt_index_check | relname | relpages
----------------+---------------------------------+----------
 | pg_depend_reference_index | 43
 | pg_depend_depender_index | 40
 | pg_proc_proname_args_nsp_index | 31
 | pg_description_o_c_o_index | 21
 | pg_attribute_relid_attnam_index | 14
 | pg_proc_oid_index | 10
 | pg_attribute_relid_attnum_index | 9
 | pg_amproc_fam_proc_index | 5
 | pg_amop_opr_fam_index | 5
 | pg_amop_fam_strat_index | 5
(10 rows)

This example shows a session that performs verification of the 10 largest catalog indexes in the
database “test”. Verification of the presence of heap tuples as index tuples is requested for the subset
that are unique indexes. Since no error is raised, all indexes tested appear to be logically consistent.
Naturally, this query could easily be changed to call bt_index_check for every index in the database
where verification is supported.

bt_index_check acquires an AccessShareLock on the target index and the heap relation it belongs
to. This lock mode is the same lock mode acquired on relations by simple SELECT statements.
bt_index_check does not verify invariants that span child/parent relationships, but will verify
the presence of all heap tuples as index tuples within the index when heapallindexed is true.
When a routine, lightweight test for corruption is required in a live production environment, using
bt_index_check often provides the best trade-off between thoroughness of verification and limiting
the impact on application performance and availability.

bt_index_parent_check(index regclass, heapallindexed boolean, rootdescend boolean)
returns void

bt_index_parent_check tests that its target, a B-Tree index, respects a variety of invariants.
Optionally, when the heapallindexed argument is true, the function verifies the presence of all
heap tuples that should be found within the index. When the optional rootdescend argument is
true, verification re-finds tuples on the leaf level by performing a new search from the root page
for each tuple. The checks that can be performed by bt_index_parent_check are a superset of the
checks that can be performed by bt_index_check. bt_index_parent_check can be thought of as
a more thorough variant of bt_index_check: unlike bt_index_check, bt_index_parent_check also
checks invariants that span parent/child relationships, including checking that there are no missing
downlinks in the index structure. bt_index_parent_check follows the general convention of raising
an error if it finds a logical inconsistency or other problem.

A ShareLock is required on the target index by bt_index_parent_check (a ShareLock is also acquired
on the heap relation). These locks prevent concurrent data modification from INSERT, UPDATE, and
DELETE commands. The locks also prevent the underlying relation from being concurrently processed

2184

Additional Supplied Modules

by VACUUM, as well as all other utility commands. Note that the function holds locks only while running,
not for the entire transaction.

bt_index_parent_check's additional verification is more likely to detect various pathological cases.
These cases may involve an incorrectly implemented B-Tree operator class used by the index that is
checked, or, hypothetically, undiscovered bugs in the underlying B-Tree index access method code.
Note that bt_index_parent_check cannot be used when Hot Standby mode is enabled (i.e., on read-
only physical replicas), unlike bt_index_check.

Tip
bt_index_check and bt_index_parent_check both output log messages about the verification
process at DEBUG1 and DEBUG2 severity levels. These messages provide detailed information about
the verification process that may be of interest to PostgreSQL developers. Advanced users may
also find this information helpful, since it provides additional context should verification actually
detect an inconsistency. Running:

SET client_min_messages = DEBUG1;

in an interactive psql session before running a verification query will display messages about the
progress of verification with a manageable level of detail.

F.2.2. Optional heapallindexed Verification
When the heapallindexed argument to verification functions is true, an additional phase of verification
is performed against the table associated with the target index relation. This consists of a “dummy”
CREATE INDEX operation, which checks for the presence of all hypothetical new index tuples against a
temporary, in-memory summarizing structure (this is built when needed during the basic first phase of
verification). The summarizing structure “fingerprints” every tuple found within the target index. The
high level principle behind heapallindexed verification is that a new index that is equivalent to the
existing, target index must only have entries that can be found in the existing structure.

The additional heapallindexed phase adds significant overhead: verification will typically take several
times longer. However, there is no change to the relation-level locks acquired when heapallindexed
verification is performed.

The summarizing structure is bound in size by maintenance_work_mem. In order to ensure that there is
no more than a 2% probability of failure to detect an inconsistency for each heap tuple that should be
represented in the index, approximately 2 bytes of memory are needed per tuple. As less memory is made
available per tuple, the probability of missing an inconsistency slowly increases. This approach limits the
overhead of verification significantly, while only slightly reducing the probability of detecting a problem,
especially for installations where verification is treated as a routine maintenance task. Any single absent
or malformed tuple has a new opportunity to be detected with each new verification attempt.

F.2.3. Using amcheck Effectively
amcheck can be effective at detecting various types of failure modes that data page checksums will
always fail to catch. These include:

• Structural inconsistencies caused by incorrect operator class implementations.

This includes issues caused by the comparison rules of operating system collations changing.
Comparisons of datums of a collatable type like text must be immutable (just as all comparisons
used for B-Tree index scans must be immutable), which implies that operating system collation
rules must never change. Though rare, updates to operating system collation rules can cause
these issues. More commonly, an inconsistency in the collation order between a master server
and a standby server is implicated, possibly because the major operating system version in use is

2185

Additional Supplied Modules

inconsistent. Such inconsistencies will generally only arise on standby servers, and so can generally
only be detected on standby servers.

If a problem like this arises, it may not affect each individual index that is ordered using an
affected collation, simply because indexed values might happen to have the same absolute ordering
regardless of the behavioral inconsistency. See Section 22.1 and Section 22.2 for further details
about how Postgres Pro uses operating system locales and collations.

• Structural inconsistencies between indexes and the heap relations that are indexed (when
heapallindexed verification is performed).

There is no cross-checking of indexes against their heap relation during normal operation.
Symptoms of heap corruption can be subtle.

• Corruption caused by hypothetical undiscovered bugs in the underlying Postgres Pro access
method code, sort code, or transaction management code.

Automatic verification of the structural integrity of indexes plays a role in the general testing
of new or proposed Postgres Pro features that could plausibly allow a logical inconsistency to
be introduced. Verification of table structure and associated visibility and transaction status
information plays a similar role. One obvious testing strategy is to call amcheck functions
continuously when running the standard regression tests.

• File system or storage subsystem faults where checksums happen to simply not be enabled.

Note that amcheck examines a page as represented in some shared memory buffer at the time of
verification if there is only a shared buffer hit when accessing the block. Consequently, amcheck
does not necessarily examine data read from the file system at the time of verification. Note that
when checksums are enabled, amcheck may raise an error due to a checksum failure when a
corrupt block is read into a buffer.

• Corruption caused by faulty RAM, or the broader memory subsystem.

Postgres Pro does not protect against correctable memory errors and it is assumed you will
operate using RAM that uses industry standard Error Correcting Codes (ECC) or better protection.
However, ECC memory is typically only immune to single-bit errors, and should not be assumed to
provide absolute protection against failures that result in memory corruption.

When heapallindexed verification is performed, there is generally a greatly increased chance of
detecting single-bit errors, since strict binary equality is tested, and the indexed attributes within
the heap are tested.

In general, amcheck can only prove the presence of corruption; it cannot prove its absence.

F.2.4. Repairing Corruption
No error concerning corruption raised by amcheck should ever be a false positive. amcheck raises errors
in the event of conditions that, by definition, should never happen, and so careful analysis of amcheck
errors is often required.

There is no general method of repairing problems that amcheck detects. An explanation for the root cause
of an invariant violation should be sought. pageinspect may play a useful role in diagnosing corruption
that amcheck detects. A REINDEX may not be effective in repairing corruption.

F.3. auth_delay
auth_delay causes the server to pause briefly before reporting authentication failure, to make brute-
force attacks on database passwords more difficult. Note that it does nothing to prevent denial-of-service
attacks, and may even exacerbate them, since processes that are waiting before reporting authentication
failure will still consume connection slots.

In order to function, this module must be loaded via shared_preload_libraries in postgresql.conf.

2186

Additional Supplied Modules

F.3.1. Configuration Parameters
auth_delay.milliseconds (int)

The number of milliseconds to wait before reporting an authentication failure. The default is 0.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'auth_delay'

auth_delay.milliseconds = '500'

F.3.2. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.4. auto_explain
The auto_explain module provides a means for logging execution plans of slow statements
automatically, without having to run EXPLAIN by hand. This is especially helpful for tracking down un-
optimized queries in large applications.

The module provides no SQL-accessible functions. To use it, simply load it into the server. You can load
it into an individual session:

LOAD 'auto_explain';

(You must be superuser to do that.) More typical usage is to preload it into some or all sessions by
including auto_explain in session_preload_libraries or shared_preload_libraries in postgresql.conf.
Then you can track unexpectedly slow queries no matter when they happen. Of course there is a price
in overhead for that.

F.4.1. Configuration Parameters
There are several configuration parameters that control the behavior of auto_explain. Note that the
default behavior is to do nothing, so you must set at least auto_explain.log_min_duration if you want
any results.

auto_explain.log_min_duration (integer)

auto_explain.log_min_duration is the minimum statement execution time, in milliseconds, that
will cause the statement's plan to be logged. Setting this to 0 logs all plans. -1 (the default) disables
logging of plans. For example, if you set it to 250ms then all statements that run 250ms or longer will
be logged. Only superusers can change this setting.

auto_explain.log_analyze (boolean)

auto_explain.log_analyze causes EXPLAIN ANALYZE output, rather than just EXPLAIN output, to
be printed when an execution plan is logged. This parameter is off by default. Only superusers can
change this setting.

Note
When this parameter is on, per-plan-node timing occurs for all statements executed, whether
or not they run long enough to actually get logged. This can have an extremely negative impact
on performance. Turning off auto_explain.log_timing ameliorates the performance cost, at
the price of obtaining less information.

2187

Additional Supplied Modules

auto_explain.log_buffers (boolean)
auto_explain.log_buffers controls whether buffer usage statistics are printed when an execution
plan is logged; it's equivalent to the BUFFERS option of EXPLAIN. This parameter has no effect unless
auto_explain.log_analyze is enabled. This parameter is off by default. Only superusers can change
this setting.

auto_explain.log_wal (boolean)
auto_explain.log_wal controls whether WAL usage statistics are printed when an execution
plan is logged; it's equivalent to the WAL option of EXPLAIN. This parameter has no effect unless
auto_explain.log_analyze is enabled. This parameter is off by default. Only superusers can change
this setting.

auto_explain.log_timing (boolean)
auto_explain.log_timing controls whether per-node timing information is printed when an
execution plan is logged; it's equivalent to the TIMING option of EXPLAIN. The overhead of repeatedly
reading the system clock can slow down queries significantly on some systems, so it may be useful
to set this parameter to off when only actual row counts, and not exact times, are needed. This
parameter has no effect unless auto_explain.log_analyze is enabled. This parameter is on by
default. Only superusers can change this setting.

auto_explain.log_triggers (boolean)
auto_explain.log_triggers causes trigger execution statistics to be included when an execution
plan is logged. This parameter has no effect unless auto_explain.log_analyze is enabled. This
parameter is off by default. Only superusers can change this setting.

auto_explain.log_verbose (boolean)
auto_explain.log_verbose controls whether verbose details are printed when an execution plan
is logged; it's equivalent to the VERBOSE option of EXPLAIN. This parameter is off by default. Only
superusers can change this setting.

auto_explain.log_settings (boolean)
auto_explain.log_settings controls whether information about modified configuration options is
printed when an execution plan is logged. Only options affecting query planning with value different
from the built-in default value are included in the output. This parameter is off by default. Only
superusers can change this setting.

auto_explain.log_format (enum)
auto_explain.log_format selects the EXPLAIN output format to be used. The allowed values are
text, xml, json, and yaml. The default is text. Only superusers can change this setting.

auto_explain.log_level (enum)
auto_explain.log_level selects the log level at which auto_explain will log the query plan. Valid
values are DEBUG5, DEBUG4, DEBUG3, DEBUG2, DEBUG1, INFO, NOTICE, WARNING, and LOG. The default is
LOG. Only superusers can change this setting.

auto_explain.log_nested_statements (boolean)
auto_explain.log_nested_statements causes nested statements (statements executed inside a
function) to be considered for logging. When it is off, only top-level query plans are logged. This
parameter is off by default. Only superusers can change this setting.

auto_explain.sample_rate (real)
auto_explain.sample_rate causes auto_explain to only explain a fraction of the statements in each
session. The default is 1, meaning explain all the queries. In case of nested statements, either all will
be explained or none. Only superusers can change this setting.

2188

Additional Supplied Modules

In ordinary usage, these parameters are set in postgresql.conf, although superusers can alter them
on-the-fly within their own sessions. Typical usage might be:

postgresql.conf
session_preload_libraries = 'auto_explain'

auto_explain.log_min_duration = '3s'

F.4.2. Example
postgres=# LOAD 'auto_explain';
postgres=# SET auto_explain.log_min_duration = 0;
postgres=# SET auto_explain.log_analyze = true;
postgres=# SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;

This might produce log output such as:

LOG: duration: 0.196 ms planning: 0.548 ms plan:
 Query Text: SELECT count(*)
 FROM pg_class, pg_index
 WHERE oid = indrelid AND indisunique;
 Aggregate (cost=16.79..16.80 rows=1 width=0) (actual time=3.626..3.627 rows=1
 loops=1)
 -> Hash Join (cost=4.17..16.55 rows=92 width=0) (actual time=3.349..3.594 rows=92
 loops=1)
 Hash Cond: (pg_class.oid = pg_index.indrelid)
 -> Seq Scan on pg_class (cost=0.00..9.55 rows=255 width=4) (actual
 time=0.016..0.140 rows=255 loops=1)
 -> Hash (cost=3.02..3.02 rows=92 width=4) (actual time=3.238..3.238 rows=92
 loops=1)
 Buckets: 1024 Batches: 1 Memory Usage: 4kB
 -> Seq Scan on pg_index (cost=0.00..3.02 rows=92 width=4) (actual
 time=0.008..3.187 rows=92 loops=1)
 Filter: indisunique

Note that Postgres Pro added a new field to the output to show planning time.

F.4.3. Authors
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>

Postgres Professional, Moscow, Russia

F.5. bloom
bloom provides an index access method based on Bloom filters.

A Bloom filter is a space-efficient data structure that is used to test whether an element is a member of a
set. In the case of an index access method, it allows fast exclusion of non-matching tuples via signatures
whose size is determined at index creation.

A signature is a lossy representation of the indexed attribute(s), and as such is prone to reporting false
positives; that is, it may be reported that an element is in the set, when it is not. So index search results
must always be rechecked using the actual attribute values from the heap entry. Larger signatures
reduce the odds of a false positive and thus reduce the number of useless heap visits, but of course also
make the index larger and hence slower to scan.

This type of index is most useful when a table has many attributes and queries test arbitrary combinations
of them. A traditional btree index is faster than a bloom index, but it can require many btree indexes to

2189

https://en.wikipedia.org/wiki/Bloom_filter

Additional Supplied Modules

support all possible queries where one needs only a single bloom index. Note however that bloom indexes
only support equality queries, whereas btree indexes can also perform inequality and range searches.

F.5.1. Parameters
A bloom index accepts the following parameters in its WITH clause:

length

Length of each signature (index entry) in bits. It is rounded up to the nearest multiple of 16. The
default is 80 bits and the maximum is 4096.

col1 — col32

Number of bits generated for each index column. Each parameter's name refers to the number of the
index column that it controls. The default is 2 bits and the maximum is 4095. Parameters for index
columns not actually used are ignored.

F.5.2. Examples
This is an example of creating a bloom index:

CREATE INDEX bloomidx ON tbloom USING bloom (i1,i2,i3)
 WITH (length=80, col1=2, col2=2, col3=4);

The index is created with a signature length of 80 bits, with attributes i1 and i2 mapped to 2 bits, and
attribute i3 mapped to 4 bits. We could have omitted the length, col1, and col2 specifications since
those have the default values.

Here is a more complete example of bloom index definition and usage, as well as a comparison with
equivalent btree indexes. The bloom index is considerably smaller than the btree index, and can perform
better.

=# CREATE TABLE tbloom AS
 SELECT
 (random() * 1000000)::int as i1,
 (random() * 1000000)::int as i2,
 (random() * 1000000)::int as i3,
 (random() * 1000000)::int as i4,
 (random() * 1000000)::int as i5,
 (random() * 1000000)::int as i6
 FROM
 generate_series(1,10000000);
SELECT 10000000

A sequential scan over this large table takes a long time:
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

 Seq Scan on tbloom (cost=0.00..2137.14 rows=3 width=24) (actual time=15.480..15.480
 rows=0 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 100000
 Planning Time: 0.340 ms
 Execution Time: 15.501 ms
(5 rows)

Even with the btree index defined the result will still be a sequential scan:
=# CREATE INDEX btreeidx ON tbloom (i1, i2, i3, i4, i5, i6);

2190

Additional Supplied Modules

CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('btreeidx'));
 pg_size_pretty

 3976 kB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

 Seq Scan on tbloom (cost=0.00..2137.00 rows=2 width=24) (actual time=12.604..12.604
 rows=0 loops=1)
 Filter: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Filter: 100000
 Planning Time: 0.155 ms
 Execution Time: 12.617 ms
(5 rows)

Having the bloom index defined on the table is better than btree in handling this type of search:

=# CREATE INDEX bloomidx ON tbloom USING bloom (i1, i2, i3, i4, i5, i6);
CREATE INDEX
=# SELECT pg_size_pretty(pg_relation_size('bloomidx'));
 pg_size_pretty

 1584 kB
(1 row)
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

--
 Bitmap Heap Scan on tbloom (cost=1792.00..1799.69 rows=2 width=24) (actual
 time=0.384..0.384 rows=0 loops=1)
 Recheck Cond: ((i2 = 898732) AND (i5 = 123451))
 Rows Removed by Index Recheck: 26
 Heap Blocks: exact=26
 -> Bitmap Index Scan on bloomidx (cost=0.00..1792.00 rows=2 width=0) (actual
 time=0.350..0.350 rows=26 loops=1)
 Index Cond: ((i2 = 898732) AND (i5 = 123451))
 Planning Time: 0.122 ms
 Execution Time: 0.407 ms
(8 rows)

Now, the main problem with the btree search is that btree is inefficient when the search conditions do
not constrain the leading index column(s). A better strategy for btree is to create a separate index on
each column. Then the planner will choose something like this:

=# CREATE INDEX btreeidx1 ON tbloom (i1);
CREATE INDEX
=# CREATE INDEX btreeidx2 ON tbloom (i2);
CREATE INDEX
=# CREATE INDEX btreeidx3 ON tbloom (i3);
CREATE INDEX
=# CREATE INDEX btreeidx4 ON tbloom (i4);
CREATE INDEX
=# CREATE INDEX btreeidx5 ON tbloom (i5);
CREATE INDEX

2191

Additional Supplied Modules

=# CREATE INDEX btreeidx6 ON tbloom (i6);
CREATE INDEX
=# EXPLAIN ANALYZE SELECT * FROM tbloom WHERE i2 = 898732 AND i5 = 123451;
 QUERY PLAN

--
 Bitmap Heap Scan on tbloom (cost=24.34..32.03 rows=2 width=24) (actual
 time=0.032..0.033 rows=0 loops=1)
 Recheck Cond: ((i5 = 123451) AND (i2 = 898732))
 -> BitmapAnd (cost=24.34..24.34 rows=2 width=0) (actual time=0.029..0.030 rows=0
 loops=1)
 -> Bitmap Index Scan on btreeidx5 (cost=0.00..12.04 rows=500 width=0)
 (actual time=0.029..0.029 rows=0 loops=1)
 Index Cond: (i5 = 123451)
 -> Bitmap Index Scan on btreeidx2 (cost=0.00..12.04 rows=500 width=0) (never
 executed)
 Index Cond: (i2 = 898732)
 Planning Time: 0.537 ms
 Execution Time: 0.064 ms
(9 rows)

Although this query runs much faster than with either of the single indexes, we pay a penalty in index
size. Each of the single-column btree indexes occupies 2 MB, so the total space needed is 12 MB, eight
times the space used by the bloom index.

F.5.3. Operator Class Interface
An operator class for bloom indexes requires only a hash function for the indexed data type and an
equality operator for searching. This example shows the operator class definition for the text data type:

CREATE OPERATOR CLASS text_ops
DEFAULT FOR TYPE text USING bloom AS
 OPERATOR 1 =(text, text),
 FUNCTION 1 hashtext(text);

F.5.4. Limitations
• Only operator classes for int4 and text are included with the module.
• Only the = operator is supported for search. But it is possible to add support for arrays with union

and intersection operations in the future.
• bloom access method doesn't support UNIQUE indexes.
• bloom access method doesn't support searching for NULL values.

F.5.5. Authors
Teodor Sigaev <teodor@postgrespro.ru>, Postgres Professional, Moscow, Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Postgres Professional, Moscow, Russia

Oleg Bartunov <obartunov@postgrespro.ru>, Postgres Professional, Moscow, Russia

F.6. btree_gin
btree_gin provides sample GIN operator classes that implement B-tree equivalent behavior for the data
types int2, int4, int8, float4, float8, timestamp with time zone, timestamp without time zone,
time with time zone, time without time zone, date, interval, oid, money, "char", varchar, text,
bytea, bit, varbit, macaddr, macaddr8, inet, cidr, uuid, name, bool, bpchar, and all enum types.

2192

Additional Supplied Modules

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
are useful for GIN testing and as a base for developing other GIN operator classes. Also, for queries that
test both a GIN-indexable column and a B-tree-indexable column, it might be more efficient to create a
multicolumn GIN index that uses one of these operator classes than to create two separate indexes that
would have to be combined via bitmap ANDing.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.6.1. Example Usage
CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIN (a);
-- query
SELECT * FROM test WHERE a < 10;

F.6.2. Authors
Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>). See http://
www.sai.msu.su/~megera/oddmuse/index.cgi/Gin for additional information.

F.7. btree_gist
btree_gist provides GiST index operator classes that implement B-tree equivalent behavior for the data
types int2, int4, int8, float4, float8, numeric, timestamp with time zone, timestamp without time
zone, time with time zone, time without time zone, date, interval, oid, money, char, varchar,
text, bytea, bit, varbit, macaddr, macaddr8, inet, cidr, uuid, and all enum types.

In general, these operator classes will not outperform the equivalent standard B-tree index methods, and
they lack one major feature of the standard B-tree code: the ability to enforce uniqueness. However, they
provide some other features that are not available with a B-tree index, as described below. Also, these
operator classes are useful when a multicolumn GiST index is needed, wherein some of the columns are
of data types that are only indexable with GiST but other columns are just simple data types. Lastly, these
operator classes are useful for GiST testing and as a base for developing other GiST operator classes.

In addition to the typical B-tree search operators, btree_gist also provides index support for <> (“not
equals”). This may be useful in combination with an exclusion constraint, as described below.

Also, for data types for which there is a natural distance metric, btree_gist defines a distance operator
<->, and provides GiST index support for nearest-neighbor searches using this operator. Distance
operators are provided for int2, int4, int8, float4, float8, timestamp with time zone, timestamp
without time zone, time without time zone, date, interval, oid, and money.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.7.1. Example Usage
Simple example using btree_gist instead of btree:

CREATE TABLE test (a int4);
-- create index
CREATE INDEX testidx ON test USING GIST (a);
-- query
SELECT * FROM test WHERE a < 10;
-- nearest-neighbor search: find the ten entries closest to "42"
SELECT *, a <-> 42 AS dist FROM test ORDER BY a <-> 42 LIMIT 10;

2193

http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin
http://www.sai.msu.su/~megera/oddmuse/index.cgi/Gin

Additional Supplied Modules

Use an exclusion constraint to enforce the rule that a cage at a zoo can contain only one kind of animal:

=> CREATE TABLE zoo (
 cage INTEGER,
 animal TEXT,
 EXCLUDE USING GIST (cage WITH =, animal WITH <>)
);

=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'zebra');
INSERT 0 1
=> INSERT INTO zoo VALUES(123, 'lion');
ERROR: conflicting key value violates exclusion constraint "zoo_cage_animal_excl"
DETAIL: Key (cage, animal)=(123, lion) conflicts with existing key (cage,
 animal)=(123, zebra).
=> INSERT INTO zoo VALUES(124, 'lion');
INSERT 0 1

F.7.2. Authors
Teodor Sigaev (<teodor@stack.net>), Oleg Bartunov (<oleg@sai.msu.su>), Janko Richter
(<jankorichter@yahoo.de>), and Paul Jungwirth (<pj@illuminatedcomputing.com>). See http://
www.sai.msu.su/~megera/postgres/gist/ for additional information.

F.8. citext
The citext module provides a case-insensitive character string type, citext. Essentially, it internally
calls lower when comparing values. Otherwise, it behaves almost exactly like text.

Tip
Consider using nondeterministic collations (see Section 22.2.2.4) instead of this module. They can
be used for case-insensitive comparisons, accent-insensitive comparisons, and other combinations,
and they handle more Unicode special cases correctly.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.8.1. Rationale
The standard approach to doing case-insensitive matches in Postgres Pro has been to use the lower
function when comparing values, for example

SELECT * FROM tab WHERE lower(col) = LOWER(?);

This works reasonably well, but has a number of drawbacks:

• It makes your SQL statements verbose, and you always have to remember to use lower on both the
column and the query value.

• It won't use an index, unless you create a functional index using lower.

• If you declare a column as UNIQUE or PRIMARY KEY, the implicitly generated index is case-sensitive.
So it's useless for case-insensitive searches, and it won't enforce uniqueness case-insensitively.

The citext data type allows you to eliminate calls to lower in SQL queries, and allows a primary key
to be case-insensitive. citext is locale-aware, just like text, which means that the matching of upper
case and lower case characters is dependent on the rules of the database's LC_CTYPE setting. Again, this

2194

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

behavior is identical to the use of lower in queries. But because it's done transparently by the data type,
you don't have to remember to do anything special in your queries.

F.8.2. How to Use It
Here's a simple example of usage:

CREATE TABLE users (
 nick CITEXT PRIMARY KEY,
 pass TEXT NOT NULL
);

INSERT INTO users VALUES ('larry', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Tom', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Damian', sha256(random()::text::bytea));
INSERT INTO users VALUES ('NEAL', sha256(random()::text::bytea));
INSERT INTO users VALUES ('Bjørn', sha256(random()::text::bytea));

SELECT * FROM users WHERE nick = 'Larry';

The SELECT statement will return one tuple, even though the nick column was set to larry and the
query was for Larry.

F.8.3. String Comparison Behavior
citext performs comparisons by converting each string to lower case (as though lower were called)
and then comparing the results normally. Thus, for example, two strings are considered equal if lower
would produce identical results for them.

In order to emulate a case-insensitive collation as closely as possible, there are citext-specific versions
of a number of string-processing operators and functions. So, for example, the regular expression
operators ~ and ~* exhibit the same behavior when applied to citext: they both match case-insensitively.
The same is true for !~ and !~*, as well as for the LIKE operators ~~ and ~~*, and !~~ and !~~*. If you'd
like to match case-sensitively, you can cast the operator's arguments to text.

Similarly, all of the following functions perform matching case-insensitively if their arguments are
citext:

• regexp_match()

• regexp_matches()

• regexp_replace()

• regexp_split_to_array()

• regexp_split_to_table()

• replace()

• split_part()

• strpos()

• translate()

For the regexp functions, if you want to match case-sensitively, you can specify the “c” flag to force a
case-sensitive match. Otherwise, you must cast to text before using one of these functions if you want
case-sensitive behavior.

F.8.4. Limitations
• citext's case-folding behavior depends on the LC_CTYPE setting of your database. How it compares

values is therefore determined when the database is created. It is not truly case-insensitive in

2195

Additional Supplied Modules

the terms defined by the Unicode standard. Effectively, what this means is that, as long as you're
happy with your collation, you should be happy with citext's comparisons. But if you have data in
different languages stored in your database, users of one language may find their query results are
not as expected if the collation is for another language.

• As of PostgreSQL 9.1, you can attach a COLLATE specification to citext columns or data values.
Currently, citext operators will honor a non-default COLLATE specification while comparing case-
folded strings, but the initial folding to lower case is always done according to the database's
LC_CTYPE setting (that is, as though COLLATE "default" were given). This may be changed in a
future release so that both steps follow the input COLLATE specification.

• citext is not as efficient as text because the operator functions and the B-tree comparison
functions must make copies of the data and convert it to lower case for comparisons. Also, only
text can support B-Tree deduplication. However, citext is slightly more efficient than using lower
to get case-insensitive matching.

• citext doesn't help much if you need data to compare case-sensitively in some contexts and case-
insensitively in other contexts. The standard answer is to use the text type and manually use the
lower function when you need to compare case-insensitively; this works all right if case-insensitive
comparison is needed only infrequently. If you need case-insensitive behavior most of the time and
case-sensitive infrequently, consider storing the data as citext and explicitly casting the column to
text when you want case-sensitive comparison. In either situation, you will need two indexes if you
want both types of searches to be fast.

• The schema containing the citext operators must be in the current search_path (typically
public); if it is not, the normal case-sensitive text operators will be invoked instead.

• The approach of lower-casing strings for comparison does not handle some Unicode special cases
correctly, for example when one upper-case letter has two lower-case letter equivalents. Unicode
distinguishes between case mapping and case folding for this reason. Use nondeterministic
collations instead of citext to handle that correctly.

F.8.5. Author
David E. Wheeler <david@kineticode.com>

Inspired by the original citext module by Donald Fraser.

F.9. cube
This module implements a data type cube for representing multidimensional cubes.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.9.1. Syntax
Table F.2 shows the valid external representations for the cube type. x, y, etc. denote floating-point
numbers.

Table F.2. Cube External Representations

External Syntax Meaning
x A one-dimensional point (or, zero-length one-

dimensional interval)
(x) Same as above
x1, x2,..., xn A point in n-dimensional space, represented

internally as a zero-volume cube
(x1, x2,..., xn) Same as above

2196

Additional Supplied Modules

External Syntax Meaning
(x),(y) A one-dimensional interval starting at x and

ending at y or vice versa; the order does not
matter

[(x),(y)] Same as above
(x1,..., xn),(y1,..., yn) An n-dimensional cube represented by a pair of its

diagonally opposite corners
[(x1,..., xn),(y1,..., yn)] Same as above

It does not matter which order the opposite corners of a cube are entered in. The cube functions
automatically swap values if needed to create a uniform “lower left — upper right” internal
representation. When the corners coincide, cube stores only one corner along with an “is point” flag
to avoid wasting space.

White space is ignored on input, so [(x),(y)] is the same as [(x), (y)].

F.9.2. Precision
Values are stored internally as 64-bit floating point numbers. This means that numbers with more than
about 16 significant digits will be truncated.

F.9.3. Usage
Table F.3 shows the specialized operators provided for type cube.

Table F.3. Cube Operators

Operator
Description

cube && cube → boolean
Do the cubes overlap?

cube @> cube → boolean
Does the first cube contain the second?

cube <@ cube → boolean
Is the first cube contained in the second?

cube -> integer → float8
Extracts the n-th coordinate of the cube (counting from 1).

cube ~> integer → float8
Extracts the n-th coordinate of the cube, counting in the following way: n = 2 * k - 1 means
lower bound of k-th dimension, n = 2 * k means upper bound of k-th dimension. Negative n
denotes the inverse value of the corresponding positive coordinate. This operator is designed
for KNN-GiST support.

cube <-> cube → float8
Computes the Euclidean distance between the two cubes.

cube <#> cube → float8
Computes the taxicab (L-1 metric) distance between the two cubes.

cube <=> cube → float8
Computes the Chebyshev (L-inf metric) distance between the two cubes.

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names
are reversed from the convention formerly followed by the core geometric data types!)

2197

Additional Supplied Modules

In addition to the above operators, the usual comparison operators shown in Table 9.1 are available
for type cube. These operators first compare the first coordinates, and if those are equal, compare the
second coordinates, etc. They exist mainly to support the b-tree index operator class for cube, which can
be useful for example if you would like a UNIQUE constraint on a cube column. Otherwise, this ordering
is not of much practical use.

The cube module also provides a GiST index operator class for cube values. A cube GiST index can be
used to search for values using the =, &&, @>, and <@ operators in WHERE clauses.

In addition, a cube GiST index can be used to find nearest neighbors using the metric operators <->,
<#>, and <=> in ORDER BY clauses. For example, the nearest neighbor of the 3-D point (0.5, 0.5, 0.5)
could be found efficiently with:

SELECT c FROM test ORDER BY c <-> cube(array[0.5,0.5,0.5]) LIMIT 1;

The ~> operator can also be used in this way to efficiently retrieve the first few values sorted by a selected
coordinate. For example, to get the first few cubes ordered by the first coordinate (lower left corner)
ascending one could use the following query:

SELECT c FROM test ORDER BY c ~> 1 LIMIT 5;

And to get 2-D cubes ordered by the first coordinate of the upper right corner descending:

SELECT c FROM test ORDER BY c ~> 3 DESC LIMIT 5;

Table F.4 shows the available functions.

Table F.4. Cube Functions

Function
Description
Example(s)

cube (float8) → cube
Makes a one dimensional cube with both coordinates the same.
cube(1) → (1)

cube (float8, float8) → cube
Makes a one dimensional cube.
cube(1,2) → (1),(2)

cube (float8[]) → cube
Makes a zero-volume cube using the coordinates defined by the array.
cube(ARRAY[1,2,3]) → (1, 2, 3)

cube (float8[], float8[]) → cube
Makes a cube with upper right and lower left coordinates as defined by the two arrays, which
must be of the same length.
cube(ARRAY[1,2], ARRAY[3,4]) → (1, 2),(3, 4)

cube (cube, float8) → cube
Makes a new cube by adding a dimension on to an existing cube, with the same values for
both endpoints of the new coordinate. This is useful for building cubes piece by piece from
calculated values.
cube('(1,2),(3,4)'::cube, 5) → (1, 2, 5),(3, 4, 5)

cube (cube, float8, float8) → cube
Makes a new cube by adding a dimension on to an existing cube. This is useful for building
cubes piece by piece from calculated values.
cube('(1,2),(3,4)'::cube, 5, 6) → (1, 2, 5),(3, 4, 6)

cube_dim (cube) → integer

2198

Additional Supplied Modules

Function
Description
Example(s)
Returns the number of dimensions of the cube.
cube_dim('(1,2),(3,4)') → 2

cube_ll_coord (cube, integer) → float8
Returns the n-th coordinate value for the lower left corner of the cube.
cube_ll_coord('(1,2),(3,4)', 2) → 2

cube_ur_coord (cube, integer) → float8
Returns the n-th coordinate value for the upper right corner of the cube.
cube_ur_coord('(1,2),(3,4)', 2) → 4

cube_is_point (cube) → boolean
Returns true if the cube is a point, that is, the two defining corners are the same.
cube_is_point(cube(1,1)) → t

cube_distance (cube, cube) → float8
Returns the distance between two cubes. If both cubes are points, this is the normal distance
function.
cube_distance('(1,2)', '(3,4)') → 2.8284271247461903

cube_subset (cube, integer[]) → cube
Makes a new cube from an existing cube, using a list of dimension indexes from an array. Can
be used to extract the endpoints of a single dimension, or to drop dimensions, or to reorder
them as desired.
cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[2]) → (3),(7)
cube_subset(cube('(1,3,5),(6,7,8)'), ARRAY[3,2,1,1]) → (5, 3,
1, 1),(8, 7, 6, 6)

cube_union (cube, cube) → cube
Produces the union of two cubes.
cube_union('(1,2)', '(3,4)') → (1, 2),(3, 4)

cube_inter (cube, cube) → cube
Produces the intersection of two cubes.
cube_inter('(1,2)', '(3,4)') → (3, 4),(1, 2)

cube_enlarge (c cube, r double, n integer) → cube
Increases the size of the cube by the specified radius r in at least n dimensions. If the radius
is negative the cube is shrunk instead. All defined dimensions are changed by the radius r.
Lower-left coordinates are decreased by r and upper-right coordinates are increased by r. If
a lower-left coordinate is increased to more than the corresponding upper-right coordinate
(this can only happen when r < 0) than both coordinates are set to their average. If n is
greater than the number of defined dimensions and the cube is being enlarged (r > 0), then
extra dimensions are added to make n altogether; 0 is used as the initial value for the extra
coordinates. This function is useful for creating bounding boxes around a point for searching
for nearby points.
cube_enlarge('(1,2),(3,4)', 0.5, 3) → (0.5, 1.5, -0.5),(3.5, 4.5,
 0.5)

F.9.4. Defaults
I believe this union:

select cube_union('(0,5,2),(2,3,1)', '0');
cube_union

2199

Additional Supplied Modules

(0, 0, 0),(2, 5, 2)
(1 row)

does not contradict common sense, neither does the intersection

select cube_inter('(0,-1),(1,1)', '(-2),(2)');
cube_inter

(0, 0),(1, 0)
(1 row)

In all binary operations on differently-dimensioned cubes, I assume the lower-dimensional one to be a
Cartesian projection, i. e., having zeroes in place of coordinates omitted in the string representation.
The above examples are equivalent to:

cube_union('(0,5,2),(2,3,1)','(0,0,0),(0,0,0)');
cube_inter('(0,-1),(1,1)','(-2,0),(2,0)');

The following containment predicate uses the point syntax, while in fact the second argument is
internally represented by a box. This syntax makes it unnecessary to define a separate point type and
functions for (box,point) predicates.

select cube_contains('(0,0),(1,1)', '0.5,0.5');
cube_contains

t
(1 row)

F.9.5. Notes
For examples of usage, see the regression test sql/cube.sql.

To make it harder for people to break things, there is a limit of 100 on the number of dimensions of
cubes. This is set in cubedata.h if you need something bigger.

F.9.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science
Division, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (https://dsf.berkeley.edu/jmh/) for elucidating the gist of
the GiST (http://gist.cs.berkeley.edu/), and to his former student Andy Dong for his example written for
Illustra. I am also grateful to all Postgres developers, present and past, for enabling myself to create my
own world and live undisturbed in it. And I would like to acknowledge my gratitude to Argonne Lab and
to the U.S. Department of Energy for the years of faithful support of my database research.

Minor updates to this package were made by Bruno Wolff III <bruno@wolff.to> in August/September of
2002. These include changing the precision from single precision to double precision and adding some
new functions.

Additional updates were made by Joshua Reich <josh@root.net> in July 2006. These include
cube(float8[], float8[]) and cleaning up the code to use the V1 call protocol instead of the
deprecated V0 protocol.

F.10. dblink
dblink is a module that supports connections to other Postgres Pro databases from within a database
session.

See also postgres_fdw, which provides roughly the same functionality using a more modern and
standards-compliant infrastructure.

2200

https://dsf.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Modules

dblink_connect
dblink_connect — opens a persistent connection to a remote database

Synopsis
dblink_connect(text connstr) returns text
dblink_connect(text connname, text connstr) returns text

Description
dblink_connect() establishes a connection to a remote Postgres Pro database. The server and database
to be contacted are identified through a standard libpq connection string. Optionally, a name can be
assigned to the connection. Multiple named connections can be open at once, but only one unnamed
connection is permitted at a time. The connection will persist until closed or until the database session
is ended.

The connection string may also be the name of an existing foreign server. It is recommended to use the
foreign-data wrapper dblink_fdw when defining the foreign server. See the example below, as well as
CREATE SERVER and CREATE USER MAPPING.

Arguments
connname

The name to use for this connection; if omitted, an unnamed connection is opened, replacing any
existing unnamed connection.

connstr

libpq-style connection info string, for example hostaddr=127.0.0.1 port=5432 dbname=mydb
user=postgres password=mypasswd options=-csearch_path=. For details see Section 31.1.1.
Alternatively, the name of a foreign server.

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Notes
If untrusted users have access to a database that has not adopted a secure schema usage pattern, begin
each session by removing publicly-writable schemas from search_path. One could, for example, add
options=-csearch_path= to connstr. This consideration is not specific to dblink; it applies to every
interface for executing arbitrary SQL commands.

Only superusers may use dblink_connect to create non-password-authenticated connections. If non-
superusers need this capability, use dblink_connect_u instead.

It is unwise to choose connection names that contain equal signs, as this opens a risk of confusion with
connection info strings in other dblink functions.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_connect('myconn', 'dbname=postgres options=-csearch_path=');

2201

Additional Supplied Modules

 dblink_connect

 OK
(1 row)

-- FOREIGN DATA WRAPPER functionality
-- Note: local connection must require password authentication for this to work
 properly
-- Otherwise, you will receive the following error from dblink_connect():
-- ERROR: password is required
-- DETAIL: Non-superuser cannot connect if the server does not request a
 password.
-- HINT: Target server's authentication method must be changed.

CREATE SERVER fdtest FOREIGN DATA WRAPPER dblink_fdw OPTIONS (hostaddr '127.0.0.1',
 dbname 'contrib_regression');

CREATE USER regress_dblink_user WITH PASSWORD 'secret';
CREATE USER MAPPING FOR regress_dblink_user SERVER fdtest OPTIONS (user
 'regress_dblink_user', password 'secret');
GRANT USAGE ON FOREIGN SERVER fdtest TO regress_dblink_user;
GRANT SELECT ON TABLE foo TO regress_dblink_user;

\set ORIGINAL_USER :USER
\c - regress_dblink_user
SELECT dblink_connect('myconn', 'fdtest');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'SELECT * FROM foo') AS t(a int, b text, c text[]);
 a | b | c
----+---+---------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
 3 | d | {a3,b3,c3}
 4 | e | {a4,b4,c4}
 5 | f | {a5,b5,c5}
 6 | g | {a6,b6,c6}
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(11 rows)

\c - :ORIGINAL_USER
REVOKE USAGE ON FOREIGN SERVER fdtest FROM regress_dblink_user;
REVOKE SELECT ON TABLE foo FROM regress_dblink_user;
DROP USER MAPPING FOR regress_dblink_user SERVER fdtest;
DROP USER regress_dblink_user;
DROP SERVER fdtest;

2202

Additional Supplied Modules

dblink_connect_u
dblink_connect_u — opens a persistent connection to a remote database, insecurely

Synopsis
dblink_connect_u(text connstr) returns text
dblink_connect_u(text connname, text connstr) returns text

Description
dblink_connect_u() is identical to dblink_connect(), except that it will allow non-superusers to
connect using any authentication method.

If the remote server selects an authentication method that does not involve a password, then
impersonation and subsequent escalation of privileges can occur, because the session will appear to have
originated from the user as which the local Postgres Pro server runs. Also, even if the remote server does
demand a password, it is possible for the password to be supplied from the server environment, such
as a ~/.pgpass file belonging to the server's user. This opens not only a risk of impersonation, but the
possibility of exposing a password to an untrustworthy remote server. Therefore, dblink_connect_u() is
initially installed with all privileges revoked from PUBLIC, making it un-callable except by superusers. In
some situations it may be appropriate to grant EXECUTE permission for dblink_connect_u() to specific
users who are considered trustworthy, but this should be done with care. It is also recommended that any
~/.pgpass file belonging to the server's user not contain any records specifying a wildcard host name.

For further details see dblink_connect().

2203

Additional Supplied Modules

dblink_disconnect
dblink_disconnect — closes a persistent connection to a remote database

Synopsis
dblink_disconnect() returns text
dblink_disconnect(text connname) returns text

Description
dblink_disconnect() closes a connection previously opened by dblink_connect(). The form with no
arguments closes an unnamed connection.

Arguments
connname

The name of a named connection to be closed.

Return Value
Returns status, which is always OK (since any error causes the function to throw an error instead of
returning).

Examples
SELECT dblink_disconnect();
 dblink_disconnect

 OK
(1 row)

SELECT dblink_disconnect('myconn');
 dblink_disconnect

 OK
(1 row)

2204

Additional Supplied Modules

dblink
dblink — executes a query in a remote database

Synopsis
dblink(text connname, text sql [, bool fail_on_error]) returns setof record
dblink(text connstr, text sql [, bool fail_on_error]) returns setof record
dblink(text sql [, bool fail_on_error]) returns setof record

Description
dblink executes a query (usually a SELECT, but it can be any SQL statement that returns rows) in a
remote database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL query that you wish to execute in the remote database, for example select * from foo.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
The function returns the row(s) produced by the query. Since dblink can be used with any query, it is
declared to return record, rather than specifying any particular set of columns. This means that you
must specify the expected set of columns in the calling query — otherwise Postgres Pro would not know
what to expect. Here is an example:

SELECT *
 FROM dblink('dbname=mydb options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text)
 WHERE proname LIKE 'bytea%';

The “alias” part of the FROM clause must specify the column names and types that the function will return.
(Specifying column names in an alias is actually standard SQL syntax, but specifying column types is
a Postgres Pro extension.) This allows the system to understand what * should expand to, and what
proname in the WHERE clause refers to, in advance of trying to execute the function. At run time, an error
will be thrown if the actual query result from the remote database does not have the same number of
columns shown in the FROM clause. The column names need not match, however, and dblink does not
insist on exact type matches either. It will succeed so long as the returned data strings are valid input
for the column type declared in the FROM clause.

2205

Additional Supplied Modules

Notes
A convenient way to use dblink with predetermined queries is to create a view. This allows the column
type information to be buried in the view, instead of having to spell it out in every query. For example,

CREATE VIEW myremote_pg_proc AS
 SELECT *
 FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text);

SELECT * FROM myremote_pg_proc WHERE proname LIKE 'bytea%';

Examples
SELECT * FROM dblink('dbname=postgres options=-csearch_path=',
 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteain | byteain
 byteaout | byteaout
(12 rows)

SELECT dblink_connect('myconn', 'dbname=regression options=-csearch_path=');

2206

Additional Supplied Modules

 dblink_connect

 OK
(1 row)

SELECT * FROM dblink('myconn', 'select proname, prosrc from pg_proc')
 AS t1(proname name, prosrc text) WHERE proname LIKE 'bytea%';
 proname | prosrc
------------+------------
 bytearecv | bytearecv
 byteasend | byteasend
 byteale | byteale
 byteagt | byteagt
 byteage | byteage
 byteane | byteane
 byteacmp | byteacmp
 bytealike | bytealike
 byteanlike | byteanlike
 byteacat | byteacat
 byteaeq | byteaeq
 bytealt | bytealt
 byteain | byteain
 byteaout | byteaout
(14 rows)

2207

Additional Supplied Modules

dblink_exec
dblink_exec — executes a command in a remote database

Synopsis
dblink_exec(text connname, text sql [, bool fail_on_error]) returns text
dblink_exec(text connstr, text sql [, bool fail_on_error]) returns text
dblink_exec(text sql [, bool fail_on_error]) returns text

Description
dblink_exec executes a command (that is, any SQL statement that doesn't return rows) in a remote
database.

When two text arguments are given, the first one is first looked up as a persistent connection's name;
if found, the command is executed on that connection. If not found, the first argument is treated as a
connection info string as for dblink_connect, and the indicated connection is made just for the duration
of this command.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

connstr

A connection info string, as previously described for dblink_connect.

sql

The SQL command that you wish to execute in the remote database, for example insert into foo
values(0, 'a', '{"a0","b0","c0"}').

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either the command's status string or ERROR.

Examples
SELECT dblink_connect('dbname=dblink_test_standby');
 dblink_connect

 OK
(1 row)

SELECT dblink_exec('insert into foo values(21, ''z'', ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 943366 1
(1 row)

SELECT dblink_connect('myconn', 'dbname=regression');
 dblink_connect

2208

Additional Supplied Modules

 OK
(1 row)

SELECT dblink_exec('myconn', 'insert into foo values(21, ''z'',
 ''{"a0","b0","c0"}'');');
 dblink_exec

 INSERT 6432584 1
(1 row)

SELECT dblink_exec('myconn', 'insert into pg_class values (''foo'')',false);
NOTICE: sql error
DETAIL: ERROR: null value in column "relnamespace" violates not-null constraint

 dblink_exec

 ERROR
(1 row)

2209

Additional Supplied Modules

dblink_open
dblink_open — opens a cursor in a remote database

Synopsis
dblink_open(text cursorname, text sql [, bool fail_on_error]) returns text
dblink_open(text connname, text cursorname, text sql [, bool fail_on_error]) returns
 text

Description
dblink_open() opens a cursor in a remote database. The cursor can subsequently be manipulated with
dblink_fetch() and dblink_close().

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name to assign to this cursor.

sql

The SELECT statement that you wish to execute in the remote database, for example select * from
pg_class.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
Since a cursor can only persist within a transaction, dblink_open starts an explicit transaction block
(BEGIN) on the remote side, if the remote side was not already within a transaction. This transaction
will be closed again when the matching dblink_close is executed. Note that if you use dblink_exec
to change data between dblink_open and dblink_close, and then an error occurs or you use
dblink_disconnect before dblink_close, your change will be lost because the transaction will be
aborted.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK

2210

Additional Supplied Modules

(1 row)

2211

Additional Supplied Modules

dblink_fetch
dblink_fetch — returns rows from an open cursor in a remote database

Synopsis
dblink_fetch(text cursorname, int howmany [, bool fail_on_error]) returns setof record
dblink_fetch(text connname, text cursorname, int howmany [, bool fail_on_error])
 returns setof record

Description
dblink_fetch fetches rows from a cursor previously established by dblink_open.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to fetch from.

howmany

The maximum number of rows to retrieve. The next howmany rows are fetched, starting at the current
cursor position, moving forward. Once the cursor has reached its end, no more rows are produced.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
The function returns the row(s) fetched from the cursor. To use this function, you will need to specify
the expected set of columns, as previously discussed for dblink.

Notes
On a mismatch between the number of return columns specified in the FROM clause, and the actual
number of columns returned by the remote cursor, an error will be thrown. In this event, the remote
cursor is still advanced by as many rows as it would have been if the error had not occurred. The same
is true for any other error occurring in the local query after the remote FETCH has been done.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc where proname like
 ''bytea%''');
 dblink_open

 OK
(1 row)

2212

Additional Supplied Modules

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+----------
 byteacat | byteacat
 byteacmp | byteacmp
 byteaeq | byteaeq
 byteage | byteage
 byteagt | byteagt
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
-----------+-----------
 byteain | byteain
 byteale | byteale
 bytealike | bytealike
 bytealt | bytealt
 byteane | byteane
(5 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
------------+------------
 byteanlike | byteanlike
 byteaout | byteaout
(2 rows)

SELECT * FROM dblink_fetch('foo', 5) AS (funcname name, source text);
 funcname | source
----------+--------
(0 rows)

2213

Additional Supplied Modules

dblink_close
dblink_close — closes a cursor in a remote database

Synopsis
dblink_close(text cursorname [, bool fail_on_error]) returns text
dblink_close(text connname, text cursorname [, bool fail_on_error]) returns text

Description
dblink_close closes a cursor previously opened with dblink_open.

Arguments
connname

Name of the connection to use; omit this parameter to use the unnamed connection.

cursorname

The name of the cursor to close.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and the
function's return value is set to ERROR.

Return Value
Returns status, either OK or ERROR.

Notes
If dblink_open started an explicit transaction block, and this is the last remaining open cursor in this
connection, dblink_close will issue the matching COMMIT.

Examples
SELECT dblink_connect('dbname=postgres options=-csearch_path=');
 dblink_connect

 OK
(1 row)

SELECT dblink_open('foo', 'select proname, prosrc from pg_proc');
 dblink_open

 OK
(1 row)

SELECT dblink_close('foo');
 dblink_close

 OK
(1 row)

2214

Additional Supplied Modules

dblink_get_connections
dblink_get_connections — returns the names of all open named dblink connections

Synopsis
dblink_get_connections() returns text[]

Description
dblink_get_connections returns an array of the names of all open named dblink connections.

Return Value
Returns a text array of connection names, or NULL if none.

Examples
SELECT dblink_get_connections();

2215

Additional Supplied Modules

dblink_error_message
dblink_error_message — gets last error message on the named connection

Synopsis
dblink_error_message(text connname) returns text

Description
dblink_error_message fetches the most recent remote error message for a given connection.

Arguments
connname

Name of the connection to use.

Return Value
Returns last error message, or OK if there has been no error in this connection.

Notes
When asynchronous queries are initiated by dblink_send_query, the error message associated with the
connection might not get updated until the server's response message is consumed. This typically means
that dblink_is_busy or dblink_get_result should be called prior to dblink_error_message, so that
any error generated by the asynchronous query will be visible.

Examples
SELECT dblink_error_message('dtest1');

2216

Additional Supplied Modules

dblink_send_query
dblink_send_query — sends an async query to a remote database

Synopsis
dblink_send_query(text connname, text sql) returns int

Description
dblink_send_query sends a query to be executed asynchronously, that is, without immediately waiting
for the result. There must not be an async query already in progress on the connection.

After successfully dispatching an async query, completion status can be checked with dblink_is_busy,
and the results are ultimately collected with dblink_get_result. It is also possible to attempt to cancel
an active async query using dblink_cancel_query.

Arguments
connname

Name of the connection to use.

sql

The SQL statement that you wish to execute in the remote database, for example select * from
pg_class.

Return Value
Returns 1 if the query was successfully dispatched, 0 otherwise.

Examples
SELECT dblink_send_query('dtest1', 'SELECT * FROM foo WHERE f1 < 3');

2217

Additional Supplied Modules

dblink_is_busy
dblink_is_busy — checks if connection is busy with an async query

Synopsis
dblink_is_busy(text connname) returns int

Description
dblink_is_busy tests whether an async query is in progress.

Arguments
connname

Name of the connection to check.

Return Value
Returns 1 if connection is busy, 0 if it is not busy. If this function returns 0, it is guaranteed that
dblink_get_result will not block.

Examples
SELECT dblink_is_busy('dtest1');

2218

Additional Supplied Modules

dblink_get_notify
dblink_get_notify — retrieve async notifications on a connection

Synopsis
dblink_get_notify() returns setof (notify_name text, be_pid int, extra text)
dblink_get_notify(text connname) returns setof (notify_name text, be_pid int, extra
 text)

Description
dblink_get_notify retrieves notifications on either the unnamed connection, or on a named connection
if specified. To receive notifications via dblink, LISTEN must first be issued, using dblink_exec. For
details see LISTEN and NOTIFY.

Arguments
connname

The name of a named connection to get notifications on.

Return Value
Returns setof (notify_name text, be_pid int, extra text), or an empty set if none.

Examples
SELECT dblink_exec('LISTEN virtual');
 dblink_exec

 LISTEN
(1 row)

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
(0 rows)

NOTIFY virtual;
NOTIFY

SELECT * FROM dblink_get_notify();
 notify_name | be_pid | extra
-------------+--------+-------
 virtual | 1229 |
(1 row)

2219

Additional Supplied Modules

dblink_get_result
dblink_get_result — gets an async query result

Synopsis
dblink_get_result(text connname [, bool fail_on_error]) returns setof record

Description
dblink_get_result collects the results of an asynchronous query previously sent with
dblink_send_query. If the query is not already completed, dblink_get_result will wait until it is.

Arguments
connname

Name of the connection to use.

fail_on_error

If true (the default when omitted) then an error thrown on the remote side of the connection causes
an error to also be thrown locally. If false, the remote error is locally reported as a NOTICE, and
the function returns no rows.

Return Value
For an async query (that is, a SQL statement returning rows), the function returns the row(s) produced
by the query. To use this function, you will need to specify the expected set of columns, as previously
discussed for dblink.

For an async command (that is, a SQL statement not returning rows), the function returns a single row
with a single text column containing the command's status string. It is still necessary to specify that the
result will have a single text column in the calling FROM clause.

Notes
This function must be called if dblink_send_query returned 1. It must be called once for each query
sent, and one additional time to obtain an empty set result, before the connection can be used again.

When using dblink_send_query and dblink_get_result, dblink fetches the entire remote query result
before returning any of it to the local query processor. If the query returns a large number of rows, this
can result in transient memory bloat in the local session. It may be better to open such a query as a
cursor with dblink_open and then fetch a manageable number of rows at a time. Alternatively, use plain
dblink(), which avoids memory bloat by spooling large result sets to disk.

Examples
contrib_regression=# SELECT dblink_connect('dtest1', 'dbname=contrib_regression');
 dblink_connect

 OK
(1 row)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3') AS
 t1;
 t1

 1
(1 row)

2220

Additional Supplied Modules

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

contrib_regression=# SELECT * FROM
contrib_regression-# dblink_send_query('dtest1', 'select * from foo where f1 < 3;
 select * from foo where f1 > 6') AS t1;
 t1

 1
(1 row)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+------------
 0 | a | {a0,b0,c0}
 1 | b | {a1,b1,c1}
 2 | c | {a2,b2,c2}
(3 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+---------------
 7 | h | {a7,b7,c7}
 8 | i | {a8,b8,c8}
 9 | j | {a9,b9,c9}
 10 | k | {a10,b10,c10}
(4 rows)

contrib_regression=# SELECT * FROM dblink_get_result('dtest1') AS t1(f1 int, f2 text,
 f3 text[]);
 f1 | f2 | f3
----+----+----
(0 rows)

2221

Additional Supplied Modules

dblink_cancel_query
dblink_cancel_query — cancels any active query on the named connection

Synopsis
dblink_cancel_query(text connname) returns text

Description
dblink_cancel_query attempts to cancel any query that is in progress on the named connection. Note
that this is not certain to succeed (since, for example, the remote query might already have finished). A
cancel request simply improves the odds that the query will fail soon. You must still complete the normal
query protocol, for example by calling dblink_get_result.

Arguments
connname

Name of the connection to use.

Return Value
Returns OK if the cancel request has been sent, or the text of an error message on failure.

Examples
SELECT dblink_cancel_query('dtest1');

2222

Additional Supplied Modules

dblink_get_pkey
dblink_get_pkey — returns the positions and field names of a relation's primary key fields

Synopsis
dblink_get_pkey(text relname) returns setof dblink_pkey_results

Description
dblink_get_pkey provides information about the primary key of a relation in the local database. This is
sometimes useful in generating queries to be sent to remote databases.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

Return Value
Returns one row for each primary key field, or no rows if the relation has no primary key. The result
row type is defined as

CREATE TYPE dblink_pkey_results AS (position int, colname text);

The position column simply runs from 1 to N; it is the number of the field within the primary key, not
the number within the table's columns.

Examples
CREATE TABLE foobar (
 f1 int,
 f2 int,
 f3 int,
 PRIMARY KEY (f1, f2, f3)
);
CREATE TABLE

SELECT * FROM dblink_get_pkey('foobar');
 position | colname
----------+---------
 1 | f1
 2 | f2
 3 | f3
(3 rows)

2223

Additional Supplied Modules

dblink_build_sql_insert
dblink_build_sql_insert — builds an INSERT statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis
dblink_build_sql_insert(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_insert can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL INSERT
command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting INSERT command. Each field is
represented in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left
of the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_insert('foo', '1 2', 2, '{"1", "a"}', '{"1", "b''a"}');
 dblink_build_sql_insert
--

2224

Additional Supplied Modules

 INSERT INTO foo(f1,f2,f3) VALUES('1','b''a','1')
(1 row)

2225

Additional Supplied Modules

dblink_build_sql_delete
dblink_build_sql_delete — builds a DELETE statement using supplied values for primary key field values

Synopsis
dblink_build_sql_delete(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_delete can be useful in doing selective replication of a local table to a remote
database. It builds a SQL DELETE command that will delete the row with the given primary key values.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

tgt_pk_att_vals_array

Values of the primary key fields to be used in the resulting DELETE command. Each field is represented
in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left
of the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_delete('"MyFoo"', '1 2', 2, '{"1", "b"}');
 dblink_build_sql_delete

 DELETE FROM "MyFoo" WHERE f1='1' AND f2='b'
(1 row)

2226

Additional Supplied Modules

dblink_build_sql_update
dblink_build_sql_update — builds an UPDATE statement using a local tuple, replacing the primary key
field values with alternative supplied values

Synopsis
dblink_build_sql_update(text relname,
 int2vector primary_key_attnums,
 integer num_primary_key_atts,
 text[] src_pk_att_vals_array,
 text[] tgt_pk_att_vals_array) returns text

Description
dblink_build_sql_update can be useful in doing selective replication of a local table to a remote
database. It selects a row from the local table based on primary key, and then builds a SQL UPDATE
command that will duplicate that row, but with the primary key values replaced by the values in the last
argument. (To make an exact copy of the row, just specify the same values for the last two arguments.)
The UPDATE command always assigns all fields of the row — the main difference between this and
dblink_build_sql_insert is that it's assumed that the target row already exists in the remote table.

Arguments
relname

Name of a local relation, for example foo or myschema.mytab. Include double quotes if the name is
mixed-case or contains special characters, for example "FooBar"; without quotes, the string will be
folded to lower case.

primary_key_attnums

Attribute numbers (1-based) of the primary key fields, for example 1 2.

num_primary_key_atts

The number of primary key fields.

src_pk_att_vals_array

Values of the primary key fields to be used to look up the local tuple. Each field is represented in text
form. An error is thrown if there is no local row with these primary key values.

tgt_pk_att_vals_array

Values of the primary key fields to be placed in the resulting UPDATE command. Each field is
represented in text form.

Return Value
Returns the requested SQL statement as text.

Notes
As of PostgreSQL 9.0, the attribute numbers in primary_key_attnums are interpreted as logical column
numbers, corresponding to the column's position in SELECT * FROM relname. Previous versions
interpreted the numbers as physical column positions. There is a difference if any column(s) to the left
of the indicated column have been dropped during the lifetime of the table.

Examples
SELECT dblink_build_sql_update('foo', '1 2', 2, '{"1", "a"}', '{"1", "b"}');
 dblink_build_sql_update

2227

Additional Supplied Modules

 UPDATE foo SET f1='1',f2='b',f3='1' WHERE f1='1' AND f2='b'
(1 row)

F.11. dict_int
dict_int is an example of an add-on dictionary template for full-text search. The motivation for this
example dictionary is to control the indexing of integers (signed and unsigned), allowing such numbers
to be indexed while preventing excessive growth in the number of unique words, which greatly affects
the performance of searching.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.11.1. Configuration
The dictionary accepts three options:

• The maxlen parameter specifies the maximum number of digits allowed in an integer word. The
default value is 6.

• The rejectlong parameter specifies whether an overlength integer should be truncated or ignored.
If rejectlong is false (the default), the dictionary returns the first maxlen digits of the integer. If
rejectlong is true, the dictionary treats an overlength integer as a stop word, so that it will not be
indexed. Note that this also means that such an integer cannot be searched for.

• The absval parameter specifies whether leading “+” or “-” signs should be removed from integer
words. The default is false. When true, the sign is removed before maxlen is applied.

F.11.2. Usage
Installing the dict_int extension creates a text search template intdict_template and a dictionary
intdict based on it, with the default parameters. You can alter the parameters, for example
mydb# ALTER TEXT SEARCH DICTIONARY intdict (MAXLEN = 4, REJECTLONG = true);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try
mydb# select ts_lexize('intdict', '12345678');
 ts_lexize

 {123456}

but real-world usage will involve including it in a text search configuration as described in Chapter 12.
That might look like this:
ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR int, uint WITH intdict;

F.12. dict_xsyn
dict_xsyn (Extended Synonym Dictionary) is an example of an add-on dictionary template for full-text
search. This dictionary type replaces words with groups of their synonyms, and so makes it possible to
search for a word using any of its synonyms.

F.12.1. Configuration
A dict_xsyn dictionary accepts the following options:

• matchorig controls whether the original word is accepted by the dictionary. Default is true.
• matchsynonyms controls whether the synonyms are accepted by the dictionary. Default is false.
• keeporig controls whether the original word is included in the dictionary's output. Default is true.

2228

Additional Supplied Modules

• keepsynonyms controls whether the synonyms are included in the dictionary's output. Default is
true.

• rules is the base name of the file containing the list of synonyms. This file must be stored in
$SHAREDIR/tsearch_data/ (where $SHAREDIR means the Postgres Pro installation's shared-data
directory). Its name must end in .rules (which is not to be included in the rules parameter).

The rules file has the following format:

• Each line represents a group of synonyms for a single word, which is given first on the line.
Synonyms are separated by whitespace, thus:
word syn1 syn2 syn3

• The sharp (#) sign is a comment delimiter. It may appear at any position in a line. The rest of the
line will be skipped.

Look at xsyn_sample.rules, which is installed in $SHAREDIR/tsearch_data/, for an example.

F.12.2. Usage
Installing the dict_xsyn extension creates a text search template xsyn_template and a dictionary xsyn
based on it, with default parameters. You can alter the parameters, for example
mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false);
ALTER TEXT SEARCH DICTIONARY

or create new dictionaries based on the template.

To test the dictionary, you can try
mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'word');
 ts_lexize

 {word,syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=false,
 MATCHSYNONYMS=true);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {syn1,syn2,syn3}

mydb# ALTER TEXT SEARCH DICTIONARY xsyn (RULES='my_rules', KEEPORIG=true,
 MATCHORIG=false, KEEPSYNONYMS=false);
ALTER TEXT SEARCH DICTIONARY

mydb=# SELECT ts_lexize('xsyn', 'syn1');
 ts_lexize

 {word}

Real-world usage will involve including it in a text search configuration as described in Chapter 12. That
might look like this:

2229

Additional Supplied Modules

ALTER TEXT SEARCH CONFIGURATION english
 ALTER MAPPING FOR word, asciiword WITH xsyn, english_stem;

F.13. dump_stat
The dump_stat module provides functions that allow you to backup and recover the contents of the
pg_statistic table. When performing a dump/restore, you can use dump_stat to migrate the original
statistics to the new server instead of running the ANALYZE command for the whole database cluster,
which can significantly reduce downtime for large databases. The dump_statistic function generates
INSERT statements which can later be applied to a compatible database. To successfully restore statistical
data, you must install the extension on both the original and the recipient servers since these statements
rely on the provided dump_stat functions.

Note that the definition of the pg_statistic table might change occasionally, which means that
generated dump might be incompatible with future releases of Postgres Pro.

F.13.1. Installation
The dump_stat extension is included into Postgres Pro. Once you have Postgres Pro installed, you must
execute the CREATE EXTENSION command to enable dump_stat, as follows:
CREATE EXTENSION dump_stat;

F.13.2. Functions
anyarray_to_text(array anyarray) returns text

Returns the given array as text.

dump_statistic() returns setof text
dump_statistic dumps the contents of the pg_statistic system catalog. It produces an INSERT
statement per each tuple of the pg_statistic, excluding the ones that contain statistical data for
tables in the information_schema and pg_catalog schemas.

The INSERT statement takes form of
WITH upsert as (
 UPDATE pg_catalog.pg_statistic SET column_name = expression [, ...]
 WHERE starelid = t_relname::regclass
 AND to_attname(t_relname, staattnum) = t_attname
 AND to_atttype(t_relname, staattnum) = t_atttype
 AND stainherit = t_stainherit
 RETURNING *)
ins as (
 SELECT expression [, ...]
 WHERE NOT EXISTS (SELECT * FROM upsert)
 AND to_attnum(t_relname, t_attname) IS NOT NULL
 AND to_atttype(t_relname, t_attname) = t_atttype)
INSERT INTO pg_catalog.pg_statistic SELECT * FROM ins;

where expression can be one of:

array_in(array_text, type_name::regtype::oid, -1)
value::type_name

To save the produced statements, redirect the psql output into a file using standard psql options.
For details on the available psql options, see psql. Meta-commands starting with a backslash are
not supported.

For example, to save statistics for the dbname database into a dump_stat.sql file, run:
$ psql -XAtq -c "SELECT dump_statistic()" dbname > dump_stat.sql

2230

Additional Supplied Modules

dump_statistic(schema_name text) returns setof text

dump_statistic dumps the contents of the pg_statistic system catalog. It produces an INSERT
statement per each tuple of the pg_statistic that relates to some table in the schema_name schema.

dump_statistic(schema_name text, table_name text) returns setof text

dump_statistic dumps the contents of the pg_statistic system catalog. It produces an INSERT
statement per each tuple of the pg_statistic that relates to the specified schema_name.table_name
table.

dump_statistic(relation regclass) returns setof text

dump_statistic dumps the contents of the pg_statistic system catalog. It produces an INSERT
statement per each tuple of the pg_statistic that contains statistical data for the specified
relation.

to_schema_qualified_operator(opid oid) returns text
Fetches the schema-qualified operator name by operator id opid. For example:

test=# SELECT to_schema_qualified_operator('+(int,int)'::regoperator);
 to_schema_qualified_operator
--
 pg_catalog.+(pg_catalog.int4, pg_catalog.int4)
(1 row)

to_schema_qualified_type(typid oid) returns text
Fetches the schema-qualified type name by type id typid.

to_schema_qualified_relation(relid oid) returns text
Fetches the schema-qualified relation name by relation id relid.

anyarray_elemtype(arr anyarray) returns oid
Returns the element type of the given array as oid. For example:

test=# SELECT anyarray_elemtype(array_in('{1,2,3}', 'int'::regtype, -1));
 anyarray_elemtype

 23
(1 row)

to_attname(relation regclass, colnum int2) returns text
Given a relation name relation and a column number colnum, returns the column name as text.

to_attnum(relation regclass, col text) returns int2
Given a relation name relation and a column name col, returns the column number as int2.

to_atttype(relation regclass, col text) returns text
Given a relation name relation and a column name col, returns the schema-qualified column type
as text.

to_atttype(relation regclass, colnum int2) returns text

Given a relation name relation and a column number colnum, returns the schema-qualified column
type as text.

to_namespace(nsp text) returns oid
to_namespace duplicates the behavior of the cast to the regnamespace type, which is not present in
the PostgreSQL 9.4 release (and prior releases). This function returns the oid of the given schema.

2231

Additional Supplied Modules

get_namespace(relation oid) returns oid
get_namespace returns the schema of the given relation as oid.

F.14. earthdistance
The earthdistance module provides two different approaches to calculating great circle distances on
the surface of the Earth. The one described first depends on the cube module. The second one is based
on the built-in point data type, using longitude and latitude for the coordinates.

In this module, the Earth is assumed to be perfectly spherical. (If that's too inaccurate for you, you might
want to look at the PostGIS project.)

The cube module must be installed before earthdistance can be installed (although you can use the
CASCADE option of CREATE EXTENSION to install both in one command).

Caution
It is strongly recommended that earthdistance and cube be installed in the same schema, and
that that schema be one for which CREATE privilege has not been and will not be granted to any
untrusted users. Otherwise there are installation-time security hazards if earthdistance's schema
contains objects defined by a hostile user. Furthermore, when using earthdistance's functions
after installation, the entire search path should contain only trusted schemas.

F.14.1. Cube-Based Earth Distances
Data is stored in cubes that are points (both corners are the same) using 3 coordinates representing the
x, y, and z distance from the center of the Earth. A domain earth over cube is provided, which includes
constraint checks that the value meets these restrictions and is reasonably close to the actual surface
of the Earth.

The radius of the Earth is obtained from the earth() function. It is given in meters. But by changing
this one function you can change the module to use some other units, or to use a different value of the
radius that you feel is more appropriate.

This package has applications to astronomical databases as well. Astronomers will probably want to
change earth() to return a radius of 180/pi() so that distances are in degrees.

Functions are provided to support input in latitude and longitude (in degrees), to support output of
latitude and longitude, to calculate the great circle distance between two points and to easily specify a
bounding box usable for index searches.

The provided functions are shown in Table F.5.

Table F.5. Cube-Based Earthdistance Functions

Function
Description

earth () → float8
Returns the assumed radius of the Earth.

sec_to_gc (float8) → float8
Converts the normal straight line (secant) distance between two points on the surface of the
Earth to the great circle distance between them.

gc_to_sec (float8) → float8
Converts the great circle distance between two points on the surface of the Earth to the
normal straight line (secant) distance between them.

ll_to_earth (float8, float8) → earth

2232

https://postgis.net/

Additional Supplied Modules

Function
Description
Returns the location of a point on the surface of the Earth given its latitude (argument 1) and
longitude (argument 2) in degrees.

latitude (earth) → float8
Returns the latitude in degrees of a point on the surface of the Earth.

longitude (earth) → float8
Returns the longitude in degrees of a point on the surface of the Earth.

earth_distance (earth, earth) → float8
Returns the great circle distance between two points on the surface of the Earth.

earth_box (earth, float8) → cube
Returns a box suitable for an indexed search using the cube @> operator for points within a
given great circle distance of a location. Some points in this box are further than the specified
great circle distance from the location, so a second check using earth_distance should be
included in the query.

F.14.2. Point-Based Earth Distances
The second part of the module relies on representing Earth locations as values of type point, in which
the first component is taken to represent longitude in degrees, and the second component is taken
to represent latitude in degrees. Points are taken as (longitude, latitude) and not vice versa because
longitude is closer to the intuitive idea of x-axis and latitude to y-axis.

A single operator is provided, shown in Table F.6.

Table F.6. Point-Based Earthdistance Operators

Operator
Description

point <@> point → float8
Computes the distance in statute miles between two points on the Earth's surface.

Note that unlike the cube-based part of the module, units are hardwired here: changing the earth()
function will not affect the results of this operator.

One disadvantage of the longitude/latitude representation is that you need to be careful about the edge
conditions near the poles and near +/- 180 degrees of longitude. The cube-based representation avoids
these discontinuities.

F.15. fasttrun
The fasttrun module provides transaction unsafe function to truncate temporary tables without growing
pg_class size.

This module is required for 1C Enterprise support.

Fast truncate operation is not transactional, so its results cannot be rolled back and become immediately
visible in all sessions regardless of isolation level.

F.15.1. Function
There is a function call example:
 select fasttruncate('TABLE_NAME');

F.15.2. Test example
For tests you can use this example:

2233

Additional Supplied Modules

create or replace function f() returns void as $$
begin
 for i in 1..1000
 loop
 PERFORM fasttruncate('tt1');
 end loop;
 end;
$$ language plpgsql;

F.15.3. Authors
 Teodor Sigaev <teodor@sigaev.ru>

F.16. file_fdw
The file_fdw module provides the foreign-data wrapper file_fdw, which can be used to access data
files in the server's file system, or to execute programs on the server and read their output. The data
file or program output must be in a format that can be read by COPY FROM; see COPY for details. Access
to data files is currently read-only.

A foreign table created using this wrapper can have the following options:

filename

Specifies the file to be read. Relative paths are relative to the data directory. Either filename or
program must be specified, but not both.

program

Specifies the command to be executed. The standard output of this command will be read as though
COPY FROM PROGRAM were used. Either program or filename must be specified, but not both.

format

Specifies the data format, the same as COPY's FORMAT option.

header

Specifies whether the data has a header line, the same as COPY's HEADER option.

delimiter

Specifies the data delimiter character, the same as COPY's DELIMITER option.

quote

Specifies the data quote character, the same as COPY's QUOTE option.

escape

Specifies the data escape character, the same as COPY's ESCAPE option.

null

Specifies the data null string, the same as COPY's NULL option.

encoding

Specifies the data encoding, the same as COPY's ENCODING option.

Note that while COPY allows options such as HEADER to be specified without a corresponding value, the
foreign table option syntax requires a value to be present in all cases. To activate COPY options typically
written without a value, you can pass the value TRUE, since all such options are Booleans.

A column of a foreign table created using this wrapper can have the following options:

2234

Additional Supplied Modules

force_not_null

This is a Boolean option. If true, it specifies that values of the column should not be matched against
the null string (that is, the table-level null option). This has the same effect as listing the column
in COPY's FORCE_NOT_NULL option.

force_null

This is a Boolean option. If true, it specifies that values of the column which match the null string are
returned as NULL even if the value is quoted. Without this option, only unquoted values matching the
null string are returned as NULL. This has the same effect as listing the column in COPY's FORCE_NULL
option.

COPY's FORCE_QUOTE option is currently not supported by file_fdw.

These options can only be specified for a foreign table or its columns, not in the options of the file_fdw
foreign-data wrapper, nor in the options of a server or user mapping using the wrapper.

Changing table-level options requires being a superuser or having the privileges of the default role
pg_read_server_files (to use a filename) or the default role pg_execute_server_program (to use a
program), for security reasons: only certain users should be able to control which file is read or which
program is run. In principle regular users could be allowed to change the other options, but that's not
supported at present.

When specifying the program option, keep in mind that the option string is executed by the shell. If you
need to pass any arguments to the command that come from an untrusted source, you must be careful
to strip or escape any characters that might have special meaning to the shell. For security reasons, it
is best to use a fixed command string, or at least avoid passing any user input in it.

For a foreign table using file_fdw, EXPLAIN shows the name of the file to be read or program to be run.
For a file, unless COSTS OFF is specified, the file size (in bytes) is shown as well.

Example F.1. Create a Foreign Table for Postgres Pro CSV Logs

One of the obvious uses for file_fdw is to make the Postgres Pro activity log available as a table for
querying. To do this, first you must be logging to a CSV file, which here we will call pglog.csv. First,
install file_fdw as an extension:

CREATE EXTENSION file_fdw;

Then create a foreign server:
CREATE SERVER pglog FOREIGN DATA WRAPPER file_fdw;

Now you are ready to create the foreign data table. Using the CREATE FOREIGN TABLE command, you
will need to define the columns for the table, the CSV file name, and its format:
CREATE FOREIGN TABLE pglog (
 log_time timestamp(3) with time zone,
 user_name text,
 database_name text,
 process_id integer,
 connection_from text,
 session_id text,
 session_line_num bigint,
 command_tag text,
 session_start_time timestamp with time zone,
 virtual_transaction_id text,
 transaction_id bigint,
 error_severity text,
 sql_state_code text,
 message text,
 detail text,

2235

Additional Supplied Modules

 hint text,
 internal_query text,
 internal_query_pos integer,
 context text,
 query text,
 query_pos integer,
 location text,
 application_name text,
 backend_type text
) SERVER pglog
OPTIONS (filename 'log/pglog.csv', format 'csv');

That's it — now you can query your log directly. In production, of course, you would need to define some
way to deal with log rotation.

F.17. fulleq
The fulleq module provides additional equivalence operator for compatibility with Microsoft SQL
Server.

This module is required for 1C Enterprise support.

F.17.1. Overview
The Postgres Pro equivalence operator is defined to return NULL when both operands are NULLs.
However, the Microsoft SQL Servers family traditionally defines other semantic for equivalence operator,
where operator returns TRUE in the case of both nulled operands. This module provides such operator
with MS SQL semantic.

F.17.2. Operator fulleq
The == operator is defined for the following data types:
• bool
• bytea
• char
• name
• int2
• int4
• int8
• int2vector
• text
• oid
• xid
• cid
• oidvector
• float4
• float8
• abstime
• reltime
• macaddr
• inet
• cidr

2236

Additional Supplied Modules

• varchar
• date
• time
• timestamp
• timestamptz
• interval
• timetz

F.17.3. Authors
 Teodor Sigaev <teodor@sigaev.ru>

F.18. fuzzystrmatch
The fuzzystrmatch module provides several functions to determine similarities and distance between
strings.

Caution
At present, the soundex, metaphone, dmetaphone, and dmetaphone_alt functions do not work well
with multibyte encodings (such as UTF-8).

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.18.1. Soundex
The Soundex system is a method of matching similar-sounding names by converting them to the same
code. It was initially used by the United States Census in 1880, 1900, and 1910. Note that Soundex is
not very useful for non-English names.

The fuzzystrmatch module provides two functions for working with Soundex codes:

soundex(text) returns text
difference(text, text) returns int

The soundex function converts a string to its Soundex code. The difference function converts two
strings to their Soundex codes and then reports the number of matching code positions. Since Soundex
codes have four characters, the result ranges from zero to four, with zero being no match and four being
an exact match. (Thus, the function is misnamed — similarity would have been a better name.)

Here are some usage examples:

SELECT soundex('hello world!');

SELECT soundex('Anne'), soundex('Ann'), difference('Anne', 'Ann');
SELECT soundex('Anne'), soundex('Andrew'), difference('Anne', 'Andrew');
SELECT soundex('Anne'), soundex('Margaret'), difference('Anne', 'Margaret');

CREATE TABLE s (nm text);

INSERT INTO s VALUES ('john');
INSERT INTO s VALUES ('joan');
INSERT INTO s VALUES ('wobbly');
INSERT INTO s VALUES ('jack');

2237

Additional Supplied Modules

SELECT * FROM s WHERE soundex(nm) = soundex('john');

SELECT * FROM s WHERE difference(s.nm, 'john') > 2;

F.18.2. Levenshtein
This function calculates the Levenshtein distance between two strings:

levenshtein(text source, text target, int ins_cost, int del_cost, int sub_cost) returns
 int
levenshtein(text source, text target) returns int
levenshtein_less_equal(text source, text target, int ins_cost, int del_cost, int
 sub_cost, int max_d) returns int
levenshtein_less_equal(text source, text target, int max_d) returns int

Both source and target can be any non-null string, with a maximum of 255 characters. The cost
parameters specify how much to charge for a character insertion, deletion, or substitution, respectively.
You can omit the cost parameters, as in the second version of the function; in that case they all default
to 1.

levenshtein_less_equal is an accelerated version of the Levenshtein function for use when
only small distances are of interest. If the actual distance is less than or equal to max_d, then
levenshtein_less_equal returns the correct distance; otherwise it returns some value greater than
max_d. If max_d is negative then the behavior is the same as levenshtein.

Examples:

test=# SELECT levenshtein('GUMBO', 'GAMBOL');
 levenshtein

 2
(1 row)

test=# SELECT levenshtein('GUMBO', 'GAMBOL', 2, 1, 1);
 levenshtein

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 2);
 levenshtein_less_equal

 3
(1 row)

test=# SELECT levenshtein_less_equal('extensive', 'exhaustive', 4);
 levenshtein_less_equal

 4
(1 row)

F.18.3. Metaphone
Metaphone, like Soundex, is based on the idea of constructing a representative code for an input string.
Two strings are then deemed similar if they have the same codes.

This function calculates the metaphone code of an input string:

metaphone(text source, int max_output_length) returns text

2238

Additional Supplied Modules

source has to be a non-null string with a maximum of 255 characters. max_output_length sets the
maximum length of the output metaphone code; if longer, the output is truncated to this length.

Example:

test=# SELECT metaphone('GUMBO', 4);
 metaphone

 KM
(1 row)

F.18.4. Double Metaphone
The Double Metaphone system computes two “sounds like” strings for a given input string — a “primary”
and an “alternate”. In most cases they are the same, but for non-English names especially they can be
a bit different, depending on pronunciation. These functions compute the primary and alternate codes:

dmetaphone(text source) returns text
dmetaphone_alt(text source) returns text

There is no length limit on the input strings.

Example:

test=# SELECT dmetaphone('gumbo');
 dmetaphone

 KMP
(1 row)

F.19. hstore
This module implements the hstore data type for storing sets of key/value pairs within a single Postgres
Pro value. This can be useful in various scenarios, such as rows with many attributes that are rarely
examined, or semi-structured data. Keys and values are simply text strings.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.19.1. hstore External Representation
The text representation of an hstore, used for input and output, includes zero or more key => value
pairs separated by commas. Some examples:
k => v
foo => bar, baz => whatever
"1-a" => "anything at all"

The order of the pairs is not significant (and may not be reproduced on output). Whitespace between
pairs or around the => sign is ignored. Double-quote keys and values that include whitespace, commas,
=s or >s. To include a double quote or a backslash in a key or value, escape it with a backslash.

Each key in an hstore is unique. If you declare an hstore with duplicate keys, only one will be stored
in the hstore and there is no guarantee as to which will be kept:
SELECT 'a=>1,a=>2'::hstore;
 hstore

 "a"=>"1"

A value (but not a key) can be an SQL NULL. For example:
key => NULL

The NULL keyword is case-insensitive. Double-quote the NULL to treat it as the ordinary string “NULL”.

2239

Additional Supplied Modules

Note
Keep in mind that the hstore text format, when used for input, applies before any required quoting
or escaping. If you are passing an hstore literal via a parameter, then no additional processing
is needed. But if you're passing it as a quoted literal constant, then any single-quote characters
and (depending on the setting of the standard_conforming_strings configuration parameter)
backslash characters need to be escaped correctly. See Section 4.1.2.1 for more on the handling
of string constants.

On output, double quotes always surround keys and values, even when it's not strictly necessary.

F.19.2. hstore Operators and Functions
The operators provided by the hstore module are shown in Table F.7, the functions in Table F.8.

Table F.7. hstore Operators

Operator
Description
Example(s)

hstore -> text → text
Returns value associated with given key, or NULL if not present.
'a=>x, b=>y'::hstore -> 'a' → x

hstore -> text[] → text[]
Returns values associated with given keys, or NULL if not present.
'a=>x, b=>y, c=>z'::hstore -> ARRAY['c','a'] → {"z","x"}

hstore || hstore → hstore
Concatenates two hstores.
'a=>b, c=>d'::hstore || 'c=>x, d=>q'::hstore → "a"=>"b", "c"=>"x", "d"=>"q"

hstore ? text → boolean
Does hstore contain key?
'a=>1'::hstore ? 'a' → t

hstore ?& text[] → boolean
Does hstore contain all the specified keys?
'a=>1,b=>2'::hstore ?& ARRAY['a','b'] → t

hstore ?| text[] → boolean
Does hstore contain any of the specified keys?
'a=>1,b=>2'::hstore ?| ARRAY['b','c'] → t

hstore @> hstore → boolean
Does left operand contain right?
'a=>b, b=>1, c=>NULL'::hstore @> 'b=>1' → t

hstore <@ hstore → boolean
Is left operand contained in right?
'a=>c'::hstore <@ 'a=>b, b=>1, c=>NULL' → f

hstore - text → hstore
Deletes key from left operand.
'a=>1, b=>2, c=>3'::hstore - 'b'::text → "a"=>"1", "c"=>"3"

hstore - text[] → hstore
Deletes keys from left operand.

2240

Additional Supplied Modules

Operator
Description
Example(s)
'a=>1, b=>2, c=>3'::hstore - ARRAY['a','b'] → "c"=>"3"

hstore - hstore → hstore
Deletes pairs from left operand that match pairs in the right operand.
'a=>1, b=>2, c=>3'::hstore - 'a=>4, b=>2'::hstore → "a"=>"1", "c"=>"3"

anyelement #= hstore → anyelement
Replaces fields in the left operand (which must be a composite type) with matching values
from hstore.
ROW(1,3) #= 'f1=>11'::hstore → (11,3)

%% hstore → text[]
Converts hstore to an array of alternating keys and values.
%% 'a=>foo, b=>bar'::hstore → {a,foo,b,bar}

%# hstore → text[]
Converts hstore to a two-dimensional key/value array.
%# 'a=>foo, b=>bar'::hstore → {{a,foo},{b,bar}}

Note
Prior to PostgreSQL 8.2, the containment operators @> and <@ were called @ and ~, respectively.
These names are still available, but are deprecated and will eventually be removed. Notice that the
old names are reversed from the convention formerly followed by the core geometric data types!

Table F.8. hstore Functions

Function
Description
Example(s)

hstore (record) → hstore
Constructs an hstore from a record or row.
hstore(ROW(1,2)) → "f1"=>"1", "f2"=>"2"

hstore (text[]) → hstore
Constructs an hstore from an array, which may be either a key/value array, or a two-
dimensional array.
hstore(ARRAY['a','1','b','2']) → "a"=>"1", "b"=>"2"
hstore(ARRAY[['c','3'],['d','4']]) → "c"=>"3", "d"=>"4"

hstore (text[], text[]) → hstore
Constructs an hstore from separate key and value arrays.
hstore(ARRAY['a','b'], ARRAY['1','2']) → "a"=>"1", "b"=>"2"

hstore (text, text) → hstore
Makes a single-item hstore.
hstore('a', 'b') → "a"=>"b"

akeys (hstore) → text[]
Extracts an hstore's keys as an array.
akeys('a=>1,b=>2') → {a,b}

skeys (hstore) → setof text
Extracts an hstore's keys as a set.

2241

Additional Supplied Modules

Function
Description
Example(s)
skeys('a=>1,b=>2') →

a
b

avals (hstore) → text[]
Extracts an hstore's values as an array.
avals('a=>1,b=>2') → {1,2}

svals (hstore) → setof text
Extracts an hstore's values as a set.
svals('a=>1,b=>2') →

1
2

hstore_to_array (hstore) → text[]
Extracts an hstore's keys and values as an array of alternating keys and values.
hstore_to_array('a=>1,b=>2') → {a,1,b,2}

hstore_to_matrix (hstore) → text[]
Extracts an hstore's keys and values as a two-dimensional array.
hstore_to_matrix('a=>1,b=>2') → {{a,1},{b,2}}

hstore_to_json (hstore) → json
Converts an hstore to a json value, converting all non-null values to JSON strings.
This function is used implicitly when an hstore value is cast to json.
hstore_to_json('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345",
"e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_jsonb (hstore) → jsonb
Converts an hstore to a jsonb value, converting all non-null values to JSON strings.
This function is used implicitly when an hstore value is cast to jsonb.
hstore_to_jsonb('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

f=>1.234, g=>2.345e+4') → {"a key": "1", "b": "t", "c": null, "d": "12345",
"e": "012345", "f": "1.234", "g": "2.345e+4"}

hstore_to_json_loose (hstore) → json
Converts an hstore to a json value, but attempts to distinguish numerical and Boolean values
so they are unquoted in the JSON.
hstore_to_json_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

 f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345,
"e": "012345", "f": 1.234, "g": 2.345e+4}

hstore_to_jsonb_loose (hstore) → jsonb
Converts an hstore to a jsonb value, but attempts to distinguish numerical and Boolean
values so they are unquoted in the JSON.
hstore_to_jsonb_loose('"a key"=>1, b=>t, c=>null, d=>12345, e=>012345,

 f=>1.234, g=>2.345e+4') → {"a key": 1, "b": true, "c": null, "d": 12345,
"e": "012345", "f": 1.234, "g": 2.345e+4}

slice (hstore, text[]) → hstore
Extracts a subset of an hstore containing only the specified keys.
slice('a=>1,b=>2,c=>3'::hstore, ARRAY['b','c','x']) → "b"=>"2", "c"=>"3"

2242

Additional Supplied Modules

Function
Description
Example(s)

each (hstore) → setof record (key text, value text)
Extracts an hstore's keys and values as a set of records.
select * from each('a=>1,b=>2') →

 key | value
-----+-------
 a | 1
 b | 2

exist (hstore, text) → boolean
Does hstore contain key?
exist('a=>1', 'a') → t

defined (hstore, text) → boolean
Does hstore contain a non-NULL value for key?
defined('a=>NULL', 'a') → f

delete (hstore, text) → hstore
Deletes pair with matching key.
delete('a=>1,b=>2', 'b') → "a"=>"1"

delete (hstore, text[]) → hstore
Deletes pairs with matching keys.
delete('a=>1,b=>2,c=>3', ARRAY['a','b']) → "c"=>"3"

delete (hstore, hstore) → hstore
Deletes pairs matching those in the second argument.
delete('a=>1,b=>2', 'a=>4,b=>2'::hstore) → "a"=>"1"

populate_record (anyelement, hstore) → anyelement
Replaces fields in the left operand (which must be a composite type) with matching values
from hstore.
populate_record(ROW(1,2), 'f1=>42'::hstore) → (42,2)

F.19.3. Indexes
hstore has GiST and GIN index support for the @>, ?, ?& and ?| operators. For example:

CREATE INDEX hidx ON testhstore USING GIST (h);

CREATE INDEX hidx ON testhstore USING GIN (h);

gist_hstore_ops GiST opclass approximates a set of key/value pairs as a bitmap signature. Its optional
integer parameter siglen determines the signature length in bytes. The default length is 16 bytes. Valid
values of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise
search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:
CREATE INDEX hidx ON testhstore USING GIST (h gist_hstore_ops(siglen=32));

hstore also supports btree or hash indexes for the = operator. This allows hstore columns to be declared
UNIQUE, or to be used in GROUP BY, ORDER BY or DISTINCT expressions. The sort ordering for hstore
values is not particularly useful, but these indexes may be useful for equivalence lookups. Create indexes
for = comparisons as follows:

CREATE INDEX hidx ON testhstore USING BTREE (h);

2243

Additional Supplied Modules

CREATE INDEX hidx ON testhstore USING HASH (h);

F.19.4. Examples
Add a key, or update an existing key with a new value:

UPDATE tab SET h = h || hstore('c', '3');

Delete a key:

UPDATE tab SET h = delete(h, 'k1');

Convert a record to an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT hstore(t) FROM test AS t;
 hstore

 "col1"=>"123", "col2"=>"foo", "col3"=>"bar"
(1 row)

Convert an hstore to a predefined record type:

CREATE TABLE test (col1 integer, col2 text, col3 text);

SELECT * FROM populate_record(null::test,
 '"col1"=>"456", "col2"=>"zzz"');
 col1 | col2 | col3
------+------+------
 456 | zzz |
(1 row)

Modify an existing record using the values from an hstore:

CREATE TABLE test (col1 integer, col2 text, col3 text);
INSERT INTO test VALUES (123, 'foo', 'bar');

SELECT (r).* FROM (SELECT t #= '"col3"=>"baz"' AS r FROM test t) s;
 col1 | col2 | col3
------+------+------
 123 | foo | baz
(1 row)

F.19.5. Statistics
The hstore type, because of its intrinsic liberality, could contain a lot of different keys. Checking for valid
keys is the task of the application. The following examples demonstrate several techniques for checking
keys and obtaining statistics.

Simple example:

SELECT * FROM each('aaa=>bq, b=>NULL, ""=>1');

Using a table:

SELECT (each(h)).key, (each(h)).value INTO stat FROM testhstore;

Online statistics:

SELECT key, count(*) FROM

2244

Additional Supplied Modules

 (SELECT (each(h)).key FROM testhstore) AS stat
 GROUP BY key
 ORDER BY count DESC, key;
 key | count
-----------+-------
 line | 883
 query | 207
 pos | 203
 node | 202
 space | 197
 status | 195
 public | 194
 title | 190
 org | 189
...................

F.19.6. Compatibility
As of PostgreSQL 9.0, hstore uses a different internal representation than previous versions. This
presents no obstacle for dump/restore upgrades since the text representation (used in the dump) is
unchanged.

In the event of a binary upgrade, upward compatibility is maintained by having the new code recognize
old-format data. This will entail a slight performance penalty when processing data that has not yet been
modified by the new code. It is possible to force an upgrade of all values in a table column by doing an
UPDATE statement as follows:

UPDATE tablename SET hstorecol = hstorecol || '';

Another way to do it is:

ALTER TABLE tablename ALTER hstorecol TYPE hstore USING hstorecol || '';

The ALTER TABLE method requires an ACCESS EXCLUSIVE lock on the table, but does not result in bloating
the table with old row versions.

F.19.7. Transforms
Additional extensions are available that implement transforms for the hstore type for the languages
PL/Perl and PL/Python. The extensions for PL/Perl are called hstore_plperl and hstore_plperlu, for
trusted and untrusted PL/Perl. If you install these transforms and specify them when creating a function,
hstore values are mapped to Perl hashes. The extensions for PL/Python are called hstore_plpythonu,
hstore_plpython2u, and hstore_plpython3u (see Section 43.1 for the PL/Python naming convention).
If you use them, hstore values are mapped to Python dictionaries.

Caution
It is strongly recommended that the transform extensions be installed in the same schema as
hstore. Otherwise there are installation-time security hazards if a transform extension's schema
contains objects defined by a hostile user.

F.19.8. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd., Russia

Additional enhancements by Andrew Gierth <andrew@tao11.riddles.org.uk>, United Kingdom

2245

Additional Supplied Modules

F.20. Hunspell Dictionaries Modules
These modules provide Hunspell dictionaries for various languages. Upon installation of the module into
database using CREATE EXTENSION command, text search dictionary and configuration objects in the
public schema appear.

Table F.9. Modules

Language Extension name Dictionary name Configuration name
American English hunspell_en_us english_hunspell english_hunspell

Dutch hunspell_nl_nl dutch_hunspell dutch_hunspell

French hunspell_fr french_hunspell french_hunspell

Russian hunspell_ru_ru russian_hunspell russian_hunspell

F.20.1. Examples
Text search objects will be created after installation of a dictionary module. We can test created
configuration:

SELECT * FROM ts_debug('english_hunspell', 'abilities');
 alias | description | token | dictionaries |
 dictionary | lexemes
-----------+-----------------+-----------+---------------------------------
+------------------+-----------
 asciiword | Word, all ASCII | abilities | {english_hunspell,english_stem} |
 english_hunspell | {ability}
(1 row)

Or you can create your own text search configuration. For example, with the created dictionaries and
with the Snowball dictionary you can create mixed russian-english configuration:

CREATE TEXT SEARCH CONFIGURATION russian_en (
 COPY = simple
);

ALTER TEXT SEARCH CONFIGURATION russian_en
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart
 WITH english_hunspell, english_stem;

ALTER TEXT SEARCH CONFIGURATION russian_en
 ALTER MAPPING FOR word, hword, hword_part
 WITH russian_hunspell, russian_stem;

You can create mixed dictionaries only for languages with different alphabets. If languages have similar
alphabets then Postgres Pro can not decide which dictionary should be used.

A text search configuration which is created with a dictionary module is ready to use. For example, in
this text you can search some words:

SELECT to_tsvector('english_hunspell', 'The blue whale is the largest animal');
 to_tsvector

 'animal':7 'blue':2 'large':6 'whale':3
(1 row)

Search query might looks like this:

SELECT to_tsvector('english_hunspell', 'The blue whale is the largest animal')
 @@ to_tsquery('english_hunspell', 'large & whale');

2246

Additional Supplied Modules

 ?column?

 t
(1 row)

With this configurations you can search a text using GIN or GIST indexes. For example, there is a table
with GIN index:

CREATE TABLE table1 (t varchar);
INSERT INTO table1 VALUES ('The blue whale is the largest animal');
CREATE INDEX t_idx ON table1 USING GIN (to_tsvector('english_hunspell', "t"));

For this table you can execute the following query:

SELECT * FROM table1 where to_tsvector('english_hunspell', t)
 @@ to_tsquery('english_hunspell', 'blue & animal');
 t

 The blue whale is the largest animal
(1 row)

F.21. intagg
The intagg module provides an integer aggregator and an enumerator. intagg is now obsolete, because
there are built-in functions that provide a superset of its capabilities. However, the module is still
provided as a compatibility wrapper around the built-in functions.

F.21.1. Functions
The aggregator is an aggregate function int_array_aggregate(integer) that produces an integer
array containing exactly the integers it is fed. This is a wrapper around array_agg, which does the same
thing for any array type.

The enumerator is a function int_array_enum(integer[]) that returns setof integer. It is essentially
the reverse operation of the aggregator: given an array of integers, expand it into a set of rows. This is
a wrapper around unnest, which does the same thing for any array type.

F.21.2. Sample Uses
Many database systems have the notion of a one to many table. Such a table usually sits between two
indexed tables, for example:

CREATE TABLE left (id INT PRIMARY KEY, ...);
CREATE TABLE right (id INT PRIMARY KEY, ...);
CREATE TABLE one_to_many(left INT REFERENCES left, right INT REFERENCES right);

It is typically used like this:

SELECT right.* from right JOIN one_to_many ON (right.id = one_to_many.right)
 WHERE one_to_many.left = item;

This will return all the items in the right hand table for an entry in the left hand table. This is a very
common construct in SQL.

Now, this methodology can be cumbersome with a very large number of entries in the one_to_many table.
Often, a join like this would result in an index scan and a fetch for each right hand entry in the table for
a particular left hand entry. If you have a very dynamic system, there is not much you can do. However,
if you have some data which is fairly static, you can create a summary table with the aggregator.

CREATE TABLE summary AS
 SELECT left, int_array_aggregate(right) AS right
 FROM one_to_many

2247

Additional Supplied Modules

 GROUP BY left;

This will create a table with one row per left item, and an array of right items. Now this is pretty useless
without some way of using the array; that's why there is an array enumerator. You can do

SELECT left, int_array_enum(right) FROM summary WHERE left = item;

The above query using int_array_enum produces the same results as

SELECT left, right FROM one_to_many WHERE left = item;

The difference is that the query against the summary table has to get only one row from the table,
whereas the direct query against one_to_many must index scan and fetch a row for each entry.

On one system, an EXPLAIN showed a query with a cost of 8488 was reduced to a cost of 329. The original
query was a join involving the one_to_many table, which was replaced by:

SELECT right, count(right) FROM
 (SELECT left, int_array_enum(right) AS right
 FROM summary JOIN (SELECT left FROM left_table WHERE left = item) AS lefts
 ON (summary.left = lefts.left)
) AS list
 GROUP BY right
 ORDER BY count DESC;

F.22. intarray
The intarray module provides a number of useful functions and operators for manipulating null-free
arrays of integers. There is also support for indexed searches using some of the operators.

All of these operations will throw an error if a supplied array contains any NULL elements.

Many of these operations are only sensible for one-dimensional arrays. Although they will accept input
arrays of more dimensions, the data is treated as though it were a linear array in storage order.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.22.1. intarray Functions and Operators
The functions provided by the intarray module are shown in Table F.10, the operators in Table F.11.

Table F.10. intarray Functions

Function
Description
Example(s)

icount (integer[]) → integer
Returns the number of elements in the array.
icount('{1,2,3}'::integer[]) → 3

sort (integer[], dir text) → integer[]
Sorts the array in either ascending or descending order. dir must be asc or desc.
sort('{1,3,2}'::integer[], 'desc') → {3,2,1}

sort (integer[]) → integer[]
sort_asc (integer[]) → integer[]

Sorts in ascending order.
sort(array[11,77,44]) → {11,44,77}

sort_desc (integer[]) → integer[]
Sorts in descending order.

2248

Additional Supplied Modules

Function
Description
Example(s)
sort_desc(array[11,77,44]) → {77,44,11}

uniq (integer[]) → integer[]
Removes adjacent duplicates.
uniq(sort('{1,2,3,2,1}'::integer[])) → {1,2,3}

idx (integer[], item integer) → integer
Returns index of the first array element matching item, or 0 if no match.
idx(array[11,22,33,22,11], 22) → 2

subarray (integer[], start integer, len integer) → integer[]
Extracts the portion of the array starting at position start, with len elements.
subarray('{1,2,3,2,1}'::integer[], 2, 3) → {2,3,2}

subarray (integer[], start integer) → integer[]
Extracts the portion of the array starting at position start.
subarray('{1,2,3,2,1}'::integer[], 2) → {2,3,2,1}

intset (integer) → integer[]
Makes a single-element array.
intset(42) → {42}

Table F.11. intarray Operators

Operator
Description

integer[] && integer[] → boolean
Do arrays overlap (have at least one element in common)?

integer[] @> integer[] → boolean
Does left array contain right array?

integer[] <@ integer[] → boolean
Is left array contained in right array?

integer[] → integer
Returns the number of elements in the array.

integer[] # integer → integer
Returns index of the first array element matching the right argument, or 0 if no match. (Same
as idx function.)

integer[] + integer → integer[]
Adds element to end of array.

integer[] + integer[] → integer[]
Concatenates the arrays.

integer[] - integer → integer[]
Removes entries matching the right argument from the array.

integer[] - integer[] → integer[]
Removes elements of the right array from the left array.

integer[] | integer → integer[]
Computes the union of the arguments.

integer[] | integer[] → integer[]

2249

Additional Supplied Modules

Operator
Description
Computes the union of the arguments.

integer[] & integer[] → integer[]
Computes the intersection of the arguments.

integer[] @@ query_int → boolean
Does array satisfy query? (see below)

query_int ~~ integer[] → boolean
Does array satisfy query? (commutator of @@)

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names
are reversed from the convention formerly followed by the core geometric data types!)

The operators &&, @> and <@ are equivalent to Postgres Pro's built-in operators of the same names, except
that they work only on integer arrays that do not contain nulls, while the built-in operators work for any
array type. This restriction makes them faster than the built-in operators in many cases.

The @@ and ~~ operators test whether an array satisfies a query, which is expressed as a value of a
specialized data type query_int. A query consists of integer values that are checked against the elements
of the array, possibly combined using the operators & (AND), | (OR), and ! (NOT). Parentheses can be
used as needed. For example, the query 1&(2|3) matches arrays that contain 1 and also contain either
2 or 3.

F.22.2. Index Support
intarray provides index support for the &&, @>, <@, and @@ operators, as well as regular array equality.

Two parameterized GiST index operator classes are provided: gist__int_ops (used by default) is
suitable for small- to medium-size data sets, while gist__intbig_ops uses a larger signature and is more
suitable for indexing large data sets (i.e., columns containing a large number of distinct array values).
The implementation uses an RD-tree data structure with built-in lossy compression.

gist__int_ops approximates an integer set as an array of integer ranges. Its optional integer parameter
numranges determines the maximum number of ranges in one index key. The default value of numranges
is 100. Valid values are between 1 and 253. Using larger arrays as GiST index keys leads to a more precise
search (scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

gist__intbig_ops approximates an integer set as a bitmap signature. Its optional integer parameter
siglen determines the signature length in bytes. The default signature length is 16 bytes. Valid values
of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

There is also a non-default GIN operator class gin__int_ops supporting the same operators.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.22.3. Example
-- a message can be in one or more “sections”
CREATE TABLE message (mid INT PRIMARY KEY, sections INT[], ...);

-- create specialized index with signature length of 32 bytes
CREATE INDEX message_rdtree_idx ON message USING GIST (sections gist__intbig_ops
 (siglen = 32));

2250

Additional Supplied Modules

-- select messages in section 1 OR 2 - OVERLAP operator
SELECT message.mid FROM message WHERE message.sections && '{1,2}';

-- select messages in sections 1 AND 2 - CONTAINS operator
SELECT message.mid FROM message WHERE message.sections @> '{1,2}';

-- the same, using QUERY operator
SELECT message.mid FROM message WHERE message.sections @@ '1&2'::query_int;

F.22.4. Authors
All work was done by Teodor Sigaev (<teodor@sigaev.ru>) and Oleg Bartunov (<oleg@sai.msu.su>).
See http://www.sai.msu.su/~megera/postgres/gist/ for additional information. Andrey Oktyabrski did a
great work on adding new functions and operations.

F.23. isn
The isn module provides data types for the following international product numbering standards:
EAN13, UPC, ISBN (books), ISMN (music), and ISSN (serials). Numbers are validated on input according
to a hard-coded list of prefixes; this list of prefixes is also used to hyphenate numbers on output. Since
new prefixes are assigned from time to time, the list of prefixes may be out of date. It is hoped that
a future version of this module will obtain the prefix list from one or more tables that can be easily
updated by users as needed; however, at present, the list can only be updated by modifying the source
code and recompiling. Alternatively, prefix validation and hyphenation support may be dropped from a
future version of this module.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.23.1. Data Types
Table F.12 shows the data types provided by the isn module.

Table F.12. isn Data Types

Data Type Description
EAN13 European Article Numbers, always displayed in the EAN13 display

format
ISBN13 International Standard Book Numbers to be displayed in the new

EAN13 display format
ISMN13 International Standard Music Numbers to be displayed in the new

EAN13 display format
ISSN13 International Standard Serial Numbers to be displayed in the new

EAN13 display format
ISBN International Standard Book Numbers to be displayed in the old

short display format
ISMN International Standard Music Numbers to be displayed in the old

short display format
ISSN International Standard Serial Numbers to be displayed in the old

short display format
UPC Universal Product Codes

Some notes:

1. ISBN13, ISMN13, ISSN13 numbers are all EAN13 numbers.
2. EAN13 numbers aren't always ISBN13, ISMN13 or ISSN13 (some are).

2251

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

3. Some ISBN13 numbers can be displayed as ISBN.

4. Some ISMN13 numbers can be displayed as ISMN.

5. Some ISSN13 numbers can be displayed as ISSN.

6. UPC numbers are a subset of the EAN13 numbers (they are basically EAN13 without the first 0 digit).

7. All UPC, ISBN, ISMN and ISSN numbers can be represented as EAN13 numbers.

Internally, all these types use the same representation (a 64-bit integer), and all are interchangeable.
Multiple types are provided to control display formatting and to permit tighter validity checking of input
that is supposed to denote one particular type of number.

The ISBN, ISMN, and ISSN types will display the short version of the number (ISxN 10) whenever it's
possible, and will show ISxN 13 format for numbers that do not fit in the short version. The EAN13,
ISBN13, ISMN13 and ISSN13 types will always display the long version of the ISxN (EAN13).

F.23.2. Casts
The isn module provides the following pairs of type casts:

• ISBN13 <=> EAN13

• ISMN13 <=> EAN13

• ISSN13 <=> EAN13

• ISBN <=> EAN13

• ISMN <=> EAN13

• ISSN <=> EAN13

• UPC <=> EAN13

• ISBN <=> ISBN13

• ISMN <=> ISMN13

• ISSN <=> ISSN13

When casting from EAN13 to another type, there is a run-time check that the value is within the domain
of the other type, and an error is thrown if not. The other casts are simply relabelings that will always
succeed.

F.23.3. Functions and Operators
The isn module provides the standard comparison operators, plus B-tree and hash indexing support
for all these data types. In addition there are several specialized functions; shown in Table F.13. In this
table, isn means any one of the module's data types.

Table F.13. isn Functions

Function
Description

isn_weak (boolean) → boolean
Sets the weak input mode, and returns new setting.

isn_weak () → boolean
Returns the current status of the weak mode.

make_valid (isn) → isn
Validates an invalid number (clears the invalid flag).

is_valid (isn) → boolean

2252

Additional Supplied Modules

Function
Description
Checks for the presence of the invalid flag.

Weak mode is used to be able to insert invalid data into a table. Invalid means the check digit is wrong,
not that there are missing numbers.

Why would you want to use the weak mode? Well, it could be that you have a huge collection of ISBN
numbers, and that there are so many of them that for weird reasons some have the wrong check digit
(perhaps the numbers were scanned from a printed list and the OCR got the numbers wrong, perhaps
the numbers were manually captured... who knows). Anyway, the point is you might want to clean the
mess up, but you still want to be able to have all the numbers in your database and maybe use an external
tool to locate the invalid numbers in the database so you can verify the information and validate it more
easily; so for example you'd want to select all the invalid numbers in the table.

When you insert invalid numbers in a table using the weak mode, the number will be inserted with the
corrected check digit, but it will be displayed with an exclamation mark (!) at the end, for example
0-11-000322-5!. This invalid marker can be checked with the is_valid function and cleared with the
make_valid function.

You can also force the insertion of invalid numbers even when not in the weak mode, by appending the
! character at the end of the number.

Another special feature is that during input, you can write ? in place of the check digit, and the correct
check digit will be inserted automatically.

F.23.4. Examples
--Using the types directly:
SELECT isbn('978-0-393-04002-9');
SELECT isbn13('0901690546');
SELECT issn('1436-4522');

--Casting types:
-- note that you can only cast from ean13 to another type when the
-- number would be valid in the realm of the target type;
-- thus, the following will NOT work: select isbn(ean13('0220356483481'));
-- but these will:
SELECT upc(ean13('0220356483481'));
SELECT ean13(upc('220356483481'));

--Create a table with a single column to hold ISBN numbers:
CREATE TABLE test (id isbn);
INSERT INTO test VALUES('9780393040029');

--Automatically calculate check digits (observe the '?'):
INSERT INTO test VALUES('220500896?');
INSERT INTO test VALUES('978055215372?');

SELECT issn('3251231?');
SELECT ismn('979047213542?');

--Using the weak mode:
SELECT isn_weak(true);
INSERT INTO test VALUES('978-0-11-000533-4');
INSERT INTO test VALUES('9780141219307');
INSERT INTO test VALUES('2-205-00876-X');
SELECT isn_weak(false);

2253

Additional Supplied Modules

SELECT id FROM test WHERE NOT is_valid(id);
UPDATE test SET id = make_valid(id) WHERE id = '2-205-00876-X!';

SELECT * FROM test;

SELECT isbn13(id) FROM test;

F.23.5. Bibliography
The information to implement this module was collected from several sites, including:
• https://www.isbn-international.org/
• https://www.issn.org/
• https://www.ismn-international.org/
• https://www.wikipedia.org/
The prefixes used for hyphenation were also compiled from:
• https://www.gs1.org/standards/id-keys
• https://en.wikipedia.org/wiki/List_of_ISBN_identifier_groups
• https://www.isbn-international.org/content/isbn-users-manual
• https://en.wikipedia.org/wiki/International_Standard_Music_Number
• https://www.ismn-international.org/ranges.html
Care was taken during the creation of the algorithms and they were meticulously verified against the
suggested algorithms in the official ISBN, ISMN, ISSN User Manuals.

F.23.6. Author
Germán Méndez Bravo (Kronuz), 2004–2006

This module was inspired by Garrett A. Wollman's isbn_issn code.

F.24. jsquery
JsQuery is a language to query jsonb data type. Its primary goal is to provide an additional functionality
for jsonb, such as a simple and effective way for search in nested objects and arrays, as well as additional
comparison operators with index support.

JsQuery is implemented by means of a jsquery data type (similar to tsquery) and the @@ match operator
for jsonb.

F.24.1. Installation
Postgres Pro distribution includes jsquery as a contrib module. Once you complete Postgres Pro Standard
installation, create the jsquery extension, as follows:

CREATE EXTENSION jsquery;

F.24.2. JSON query language
JsQuery extension contains jsquery datatype which represents whole JSON query as a single value (like
tsquery does for fulltext search). The query is an expression on JSON-document values.

Simple expression is specified as path binary_operator value or path unary_operator. See the
following examples.

• x = "abc" - value of key "x" is equal to "abc";

2254

https://www.isbn-international.org/
https://www.issn.org/
https://www.ismn-international.org/
https://www.wikipedia.org/
https://www.gs1.org/standards/id-keys
https://en.wikipedia.org/wiki/List_of_ISBN_identifier_groups
https://www.isbn-international.org/content/isbn-users-manual
https://en.wikipedia.org/wiki/International_Standard_Music_Number
https://www.ismn-international.org/ranges.html

Additional Supplied Modules

• $ @> [4, 5, "zzz"] - the JSON document is an array containing values 4, 5 and "zzz";
• "abc xyz" >= 10 - value of key "abc xyz" is greater than or equal to 10;
• volume IS NUMERIC - type of key "volume" is numeric.
• $ = true - the whole JSON document is just a true.
• similar_ids.@# > 5 - similar_ids is an array or object of length greater than 5;
• similar_product_ids.# = "0684824396" - array similar_product_ids contains string

"0684824396".
• *.color = "red" - there is object somewhere which key "color" has value "red".
• foo = * - key "foo" exists in object.

Path selects set of JSON values to be checked using given operators. In the simplest case, path is just
a key name. In general, path is key names and placeholders combined by dot signs. Path can use the
following placeholders:

• # - any index of array;
• #N - Nth index of array;
• % - any key of object;
• * - any sequence of array indexes and object keys;
• @# - length of array or object, could be only used as last component of path;
• $ - the whole JSON document as single value, could be only the whole path.

Expression is true when operator is true against at least one value selected by path.

Key names could be given either with or without double quotes. Key names without double quotes
shouldn't contain spaces, start with number, or concur with jsquery keyword.

The supported binary operators are:

• Equality operator: =;
• Numeric comparison operators: >, >=, <, <=;
• Search in the list of scalar values using IN operator;
• Array comparison operators: && (overlap), @> (contains), <@ (contained in).
• Filtering operator: ~~. Taking jsonb data as the left operand and a jsquery expression as the

right operand, this operator checks that jsonb data contains any entries that satisfy the condition
provided in a jsquery expression and returns an array of such entries, if any.

The supported unary operators are:

• Check for existence operator: = *;
• Check for type operators: IS ARRAY, IS NUMERIC, IS OBJECT, IS STRING and IS BOOLEAN.

Expressions could be complex. Complex expression is a set of expressions combined by logical operators
(AND, OR, NOT) and grouped using parentheses.

Examples of complex expressions are given below.

• a = 1 AND (b = 2 OR c = 3) AND NOT d = 1
• x.% = true OR x.# = true

Prefix expressions are expressions given in the form path (subexpression). In this case path selects JSON
values to be checked using given subexpression. Check results are aggregated in the same way as in
simple expressions.

• #(a = 1 AND b = 2) - an array contains an element where the a key is 2 and the b key is 2
• %($ >= 10 AND $ <= 20) - an object contains a key with a value between 10 and 20

Path also could contain the following special placeholders with "every" semantics:

• #: - every index of array;
• %: - every key of object;
• *: - every sequence of array indexes and object keys.

2255

Additional Supplied Modules

Consider the following example.

%.#:($ >= 0 AND $ <= 1)

This example could be read as follows: there is at least one key for which the value is an array of numerics
between 0 and 1.

We can rewrite this example in the following form with extra parentheses.

%(#:($ >= 0 AND $ <= 1))

The first placeholder % checks that expression in parentheses is true for at least one value in object.
The second placeholder #: checks that the value is an array and all its elements satisfy expressions in
parentheses.

We can rewrite this example without #: placeholder as follows.

%(NOT #(NOT ($ >= 0 AND $ <= 1)) AND $ IS ARRAY)

In this example we transform assertion that every element of array satisfies some condition to assertion
that there is no one element which doesn't satisfy the same condition.

Some examples of using paths are given below.

• numbers.#: IS NUMERIC - every element of "numbers" array is numeric.
• *:($ IS OBJECT OR $ IS BOOLEAN) - JSON is a structure of nested objects with booleans as leaf

values.
• #:.%:($ >= 0 AND $ <= 1) - each element of array is object containing only numeric values

between 0 and 1.
• documents.#:.% = * - "documents" is an array of objects containing at least one key.
• %.#: ($ IS STRING) - JSON object contains at least one array of strings.
• #.% = true - at least one array element is an object that contains at least one "true" value.
Usage of path operators and parentheses needs some explanation. When same path operators are used
multiple times they may refer to different values while you can refer to the same value multiple times
by using parentheses and $ operator. See the following examples.

• # < 10 AND # > 20 - there is an element less than 10 and another element greater than 20.
• #($ < 10 AND $ > 20) - there is an element that is both less than 10 and greater than 20

(impossible).
• #($ >= 10 AND $ <= 20) - there is an element between 10 and 20.
• # >= 10 AND # <= 20 - there is an element greater than or equal to 10 and another element less

than or equal to 20. The query can be satisfied by an array with no elements between 10 and 20,
for instance [0,30].

Same rules apply when you search inside objects and branchy structures.

Type checking operators and "every" placeholders are useful for document schema validation. JsQuery
matching operator @@ is immutable and can be used in CHECK constraint. See the following example.

CREATE TABLE js (
 id serial,
 data jsonb,
 CHECK (data @@ '
 name IS STRING AND
 similar_ids.#: IS NUMERIC AND
 points.#:(x IS NUMERIC AND y IS NUMERIC)'::jsquery));

In this example check constraint validates that in "data" jsonb column: value of "name" key is string,
value of "similar_ids" key is array of numerics, value of "points" key is array of objects which contain
numeric values in "x" and "y" keys.

See our pgconf.eu presentation for more examples.

2256

http://www.sai.msu.su/~megera/postgres/talks/pgconfeu-2014-jsquery.pdf

Additional Supplied Modules

F.24.3. GIN indexes
JsQuery extension contains two operator classes (opclasses) for GIN which provide different kinds of
query optimization.

• jsonb_path_value_ops
• jsonb_value_path_ops
In each of two GIN opclasses jsonb documents are decomposed into entries. Each entry is associated with
a particular value and its path. Difference between opclasses is in the entry representation, comparison,
and usage for search optimization.

For example, jsonb document {"a": [{"b": "xyz", "c": true}, 10], "d": {"e": [7, false]}}
would be decomposed into the following entries:

• "a".#."b"."xyz"
• "a".#."c".true
• "a".#.10
• "d"."e".#.7
• "d"."e".#.false

Since JsQuery doesn't support search in a particular array index, we consider all array elements to be
equivalent. Thus, each array element is marked with the same # sign in the path.

Major problem in the entries representation is its size. In the given example key "a" is presented three
times. In the large branchy documents with long keys size of naive entries representation becomes
unreasonable. Both opclasses address this issue but in a slightly different way.

F.24.3.1. jsonb_path_value_ops
jsonb_path_value_ops represents entry as pair of path hash and value. The following pseudocode
illustrates it.

(hash(path_item_1.path_item_2.path_item_n); value)

In comparison of entries path hash is the higher part of entry and value is its lower part. This determines
the features of this opclass. Since path is hashed and it is higher part of entry we need to know the full
path to the value in order to use it for search. However, once path is specified we can use both exact
and range searches very efficiently.

F.24.3.2. jsonb_value_path_ops
jsonb_value_path_ops represents entry as pair of value and bloom filter of path.

(value; bloom(path_item_1) | bloom(path_item_2) | ... | bloom(path_item_n))

In comparison of entries value is the higher part of entry and bloom filter of path is its lower part. This
determines the features of this opclass. Since value is the higher part of entry we can perform only
exact value search efficiently. Range value search is possible as well but we would have to filter all
the different paths where matching values occur. Bloom filter over path items allows index usage for
conditions containing % and * in their paths.

F.24.3.3. Query optimization
JsQuery opclasses perform complex query optimization. Thus it's valuable for developer or administrator
to see the result of such optimization. Unfortunately, opclasses aren't allowed to do any custom output
to the EXPLAIN. That's why JsQuery provides the following functions which allows to see how particular
opclass optimizes given query.

• gin_debug_query_path_value(jsquery) - for jsonb_path_value_ops
• gin_debug_query_value_path(jsquery) - for jsonb_value_path_ops
Result of these functions is a textual representation of query tree which leaves are GIN search entries.
The following examples show different results of query optimization by different opclasses.

2257

Additional Supplied Modules

 # SELECT gin_debug_query_path_value('x = 1 AND (*.y = 1 OR y = 2)');
 gin_debug_query_path_value

 x = 1 , entry 0 +

 # SELECT gin_debug_query_value_path('x = 1 AND (*.y = 1 OR y = 2)');
 gin_debug_query_value_path

 AND +
 x = 1 , entry 0 +
 OR +
 *.y = 1 , entry 1 +
 y = 2 , entry 2 +

Unfortunately, jsonb has no statistics yet. That's why JsQuery optimizer has to do imperative decision
while selecting conditions to be evaluated using index. This decision is made by assumption that some
condition types are less selective than others. Optimizer divides conditions into the following selectivity
class (listed by descending of selectivity).

1. Equality (x = c)
2. Range (c1 < x < c2)
3. Inequality (x > c)
4. Is (x is type)
5. Any (x = *)

Optimizer evades index evaluation of less selective conditions when possible. For example, in the x =
1 AND y > 0 query x = 1 is assumed to be more selective than y > 0. That's why index isn't used
for evaluation of y > 0.

 # SELECT gin_debug_query_path_value('x = 1 AND y > 0');
 gin_debug_query_path_value

 x = 1 , entry 0 +

With lack of statistics decisions made by optimizer can be inaccurate. That's why JsQuery supports hints.
Comments /*-- index */ and /*-- noindex */ placed in the conditions force optimizer to use and
not to use index correspondingly.

 SELECT gin_debug_query_path_value('x = 1 AND y /*-- index */ > 0');
 gin_debug_query_path_value

 AND +
 x = 1 , entry 0 +
 y > 0 , entry 1 +

 SELECT gin_debug_query_path_value('x /*-- noindex */ = 1 AND y > 0');
 gin_debug_query_path_value

 y > 0 , entry 0 +

F.24.4. Authors
• Teodor Sigaev <teodor@sigaev.ru>, Postgres Professional, Moscow, Russia
• Alexander Korotkov <aekorotkov@gmail.com>, Postgres Professional, Moscow, Russia
• Oleg Bartunov <oleg@sai.msu.su>, Postgres Professional, Moscow, Russia

F.24.5. Credits
Development is sponsored by Wargaming.net.

2258

http://wargaming.net

Additional Supplied Modules

F.25. lo
The lo module provides support for managing Large Objects (also called LOs or BLOBs). This includes
a data type lo and a trigger lo_manage.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.25.1. Rationale
One of the problems with the JDBC driver (and this affects the ODBC driver also), is that the specification
assumes that references to BLOBs (Binary Large OBjects) are stored within a table, and if that entry is
changed, the associated BLOB is deleted from the database.

As Postgres Pro stands, this doesn't occur. Large objects are treated as objects in their own right; a
table entry can reference a large object by OID, but there can be multiple table entries referencing the
same large object OID, so the system doesn't delete the large object just because you change or remove
one such entry.

Now this is fine for Postgres Pro-specific applications, but standard code using JDBC or ODBC won't
delete the objects, resulting in orphan objects — objects that are not referenced by anything, and simply
occupy disk space.

The lo module allows fixing this by attaching a trigger to tables that contain LO reference columns.
The trigger essentially just does a lo_unlink whenever you delete or modify a value referencing a large
object. When you use this trigger, you are assuming that there is only one database reference to any
large object that is referenced in a trigger-controlled column!

The module also provides a data type lo, which is really just a domain of the oid type. This is useful
for differentiating database columns that hold large object references from those that are OIDs of other
things. You don't have to use the lo type to use the trigger, but it may be convenient to use it to keep
track of which columns in your database represent large objects that you are managing with the trigger.
It is also rumored that the ODBC driver gets confused if you don't use lo for BLOB columns.

F.25.2. How to Use It
Here's a simple example of usage:

CREATE TABLE image (title text, raster lo);

CREATE TRIGGER t_raster BEFORE UPDATE OR DELETE ON image
 FOR EACH ROW EXECUTE FUNCTION lo_manage(raster);

For each column that will contain unique references to large objects, create a BEFORE UPDATE OR DELETE
trigger, and give the column name as the sole trigger argument. You can also restrict the trigger to only
execute on updates to the column by using BEFORE UPDATE OF column_name. If you need multiple lo
columns in the same table, create a separate trigger for each one, remembering to give a different name
to each trigger on the same table.

F.25.3. Limitations
• Dropping a table will still orphan any objects it contains, as the trigger is not executed. You can

avoid this by preceding the DROP TABLE with DELETE FROM table.

TRUNCATE has the same hazard.

If you already have, or suspect you have, orphaned large objects, see the vacuumlo module to help
you clean them up. It's a good idea to run vacuumlo occasionally as a back-stop to the lo_manage
trigger.

2259

Additional Supplied Modules

• Some frontends may create their own tables, and will not create the associated trigger(s). Also,
users may not remember (or know) to create the triggers.

F.25.4. Author
Peter Mount <peter@retep.org.uk>

F.26. ltree
This module implements a data type ltree for representing labels of data stored in a hierarchical tree-
like structure. Extensive facilities for searching through label trees are provided.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.26.1. Definitions
A label is a sequence of alphanumeric characters and underscores (for example, in C locale the
characters A-Za-z0-9_ are allowed). Labels must be less than 256 characters long.

Examples: 42, Personal_Services

A label path is a sequence of zero or more labels separated by dots, for example L1.L2.L3, representing
a path from the root of a hierarchical tree to a particular node. The length of a label path cannot exceed
65535 labels.

Example: Top.Countries.Europe.Russia

The ltree module provides several data types:

• ltree stores a label path.
• lquery represents a regular-expression-like pattern for matching ltree values. A simple word

matches that label within a path. A star symbol (*) matches zero or more labels. These can be
joined with dots to form a pattern that must match the whole label path. For example:
foo Match the exact label path foo
.foo. Match any label path containing the label foo
*.foo Match any label path whose last label is foo

Both star symbols and simple words can be quantified to restrict how many labels they can match:
*{n} Match exactly n labels
*{n,} Match at least n labels
*{n,m} Match at least n but not more than m labels
*{,m} Match at most m labels — same as *{0,m}
foo{n,m} Match at least n but not more than m occurrences of foo
foo{,} Match any number of occurrences of foo, including zero

In the absence of any explicit quantifier, the default for a star symbol is to match any number of
labels (that is, {,}) while the default for a non-star item is to match exactly once (that is, {1}).

There are several modifiers that can be put at the end of a non-star lquery item to make it match
more than just the exact match:
@ Match case-insensitively, for example a@ matches A
* Match any label with this prefix, for example foo* matches foobar
% Match initial underscore-separated words

The behavior of % is a bit complicated. It tries to match words rather than the entire label.
For example foo_bar% matches foo_bar_baz but not foo_barbaz. If combined with *, prefix
matching applies to each word separately, for example foo_bar%* matches foo1_bar2_baz but not
foo1_br2_baz.

2260

Additional Supplied Modules

Also, you can write several possibly-modified non-star items separated with | (OR) to match any
of those items, and you can put ! (NOT) at the start of a non-star group to match any label that
doesn't match any of the alternatives. A quantifier, if any, goes at the end of the group; it means
some number of matches for the group as a whole (that is, some number of labels matching or not
matching any of the alternatives).

Here's an annotated example of lquery:
Top.*{0,2}.sport*@.!football|tennis{1,}.Russ*|Spain
a. b. c. d. e.

This query will match any label path that:

a. begins with the label Top
b. and next has zero to two labels before
c. a label beginning with the case-insensitive prefix sport
d. then has one or more labels, none of which match football nor tennis
e. and then ends with a label beginning with Russ or exactly matching Spain.

• ltxtquery represents a full-text-search-like pattern for matching ltree values. An ltxtquery
value contains words, possibly with the modifiers @, *, % at the end; the modifiers have the same
meanings as in lquery. Words can be combined with & (AND), | (OR), ! (NOT), and parentheses.
The key difference from lquery is that ltxtquery matches words without regard to their position in
the label path.

Here's an example ltxtquery:
Europe & Russia*@ & !Transportation

This will match paths that contain the label Europe and any label beginning with Russia (case-
insensitive), but not paths containing the label Transportation. The location of these words
within the path is not important. Also, when % is used, the word can be matched to any underscore-
separated word within a label, regardless of position.

Note: ltxtquery allows whitespace between symbols, but ltree and lquery do not.

F.26.2. Operators and Functions
Type ltree has the usual comparison operators =, <>, <, >, <=, >=. Comparison sorts in the order of a
tree traversal, with the children of a node sorted by label text. In addition, the specialized operators
shown in Table F.14 are available.

Table F.14. ltree Operators

Operator
Description

ltree @> ltree → boolean
Is left argument an ancestor of right (or equal)?

ltree <@ ltree → boolean
Is left argument a descendant of right (or equal)?

ltree ~ lquery → boolean
lquery ~ ltree → boolean

Does ltree match lquery?

ltree ? lquery[] → boolean
lquery[] ? ltree → boolean

Does ltree match any lquery in array?

2261

Additional Supplied Modules

Operator
Description

ltree @ ltxtquery → boolean
ltxtquery @ ltree → boolean

Does ltree match ltxtquery?

ltree || ltree → ltree
Concatenates ltree paths.

ltree || text → ltree
text || ltree → ltree

Converts text to ltree and concatenates.

ltree[] @> ltree → boolean
ltree <@ ltree[] → boolean

Does array contain an ancestor of ltree?

ltree[] <@ ltree → boolean
ltree @> ltree[] → boolean

Does array contain a descendant of ltree?

ltree[] ~ lquery → boolean
lquery ~ ltree[] → boolean

Does array contain any path matching lquery?

ltree[] ? lquery[] → boolean
lquery[] ? ltree[] → boolean

Does ltree array contain any path matching any lquery?

ltree[] @ ltxtquery → boolean
ltxtquery @ ltree[] → boolean

Does array contain any path matching ltxtquery?

ltree[] ?@> ltree → ltree
Returns first array entry that is an ancestor of ltree, or NULL if none.

ltree[] ?<@ ltree → ltree
Returns first array entry that is a descendant of ltree, or NULL if none.

ltree[] ?~ lquery → ltree
Returns first array entry that matches lquery, or NULL if none.

ltree[] ?@ ltxtquery → ltree
Returns first array entry that matches ltxtquery, or NULL if none.

The operators <@, @>, @ and ~ have analogues ^<@, ^@>, ^@, ^~, which are the same except they do not
use indexes. These are useful only for testing purposes.

The available functions are shown in Table F.15.

Table F.15. ltree Functions

Function
Description
Example(s)

subltree (ltree, start integer, end integer) → ltree
Returns subpath of ltree from position start to position end-1 (counting from 0).
subltree('Top.Child1.Child2', 1, 2) → Child1

2262

Additional Supplied Modules

Function
Description
Example(s)

subpath (ltree, offset integer, len integer) → ltree
Returns subpath of ltree starting at position offset, with length len. If offset is negative,
 subpath starts that far from the end of the path. If len is negative, leaves that many labels off
the end of the path.
subpath('Top.Child1.Child2', 0, 2) → Top.Child1

subpath (ltree, offset integer) → ltree
Returns subpath of ltree starting at position offset, extending to end of path. If offset is
negative, subpath starts that far from the end of the path.
subpath('Top.Child1.Child2', 1) → Child1.Child2

nlevel (ltree) → integer
Returns number of labels in path.
nlevel('Top.Child1.Child2') → 3

index (a ltree, b ltree) → integer
Returns position of first occurrence of b in a, or -1 if not found.
index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6') → 6

index (a ltree, b ltree, offset integer) → integer
Returns position of first occurrence of b in a, or -1 if not found. The search starts at position
offset; negative offset means start -offset labels from the end of the path.
index('0.1.2.3.5.4.5.6.8.5.6.8', '5.6', -4) → 9

text2ltree (text) → ltree
Casts text to ltree.

ltree2text (ltree) → text
Casts ltree to text.

lca (ltree [, ltree [, ...]]) → ltree
Computes longest common ancestor of paths (up to 8 arguments are supported).
lca('1.2.3', '1.2.3.4.5.6') → 1.2

lca (ltree[]) → ltree
Computes longest common ancestor of paths in array.
lca(array['1.2.3'::ltree,'1.2.3.4']) → 1.2

F.26.3. Indexes
ltree supports several types of indexes that can speed up the indicated operators:

• B-tree index over ltree: <, <=, =, >=, >
• GiST index over ltree (gist_ltree_ops opclass): <, <=, =, >=, >, @>, <@, @, ~, ?

gist_ltree_ops GiST opclass approximates a set of path labels as a bitmap signature. Its optional
integer parameter siglen determines the signature length in bytes. The default signature length is
8 bytes. Valid values of signature length are between 1 and 2024 bytes. Longer signatures lead to a
more precise search (scanning a smaller fraction of the index and fewer heap pages), at the cost of
a larger index.

Example of creating such an index with the default signature length of 8 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (path);

Example of creating such an index with a signature length of 100 bytes:

2263

Additional Supplied Modules

CREATE INDEX path_gist_idx ON test USING GIST (path gist_ltree_ops(siglen=100));

• GiST index over ltree[] (gist__ltree_ops opclass): ltree[] <@ ltree, ltree @> ltree[], @, ~,
?

gist__ltree_ops GiST opclass works similarly to gist_ltree_ops and also takes signature length
as a parameter. The default value of siglen in gist__ltree_ops is 28 bytes.

Example of creating such an index with the default signature length of 28 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path);

Example of creating such an index with a signature length of 100 bytes:

CREATE INDEX path_gist_idx ON test USING GIST (array_path
 gist__ltree_ops(siglen=100));

Note: This index type is lossy.

F.26.4. Example
This example uses the following data (also available in file contrib/ltree/ltreetest.sql in the source
distribution):

CREATE TABLE test (path ltree);
INSERT INTO test VALUES ('Top');
INSERT INTO test VALUES ('Top.Science');
INSERT INTO test VALUES ('Top.Science.Astronomy');
INSERT INTO test VALUES ('Top.Science.Astronomy.Astrophysics');
INSERT INTO test VALUES ('Top.Science.Astronomy.Cosmology');
INSERT INTO test VALUES ('Top.Hobbies');
INSERT INTO test VALUES ('Top.Hobbies.Amateurs_Astronomy');
INSERT INTO test VALUES ('Top.Collections');
INSERT INTO test VALUES ('Top.Collections.Pictures');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Stars');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Galaxies');
INSERT INTO test VALUES ('Top.Collections.Pictures.Astronomy.Astronauts');
CREATE INDEX path_gist_idx ON test USING GIST (path);
CREATE INDEX path_idx ON test USING BTREE (path);

Now, we have a table test populated with data describing the hierarchy shown below:

 Top
 / | \
 Science Hobbies Collections
 / | \
 Astronomy Amateurs_Astronomy Pictures
 / \ |
Astrophysics Cosmology Astronomy
 / | \
 Galaxies Stars Astronauts

We can do inheritance:

ltreetest=> SELECT path FROM test WHERE path <@ 'Top.Science';
 path

 Top.Science
 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics

2264

Additional Supplied Modules

 Top.Science.Astronomy.Cosmology
(4 rows)

Here are some examples of path matching:

ltreetest=> SELECT path FROM test WHERE path ~ '*.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Collections.Pictures.Astronomy
 Top.Collections.Pictures.Astronomy.Stars
 Top.Collections.Pictures.Astronomy.Galaxies
 Top.Collections.Pictures.Astronomy.Astronauts
(7 rows)

ltreetest=> SELECT path FROM test WHERE path ~ '*.!pictures@.Astronomy.*';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Here are some examples of full text search:

ltreetest=> SELECT path FROM test WHERE path @ 'Astro*% & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
 Top.Hobbies.Amateurs_Astronomy
(4 rows)

ltreetest=> SELECT path FROM test WHERE path @ 'Astro* & !pictures@';
 path

 Top.Science.Astronomy
 Top.Science.Astronomy.Astrophysics
 Top.Science.Astronomy.Cosmology
(3 rows)

Path construction using functions:

ltreetest=> SELECT subpath(path,0,2)||'Space'||subpath(path,2) FROM test WHERE path <@
 'Top.Science.Astronomy';
 ?column?
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

We could simplify this by creating a SQL function that inserts a label at a specified position in a path:

CREATE FUNCTION ins_label(ltree, int, text) RETURNS ltree
 AS 'select subpath($1,0,$2) || $3 || subpath($1,$2);'
 LANGUAGE SQL IMMUTABLE;

2265

Additional Supplied Modules

ltreetest=> SELECT ins_label(path,2,'Space') FROM test WHERE path <@
 'Top.Science.Astronomy';
 ins_label
--
 Top.Science.Space.Astronomy
 Top.Science.Space.Astronomy.Astrophysics
 Top.Science.Space.Astronomy.Cosmology
(3 rows)

F.26.5. Transforms
Additional extensions are available that implement transforms for the ltree type for PL/Python. The
extensions are called ltree_plpythonu, ltree_plpython2u, and ltree_plpython3u (see Section 43.1
for the PL/Python naming convention). If you install these transforms and specify them when creating a
function, ltree values are mapped to Python lists. (The reverse is currently not supported, however.)

Caution
It is strongly recommended that the transform extensions be installed in the same schema as
ltree. Otherwise there are installation-time security hazards if a transform extension's schema
contains objects defined by a hostile user.

F.26.6. Authors
All work was done by Teodor Sigaev (<teodor@stack.net>) and Oleg Bartunov (<oleg@sai.msu.su>).
See http://www.sai.msu.su/~megera/postgres/gist/ for additional information. Authors would like to
thank Eugeny Rodichev for helpful discussions. Comments and bug reports are welcome.

F.27. mchar
The mchar module provides additional data types for compatibility with Microsoft SQL Server (MS SQL).

F.27.1. Overview
This module has been designed to improve 1C Enterprise support, most popular Russian CRM and ERP
system.

It implements types MCHAR and MVARCHAR, which are bug-to-bug compatible with MS SQL CHAR
and VARCHAR respectively. Additionally, these types use libicu for comparison and case conversion, so
their behavior is identical across different operating systems.

Postgres Pro also includes citext extension which provides types similar to MCHAR. But this extension
doesn't emulate MS-SQL behavior concerning end-of-value whitespace.

Differences from Postgres Pro standard CHAR and VARCHAR are:

• Case insensitive comparison

• Handling of the whitespace at the end of string

• These types are always stored as two-byte unicode value regardless of database encoding.

F.27.2. Additional types
• mchar — analog of the MS SQL char type

• mvarchar — analog of the MS SQL varchar type

2266

http://www.sai.msu.su/~megera/postgres/gist/

Additional Supplied Modules

F.27.3. MCHAR and MVARCHAR features
• Defines length(str) function

• Defines substr(str, pos[, length]) function

• Defines || operator, which would be applied to concatenate any (mchar and mvarchar) arguments

• Defines set of operators: <, <=, =, >=, > for case-insensitive comparison (LibICU)

• Defines set of operators: &<, &<=, &=, &>=, &> to case-sensitive comparison (LibICU)

• Implicit cast between mchar and mvarchar types

• B-tree and Hash-index support

• The LIKE [ESCAPE] operator support

• The SIMILAR TO [ESCAPE] operator support

• The ~ operator (POSIX regexp) support

• Index support for the LIKE operator

F.27.4. Authors
 Oleg Bartunov <oleg@sai.msu.ru>
 Teodor Sigaev <teodor@sigaev.ru>

F.28. online_analyze
The online_analyze module provides a set of features that immediately update statistics after INSERT,
UPDATE, DELETE, or SELECT INTO operations for the affected tables.

F.28.1. Module Loading
To use online_analyze module, load the shared library:

LOAD 'online_analyze';

F.28.2. Module Configuration
You can configure online_analyze using the following custom variables (default values are shown):

• online_analyze.enable = on

Enables online_analyze.

• online_analyze.verbose = on

Executes ANALYZE VERBOSE.

Note
Since verbose is a reserved SQL key word, this parameter has to be double-quoted when
used in SQL queries. For example:

ALTER SYSTEM SET "online_analyze.verbose" = 'off';

• online_analyze.scale_factor = 0.1

Fraction of table size to start online analysis (similar to autovacuum_analyze_scale_factor).

2267

Additional Supplied Modules

• online_analyze.threshold = 50

Minimum number of row updates before starting online analysis (similar to
autovacuum_analyze_threshold).

• online_analyze.min_interval = 10000

Minimum time interval between ANALYZE calls per table, in milliseconds.

• online_analyze.table_type = "all"

Type(s) of tables for online analysis. Possible values are: all, persistent, temporary, none.

• online_analyze.exclude_tables = ""

List of tables to exclude from online analysis.

• online_analyze.include_tables = ""

List of tables to include in online analysis (online_analyze.include_tables overrides
online_analyze.exclude_tables).

• online_analyze.local_tracking = off

Enables per-backend tracking for temporary tables by online_analyze. When this variable is set to
off, online_analyze uses the default system statistics for temporary tables.

• online_analyze.lower_limit = 0

Minimum number of rows in a table required to trigger online_analyze.

• online_analyze.capacity_threshold = 100000

Maximum number of temporary tables to store in local cache.

F.28.3. Authors
 Teodor Sigaev <teodor@sigaev.ru>

F.29. pageinspect
The pageinspect module provides functions that allow you to inspect the contents of database pages at a
low level, which is useful for debugging purposes. All of these functions may be used only by superusers.

F.29.1. General Functions
get_raw_page(relname text, fork text, blkno int) returns bytea

get_raw_page reads the specified block of the named relation and returns a copy as a bytea value.
This allows a single time-consistent copy of the block to be obtained. fork should be 'main' for
the main data fork, 'fsm' for the free space map, 'vm' for the visibility map, or 'init' for the
initialization fork.

get_raw_page(relname text, blkno int) returns bytea

A shorthand version of get_raw_page, for reading from the main fork. Equivalent to
get_raw_page(relname, 'main', blkno)

page_header(page bytea) returns record

page_header shows fields that are common to all Postgres Pro heap and index pages.

A page image obtained with get_raw_page should be passed as argument. For example:

2268

Additional Supplied Modules

test=# SELECT * FROM page_header(get_raw_page('pg_class', 0));
 lsn | checksum | flags | lower | upper | special | pagesize | version |
 prune_xid
-----------+----------+--------+-------+-------+---------+----------+---------
+-----------
 0/24A1B50 | 0 | 1 | 232 | 368 | 8192 | 8192 | 4 |
 0

The returned columns correspond to the fields in the PageHeaderData struct.

The checksum field is the checksum stored in the page, which might be incorrect if the page is
somehow corrupted. If data checksums are not enabled for this instance, then the value stored is
meaningless.

page_checksum(page bytea, blkno int4) returns smallint

page_checksum computes the checksum for the page, as if it was located at the given block.

A page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT page_checksum(get_raw_page('pg_class', 0), 0);
 page_checksum

 13443

Note that the checksum depends on the block number, so matching block numbers should be passed
(except when doing esoteric debugging).

The checksum computed with this function can be compared with the checksum result field of the
function page_header. If data checksums are enabled for this instance, then the two values should
be equal.

fsm_page_contents(page bytea) returns text

fsm_page_contents shows the internal node structure of a FSM page. For example:

test=# SELECT fsm_page_contents(get_raw_page('pg_class', 'fsm', 0));

The output is a multiline string, with one line per node in the binary tree within the page. Only those
nodes that are not zero are printed. The so-called "next" pointer, which points to the next slot to be
returned from the page, is also printed.

F.29.2. Heap Functions
heap_page_items(page bytea) returns setof record

heap_page_items shows all line pointers on a heap page. For those line pointers that are in use, tuple
headers as well as tuple raw data are also shown. All tuples are shown, whether or not the tuples
were visible to an MVCC snapshot at the time the raw page was copied.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_items(get_raw_page('pg_class', 0));

The heap_tuple_infomask_flags function can be used to unpack the flag bits of t_infomask and
t_infomask2 for heap tuples.

tuple_data_split(rel_oid oid, t_data bytea, t_infomask integer, t_infomask2 integer,
t_bits text [, do_detoast bool]) returns bytea[]

tuple_data_split splits tuple data into attributes in the same way as backend internals.

test=# SELECT tuple_data_split('pg_class'::regclass, t_data, t_infomask,
 t_infomask2, t_bits) FROM heap_page_items(get_raw_page('pg_class', 0));

2269

Additional Supplied Modules

This function should be called with the same arguments as the return attributes of heap_page_items.

If do_detoast is true, attributes will be detoasted as needed. Default value is false.

heap_page_item_attrs(page bytea, rel_oid regclass [, do_detoast bool]) returns setof
record

heap_page_item_attrs is equivalent to heap_page_items except that it returns tuple raw data as an
array of attributes that can optionally be detoasted by do_detoast which is false by default.

A heap page image obtained with get_raw_page should be passed as argument. For example:

test=# SELECT * FROM heap_page_item_attrs(get_raw_page('pg_class', 0),
 'pg_class'::regclass);

heap_tuple_infomask_flags(t_infomask integer, t_infomask2 integer) returns record

heap_tuple_infomask_flags decodes the t_infomask and t_infomask2 returned by
heap_page_items into a human-readable set of arrays made of flag names, with one column for all
the flags and one column for combined flags. For example:

test=# SELECT t_ctid, raw_flags, combined_flags
 FROM heap_page_items(get_raw_page('pg_class', 0)),
 LATERAL heap_tuple_infomask_flags(t_infomask, t_infomask2)
 WHERE t_infomask IS NOT NULL OR t_infomask2 IS NOT NULL;

This function should be called with the same arguments as the return attributes of heap_page_items.

Combined flags are displayed for source-level macros that take into account the value of more than
one raw bit, such as HEAP_XMIN_FROZEN.

F.29.3. B-Tree Functions
bt_metap(relname text) returns record

bt_metap returns information about a B-tree index's metapage. For example:

test=# SELECT * FROM bt_metap('pg_cast_oid_index');
-[RECORD 1]-----------+-------
magic | 340322
version | 4
root | 1
level | 0
fastroot | 1
fastlevel | 0
oldest_xact | 582
last_cleanup_num_tuples | 1000
allequalimage | f

bt_page_stats(relname text, blkno int) returns record

bt_page_stats returns summary information about single pages of B-tree indexes. For example:

test=# SELECT * FROM bt_page_stats('pg_cast_oid_index', 1);
-[RECORD 1]-+-----
blkno | 1
type | l
live_items | 224
dead_items | 0
avg_item_size | 16
page_size | 8192
free_size | 3668

2270

Additional Supplied Modules

btpo_prev | 0
btpo_next | 0
btpo | 0
btpo_flags | 3

bt_page_items(relname text, blkno int) returns setof record
bt_page_items returns detailed information about all of the items on a B-tree index page. For
example:
test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS
 some_tids
 FROM bt_page_items('tenk2_hundred', 5);
 itemoffset | ctid | itemlen | nulls | vars | data | dead |
 htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------
+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | |
 |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f |
 (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f |
 (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f |
 (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f |
 (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f |
 (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f |
 (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f |
 (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f |
 (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f |
 (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f |
 (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f |
 (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f |
 (4,17) | {"(4,17)","(4,21)"}
(13 rows)

This is a B-tree leaf page. All tuples that point to the table happen to be posting list tuples (all of
which store a total of 100 6 byte TIDs). There is also a “high key” tuple at itemoffset number 1. ctid
is used to store encoded information about each tuple in this example, though leaf page tuples often
store a heap TID directly in the ctid field instead. tids is the list of TIDs stored as a posting list.

In an internal page (not shown), the block number part of ctid is a “downlink”, which is a block
number of another page in the index itself. The offset part (the second number) of ctid stores
encoded information about the tuple, such as the number of columns present (suffix truncation may
have removed unneeded suffix columns). Truncated columns are treated as having the value “minus
infinity”.

htid shows a heap TID for the tuple, regardless of the underlying tuple representation. This value
may match ctid, or may be decoded from the alternative representations used by posting list tuples
and tuples from internal pages. Tuples in internal pages usually have the implementation level heap
TID column truncated away, which is represented as a NULL htid value.

2271

Additional Supplied Modules

Note that the first item on any non-rightmost page (any page with a non-zero value in the btpo_next
field) is the page's “high key”, meaning its data serves as an upper bound on all items appearing on
the page, while its ctid field does not point to another block. Also, on internal pages, the first real
data item (the first item that is not a high key) reliably has every column truncated away, leaving no
actual value in its data field. Such an item does have a valid downlink in its ctid field, however.

For more details about the structure of B-tree indexes, see Section 59.4.1. For more details about
deduplication and posting lists, see Section 59.4.2.

bt_page_items(page bytea) returns setof record

It is also possible to pass a page to bt_page_items as a bytea value. A page image obtained with
get_raw_page should be passed as argument. So the last example could also be rewritten like this:

test=# SELECT itemoffset, ctid, itemlen, nulls, vars, data, dead, htid, tids[0:2] AS
 some_tids
 FROM bt_page_items(get_raw_page('tenk2_hundred', 5));
 itemoffset | ctid | itemlen | nulls | vars | data | dead |
 htid | some_tids
------------+-----------+---------+-------+------+-------------------------+------
+--------+---------------------
 1 | (16,1) | 16 | f | f | 30 00 00 00 00 00 00 00 | |
 |
 2 | (16,8292) | 616 | f | f | 24 00 00 00 00 00 00 00 | f |
 (1,6) | {"(1,6)","(10,22)"}
 3 | (16,8292) | 616 | f | f | 25 00 00 00 00 00 00 00 | f |
 (1,18) | {"(1,18)","(4,22)"}
 4 | (16,8292) | 616 | f | f | 26 00 00 00 00 00 00 00 | f |
 (4,18) | {"(4,18)","(6,17)"}
 5 | (16,8292) | 616 | f | f | 27 00 00 00 00 00 00 00 | f |
 (1,2) | {"(1,2)","(1,19)"}
 6 | (16,8292) | 616 | f | f | 28 00 00 00 00 00 00 00 | f |
 (2,24) | {"(2,24)","(4,11)"}
 7 | (16,8292) | 616 | f | f | 29 00 00 00 00 00 00 00 | f |
 (2,17) | {"(2,17)","(11,2)"}
 8 | (16,8292) | 616 | f | f | 2a 00 00 00 00 00 00 00 | f |
 (0,25) | {"(0,25)","(3,20)"}
 9 | (16,8292) | 616 | f | f | 2b 00 00 00 00 00 00 00 | f |
 (0,10) | {"(0,10)","(0,14)"}
 10 | (16,8292) | 616 | f | f | 2c 00 00 00 00 00 00 00 | f |
 (1,3) | {"(1,3)","(3,9)"}
 11 | (16,8292) | 616 | f | f | 2d 00 00 00 00 00 00 00 | f |
 (6,28) | {"(6,28)","(11,1)"}
 12 | (16,8292) | 616 | f | f | 2e 00 00 00 00 00 00 00 | f |
 (0,27) | {"(0,27)","(1,13)"}
 13 | (16,8292) | 616 | f | f | 2f 00 00 00 00 00 00 00 | f |
 (4,17) | {"(4,17)","(4,21)"}
(13 rows)

All the other details are the same as explained in the previous item.

F.29.4. BRIN Functions
brin_page_type(page bytea) returns text

brin_page_type returns the page type of the given BRIN index page, or throws an error if the page
is not a valid BRIN page. For example:

test=# SELECT brin_page_type(get_raw_page('brinidx', 0));
 brin_page_type

2272

Additional Supplied Modules

 meta

brin_metapage_info(page bytea) returns record
brin_metapage_info returns assorted information about a BRIN index metapage. For example:
test=# SELECT * FROM brin_metapage_info(get_raw_page('brinidx', 0));
 magic | version | pagesperrange | lastrevmappage
------------+---------+---------------+----------------
 0xA8109CFA | 1 | 4 | 2

brin_revmap_data(page bytea) returns setof tid
brin_revmap_data returns the list of tuple identifiers in a BRIN index range map page. For example:
test=# SELECT * FROM brin_revmap_data(get_raw_page('brinidx', 2)) LIMIT 5;
 pages

 (6,137)
 (6,138)
 (6,139)
 (6,140)
 (6,141)

brin_page_items(page bytea, index oid) returns setof record
brin_page_items returns the data stored in the BRIN data page. For example:
test=# SELECT * FROM brin_page_items(get_raw_page('brinidx', 5),
 'brinidx')
 ORDER BY blknum, attnum LIMIT 6;
 itemoffset | blknum | attnum | allnulls | hasnulls | placeholder | value
------------+--------+--------+----------+----------+-------------+--------------
 137 | 0 | 1 | t | f | f |
 137 | 0 | 2 | f | f | f | {1 .. 88}
 138 | 4 | 1 | t | f | f |
 138 | 4 | 2 | f | f | f | {89 .. 176}
 139 | 8 | 1 | t | f | f |
 139 | 8 | 2 | f | f | f | {177 .. 264}

The returned columns correspond to the fields in the BrinMemTuple and BrinValues structs.

F.29.5. GIN Functions
gin_metapage_info(page bytea) returns record

gin_metapage_info returns information about a GIN index metapage. For example:
test=# SELECT * FROM gin_metapage_info(get_raw_page('gin_index', 0));
-[RECORD 1]----+-----------
pending_head | 4294967295
pending_tail | 4294967295
tail_free_size | 0
n_pending_pages | 0
n_pending_tuples | 0
n_total_pages | 7
n_entry_pages | 6
n_data_pages | 0
n_entries | 693
version | 2

gin_page_opaque_info(page bytea) returns record
gin_page_opaque_info returns information about a GIN index opaque area, like the page type. For
example:

2273

Additional Supplied Modules

test=# SELECT * FROM gin_page_opaque_info(get_raw_page('gin_index', 2));
 rightlink | maxoff | flags
-----------+--------+------------------------
 5 | 0 | {data,leaf,compressed}
(1 row)

gin_leafpage_items(page bytea) returns setof record
gin_leafpage_items returns information about the data stored in a GIN leaf page. For example:
test=# SELECT first_tid, nbytes, tids[0:5] AS some_tids
 FROM gin_leafpage_items(get_raw_page('gin_test_idx', 2));
 first_tid | nbytes | some_tids
-----------+--------+--
 (8,41) | 244 | {"(8,41)","(8,43)","(8,44)","(8,45)","(8,46)"}
 (10,45) | 248 | {"(10,45)","(10,46)","(10,47)","(10,48)","(10,49)"}
 (12,52) | 248 | {"(12,52)","(12,53)","(12,54)","(12,55)","(12,56)"}
 (14,59) | 320 | {"(14,59)","(14,60)","(14,61)","(14,62)","(14,63)"}
 (167,16) | 376 | {"(167,16)","(167,17)","(167,18)","(167,19)","(167,20)"}
 (170,30) | 376 | {"(170,30)","(170,31)","(170,32)","(170,33)","(170,34)"}
 (173,44) | 197 | {"(173,44)","(173,45)","(173,46)","(173,47)","(173,48)"}
(7 rows)

F.29.6. Hash Functions
hash_page_type(page bytea) returns text

hash_page_type returns page type of the given HASH index page. For example:
test=# SELECT hash_page_type(get_raw_page('con_hash_index', 0));
 hash_page_type

 metapage

hash_page_stats(page bytea) returns setof record
hash_page_stats returns information about a bucket or overflow page of a HASH index. For example:
test=# SELECT * FROM hash_page_stats(get_raw_page('con_hash_index', 1));
-[RECORD 1]---+-----------
live_items | 407
dead_items | 0
page_size | 8192
free_size | 8
hasho_prevblkno | 4096
hasho_nextblkno | 8474
hasho_bucket | 0
hasho_flag | 66
hasho_page_id | 65408

hash_page_items(page bytea) returns setof record
hash_page_items returns information about the data stored in a bucket or overflow page of a HASH
index page. For example:
test=# SELECT * FROM hash_page_items(get_raw_page('con_hash_index', 1)) LIMIT 5;
 itemoffset | ctid | data
------------+-----------+------------
 1 | (899,77) | 1053474816
 2 | (897,29) | 1053474816
 3 | (894,207) | 1053474816
 4 | (892,159) | 1053474816
 5 | (890,111) | 1053474816

2274

Additional Supplied Modules

hash_bitmap_info(index oid, blkno int) returns record
hash_bitmap_info shows the status of a bit in the bitmap page for a particular overflow page of
HASH index. For example:
test=# SELECT * FROM hash_bitmap_info('con_hash_index', 2052);
 bitmapblkno | bitmapbit | bitstatus
-------------+-----------+-----------
 65 | 3 | t

hash_metapage_info(page bytea) returns record
hash_metapage_info returns information stored in the meta page of a HASH index. For example:
test=# SELECT magic, version, ntuples, ffactor, bsize, bmsize, bmshift,
test-# maxbucket, highmask, lowmask, ovflpoint, firstfree, nmaps, procid,
test-# regexp_replace(spares::text, '(,0)*}', '}') as spares,
test-# regexp_replace(mapp::text, '(,0)*}', '}') as mapp
test-# FROM hash_metapage_info(get_raw_page('con_hash_index', 0));
-[RECORD 1]---

magic | 105121344
version | 4
ntuples | 500500
ffactor | 40
bsize | 8152
bmsize | 4096
bmshift | 15
maxbucket | 12512
highmask | 16383
lowmask | 8191
ovflpoint | 28
firstfree | 1204
nmaps | 1
procid | 450
spares | {0,0,0,0,0,0,1,1,1,1,1,1,1,1,3,4,4,4,45,55,58,59,
508,567,628,704,1193,1202,1204}
mapp | {65}

F.30. passwordcheck
The passwordcheck module checks users' passwords whenever they are set with CREATE ROLE or
ALTER ROLE. If a password is considered too weak, it will be rejected and the command will terminate
with an error.

To enable this module, add '$libdir/passwordcheck' to shared_preload_libraries in postgresql.conf,
then restart the server.

Caution
To prevent unencrypted passwords from being sent across the network, written to the server log or
otherwise stolen by a database administrator, Postgres Pro allows the user to supply pre-encrypted
passwords. Many client programs make use of this functionality and encrypt the password before
sending it to the server.

This limits the usefulness of the passwordcheck module, because in that case it can only try
to guess the password. For this reason, passwordcheck is not recommended if your security
requirements are high. It is more secure to use an external authentication method such as GSSAPI
(see Chapter 19) than to rely on passwords within the database.

2275

Additional Supplied Modules

F.31. pg_buffercache
The pg_buffercache module provides a means for examining what's happening in the shared buffer
cache in real time.

The module provides a C function pg_buffercache_pages that returns a set of records, plus a view
pg_buffercache that wraps the function for convenient use.

By default, use is restricted to superusers and members of the pg_monitor role. Access may be granted
to others using GRANT.

F.31.1. The pg_buffercache View
The definitions of the columns exposed by the view are shown in Table F.16.

Table F.16. pg_buffercache Columns

Column Type
Description

bufferid integer
ID, in the range 1..shared_buffers

relfilenode oid (references pg_class .relfilenode)
Filenode number of the relation

reltablespace oid (references pg_tablespace .oid)
Tablespace OID of the relation

reldatabase oid (references pg_database .oid)
Database OID of the relation

relforknumber smallint
Fork number within the relation; see include/common/relpath.h

relblocknumber bigint
Page number within the relation

isdirty boolean
Is the page dirty?

usagecount smallint
Clock-sweep access count

pinning_backends integer
Number of backends pinning this buffer

There is one row for each buffer in the shared cache. Unused buffers are shown with all fields null except
bufferid. Shared system catalogs are shown as belonging to database zero.

Because the cache is shared by all the databases, there will normally be pages from relations not
belonging to the current database. This means that there may not be matching join rows in pg_class
for some rows, or that there could even be incorrect joins. If you are trying to join against pg_class, it's
a good idea to restrict the join to rows having reldatabase equal to the current database's OID or zero.

Since buffer manager locks are not taken to copy the buffer state data that the view will display, accessing
pg_buffercache view has less impact on normal buffer activity but it doesn't provide a consistent set of
results across all buffers. However, we ensure that the information of each buffer is self-consistent.

F.31.2. Sample Output
regression=# SELECT n.nspname, c.relname, count(*) AS buffers
 FROM pg_buffercache b JOIN pg_class c
 ON b.relfilenode = pg_relation_filenode(c.oid) AND

2276

Additional Supplied Modules

 b.reldatabase IN (0, (SELECT oid FROM pg_database
 WHERE datname = current_database()))
 JOIN pg_namespace n ON n.oid = c.relnamespace
 GROUP BY n.nspname, c.relname
 ORDER BY 3 DESC
 LIMIT 10;

 nspname | relname | buffers
------------+------------------------+---------
 public | delete_test_table | 593
 public | delete_test_table_pkey | 494
 pg_catalog | pg_attribute | 472
 public | quad_poly_tbl | 353
 public | tenk2 | 349
 public | tenk1 | 349
 public | gin_test_idx | 306
 pg_catalog | pg_largeobject | 206
 public | gin_test_tbl | 188
 public | spgist_text_tbl | 182
(10 rows)

F.31.3. Authors
Mark Kirkwood <markir@paradise.net.nz>

Design suggestions: Neil Conway <neilc@samurai.com>

Debugging advice: Tom Lane <tgl@sss.pgh.pa.us>

F.32. pgcrypto
The pgcrypto module provides cryptographic functions for Postgres Pro.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.32.1. General Hashing Functions
F.32.1.1. digest()

digest(data text, type text) returns bytea
digest(data bytea, type text) returns bytea

Computes a binary hash of the given data. type is the algorithm to use. Standard algorithms are md5,
sha1, sha224, sha256, sha384 and sha512. If pgcrypto was built with OpenSSL, more algorithms are
available, as detailed in Table F.20.

If you want the digest as a hexadecimal string, use encode() on the result. For example:
CREATE OR REPLACE FUNCTION sha1(bytea) returns text AS $$
 SELECT encode(digest($1, 'sha1'), 'hex')
$$ LANGUAGE SQL STRICT IMMUTABLE;

F.32.1.2. hmac()
hmac(data text, key text, type text) returns bytea
hmac(data bytea, key bytea, type text) returns bytea

Calculates hashed MAC for data with key key. type is the same as in digest().

This is similar to digest() but the hash can only be recalculated knowing the key. This prevents the
scenario of someone altering data and also changing the hash to match.

2277

Additional Supplied Modules

If the key is larger than the hash block size it will first be hashed and the result will be used as key.

F.32.2. Password Hashing Functions
The functions crypt() and gen_salt() are specifically designed for hashing passwords. crypt() does
the hashing and gen_salt() prepares algorithm parameters for it.

The algorithms in crypt() differ from the usual MD5 or SHA1 hashing algorithms in the following
respects:

1. They are slow. As the amount of data is so small, this is the only way to make brute-forcing passwords
hard.

2. They use a random value, called the salt, so that users having the same password will have different
encrypted passwords. This is also an additional defense against reversing the algorithm.

3. They include the algorithm type in the result, so passwords hashed with different algorithms can co-
exist.

4. Some of them are adaptive — that means when computers get faster, you can tune the algorithm to
be slower, without introducing incompatibility with existing passwords.

Table F.17 lists the algorithms supported by the crypt() function.

Table F.17. Supported Algorithms for crypt()

Algorithm Max Password
Length

Adaptive? Salt Bits Output Length Description

bf 72 yes 128 60 Blowfish-based,
 variant 2a

md5 unlimited no 48 34 MD5-based
crypt

xdes 8 yes 24 20 Extended DES
des 8 no 12 13 Original UNIX

crypt

F.32.2.1. crypt()
crypt(password text, salt text) returns text

Calculates a crypt(3)-style hash of password. When storing a new password, you need to use gen_salt()
to generate a new salt value. To check a password, pass the stored hash value as salt, and test whether
the result matches the stored value.

Example of setting a new password:
UPDATE ... SET pswhash = crypt('new password', gen_salt('md5'));

Example of authentication:
SELECT (pswhash = crypt('entered password', pswhash)) AS pswmatch FROM ... ;

This returns true if the entered password is correct.

F.32.2.2. gen_salt()
gen_salt(type text [, iter_count integer]) returns text

Generates a new random salt string for use in crypt(). The salt string also tells crypt() which algorithm
to use.

The type parameter specifies the hashing algorithm. The accepted types are: des, xdes, md5 and bf.

The iter_count parameter lets the user specify the iteration count, for algorithms that have one. The
higher the count, the more time it takes to hash the password and therefore the more time to break it.

2278

Additional Supplied Modules

Although with too high a count the time to calculate a hash may be several years — which is somewhat
impractical. If the iter_count parameter is omitted, the default iteration count is used. Allowed values
for iter_count depend on the algorithm and are shown in Table F.18.

Table F.18. Iteration Counts for crypt()

Algorithm Default Min Max
xdes 725 1 16777215
bf 6 4 31

For xdes there is an additional limitation that the iteration count must be an odd number.

To pick an appropriate iteration count, consider that the original DES crypt was designed to have the
speed of 4 hashes per second on the hardware of that time. Slower than 4 hashes per second would
probably dampen usability. Faster than 100 hashes per second is probably too fast.

Table F.19 gives an overview of the relative slowness of different hashing algorithms. The table shows
how much time it would take to try all combinations of characters in an 8-character password, assuming
that the password contains either only lower case letters, or upper- and lower-case letters and numbers.
In the crypt-bf entries, the number after a slash is the iter_count parameter of gen_salt.

Table F.19. Hash Algorithm Speeds

Algorithm Hashes/sec For [a-z] For [A-Za-z0-9] Duration relative
to md5 hash

crypt-bf/8 1792 4 years 3927 years 100k
crypt-bf/7 3648 2 years 1929 years 50k
crypt-bf/6 7168 1 year 982 years 25k
crypt-bf/5 13504 188 days 521 years 12.5k
crypt-md5 171584 15 days 41 years 1k
crypt-des 23221568 157.5 minutes 108 days 7
sha1 37774272 90 minutes 68 days 4
md5 (hash) 150085504 22.5 minutes 17 days 1

Notes:

• The machine used is an Intel Mobile Core i3.
• crypt-des and crypt-md5 algorithm numbers are taken from John the Ripper v1.6.38 -test output.
• md5 hash numbers are from mdcrack 1.2.
• sha1 numbers are from lcrack-20031130-beta.
• crypt-bf numbers are taken using a simple program that loops over 1000 8-character passwords.

That way I can show the speed with different numbers of iterations. For reference: john -test
shows 13506 loops/sec for crypt-bf/5. (The very small difference in results is in accordance with
the fact that the crypt-bf implementation in pgcrypto is the same one used in John the Ripper.)

Note that “try all combinations” is not a realistic exercise. Usually password cracking is done with the
help of dictionaries, which contain both regular words and various mutations of them. So, even somewhat
word-like passwords could be cracked much faster than the above numbers suggest, while a 6-character
non-word-like password may escape cracking. Or not.

F.32.3. PGP Encryption Functions
The functions here implement the encryption part of the OpenPGP (RFC 4880) standard. Supported are
both symmetric-key and public-key encryption.

2279

Additional Supplied Modules

An encrypted PGP message consists of 2 parts, or packets:

• Packet containing a session key — either symmetric-key or public-key encrypted.

• Packet containing data encrypted with the session key.

When encrypting with a symmetric key (i.e., a password):

1. The given password is hashed using a String2Key (S2K) algorithm. This is rather similar to crypt()
algorithms — purposefully slow and with random salt — but it produces a full-length binary key.

2. If a separate session key is requested, a new random key will be generated. Otherwise the S2K key
will be used directly as the session key.

3. If the S2K key is to be used directly, then only S2K settings will be put into the session key packet.
Otherwise the session key will be encrypted with the S2K key and put into the session key packet.

When encrypting with a public key:

1. A new random session key is generated.

2. It is encrypted using the public key and put into the session key packet.

In either case the data to be encrypted is processed as follows:

1. Optional data-manipulation: compression, conversion to UTF-8, and/or conversion of line-endings.

2. The data is prefixed with a block of random bytes. This is equivalent to using a random IV.

3. An SHA1 hash of the random prefix and data is appended.

4. All this is encrypted with the session key and placed in the data packet.

F.32.3.1. pgp_sym_encrypt()
pgp_sym_encrypt(data text, psw text [, options text]) returns bytea
pgp_sym_encrypt_bytea(data bytea, psw text [, options text]) returns bytea

Encrypt data with a symmetric PGP key psw. The options parameter can contain option settings, as
described below.

F.32.3.2. pgp_sym_decrypt()
pgp_sym_decrypt(msg bytea, psw text [, options text]) returns text
pgp_sym_decrypt_bytea(msg bytea, psw text [, options text]) returns bytea

Decrypt a symmetric-key-encrypted PGP message.

Decrypting bytea data with pgp_sym_decrypt is disallowed. This is to avoid outputting invalid character
data. Decrypting originally textual data with pgp_sym_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.32.3.3. pgp_pub_encrypt()
pgp_pub_encrypt(data text, key bytea [, options text]) returns bytea
pgp_pub_encrypt_bytea(data bytea, key bytea [, options text]) returns bytea

Encrypt data with a public PGP key key. Giving this function a secret key will produce an error.

The options parameter can contain option settings, as described below.

F.32.3.4. pgp_pub_decrypt()
pgp_pub_decrypt(msg bytea, key bytea [, psw text [, options text]]) returns text
pgp_pub_decrypt_bytea(msg bytea, key bytea [, psw text [, options text]]) returns
 bytea

2280

Additional Supplied Modules

Decrypt a public-key-encrypted message. key must be the secret key corresponding to the public key
that was used to encrypt. If the secret key is password-protected, you must give the password in psw. If
there is no password, but you want to specify options, you need to give an empty password.

Decrypting bytea data with pgp_pub_decrypt is disallowed. This is to avoid outputting invalid character
data. Decrypting originally textual data with pgp_pub_decrypt_bytea is fine.

The options parameter can contain option settings, as described below.

F.32.3.5. pgp_key_id()
pgp_key_id(bytea) returns text

pgp_key_id extracts the key ID of a PGP public or secret key. Or it gives the key ID that was used for
encrypting the data, if given an encrypted message.

It can return 2 special key IDs:

• SYMKEY

The message is encrypted with a symmetric key.

• ANYKEY

The message is public-key encrypted, but the key ID has been removed. That means you will need
to try all your secret keys on it to see which one decrypts it. pgcrypto itself does not produce such
messages.

Note that different keys may have the same ID. This is rare but a normal event. The client application
should then try to decrypt with each one, to see which fits — like handling ANYKEY.

F.32.3.6. armor(), dearmor()
armor(data bytea [, keys text[], values text[]]) returns text
dearmor(data text) returns bytea

These functions wrap/unwrap binary data into PGP ASCII-armor format, which is basically Base64 with
CRC and additional formatting.

If the keys and values arrays are specified, an armor header is added to the armored format for each
key/value pair. Both arrays must be single-dimensional, and they must be of the same length. The keys
and values cannot contain any non-ASCII characters.

F.32.3.7. pgp_armor_headers
pgp_armor_headers(data text, key out text, value out text) returns setof record

pgp_armor_headers() extracts the armor headers from data. The return value is a set of rows with
two columns, key and value. If the keys or values contain any non-ASCII characters, they are treated
as UTF-8.

F.32.3.8. Options for PGP Functions
Options are named to be similar to GnuPG. An option's value should be given after an equal sign; separate
options from each other with commas. For example:

pgp_sym_encrypt(data, psw, 'compress-algo=1, cipher-algo=aes256')

All of the options except convert-crlf apply only to encrypt functions. Decrypt functions get the
parameters from the PGP data.

The most interesting options are probably compress-algo and unicode-mode. The rest should have
reasonable defaults.

2281

Additional Supplied Modules

F.32.3.8.1. cipher-algo
Which cipher algorithm to use.

Values: bf, aes128, aes192, aes256 (OpenSSL-only: 3des, cast5)
Default: aes128
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.32.3.8.2. compress-algo
Which compression algorithm to use. Only available if Postgres Pro was built with zlib.

Values:
 0 - no compression
 1 - ZIP compression
 2 - ZLIB compression (= ZIP plus meta-data and block CRCs)
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.32.3.8.3. compress-level
How much to compress. Higher levels compress smaller but are slower. 0 disables compression.

Values: 0, 1-9
Default: 6
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.32.3.8.4. convert-crlf

Whether to convert \n into \r\n when encrypting and \r\n to \n when decrypting. RFC 4880 specifies
that text data should be stored using \r\n line-feeds. Use this to get fully RFC-compliant behavior.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt, pgp_sym_decrypt, pgp_pub_decrypt

F.32.3.8.5. disable-mdc
Do not protect data with SHA-1. The only good reason to use this option is to achieve compatibility
with ancient PGP products, predating the addition of SHA-1 protected packets to RFC 4880. Recent
gnupg.org and pgp.com software supports it fine.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.32.3.8.6. sess-key
Use separate session key. Public-key encryption always uses a separate session key; this option is for
symmetric-key encryption, which by default uses the S2K key directly.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt

F.32.3.8.7. s2k-mode
Which S2K algorithm to use.

Values:
 0 - Without salt. Dangerous!
 1 - With salt but with fixed iteration count.
 3 - Variable iteration count.
Default: 3
Applies to: pgp_sym_encrypt

2282

Additional Supplied Modules

F.32.3.8.8. s2k-count
The number of iterations of the S2K algorithm to use. It must be a value between 1024 and 65011712,
inclusive.

Default: A random value between 65536 and 253952
Applies to: pgp_sym_encrypt, only with s2k-mode=3

F.32.3.8.9. s2k-digest-algo
Which digest algorithm to use in S2K calculation.

Values: md5, sha1
Default: sha1
Applies to: pgp_sym_encrypt

F.32.3.8.10. s2k-cipher-algo
Which cipher to use for encrypting separate session key.

Values: bf, aes, aes128, aes192, aes256
Default: use cipher-algo
Applies to: pgp_sym_encrypt

F.32.3.8.11. unicode-mode
Whether to convert textual data from database internal encoding to UTF-8 and back. If your database
already is UTF-8, no conversion will be done, but the message will be tagged as UTF-8. Without this
option it will not be.

Values: 0, 1
Default: 0
Applies to: pgp_sym_encrypt, pgp_pub_encrypt

F.32.3.9. Generating PGP Keys with GnuPG
To generate a new key:
gpg --gen-key

The preferred key type is “DSA and Elgamal”.

For RSA encryption you must create either DSA or RSA sign-only key as master and then add an RSA
encryption subkey with gpg --edit-key.

To list keys:
gpg --list-secret-keys

To export a public key in ASCII-armor format:
gpg -a --export KEYID > public.key

To export a secret key in ASCII-armor format:
gpg -a --export-secret-keys KEYID > secret.key

You need to use dearmor() on these keys before giving them to the PGP functions. Or if you can handle
binary data, you can drop -a from the command.

For more details see man gpg, The GNU Privacy Handbook and other documentation on https://
www.gnupg.org/.

F.32.3.10. Limitations of PGP Code
• No support for signing. That also means that it is not checked whether the encryption subkey

belongs to the master key.

2283

https://www.gnupg.org/gph/en/manual.html
https://www.gnupg.org/
https://www.gnupg.org/

Additional Supplied Modules

• No support for encryption key as master key. As such practice is generally discouraged, this should
not be a problem.

• No support for several subkeys. This may seem like a problem, as this is common practice. On the
other hand, you should not use your regular GPG/PGP keys with pgcrypto, but create new ones, as
the usage scenario is rather different.

F.32.4. Raw Encryption Functions
These functions only run a cipher over data; they don't have any advanced features of PGP encryption.
Therefore they have some major problems:

1. They use user key directly as cipher key.
2. They don't provide any integrity checking, to see if the encrypted data was modified.
3. They expect that users manage all encryption parameters themselves, even IV.
4. They don't handle text.
So, with the introduction of PGP encryption, usage of raw encryption functions is discouraged.

encrypt(data bytea, key bytea, type text) returns bytea
decrypt(data bytea, key bytea, type text) returns bytea

encrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea
decrypt_iv(data bytea, key bytea, iv bytea, type text) returns bytea

Encrypt/decrypt data using the cipher method specified by type. The syntax of the type string is:
algorithm [- mode] [/pad: padding]

where algorithm is one of:
• bf — Blowfish
• aes — AES (Rijndael-128, -192 or -256)
and mode is one of:
• cbc — next block depends on previous (default)
• ecb — each block is encrypted separately (for testing only)
and padding is one of:
• pkcs — data may be any length (default)
• none — data must be multiple of cipher block size

So, for example, these are equivalent:
encrypt(data, 'fooz', 'bf')
encrypt(data, 'fooz', 'bf-cbc/pad:pkcs')

In encrypt_iv and decrypt_iv, the iv parameter is the initial value for the CBC mode; it is ignored for
ECB. It is clipped or padded with zeroes if not exactly block size. It defaults to all zeroes in the functions
without this parameter.

F.32.5. Random-Data Functions
gen_random_bytes(count integer) returns bytea

Returns count cryptographically strong random bytes. At most 1024 bytes can be extracted at a time.
This is to avoid draining the randomness generator pool.

gen_random_uuid() returns uuid

Returns a version 4 (random) UUID. (Obsolete, this function is now also included in core PostgreSQL.)

2284

Additional Supplied Modules

F.32.6. Notes
F.32.6.1. Configuration

pgcrypto configures itself according to the findings of the main Postgres Pro configure script. The
options that affect it are --with-zlib and --with-openssl.

When compiled with zlib, PGP encryption functions are able to compress data before encrypting.

When compiled with OpenSSL, there will be more algorithms available. Also public-key encryption
functions will be faster as OpenSSL has more optimized BIGNUM functions.

Table F.20. Summary of Functionality with and without OpenSSL

Functionality Built-in With OpenSSL
MD5 yes yes
SHA1 yes yes
SHA224/256/384/512 yes yes
Other digest algorithms no yes (Note 1)
Blowfish yes yes
AES yes yes
DES/3DES/CAST5 no yes
Raw encryption yes yes
PGP Symmetric encryption yes yes
PGP Public-Key encryption yes yes

When compiled against OpenSSL 3.0.0 and later versions, the legacy provider must be activated in the
openssl.cnf configuration file in order to use older ciphers like DES or Blowfish.

Notes:

1. Any digest algorithm OpenSSL supports is automatically picked up. This is not possible with ciphers,
which need to be supported explicitly.

F.32.6.2. NULL Handling
As is standard in SQL, all functions return NULL, if any of the arguments are NULL. This may create
security risks on careless usage.

F.32.6.3. Security Limitations
All pgcrypto functions run inside the database server. That means that all the data and passwords move
between pgcrypto and client applications in clear text. Thus you must:

1. Connect locally or use SSL connections.
2. Trust both system and database administrator.
If you cannot, then better do crypto inside client application.

The implementation does not resist side-channel attacks. For example, the time required for a pgcrypto
decryption function to complete varies among ciphertexts of a given size.

F.32.6.4. Useful Reading
• https://www.gnupg.org/gph/en/manual.html

The GNU Privacy Handbook.
• https://www.openwall.com/crypt/

2285

https://en.wikipedia.org/wiki/Side-channel_attack
https://www.gnupg.org/gph/en/manual.html
https://www.openwall.com/crypt/

Additional Supplied Modules

Describes the crypt-blowfish algorithm.
• https://www.iusmentis.com/security/passphrasefaq/

How to choose a good password.
• http://world.std.com/~reinhold/diceware.html

Interesting idea for picking passwords.
• http://www.interhack.net/people/cmcurtin/snake-oil-faq.html

Describes good and bad cryptography.

F.32.6.5. Technical References
• https://tools.ietf.org/html/rfc4880

OpenPGP message format.
• https://tools.ietf.org/html/rfc1321

The MD5 Message-Digest Algorithm.
• https://tools.ietf.org/html/rfc2104

HMAC: Keyed-Hashing for Message Authentication.
• https://www.usenix.org/legacy/events/usenix99/provos.html

Comparison of crypt-des, crypt-md5 and bcrypt algorithms.
• https://en.wikipedia.org/wiki/Fortuna_(PRNG)

Description of Fortuna CSPRNG.
• https://jlcooke.ca/random/

Jean-Luc Cooke Fortuna-based /dev/random driver for Linux.

F.32.7. Author
Marko Kreen <markokr@gmail.com>

pgcrypto uses code from the following sources:

Algorithm Author Source origin
DES crypt David Burren and others FreeBSD libcrypt
MD5 crypt Poul-Henning Kamp FreeBSD libcrypt
Blowfish crypt Solar Designer www.openwall.com
Blowfish cipher Simon Tatham PuTTY
Rijndael cipher Brian Gladman OpenBSD sys/crypto
MD5 hash and SHA1 WIDE Project KAME kame/sys/crypto
SHA256/384/512 Aaron D. Gifford OpenBSD sys/crypto
BIGNUM math Michael J. Fromberger dartmouth.edu/~sting/sw/imath

F.33. pg_freespacemap
The pg_freespacemap module provides a means for examining the free space map (FSM). It provides a
function called pg_freespace, or two overloaded functions, to be precise. The functions show the value
recorded in the free space map for a given page, or for all pages in the relation.

2286

https://www.iusmentis.com/security/passphrasefaq/
http://world.std.com/~reinhold/diceware.html
http://www.interhack.net/people/cmcurtin/snake-oil-faq.html
https://tools.ietf.org/html/rfc4880
https://tools.ietf.org/html/rfc1321
https://tools.ietf.org/html/rfc2104
https://www.usenix.org/legacy/events/usenix99/provos.html
https://en.wikipedia.org/wiki/Fortuna_(PRNG)
https://jlcooke.ca/random/

Additional Supplied Modules

By default use is restricted to superusers and members of the pg_stat_scan_tables role. Access may
be granted to others using GRANT.

F.33.1. Functions
pg_freespace(rel regclass IN, blkno bigint IN) returns int2

Returns the amount of free space on the page of the relation, specified by blkno, according to the
FSM.

pg_freespace(rel regclass IN, blkno OUT bigint, avail OUT int2)

Displays the amount of free space on each page of the relation, according to the FSM. A set of (blkno
bigint, avail int2) tuples is returned, one tuple for each page in the relation.

The values stored in the free space map are not exact. They're rounded to precision of 1/256th of BLCKSZ
(32 bytes with default BLCKSZ), and they're not kept fully up-to-date as tuples are inserted and updated.

For indexes, what is tracked is entirely-unused pages, rather than free space within pages. Therefore,
the values are not meaningful, just whether a page is full or empty.

Note
The interface was changed in version 8.4, to reflect the new FSM implementation introduced in
the same version.

F.33.2. Sample Output
postgres=# SELECT * FROM pg_freespace('foo');
 blkno | avail
-------+-------
 0 | 0
 1 | 0
 2 | 0
 3 | 32
 4 | 704
 5 | 704
 6 | 704
 7 | 1216
 8 | 704
 9 | 704
 10 | 704
 11 | 704
 12 | 704
 13 | 704
 14 | 704
 15 | 704
 16 | 704
 17 | 704
 18 | 704
 19 | 3648
(20 rows)

postgres=# SELECT * FROM pg_freespace('foo', 7);
 pg_freespace

 1216
(1 row)

2287

Additional Supplied Modules

F.33.3. Author
Original version by Mark Kirkwood <markir@paradise.net.nz>. Rewritten in version 8.4 to suit new
FSM implementation by Heikki Linnakangas <heikki@enterprisedb.com>

F.34. pg_pathman

Important
Starting from Postgres Pro 12, using pg_pathman is not recommended. Use vanilla declarative
partitioning instead, as described in Section 5.11.

The pg_pathman is a Postgres Pro extension that provides an optimized partitioning solution for large
and distributed databases. Using pg_pathman, you can:

• Partition large databases without downtime.
• Speed up query execution for partitioned tables.
• Manage existing partitions and add new partitions on the fly.
• Add foreign tables as partitions.
• Join partitioned tables for read and write operations.
The extension is compatible with Postgres Pro 9.5 or higher.

F.34.1. Installation and Setup
The pg_pathman extension is included into the Postgres Pro. Once you have Postgres Pro installed,
complete the following steps to enable pg_pathman:

1. Add pg_pathman to the shared_preload_libraries variable in the postgresql.conf file:

shared_preload_libraries = 'pg_pathman'

Important
pg_pathman may have conflicts with other extensions that use the same hook functions. For
example, pg_pathman may interfere with the pg_stat_statements extension as they both use
ProcessUtility_hook. To avoid such issues, pg_pathman must always be the last in the list of
libraries: shared_preload_libraries = 'pg_stat_statements, pg_pathman'

2. Restart the Postgres Pro instance for the settings to take effect.
3. Create the pg_pathman extension as follows:

CREATE SCHEMA pathman;
GRANT USAGE ON SCHEMA pathman TO PUBLIC;
CREATE EXTENSION pg_pathman WITH SCHEMA pathman;

Important
To ensure that your calls to pg_pathman's functions are always secure against search_path-
based attacks (see CREATE EXTENSION for details), install it only into a clean schema where
nobody except superusers has the CREATE privilege for database objects.

Once pg_pathman is enabled, you can start partitioning tables.

2288

Additional Supplied Modules

Note
During installation, pg_pathman creates a few RLS policies to restrict access to its own tables.
Postgres Pro core, however, does not support dump/restore of databases where extensions issuing
CREATE POLICY statements are installed. Therefore, when restoring a dump of a database where
pg_pathman is installed, you will get error messages such as:
ERROR: policy "allow_select" for table "pathman_config" already exists

Ignore them since they do not affect whether the data being restored is complete.

Tip
You can also build pg_pathman from source code by executing the following command in the
pg_pathman directory:

make install USE_PGXS=1

When this operation is complete, follow the steps described above to complete the setup.

In addition, do not forget to set the PG_CONFIG variable if you want to test pg_pathman on a custom
build of Postgres Pro. For details, see Building and Installing PostgreSQL Extension Modules.

You can toggle pg_pathman or its specific custom nodes on and off using GUC variables. For details, see
Section F.34.5.1.

If you want to permanently disable pg_pathman for a previously partitioned table, use the
disable_pathman_for() function:

SELECT disable_pathman_for('range_rel');

All sections and data will remain unchanged and will be handled by the standard Postgres Pro inheritance
mechanism.

F.34.1.1. Updating pg_pathman
If you already have a previous version of pg_pathman installed, complete the following steps to upgrade
to a newer version:

1. Install Postgres Pro.
2. Restart your Postgres Pro cluster.
3. If you are running a previous major version of pg_pathman (the second digit in the version number

is different), complete the update as follows:

ALTER EXTENSION pg_pathman UPDATE TO version;
SET pg_pathman.enable = t;

where version is the pg_pathman major version number, such as 1.5.

You can check the current pg_pathman version by running the pathman_version() function.

F.34.2. Usage
Choosing Partitioning Strategies

Running Non-Blocking Data Migration

Partitioning by a Single Expression

2289

https://wiki.postgresql.org/wiki/Building_and_Installing_PostgreSQL_Extension_Modules

Additional Supplied Modules

Partitioning by Composite Key

Running Multilevel Partitioning

Managing Partitions

As your database grows, indexing mechanisms may become inefficient and cause high latency as you run
queries. To improve performance, ensure scalability, and optimize database administration processes
you can use partitioning — splitting a large table into smaller pieces, with each row moved to a single
partition according to the partitioning key.

Traditionally, Postgres Pro has supported partitioning via table inheritance, with each partition created
as a child table with a CHECK constraint. In Postgres Pro 10, support for declarative partitioning was
added, which also relies on inheritance. With these approaches, the query planner has to perform
an exhaustive search and check constraints on each partition to build a query plan, which may slow
down queries for tables with a large number of partitions. The pg_pathman extension uses an optimized
planning algorithms and partitioning functions based on the internal structure of the partitioned tables,
which allows to achieve better performance results. For details on pg_pathman implementation specifics,
see Section F.34.4.

F.34.2.1. Choosing Partitioning Strategies
The pg_pathman extension supports the following partitioning strategies:

• Hash — maps rows to partitions using a generic hash function. Choose this strategy if most of your
queries will be of the exact-match type.

• Range — maps rows to partitions based on partitioning key ranges assigned to each partition.
Choose this strategy if your database contains numeric data that you are likely to query or manage
by ranges. For example, you may want to query historical data by years, or review experiment
results by specific numeric ranges. To achieve performance gains, pg_pathman uses the binary
search algorithm.

By default, pg_pathman migrates all data from the parent table to the newly created partitions at once
(blocking partitioning). This approach enables you to restructure the table in a single transaction, but
may cause downtime if you have a lot of data. If it is critical to avoid downtime, you can use concurrent
partitioning. In this case, pg_pathman writes all the updates to the newly created partitions, but keeps
the original data in the parent table until you explicitly migrate it. This enables you to partition large
databases without downtime, as you can choose convenient time for migration and copy data in small
batches without blocking other transactions. For details on concurrent partitioning, see Section F.34.2.2.

F.34.2.1.1. Setting up Hash Partitioning

To perform hash partitioning with pg_pathman, run the create_hash_partitions() function:

create_hash_partitions(parent_relid REGCLASS,
 expression TEXT,
 partitions_count INTEGER,
 partition_data BOOLEAN DEFAULT TRUE,
 partition_names TEXT[] DEFAULT NULL,
 tablespaces TEXT[] DEFAULT NULL)

The pg_pathman module creates the specified number of partitions based on the hash function.
Optionally, you can specify partition names and tablespaces by setting partition_names and
tablespaces options, respectively.

You cannot add or remove partitions after the parent table is split. If required, you can replace the
specified partition with another table:

replace_hash_partition(old_partition REGCLASS,
 new_partition REGCLASS,
 lock_parent BOOL DEFAULT TRUE);

2290

Additional Supplied Modules

When set to true, lock_parent parameter will prevent any INSERT/UPDATE/ALTER TABLE queries to
parent table.

If you omit the optional partition_data parameter or set it to true, all the data from the parent table
gets migrated to partitions. The pg_pathman module blocks the table for other transactions until data
migration completes. To avoid downtime, you can set the partition_data parameter to false and later
use the partition_table_concurrently() function to migrate your data to partitions without blocking
other queries. For details, see the Section F.34.2.2.

F.34.2.1.2. Setting up Range Partitioning

The pg_pathman module provides the create_range_partitions() for range partitioning. This function
creates partitions based on the specified interval and the initial partitioning key value. New partitions
are created automatically when you insert data outside of the already covered range.

create_range_partitions(parent_relid REGCLASS,
 expression TEXT,
 start_value ANYELEMENT,
 p_interval ANYELEMENT | INTERVAL,
 p_count INTEGER DEFAULT NULL,
 partition_data BOOLEAN DEFAULT TRUE)

The pg_pathman module creates partitions based on the specified parameters. If you omit the optional
p_count parameter, pg_pathman calculates the required number of partitions based on the specified start
value and interval. If you insert new data outside of the existing partition range, pg_pathman creates
new partitions automatically, keeping the specified interval. This approach ensures that all partitions
are of the same size, which can improve query performance and facilitate database management.

Alternatively, you can specify an array defining the bounds of partitions to be created using the bounds
parameter:

create_range_partitions(parent_relid REGCLASS,
 expression TEXT,
 bounds ANYARRAY,
 partition_names TEXT[] DEFAULT NULL,
 tablespaces TEXT[] DEFAULT NULL,
 partition_data BOOLEAN DEFAULT TRUE)

If required, you can also use partition management functions to add partitions manually. For example,
if there is a gap between the created partitions, pg_pathman cannot fill it with a new partition in an
automated mode.

By default, all the data from the parent table gets migrated to the specified number of partitions.
The pg_pathman module blocks the table for other transactions until data migration completes.
To avoid downtime, you can set the partition_data parameter to false and later use the
partition_table_concurrently() function to migrate your data to partitions without blocking other
queries. For details, see the Section F.34.2.2.

F.34.2.2. Running Non-Blocking Data Migration
If it is critical to avoid downtime, you can perform concurrent partitioning by setting the partition_data
parameter of the partitioning function to false. In this case, pg_pathman creates empty partitions,
keeping all the original data in the parent table. At the same time, all the database updates are written
to the newly created partitions. You can later migrate the original data to partitions without blocking
other queries using the partition_table_concurrently() function:

partition_table_concurrently(relation REGCLASS,
 batch_size INTEGER DEFAULT 1000,
 sleep_time FLOAT8 DEFAULT 1.0)

where:

2291

Additional Supplied Modules

• relation is the parent table.

• batch_size is the number of rows to copy from the parent table to partitions at a time. You can set
this parameter to any integer value from 1 to 10000.

• sleep_time is the time interval between migration attempts, in seconds.

The pg_pathman module starts a background worker to move the data from the parent table to partitions
in small batches of the specified batch_size. If one or more rows in the batch are locked by other
queries, pg_pathman waits for the specified sleep_time and tries again, up to 60 times. You can monitor
the migration process in the pathman_concurrent_part_tasks view that shows the number of rows
migrated so far:

[user]postgres: select * from pathman_concurrent_part_tasks ;
 userid | pid | dbid | relid | processed | status
--------+-------+-------+-------+-----------+---------
 user | 20012 | 12413 | test | 334000 | working
(1 row)

If you need to stop data migration, run the stop_concurrent_part_task() function at any time:

SELECT stop_concurrent_part_task(relation REGCLASS);

pg_pathman completes the migration of the current batch and terminates the migration process.

Tip
When pg_pathman migrates all the data from the parent table, you can exclude the parent table
from the query plan. See the set_enable_parent() function description for details.

F.34.2.3. Partitioning by a Single Expression
For both range and hash partitioning strategies, pg_pathman supports partitioning by expression that
returns a single scalar value. The partitioning expression can reference a table column, as well as
calculate the partitioning key based on one or more column values.

Tip
If you would like to partition a table by a tuple, see Section F.34.2.4.

To partition a table by expression, use pg_pathman partitioning functions. The partitioning expression
must satisfy the following conditions:

• Expression must reference at least one column of the partitioned table.
• All referenced columns must be marked as NOT NULL.
• Expression cannot reference system attributes, such as oid, xmin, xmax, etc.
• Expression cannot include subqueries.
• All functions used by expression must be marked as IMMUTABLE.

As the expression can return a value of virtually any type, make sure to convert it to the type you need
for partitioning.

To access a partition, you must use the exact expression used for partitioning. Otherwise, pg_pathman
cannot optimize the query. You can view the partitioning expression for each partitioned table in the
pathman_config table.

F.34.2.3.1. Examples

Suppose you have the test table that stores some jsonb data:

2292

Additional Supplied Modules

CREATE TABLE test(col jsonb NOT NULL);
INSERT INTO test
SELECT format('{"key": %s, "date": "%s", "value": "%s"}',
 i, current_date, md5(i::text))::jsonb
FROM generate_series(1, 10000 * 10) as g(i);

To partition this data by range of the key value, you need to extract this value from the jsonb object and
convert it to a numeric type, such as bigint:

SELECT create_range_partitions('test', '(col->>''key'')::bigint', 1, 10000, 10);

pg_pathman splits the parent table into ten partitions, with each partition storing 10000 rows:

SELECT * FROM pathman_partition_list;
 parent | partition | parttype | expr | range_min |
 range_max
--------+-----------+----------+---------------------------------+-----------
+-----------
 test | test_1 | 2 | ((col ->> 'key'::text))::bigint | 1 | 10001
 test | test_2 | 2 | ((col ->> 'key'::text))::bigint | 10001 | 20001
 test | test_3 | 2 | ((col ->> 'key'::text))::bigint | 20001 | 30001
 test | test_4 | 2 | ((col ->> 'key'::text))::bigint | 30001 | 40001
 test | test_5 | 2 | ((col ->> 'key'::text))::bigint | 40001 | 50001
 test | test_6 | 2 | ((col ->> 'key'::text))::bigint | 50001 | 60001
 test | test_7 | 2 | ((col ->> 'key'::text))::bigint | 60001 | 70001
 test | test_8 | 2 | ((col ->> 'key'::text))::bigint | 70001 | 80001
 test | test_9 | 2 | ((col ->> 'key'::text))::bigint | 80001 | 90001
 test | test_10 | 2 | ((col ->> 'key'::text))::bigint | 90001 | 100001
(10 rows)

F.34.2.4. Partitioning by Composite Key
Using pg_pathman, you can also perform range partitioning by composite key. A composite key consists
of two or more comma-separated values, which can be columns or expressions extracting the values
from the table. The expressions defining the composite key must satisfy the conditions described in
Section F.34.2.3.

Although pg_pathman does not support automatic partition creation by composite key, you can add
partitions using the add_range_partition() function. A typical workflow is as follows:

1. Enable automatic partition naming for your table by running the create_naming_sequence()
function.

2. Create a composite partitioning key.

3. Register a table you are going to partition with pg_pathman using the add_to_pathman_config()
function.

4. Add a partition based on the defined composite partitioning key using the add_range_partition()
function.

F.34.2.4.1. Examples

Suppose you have the test table that stores some temporal data:

CREATE TABLE test (logdate date NOT NULL, comment text);

To partition this data by month and year, you have to create a composite key:

CREATE TYPE test_key AS (year float8, month float8);

To enable automatic partition naming, run the create_naming_sequence() function passing the table
name as an argument:

2293

Additional Supplied Modules

SELECT create_naming_sequence('test');

Register the test table with pg_pathman, specifying the partitioning key you are going to use:
SELECT add_to_pathman_config('test',
 '(extract(year from logdate),
 extract(month from logdate))::test_key',
 NULL);

Create a partition that includes all the data in the range of ten years, starting from January of the current
year:
SELECT add_range_partition('test',
 (extract(year from current_date), 1)::test_key,
 (extract(year from current_date + '10 years'::interval),
 1)::test_key);

F.34.2.5. Running Multilevel Partitioning
pg_pathman supports multilevel partitioning for both hash and range partitioning strategies. You can use
partitioning strategies in any combination: a hash- or range-partitioned table can be further partitioned
by both hash or range.

To split an existing partition into several child ones, use the regular pg_pathman partitioning functions
as explained in Section F.34.2.1, passing the name of the partition to be split as the parent_relid
parameter. You can check the exact partition names in the pathman_partition_list view.

When opting for the range-range partitioning combination, you can either choose a different partitioning
expression, or use the same expression as for the parent table. In the latter case, if the selected range is
larger than that of the parent partition, only those child partitions that intersect with the parent range
will be in use. Other child partitions will remain empty unless their parent is merged with an adjacent
partition that covers at least a part of their range.

F.34.2.5.1. Examples

Suppose you have the journal table with some logs, which is partitioned by month:

-- create an empty table
CREATE TABLE journal (
id SERIAL,
dt TIMESTAMP NOT NULL,
level INTEGER,
msg TEXT);

-- generate some log data into the table
INSERT INTO journal (dt, level, msg)
SELECT g, random() * 6, md5(g::text)
FROM generate_series('2015-01-01'::date, '2015-12-31'::date, '1 minute') as g;

-- partition the table by range
SELECT create_range_partitions('journal', 'dt', '2015-01-01'::date, '1
 month'::interval);

If having smaller partitions makes more sense at some point, you can further split the partitions by hash
or range. For example, to split the journal_1 partition into subpartitions by day, run:
SELECT create_range_partitions('journal_1', 'dt', '2015-01-01'::date, '1
 day'::interval);

Similarly, you can use hash partitioning to create child partitions. For example, split the journal_2
partition into five partitions by hash using the id column as the partitioning key:
SELECT create_hash_partitions('journal_2', 'id', '5');

2294

Additional Supplied Modules

F.34.2.6. Managing Partitions
pg_pathman provides multiple functions for easy partition management. For details, see
Section F.34.5.3.4.

F.34.3. Examples
F.34.3.1. Common Tips

• You can add partition column containing the names of the underlying partitions using the system
attribute called tableoid:

SELECT tableoid::regclass AS partition, * FROM partitioned_table;

• Though indices on a parent table are not particularly useful (since the parent table is supposed
to be empty), they act as prototypes for indices on partitions. For each index on the parent table,
pg_pathman creates a similar index on each partition.

• All running concurrent partitioning tasks can be listed using the pathman_concurrent_part_tasks
view:

SELECT * FROM pathman_concurrent_part_tasks;
userid | pid | dbid | relid | processed | status
--------+------+-------+-------+-----------+---------
user | 7367 | 16384 | test | 472000 | working
(1 row)

• The pathman_partition_list in conjunction with drop_range_partition() can be used to drop
range partitions in a more flexible way compared to DROP TABLE:

SELECT drop_range_partition(partition, false) /* move data to parent */
FROM pathman_partition_list
WHERE parent = 'part_test'::regclass AND range_min::int < 500;
NOTICE: 1 rows copied from part_test_11
NOTICE: 100 rows copied from part_test_1
NOTICE: 100 rows copied from part_test_2
drop_range_partition

dummy_test_11
dummy_test_1
dummy_test_2
(3 rows)

• You can turn foreign tables into partitions using the attach_range_partition() function.
Rows that were meant to be inserted into the parent will be redirected to foreign partitions
using PartitionFilter. By default, it is only allowed to insert rows into partitions provided by
postgres_fdw. This setting is controlled by the pg_pathman.insert_into_fdw variable. You must
have superuser rights to change this setting.

F.34.3.2. Hash Partitioning
Consider an example of hash partitioning. First create a table with an integer column:

CREATE TABLE items (
id SERIAL PRIMARY KEY,
name TEXT,
code BIGINT);

INSERT INTO items (id, name, code)
SELECT g, md5(g::text), random() * 100000
FROM generate_series(1, 100000) as g;

Now run the create_hash_partitions() function with appropriate arguments:

2295

Additional Supplied Modules

SELECT create_hash_partitions('items', 'id', 100);

This will create new partitions and move the data from the parent table to partitions.

Here is an example of the query performing filtering by partitioning key:

SELECT * FROM items WHERE id = 1234;
 id | name | code
------+----------------------------------+------
 1234 | 81dc9bdb52d04dc20036dbd8313ed055 | 1855
(1 row)

EXPLAIN SELECT * FROM items WHERE id = 1234;
QUERY PLAN
--
Append (cost=0.28..8.29 rows=0 width=0)
-> Index Scan using items_34_pkey on items_34 (cost=0.28..8.29 rows=0 width=0)
Index Cond: (id = 1234)

Notice that the Append node contains only one child scan, which corresponds to the WHERE clause.

Important
Pay attention to the fact that pg_pathman excludes the parent table from the query plan.

To access the parent table, use the ONLY modifier:

EXPLAIN SELECT * FROM ONLY items;
QUERY PLAN
--
Seq Scan on items (cost=0.00..0.00 rows=1 width=45)

F.34.3.3. Range Partitioning
Consider an example of range partitioning. Let's create a table containing some dummy logs:

CREATE TABLE journal (
id SERIAL,
dt TIMESTAMP NOT NULL,
level INTEGER,
msg TEXT);

-- similar index will also be created for each partition
CREATE INDEX ON journal(dt);

-- generate some data
INSERT INTO journal (dt, level, msg)
SELECT g, random() * 6, md5(g::text)
FROM generate_series('2015-01-01'::date, '2015-12-31'::date, '1 minute') as g;

Run the create_range_partitions() function to create partitions so that each partition would contain
the data for one day:

SELECT create_range_partitions('journal', 'dt', '2015-01-01'::date, '1 day'::interval);

It will create 364 partitions and move the data from the parent table to partitions.

New partitions are appended automatically by insert trigger, but it can be done manually with the
following functions:

-- add new partition with specified range

2296

Additional Supplied Modules

SELECT add_range_partition('journal', '2016-01-01'::date, '2016-01-07'::date);

-- append new partition with default range
SELECT append_range_partition('journal');

The first one creates a partition with specified range. The second one creates a partition with default
interval and appends it to the partition list. It is also possible to attach an existing table as partition.
For example, we may want to attach an archive table (or even foreign table from another server) for
some outdated data:

CREATE FOREIGN TABLE journal_archive (
id INTEGER NOT NULL,
dt TIMESTAMP NOT NULL,
level INTEGER,
msg TEXT)
SERVER archive_server;

SELECT attach_range_partition('journal', 'journal_archive', '2014-01-01'::date,
 '2015-01-01'::date);

Important
The attached table must have the same columns as the partitioned table, except for the dropped
columns. The attached columns must have the same type, collation, and NOT NULL settings as the
original columns.

To merge two adjacent partitions, use the merge_range_partitions() function:

SELECT merge_range_partitions('journal_archive', 'journal_1');

To split partition by value, use the split_range_partition() function:

SELECT split_range_partition('journal_366', '2016-01-03'::date);

To detach partition, use the detach_range_partition() function:

SELECT detach_range_partition('journal_archive');

Here is an example of the query performing filtering by partitioning key:

SELECT * FROM journal WHERE dt >= '2015-06-01' AND dt < '2015-06-03';
id | dt | level | msg
--------+---------------------+-------+----------------------------------
217441 | 2015-06-01 00:00:00 | 2 | 15053892d993ce19f580a128f87e3dbf
217442 | 2015-06-01 00:01:00 | 1 | 3a7c46f18a952d62ce5418ac2056010c
217443 | 2015-06-01 00:02:00 | 0 | 92c8de8f82faf0b139a3d99f2792311d
...
(2880 rows)

EXPLAIN SELECT * FROM journal WHERE dt >= '2015-06-01' AND dt < '2015-06-03';
QUERY PLAN
--
Append (cost=0.00..58.80 rows=0 width=0)
-> Seq Scan on journal_152 (cost=0.00..29.40 rows=0 width=0)
-> Seq Scan on journal_153 (cost=0.00..29.40 rows=0 width=0)
(3 rows)

F.34.4. Internals
pg_pathman stores partitioning configuration in the pathman_config table; each row contains a single
entry for a partitioned table (relation name, partitioning column and its type). During the initialization

2297

Additional Supplied Modules

stage the pg_pathman module caches some information about child partitions in the shared memory,
which is used later for plan construction. Before a SELECT query is executed, pg_pathman traverses the
condition tree in search of expressions like:

VARIABLE OP CONST

where VARIABLE is a partitioning key, OP is a comparison operator (supported operators are =, <, <=,
>, >=), CONST is a scalar value. For example:

WHERE id = 150

Based on the partitioning type and condition's operator, pg_pathman searches for the corresponding
partitions and builds the plan.

F.34.4.1. Custom Plan Nodes
pg_pathman provides a couple of custom plan nodes which aim to reduce execution time, namely:

• RuntimeAppend (overrides Append plan node)
• RuntimeMergeAppend (overrides MergeAppend plan node)
• PartitionFilter (drop-in replacement for INSERT triggers)
• PartitionRouter for cross-partition UPDATE queries instead of triggers

PartitionFilter acts as a proxy node for INSERT's child scan, which means it can redirect output
tuples to the corresponding partition:

EXPLAIN (COSTS OFF)
INSERT INTO partitioned_table
SELECT generate_series(1, 10), random();
 QUERY PLAN

 Insert on partitioned_table
 -> Custom Scan (PartitionFilter)
 -> Subquery Scan on "*SELECT*"
 -> Result
(4 rows)

PartitionRouter is another proxy node used in conjunction with PartitionFilter to enable cross-
partition UPDATE operations, for example, when you update any column of a partitioning key.

Important
The PartitionRouter node transforms cross-partition UPDATE commands into DELETE + INSERT.
On Postgres Pro versions prior to 11, this operation is unsafe as pg_pathman cannot determine
whether the updated row has been deleted or moved to another partition.

By default, PartitionRouter is disabled to avoid undesirable side effects. To enable this node, set the
pg_pathman.enable_partitionrouter to on.

EXPLAIN (COSTS OFF)
UPDATE partitioned_table
SET value = value + 1 WHERE value = 2;
 QUERY PLAN

 Update on partitioned_table_0
 -> Custom Scan (PartitionRouter)
 -> Custom Scan (PartitionFilter)
 -> Seq Scan on partitioned_table_0
 Filter: (value = 2)

2298

https://wiki.postgresql.org/wiki/CustomScanAPI

Additional Supplied Modules

(5 rows)

RuntimeAppend and RuntimeMergeAppend have much in common: they come in handy in a case when
WHERE condition takes form of:

VARIABLE OP PARAM

This kind of expressions can no longer be optimized at planning time since the parameter's value is
not known until the execution stage takes place. The problem can be solved by embedding the WHERE
condition analysis routine into the original Append's code, thus making it pick only required scans out
of a whole bunch of planned partition scans. This effectively boils down to creation of a custom node
capable of performing such a check.

There are at least several cases that demonstrate usefulness of these nodes:

/* create table we're going to partition */
CREATE TABLE partitioned_table(id INT NOT NULL, payload REAL);

/* insert some data */
INSERT INTO partitioned_table
SELECT generate_series(1, 1000), random();

/* perform partitioning */
SELECT create_hash_partitions('partitioned_table', 'id', 100);

/* create ordinary table */
CREATE TABLE some_table AS SELECT generate_series(1, 100) AS VAL;

• id = (select ... limit 1)

EXPLAIN (COSTS OFF, ANALYZE) SELECT * FROM partitioned_table
WHERE id = (SELECT * FROM some_table LIMIT 1);
 QUERY PLAN
--
 Custom Scan (RuntimeAppend) (actual time=0.030..0.033 rows=1 loops=1)
 InitPlan 1 (returns $0)
 -> Limit (actual time=0.011..0.011 rows=1 loops=1)
 -> Seq Scan on some_table (actual time=0.010..0.010 rows=1 loops=1)
 -> Seq Scan on partitioned_table_70 partitioned_table (actual time=0.004..0.006
 rows=1 loops=1)
 Filter: (id = $0)
 Rows Removed by Filter: 9
 Planning time: 1.131 ms
 Execution time: 0.075 ms
(9 rows)

/* disable RuntimeAppend node */
SET pg_pathman.enable_runtimeappend = f;

EXPLAIN (COSTS OFF, ANALYZE) SELECT * FROM partitioned_table
WHERE id = (SELECT * FROM some_table LIMIT 1);
 QUERY PLAN
--
 Append (actual time=0.196..0.274 rows=1 loops=1)
 InitPlan 1 (returns $0)
 -> Limit (actual time=0.005..0.005 rows=1 loops=1)
 -> Seq Scan on some_table (actual time=0.003..0.003 rows=1 loops=1)
 -> Seq Scan on partitioned_table_0 (actual time=0.014..0.014 rows=0 loops=1)
 Filter: (id = $0)
 Rows Removed by Filter: 6

2299

Additional Supplied Modules

 -> Seq Scan on partitioned_table_1 (actual time=0.003..0.003 rows=0 loops=1)
 Filter: (id = $0)
 Rows Removed by Filter: 5
 ... /* more plans follow */
 Planning time: 1.140 ms
 Execution time: 0.855 ms
(306 rows)

• id = ANY (select ...)

EXPLAIN (COSTS OFF, ANALYZE) SELECT * FROM partitioned_table
WHERE id = any (SELECT * FROM some_table limit 4);
 QUERY PLAN

 Nested Loop (actual time=0.025..0.060 rows=4 loops=1)
 -> Limit (actual time=0.009..0.011 rows=4 loops=1)
 -> Seq Scan on some_table (actual time=0.008..0.010 rows=4 loops=1)
 -> Custom Scan (RuntimeAppend) (actual time=0.002..0.004 rows=1 loops=4)
 -> Seq Scan on partitioned_table_70 partitioned_table (actual
 time=0.001..0.001 rows=10 loops=1)
 -> Seq Scan on partitioned_table_26 partitioned_table (actual
 time=0.002..0.003 rows=9 loops=1)
 -> Seq Scan on partitioned_table_27 partitioned_table (actual
 time=0.001..0.002 rows=20 loops=1)
 -> Seq Scan on partitioned_table_63 partitioned_table (actual
 time=0.001..0.002 rows=9 loops=1)
 Planning time: 0.771 ms
 Execution time: 0.101 ms
(10 rows)

/* disable RuntimeAppend node */
SET pg_pathman.enable_runtimeappend = f;

EXPLAIN (COSTS OFF, ANALYZE) SELECT * FROM partitioned_table
WHERE id = any (SELECT * FROM some_table limit 4);
 QUERY PLAN

 Nested Loop Semi Join (actual time=0.531..1.526 rows=4 loops=1)
 Join Filter: (partitioned_table.id = some_table.val)
 Rows Removed by Join Filter: 3990
 -> Append (actual time=0.190..0.470 rows=1000 loops=1)
 -> Seq Scan on partitioned_table (actual time=0.187..0.187 rows=0 loops=1)
 -> Seq Scan on partitioned_table_0 (actual time=0.002..0.004 rows=6
 loops=1)
 -> Seq Scan on partitioned_table_1 (actual time=0.001..0.001 rows=5
 loops=1)
 -> Seq Scan on partitioned_table_2 (actual time=0.002..0.004 rows=14
 loops=1)
... /* 96 scans follow */
 -> Materialize (actual time=0.000..0.000 rows=4 loops=1000)
 -> Limit (actual time=0.005..0.006 rows=4 loops=1)
 -> Seq Scan on some_table (actual time=0.003..0.004 rows=4 loops=1)
 Planning time: 2.169 ms
 Execution time: 2.059 ms
(110 rows)

• NestLoop involving a partitioned table, which is omitted since it's occasionally shown above.

To learn more about custom nodes, see Alexander Korotkov's blog.

2300

http://akorotkov.github.io/blog/2016/06/15/pg_pathman-runtime-append/

Additional Supplied Modules

F.34.5. Reference
F.34.5.1. GUC Variables

There are several user-accessible GUC variables designed to toggle pg_pathman or its specific custom
nodes on and off.

• pg_pathman.enable — enable/disable the pg_pathman module.

Default: on
• pg_pathman.enable_runtimeappend — toggle the RuntimeAppend custom node on/off.

Default: on
• pg_pathman.enable_runtimemergeappend — toggle the RuntimeMergeAppend custom node on/off.

Default: on
• pg_pathman.enable_partitionfilter — toggle the PartitionFilter custom node on/off to

enable/disable cross-partition INSERT operations.

Default: on
• pg_pathman.enable_partitionrouter — toggle the PartitionRouter custom node on/off to

enable/disable cross-partition UPDATE operations.

Default: off
• pg_pathman.enable_auto_partition — toggle automatic partition creation on/off (per session).

Default: on
• pg_pathman.enable_bounds_cache — toggle bounds cache on/off.

Default: on
• pg_pathman.insert_into_fdw — allow INSERT operations into various foreign-data wrappers.

Possible values: disabled, postgres, and any_fdw.

Default: postgres
• pg_pathman.override_copy — toggle COPY statement hooking on/off.

Default: on

F.34.5.2. Views and Tables

F.34.5.2.1. pathman_config

This table stores the list of partitioned tables. This is the main configuration storage.

CREATE TABLE IF NOT EXISTS pathman_config (
 partrel REGCLASS NOT NULL PRIMARY KEY,
 attname TEXT NOT NULL,
 parttype INTEGER NOT NULL,
 range_interval TEXT);

F.34.5.2.2. pathman_config_params

This table stores optional parameters that override standard pg_pathman behavior.

CREATE TABLE IF NOT EXISTS pathman_config_params (
 partrel REGCLASS NOT NULL PRIMARY KEY,
 enable_parent BOOLEAN NOT NULL DEFAULT TRUE,
 auto BOOLEAN NOT NULL DEFAULT TRUE,
 init_callback REGPROCEDURE NOT NULL DEFAULT 0,
 spawn_using_bgw BOOLEAN NOT NULL DEFAULT FALSE);

2301

Additional Supplied Modules

F.34.5.2.3. pathman_concurrent_part_tasks

This view lists all currently running concurrent partitioning tasks.

-- helper SRF function
CREATE OR REPLACE FUNCTION show_concurrent_part_tasks()
RETURNS TABLE (
 userid REGROLE,
 pid INT,
 dbid OID,
 relid REGCLASS,
 processed INT,
 status TEXT)
AS 'pg_pathman', 'show_concurrent_part_tasks_internal'
LANGUAGE C STRICT;

CREATE OR REPLACE VIEW pathman_concurrent_part_tasks
AS SELECT * FROM show_concurrent_part_tasks();

F.34.5.2.4. pathman_partition_list

This view lists all existing partitions, as well as their parents and range boundaries (NULL for hash
partitions).

-- helper SRF function
CREATE OR REPLACE FUNCTION show_partition_list()
RETURNS TABLE (
 parent REGCLASS,
 partition REGCLASS,
 parttype INT4,
 expr TEXT,
 range_min TEXT,
 range_max TEXT)
AS 'pg_pathman', 'show_partition_list_internal'
LANGUAGE C STRICT;

CREATE OR REPLACE VIEW pathman_partition_list
AS SELECT * FROM show_partition_list();

F.34.5.3. Functions

F.34.5.3.1. Partitioning Functions

create_hash_partitions(parent_relid REGCLASS,
 expression TEXT,
 partitions_count INTEGER,
 partition_data BOOLEAN DEFAULT TRUE,
 partition_names TEXT[] DEFAULT NULL,
 tablespaces TEXT[] DEFAULT NULL)

Performs hash partitioning for relation by integer key expression. The partitions_count parameter
specifies the number of partitions to create; it cannot be changed afterwards. If partition_data is
true, all the data will be automatically migrated from the parent table to partitions. Note that data
migration may take a while to finish and the table will be locked until transaction commits. See
partition_table_concurrently() for a lock-free way to migrate data. Partition creation callback is
invoked for each partition if set beforehand (see set_init_callback()).

create_range_partitions(relation REGCLASS,
 expression TEXT,
 start_value ANYELEMENT,
 p_interval ANYELEMENT,

2302

Additional Supplied Modules

 p_count INTEGER DEFAULT NULL,
 partition_data BOOLEAN DEFAULT TRUE)

create_range_partitions(relation REGCLASS,
 expression TEXT,
 start_value ANYELEMENT,
 p_interval INTERVAL,
 p_count INTEGER DEFAULT NULL,
 partition_data BOOLEAN DEFAULT TRUE)

create_range_partitions(relation REGCLASS,
 expression TEXT,
 bounds ANYARRAY,
 partition_names TEXT[] DEFAULT NULL,
 tablespaces TEXT[] DEFAULT NULL,
 partition_data BOOLEAN DEFAULT TRUE)

Performs range partitioning for relation by partitioning key defined by expression. The start_value
argument specifies the initial value, p_interval sets the default range for automatically created
partitions or partitions created with append_range_partition() or prepend_range_partition(). If
p_interval is set to NULL, automatic partition creation is disabled. p_count is the number of premade
partitions. If p_count is not set, than pg_pathman tries to determine the number of partitions based on
the expression value. The bounds array defines the bounds for partitions to be created. You can build
this array using the generate_range_bounds() function. Partition creation callback is invoked for each
partition if set beforehand.

F.34.5.3.2. Data Migration Functions

partition_table_concurrently(relation REGCLASS,
 batch_size INTEGER DEFAULT 1000,
 sleep_time FLOAT8 DEFAULT 1.0)

Starts a background worker to move data from parent table to partitions. The worker utilizes short
transactions to copy small batches of data (up to 10K rows per transaction) and thus doesn't significantly
interfere with user's activity.

stop_concurrent_part_task(relation REGCLASS)

Stops a background worker performing a concurrent partitioning task. Note: worker will exit after it
finishes relocating a current batch.

F.34.5.3.3. Triggers

Triggers are no longer required for INSERT and cross-partition UPDATE operations. However, user-
supplied triggers are supported:

• Each inserted row results in execution of BEFORE/AFTER INSERT trigger functions of a
corresponding partition.

• Each updated row results in execution of BEFORE/AFTER UPDATE trigger functions of a
corresponding partition.

• Each moved row (cross-partition update) results in execution of BEFORE UPDATE + BEFORE/
AFTER DELETE + BEFORE/AFTER INSERT trigger functions of corresponding partitions.

F.34.5.3.4. Partition Management Functions

replace_hash_partition(old_partition REGCLASS,
 new_partition REGCLASS,
 lock_parent BOOLEAN DEFAULT TRUE)

Replaces the specified partition of hash-partitioned table with another table. When set to true, the
lock_parent parameter prevents any INSERT/UPDATE/ALTER TABLE queries to the parent table.

2303

Additional Supplied Modules

split_range_partition(partition_relid REGCLASS,
 split_value ANYELEMENT,
 partition_name TEXT DEFAULT NULL,
 tablespace TEXT DEFAULT NULL)

Split range partition in two by value, with the specified value included into the second partition.
Partition creation callback is invoked for a new partition if available.

merge_range_partitions(variadic partitions REGCLASS[])

Merge several adjacent range partitions. Partitions are automatically ordered by increasing bounds. All
the data will be accumulated in the first partition, while other merged partitions are removed. If the
remaining partition has any child partitions, new child partitions for the merged data will be created as
required using the same partitioning expression.

append_range_partition(parent_relid REGCLASS,
 partition_name TEXT DEFAULT NULL,
 tablespace TEXT DEFAULT NULL)

Append new range partition with pathman_config.range_interval as interval.

prepend_range_partition(parent_relid REGCLASS,
 partition_name TEXT DEFAULT NULL,
 tablespace TEXT DEFAULT NULL)

Prepend new range partition with pathman_config.range_interval as interval.

add_range_partition(parent_relid REGCLASS,
 start_value ANYELEMENT,
 end_value ANYELEMENT,
 partition_name TEXT DEFAULT NULL,
 tablespace TEXT DEFAULT NULL)

Create a new range partition for relation with the specified range bounds. If the start_value or the
end_value is NULL, the corresponding range bound will be infinite.

drop_range_partition(partition_relid TEXT, delete_data BOOLEAN DEFAULT TRUE)

Drop range partition and all of its data if delete_data is true.

attach_range_partition(parent_relid REGCLASS,
 partition_relid REGCLASS,
 start_value ANYELEMENT,
 end_value ANYELEMENT)

Attach partition to the existing range-partitioned relation. The attached table must have exactly the same
structure as the parent table, including the dropped columns. Partition creation callback is invoked if
set (see Section F.34.5.2.2).

detach_range_partition(partition_relid REGCLASS)

Detach partition from the existing range-partitioned relation.

disable_pathman_for(parent_relid REGCLASS)

Permanently disable pg_pathman partitioning mechanism for the specified parent table and remove the
insert trigger if it exists. All partitions and data remain unchanged.

drop_partitions(parent_relid REGCLASS,
 delete_data BOOLEAN DEFAULT FALSE)

Drop partitions of the parent table (both foreign and local relations). If delete_data is false, the data
is copied to the parent table first. Default is false.

2304

Additional Supplied Modules

F.34.5.3.5. Additional Functions

pathman_version()

Returns the pg_pathman version number.

set_interval(relation REGCLASS, value ANYELEMENT)

Update range-partitioned table interval. Note that interval must not be negative and it must not be
trivial, i.e. its value should be greater than zero for numeric types, at least 1 microsecond for timestamp
and at least 1 day for date.

set_enable_parent(relation REGCLASS, value BOOLEAN)

Include/exclude parent table into/from query plan. In original Postgres Pro planner parent table is
always included into query plan even if it's empty, which can lead to additional overhead. You can use
disable_parent() if you are never going to use parent table as a storage. Default value depends on the
partition_data parameter specified during initial partitioning with the create_range_partitions()
function. If the partition_data parameter was true, then all data have already been migrated to
partitions and the parent table is disabled. Otherwise, it is enabled.

set_auto(relation REGCLASS, value BOOLEAN)

Enable/disable auto partition propagation (only for range partitioning). It is enabled by default.

set_init_callback(relation REGCLASS, callback REGPROCEDURE DEFAULT 0)

Set partition creation callback to be invoked for each attached or created partition (both hash and range).
If callback is marked with SECURITY INVOKER, it is executed with the privileges of the user who produced
a statement that has led to creation of a new partition. For example:

INSERT INTO partitioned_table VALUES (-5)

The callback must have the following signature: part_init_callback(args JSONB) RETURNS VOID.
Parameter arg consists of several fields whose presence depends on partitioning type:

/* Range-partitioned table abc (child abc_4) */
{
 "parent": "abc",
 "parttype": "2",
 "partition": "abc_4",
 "range_max": "401",
 "range_min": "301"
}

/* Hash-partitioned table abc (child abc_0) */
{
 "parent": "abc",
 "parttype": "1",
 "partition": "abc_0"
}

set_spawn_using_bgw(relation REGCLASS, value BOOLEAN)

When inserting new data beyond the partitioning range, use SpawnPartitionsWorker to create new
partitions in a separate transaction.

create_naming_sequence(parent_relid REGCLASS)

Enable automatic partition naming for the specified relation table. You must run this function when
partitioning this table by composite key.

2305

Additional Supplied Modules

add_to_pathman_config(parent_relid REGCLASS,
 expression TEXT,
 range_interval TEXT)
add_to_pathman_config(parent_relid REGCLASS,
 expression TEXT)

Register the specified relation table with pg_pathman to enable partitioning by the provided
expression. For range partitioning, the range_interval argument is mandatory. You can set it to NULL
if you are going to add partition manually.

generate_range_bounds(p_start ANYELEMENT,
 p_interval INTERVAL,
 p_count INTEGER)

generate_range_bounds(p_start ANYELEMENT,
 p_interval ANYELEMENT,
 p_count INTEGER)

Build the bounds array that defines the bounds for partitions to be created. You can pass this array as
an argument to the create_range_partitions() function.

F.34.6. Authors
• Ildar Musin
• Alexander Korotkov
• Dmitry Ivanov

F.35. pgpro_pwr
The pgpro_pwr module is designed to discover most resource-intensive activities in your database. (PWR,
pronounced like "power", is an abbreviation of Postgres Pro Workload Reporting.) This extension is based
on Postgres Pro's Statistics Collector views and the pgpro_stats or pg_stat_statements extension.

Note
Although pgpro_pwr can work with the pg_stat_statements extension, it is recommended that you
use the pgpro_stats extension since it provides statement plans, wait events sampling and load
distribution statistics for databases, roles, client hosts and applications.

Below, use of pgpro_stats is assumed unless otherwise noted.

If you cannot use pgpro_stats for an observed database, but the pg_stat_kcache extension is available,
pgpro_pwr can process pg_stat_kcache data, which also provides information about CPU resource usage
of statements and filesystem load (rusage).

pgpro_pwr can obtain summary wait statistics from the pg_wait_sampling extension. When
pg_wait_sampling is in use, pgpro_pwr will reset the wait sampling profile on every sample.

pgpro_pwr is based on cumulative statistics sampling. Each sample contains statistic increments for
most active objects and queries since the time when the previous sample was taken, or more concisely,
since the previous sample. This data is later used to generate reports.

pgpro_pwr provides functions to collect samples. Regular sampling allows building a report on the
database workload in the past.

pgpro_pwr allows you to take explicit samples during batch processing, load testing, etc.

Any time a sample is taken, pgpro_stats_statements_reset() (see pgpro_stats for the function
description) is called to ensure that statement statistics will not be lost when the statements count

2306

https://github.com/powa-team/pg_stat_kcache
https://github.com/postgrespro/pg_wait_sampling

Additional Supplied Modules

exceed pgpro_stats.max (see Section F.37.7.1). The report will also contain a section informing you of
whether the count of captured statements in any sample reaches 90% of pgpro_stats.max.

pgpro_pwr installed on one Postgres Pro server can also collect statistics from other servers. This feature
is useful for gathering workload statistics from hot standbys on the master server. To benefit from it,
make sure that all server names and connection strings are specified and that the pgpro_pwr server can
connect to all databases on all servers.

F.35.1. pgpro_pwr Architecture
The extension consists of the following parts:
• Historical repository is a storage for sampling data. The repository is a set of extension tables.

Note
Among the rest, pgpro_pwr tables store query texts, which can contain sensitive information.
So, for security reasons, restrict access to the repository as appropriate.

• Sample management engine comprises functions used to take samples and maintain the repository
by removing obsolete sample data.

• Report engine comprises functions for generating reports based on data from the historical
repository.

• Administrative functions allow you to create and manage servers and baselines.

F.35.2. Prerequisites
The prerequisites assume that pgpro_pwr, which is usually installed in a target cluster, i.e., the cluster
that you will mainly track the workload for, the extension can also collect performance data from other
clusters.

F.35.2.1. For the pgpro_pwr Database
The pgpro_pwr extension depends on PL/pgSQL and the dblink extension.

F.35.2.2. For the Target Server
The target server must allow connections to all databases from the server where pgpro_pwr is running.
To connect to the target server, provide a connection string where a particular database on this server is
specified. This database is of high importance for pgpro_pwr since the functionality of the pgpro_stats or
pg_stat_statements extensions will be provided through this database. Note, however, that pgpro_pwr
will also connect to all the other databases on this server.

Optionally, for completeness of gathered statistics:

• If statement statistics are needed in reports, pgpro_stats must be installed and configured in the
aforementioned database. The following settings may affect the completeness and accuracy of
gathered statistics:

• pgpro_stats.max

Low setting of this parameter may cause some statement statistics to be wiped out before the
sample is taken. A report will warn you if the value of pgpro_stats.max seems undersized.

• pgpro_stats.track

Avoid changing the default value of 'top' (note that the value of 'all' will affect the accuracy of
%Total fields for statements-related sections of a report).

• Set the parameters of the Postgres Pro's Statistics Collector as follows:

2307

Additional Supplied Modules

 track_activities = on
 track_counts = on
 track_io_timing = on
 track_wal_io_timing = on # Since PostgreSQL 14
 track_functions = all/pl

F.35.3. Installation and Setup

Note
pgpro_pwr creates a bunch of database objects, so installation in a dedicated schema is
recommended.

Although the use of pgpro_pwr with superuser privileges does not have any issues, superuser privileges
are not necessary. So you can choose one of the following setup procedures depending on your
configuration and security requirements or customize them to meet your needs:

F.35.3.1. Simple Setup
Use this setup procedure when pgpro_pwr is to be installed on the target cluster to only track its
workload as superuser.

Create a schema for the pgpro_pwr installation and create the extension:

CREATE SCHEMA profile;
CREATE EXTENSION pgpro_pwr SCHEMA profile;

F.35.3.2. Complex Setup
Use this setup procedure when you intend to use pgpro_pwr for tracking workload on one or more
servers and need to follow the principle of least privilege.

F.35.3.2.1. In the Target Server Database

Create a user for pgpro_pwr on the target server:

CREATE USER stat_user PASSWORD 'stat_user_pwd';

Make sure this user has permissions to connect to any database in the target cluster (by default, it
is true) and that pg_hba.conf permits such a connection from the pgpro_pwr database host. Also,
grant stat_user with membership in the pg_read_all_stats role and the EXECUTE privilege on the
pgpro_stats_statements_reset() function:

GRANT pg_read_all_stats TO stat_user;
GRANT EXECUTE ON FUNCTION pgpro_stats_statements_reset TO stat_user;

F.35.3.2.2. In the pgpro_pwr Database

Create an unprivileged user:

CREATE USER pwr_user;

This user will be the owner of the extension schema and will collect samples.

Create a schema for the pgpro_pwr installation:

CREATE SCHEMA profile AUTHORIZATION pwr_user;

Grant the USAGE privilege on the schema where the dblink extension resides:

2308

Additional Supplied Modules

GRANT USAGE ON SCHEMA public TO pwr_user;

Create the extension using pwr_user account:

\c - pwr_user
CREATE EXTENSION pgpro_pwr SCHEMA profile;

Define the connection parameters of the target server for pgpro_pwr. For example:

SELECT profile.create_server('target_server_name','host=192.168.1.100 dbname=postgres
 port=5432');

The connection string provided will be used in the dblink_connect() call while executing the
take_sample() function.

Note
Connection strings are stored in a pgpro_pwr table in clear-text form. Make sure no other database
users can access tables of the pgpro_pwr extension.

F.35.3.3. Setting Extension Parameters
In postgresql.conf, you can define the following pgpro_pwr parameters:

pgpro_pwr.max (integer)
Number of top objects (statements, relations, etc.) to be reported in each sorted report table. This
parameter affects the size of a sample.

The default value is 20.

pgpro_pwr.max_sample_age (integer)

Retention time of the sample, in days. Samples aged pgpro_pwr.max_sample_age days and older are
automatically deleted on the next take_sample() call.

The default value is 7 days.

pgpro_pwr.max_query_length (integer)
Maximum query length allowed in reports. All queries in a report will be truncated to
pgpro_pwr.max_query_length characters.

The default value is 20 000 characters.

pgpro_pwr.track_sample_timings (boolean)
Enables collecting detailed timing statistics of pgpro_pwr's own sampling procedures. Set this
parameter to diagnose why sampling functions run slowly. Collected timing statistics will be available
in the v_sample_timings view.

The default value is off.

F.35.4. Managing Servers
Once installed, pgpro_pwr creates one enabled local server for the current cluster. If a server is enabled,
pgpro_pwr includes it in sampling when no server is explicitly specified (see take_sample() for details).
A server that is not enabled is referred to as disabled.

The default connection string for a local node contains only dbname and port parameters. The values of
these parameters are taken from the connection used to create the extension. You can change the server
connection string using the set_server_connstr() function when needed.

2309

Additional Supplied Modules

F.35.4.1. Server Management Functions
Use the following pgpro_pwr functions for server management:

create_server(server name, connstr text, enabled boolean DEFAULT TRUE, max_sample_age
integer DEFAULT NULL description text DEFAULT NULL)

Creates a server definition.

Arguments:

• server — server name. Must be unique.
• connstr — connection string. Must contain all the necessary settings to connect from

pgpro_pwr server to the target server database.
• enabled — set to include the server in sampling by the take_sample() function without

arguments.
• max_sample_age — retention time of the sample. Overrides the global

pgpro_pwr.max_sample_age setting for this server.
• description — server description text, to be included in reports.
Here is an example of how to create a server definition:
SELECT profile.create_server('omega','host=192.168.1.100 dbname=postgres
 port=5432');

drop_server(server name)
Drops a server and all its samples.

set_server_description(server name description text)
Sets a new server description.

enable_server(server name)
Includes a server in sampling by the take_sample() function without arguments.

disable_server(server name)
Excludes a server from sampling by the take_sample() function without arguments.

rename_server(server name, new_name name)
Renames a server.

set_server_max_sample_age(server name, max_sample_age integer)
Sets the retention period for a server (in days). To reset the server retention, set the value of
max_sample_age to NULL.

set_server_db_exclude(server name, exclude_db name[])
Excludes a list of databases on a server from sampling. Use when pgpro_pwr is unable to connect to
some databases in a cluster (for example, in Amazon RDS instances).

set_server_connstr(server name, server_connstr text)
Sets the connection string for a server.

show_servers()
Displays the list of configured servers.

F.35.5. Managing Samples
A sample contains the database workload statistics since the previous sample

2310

Additional Supplied Modules

F.35.5.1. Sampling Functions
The following pgpro_pwr functions relate to sampling:

take_sample()
take_sample(server name [, skip_sizes boolean])

Takes samples.

If the parameter is omitted, the function takes a sample on each enabled server. Servers are accessed
for sampling sequentially, one by one. The function returns a table with the following columns:

• server — server name.
• result — result of taking the sample. Can be OK if the sample was taken successfully or contain

the error trace text in case of exception.
• elapsed — time elapsed while the sample was taken.
If called with the parameter, the function takes a sample on the specified server even if this server
is disabled. Use when you need different sampling frequencies on specific servers. Returns 0 on
success.

Arguments:

• server — server name.
• skip_sizes — if omitted or set to null, the size-collection policy applies; if false, relation sizes

are collected; if true, the collection of relation sizes is skipped.
take_sample_subset([sets_cnt integer, current_set integer])

Takes a sample on each server in a subset of servers. Use to take samples on servers in parallel if
you have many enabled servers. Although PL/pgSQL does not support parallel execution, you can
call this function in parallel sessions. This function returns the same type as take_sample(). If both
parameters are omitted, the function behaves like the take_sample() function, i.e., it takes a sample
on all enabled servers one by one.

Arguments:

• sets_cnt — number of subsets to divide all enabled servers into.
• current_set — number of the subset to collect samples for. Takes values from 0 through

sets_cnt - 1. For the specified subset, samples are collected as usual, server by server.
If a reset of statistics since the previous sample was detected, pgpro_pwr treats corresponding absolute
values as differentials; however, the accuracy will be affected anyway.

show_samples([server name,] [days integer])
Returns a table with information on server samples (local server is assumed if server is omitted) for
the last days days (all existing samples are assumed if omitted). This table has the following columns:

• sample — sample identifier.
• sample_time — time when this sample was taken.
• dbstats_reset — NULL or the statistics reset timestamp of the pg_stat_database view if the

statistics were reset since the previous sample.
• clustats_reset — NULL or the statistics reset timestamp of the pg_stat_bgwriter view if the

statistics were reset since the previous sample.
• archstats_reset — NULL or the statistics reset timestamp of the pg_stat_archiver view if the

statistics were reset since the previous sample.
Sampling functions also maintain the server repository by deleting obsolete samples and baselines
according to the retention policy.

2311

Additional Supplied Modules

F.35.5.2. Taking Samples
To take samples for all enabled servers, call the take_sample() function. Usually, one or two samples
per hour is sufficient. You can use a cron-like tool to schedule sampling. Here is an example for a 30-
minute sampling period:

*/30 * * * * psql -c 'SELECT profile.take_sample()' &> /dev/null

However, the results of such a call are not checked for errors. In a production environment, function
results can be used for monitoring. This function returns OK for all servers with successfully taken
samples and shows error text for failed servers:

SELECT * FROM take_sample();
 server | result
elapsed
+---
+-------------
ok_node
00:00:00.48
 fail_node | could not establish connection
 +| 00:00:00
 | SQL statement "SELECT dblink_connect('server_connection',server_connstr)"
 +|
 | PL/pgSQL function take_sample(integer) line 69 at PERFORM
 +|
 | PL/pgSQL function take_sample_subset(integer,integer) line 27 at
 assignment+|
 | SQL function "take_sample" statement 1
 +|
 | FATAL: database "postgresno" does not exist
 |
(2 rows)

F.35.5.3. Sample Retention Policy
You can define sample retention at the following levels:

1. Global

The value of the pgpro_pwr.max_sample_age parameter in the postgresql.conf file defines a
common retention setting, which is effective if none of other related settings are defined.

2. Server

Specifying the max_sample_age parameter while creating a server or calling the
set_server_max_sample_age(server,max_sample_age) function for an existing server defines the
retention for the server. A server retention setting overrides pgpro_pwr.max_sample_age for a
specific server.

3. Baseline

A baseline created overrides all the other retention periods for included samples.

F.35.6. Managing the Collection of Relation Sizes
It may take considerable time to collect sizes of all relations in a database by Postgres Pro relation-
size functions. Besides, those functions require AccessExclusiveLock on a relation. However, it may
be sufficient for you to collect relation sizes on a daily basis. pgpro_pwr allows you to skip collecting
relation sizes by defining the size-collection policy for servers. The policy defines:

• A daily window when the collection of relation sizes is permitted.

2312

Additional Supplied Modules

• A minimum gap between two samples with relation sizes collected.
When the size-collection policy is defined, sampling functions collect relation sizes only when the sample
is taken in the defined window and the previous sample with sizes is older than the gap. The following
function defines this policy:

set_server_size_sampling(server name, window_start time with time zone DEFAULT NULL,
window_duration interval hour to second DEFAULT NULL, sample_interval interval day to
minute DEFAULT NULL)

Defines the size-collection policy for a server.

Arguments:

• server — server name.
• window_start — start time of the size-collection window.
• window_duration — duration of the size-collection window.
• sample_interval — minimum time gap between two samples with relation sizes collected.

Note
When you build a report between samples either of which lacks relation-size data, relation-growth
sections will be based on pg_class.relpages data. However, you can expand the report interval
bounds to the nearest samples with relation sizes collected using the with_growth parameter of
report generation functions; this makes the growth data more accurate.

Relation sizes are needed to calculate sequentially scanned volume for tables and explicit vacuum
load for indexes.

Example:

SELECT set_server_size_sampling('local','23:00+03',interval '2 hour',interval '8
 hour');

The show_servers_size_sampling function shows size collection policies for all servers:
postgres=# SELECT * FROM show_servers_size_sampling();
 server_name | window_start | window_end | window_duration | sample_interval |
 limited_collection
-------------+--------------+-------------+-----------------+-----------------
+--------------------
 local | 23:00:00+03 | 01:00:00+03 | 02:00:00 | 08:00:00 | t

F.35.7. Managing Baselines
A baseline is a named sequence of samples that has its own retention setting. A baseline can be used as a
sample interval in report generation functions. An undefined baseline retention means infinite retention.
Use baselines to save information about the database workload for a certain time interval.

F.35.7.1. Baseline Management Functions
Use the following pgpro_pwr functions for baseline management:

create_baseline([server name,] baseline varchar(25), start_id integer, end_id integer [,
days integer])
create_baseline([server name,] baseline varchar(25), time_range tstzrange [, days
integer])

Creates a baseline.

Arguments:

2313

Additional Supplied Modules

• server — server name. local sever is assumed if omitted.
• baseline — baseline name. Must be unique for a server.
• start_id — identifier of the first sample in the baseline.
• end_id — identifier of the last sample in the baseline.
• time_range — time interval for the baseline. The baseline will include all samples for the

minimal interval that covers time_range.
• days — baseline retention time, defined in integer days since now(). Omit or set to null for

infinite retention.

drop_baseline([server name,] baseline varchar(25))

Drops a baseline. For the meaning and usage details of function arguments, see create_baseline.
Dropping a baseline does not mean dropping all its samples immediately. The baseline retention just
no longer applies to them.

keep_baseline([server name,] baseline varchar(25) [, days integer])
Changes the retention of a baseline. For the meaning and usage details of function arguments, see
create_baseline. Omit the baseline parameter or pass null to it to change the retention of all
existing baselines.

show_baselines([server name])

Displays existing baselines. Call show_baselines to get information about the baselines, such as
names, sampling intervals and retention periods. local sever is assumed if the server parameter
is omitted.

F.35.8. Data Export and Import
Collected samples can be exported from one instance of the pgpro_pwr extension and then loaded into
another one. This feature helps you to move server data from one instance to another or to send collected
data to your support team.

F.35.8.1. Data Export
The export_data function exports data to a regular table. You can use any method available to export
this table from your database. For example, you can use the \copy meta-command of psql to obtain a
single csv file:

postgres=# \copy (select * from export_data()) to 'export.csv'

F.35.8.2. Data Import
Since data can only be imported from a local table, first, load the data you exported. Using the \copy
meta-command again:

postgres=# CREATE TABLE import (section_id bigint, row_data json);
CREATE TABLE
postgres=# \copy import from 'export.csv'
COPY 6437

Now you can import the data by providing the import table to the import_data function:

postgres=# SELECT * FROM import_data('import');

After successful import, you can drop the import table.

Note
If server data is imported for the first time, your local pgpro_pwr servers with matching names
will cause a conflict during import. To avoid this, you can temporarily rename such servers or you

2314

Additional Supplied Modules

can specify the server name prefix for import operations. However, during import of new data for
already imported servers, they are matched by system identifiers, so feel free to rename imported
severs. Also keep in mind that pgpro_pwr sets servers being imported to the disabled state for
take_sample() to bypass them.

F.35.8.3. Export and Import Functions
Use these functions to export or import data:

export_data([server name, [min_sample_id integer,] [max_sample_id integer,]] [,
obfuscate_queries boolean])

Exports collected data.

Arguments:

• server — server name. All configured servers are assumed if omitted.

• min_sample_id, max_sample_id — sample identifiers to bound the export (inclusive). If
min_sample_id is omitted or set to null, all samples until max_sample_id sample are exported; if
max_sample_id is omitted or set to null, all samples since min_sample_id sample are exported.

• obfuscate_queries — if true, query texts are exported as MD5 hash.

import_data(data regclass [, server_name_prefix text])

Imports previously exported data. Returns the number of actually loaded rows in pgpro_pwr tables.

Arguments:

• data is the name of the table containing import data.

• server_name_prefix specifies the server name prefix for the import operation. It can be used to
avoid name conflicts.

F.35.9. Report Generation Functions
pgpro_pwr reports are generated in HTML format by reporting functions. The following types of reports
are available:

• Regular reports provide statistics on the workload for an interval.

• Differential reports provide statistics on the same objects for two intervals. Corresponding values
are located next to each other, which makes it easy to compare the workloads.

Reporting functions take sample identifiers, baselines or time ranges to determine the intervals. For
time ranges, these are the minimal intervals that cover the ranges.

F.35.9.1. Regular Reports
Use this function to generate regular reports:

get_report([server name,] start_id integer, end_id integer [, description text [,
with_growth boolean]])
get_report([server name,] time_range tstzrange [, description text [, with_growth
boolean]])
get_report([server name,] baseline varchar(25) [, description text [, with_growth
boolean]])

Generates a regular report.

Arguments:

2315

Additional Supplied Modules

• server — server name. local sever is assumed if omitted.
• start_id — identifier of the interval starting sample.
• end_id — identifier of the interval ending sample.
• baseline — baseline name.
• time_range — time range.
• description — short text to be included in the report as its description.
• with_growth — flag requesting interval expansion to the nearest bounds with data on relation

growth available. The default value is false.

F.35.9.2. Differential Reports
Use this function to generate differential reports:

get_diffreport([server name,] start1_id integer, end1_id integer, start2_id integer,
end2_id integer [, description text [, with_growth boolean]])
get_diffreport([server name,] time_range1 tstzrange, time_range2 tstzrange [, description
text [, with_growth boolean]])
get_diffreport([server name,] baseline1 varchar(25), baseline2 varchar(25) [, description
text [, with_growth boolean]])
get_diffreport([server name,] baseline1 varchar(25), time_range2 tstzrange [, description
text [, with_growth boolean]])
get_diffreport([server name,] time_range1 tstzrange, baseline2 varchar(25) [, description
text [, with_growth boolean]])
get_diffreport([server name,] start1_id integer, end1_id integer, baseline2 varchar(25)
[, description text [, with_growth boolean]])
get_diffreport([server name,] baseline1 varchar(25), start2_id integer, end2_id integer
[, description text [, with_growth boolean]])

Generates a differential report for two intervals. The combinations of arguments provide possible
ways to specify the two intervals.

Arguments:

• server — server name. local sever is assumed if omitted.
• start1_id, end1_id — identifiers of the starting and ending samples for the first interval.
• start2_id, end2_id — identifiers of the starting and ending samples for the second interval.
• baseline1 — baseline name for the first interval.
• baseline2 — baseline name for the second interval.
• time_range1 — time range for the first interval.
• time_range2 — time range for the second interval.
• description — short text to be included in the report as its description.
• with_growth — flag requesting interval expansion to the nearest bounds with data on relation

growth available. The default value is false.

F.35.9.3. Report Generation Example
Generate a report for the local server and interval defined by samples:

psql -Aqtc "SELECT profile.get_report(480,482)" -o report_480_482.html

For any other server, provide its name:

psql -Aqtc "SELECT profile.get_report('omega',12,14)" -o report_omega_12_14.html

2316

Additional Supplied Modules

Generate a report using time ranges:

psql -Aqtc "SELECT profile.get_report(tstzrange('2020-05-13 11:51:35+03','2020-05-13
 11:52:18+03'))" -o report_range.html

Generate a relative time-range report:

psql -Aqtc "SELECT profile.get_report(tstzrange(now() - interval '1 day',now()))" -o
 report_last_day.html

F.35.10. pgpro_pwr Report Sections
Each pgpro_pwr report is divided into sections, described below. The number of top objects reported in
each sorted report table is specified by the pgpro_pwr.max parameter.

F.35.10.1. Server statistics
Tables in this section of a pgpro_pwr report are described below.

The report table “Database statistics” provides per-database statistics for the report interval. The
statistics are based on the pg_stat_database view. Table F.21 lists columns of this report table.

Table F.21. Database statistics

Column Description Field/Calculation
Database Database name datname

Commits Number of committed
transactions

xact_commit

Rollbacks Number of rolled back
transactions

xact_rollback

Deadlocks Number of deadlocks detected deadlocks

Checksum Failures Number of data page checksum
failures detected in this
database. This field is only
shown if any checksum failures
were detected in this database
during the report interval.

checksum_failures

Checksums Last Time at which the last data page
checksum failure was detected
in this database. This field is only
shown if any checksum failures
were detected in this database
during the report interval.

checksum_last_failure

Hit% Buffer cache hit ratio, i.e.,
 percentage of pages fetched
from buffers in all pages fetched

Read Number of disk blocks read in
this database

blks_read

Hit Number of times disk blocks
were found already in the buffer
cache

blks_hit

Ret Number of returned tuples tup_returned

Fet Number of fetched tuples tup_fetched

Ins Number of inserted tuples tup_inserted

Upd Number of updated tuples tup_updated

2317

Additional Supplied Modules

Column Description Field/Calculation
Del Number of deleted tuples tup_deleted

Temp Size Total amount of data written to
temporary files by queries in this
database

temp_bytes

Temp Files Number of temporary files
created by queries in this
database

temp_files

Size Database size at the time of the
last sample in the report interval

pg_database_size()

Growth Database growth during the
report interval

pg_database_size()
increment between interval
bounds

Table “Session statistics by database” is available in the report for Postgres Pro databases starting with
version 14. This table is based on the pg_stat_database view of the Statistics Collector. Table F.22 lists
columns of this report table. Times are provided in seconds.

Table F.22. Session statistics by database

Column Description Field/Calculation
Database Database name
Timing Total Time spent by database sessions

in this database during the
report interval (note that
statistics are only updated when
the state of a session changes, so
if sessions have been idle for a
long time, this idle time won't be
included)

session_time

Timing Active Time spent executing SQL
statements in this database
during the report interval (this
corresponds to the states active
and fastpath function call in
pg_stat_activity)

active_time

Timing Idle(T) Time spent idling while in a
transaction in this database
during the report interval (this
corresponds to the states idle
in transaction and idle in
transaction (aborted) in pg_
stat_activity)

idle_in_transaction_time

Sessions Established Total number of sessions
established to this database
during the report interval

sessions

Sessions Abandoned Number of database sessions
to this database that were
terminated because connection
to the client was lost during the
report interval

sessions_abandoned

Sessions Fatal Number of database sessions
to this database that were

sessions_fatal

2318

Additional Supplied Modules

Column Description Field/Calculation
terminated by fatal errors during
the report interval

Sessions Killed Number of database sessions
to this database that were
terminated by operator
intervention during the report
interval

sessions_killed

In Postgres Pro databases of versions that include pgpro_stats version starting with 1.4, workload
statistics of vacuum processes are available. The "Database vacuum statistics" table of the report
provides per-database aggregated total vacuum statistics based on the pgpro_stats_vacuum_tables
view. Table F.23 lists columns of this report table. Times are provided in seconds.

Table F.23. Database vacuum statistics

Column Description Field/Calculation
Database Database name
Blocks fetched Total number of database blocks

fetched by vacuum operations
total_blks_read + total_
blks_hit

%Total Total number of database blocks
fetched (read+hit) by vacuum
operations as the percentage of
all blocks fetched in the cluster

Blocks fetched * 100 / Cluster
fetched

Blocks read Total number of database blocks
read by vacuum operations

total_blks_read

%Total Total number of database blocks
read by vacuum operations as
the percentage of all blocks read
in the cluster

Blocks read * 100 / Cluster
read

VM Frozen Total number of blocks marked
all-frozen in the visibility map

pages_frozen

VM Visible Total number of blocks marked
all-visible in the visibility map

pages_all_visible

Tuples deleted Total number of dead tuples
vacuum operations deleted from
tables of this database

tuples_deleted

Tuples left Total number of dead tuples
vacuum operations left in tables
of this database due to their
visibility in transactions

dead_tuples

%Eff Vacuum efficiency in terms
of deleted tuples. This is the
percentage of tuples deleted
from tables of this database in all
dead tuples to be deleted from
tables of this database.

tuples_deleted * 100 / (
tuples_deleted + dead_
tuples)

WAL size Total amount of WAL bytes
generated by vacuum operations
performed on tables of this
database

wal_bytes

Read I/O time Time spent reading database
blocks by vacuum operations

blk_read_time

2319

Additional Supplied Modules

Column Description Field/Calculation
performed on tables of this
database

Write I/O time Time spent writing database
blocks by vacuum operations
performed on tables of this
database

blk_write_time

%Total Vacuum I/O time spent as the
percentage of whole cluster I/O
time

Total vacuum time Total time of vacuuming tables of
this database

total_time

Delay vacuum time Time spent sleeping in a
vacuum delay point by vacuum
operations performed on tables
of this database

delay_time

User CPU time User CPU time of vacuuming
tables of this database

user_time

System CPU time System CPU time of vacuuming
tables of this database

system_time

Interrupts Number of times vacuum
operations performed on
tables of this database were
interrupted on any errors

interrupts

If the pgpro_stats extension supporting invalidation statistics was available during the report interval,
the "Invalidation messages by database" table of the report provides per-database aggregated total
invalidation message statistics. Table F.24 lists columns of this report table. Times are provided in
seconds.

Table F.24. Invalidation messages by database

Column Description Field/Calculation
Database Database name
Invalidation messages sent Total number of invalidation

messages sent by backends in
this database. Statistics are
provided for corresponding
message types of pgpro_stats_
inval_msgs

Fields of pgpro_stats_
totals .inval_msgs

Cache resets Total number of shared cache
resets

pgpro_stats_totals .cache_
resets

If the pgpro_stats extension was available during the report interval, the "Statement statistics
by database" table of the report provides per-database aggregated total statistics for the
pgpro_stats_statements view data. Table F.25 lists columns of this report table. Times are provided
in seconds.

Table F.25. Statement statistics by database

Column Description Field/Calculation
Database Database name
Calls Number of times all statements

in the database were executed
calls

2320

Additional Supplied Modules

Column Description Field/Calculation
Plan Time Time spent planning all

statements in the database
Sum of total_plan_time

Exec Time Time spent executing all
statements in the database

Sum of total_exec_time

Read Time Time spent reading blocks by all
statements in the database

Sum of blk_read_time

Write Time Time spent writing blocks by all
statements in the database

Sum of blk_write_time

Trg Time Time spent executing trigger
functions by all statements in the
database

Shared Fetched Total number of shared blocks
fetched by all statements in the
database

Sum of (shared_blks_read +
shared_blks_hit)

Local Fetched Total number of local blocks
fetched by all statements in the
database

Sum of (local_blks_read +
local_blks_hit)

Shared Dirtied Total number of shared blocks
dirtied by all statements in the
database

Sum of shared_blks_dirtied

Local Dirtied Total number of local blocks
dirtied by all statements in the
database

Sum of local_blks_dirtied

Read Temp Total number of temp blocks
read by all statements in the
database

Sum of temp_blks_read

Write Temp Total number of temp blocks
written by all statements in the
database

Sum of temp_blks_written

Read Local Total number of local blocks read
by all statements in the database

Sum of local_blks_read

Write Local Total number of local blocks
written by all statements in the
database

Sum of local_blks_written

Statements Total number of captured
statements

WAL Size Total amount of WAL generated
by all statements in the database

Sum of wal_bytes

The report table “Cluster statistics” provides data from the pg_stat_bgwriter view. Table F.26 lists rows
of this report table. Times are provided in seconds.

Table F.26. Cluster statistics

Row Description Field/Calculation
Scheduled checkpoints Number of scheduled

checkpoints that have been
performed

checkpoints_timed

Requested checkpoints Number of requested
checkpoints that have been
performed

checkpoints_req

2321

Additional Supplied Modules

Row Description Field/Calculation
Checkpoint write time (s) Total amount of time that has

been spent in the portion of
checkpoint processing where
files are written to disk

checkpoint_write_time

Checkpoint sync time (s) Total amount of time that has
been spent in the portion of
checkpoint processing where
files are synchronized to disk

checkpoint_sync_time

Checkpoint buffers written Number of buffers written
during checkpoints

buffers_checkpoint

Background buffers written Number of buffers written by the
background writer

buffers_clean

Backend buffers written Number of buffers written
directly by a backend

buffers_backend

Backend fsync count Number of times a backend had
to execute its own fsync call (
normally the background writer
handles those even when the
backend does its own write)

buffers_backend_fsync

Bgwriter interrupts (too
many buffers)

Number of times the background
writer stopped a cleaning scan
because it had written too many
buffers

maxwritten_clean

Number of buffers allocated Total number of buffers allocated buffers_alloc

WAL generated Total amount of WAL generated pg_current_wal_lsn()
value increment

WAL segments archived Total number of archived WAL
segments

Based on pg_stat_
archiver .archived_count

WAL segments archive failed Total number of WAL segment
archiver failures

Based on pg_stat_
archiver .failed_count

Table “WAL statistics” is available in the report for Postgres Pro databases starting with version 14. This
table is based on the pg_stat_wal view of the Statistics Collector. Table F.27 lists columns of this report
table. Times are provided in seconds.

Table F.27. WAL statistics

Row Description Field/Calculation
WAL generated Total amount of WAL generated

during the report interval
wal_bytes

WAL per second Average amount of WAL
generated per second during the
report interval

wal_bytes / report_duration

WAL records Total number of WAL records
generated during the report
interval

wal_records

WAL FPI Total number of WAL full page
images generated during the
report interval

wal_fpi

WAL buffers full Number of times WAL data was
written to disk because WAL

wal_buffers_full

2322

Additional Supplied Modules

Row Description Field/Calculation
buffers became full during the
report interval

WAL writes Number of times WAL buffers
were written out to disk via
XLogWrite request during the
report interval

wal_write

WAL writes per second Average number of times WAL
buffers were written out to
disk via XLogWrite request per
second during the report interval

wal_write / report_duration

WAL sync Number of times WAL files
were synced to disk via issue_
xlog_fsync request during
the report interval (if fsync is on
and wal_sync_method is either
fdatasync, fsync or fsync_
writethrough , otherwise
zero). See Section 28.4 for more
information about the internal
WAL function issue_xlog_
fsync .

wal_sync

WAL syncs per second Average number of times WAL
files were synced to disk via
issue_xlog_fsync request per
second during the report interval

wal_sync / report_duration

WAL write time Total amount of time spent
writing WAL buffers to disk
via XLogWrite request during
the report interval (if track_
wal_io_timing is enabled,
 otherwise zero; for more
details, see Section 18.9). This
includes the sync time when
wal_sync_method is either
open_datasync or open_sync .

wal_write_time

WAL write duty WAL write time as the
percentage of the report interval
duration

wal_write_time * 100 /
report_duration

WAL sync time Total amount of time spent
syncing WAL files to disk via
issue_xlog_fsync request
during the report interval (
if track_wal_io_timing
is enabled, fsync is on, and
wal_sync_method is either
fdatasync, fsync or fsync_
writethrough , otherwise zero).

wal_sync_time

WAL sync duty WAL sync time as the
percentage of the report interval
duration

wal_sync_time * 100 /
report_duration

The report table “Tablespace statistics” provides information on the sizes and growth of tablespaces.
Table F.28 lists columns of this report table.

2323

Additional Supplied Modules

Table F.28. Tablespace statistics

Column Description Field/Calculation
Tablespace Tablespace name pg_tablespace .spcname
Path Tablespace path pg_tablespace_location()

Size Tablespace size at the time of the
last sample in the report interval

pg_tablespace_size()

Growth Tablespace growth during the
report interval

pg_tablespace_size()
increment between interval
bounds

If the pgpro_stats extension was available during the report interval, the report table “Wait statistics by
database” shows the total wait time by wait event type and database. Table F.29 lists columns of this
report table.

Table F.29. Wait statistics by database

Column Description
Database Database name
Wait event type Type of event for which the backends were

waiting. Asterisk means aggregation of all wait
event types in the database.

Waited (s) Time spent waiting in events of Wait event type,
 in seconds

%Total Percentage of wait time spent in the database
events of Wait event type in all wait time for the
cluster

If the pgpro_stats extension was available during the report interval, the report table “Top wait events”
shows top wait events in the cluster by wait time. Table F.30 lists columns of this report table.

Table F.30. Top wait events

Column Description
Database Database name
Wait event type The type of event for which the backends were

waiting
Wait event Wait event name for which the backends were

waiting
Waited Total wait time spent in Wait event of the

database, in seconds
%Total Percentage of wait time spent in Wait event of

the database in all wait time in the cluster

F.35.10.2. Load distribution
This section of a pgpro_pwr report is based on the pgpro_stats_totals view of the pgpro_stats
extension if it was available during the report interval. Each table in this section provides data for
the report interval on load distribution for a certain kind of objects for which aggregated statistics
are collected, such as databases, applications, hosts, or users. Each table contains one row for each
resource (for example, total time or shared blocks written), where load distribution is shown in
graphics, as a stacked bar chart for top objects by load of this resource. If the bar chart area that
corresponds to an object is too narrow to include captions, point that area to get a hint with the caption,
value and percentage. The report tables “Load distribution among heavily loaded databases”, “Load

2324

Additional Supplied Modules

distribution among heavily loaded applications”, “Load distribution among heavily loaded hosts” and
“Load distribution among heavily loaded users” show load distribution for respective objects. Table F.31
lists rows of these report tables.

Table F.31. Load distribution

Row Description Calculation
Total time (sec.) Total time spent in the planning

and execution of statements
total_plan_time + total_
exec_time

Executed count Number of queries executed queries_executed

I/O time (sec.) Total time the statements spent
reading or writing blocks (
if track_io_timing is enabled,
 otherwise zero)

blk_read_time + blk_
write_time

Blocks fetched Total number of shared block
cache hits and shared blocks
read by the statements

shared_blks_hit + shared_
blks_read

Shared blocks read Total number of shared blocks
read by the statements

shared_blks_read

Shared blocks dirtied Total number of shared blocks
dirtied by the statements

shared_blks_dirtied

Shared blocks written Total number of shared blocks
written by the statements

shared_blks_written

WAL generated Total amount of WAL generated
by the statements

wal_bytes

Temp and Local blocks
written

Total number of temporary
and local blocks written by the
statements

temp_blks_written + local_
blks_written

Temp and Local blocks read Total number of temp and local
blocks read by the statements

temp_blks_read + local_
blks_read

Invalidation messages sent Total number of all invalidation
messages sent by backends in
this database

(pgpro_stats_totals .inval_
msgs).all

Cache resets Total number of shared cache
resets

pgpro_stats_totals .cache_
resets

F.35.10.3. SQL query statistics
This section of a pgpro_pwr report provides data for the report interval on top statements by
several important statistics. The data is mainly captured from views of the one of pgpro_stats and
pg_stat_statements extensions that was available during the report interval, with the precedence of
pgpro_stats. Tables of this section of the report are described below.

The report table “Top SQL by elapsed time” shows top statements by the sum of total_plan_time and
total_exec_time fields of the pgpro_stats_statements or pg_stat_statements view. Table F.32 lists
columns of this report table. Times are provided in seconds.

Table F.32. Top SQL by elapsed time

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

2325

Additional Supplied Modules

Column Description Field/Calculation
Plan ID Internal hash code, computed

from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
%Total Percentage of elapsed time of

this statement plan in the total
elapsed time of all statements in
the cluster

Elapsed Time (s) Total time spent in planning and
execution of the statement plan

total_plan_time + total_
exec_time

Plan Time (s) Total time spent in planning of
the statement

total_plan_time

Exec Time (s) Total time spent in execution of
the statement plan

total_exec_time

Read I/O time (s) Total time the statement spent
reading blocks

blk_read_time

Write I/O time (s) Total time the statement spent
writing blocks

blk_write_time

Usr CPU time (s) Time spent on CPU in the user
space, in seconds

rusage.user_time

Sys CPU time (s) Time spent on CPU in the system
space, in seconds

rusage.system_time

Plans Number of times the statement
was planned

plans

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by planning time” shows top statements by the value of the total_plan_time
field of the pgpro_stats_statements or pg_stat_statements view. Table F.33 lists columns of this report
table.

Table F.33. Top SQL by planning time

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Plan elapsed(s) Total time spent in planning of

the statement, in seconds
total_plan_time

%Elapsed Percentage of total_plan_
time in the sum of total_
plan_time and total_exec_
time of this statement plan

Mean plan time Mean time spent planning the
statement, in milliseconds

mean_plan_time

2326

Additional Supplied Modules

Column Description Field/Calculation
Min plan time Minimum time spent planning

the statement, in milliseconds
min_plan_time

Max plan time Maximum time spent planning
the statement, in milliseconds

max_plan_time

StdErr plan time Population standard deviation
of time spent planning the
statement, in milliseconds

stddev_plan_time

Plans Number of times the statement
was planned

plans

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by execution time” shows top statements by the value of the total_time field
of the pgpro_stats_statements or pg_stat_statements view. Table F.34 lists columns of this report
table.

Table F.34. Top SQL by execution time

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Exec (s) Total time spent executing the

statement plan, in seconds
total_exec_time

%Elapsed Percentage of total_exec_
time of this statement plan in
this statement elapsed time

%Total Percentage of total_exec_
time of this statement plan
in the total elapsed time of all
statements in the cluster

Read I/O time (s) Total time spent in reading pages
while executing the statement
plan, in seconds

blk_read_time

Write I/O time (s) Total time spent in writing pages
while executing the statement
plan, in seconds

blk_write_time

Usr CPU time (s) Time spent on CPU in the user
space, in seconds

rusage.user_time

Sys CPU time (s) Time spent on CPU in the system
space, in seconds

rusage.system_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Mean execution time Mean time spent executing the
statement plan, in milliseconds

mean_exec_time

2327

Additional Supplied Modules

Column Description Field/Calculation
Min execution time Minimum time spent executing

the statement plan, in
milliseconds

min_exec_time

Max execution time Maximum time spent executing
the statement plan, in
milliseconds

max_exec_time

StdErr execution time Population standard deviation
of time spent executing the
statement plan, in milliseconds

stddev_exec_time

Executions Number of executions of this
statement plan

calls

The report table “Top SQL by executions” shows top statements by the value of the calls field of the
pgpro_stats_statements or pg_stat_statements view. Table F.35 lists columns of this report table.

Table F.35. Top SQL by executions

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Executions Number of executions of the

statement plan
calls

%Total Percentage of calls of this
statement plan in the total calls
of all statements in the cluster

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Mean (ms) Mean time spent executing the
statement plan, in milliseconds

mean_exec_time

Min (ms) Minimum time spent executing
the statement plan, in
milliseconds

min_exec_time

Max (ms) Maximum time spent executing
the statement plan, in
milliseconds

max_exec_time

StdErr (ms) Population standard deviation
of time spent executing the
statement plan, in milliseconds

stddev_time

Elapsed(s) Total time spent executing the
statement plan, in seconds

total_exec_time

The report table “Top SQL by I/O wait time” shows top statements by read and write time, i.e.,
sum of values of blk_read_time and blk_write_time fields of the pgpro_stats_statements or
pg_stat_statements view. Table F.36 lists columns of this report table. Times are provided in seconds.

2328

Additional Supplied Modules

Table F.36. Top SQL by I/O wait time

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
IO(s) Total time spent in reading and

writing while executing this
statement plan, i.e., I/O time

blk_read_time + blk_
write_time

R(s) Total time spent in reading while
executing this statement plan

blk_read_time

W(s) Total time spent in writing while
executing this statement plan

blk_write_time

%Total Percentage of I/O time of this
statement plan in the total I/
O time of all statements in the
cluster

Shr Reads Total number of shared blocks
read while executing the
statement plan

shared_blks_read

Loc Reads Total number of local blocks read
while executing the statement
plan

local_blks_read

Tmp Reads Total number of temp blocks
read while executing the
statement plan

temp_blks_read

Shr Writes Total number of shared blocks
written while executing the
statement plan

shared_blks_written

Loc Writes Total number of local blocks
written while executing the
statement plan

local_blks_written

Tmp Writes Total number of temp blocks
written while executing the
statement plan

temp_blks_written

Elapsed(s) Total time spent in execution of
the statement plan

total_plan_time + total_
exec_time

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by shared blocks fetched” shows top statements by the number of read and
hit blocks, which helps to detect the most data-intensive statements. Table F.37 lists columns of this
report table.

2329

Additional Supplied Modules

Table F.37. Top SQL by shared blocks fetched

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Blks fetched Number of blocks retrieved

while executing the statement
plan

shared_blks_hit + shared_
blks_read

%Total Percentage of blocks fetched
while executing the statement
plan in all blocks fetched for all
statements in the cluster

Hits(%) Percentage of blocks got from
buffers in all blocks got

Elapsed(s) Total time spent in execution of
the statement plan, in seconds

total_plan_time + total_
exec_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by shared blocks read” shows top statements by the number of shared reads,
which helps to detect the most read-intensive statements. Table F.38 lists columns of this report table.

Table F.38. Top SQL by shared blocks read

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Reads Number of shared blocks read

while executing this statement
plan

shared_blks_read

%Total Percentage of shared reads for
this statement plan in all shared
reads of all statements in the
cluster

Hits(%) Percentage of blocks got from
buffers in all blocks got while
executing this statement plan

2330

Additional Supplied Modules

Column Description Field/Calculation
Elapsed(s) Total time spent in execution of

the statement plan, in seconds
total_plan_time + total_
exec_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by shared blocks dirtied” shows top statements by the number of shared
dirtied buffers, which helps to detect statements that do most data changes in the cluster. Table F.39
lists columns of this report table.

Table F.39. Top SQL by shared blocks dirtied

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Dirtied Number of shared buffers dirtied

while executing this statement
plan

shared_blks_dirtied

%Total Percentage of dirtied shared
buffers for this statement plan
in all dirtied shared buffers of all
statements in the cluster

Hits(%) Percentage of blocks got from
buffers in all blocks got while
executing this statement plan

WAL Total amount of WAL bytes
generated by the statement plan

wal_bytes

%Total Percentage of WAL bytes
generated by the statement plan
in total WAL generated in the
cluster

Elapsed(s) Total time spent in execution of
the statement plan, in seconds

total_plan_time + total_
exec_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by shared blocks written” shows top statements by the number of blocks
written. Table F.40 lists columns of this report table.

2331

Additional Supplied Modules

Table F.40. Top SQL by shared blocks written

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Written Number of blocks written while

executing this statement plan
shared_blks_written

%Total Percentage of blocks written by
this statement plan in all written
blocks in the cluster

Percentage of shared_
blks_written in (pg_
stat_bgwriter .buffers_
checkpoint + pg_stat_
bgwriter .buffers_clean +
pg_stat_bgwriter .buffers_
backend)

%BackendW Percentage of blocks written
by this statement plan in all
blocks in the cluster written by
backends

Percentage of shared_blks_
written in pg_stat_
bgwriter .buffers_backend

Hits(%) Percentage of blocks got from
buffers in all blocks got while
executing this statement plan

Elapsed(s) Total time spent in execution of
the statement plan, in seconds

total_plan_time + total_
exec_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by WAL size” shows top statements by the amount of WAL generated.
Table F.41 lists columns of this report table.

Table F.41. Top SQL by WAL size

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
WAL Total amount of WAL bytes

generated by the statement plan
wal_bytes

%Total Percentage of WAL bytes
generated by the statement plan

2332

Additional Supplied Modules

Column Description Field/Calculation
in total WAL generated in the
cluster

Dirtied Number of shared buffers dirtied
while executing this statement
plan

shared_blks_dirtied

WAL FPI Total number of WAL full
page images generated by the
statement plan

wal_fpi

WAL records Total number of WAL records
generated by the statement plan

wal_records

The report table “Top SQL by temp usage” shows top statements by temporary I/O, which is calculated
as the sum of temp_blks_read, temp_blks_written, local_blks_read and local_blks_written fields.
Table F.42 lists columns of this report table.

Table F.42. Top SQL by temp usage

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Local fetched Number of local blocks retrieved local_blks_hit + local_

blks_read

Hits(%) Percentage of local blocks got
from buffers in all local blocks
got

Write Local (blk) Number of blocks written by this
statement plan that are used in
temporary tables

local_blks_written

Write Local %Total Percentage of local_blks_
written of this statement plan
in the total of local_blks_
written for all statements in
the cluster

Read Local (blk) Number of blocks read by this
statement plan that are used in
temporary tables

local_blks_read

Read Local %Total Percentage of local_blks_
read of this statement plan in
the total of local_blks_read
for all statements in the cluster

Write Temp (blk) Number of temp blocks written
by this statement plan

temp_blks_written

Write Temp %Total Percentage of temp_blks_
written of this statement plan
in the total of temp_blks_

2333

Additional Supplied Modules

Column Description Field/Calculation
written for all statements in
the cluster

Read Temp (blk) Number of temp blocks read by
this statement plan

temp_blks_read

Read Temp %Total Percentage of temp_blks_read
of this statement plan in the
total of temp_blks_read for all
statements in the cluster

Elapsed(s) Total time spent in execution of
the statement plan, in seconds

total_plan_time + total_
exec_time

Rows Number of rows retrieved or
affected by execution of the
statement plan

rows

Executions Number of executions of the
statement plan

calls

The report table “Top SQL by invalidation messages sent” shows top statements by the number of
invalidation messages sent. Table F.43 lists columns of this report table.

Table F.43. Top SQL by invalidation messages sent

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

queryid

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Invalidation messages sent Total number of invalidation

messages sent by backends
executing this statement.
Statistics are provided for
corresponding message types of
pgpro_stats_inval_msgs

fields of pgpro_stats_
statements .inval_msgs

F.35.10.3.1. rusage statistics

This section is included in the report only if the pgpro_stats or pg_stat_kcache extension was available
during the report interval.

The report table “Top SQL by system and user time” shows top statements by the sum of user_time
and system_time fields of pg_stat_kcache or of the pgpro_stats_totals view. Table F.44 lists columns
of this report table.

Table F.44. Top SQL by system and user time

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

2334

Additional Supplied Modules

Column Description Field/Calculation
Plan ID Internal hash code, computed

from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Plan User (s) User CPU time elapsed during

planning, in seconds
plan_user_time

Exec User (s) User CPU time elapsed during
execution, in seconds

exec_user_time

User %Total Percentage of plan_user_time
+ exec_user_time in the total
user CPU time for all statements

Plan System (s) System CPU time elapsed during
planning, in seconds

plan_system_time

Exec System (s) System CPU time elapsed during
execution, in seconds

exec_system_time

System %Total Percentage of plan_system_
time + exec_system_time in
the total system CPU time for all
statements

The report table “Top SQL by reads/writes done by filesystem layer” shows top statements by the sum
of reads and writes fields of pg_stat_kcache. Table F.45 lists columns of this report table.

Table F.45. Top SQL by reads/writes done by filesystem layer

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Internal hash code, computed
from the tree of the statement
plan

planid

Database Database name for the statement Derived from dbid
Plan Read Bytes Bytes read during planning plan_reads

Exec Read Bytes Bytes read during execution exec_reads

Read Bytes %Total Percentage of plan_reads +
exec_reads in the total number
of bytes read by the filesystem
layer for all statements

Plan Writes Bytes written during planning plan_writes

Exec Writes Bytes written during execution exec_writes

Write %Total Percentage of plan_writes
+ exec_writes in the total
number of bytes written by
the filesystem layer for all
statements

2335

Additional Supplied Modules

F.35.10.4. SQL query wait statistics
If the pgpro_stats extension was available during the report interval, this section of the report will contain
a table that is split into sections, each showing top statements by overall wait time or by wait time for
a certain wait event type. Table sections related to specific wait events follow in the descending order
of the total wait time in wait events of this type. Table F.46 lists columns of this report table. Times are
provided in seconds.

Table F.46. SQL query wait statistics

Column Description Field/Calculation
Query ID Query identifier, as a hash of

database ID, user ID and query
text. Hex representation of
queryid is in square brackets.

Plan ID Hash of the statement plan planid

Database Database name for the statement Derived from dbid
Waited Total wait time for all wait events

of this statement plan
%Total Percentage of the total wait time

of this statement plan in all the
wait time in the cluster

Details Waits of this statement plan by
wait types

F.35.10.5. Complete list of SQL texts
The "Complete list of SQL texts" section of the report contains a table that provides query and plan texts
for all statements mentioned in the report. Use an appropriate Query ID/Plan ID link in any statistics
table to see the corresponding query/plan text. Table F.47 lists columns of this report table.

Table F.47. Complete list of SQL texts

Column Description
ID Query or plan identifier
Query/Plan Text Text of the query or statement plan

F.35.10.6. Schema object statistics
Tables in this section of the report show top database objects by statistics from the Postgres Pro's
Statistics Collector views.

The report table “Top tables by estimated sequentially scanned volume” shows top tables by estimated
volume read by sequential scans. This can help you find database tables that possibly lack some index.
When there are no relation sizes collected with pg_relation_size(), relation-size estimates are based
on the pg_class.relpages field. Since such values are less accurate, they are shown in square brackets.
The data is based on the pg_stat_all_tables view. Table F.48 lists columns of this report table.

Table F.48. Top tables by estimated sequentially scanned volume

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table

2336

Additional Supplied Modules

Column Description Field/Calculation
Table Table name
~SeqBytes Estimated volume read by

sequential scans
Sum of (pg_relation_size()
* seq_scan)

SeqScan Number of sequential scans
performed on the table

seq_scan

IxScan Number of index scans initiated
on the table

idx_scan

IxFet Number of live rows fetched by
index scans

idx_tup_fetch

Ins Number of rows inserted n_tup_ins

Upd Number of rows updated n_tup_upd

Del Number of rows deleted n_tup_del

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

In the report table “Top tables by blocks fetched”, blocks fetched include blocks being processed from
disk (read) and from shared buffers (hit). This report table shows top database tables by the sum of blocks
fetched for the table's heap, indexes, TOAST table (if any) and TOAST table index (if any). This can help
you focus on tables with excessive processing of blocks. The data is based on the pg_statio_all_tables
view. Table F.49 lists columns of this report table.

Table F.49. Top tables by blocks fetched

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Heap Blks Number of blocks fetched for the

table's heap
heap_blks_read + heap_
blks_hit

Heap Blks %Total Percentage of blocks fetched
for the table's heap in all blocks
fetched in the cluster

Ix Blks Number of blocks fetched for
table's indexes

idx_blks_read + idx_blks_
hit

Ix Blks %Total Percentage of blocks fetched
for table's indexes in all blocks
fetched in the cluster

TOAST Blks Number of blocks fetched for the
table's TOAST table

toast_blks_read + toast_
blks_hit

TOAST Blks %Total Percentage of blocks fetched for
the table's TOAST table in all
blocks fetched in the cluster

TOAST-Ix Blks Number of blocks fetched for the
table's TOAST index

tidx_blks_read + tidx_
blks_hit

TOAST-Ix Blks %Total Percentage of blocks fetched for
the table's TOAST index in all
blocks fetched in the cluster

2337

Additional Supplied Modules

The report table “Top tables by blocks read” shows top database tables by the number of blocks read
for the table's heap, indexes, TOAST table (if any) and TOAST table index (if any). This can help you
focus on tables with excessive block readings. The data is based on the pg_statio_all_tables view.
Table F.50 lists columns of this report table.

Table F.50. Top tables by blocks read

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Heap Blks Number of blocks read for the

table's heap
heap_blks_read

Heap Blks %Total Percentage of blocks read from
the table's heap in all blocks
read in the cluster

Ix Blks Number of blocks read from
table's indexes

idx_blks_read

Ix Blks %Total Percentage of blocks read from
table's indexes in all blocks read
in the cluster

TOAST Blks Number of blocks read from the
table's TOAST table

toast_blks_read

TOAST Blks %Total Percentage of blocks read from
the table's TOAST table in all
blocks read in the cluster

TOAST-Ix Blks Number of blocks read from the
table's TOAST index

tidx_blks_read

TOAST-Ix Blks %Total Percentage of blocks read from
the table's TOAST index in all
blocks read in the cluster

Hit(%) Percentage of table, index,
 TOAST and TOAST index blocks
got from buffers for this table in
all blocks got for this table from
either file system or buffers

The report table “Top DML tables” shows top tables by the number of DML-affected rows, i.e., by
the sum of n_tup_ins, n_tup_upd and n_tup_del (including TOAST tables). The data is based on the
pg_stat_all_tables view. Table F.51 lists columns of this report table.

Table F.51. Top DML tables

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Ins Number of rows inserted n_tup_ins

2338

Additional Supplied Modules

Column Description Field/Calculation
Upd Number of rows updated,

 including HOT
n_tup_upd

Del Number of rows deleted n_tup_del

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

SeqScan Number of sequential scans
performed on the table

seq_scan

SeqFet Number of live rows fetched by
sequential scans

seq_tup_read

IxScan Number of index scans initiated
on this table

idx_scan

IxFet Number of live rows fetched by
index scans

idx_tup_fetch

The report table “Top tables by updated/deleted tuples” shows top tables by tuples modified by UPDATE/
DELETE operations, i.e., by the sum of n_tup_upd and n_tup_del (including TOAST tables). The data is
based on the pg_stat_all_tables view. Table F.52 lists columns of this report table.

Table F.52. Top tables by updated/deleted tuples

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Upd Number of rows updated,

 including HOT
n_tup_upd

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

Del Number of rows deleted n_tup_del

Vacuum Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

AutoVacuum Number of times this table
has been vacuumed by the
autovacuum daemon

autovacuum_count

Analyze Number of times this table was
manually analyzed

analyze_count

AutoAnalyze Number of times this table was
analyzed by the autovacuum
daemon

autoanalyze_count

The report table “Top growing tables” shows top tables by growth. The data is based on the
pg_stat_all_tables view. When there are no relation sizes collected with pg_relation_size(),
relation-size estimates are based on the pg_class.relpages field. Since such values are less accurate,
they are shown in square brackets. Table F.53 lists columns of this report table.

Table F.53. Top growing tables

Column Description Field/Calculation
DB Database name for the table

2339

Additional Supplied Modules

Column Description Field/Calculation
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Size Table size at the time of the last

sample in the report interval
pg_table_size() - pg_
relation_size(toast)

Growth Table growth
Ins Number of rows inserted n_tup_ins

Upd Number of rows updated,
 including HOT

n_tup_upd

Del Number of rows deleted n_tup_del

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

In the report table “Top indexes by blocks fetched”, blocks fetched include index blocks processed
from disk (read) and from shared buffers (hit). The data is based on the pg_statio_all_indexes view.
Table F.54 lists columns of this report table.

Table F.54. Top indexes by blocks fetched

Column Description Field/Calculation
DB Database name for the index
Tablespace Name of the tablespace where

the index is located

Schema Schema name for the underlying
table

Table Underlying table name
Index Index name
Scans Number of index scans initiated

on this index
idx_scan

Blks Number of blocks fetched for
this index

idx_blks_read + idx_blks_
hit

%Total Percentage of blocks fetched for
this index in all blocks fetched in
the cluster

The report table “Top indexes by blocks read” is also based on the pg_statio_all_indexes and
pg_stat_all_indexes views. Table F.55 lists columns of this report table.

Table F.55. Top indexes by blocks read

Column Description Field/Calculation
DB Database name for the index
Tablespace Name of the tablespace where

the index is located

Schema Schema name for the underlying
table

Table Underlying table name
Index Index name

2340

Additional Supplied Modules

Column Description Field/Calculation
Scans Number of index scans initiated

on this index
idx_scan

Blk Reads Number of disk blocks read from
this index

idx_blks_read

%Total Percentage of disk blocks read
from this index in all disk blocks
read in the cluster

Hits(%) Percentage of index blocks got
from buffers in all index blocks
got for this index

The report table “Top growing indexes” shows top indexes by growth. The table uses data from the
pg_stat_all_tables and pg_stat_all_indexes views. When there are no relation sizes collected with
pg_relation_size(), relation-size estimates are based on the pg_class.relpages field. Since such
values are less accurate, they are shown in square brackets. Table F.56 lists columns of this report table.

Table F.56. Top growing indexes

Column Description Field/Calculation
DB Database name for the index
Tablespace Name of the tablespace where

the index is located

Schema Schema name for the underlying
table

Table Underlying table name
Index Index name
Index Size Index size at the time of the last

sample in the report interval
pg_relation_size()

Index Growth Index growth during the report
interval

Table Ins Number of rows inserted into the
underlying table

n_tup_ins

Table Upd Number of rows updated in the
underlying table, without HOT

n_tup_upd - n_tup_hot_
upd

Table Del Number of rows deleted from the
underlying table

n_tup_del

The report table “Unused indexes” shows top non-scanned indexes (during the report interval) by DML
operations on underlying tables that caused index support. Constraint indexes are not counted. The table
uses data from the pg_stat_all_tables view. Table F.57 lists columns of this report table.

Table F.57. Unused indexes

Column Description Field/Calculation
DB Database name for the index
Tablespace Name of the tablespace where

the index is located

Schema Schema name for the underlying
table

Table Underlying table name
Index Index name

2341

Additional Supplied Modules

Column Description Field/Calculation
Index Size Index size at the time of the last

sample in the report interval
pg_relation_size()

Index Growth Index growth during the report
interval

Table Ins Number of rows inserted into the
underlying table

n_tup_ins

Table Upd Number of rows updated in the
underlying table, without HOT

n_tup_upd - n_tup_hot_
upd

Table Del Number of rows deleted from the
underlying table

n_tup_del

F.35.10.7. User function statistics
Tables in this section of the report show top functions in the cluster by statistics from the
pg_stat_user_functions view. Times in the tables are provided in seconds.

The report table “Top functions by total time” shows top functions by the total time elapsed. The report
table “Top functions by executions” shows top functions by the number of executions. The report table
“Top trigger functions by total time” shows top trigger functions by the total time elapsed. Table F.58
lists columns of these report tables.

Table F.58. User function statistics

Column Description Field/Calculation
DB Database name for the function
Schema Schema name for the function
Function Function name
Executions Number of times this function

has been called
calls

Total Time (s) Total time spent in this function
and all other functions called by
it

total_time

Self Time (s) Total time spent in this function
itself, not including other
functions called by it

self_time

Mean Time (s) Mean time of a single function
execution

total_time /calls

Mean self Time (s) Mean self time of a single
function execution

self_time /calls

F.35.10.8. Vacuum-related statistics
The report table “Top tables by vacuum time spent” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top tables by total time spent vacuuming them. The data is based on
the pgpro_stats_vacuum_tables view. Table F.59 lists columns of this report table.

Table F.59. Top tables by vacuum time spent

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table

2342

Additional Supplied Modules

Column Description Field/Calculation
Table Table name
Total vacuum time Total time of vacuuming this

table
total_time

Delay vacuum time Time spent sleeping in a
vacuum delay point by vacuum
operations performed on this
table

delay_time

Read I/O time Time spent reading database
blocks by vacuum operations
performed on this table

blk_read_time

Write I/O time Time spent writing database
blocks by vacuum operations
performed on this table

blk_write_time

User CPU time User CPU time of vacuuming
tables of this database

user_time

System CPU time System CPU time of vacuuming
tables of this database

system_time

Vacuum count Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

Autovacuum count Number of times this table
has been vacuumed by the
autovacuum daemon

autovacuum_count

Total fetched Total number of database blocks
fetched by vacuum operations
performed on this table

total_blks_read + total_
blks_hit

Heap fetched Total number of blocks fetched
from this table by vacuum
operations performed on it

rel_blks_read + rel_blks_
hit

Scanned Number of pages examined by
vacuum operations performed on
this table

pages_scanned

The report table “Top tables by blocks vacuum fetched” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top tables by blocks fetched vacuuming these tables. The data is
based on the pgpro_stats_vacuum_tables view. Table F.60 lists columns of this report table.

Table F.60. Top tables by blocks vacuum fetched

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
DB fetched Total number of database blocks

fetched by vacuum operations
performed on this table

total_blks_read + total_
blks_hit

%Total Total number of database blocks
fetched by vacuum operations

2343

Additional Supplied Modules

Column Description Field/Calculation
performed on this table as the
percentage of all blocks fetched
in the cluster

DB read Total number of database blocks
read by vacuum operations
performed on this table

total_blks_read

%Total Total number of database blocks
read by vacuum operations
performed on this table as the
percentage of all blocks read in
the cluster

Heap fetched Total number of blocks fetched
from this table by vacuum
operations performed on it

rel_blks_read + rel_blks_
hit

%Rel Total number of table blocks
fetched by vacuum operations
performed on this table as the
percentage of all blocks fetched
from this table

Heap read Total number of blocks read from
this table by vacuum operations
performed on it

rel_blks_read

%Rel Total number of table blocks
read by vacuum operations
performed on this table as the
percentage of all blocks read
from this table

Scanned Number of pages examined by
vacuum operations performed on
this table

pages_scanned

The report table “Top indexes by blocks vacuum fetched” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top indexes by blocks fetched vacuuming underlying tables. The data
is based on the pgpro_stats_vacuum_indexes view. Table F.61 lists columns of this report table.

Table F.61. Top indexes by blocks vacuum fetched

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
Index Index name
DB fetched Total number of database blocks

fetched by vacuum operations
performed on this index

total_blks_read + total_
blks_hit

%Total Total number of database blocks
fetched by vacuum operations
performed on this index as the
percentage of all blocks fetched
in the cluster

2344

Additional Supplied Modules

Column Description Field/Calculation
DB read Total number of database blocks

read by vacuum operations
performed on this index

total_blks_read

%Total Total number of database blocks
read by vacuum operations
performed on this index as the
percentage of all blocks read in
the cluster

Idx fetched Total number of blocks fetched
from this index by vacuum
operations on it

rel_blks_read + rel_blks_
hit

%Idx Total number of index blocks
fetched by vacuum operations
performed on this index as the
percentage of all blocks fetched
from this index

Idx read Total number of blocks read from
this index by vacuum operations
performed on it

rel_blks_read

%Idx Total number of index blocks
read by vacuum operations
performed on this index as the
percentage of all blocks read
from this index

The report table “Top tables by blocks vacuum read” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top tables by blocks read vacuuming these tables. The data is based
on the pgpro_stats_vacuum_indexes view. Table F.62 lists columns of this report table.

Table F.62. Top tables by blocks vacuum read

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
DB read Total number of database blocks

read by vacuum operations
performed on this table

total_blks_read

%Total Total number of database blocks
read by vacuum operations
performed on this table as the
percentage of all blocks read in
the cluster

%Hit Total number of database blocks
found in shared buffers by
vacuum operations performed
on this table as the percentage
of all blocks fetched by vacuum
operations performed on this
table

2345

Additional Supplied Modules

Column Description Field/Calculation
Heap read Total number of database blocks

vacuum operations read from
this table

rel_blks_read

%Rel Total number of table blocks
read by vacuum operations
performed on this table as the
percentage of all blocks read
from this table

%Hit Total number of table blocks
found in shared buffers by
vacuum operations performed on
this table as the percentage of
table blocks fetched by vacuum
operations performed on this
table

Scanned Number of pages examined by
vacuum operations performed on
this table

pages_scanned

The report table “Top indexes by blocks vacuum read” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top indexes by blocks read vacuuming underlying tables. The data
is based on the pgpro_stats_vacuum_indexes view. Table F.63 lists columns of this report table.

Table F.63. Top indexes by blocks vacuum read

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
Index Index name
DB read Total number of database blocks

read by vacuum operations
performed on this index

total_blks_read

%Total Total number of database blocks
read by vacuum operations
performed on this index as the
percentage of all blocks read in
the cluster

%Hit Total number of database blocks
found in shared buffers by
vacuum operations performed
on this index as the percentage
of all database blocks fetched by
vacuum operations performed on
this index

Idx read Total number of blocks read from
this index by vacuum operations
performed on it

rel_blks_read

%Idx Total number of index blocks
read by vacuum operations

2346

Additional Supplied Modules

Column Description Field/Calculation
performed on this index as the
percentage of all blocks read
from this index

%Hit Total number of index blocks
found in shared buffers by
vacuum operations performed on
this index as the percentage of
index blocks fetched by vacuum
operations performed on this
index

The report table “Top tables by dead tuples vacuum left” is available if pgpro_stats can provide extended
vacuum statistics. This table shows top tables by the number of dead tuples left by vacuum due to their
visibility in transactions. The data is based on the pgpro_stats_vacuum_tables view. Table F.64 lists
columns of this report table.

Table F.64. Top tables by dead tuples vacuum left

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
Dead tuples left Total number of dead tuples

vacuum operations left in this
table due to their visibility in
transactions

dead_tuples

Dead tuples deleted Total number of dead tuples
vacuum operations deleted from
this table

tuples_deleted

%Eff Vacuum efficiency in terms
of deleted tuples. This is the
percentage of dead tuples
deleted from this table in all
dead tuples to be deleted from
this table.

tuples_deleted * 100 / (
tuples_deleted + dead_
tuples)

Tuples del Number of rows deleted pg_stat_all_tables .n_
tup_del

Tuples upd Number of rows updated (
includes HOT updated rows)

pg_stat_all_tables .n_
tup_upd

Vacuum Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

Autovacuum Number of times this table
has been vacuumed by the
autovacuum daemon

autovacuum_count

The report table “Top tables by WAL size generated by vacuum” is available if pgpro_stats can provide
extended vacuum statistics. This table shows top tables by the amount of WAL generated by vacuum
operations performed on them. The data is based on the pgpro_stats_vacuum_tables view. Table F.65
lists columns of this report table.

2347

Additional Supplied Modules

Table F.65. Top tables by WAL size generated by vacuum

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
WAL size Total amount of WAL bytes

generated by vacuum operations
performed on this table

wal_bytes

%Total Total amount of WAL bytes
generated by vacuum operations
performed on this table as the
percentage of all WAL generated
in the cluster

WAL FPI Total number of WAL full page
images generated by vacuum
operations performed on this
table

wal_fpi

Scanned blocks Number of pages examined by
vacuum operations performed on
this table

pages_scanned

Dirtied blocks Number of database blocks
dirtied by vacuum operations
performed on this table

total_blks_dirtied

Removed blocks Number of pages removed by
vacuum operations performed on
this table

pages_removed

Vacuum Number of times this table has
been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

Autovacuum Number of times this table
has been vacuumed by the
autovacuum daemon

autovacuum_count

The report table “Top tables by vacuum operations” shows top tables by the number of
vacuum operations performed (vacuum_count + autovacuum_count). The data is based on the
pg_stat_all_tables view. Table F.66 lists columns of this report table.

Table F.66. Top tables by vacuum operations

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located
Schema Schema name for the table
Table Table name
Vacuum count Number of times this table has

been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

2348

Additional Supplied Modules

Column Description Field/Calculation
Autovacuum count Number of times this table

has been vacuumed by the
autovacuum daemon

autovacuum_count

Ins Number of rows inserted n_tup_ins

Upd Number of rows updated (
includes HOT updated rows)

n_tup_upd

Del Number of rows deleted n_tup_del

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

The report table “Top tables by analyze operations” shows top tables by the number of analyze operations
performed (analyze_count + autoanalyze_count). The data is based on the pg_stat_all_tables view.
Table F.67 lists columns of this report table.

Table F.67. Top tables by analyze operations

Column Description Field/Calculation
DB Database name for the table
Tablespace Name of the tablespace where

the table is located

Schema Schema name for the table
Table Table name
Analyze count Number of times this table has

been manually analyzed
analyze_count

Autoanalyze count Number of times this table
has been analyzed by the
autovacuum daemon

autoanalyze_count

Ins Number of rows inserted n_tup_ins

Upd Number of rows updated,
 including HOT

n_tup_upd

Del Number of rows deleted n_tup_del

Upd(HOT) Number of rows HOT updated n_tup_hot_upd

The report table “Top indexes by estimated vacuum load” shows top indexes by estimated implicit
vacuum load. This load is calculated as the number of vacuum operations performed on the underlying
table multiplied by the index size. The data is based on the pg_stat_all_indexes view. When there
are no relation sizes collected with pg_relation_size(), relation-size estimates are based on the
pg_class.relpages field. Since such values are less accurate, they are shown in square brackets.
Table F.68 lists columns of this report table.

Table F.68. Top indexes by estimated vacuum load

Column Description Field/Calculation
DB Database name for the index
Tablespace Name of the tablespace where

the index is located

Schema Schema name for the underlying
table

Table Underlying table name
Index Index name

2349

Additional Supplied Modules

Column Description Field/Calculation
~Vacuum bytes Vacuum load estimation (vacuum_count + autovacuum_

count) * index_size
Vacuum count Number of times this table has

been manually vacuumed (not
counting VACUUM FULL)

vacuum_count

Autovacuum count Number of times this table
has been vacuumed by the
autovacuum daemon

autovacuum_count

IX size Average index size during the
report interval

Relsize Average relation size during the
report interval

The report table “Top tables by dead tuples ratio” shows top tables larger than 5 MB by the ratio
of dead tuples. Statistics are valid for the last sample in the report interval. The data is based on
the pg_stat_all_tables view. When there are no relation sizes collected with pg_relation_size(),
relation-size estimates are based on the pg_class.relpages field. Since such values are less accurate,
they are shown in square brackets. Table F.69 lists columns of this report table.

Table F.69. Top tables by dead tuples ratio

Column Description Field/Calculation
DB Database name for the table
Schema Schema name for the table
Table Table name
Live Estimated number of live rows n_live_tup

Dead Estimated number of dead rows n_dead_tup

%Dead Percentage of dead rows in all
table rows

Last AV Last time at which this table was
vacuumed by the autovacuum
daemon

last_autovacuum

Size Table size pg_table_size() - pg_
relation_size(toast)

The report table “Top tables by modified tuples ratio” shows top tables larger than 5 MB by the ratio
of modified tuples. Statistics are valid for the last sample in the report interval. The data is based on
the pg_stat_all_tables view. When there are no relation sizes collected with pg_relation_size(),
relation-size estimates are based on the pg_class.relpages field. Since such values are less accurate,
they are shown in square brackets. Table F.70 lists columns of this report table.

Table F.70. Top tables by modified tuples ratio

Column Description Field/Calculation
DB Database name for the table
Schema Schema name for the table
Table Table name
Live Estimated number of live rows n_live_tup

Dead Estimated number of dead rows n_dead_tup

2350

Additional Supplied Modules

Column Description Field/Calculation
Mod Estimated number of rows

modified since this table was last
analyzed

n_mod_since_analyze

%Mod Percentage of modified rows in
all table rows

Last AA Last time at which this table was
analyzed by the autovacuum
daemon

last_autoanalyze

Size Table size pg_table_size() - pg_
relation_size(toast)

F.35.10.9. Cluster settings during the report interval
This section of the report contains a table with Postgres Pro GUC parameters, values of functions
version(), pg_postmaster_start_time(), pg_conf_load_time() and the system_identifier field of
the pg_control_system() function during the report interval. The data in the table is grouped under
Defined settings and Default settings. Table F.71 lists columns of this report table.

Table F.71. Cluster settings during the report interval

Column Description
Setting Name of the parameter
reset_val reset_val field of the pg_settings view.

Settings changed during the report interval are
shown in bold font.

Unit Unit of the setting
Source Configuration file where this setting is defined,

 semicolon, line number
Notes Timestamp of the sample where this value was

first observed

F.35.11. pgpro_pwr Diagnostic Tools
pgpro_pwr provides self-diagnostic tools.

F.35.11.1. Collecting Detailed Timing Statistics for Sampling Procedures
pgpro_pwr collects detailed timing statistics of taking samples when the
pgpro_pwr.track_sample_timings parameter is on. You can get the results from the v_sample_timings
view. Table F.72 lists columns of this view.

Table F.72. v_sample_timings View

Column Description
server_name Name of the server
sample_id Sample identifier
sample_time Time when the sample was taken
sampling_event Sampling stage. See Table F.73 for descriptions of

sampling stages.
time_spent Time spent in the event

Table F.73. sampling_event Description

Event Description
total Taking the sample (all stages)

2351

Additional Supplied Modules

Event Description
connect Making dblink connection to the server
get server environment Getting server GUC parameters, available

extensions, etc.
collect database stats Querying the pg_stat_database view for

statistics on databases
calculate database stats Calculating differential statistics on databases

since the previous sample
collect tablespace stats Querying the pg_tablespace view for statistics

on tablespaces
collect statement stats Collecting statistics on statements using the

pgpro_stats and pg_stat_kcache extensions
query pg_stat_bgwriter Collecting cluster statistics using the pg_stat_

bgwriter view
query pg_stat_archiver Collecting cluster statistics using the pg_stat_

archiver view
collect object stats Collecting statistics on database objects. Includes

events from Table F.74.
maintain repository Executing support routines
calculate tablespace stats Calculating differential statistics on tablespaces
calculate object stats Calculating differential statistics on database

objects. Includes events from Table F.75.
calculate cluster stats Calculating cluster differential statistics
calculate archiver stats Calculating archiver differential statistics
delete obsolete samples Deleting obsolete baselines and samples

Table F.74. Events of Collecting Statistics on Database Objects

Event Description
db:dbname collect tables stats Collecting statistics on tables for the dbname

database
db:dbname collect indexes stats Collecting statistics on indexes for the dbname

database
db:dbname collect functions stats Collecting statistics on functions for the dbname

database

Table F.75. Events of Calculating Differences of Statistics on Database Objects

Event Description
calculate tables stats Calculating differential statistics on tables of all

databases
calculate indexes stats Calculating differential statistics on indexes of all

databases
calculate functions stats Calculating differential statistics on functions of

all databases

F.35.12. Important Notes
When using the pgpro_pwr extension, be aware of the following:

• Postgres Pro collects execution statistics after the execution is complete. If a single execution
of a statement lasts for several samples, it will only affect statistics of the last sample (in which

2352

Additional Supplied Modules

the execution completed). Besides, statistics on statements that are still running are unavailable.
Maintenance processes, such as vacuum and checkpointer, will update the statistics only on
completion.

• Resetting any Postgres Pro statistics may affect the accuracy of the next sample.
• Exclusive locks on relations conflict with calculation of the relation size. If the take_sample()

function is unable to acquire a lock for a short period of time (3 seconds), it will fail and no sample
will be generated.

F.36. pg_prewarm
The pg_prewarm module provides a convenient way to load relation data into either the operating
system buffer cache or the Postgres Pro buffer cache. Prewarming can be performed manually
using the pg_prewarm function, or can be performed automatically by including pg_prewarm in
shared_preload_libraries. In the latter case, the system will run a background worker which periodically
records the contents of shared buffers in a file called autoprewarm.blocks and will, using 2 background
workers, reload those same blocks after a restart.

F.36.1. Functions
pg_prewarm(regclass, mode text default 'buffer', fork text default 'main',
 first_block int8 default null,
 last_block int8 default null) RETURNS int8

The first argument is the relation to be prewarmed. The second argument is the prewarming method to
be used, as further discussed below; the third is the relation fork to be prewarmed, usually main. The
fourth argument is the first block number to prewarm (NULL is accepted as a synonym for zero). The
fifth argument is the last block number to prewarm (NULL means prewarm through the last block in the
relation). The return value is the number of blocks prewarmed.

There are three available prewarming methods. prefetch issues asynchronous prefetch requests to the
operating system, if this is supported, or throws an error otherwise. read reads the requested range
of blocks; unlike prefetch, this is synchronous and supported on all platforms and builds, but may be
slower. buffer reads the requested range of blocks into the database buffer cache.

Note that with any of these methods, attempting to prewarm more blocks than can be cached — by the
OS when using prefetch or read, or by Postgres Pro when using buffer — will likely result in lower-
numbered blocks being evicted as higher numbered blocks are read in. Prewarmed data also enjoys no
special protection from cache evictions, so it is possible that other system activity may evict the newly
prewarmed blocks shortly after they are read; conversely, prewarming may also evict other data from
cache. For these reasons, prewarming is typically most useful at startup, when caches are largely empty.

autoprewarm_start_worker() RETURNS void

Launch the main autoprewarm worker. This will normally happen automatically, but is useful if automatic
prewarm was not configured at server startup time and you wish to start up the worker at a later time.

autoprewarm_dump_now() RETURNS int8

Update autoprewarm.blocks immediately. This may be useful if the autoprewarm worker is not running
but you anticipate running it after the next restart. The return value is the number of records written
to autoprewarm.blocks.

F.36.2. Configuration Parameters
pg_prewarm.autoprewarm (boolean)

Controls whether the server should run the autoprewarm worker. This is on by default. This
parameter can only be set at server start.

pg_prewarm.autoprewarm_interval (int)
This is the interval between updates to autoprewarm.blocks. The default is 300 seconds. If set to 0,
the file will not be dumped at regular intervals, but only when the server is shut down.

2353

Additional Supplied Modules

F.36.3. Author
Robert Haas <rhaas@postgresql.org>

F.37. pgpro_stats
The pgpro_stats extension provides a means for tracking planning and execution statistics of all SQL
statements executed by a server. It is based on the pg_stat_statements module and provides the following
additional functionality:
• Storing query plans in addition to query statements.
• Configuring sample rate for statistics collection to reduce overhead.
• Calculating wait event statistics for executed queries.
• Calculating resource usage statistics of statement planning and execution.
• Calculating cache invalidation statistics.
• Calculating statistics about vacuuming tables and indexes.

F.37.1. Limitations
• pgpro_stats can sometimes fail to match identical parameters in the query statement and the

corresponding query plan.
• Some SPI queries are not included into statistics.
• pgpro_stats is incompatible with pg_stat_statements, as well as other extensions that use parser,

planner, or executor hooks to modify parse and plan trees and execution of the queries. Note also
that in order to dump the final versions of the queries and plans, pgpro_stats should be the last on
the list of shared_preload_libraries, but some existing extensions, such as pg_pathman, will not
work at all unless they are the last on this list.

• pgpro_stats may not work correctly with third-party extensions that produce CustomScan and
ForeignScan nodes.

F.37.2. Installation and Setup
The pgpro_stats extension is included into Postgres Pro Standard, but has to be installed separately.
Once you have pgpro_stats installed, complete the following steps to enable pgpro_stats:

1. Add pgpro_stats to the shared_preload_libraries parameter in the postgresql.conf file:

shared_preload_libraries = 'pgpro_stats'

2. Restart the Postgres Pro Standard instance for the changes to take effect.

Once the server is reloaded, pgpro_stats starts tracking statistics across all databases of the
cluster. If required, you can change the scope of statistics collection or disable it altogether using
pgpro_stats configuration parameters.

3. To access the collected statistics, you have to create pgpro_stats extension:

CREATE EXTENSION pgpro_stats;

F.37.3. Usage
• Collecting Statistics on Query Statements and Plans
• Monitoring Custom Metrics

F.37.3.1. Collecting Statistics on Query Statements and Plans
Once installed, the pgpro_stats extension starts collecting statistics on the executed statements. The
collected data is similar to the one provided by pg_stat_statements, but also includes information on
query plans and wait events for each query type. The statistics is saved into an in-memory ring buffer
and is accessible through the pgpro_stats_statements view.

2354

Additional Supplied Modules

By default, pgpro_stats collects statistics on all the executed statements that satisfy the
pgpro_stats.track and pgpro_stats.track_utility settings. If performance is a concern, you can set a
sample rate for queries using the pgpro_stats.query_sample_rate parameter, and pgpro_stats will
randomly select queries for statistics calculation at the specified rate.

To collect statistics on wait events, pgpro_stats uses time-based sampling. Wait events are sampled
at the time interval specified by the pgpro_stats.profile_period parameter, which is set to 10ms by
default. If the sampling shows that the process is waiting, the pgpro_stats.profile_period value is
added to the wait event duration. Thus, time estimation for each wait event remains valid even if the
pgpro_stats.profile_period parameter value has changed. If you are not interested in wait event statistics,
you can disable wait event sampling by setting the pgpro_stats.enable_profile parameter to false.

pgpro_stats_statements.plans and pgpro_stats_statements.calls aren't always expected to match
because planning and execution statistics are updated at their respective end phase, and only for
successful operations. For example, if a statement is successfully planned but fails during the execution
phase, only its planning statistics will be updated. If planning is skipped because a cached plan is used,
only its execution statistics will be updated.

As an example, let's create a table with some random data and build an index on this table:

CREATE TABLE test AS (SELECT i, random() x FROM generate_series(1,1000000) i);
CREATE INDEX test_x_idx ON test (x);

Now run the following query several times using different values for :x_min and :x_max:

select * from test where x >= :x_min and x <= :x_max;

The collected statistics should appear in the pgpro_stats_statements view:

SELECT queryid, query, planid, plan, wait_stats FROM pgpro_stats_statements WHERE query
 LIKE 'select * from test where%';
-[RECORD
 1]--
queryid | 1109491335754870054
query | select * from test where x >= $1 and x <= $2
planid | 8287793242828473388
plan | Gather
 | Output: i, x
 | Workers Planned: 2
 | -> Parallel Seq Scan on public.test
 | Output: i, x
 | Filter: ((test.x >= $3) AND (test.x <= $4))
 |
wait_stats | {"IO": {"DataFileRead": 10}, "IPC": {"BgWorkerShutdown": 10}, "Total":
 {"IO": 10, "IPC": 10, "Total": 20}}
-[RECORD
 2]--
queryid | 1109491335754870054
query | select * from test where x >= $1 and x <= $2
planid | -9045072158333552619
plan | Bitmap Heap Scan on public.test
 | Output: i, x
 | Recheck Cond: ((test.x >= $3) AND (test.x <= $4))
 | -> Bitmap Index Scan on test_x_idx
 | Index Cond: ((test.x >= $5) AND (test.x <= $6))
 |
wait_stats | {"IO": {"DataFileRead": 40}, "Total": {"IO": 40, "Total": 40}}
-[RECORD
 3]--

2355

Additional Supplied Modules

queryid | 1109491335754870054
query | select * from test where x >= $1 and x <= $2
planid | -1062789671372193287
plan | Seq Scan on public.test
 | Output: i, x
 | Filter: ((test.x >= $3) AND (test.x <= $4))
 |
wait_stats | NULL
-[RECORD
 4]--
queryid | 1109491335754870054
query | select * from test where x >= $1 and x <= $2
planid | -1748292253893834280
plan | Index Scan using test_x_idx on public.test
 | Output: i, x
 | Index Cond: ((test.x >= $3) AND (test.x <= $4))
 |
wait_stats | NULL

F.37.3.2. Monitoring Custom Metrics
With pgpro_stats, you can define custom metrics to be monitored. The collected data will be saved into
an in-memory ring buffer and then sent to a monitoring system. Unlike direct polling of a database by a
monitoring system that can lose some data if the connection is interrupted, this approach allows to get all
the collected data regardless of connection issues, as long as this data is still available in the ring buffer.

To set up a custom metric to collect, do the following:

1. For each metric, define all configuration parameters listed in Section F.37.7.2. You must specify a
unique numeric identifier of each metric in the parameter names.

For example, to monitor index bloating each 60 seconds, you can define a new metric by setting
metrics-related parameters as follows:

pgpro_stats.metric_1_name = index_bloat
pgpro_stats.metric_1_query = 'select iname, ibloat, ipages from bloat'
pgpro_stats.metric_1_db = 'postgres'
pgpro_stats.metric_1_user = postgres
pgpro_stats.metric_1_period = '60s'

2. Restart the server.

pgpro_stats starts collecting statistics on executed statements and saves it into the ring buffer, and
the collected data appears in the pgpro_stats_metrics view:

SELECT * FROM pgpro_stats_metrics;

Once the new metric is added, its parameters can be changed without a server restart by simply
reloading the postgresql.conf configuration file.

3. If required, set up data export to a monitoring system of your choice.

F.37.4. Views

F.37.4.1. The pgpro_stats_statements View
The statistics gathered by the module are made available via a view named pgpro_stats_statements.
This view contains one row for each distinct database ID, user ID and query ID (up to the maximum
number of distinct statements that the module can track). The columns of the view are shown in
Table F.76.

2356

Additional Supplied Modules

Table F.76. pgpro_stats_statements Columns

Name Type References Description
userid oid pg_authid .oid OID of user who

executed the statement
dbid oid pg_database .oid OID of database in

which the statement
was executed

queryid bigint Internal hash code,
 computed from the
statement's parse tree

planid bigint Internal hash code,
 computed from the
statement's plan tree

query text Text of a representative
statement

plan text The text of the query
plan, in the format
defined by the pgpro_
stats.plan_format
configuration parameter

plans int8 Number of times the
statement was planned (
if pgpro_stats.track_
planning is enabled,
 otherwise zero)

total_plan_time float8 Total time spent
planning the statement,
 in milliseconds (if
pgpro_stats.track_
planning is enabled,
 otherwise zero).

min_plan_time float8 Minimum time spent
planning the statement,
 in milliseconds (if
pgpro_stats.track_
planning is enabled,
 otherwise zero)

max_plan_time float8 Maximum time spent
planning the statement,
 in milliseconds (if
pgpro_stats.track_
planning is enabled,
 otherwise zero)

mean_plan_time float8 Mean time spent
planning the statement,
 in milliseconds (if
pgpro_stats.track_
planning is enabled,
 otherwise zero)

stddev_plan_time float8 Population standard
deviation of time spent
planning the statement,

2357

Additional Supplied Modules

Name Type References Description
 in milliseconds (if
pgpro_stats.track_
planning is enabled,
 otherwise zero)

plan_rusage pgpro_stats_rusage Resource usage
statistics of the
statement planning.

calls int8 Number of times the
statement was executed

total_exec_time float8 Total time spent
executing the statement,
 in milliseconds

min_exec_time float8 Minimum time spent
executing the statement,
 in milliseconds

max_exec_time float8 Maximum time spent
executing the statement,
 in milliseconds

mean_exec_time float8 Mean time spent
executing the statement,
 in milliseconds

stddev_exec_time float8 Population standard
deviation of time spent
executing the statement,
 in milliseconds

exec_rusage pgpro_stats_rusage Resource usage
statistics of the
statement execution.

rows int8 Total number of rows
retrieved or affected by
the statement

shared_blks_hit int8 Total number of shared
block cache hits by the
statement

shared_blks_read int8 Total number of shared
blocks read by the
statement

shared_blks_dirtied int8 Total number of shared
blocks dirtied by the
statement

shared_blks_written int8 Total number of shared
blocks written by the
statement

local_blks_hit int8 Total number of local
block cache hits by the
statement

local_blks_read int8 Total number of local
blocks read by the
statement

2358

Additional Supplied Modules

Name Type References Description
local_blks_dirtied int8 Total number of local

blocks dirtied by the
statement

local_blks_written int8 Total number of local
blocks written by the
statement

temp_blks_read int8 Total number of temp
blocks read by the
statement

temp_blks_written int8 Total number of temp
blocks written by the
statement

blk_read_time float8 Total time the statement
spent reading blocks, in
milliseconds (if track_
io_timing is enabled,
 otherwise zero)

blk_write_time float8 Total time the statement
spent writing blocks, in
milliseconds (if track_
io_timing is enabled,
 otherwise zero)

wal_records int8 Total number of WAL
records generated by
the statement

wal_fpi int8 Total number of WAL
full page images
generated by the
statement

wal_bytes numeric Total amount of WAL
bytes generated by the
statement

wait_stats jsonb A jsonb object
containing statistics
on wait events, for
each execution of the
query that uses the
corresponding plan

inval_msgs pgpro_stats_inval_msgs Number of cache
invalidation messages
by type generated by
the statement (if this is
supported by the server,
 otherwise zero)

F.37.4.2. The pgpro_stats_totals View
The aggregate statistics gathered by the module are made available via a view named
pgpro_stats_totals. This view contains one row for each distinct object (up to the maximum number
of distinct objects that the module can track). The columns of the view are shown in Table F.77.

2359

Additional Supplied Modules

Table F.77. pgpro_stats_totals Columns

Name Type Description
object_type text Type of the object for which

aggregated statistics are
collected: "cluster", "database",
 "user", "client_addr",
 "application", "backend",
 "session"

object_id bigint ID of the object: oid for
databases and users, pid for
backends, sid for sessions, NULL
for others

object_name text Textual name of the object or
NULL

queries_planned int8 Number of queries planned
total_plan_time float8 Total time spent in the planning

of statements, in milliseconds
total_plan_rusage pgpro_stats_rusage Aggregate resource usage

statistics of the statement
planning

queries_executed int8 Number of queries executed
total_exec_time float8 Total time spent in the execution

of statements, in milliseconds
total_exec_rusage pgpro_stats_rusage Aggregate resource usage

statistics of the statement
execution

rows int8 Total number of rows retrieved
or affected by the statements

shared_blks_hit int8 Total number of shared block
cache hits by the statements

shared_blks_read int8 Total number of shared blocks
read by the statements

shared_blks_dirtied int8 Total number of shared blocks
dirtied by the statements

shared_blks_written int8 Total number of shared blocks
written by the statements

local_blks_hit int8 Total number of local block
cache hits by the statements

local_blks_read int8 Total number of local blocks read
by the statements

local_blks_dirtied int8 Total number of local blocks
dirtied by the statements

local_blks_written int8 Total number of local blocks
written by the statements

temp_blks_read int8 Total number of temp blocks
read by the statements

temp_blks_written int8 Total number of temp blocks
written by the statements

2360

Additional Supplied Modules

Name Type Description
blk_read_time float8 Total time the statements spent

reading blocks, in milliseconds
(if track_io_timing is enabled,
 otherwise zero)

blk_write_time float8 Total time the statements spent
writing blocks, in milliseconds
(if track_io_timing is enabled,
 otherwise zero)

wal_records int8 Total number of WAL records
generated by the statements

wal_fpi int8 Total number of WAL full
page images generated by the
statements

wal_bytes numeric Total amount of WAL bytes
generated by the statements

wait_stats jsonb A jsonb object containing
statistics on wait events for each
execution of the queries

inval_msgs pgpro_stats_inval_msgs Number of cache invalidation
messages by type generated
by the statements (if this
is supported by the server,
 otherwise zero)

cache_resets int4 Number of shared cache resets
(only for cluster, databases and
backends)

F.37.4.3. The pgpro_stats_inval_status View
The pgpro_stats_inval_status view shows one row with the current status of the global cache
invalidation queue. The columns of the view are shown in Table F.78.

Table F.78. pgpro_stats_inval_status Columns

Name Type Description
num_inval_messages int8 Number of invalidation messages

in the queue
num_inval_queue_cleanups int8 Number of invalidation queue

cleanups done to prevent its
overflow

num_inval_queue_resets int4 Number of cache resets for
backends that delay the queue
cleanup

In a working system, num_inval_messages usually approximately equals 4000, which means that the
queue is pretty full. Growing num_inval_queue_cleanups indicates an active generation of messages.
Growth of num_inval_queue_resets is normally zero, and a non-zero growth indicates either a too fast
generation of messages or delays in processing messages by backends. You can see reset counters for
each backend in the cache_resets column of the pgpro_stats_totals view.

F.37.4.4. The pgpro_stats_metrics View
The metrics gathered by pgpro_stats are displayed in the pgpro_stats_metrics view. The table below
describes the columns of the view.

2361

Additional Supplied Modules

Table F.79. pgpro_stats_metrics Columns

Name Type Description
metric_number int4 A unique ID of the collected

metric assigned by user. This
ID is included into parameter
names that define the metric.

metric_name text The name of the metric defined
by the pgpro_stats.metric_
N_ name parameter.

db_name text The name of the database for
which a particular metric was
collected.

ts timestamptz The time when the metric value
got calculated.

value jsonb The result of the query used
for metric measurement. It is
serialized in jsonb as an array
of objects received via to_
jsonb(resulting_row). If
an error occurs, a single object
is returned that contains code,
 message, detail, and hint
fields.

F.37.4.5. The pgpro_stats_vacuum_tables View
The pgpro_stats_vacuum_tables view will contain one row for each table in the current database
(including TOAST tables), showing statistics about vacuuming that specific table. The table below
describes the columns of the view.

Table F.80. pgpro_stats_vacuum_tables View

Column Type Description
relid oid OID of a table
schema name Name of the schema this table is

in
relname name Name of this table
total_blks_read int8 Number of database blocks read

by vacuum operations performed
on this table

total_blks_hit int8 Number of database block buffer
cache hits by vacuum operations
performed on this table

total_blks_dirtied int8 Number of database blocks
dirtied by vacuum operations
performed on this table

total_blks_written int8 Number of database blocks
written by vacuum operations
performed on this table

rel_blks_read int8 Number of blocks vacuum
operations read from this table

rel_blks_hit int8 Number of times blocks of this
table were already found in

2362

Additional Supplied Modules

Column Type Description
the buffer cache by vacuum
operations, so that a read
was not necessary (this only
includes hits in the Postgres Pro
buffer cache, not the operating
system's file system cache)

pages_scanned int8 Number of pages examined by
vacuum operations performed on
this table

pages_removed int8 Number of pages removed from
the physical storage by vacuum
operations performed on this
table

pages_frozen int8 Number of pages of this table
that vacuum operations marked
as all-frozen in the visibility map

pages_all_visible int8 Number of pages of this table
that vacuum operations marked
as all-visible in the visibility map

tuples_deleted int8 Number of dead tuples vacuum
operations deleted from this
table

tuples_frozen int8 Number of tuples of this table
that vacuum operations marked
as frozen

dead_tuples int8 Number of dead tuples vacuum
operations left in this table due
to their visibility in transactions

wal_records int8 Total number of WAL records
generated by vacuum operations
performed on this table

wal_fpi int8 Total number of WAL full page
images generated by vacuum
operations performed on this
table

wal_bytes numeric Total amount of WAL bytes
generated by vacuum operations
performed on this table

blk_read_time float8 Time spent reading database
blocks by vacuum operations
performed on this table, in
milliseconds (if track_io_timing is
enabled, otherwise zero)

blk_write_time float8 Time spent writing database
blocks by vacuum operations
performed on this table, in
milliseconds (if track_io_timing is
enabled, otherwise zero)

delay_time float8 Time spent sleeping in a
vacuum delay point by vacuum
operations performed on this

2363

Additional Supplied Modules

Column Type Description
table, in milliseconds (see
Section 18.4.4 for details)

system_time float8 System CPU time of vacuuming
this table, in milliseconds

user_time float8 User CPU time of vacuuming this
table, in milliseconds

total_time float8 Total time of vacuuming this
table, in milliseconds

interrupts int4 Number of times vacuum
operations performed on this
table were interrupted on any
errors

Columns total_*, wal_* and blk_* include data on vacuuming indexes on this table, while columns
system_time and user_time only include data on vacuuming the heap.

F.37.4.6. The pgpro_stats_vacuum_indexes View
The pgpro_stats_vacuum_indexes view will contain one row for each index in the current database
(including TOAST table indexes), showing statistics about vacuuming that specific index. The table below
describes the columns of the view.

Table F.81. pgpro_stats_vacuum_indexes View

Column Type Description
relid oid OID of an index
schema name Name of the schema this index is

in
relname name Name of this index
total_blks_read int8 Number of database blocks read

by vacuum operations performed
on this index

total_blks_hit int8 Number of database block buffer
cache hits by vacuum operations
performed on this index

total_blks_dirtied int8 Number of database blocks
dirtied by vacuum operations
performed on this index

total_blks_written int8 Number of database blocks
written by vacuum operations
performed on this index

rel_blks_read int8 Number of blocks vacuum
operations read from this index

rel_blks_hit int8 Number of times blocks of this
index were already found in
the buffer cache by vacuum
operations, so that a read
was not necessary (this only
includes hits in the Postgres Pro
buffer cache, not the operating
system's file system cache)

2364

Additional Supplied Modules

Column Type Description
pages_deleted int8 Number of pages deleted by

vacuum operations performed on
this index

tuples_deleted int8 Number of dead tuples vacuum
operations deleted from this
index

wal_records int8 Total number of WAL records
generated by vacuum operations
performed on this index

wal_fpi int8 Total number of WAL full page
images generated by vacuum
operations performed on this
index

wal_bytes numeric Total amount of WAL bytes
generated by vacuum operations
performed on this index

blk_read_time float8 Time spent reading database
blocks by vacuum operations
performed on this index, in
milliseconds (if track_io_timing is
enabled, otherwise zero)

blk_write_time float8 Time spent writing database
blocks by vacuum operations
performed on this index, in
milliseconds (if track_io_timing is
enabled, otherwise zero)

delay_time float8 Time spent sleeping in a
vacuum delay point by vacuum
operations performed on this
index, in milliseconds (see
Section 18.4.4 for details)

system_time float8 System CPU time of vacuuming
this index, in milliseconds

user_time float8 User CPU time of vacuuming this
index, in milliseconds

total_time float8 Total time of vacuuming this
index, in milliseconds

interrupts int4 Number of times vacuum
operations performed on this
index were interrupted on any
errors

F.37.5. Data Types

F.37.5.1. The pgpro_stats_rusage Type
pgpro_stats_rusage is a record type that contains resource usage statistics of statement planning/
execution. The fields of this type are shown in Table F.82.

2365

Additional Supplied Modules

Table F.82. pgpro_stats_rusage Fields

Name Type Description
reads bigint Number of bytes read by the

filesystem layer
writes bigint Number of bytes written by the

filesystem layer
user_time double precision User CPU time used
system_time double precision System CPU time used
minflts bigint Number of page reclaims (soft

page faults)
majflts bigint Number of page faults (hard

page faults)
nswaps bigint Number of swaps
msgsnds bigint Number of IPC messages sent
msgrcvs bigint Number of IPC messages

received
nsignals bigint Number of signals received
nvcsws bigint Number of voluntary context

switches
nivcsws bigint Number of involuntary context

switches

F.37.5.2. The pgpro_stats_inval_msgs Type
pgpro_stats_inval_msgs is a record type containing counters for cache invalidation messages. The
fields of the type are shown in Table F.83.

Table F.83. pgpro_stats_inval_msgs Fields

Name Type Description
total bigint Total number of invalidation

messages
catcache bigint Number of catcache invalidation

messages
catalog bigint Number of catalog invalidation

messages
relcache bigint Number of selective relcache

invalidation messages
relcache_all bigint Number of whole relcache

invalidation messages
smgr bigint Number of storage manager

invalidation messages
relmap bigint Number of relation map

invalidation messages
snapshot bigint Number of snapshot invalidation

messages

2366

Additional Supplied Modules

F.37.6. Functions
pgpro_stats_statements_reset(userid Oid, dbid Oid, queryid bigint, planid bigint) returns
void

pgpro_stats_statements_reset discards statistics gathered so far by pgpro_stats corresponding
to the specified userid, dbid, queryid, and planid. If any of the parameters are not specified, the
default value 0(invalid) is used for each of them and the statistics that match with other parameters
will be reset. If no parameter is specified or all the specified parameters are 0(invalid), it will discard
all statistics. By default, this function can only be executed by superusers. Access may be granted
to others using GRANT.

pgpro_stats_statements(showtext boolean) returns setof record
The pgpro_stats_statements view is defined in terms of a function also named
pgpro_stats_statements. Users can also call the pgpro_stats_statements function directly, and
by specifying showtext := false make query text be omitted (that is, the OUT argument that
corresponds to the view's query column will return nulls). This feature is intended to support external
tools that might wish to avoid the overhead of repeatedly retrieving query texts of indeterminate
length. Such tools can instead cache the first query text observed for each entry themselves, since
that is all pgpro_stats itself does, and then retrieve query texts only as needed. Since the server
stores query texts in a file, this approach may reduce physical I/O for repeated examination of the
pgpro_stats_statements data.

pgpro_stats_totals_reset(type text, id bigint) returns void
pgpro_stats_totals_reset discards statistics gathered so far by pgpro_stats corresponding to
the specified object type and id. If no parameter is specified or the type parameter is set to 0, all
statistics will be discarded. If type is set to a valid object type, then if id is specified, then statistics
will be discarded only for the specified object, else, statistics will be discarded for all objects of
the specified type. Otherwise, no statistics will be discarded. By default, this function can only be
executed by superusers. Access may be granted to others using GRANT.

pgpro_stats_totals() returns setof record
The pgpro_stats_totals view is defined in terms of a function also named pgpro_stats_totals.
Users can also call the pgpro_stats_totals function directly.

pgpro_stats_metrics(showtext boolean) returns setof record
Defines the pgpro_stats_metrics view, which is described in detail in Table F.79.

pgpro_stats_wal_sender_crc_errors() returns bigint
Returns zero in Postgres Pro and is fully functional in Postgres Pro Enterprise.

pgpro_stats_vacuum_tables(dboid oid, relid oid) returns setof record
Defines the row of the pgpro_stats_vacuum_tables view, which is described in detail in Table F.80,
for the database specified by dboid and table specified by reloid. If reloid = 0, the statistics for
each table in the specified database are returned.

pgpro_stats_vacuum_indexes(dboid oid, relid oid) returns setof record
Defines the row of the pgpro_stats_vacuum_indexes view, which is described in detail in Table F.81,
for the database specified by dboid and index specified by reloid. If reloid = 0, the statistics for
each index in the specified database are returned.

F.37.7. Configuration Parameters
F.37.7.1. General Settings

pgpro_stats.max (integer)
pgpro_stats.max is the maximum number of statements tracked by the module (i.e., the maximum
number of rows in the pgpro_stats_statements view). If more distinct statements than that are

2367

Additional Supplied Modules

observed, information about the least-executed statements is discarded. The default value is 5000.
This parameter can only be set at server start.

pgpro_stats.max_totals (integer)

pgpro_stats.max_totals is the maximum number of objects tracked by the module (i.e., the
maximum number of rows in the pgpro_stats_totals view). If more distinct objects than that
are observed, information about least-used objects is discarded. The default value is 1000. This
parameter can only be set at server start.

pgpro_stats.track (enum)

pgpro_stats.track controls which statements are counted by the module. Specify top to track
top-level statements (those issued directly by clients), all to also track nested statements (such as
statements invoked within functions), or none to disable statement statistics collection. The default
value is top. Only superusers can change this setting.

pgpro_stats.track_utility (boolean)

pgpro_stats.track_utility controls whether utility commands are tracked by the module. Utility
commands are all those other than SELECT, INSERT, UPDATE and DELETE. The default value is on. Only
superusers can change this setting.

pgpro_stats.track_planning (boolean)

pgpro_stats.track_planning controls whether planning operations and duration are tracked by
the module. Enabling this parameter may incur a noticeable performance penalty, especially when
statements with identical query structure are executed by many concurrent connections which
compete to update a small number of pg_stat_statements entries. The default value is off. Only
superusers can change this setting.

pgpro_stats.track_totals (boolean)

pgpro_stats.track_totals controls whether aggregate statistics for objects (cluster, users,
databases etc.) are tracked by the module. The default value is on. Only superusers can change this
setting.

pgpro_stats.track_cluster (boolean)

pgpro_stats.track_cluster controls whether aggregate statistics for the cluster are tracked by
the module. The default value is on. Only superusers can change this setting.

pgpro_stats.track_databases (boolean)

pgpro_stats.track_databases controls whether aggregate statistics for the databases are tracked
by the module. The default value is on. Only superusers can change this setting.

pgpro_stats.track_users (boolean)

pgpro_stats.track_users controls whether aggregate statistics for the users are tracked by the
module. The default value is on. Only superusers can change this setting.

pgpro_stats.track_applications (boolean)

pgpro_stats.track_applications controls whether aggregate statistics for the applications (whose
names are set by application_name) are tracked by the module. The default value is on. Only
superusers can change this setting.

pgpro_stats.track_client_addr (boolean)

pgpro_stats.track_client_addr controls whether aggregate statistics for the client IP addresses
are tracked by the module. The default value is on. Only superusers can change this setting.

2368

Additional Supplied Modules

pgpro_stats.track_backends (boolean)

pgpro_stats.track_backends controls whether aggregate statistics for the backends are tracked
by the module. The default value is on. Only superusers can change this setting.

pgpro_stats.track_sessions (boolean)

pgpro_stats.track_sessions controls whether aggregate statistics for the sessions are tracked by
the module. The default value is on. Only superusers can change this setting.

pgpro_stats.save (boolean)

pgpro_stats.save specifies whether to save statement statistics across server shutdowns. If it is
off then statistics are neither saved at shutdown nor reloaded at server start. The default value is
on. This parameter can only be set in the postgresql.conf file or on the server command line.

pgpro_stats.plan_format (text)

pgpro_stats.plan_format selects the EXPLAIN format for the query plan. Possible values are text,
xml, json, and yaml. The default value is text. Changing this parameter requires a server restart.

pgpro_stats.enable_profile (boolean)

pgpro_stats.enable_profile enables sampling of wait events for separate statements. The default
value is true. Changing this parameter requires a server restart.

pgpro_stats.query_sample_rate (float)

pgpro_stats.query_sample_rate specifies the fraction of queries that are randomly selected for
statistics calculation. Possible values lie between 0.0 (no queries) and 1.0 (all queries). The default
value is 1.0. Changing this parameter requires a server restart.

pgpro_stats.profile_period (integer)

pgpro_stats.profile_period specifies the period, in milliseconds, during which to sample wait
events. The default value is 10. Only superusers can change this setting.

pgpro_stats.metrics_buffer_size (integer)

pgpro_stats.metrics_buffer_size specifies the size of the ring buffer used for collecting statistical
metrics. The default value is 16kB. Changing this parameter requires a server restart.

pgpro_stats.metrics_workers (integer)

pgpro_stats.metrics_workers specifies the number of workers used to collect statistical metrics.
If this parameter is set to 2 or higher, one of the workers serves as the master worker distributing
queries to other workers. If only one worker is available, it gets reloaded to connect to different
databases. Setting this parameter to 0 disables metrics collection. The default value is 2. Changing
this parameter requires a server restart.

F.37.7.2. Metrics Settings
The following parameters can be used to define a custom metric to collect. The N placeholder in the
parameter name serves as a unique identifier of the metric to which this setting should apply; it must
be set to a non-negative integer for each metric.

When you add these parameters for a new metric, you have to restart the server for the changes to take
effect. Once the new metric is added, its parameters can be changed without a server restart by simply
reloading the postgresql.conf configuration file.

pgpro_stats.metric_N_name (text)

The name of metric N. This name will be displayed in the metric_name column of the
pgpro_stats_metrics view.

2369

Additional Supplied Modules

pgpro_stats.metric_N_query (text)
The query statement that defines the metric to collect.

pgpro_stats.metric_N_period (integer)
The time interval at which to collect metric N, in milliseconds. Default: 60000 ms

pgpro_stats.metric_N_db (text)
The list of databases for which to collect metric N. Database names must be separated by commas.
You can specify the * character to select all databases in the cluster except the template databases.
If you need to analyze the template databases as well, you have to specify them explicitly.

pgpro_stats.metric_N_user (text)
The name of the user on behalf of which to collect metric N. This user must have access to the
database for which the metric is collected.

F.37.8. Authors
Postgres Professional, Moscow, Russia

F.38. pg_query_state
The pg_query_state module provides facility to know the current state of query execution on working
backend.

F.38.1. Overview
Each non-utility query statement (SELECT/INSERT/UPDATE/DELETE) after optimization/planning stage
is translated into plan tree, which is kind of imperative representation of declarative SQL query. EXPLAIN
ANALYZE request allows to demonstrate execution statistics gathered from each node of plan tree (full
time of execution, number of rows emitted to upper nodes, etc). But this statistics is collected after
execution of query. This module allows to show actual statistics of query running on external backend.
At that, format of resulting output is almost identical to ordinal EXPLAIN ANALYZE. Thus users are able
to track of query execution in progress. In fact, this module is able to explore external backend and
determine its actual state. Particularly it's helpful when backend executes a heavy query or gets stuck.

F.38.2. Use cases
Using this module there can help in the following things:

• detect a long query (along with other monitoring tools);
• supervise query execution.

F.38.3. Installation
To install pg_query_state run in psql:

 CREATE EXTENSION pg_query_state;

Then modify shared_preload_libraries parameter in postgres.conf as following:

 shared_preload_libraries = 'pg_query_state'

It will require to restart the Postgres Pro instance.

F.38.4. Function pg_query_state
 pg_query_state(integer pid,
 verbose boolean DEFAULT FALSE,
 costs boolean DEFAULT FALSE,

2370

Additional Supplied Modules

 timing boolean DEFAULT FALSE,
 buffers boolean DEFAULT FALSE,
 triggers boolean DEFAULT FALSE,
 format text DEFAULT 'text')
 returns TABLE (pid integer,
 frame_number integer,
 query_text text,
 plan text,
 leader_pid integer)

Extract current query state from backend with specified pid. Since parallel query can spawn multiple
workers and function call causes nested subqueries so that state of execution may be viewed as stack of
running queries, return value of pg_query_state has type TABLE (pid integer, frame_number integer,
query_text text, plan text, leader_pid integer). It represents tree structure consisting of leader
process and its spawned workers identified by pid. Each worker refers to leader through leader_pid
column. For leader process the value of this column is null. The state of each process is represented as
stack of function calls. Each frame of that stack is specified as correspondence between frame_number
starting from zero, query_text and plan with online statistics columns.

Thus, user can see the states of main query and queries generated from function calls for leader process
and all workers spawned from it.

In process of execution some nodes of plan tree can take loops of full execution. Therefore statistics for
each node consists of two parts: average statistics for previous loops just like in EXPLAIN ANALYZE
output and statistics for current loop if node have not finished.

Optional arguments:

• verbose - use EXPLAIN VERBOSE for plan printing;
• costs - costs for each node;
• timing - print timing data for each node, if collecting of timing statistics is turned off on called side

resulting output will contain WARNING message timing statistics disabled;
• buffers - print buffers usage, if collecting of buffers statistics is turned off on called side resulting

output will contain WARNING message buffers statistics disabled;
• triggers - include triggers statistics in result plan trees;
• format - EXPLAIN format to be used for plans printing, possible values: text, xml, json, yaml.
If callable backend is not executing any query the function prints INFO message about backend's state
taken from pg_stat_activity view if it exists there.

Calling role have to be superuser or member of the role whose backend is being called. Otherwise
function prints ERROR message permission denied.

F.38.5. Configuration settings
There are several user-accessible GUC variables designed to toggle the whole module and the collecting
of specific statistic parameters while query is running:

• pg_query_state.enable - disable (or enable) pg_query_state completely, default value is true
• pg_query_state.enable_timing - collect timing data for each node, default value is false
• pg_query_state.enable_buffers - collect buffers usage, default value is false
These parameters are set on called side before running any queries whose states are attempted to
extract. WARNING: if pg_query_state.enable_timing is turned off the calling side cannot get time statistics,
similarly for pg_query_state.enable_buffers parameter.

F.38.6. Examples
Set maximum number of parallel workers on gather node equals 2:

 postgres=# set max_parallel_workers_per_gather = 2;

2371

Additional Supplied Modules

Assume one backend with pid = 49265 performs a simple query:

postgres=# select pg_backend_pid();
pg_backend_pid

 49265
(1 row)
postgres=# select count(*) from foo join bar on foo.c1=bar.c1;

Other backend can extract intermediate state of execution that query:

postgres=# \x
postgres=# select * from pg_query_state(49265);
-[RECORD
 1]+---
pid | 49265
frame_number | 0
query_text | select count(*) from foo join bar on foo.c1=bar.c1;
plan | Finalize Aggregate (Current loop: actual rows=0, loop number=1)
 +
 | -> Gather (Current loop: actual rows=0, loop number=1)
 +
 | Workers Planned: 2
 +
 | Workers Launched: 2
 +
 | -> Partial Aggregate (Current loop: actual rows=0, loop
 number=1) +
 | -> Nested Loop (Current loop: actual rows=12, loop
 number=1) +
 | Join Filter: (foo.c1 = bar.c1)
 +
 | Rows Removed by Join Filter: 5673232
 +
 | -> Parallel Seq Scan on foo (Current loop: actual
 rows=12, loop number=1) +
 | -> Seq Scan on bar (actual rows=500000 loops=11)
 (Current loop: actual rows=173244, loop number=12)
leader_pid | (null)
-[RECORD
 2]+---
pid | 49324
frame_number | 0
query_text | <parallel query>
plan | Partial Aggregate (Current loop: actual rows=0, loop number=1)
 +
 | -> Nested Loop (Current loop: actual rows=10, loop number=1)
 +
 | Join Filter: (foo.c1 = bar.c1)
 +
 | Rows Removed by Join Filter: 4896779
 +
 | -> Parallel Seq Scan on foo (Current loop: actual rows=10, loop
 number=1) +
 | -> Seq Scan on bar (actual rows=500000 loops=9) (Current loop:
 actual rows=396789, loop number=10)
leader_pid | 49265

2372

Additional Supplied Modules

-[RECORD
 3]+---
pid | 49323
frame_number | 0
query_text | <parallel query>
plan | Partial Aggregate (Current loop: actual rows=0, loop number=1)
 +
 | -> Nested Loop (Current loop: actual rows=11, loop number=1)
 +
 | Join Filter: (foo.c1 = bar.c1)
 +
 | Rows Removed by Join Filter: 5268783
 +
 | -> Parallel Seq Scan on foo (Current loop: actual rows=11, loop
 number=1) +
 | -> Seq Scan on bar (actual rows=500000 loops=10) (Current loop:
 actual rows=268794, loop number=11)
leader_pid | 49265

In example above working backend spawns two parallel workers with pids 49324 and 49323. Their
leader_pid column's values clarify that these workers belong to the main backend. Seq Scan node has
statistics on passed loops (average number of rows delivered to Nested Loop and number of passed
loops are shown) and statistics on current loop. Other nodes has statistics only for current loop as this
loop is first (loop number = 1).

Assume first backend executes some function:

postgres=# select n_join_foo_bar();

Other backend can get the follow output:

postgres=# select * from pg_query_state(49265);
-[RECORD
 1]+--
pid | 49265
frame_number | 0
query_text | select n_join_foo_bar();
plan | Result (Current loop: actual rows=0, loop number=1)
leader_pid | (null)
-[RECORD
 2]+--
pid | 49265
frame_number | 1
query_text | SELECT (select count(*) from foo join bar on foo.c1=bar.c1)
plan | Result (Current loop: actual rows=0, loop number=1)
 +
 | InitPlan 1 (returns $0)
 +
 | -> Aggregate (Current loop: actual rows=0, loop number=1)
 +
 | -> Nested Loop (Current loop: actual rows=51, loop number=1)
 +
 | Join Filter: (foo.c1 = bar.c1)
 +
 | Rows Removed by Join Filter: 51636304
 +
 | -> Seq Scan on bar (Current loop: actual rows=52, loop
 number=1) +

2373

Additional Supplied Modules

 | -> Materialize (actual rows=1000000 loops=51) (Current
 loop: actual rows=636355, loop number=52)+
 | -> Seq Scan on foo (Current loop: actual
 rows=1000000, loop number=1)
leader_pid | (null)

First row corresponds to function call, second - to query which is in the body of that function.

We can get result plans in different format (e.g. json):

postgres=# select * from pg_query_state(pid := 49265, format := 'json');
-[RECORD 1]+--
pid | 49265
frame_number | 0
query_text | select * from n_join_foo_bar();
plan | { +
 | "Plan": { +
 | "Node Type": "Function Scan", +
 | "Parallel Aware": false, +
 | "Function Name": "n_join_foo_bar", +
 | "Alias": "n_join_foo_bar", +
 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 0 +
 | } +
 | } +
 | }
leader_pid | (null)
-[RECORD 2]+--
pid | 49265
frame_number | 1
query_text | SELECT (select count(*) from foo join bar on foo.c1=bar.c1)
plan | { +
 | "Plan": { +
 | "Node Type": "Result", +
 | "Parallel Aware": false, +
 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 0 +
 | }, +
 | "Plans": [+
 | { +
 | "Node Type": "Aggregate", +
 | "Strategy": "Plain", +
 | "Partial Mode": "Simple", +
 | "Parent Relationship": "InitPlan", +
 | "Subplan Name": "InitPlan 1 (returns $0)", +
 | "Parallel Aware": false, +
 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 0 +
 | }, +
 | "Plans": [+
 | { +
 | "Node Type": "Nested Loop", +
 | "Parent Relationship": "Outer", +
 | "Parallel Aware": false, +
 | "Join Type": "Inner", +

2374

Additional Supplied Modules

 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 610 +
 | }, +
 | "Join Filter": "(foo.c1 = bar.c1)", +
 | "Rows Removed by Join Filter": 610072944, +
 | "Plans": [+
 | { +
 | "Node Type": "Seq Scan", +
 | "Parent Relationship": "Outer", +
 | "Parallel Aware": false, +
 | "Relation Name": "bar", +
 | "Alias": "bar", +
 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 611 +
 | } +
 | }, +
 | { +
 | "Node Type": "Materialize", +
 | "Parent Relationship": "Inner", +
 | "Parallel Aware": false, +
 | "Actual Rows": 1000000, +
 | "Actual Loops": 610, +
 | "Current loop": { +
 | "Actual Loop Number": 611, +
 | "Actual Rows": 73554 +
 | }, +
 | "Plans": [+
 | { +
 | "Node Type": "Seq Scan", +
 | "Parent Relationship": "Outer", +
 | "Parallel Aware": false, +
 | "Relation Name": "foo", +
 | "Alias": "foo", +
 | "Current loop": { +
 | "Actual Loop Number": 1, +
 | "Actual Rows": 1000000 +
 | } +
 | } +
 |] +
 | } +
 |] +
 | } +
 |] +
 | } +
 |] +
 | } +
 | }
leader_pid | (null)

F.39. pgrowlocks
The pgrowlocks module provides a function to show row locking information for a specified table.

By default use is restricted to superusers, members of the pg_stat_scan_tables role, and users with
SELECT permissions on the table.

2375

Additional Supplied Modules

F.39.1. Overview
pgrowlocks(text) returns setof record

The parameter is the name of a table. The result is a set of records, with one row for each locked row
within the table. The output columns are shown in Table F.84.

Table F.84. pgrowlocks Output Columns

Name Type Description
locked_row tid Tuple ID (TID) of locked row
locker xid Transaction ID of locker, or

multixact ID if multitransaction
multi boolean True if locker is a

multitransaction
xids xid[] Transaction IDs of lockers (more

than one if multitransaction)
modes text[] Lock mode of lockers (more than

one if multitransaction), an array
of Key Share, Share, For No
Key Update, No Key Update, For
Update, Update.

pids integer[] Process IDs of locking
backends (more than one if
multitransaction)

pgrowlocks takes AccessShareLock for the target table and reads each row one by one to collect the
row locking information. This is not very speedy for a large table. Note that:

1. If an ACCESS EXCLUSIVE lock is taken on the table, pgrowlocks will be blocked.

2. pgrowlocks is not guaranteed to produce a self-consistent snapshot. It is possible that a new row lock
is taken, or an old lock is freed, during its execution.

pgrowlocks does not show the contents of locked rows. If you want to take a look at the row contents
at the same time, you could do something like this:

SELECT * FROM accounts AS a, pgrowlocks('accounts') AS p
 WHERE p.locked_row = a.ctid;

Be aware however that such a query will be very inefficient.

F.39.2. Sample Output
=# SELECT * FROM pgrowlocks('t1');
 locked_row | locker | multi | xids | modes | pids
------------+--------+-------+-------+----------------+--------
 (0,1) | 609 | f | {609} | {"For Share"} | {3161}
 (0,2) | 609 | f | {609} | {"For Share"} | {3161}
 (0,3) | 607 | f | {607} | {"For Update"} | {3107}
 (0,4) | 607 | f | {607} | {"For Update"} | {3107}
(4 rows)

F.39.3. Author
Tatsuo Ishii

F.40. pg_stat_statements

2376

Additional Supplied Modules

The pg_stat_statements module provides a means for tracking planning and execution statistics of all
SQL statements executed by a server.

The module must be loaded by adding pg_stat_statements to shared_preload_libraries in
postgresql.conf, because it requires additional shared memory. This means that a server restart is
needed to add or remove the module.

When pg_stat_statements is loaded, it tracks statistics across all databases of the server. To access and
manipulate these statistics, the module provides a view, pg_stat_statements, and the utility functions
pg_stat_statements_reset and pg_stat_statements. These are not available globally but can be
enabled for a specific database with CREATE EXTENSION pg_stat_statements.

F.40.1. The pg_stat_statements View
The statistics gathered by the module are made available via a view named pg_stat_statements. This
view contains one row for each distinct database ID, user ID and query ID (up to the maximum number
of distinct statements that the module can track). The columns of the view are shown in Table F.85.

Table F.85. pg_stat_statements Columns

Column Type
Description

userid oid (references pg_authid .oid)
OID of user who executed the statement

dbid oid (references pg_database .oid)
OID of database in which the statement was executed

queryid bigint
Internal hash code, computed from the statement's parse tree

query text
Text of a representative statement

plans bigint
Number of times the statement was planned (if pg_stat_statements.track_planning is
enabled, otherwise zero)

total_plan_time double precision
Total time spent planning the statement, in milliseconds (if pg_stat_statements.track_
planning is enabled, otherwise zero)

min_plan_time double precision
Minimum time spent planning the statement, in milliseconds (if pg_stat_
statements.track_planning is enabled, otherwise zero)

max_plan_time double precision
Maximum time spent planning the statement, in milliseconds (if pg_stat_
statements.track_planning is enabled, otherwise zero)

mean_plan_time double precision
Mean time spent planning the statement, in milliseconds (if pg_stat_statements.track_
planning is enabled, otherwise zero)

stddev_plan_time double precision
Population standard deviation of time spent planning the statement, in milliseconds (if pg_
stat_statements.track_planning is enabled, otherwise zero)

calls bigint
Number of times the statement was executed

total_exec_time double precision
Total time spent executing the statement, in milliseconds

min_exec_time double precision

2377

Additional Supplied Modules

Column Type
Description
Minimum time spent executing the statement, in milliseconds

max_exec_time double precision
Maximum time spent executing the statement, in milliseconds

mean_exec_time double precision
Mean time spent executing the statement, in milliseconds

stddev_exec_time double precision
Population standard deviation of time spent executing the statement, in milliseconds

rows bigint
Total number of rows retrieved or affected by the statement

shared_blks_hit bigint
Total number of shared block cache hits by the statement

shared_blks_read bigint
Total number of shared blocks read by the statement

shared_blks_dirtied bigint
Total number of shared blocks dirtied by the statement

shared_blks_written bigint
Total number of shared blocks written by the statement

local_blks_hit bigint
Total number of local block cache hits by the statement

local_blks_read bigint
Total number of local blocks read by the statement

local_blks_dirtied bigint
Total number of local blocks dirtied by the statement

local_blks_written bigint
Total number of local blocks written by the statement

temp_blks_read bigint
Total number of temp blocks read by the statement

temp_blks_written bigint
Total number of temp blocks written by the statement

blk_read_time double precision
Total time the statement spent reading blocks, in milliseconds (if track_io_timing is enabled,
 otherwise zero)

blk_write_time double precision
Total time the statement spent writing blocks, in milliseconds (if track_io_timing is enabled,
 otherwise zero)

wal_records bigint
Total number of WAL records generated by the statement

wal_fpi bigint
Total number of WAL full page images generated by the statement

wal_bytes numeric
Total amount of WAL generated by the statement in bytes

For security reasons, only superusers and members of the pg_read_all_stats role are allowed to see
the SQL text and queryid of queries executed by other users. Other users can see the statistics, however,
if the view has been installed in their database.

Plannable queries (that is, SELECT, INSERT, UPDATE, and DELETE) are combined into a single
pg_stat_statements entry whenever they have identical query structures according to an internal hash

2378

Additional Supplied Modules

calculation. Typically, two queries will be considered the same for this purpose if they are semantically
equivalent except for the values of literal constants appearing in the query. Utility commands (that is,
all other commands) are compared strictly on the basis of their textual query strings, however.

When a constant's value has been ignored for purposes of matching the query to other queries, the
constant is replaced by a parameter symbol, such as $1, in the pg_stat_statements display. The rest
of the query text is that of the first query that had the particular queryid hash value associated with
the pg_stat_statements entry.

In some cases, queries with visibly different texts might get merged into a single pg_stat_statements
entry. Normally this will happen only for semantically equivalent queries, but there is a small chance of
hash collisions causing unrelated queries to be merged into one entry. (This cannot happen for queries
belonging to different users or databases, however.)

Since the queryid hash value is computed on the post-parse-analysis representation of the queries, the
opposite is also possible: queries with identical texts might appear as separate entries, if they have
different meanings as a result of factors such as different search_path settings.

Consumers of pg_stat_statements may wish to use queryid (perhaps in combination with dbid and
userid) as a more stable and reliable identifier for each entry than its query text. However, it is important
to understand that there are only limited guarantees around the stability of the queryid hash value.
Since the identifier is derived from the post-parse-analysis tree, its value is a function of, among other
things, the internal object identifiers appearing in this representation. This has some counterintuitive
implications. For example, pg_stat_statements will consider two apparently-identical queries to be
distinct, if they reference a table that was dropped and recreated between the executions of the two
queries. The hashing process is also sensitive to differences in machine architecture and other facets
of the platform. Furthermore, it is not safe to assume that queryid will be stable across major versions
of Postgres Pro.

As a rule of thumb, queryid values can be assumed to be stable and comparable only so long as the
underlying server version and catalog metadata details stay exactly the same. Two servers participating
in replication based on physical WAL replay can be expected to have identical queryid values for the
same query. However, logical replication schemes do not promise to keep replicas identical in all relevant
details, so queryid will not be a useful identifier for accumulating costs across a set of logical replicas.
If in doubt, direct testing is recommended.

The parameter symbols used to replace constants in representative query texts start from the next
number after the highest $n parameter in the original query text, or $1 if there was none. It's worth noting
that in some cases there may be hidden parameter symbols that affect this numbering. For example, PL/
pgSQL uses hidden parameter symbols to insert values of function local variables into queries, so that
a PL/pgSQL statement like SELECT i + 1 INTO j would have representative text like SELECT i + $2.

The representative query texts are kept in an external disk file, and do not consume shared memory.
Therefore, even very lengthy query texts can be stored successfully. However, if many long query texts
are accumulated, the external file might grow unmanageably large. As a recovery method if that happens,
pg_stat_statements may choose to discard the query texts, whereupon all existing entries in the
pg_stat_statements view will show null query fields, though the statistics associated with each queryid
are preserved. If this happens, consider reducing pg_stat_statements.max to prevent recurrences.

plans and calls aren't always expected to match because planning and execution statistics are updated
at their respective end phase, and only for successful operations. For example, if a statement is
successfully planned but fails during the execution phase, only its planning statistics will be updated. If
planning is skipped because a cached plan is used, only its execution statistics will be updated.

F.40.2. Functions
pg_stat_statements_reset(userid Oid, dbid Oid, queryid bigint) returns void

pg_stat_statements_reset discards statistics gathered so far by pg_stat_statements
corresponding to the specified userid, dbid and queryid. If any of the parameters are not specified,

2379

Additional Supplied Modules

the default value 0(invalid) is used for each of them and the statistics that match with other
parameters will be reset. If no parameter is specified or all the specified parameters are 0(invalid),
it will discard all statistics. By default, this function can only be executed by superusers. Access may
be granted to others using GRANT.

pg_stat_statements(showtext boolean) returns setof record

The pg_stat_statements view is defined in terms of a function also named pg_stat_statements. It is
possible for clients to call the pg_stat_statements function directly, and by specifying showtext :=
false have query text be omitted (that is, the OUT argument that corresponds to the view's query
column will return nulls). This feature is intended to support external tools that might wish to avoid
the overhead of repeatedly retrieving query texts of indeterminate length. Such tools can instead
cache the first query text observed for each entry themselves, since that is all pg_stat_statements
itself does, and then retrieve query texts only as needed. Since the server stores query texts in a file,
this approach may reduce physical I/O for repeated examination of the pg_stat_statements data.

F.40.3. Configuration Parameters
pg_stat_statements.max (integer)

pg_stat_statements.max is the maximum number of statements tracked by the module (i.e., the
maximum number of rows in the pg_stat_statements view). If more distinct statements than that
are observed, information about the least-executed statements is discarded. The default value is
5000. This parameter can only be set at server start.

pg_stat_statements.track (enum)

pg_stat_statements.track controls which statements are counted by the module. Specify top to
track top-level statements (those issued directly by clients), all to also track nested statements
(such as statements invoked within functions), or none to disable statement statistics collection. The
default value is top. Only superusers can change this setting.

pg_stat_statements.track_utility (boolean)

pg_stat_statements.track_utility controls whether utility commands are tracked by the module.
Utility commands are all those other than SELECT, INSERT, UPDATE and DELETE. The default value is
on. Only superusers can change this setting.

pg_stat_statements.track_planning (boolean)

pg_stat_statements.track_planning controls whether planning operations and duration are
tracked by the module. Enabling this parameter may incur a noticeable performance penalty,
especially when statements with identical query structure are executed by many concurrent
connections which compete to update a small number of pg_stat_statements entries. The default
value is off. Only superusers can change this setting.

pg_stat_statements.save (boolean)

pg_stat_statements.save specifies whether to save statement statistics across server shutdowns.
If it is off then statistics are not saved at shutdown nor reloaded at server start. The default value
is on. This parameter can only be set in the postgresql.conf file or on the server command line.

The module requires additional shared memory proportional to pg_stat_statements.max. Note that this
memory is consumed whenever the module is loaded, even if pg_stat_statements.track is set to none.

These parameters must be set in postgresql.conf. Typical usage might be:

postgresql.conf
shared_preload_libraries = 'pg_stat_statements'

pg_stat_statements.max = 10000

2380

Additional Supplied Modules

pg_stat_statements.track = all

F.40.4. Sample Output
bench=# SELECT pg_stat_statements_reset();

$ pgbench -i bench
$ pgbench -c10 -t300 bench

bench=# \x
bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--
query | UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE bid = $2
calls | 3000
total_exec_time | 25565.855387
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 2]---+--
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 4]---+--
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 5]---+--
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000

bench=# SELECT pg_stat_statements_reset(0,0,s.queryid) FROM pg_stat_statements AS s
 WHERE s.query = 'UPDATE pgbench_branches SET bbalance = bbalance + $1 WHERE
 bid = $2';

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--
query | UPDATE pgbench_tellers SET tbalance = tbalance + $1 WHERE tid = $2
calls | 3000
total_exec_time | 20756.669379
rows | 3000
hit_percent | 100.0000000000000000

2381

Additional Supplied Modules

-[RECORD 2]---+--
query | copy pgbench_accounts from stdin
calls | 1
total_exec_time | 291.865911
rows | 100000
hit_percent | 100.0000000000000000
-[RECORD 3]---+--
query | UPDATE pgbench_accounts SET abalance = abalance + $1 WHERE aid = $2
calls | 3000
total_exec_time | 271.232977
rows | 3000
hit_percent | 98.8454011741682975
-[RECORD 4]---+--
query | alter table pgbench_accounts add primary key (aid)
calls | 1
total_exec_time | 160.588563
rows | 0
hit_percent | 100.0000000000000000
-[RECORD 5]---+--
query | vacuum analyze pgbench_accounts
calls | 1
total_exec_time | 136.448116
rows | 0
hit_percent | 99.9201915403032721

bench=# SELECT pg_stat_statements_reset(0,0,0);

bench=# SELECT query, calls, total_exec_time, rows, 100.0 * shared_blks_hit /
 nullif(shared_blks_hit + shared_blks_read, 0) AS hit_percent
 FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT 5;
-[RECORD 1]---+--

query | SELECT pg_stat_statements_reset(0,0,0)
calls | 1
total_exec_time | 0.189497
rows | 1
hit_percent |
-[RECORD 2]---+--

query | SELECT query, calls, total_exec_time, rows, $1 * shared_blks_hit /
 +
 | nullif(shared_blks_hit + shared_blks_read, $2) AS
 hit_percent+
 | FROM pg_stat_statements ORDER BY total_exec_time DESC LIMIT
 $3
calls | 0
total_exec_time | 0
rows | 0
hit_percent |

F.40.5. Authors
Takahiro Itagaki <itagaki.takahiro@oss.ntt.co.jp>. Query normalization added by Peter Geoghegan
<peter@2ndquadrant.com>.

F.41. pgstattuple
The pgstattuple module provides various functions to obtain tuple-level statistics.

2382

Additional Supplied Modules

Because these functions return detailed page-level information, access is restricted by default. By
default, only the role pg_stat_scan_tables has EXECUTE privilege. Superusers of course bypass this
restriction. After the extension has been installed, users may issue GRANT commands to change the
privileges on the functions to allow others to execute them. However, it might be preferable to add those
users to the pg_stat_scan_tables role instead.

F.41.1. Functions
pgstattuple(regclass) returns record

pgstattuple returns a relation's physical length, percentage of “dead” tuples, and other info. This
may help users to determine whether vacuum is necessary or not. The argument is the target
relation's name (optionally schema-qualified) or OID. For example:

test=> SELECT * FROM pgstattuple('pg_catalog.pg_proc');
-[RECORD 1]------+-------
table_len | 458752
tuple_count | 1470
tuple_len | 438896
tuple_percent | 95.67
dead_tuple_count | 11
dead_tuple_len | 3157
dead_tuple_percent | 0.69
free_space | 8932
free_percent | 1.95

The output columns are described in Table F.86.

Table F.86. pgstattuple Output Columns

Column Type Description
table_len bigint Physical relation length in bytes
tuple_count bigint Number of live tuples
tuple_len bigint Total length of live tuples in

bytes
tuple_percent float8 Percentage of live tuples
dead_tuple_count bigint Number of dead tuples
dead_tuple_len bigint Total length of dead tuples in

bytes
dead_tuple_percent float8 Percentage of dead tuples
free_space bigint Total free space in bytes
free_percent float8 Percentage of free space

Note
The table_len will always be greater than the sum of the tuple_len, dead_tuple_len and
free_space. The difference is accounted for by fixed page overhead, the per-page table of
pointers to tuples, and padding to ensure that tuples are correctly aligned.

pgstattuple acquires only a read lock on the relation. So the results do not reflect an instantaneous
snapshot; concurrent updates will affect them.

pgstattuple judges a tuple is “dead” if HeapTupleSatisfiesDirty returns false.

2383

Additional Supplied Modules

pgstattuple(text) returns record

This is the same as pgstattuple(regclass), except that the target relation is specified as TEXT.
This function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstatindex(regclass) returns record

pgstatindex returns a record showing information about a B-tree index. For example:
test=> SELECT * FROM pgstatindex('pg_cast_oid_index');
-[RECORD 1]------+------
version | 2
tree_level | 0
index_size | 16384
root_block_no | 1
internal_pages | 0
leaf_pages | 1
empty_pages | 0
deleted_pages | 0
avg_leaf_density | 54.27
leaf_fragmentation | 0

The output columns are:

Column Type Description
version integer B-tree version number
tree_level integer Tree level of the root page
index_size bigint Total index size in bytes
root_block_no bigint Location of root page (zero if

none)
internal_pages bigint Number of “internal” (upper-

level) pages
leaf_pages bigint Number of leaf pages
empty_pages bigint Number of empty pages
deleted_pages bigint Number of deleted pages
avg_leaf_density float8 Average density of leaf pages
leaf_fragmentation float8 Leaf page fragmentation

The reported index_size will normally correspond to one more page than is accounted for by
internal_pages + leaf_pages + empty_pages + deleted_pages, because it also includes the
index's metapage.

As with pgstattuple, the results are accumulated page-by-page, and should not be expected to
represent an instantaneous snapshot of the whole index.

pgstatindex(text) returns record

This is the same as pgstatindex(regclass), except that the target index is specified as TEXT. This
function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstatginindex(regclass) returns record

pgstatginindex returns a record showing information about a GIN index. For example:
test=> SELECT * FROM pgstatginindex('test_gin_index');
-[RECORD 1]--+--
version | 1

2384

Additional Supplied Modules

pending_pages | 0
pending_tuples | 0

The output columns are:

Column Type Description
version integer GIN version number
pending_pages integer Number of pages in the

pending list
pending_tuples bigint Number of tuples in the

pending list

pgstathashindex(regclass) returns record

pgstathashindex returns a record showing information about a HASH index. For example:
test=> select * from pgstathashindex('con_hash_index');
-[RECORD 1]--+-----------------
version | 4
bucket_pages | 33081
overflow_pages | 0
bitmap_pages | 1
unused_pages | 32455
live_items | 10204006
dead_items | 0
free_percent | 61.8005949100872

The output columns are:

Column Type Description
version integer HASH version number
bucket_pages bigint Number of bucket pages
overflow_pages bigint Number of overflow pages
bitmap_pages bigint Number of bitmap pages
unused_pages bigint Number of unused pages
live_items bigint Number of live tuples
dead_tuples bigint Number of dead tuples
free_percent float Percentage of free space

pg_relpages(regclass) returns bigint

pg_relpages returns the number of pages in the relation.

pg_relpages(text) returns bigint

This is the same as pg_relpages(regclass), except that the target relation is specified as TEXT.
This function is kept because of backward-compatibility so far, and will be deprecated in some future
release.

pgstattuple_approx(regclass) returns record

pgstattuple_approx is a faster alternative to pgstattuple that returns approximate results. The
argument is the target relation's name or OID. For example:
test=> SELECT * FROM pgstattuple_approx('pg_catalog.pg_proc'::regclass);
-[RECORD 1]--------+-------
table_len | 573440
scanned_percent | 2

2385

Additional Supplied Modules

approx_tuple_count | 2740
approx_tuple_len | 561210
approx_tuple_percent | 97.87
dead_tuple_count | 0
dead_tuple_len | 0
dead_tuple_percent | 0
approx_free_space | 11996
approx_free_percent | 2.09

The output columns are described in Table F.87.

Whereas pgstattuple always performs a full-table scan and returns an exact count of live and dead
tuples (and their sizes) and free space, pgstattuple_approx tries to avoid the full-table scan and
returns exact dead tuple statistics along with an approximation of the number and size of live tuples
and free space.

It does this by skipping pages that have only visible tuples according to the visibility map (if a page
has the corresponding VM bit set, then it is assumed to contain no dead tuples). For such pages, it
derives the free space value from the free space map, and assumes that the rest of the space on the
page is taken up by live tuples.

For pages that cannot be skipped, it scans each tuple, recording its presence and size in the
appropriate counters, and adding up the free space on the page. At the end, it estimates the total
number of live tuples based on the number of pages and tuples scanned (in the same way that
VACUUM estimates pg_class.reltuples).

Table F.87. pgstattuple_approx Output Columns

Column Type Description
table_len bigint Physical relation length in bytes

(exact)
scanned_percent float8 Percentage of table scanned
approx_tuple_count bigint Number of live tuples (

estimated)
approx_tuple_len bigint Total length of live tuples in

bytes (estimated)
approx_tuple_percent float8 Percentage of live tuples
dead_tuple_count bigint Number of dead tuples (exact)
dead_tuple_len bigint Total length of dead tuples in

bytes (exact)
dead_tuple_percent float8 Percentage of dead tuples
approx_free_space bigint Total free space in bytes (

estimated)
approx_free_percent float8 Percentage of free space

In the above output, the free space figures may not match the pgstattuple output exactly, because
the free space map gives us an exact figure, but is not guaranteed to be accurate to the byte.

F.41.2. Authors
Tatsuo Ishii, Satoshi Nagayasu and Abhijit Menon-Sen

F.42. pg_trgm
The pg_trgm module provides functions and operators for determining the similarity of alphanumeric
text based on trigram matching, as well as index operator classes that support fast searching for similar
strings.

2386

Additional Supplied Modules

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.42.1. Trigram (or Trigraph) Concepts
A trigram is a group of three consecutive characters taken from a string. We can measure the similarity
of two strings by counting the number of trigrams they share. This simple idea turns out to be very
effective for measuring the similarity of words in many natural languages.

Note
pg_trgm ignores non-word characters (non-alphanumerics) when extracting trigrams from a
string. Each word is considered to have two spaces prefixed and one space suffixed when
determining the set of trigrams contained in the string. For example, the set of trigrams in the
string “cat” is “ c”, “ ca”, “cat”, and “at ”. The set of trigrams in the string “foo|bar” is “ f”,
“ fo”, “foo”, “oo ”, “ b”, “ ba”, “bar”, and “ar ”.

F.42.2. Functions and Operators
The functions provided by the pg_trgm module are shown in Table F.88, the operators in Table F.89.

Table F.88. pg_trgm Functions

Function
Description

similarity (text, text) → real
Returns a number that indicates how similar the two arguments are. The range of the result
is zero (indicating that the two strings are completely dissimilar) to one (indicating that the
two strings are identical).

show_trgm (text) → text[]
Returns an array of all the trigrams in the given string. (In practice this is seldom useful
except for debugging.)

word_similarity (text, text) → real
Returns a number that indicates the greatest similarity between the set of trigrams in the
first string and any continuous extent of an ordered set of trigrams in the second string. For
details, see the explanation below.

strict_word_similarity (text, text) → real
Same as word_similarity , but forces extent boundaries to match word boundaries. Since
we don't have cross-word trigrams, this function actually returns greatest similarity between
first string and any continuous extent of words of the second string.

show_limit () → real
Returns the current similarity threshold used by the % operator. This sets the minimum
similarity between two words for them to be considered similar enough to be misspellings of
each other, for example. (Deprecated; instead use SHOW pg_trgm.similarity_threshold .)

set_limit (real) → real
Sets the current similarity threshold that is used by the % operator. The threshold must be
between 0 and 1 (default is 0.3). Returns the same value passed in. (Deprecated; instead use
SET pg_trgm.similarity_threshold .)

Consider the following example:

SELECT word_similarity('word', 'two words');
 word_similarity

2387

Additional Supplied Modules

 0.8
(1 row)

In the first string, the set of trigrams is {" w"," wo","wor","ord","rd "}. In the second string, the
ordered set of trigrams is {" t"," tw","two","wo "," w"," wo","wor","ord","rds","ds "}. The
most similar extent of an ordered set of trigrams in the second string is {" w"," wo","wor","ord"},
and the similarity is 0.8.

This function returns a value that can be approximately understood as the greatest similarity between
the first string and any substring of the second string. However, this function does not add padding to
the boundaries of the extent. Thus, the number of additional characters present in the second string is
not considered, except for the mismatched word boundaries.

At the same time, strict_word_similarity selects an extent of words in the second string. In the
example above, strict_word_similarity would select the extent of a single word 'words', whose set
of trigrams is {" w"," wo","wor","ord","rds","ds "}.
SELECT strict_word_similarity('word', 'two words'), similarity('word', 'words');
 strict_word_similarity | similarity
------------------------+------------
 0.571429 | 0.571429
(1 row)

Thus, the strict_word_similarity function is useful for finding the similarity to whole words, while
word_similarity is more suitable for finding the similarity for parts of words.

Table F.89. pg_trgm Operators

Operator
Description

text % text → boolean
Returns true if its arguments have a similarity that is greater than the current similarity
threshold set by pg_trgm.similarity_threshold .

text <% text → boolean
Returns true if the similarity between the trigram set in the first argument and a continuous
extent of an ordered trigram set in the second argument is greater than the current word
similarity threshold set by pg_trgm.word_similarity_threshold parameter.

text %> text → boolean
Commutator of the <% operator.

text <<% text → boolean
Returns true if its second argument has a continuous extent of an ordered trigram set
that matches word boundaries, and its similarity to the trigram set of the first argument is
greater than the current strict word similarity threshold set by the pg_trgm.strict_word_
similarity_threshold parameter.

text %>> text → boolean
Commutator of the <<% operator.

text <-> text → real
Returns the “distance” between the arguments, that is one minus the similarity() value.

text <<-> text → real
Returns the “distance” between the arguments, that is one minus the word_similarity()
value.

text <->> text → real
Commutator of the <<-> operator.

text <<<-> text → real

2388

Additional Supplied Modules

Operator
Description
Returns the “distance” between the arguments, that is one minus the strict_word_
similarity() value.

text <->>> text → real
Commutator of the <<<-> operator.

F.42.3. GUC Parameters
pg_trgm.similarity_threshold (real)

Sets the current similarity threshold that is used by the % operator. The threshold must be between
0 and 1 (default is 0.3).

pg_trgm.word_similarity_threshold (real)
Sets the current word similarity threshold that is used by the <% and %> operators. The threshold
must be between 0 and 1 (default is 0.6).

pg_trgm.strict_word_similarity_threshold (real)
Sets the current strict word similarity threshold that is used by the <<% and %>> operators. The
threshold must be between 0 and 1 (default is 0.5).

F.42.4. Index Support
The pg_trgm module provides GiST and GIN index operator classes that allow you to create an index
over a text column for the purpose of very fast similarity searches. These index types support the above-
described similarity operators, and additionally support trigram-based index searches for LIKE, ILIKE,
~ and ~* queries. (These indexes do not support equality nor simple comparison operators, so you may
need a regular B-tree index too.)

Example:
CREATE TABLE test_trgm (t text);
CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops);

or
CREATE INDEX trgm_idx ON test_trgm USING GIN (t gin_trgm_ops);

gist_trgm_ops GiST opclass approximates a set of trigrams as a bitmap signature. Its optional integer
parameter siglen determines the signature length in bytes. The default length is 12 bytes. Valid values
of signature length are between 1 and 2024 bytes. Longer signatures lead to a more precise search
(scanning a smaller fraction of the index and fewer heap pages), at the cost of a larger index.

Example of creating such an index with a signature length of 32 bytes:

CREATE INDEX trgm_idx ON test_trgm USING GIST (t gist_trgm_ops(siglen=32));

At this point, you will have an index on the t column that you can use for similarity searching. A typical
query is
SELECT t, similarity(t, 'word') AS sml
 FROM test_trgm
 WHERE t % 'word'
 ORDER BY sml DESC, t;

This will return all values in the text column that are sufficiently similar to word, sorted from best match
to worst. The index will be used to make this a fast operation even over very large data sets.

A variant of the above query is
SELECT t, t <-> 'word' AS dist

2389

Additional Supplied Modules

 FROM test_trgm
 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes. It will usually beat
the first formulation when only a small number of the closest matches is wanted.

Also you can use an index on the t column for word similarity or strict word similarity. Typical queries are:
SELECT t, word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <% t
 ORDER BY sml DESC, t;

and
SELECT t, strict_word_similarity('word', t) AS sml
 FROM test_trgm
 WHERE 'word' <<% t
 ORDER BY sml DESC, t;

This will return all values in the text column for which there is a continuous extent in the corresponding
ordered trigram set that is sufficiently similar to the trigram set of word, sorted from best match to worst.
The index will be used to make this a fast operation even over very large data sets.

Possible variants of the above queries are:
SELECT t, 'word' <<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

and
SELECT t, 'word' <<<-> t AS dist
 FROM test_trgm
 ORDER BY dist LIMIT 10;

This can be implemented quite efficiently by GiST indexes, but not by GIN indexes.

Beginning in PostgreSQL 9.1, these index types also support index searches for LIKE and ILIKE, for
example
SELECT * FROM test_trgm WHERE t LIKE '%foo%bar';

The index search works by extracting trigrams from the search string and then looking these up in the
index. The more trigrams in the search string, the more effective the index search is. Unlike B-tree based
searches, the search string need not be left-anchored.

Beginning in PostgreSQL 9.3, these index types also support index searches for regular-expression
matches (~ and ~* operators), for example
SELECT * FROM test_trgm WHERE t ~ '(foo|bar)';

The index search works by extracting trigrams from the regular expression and then looking these up
in the index. The more trigrams that can be extracted from the regular expression, the more effective
the index search is. Unlike B-tree based searches, the search string need not be left-anchored.

For both LIKE and regular-expression searches, keep in mind that a pattern with no extractable trigrams
will degenerate to a full-index scan.

The choice between GiST and GIN indexing depends on the relative performance characteristics of GiST
and GIN, which are discussed elsewhere.

F.42.5. Text Search Integration
Trigram matching is a very useful tool when used in conjunction with a full text index. In particular it
can help to recognize misspelled input words that will not be matched directly by the full text search
mechanism.

2390

Additional Supplied Modules

The first step is to generate an auxiliary table containing all the unique words in the documents:

CREATE TABLE words AS SELECT word FROM
 ts_stat('SELECT to_tsvector(''simple'', bodytext) FROM documents');

where documents is a table that has a text field bodytext that we wish to search. The reason for using the
simple configuration with the to_tsvector function, instead of using a language-specific configuration,
is that we want a list of the original (unstemmed) words.

Next, create a trigram index on the word column:

CREATE INDEX words_idx ON words USING GIN (word gin_trgm_ops);

Now, a SELECT query similar to the previous example can be used to suggest spellings for misspelled
words in user search terms. A useful extra test is to require that the selected words are also of similar
length to the misspelled word.

Note
Since the words table has been generated as a separate, static table, it will need to be periodically
regenerated so that it remains reasonably up-to-date with the document collection. Keeping it
exactly current is usually unnecessary.

F.42.6. References
GiST Development Site http://www.sai.msu.su/~megera/postgres/gist/

Tsearch2 Development Site http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

F.42.7. Authors
Oleg Bartunov <oleg@sai.msu.su>, Moscow, Moscow University, Russia

Teodor Sigaev <teodor@sigaev.ru>, Moscow, Delta-Soft Ltd.,Russia

Alexander Korotkov <a.korotkov@postgrespro.ru>, Moscow, Postgres Professional, Russia

Documentation: Christopher Kings-Lynne

This module is sponsored by Delta-Soft Ltd., Moscow, Russia.

F.43. pg_tsparser
pg_tsparser is a Postgres Pro extension for text search. This extension modifies the default text parsing
strategy for words that include:

• underscores
• numbers and letters separated by the hyphen character

In addition to separate word parts returned by default, pg_tsparser also returns the whole word.

F.43.1. Installation and Setup
pg_tsparser is included into the Postgres Pro distribution. To enable pg_tsparser, once Postgres Pro
is installed, create the pg_tsparser extension for each database you are planning to use:

CREATE EXTENSION pg_tsparser;

Once pg_tsparser is enabled, you can create your own text search configuration. In addition to
pg_tsparser, you can use any available dictionary.

2391

http://www.sai.msu.su/~megera/postgres/gist/
http://www.sai.msu.su/~megera/postgres/gist/tsearch/V2/

Additional Supplied Modules

For example, you can create english_ts configuration for the English language, as follows:

CREATE TEXT SEARCH CONFIGURATION english_ts (
 PARSER = tsparser
);

COMMENT ON TEXT SEARCH CONFIGURATION english_ts IS 'text search configuration for
 english language';

ALTER TEXT SEARCH CONFIGURATION english_ts
 ADD MAPPING FOR email, file, float, host, hword_numpart, int,
 numhword, numword, sfloat, uint, url, url_path, version
 WITH simple;

ALTER TEXT SEARCH CONFIGURATION english_ts
 ADD MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH english_stem;

F.43.2. Examples
The following examples illustrate the difference in search results returned by pg_tsparser and the
default parser:

SELECT to_tsvector('english', 'pg_trgm') as def_parser,
 to_tsvector('english_ts', 'pg_trgm') as new_parser;
 def_parser | new_parser
-----------------+-----------------------------
 'pg':1 'trgm':2 | 'pg':2 'pg_trgm':1 'trgm':3
(1 row)

SELECT to_tsvector('english', '123-abc') as def_parser,
 to_tsvector('english_ts', '123-abc') as new_parser;
 def_parser | new_parser
-----------------+-----------------------------
 '123':1 'abc':2 | '123':2 '123-abc':1 'abc':3
(1 row)

SELECT to_tsvector('english', 'rel-3.2-A') as def_parser,
 to_tsvector('english_ts', 'rel-3.2-A') as new_parser;
 def_parser | new_parser
------------------+-------------------------------
 '-3.2':2 'rel':1 | '3.2':3 'rel':2 'rel-3.2-a':1
(1 row)

See Also

CREATE TEXT SEARCH CONFIGURATION

ALTER TEXT SEARCH CONFIGURATION

F.43.3. Authors
Postgres Professional, Moscow, Russia

F.44. pg_variables
The pg_variables module provides functions for working with variables of various types. The created
variables are only available in the current user session.

2392

Additional Supplied Modules

F.44.1. Installation
The pg_variables extension is included into Postgres Pro. Once you have Postgres Pro installed, you
must execute the CREATE EXTENSION command to enable pg_variables, as follows:

CREATE EXTENSION pg_variables;

F.44.2. Usage
The pg_variables module provides several functions for creating, reading, and managing variables of
scalar, record, and array types. See the following sections for function descriptions and syntax:

• Section F.44.3.1 describes functions for scalar variables.
• Section F.44.3.2 describes functions for record variables.
• Section F.44.3.3 describes functions for array variables.
• Section F.44.3.4 lists functions you can use to manage all variables in your current session.

For detailed usage examples, see Section F.44.4.

F.44.2.1. Using Transactional Variables
By default, the created variables are non-transactional. Once successfully set, a variable exists for the
whole session, regardless of rollbacks, if any. For example:

SELECT pgv_set('vars', 'int1', 101);
BEGIN;
SELECT pgv_set('vars', 'int2', 102);
ROLLBACK;

SELECT * FROM pgv_list() order by package, name;
 package | name | is_transactional
---------+------+------------------
 vars | int1 | f
 vars | int2 | f

If you would like to use variables that support transactions and savepoints, pass the optional
is_transactional flag as the last parameter when creating this variable:

BEGIN;
SELECT pgv_set('vars', 'trans_int', 101, true);
SAVEPOINT sp1;
SELECT pgv_set('vars', 'trans_int', 102, true);
ROLLBACK TO sp1;
COMMIT;
SELECT pgv_get('vars', 'trans_int', NULL::int);
 pgv_get

 101

You must use the is_transactional flag every time you change the value of a transactional variable
using pgv_set() or pgv_insert() functions. Otherwise, an error occurs. Other functions do not require
this flag.

SELECT pgv_insert('pack', 'var_record', row(123::int, 'text'::text), true);

SELECT pgv_insert('pack', 'var_record', row(456::int, 'another text'::text));
ERROR: variable "var_record" already created as TRANSACTIONAL

SELECT pgv_delete('pack', 'var_record', 123::int);

2393

Additional Supplied Modules

If the pgv_free() or pgv_remove() function calls are rolled back, the affected transactional variables
will be restored, unlike non-transactional variables, which are removed permanently. For example:

SELECT pgv_set('pack', 'var_reg', 123);
SELECT pgv_set('pack', 'var_trans', 456, true);
BEGIN;
SELECT pgv_free();
ROLLBACK;
SELECT * FROM pgv_list();
 package | name | is_transactional
---------+-----------+------------------
 pack | var_trans | t

F.44.3. Functions
F.44.3.1. Scalar Variables

The following functions support scalar variables:

Function Returns
pgv_set(package text, name text, value
anynonarray, is_transactional bool
default false)

void

pgv_get(package text, name text, var_
type anynonarray, strict bool default
true)

anynonarray

To use the pgv_get() function, you must first create a package and a variable using the pgv_set()
function. If the specified package or variable does not exist, an error occurs:

SELECT pgv_get('vars', 'int1', NULL::int);
ERROR: unrecognized package "vars"

SELECT pgv_get('vars', 'int1', NULL::int);
ERROR: unrecognized variable "int1"

pgv_get() function checks the variable type. If the specified type does not match the type of the variable,
an error is raised:

SELECT pgv_get('vars', 'int1', NULL::text);
ERROR: variable "int1" requires "integer" value

F.44.3.2. Records
The following functions support collections of record variables:

Function Returns Description
pgv_insert(package text,
 name text, r record, is_
transactional bool default
false)

void Inserts a record into a variable
collection for the specified
package. If the package or
variable does not exist, it is
created automatically. The
first column of r is the primary
key. If a record with the same
primary key already exists or this
variable collection has another
structure, an error is raised.

pgv_update(package text,
name text, r record)

boolean Updates a record with the
corresponding primary key

2394

Additional Supplied Modules

Function Returns Description
(the first column of r is the
primary key). Returns true if the
record was found. If this variable
collection has another structure,
 an error is raised.

pgv_delete(package
text, name text, value
anynonarray)

boolean Deletes a record with the
corresponding primary key (the
first column of r is the primary
key). Returns true if the record
was found.

pgv_select(package text,
name text)

set of records Returns the variable collection
records.

pgv_select(package
text, name text, value
anynonarray)

record Returns the record with the
corresponding primary key (the
first column of r is a primary
key).

pgv_select(package text,
name text, value anyarray)

set of records Returns the variable collection
records with the corresponding
primary keys (the first column of
r is a primary key).

To use pgv_update(), pgv_delete() and pgv_select() functions, you must first create a package and
a variable using the pgv_insert() function. The variable type and the record type must be the same;
otherwise, an error occurs.

F.44.3.3. Arrays
The following functions support array variables:

Function Returns
pgv_set(package text, name text, value
anyarray, is_transactional bool default
false)

void

pgv_get(package text, name text, var_
type anyarray, strict bool default true)

anyarray

Usage instructions for these functions are the same as those provided in Section F.44.3.1 for scalar
variables.

F.44.3.4. Miscellaneous Functions

Function Returns Description
pgv_exists(package text,
name text)

bool Returns true if the specified
package and variable exist.

pgv_exists(package text) bool Returns true if the specified
package exists.

pgv_remove(package text,
name text)

void Removes the variable with the
specified name. The specified
package and variable must exist;
otherwise, an error is raised.

pgv_remove(package text) void Removes the specified package
and all the corresponding

2395

Additional Supplied Modules

Function Returns Description
variables. The specified package
must exist; otherwise, an error is
raised.

pgv_free() void Removes all packages and
variables.

pgv_list() table(package text, name
text, is_transactional
bool)

Displays all the available
variables and the corresponding
packages, as well as whether
each variable is transactional.

pgv_stats() table(package text,
allocated_memory bigint)

Returns the list of assigned
packages and the amount of
memory used by variables,
 in bytes. If you are using
transactional variables, this
list also includes all deleted
packages that still may be
restored by a ROLLBACK. This
function only supports Postgres
Pro 9.6 or higher.

F.44.3.5. Deprecated Functions

F.44.3.5.1. Integer Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_int(package text, name text,
value int, is_transactional bool default
false)

void

pgv_get_int(package text, name text,
strict bool default true)

int

F.44.3.5.2. Text Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_text(package text, name text,
 value text, is_transactional bool
default false)

void

pgv_get_text(package text, name text,
strict bool default true)

text

F.44.3.5.3. Numeric Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_numeric(package text, name
text, value numeric, is_transactional
bool default false)

void

pgv_get_numeric(package text, name
text, strict bool default true)

numeric

2396

Additional Supplied Modules

F.44.3.5.4. Timestamp Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_timestamp(package text, name
text, value timestamp, is_transactional
bool default false)

void

pgv_get_timestamp(package text, name
text, strict bool default true)

timestamp

F.44.3.5.5. Timestamp with timezone Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_timestamptz(package text,
 name text, value timestamptz, is_
transactional bool default false)

void

pgv_get_timestamptz(package text, name
text, strict bool default true)

timestamptz

F.44.3.5.6. Date Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_date(package text, name text,
 value date, is_transactional bool
default false)

void

pgv_get_date(package text, name text,
strict bool default true)

date

F.44.3.5.7. Jsonb Variables

The following functions are deprecated. Use generic functions for scalar variables instead.

Function Returns
pgv_set_jsonb(package text, name text,
 value jsonb, is_transactional bool
default false)

void

pgv_get_jsonb(package text, name text,
 strict bool default true)

jsonb

F.44.4. Examples
Define scalar variables using the pgv_set() function, and then return their values using the pgv_get()
function:

SELECT pgv_set('vars', 'int1', 101);
SELECT pgv_set('vars', 'int2', 102);
SELECT pgv_set('vars', 'text1', 'text variable'::text);

SELECT pgv_get('vars', 'int1', NULL::int);
 pgv_get

 101

2397

Additional Supplied Modules

SELECT pgv_get('vars', 'int2', NULL::int);
 pgv_get

 102

SELECT pgv_get('vars', 'text1', NULL::text);
 pgv_get

 text variable

Let's assume we have the tab table and examine several examples of using record variables:

CREATE TABLE tab (id int, t varchar);
INSERT INTO tab VALUES (0, 'str00'), (1, 'str11');

You can use the following functions to work with record variables:

SELECT pgv_insert('vars', 'r1', tab) FROM tab;

SELECT pgv_select('vars', 'r1');
 pgv_select

 (1,str11)
 (0,str00)

SELECT pgv_select('vars', 'r1', 1);
 pgv_select

 (1,str11)

SELECT pgv_select('vars', 'r1', 0);
 pgv_select

 (0,str00)

SELECT pgv_select('vars', 'r1', ARRAY[1, 0]);
 pgv_select

 (1,str11)
 (0,str00)

SELECT pgv_delete('vars', 'r1', 1);

SELECT pgv_select('vars', 'r1');
 pgv_select

 (0,str00)

Consider the behavior of a transactional variable var_text when changed before and after savepoints:

SELECT pgv_set('pack', 'var_text', 'before transaction block'::text, true);
BEGIN;
SELECT pgv_set('pack', 'var_text', 'before savepoint'::text, true);
SAVEPOINT sp1;
SELECT pgv_set('pack', 'var_text', 'savepoint sp1'::text, true);
SAVEPOINT sp2;
SELECT pgv_set('pack', 'var_text', 'savepoint sp2'::text, true);
RELEASE sp2;
SELECT pgv_get('pack', 'var_text', NULL::text);

2398

Additional Supplied Modules

 pgv_get

 savepoint sp2

ROLLBACK TO sp1;
SELECT pgv_get('pack', 'var_text', NULL::text);
 pgv_get

 before savepoint

ROLLBACK;
SELECT pgv_get('pack', 'var_text', NULL::text);
 pgv_get

 before transaction block

If you create a variable after BEGIN or SAVEPOINT statements and than rollback to the previous state,
the transactional variable is removed:

BEGIN;
SAVEPOINT sp1;
SAVEPOINT sp2;
SELECT pgv_set('pack', 'var_int', 122, true);
RELEASE SAVEPOINT sp2;
SELECT pgv_get('pack', 'var_int', NULL::int);
pgv_get

 122

ROLLBACK TO sp1;
SELECT pgv_get('pack','var_int', NULL::int);
ERROR: unrecognized variable "var_int"
COMMIT;

List the available packages and variables:

SELECT * FROM pgv_list() ORDER BY package, name;
 package | name | is_transactional
---------+----------+------------------
 pack | var_text | t
 vars | int1 | f
 vars | int2 | f
 vars | r1 | f
 vars | text1 | f

Get the amount of memory used by variables, in bytes:

SELECT * FROM pgv_stats() ORDER BY package;
 package | allocated_memory
---------+------------------
 pack | 16384
 vars | 32768

Delete the specified variables or packages:

SELECT pgv_remove('vars', 'int1');
SELECT pgv_remove('vars');

Delete all packages and variables:

SELECT pgv_free();

2399

Additional Supplied Modules

F.44.5. Authors
Postgres Professional, Moscow, Russia

F.45. pg_visibility
The pg_visibility module provides a means for examining the visibility map (VM) and page-level
visibility information of a table. It also provides functions to check the integrity of a visibility map and
to force it to be rebuilt.

Three different bits are used to store information about page-level visibility. The all-visible bit in the
visibility map indicates that every tuple in the corresponding page of the relation is visible to every
current and future transaction. The all-frozen bit in the visibility map indicates that every tuple in the
page is frozen; that is, no future vacuum will need to modify the page until such time as a tuple is
inserted, updated, deleted, or locked on that page. The page header's PD_ALL_VISIBLE bit has the same
meaning as the all-visible bit in the visibility map, but is stored within the data page itself rather than in a
separate data structure. These two bits will normally agree, but the page's all-visible bit can sometimes
be set while the visibility map bit is clear after a crash recovery. The reported values can also disagree
because of a change that occurs after pg_visibility examines the visibility map and before it examines
the data page. Any event that causes data corruption can also cause these bits to disagree.

Functions that display information about PD_ALL_VISIBLE bits are much more costly than those that
only consult the visibility map, because they must read the relation's data blocks rather than only the
(much smaller) visibility map. Functions that check the relation's data blocks are similarly expensive.

F.45.1. Functions
pg_visibility_map(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen
OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation.

pg_visibility(relation regclass, blkno bigint, all_visible OUT boolean, all_frozen OUT
boolean, pd_all_visible OUT boolean) returns record

Returns the all-visible and all-frozen bits in the visibility map for the given block of the given relation,
plus the PD_ALL_VISIBLE bit of that block.

pg_visibility_map(relation regclass, blkno OUT bigint, all_visible OUT boolean,
all_frozen OUT boolean) returns setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation.

pg_visibility(relation regclass, blkno OUT bigint, all_visible OUT boolean, all_frozen
OUT boolean, pd_all_visible OUT boolean) returns setof record

Returns the all-visible and all-frozen bits in the visibility map for each block of the given relation,
plus the PD_ALL_VISIBLE bit of each block.

pg_visibility_map_summary(relation regclass, all_visible OUT bigint, all_frozen OUT
bigint) returns record

Returns the number of all-visible pages and the number of all-frozen pages in the relation according
to the visibility map.

pg_check_frozen(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-frozen tuples stored in pages marked all-frozen in the visibility map. If this
function returns a non-empty set of TIDs, the visibility map is corrupt.

pg_check_visible(relation regclass, t_ctid OUT tid) returns setof tid

Returns the TIDs of non-all-visible tuples stored in pages marked all-visible in the visibility map. If
this function returns a non-empty set of TIDs, the visibility map is corrupt.

2400

Additional Supplied Modules

pg_truncate_visibility_map(relation regclass) returns void

Truncates the visibility map for the given relation. This function is useful if you believe that the
visibility map for the relation is corrupt and wish to force rebuilding it. The first VACUUM executed on
the given relation after this function is executed will scan every page in the relation and rebuild the
visibility map. (Until that is done, queries will treat the visibility map as containing all zeroes.)

By default, these functions are executable only by superusers and members of the pg_stat_scan_tables
role, with the exception of pg_truncate_visibility_map(relation regclass) which can only be
executed by superusers.

F.45.2. Author
Robert Haas <rhaas@postgresql.org>

F.46. plantuner
The plantuner module provides hints for the planner that can disable or enable indexes for query
execution.

F.46.1. Motivation
In some cases, it may be required to control the planner by providing hints that make the optimizer
ignore some parts of its algorithm. There are many situations when a developer may want to temporarily
disable specific index(es), without dropping them, or to instruct the planner to use a specific index.

This version of plantuner provides a possibility to hide the specified indexes from Postgres Pro
planner, so it will not use them. For some workloads, Postgres Pro could be too pessimistic about
newly created tables and assume that there are much more rows in a table than it actually has. If the
plantuner.fix_empty_table GUC variable is set to true, plantuner sets to zero the number of pages/
tuples of the table that has no blocks in a file.

F.46.2. GUC Variables
plantuner.disable_index — list of indexes invisible to planner.

plantuner.enable_index — list of indexes visible to planner even if they are hidden by
plantuner.disable_index.

F.46.3. Example
To enable the module, you can either load plantuner shared library in a psql session or specify
shared_preload_libraries option in postgresql.conf.
=# LOAD 'plantuner';
=# create table test(id int);
=# create index id_idx on test(id);
=# create index id_idx2 on test(id);
=# \d test
 Table "public.test"
 Column | Type | Modifiers
--------+---------+-----------
 id | integer |
Indexes:
 "id_idx" btree (id)
 "id_idx2" btree (id)
=# explain select id from test where id=1;
 QUERY PLAN

 Bitmap Heap Scan on test (cost=4.34..15.03 rows=12 width=4)
 Recheck Cond: (id = 1)

2401

Additional Supplied Modules

 -> Bitmap Index Scan on id_idx2 (cost=0.00..4.34 rows=12 width=0)
 Index Cond: (id = 1)
(4 rows)
=# set enable_seqscan=off;
=# set plantuner.disable_index='id_idx2';
=# explain select id from test where id=1;
 QUERY PLAN
--
 Bitmap Heap Scan on test (cost=4.34..15.03 rows=12 width=4)
 Recheck Cond: (id = 1)
 -> Bitmap Index Scan on id_idx (cost=0.00..4.34 rows=12 width=0)
 Index Cond: (id = 1)
(4 rows)
=# set plantuner.disable_index='id_idx2,id_idx';
=# explain select id from test where id=1;
 QUERY PLAN

 Seq Scan on test (cost=10000000000.00..10000000040.00 rows=12 width=4)
 Filter: (id = 1)
(2 rows)
=# set plantuner.enable_index='id_idx';
=# explain select id from test where id=1;
 QUERY PLAN

 Bitmap Heap Scan on test (cost=4.34..15.03 rows=12 width=4)
 Recheck Cond: (id = 1)
 -> Bitmap Index Scan on id_idx (cost=0.00..4.34 rows=12 width=0)
 Index Cond: (id = 1)
(4 rows)

F.46.4. Authors
All work was done by Teodor Sigaev (teodor@sigaev.ru) and Oleg Bartunov (oleg@sai.msu.su).

The work sponsored by Nomao project (http://www.nomao.com).

F.47. postgres_fdw
The postgres_fdw module provides the foreign-data wrapper postgres_fdw, which can be used to access
data stored in external Postgres Pro servers.

The functionality provided by this module overlaps substantially with the functionality of the older dblink
module. But postgres_fdw provides more transparent and standards-compliant syntax for accessing
remote tables, and can give better performance in many cases.

To prepare for remote access using postgres_fdw:

1. Install the postgres_fdw extension using CREATE EXTENSION.
2. Create a foreign server object, using CREATE SERVER, to represent each remote database you want

to connect to. Specify connection information, except user and password, as options of the server
object.

3. Create a user mapping, using CREATE USER MAPPING, for each database user you want to allow to
access each foreign server. Specify the remote user name and password to use as user and password
options of the user mapping.

4. Create a foreign table, using CREATE FOREIGN TABLE or IMPORT FOREIGN SCHEMA, for each
remote table you want to access. The columns of the foreign table must match the referenced remote
table. You can, however, use table and/or column names different from the remote table's, if you
specify the correct remote names as options of the foreign table object.

2402

Additional Supplied Modules

Now you need only SELECT from a foreign table to access the data stored in its underlying remote table.
You can also modify the remote table using INSERT, UPDATE, DELETE, or COPY. (Of course, the remote user
you have specified in your user mapping must have privileges to do these things.)

Note that postgres_fdw currently lacks support for INSERT statements with an ON CONFLICT DO
UPDATE clause. However, the ON CONFLICT DO NOTHING clause is supported, provided a unique index
inference specification is omitted. Note also that postgres_fdw supports row movement invoked by
UPDATE statements executed on partitioned tables, but it currently does not handle the case where a
remote partition chosen to insert a moved row into is also an UPDATE target partition that will be updated
later.

It is generally recommended that the columns of a foreign table be declared with exactly the same data
types, and collations if applicable, as the referenced columns of the remote table. Although postgres_fdw
is currently rather forgiving about performing data type conversions at need, surprising semantic
anomalies may arise when types or collations do not match, due to the remote server interpreting query
conditions differently from the local server.

Note that a foreign table can be declared with fewer columns, or with a different column order, than its
underlying remote table has. Matching of columns to the remote table is by name, not position.

F.47.1. FDW Options of postgres_fdw

F.47.1.1. Connection Options
A foreign server using the postgres_fdw foreign data wrapper can have the same options that libpq
accepts in connection strings, as described in Section 31.1.2, except that these options are not allowed
or have special handling:

• user, password and sslpassword (specify these in a user mapping, instead, or use a service file)
• client_encoding (this is automatically set from the local server encoding)
• fallback_application_name (always set to postgres_fdw)
• sslkey and sslcert - these may appear in either or both a connection and a user mapping. If both

are present, the user mapping setting overrides the connection setting.

Only superusers may create or modify user mappings with the sslcert or sslkey settings.

Only superusers may connect to foreign servers without password authentication, so always specify the
password option for user mappings belonging to non-superusers.

A superuser may override this check on a per-user-mapping basis by setting the user mapping option
password_required 'false', e.g.,

ALTER USER MAPPING FOR some_non_superuser SERVER loopback_nopw
OPTIONS (ADD password_required 'false');

To prevent unprivileged users from exploiting the authentication rights of the unix user the postgres
server is running as to escalate to superuser rights, only the superuser may set this option on a user
mapping.

Care is required to ensure that this does not allow the mapped user the ability to connect as superuser to
the mapped database per CVE-2007-3278 and CVE-2007-6601. Don't set password_required=false on
the public role. Keep in mind that the mapped user can potentially use any client certificates, .pgpass,
.pg_service.conf etc in the unix home directory of the system user the postgres server runs as. They
can also use any trust relationship granted by authentication modes like peer or ident authentication.

F.47.1.2. Object Name Options
These options can be used to control the names used in SQL statements sent to the remote Postgres
Pro server. These options are needed when a foreign table is created with names different from the
underlying remote table's names.

2403

Additional Supplied Modules

schema_name

This option, which can be specified for a foreign table, gives the schema name to use for the foreign
table on the remote server. If this option is omitted, the name of the foreign table's schema is used.

table_name

This option, which can be specified for a foreign table, gives the table name to use for the foreign
table on the remote server. If this option is omitted, the foreign table's name is used.

column_name

This option, which can be specified for a column of a foreign table, gives the column name to use for
the column on the remote server. If this option is omitted, the column's name is used.

F.47.1.3. Cost Estimation Options
postgres_fdw retrieves remote data by executing queries against remote servers, so ideally the
estimated cost of scanning a foreign table should be whatever it costs to be done on the remote server,
plus some overhead for communication. The most reliable way to get such an estimate is to ask the
remote server and then add something for overhead — but for simple queries, it may not be worth the
cost of an additional remote query to get a cost estimate. So postgres_fdw provides the following options
to control how cost estimation is done:

use_remote_estimate

This option, which can be specified for a foreign table or a foreign server, controls whether
postgres_fdw issues remote EXPLAIN commands to obtain cost estimates. A setting for a foreign
table overrides any setting for its server, but only for that table. The default is false.

fdw_startup_cost

This option, which can be specified for a foreign server, is a numeric value that is added to the
estimated startup cost of any foreign-table scan on that server. This represents the additional
overhead of establishing a connection, parsing and planning the query on the remote side, etc. The
default value is 100.

fdw_tuple_cost

This option, which can be specified for a foreign server, is a numeric value that is used as extra
cost per-tuple for foreign-table scans on that server. This represents the additional overhead of data
transfer between servers. You might increase or decrease this number to reflect higher or lower
network delay to the remote server. The default value is 0.01.

When use_remote_estimate is true, postgres_fdw obtains row count and cost estimates from the
remote server and then adds fdw_startup_cost and fdw_tuple_cost to the cost estimates. When
use_remote_estimate is false, postgres_fdw performs local row count and cost estimation and then
adds fdw_startup_cost and fdw_tuple_cost to the cost estimates. This local estimation is unlikely to
be very accurate unless local copies of the remote table's statistics are available. Running ANALYZE on
the foreign table is the way to update the local statistics; this will perform a scan of the remote table
and then calculate and store statistics just as though the table were local. Keeping local statistics can
be a useful way to reduce per-query planning overhead for a remote table — but if the remote table is
frequently updated, the local statistics will soon be obsolete.

F.47.1.4. Remote Execution Options
By default, only WHERE clauses using built-in operators and functions will be considered for execution on
the remote server. Clauses involving non-built-in functions are checked locally after rows are fetched.
If such functions are available on the remote server and can be relied on to produce the same results
as they do locally, performance can be improved by sending such WHERE clauses for remote execution.
This behavior can be controlled using the following option:

2404

Additional Supplied Modules

extensions

This option is a comma-separated list of names of Postgres Pro extensions that are installed,
in compatible versions, on both the local and remote servers. Functions and operators that are
immutable and belong to a listed extension will be considered shippable to the remote server. This
option can only be specified for foreign servers, not per-table.

When using the extensions option, it is the user's responsibility that the listed extensions exist
and behave identically on both the local and remote servers. Otherwise, remote queries may fail or
behave unexpectedly.

fetch_size

This option specifies the number of rows postgres_fdw should get in each fetch operation. It can be
specified for a foreign table or a foreign server. The option specified on a table overrides an option
specified for the server. The default is 100.

F.47.1.5. Updatability Options
By default all foreign tables using postgres_fdw are assumed to be updatable. This may be overridden
using the following option:

updatable

This option controls whether postgres_fdw allows foreign tables to be modified using INSERT, UPDATE
and DELETE commands. It can be specified for a foreign table or a foreign server. A table-level option
overrides a server-level option. The default is true.

Of course, if the remote table is not in fact updatable, an error would occur anyway. Use of this option
primarily allows the error to be thrown locally without querying the remote server. Note however
that the information_schema views will report a postgres_fdw foreign table to be updatable (or not)
according to the setting of this option, without any check of the remote server.

F.47.1.6. Importing Options
postgres_fdw is able to import foreign table definitions using IMPORT FOREIGN SCHEMA. This
command creates foreign table definitions on the local server that match tables or views present on the
remote server. If the remote tables to be imported have columns of user-defined data types, the local
server must have compatible types of the same names.

Importing behavior can be customized with the following options (given in the IMPORT FOREIGN SCHEMA
command):

import_collate

This option controls whether column COLLATE options are included in the definitions of foreign tables
imported from a foreign server. The default is true. You might need to turn this off if the remote
server has a different set of collation names than the local server does, which is likely to be the case
if it's running on a different operating system. If you do so, however, there is a very severe risk that
the imported table columns' collations will not match the underlying data, resulting in anomalous
query behavior.

Even when this parameter is set to true, importing columns whose collation is the remote server's
default can be risky. They will be imported with COLLATE "default", which will select the local
server's default collation, which could be different.

import_default

This option controls whether column DEFAULT expressions are included in the definitions of foreign
tables imported from a foreign server. The default is false. If you enable this option, be wary of
defaults that might get computed differently on the local server than they would be on the remote
server; nextval() is a common source of problems. The IMPORT will fail altogether if an imported
default expression uses a function or operator that does not exist locally.

2405

Additional Supplied Modules

import_generated

This option controls whether column GENERATED expressions are included in the definitions of foreign
tables imported from a foreign server. The default is true. The IMPORT will fail altogether if an
imported generated expression uses a function or operator that does not exist locally.

import_not_null

This option controls whether column NOT NULL constraints are included in the definitions of foreign
tables imported from a foreign server. The default is true.

Note that constraints other than NOT NULL will never be imported from the remote tables. Although
Postgres Pro does support CHECK constraints on foreign tables, there is no provision for importing them
automatically, because of the risk that a constraint expression could evaluate differently on the local
and remote servers. Any such inconsistency in the behavior of a CHECK constraint could lead to hard-to-
detect errors in query optimization. So if you wish to import CHECK constraints, you must do so manually,
and you should verify the semantics of each one carefully. For more detail about the treatment of CHECK
constraints on foreign tables, see CREATE FOREIGN TABLE.

Tables or foreign tables which are partitions of some other table are automatically excluded. Partitioned
tables are imported, unless they are a partition of some other table. Since all data can be accessed
through the partitioned table which is the root of the partitioning hierarchy, this approach should allow
access to all the data without creating extra objects.

F.47.2. Connection Management
postgres_fdw establishes a connection to a foreign server during the first query that uses a foreign
table associated with the foreign server. This connection is kept and re-used for subsequent queries in
the same session. However, if multiple user identities (user mappings) are used to access the foreign
server, a connection is established for each user mapping.

F.47.3. Transaction Management
During a query that references any remote tables on a foreign server, postgres_fdw opens a transaction
on the remote server if one is not already open corresponding to the current local transaction. The
remote transaction is committed or aborted when the local transaction commits or aborts. Savepoints
are similarly managed by creating corresponding remote savepoints.

The remote transaction uses SERIALIZABLE isolation level when the local transaction has SERIALIZABLE
isolation level; otherwise it uses REPEATABLE READ isolation level. This choice ensures that if a query
performs multiple table scans on the remote server, it will get snapshot-consistent results for all the
scans. A consequence is that successive queries within a single transaction will see the same data from
the remote server, even if concurrent updates are occurring on the remote server due to other activities.
That behavior would be expected anyway if the local transaction uses SERIALIZABLE or REPEATABLE READ
isolation level, but it might be surprising for a READ COMMITTED local transaction. A future Postgres Pro
release might modify these rules.

Note that it is currently not supported by postgres_fdw to prepare the remote transaction for two-phase
commit.

F.47.4. Remote Query Optimization
postgres_fdw attempts to optimize remote queries to reduce the amount of data transferred from
foreign servers. This is done by sending query WHERE clauses to the remote server for execution, and by
not retrieving table columns that are not needed for the current query. To reduce the risk of misexecution
of queries, WHERE clauses are not sent to the remote server unless they use only data types, operators,
and functions that are built-in or belong to an extension that's listed in the foreign server's extensions
option. Operators and functions in such clauses must be IMMUTABLE as well. For an UPDATE or DELETE
query, postgres_fdw attempts to optimize the query execution by sending the whole query to the remote
server if there are no query WHERE clauses that cannot be sent to the remote server, no local joins for

2406

Additional Supplied Modules

the query, no row-level local BEFORE or AFTER triggers or stored generated columns on the target table,
and no CHECK OPTION constraints from parent views. In UPDATE, expressions to assign to target columns
must use only built-in data types, IMMUTABLE operators, or IMMUTABLE functions, to reduce the risk of
misexecution of the query.

When postgres_fdw encounters a join between foreign tables on the same foreign server, it sends the
entire join to the foreign server, unless for some reason it believes that it will be more efficient to fetch
rows from each table individually, or unless the table references involved are subject to different user
mappings. While sending the JOIN clauses, it takes the same precautions as mentioned above for the
WHERE clauses.

The query that is actually sent to the remote server for execution can be examined using EXPLAIN
VERBOSE.

F.47.5. Remote Query Execution Environment
In the remote sessions opened by postgres_fdw, the search_path parameter is set to just pg_catalog,
so that only built-in objects are visible without schema qualification. This is not an issue for queries
generated by postgres_fdw itself, because it always supplies such qualification. However, this can pose
a hazard for functions that are executed on the remote server via triggers or rules on remote tables.
For example, if a remote table is actually a view, any functions used in that view will be executed with
the restricted search path. It is recommended to schema-qualify all names in such functions, or else
attach SET search_path options (see CREATE FUNCTION) to such functions to establish their expected
search path environment.

postgres_fdw likewise establishes remote session settings for various parameters:
• TimeZone is set to UTC
• DateStyle is set to ISO
• IntervalStyle is set to postgres
• extra_float_digits is set to 3 for remote servers 9.0 and newer and is set to 2 for older versions
These are less likely to be problematic than search_path, but can be handled with function SET options
if the need arises.

It is not recommended that you override this behavior by changing the session-level settings of these
parameters; that is likely to cause postgres_fdw to malfunction.

F.47.6. Cross-Version Compatibility
postgres_fdw can be used with remote servers dating back to PostgreSQL 8.3. Read-only capability
is available back to 8.1. A limitation however is that postgres_fdw generally assumes that immutable
built-in functions and operators are safe to send to the remote server for execution, if they appear in
a WHERE clause for a foreign table. Thus, a built-in function that was added since the remote server's
release might be sent to it for execution, resulting in “function does not exist” or a similar error. This
type of failure can be worked around by rewriting the query, for example by embedding the foreign table
reference in a sub-SELECT with OFFSET 0 as an optimization fence, and placing the problematic function
or operator outside the sub-SELECT.

F.47.7. Examples
Here is an example of creating a foreign table with postgres_fdw. First install the extension:

CREATE EXTENSION postgres_fdw;

Then create a foreign server using CREATE SERVER. In this example we wish to connect to a Postgres
Pro server on host 192.83.123.89 listening on port 5432. The database to which the connection is made
is named foreign_db on the remote server:
CREATE SERVER foreign_server
 FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS (host '192.83.123.89', port '5432', dbname 'foreign_db');

2407

Additional Supplied Modules

A user mapping, defined with CREATE USER MAPPING, is needed as well to identify the role that will
be used on the remote server:
CREATE USER MAPPING FOR local_user
 SERVER foreign_server
 OPTIONS (user 'foreign_user', password 'password');

Now it is possible to create a foreign table with CREATE FOREIGN TABLE. In this example we wish to
access the table named some_schema.some_table on the remote server. The local name for it will be
foreign_table:
CREATE FOREIGN TABLE foreign_table (
 id integer NOT NULL,
 data text
)
 SERVER foreign_server
 OPTIONS (schema_name 'some_schema', table_name 'some_table');

It's essential that the data types and other properties of the columns declared in CREATE FOREIGN TABLE
match the actual remote table. Column names must match as well, unless you attach column_name
options to the individual columns to show how they are named in the remote table. In many cases, use
of IMPORT FOREIGN SCHEMA is preferable to constructing foreign table definitions manually.

F.47.8. Author
Shigeru Hanada <shigeru.hanada@gmail.com>

F.48. ptrack
PTRACK is a block-level incremental backup engine for Postgres Pro. If PTRACK is enabled, backup
tools like pg_probackup can use its API to get information on the changed blocks on the fly when
taking incremental backups. Copying only those blocks that have changed since the previous backup
can significantly speed up the creation and minimize the size of backups.

PTRACK is designed to allow false positives, but to never allow false negatives: it means that all changes
within the data directory except hint bits are guaranteed to be marked in the PTRACK map file, although
some unchanged blocks might be included as well.

F.48.1. Setting up PTRACK
Once you complete Postgres Pro Standard installation, do the following:

1. Add ptrack to the shared_preload_libraries parameter in the postgresql.conf file:

shared_preload_libraries = 'ptrack'

2. Set ptrack.map_size parameter to a positive integer.

For optimal performance, it is recommended to set ptrack.map_size to N / 1024, where N is the
size of the Postgres Pro cluster, in MB. If you set this parameter to a lower value, PTRACK is more
likely to map several blocks together, which leads to false-positive results when tracking changed
blocks and increases the incremental backup size as unchanged blocks can also be copied into the
incremental backup.

Setting ptrack.map_size to a higher value does not affect PTRACK operation, but keep in mind that
you need up to ptrack.map_size * 3 MB of additional disk space since PTRACK uses two additional
temporary files to ensure durability. It is not recommended to set this parameter to a value higher
than 1024. Even for Postgres Pro clusters with N > 1 TB, it makes sense to use a higher value only
if the efficiency and sizes of backups are more critical than the potential overhead of maintaining
a large PTRACK map.

3. Check the wal_level setting. When using PTRACK, it is required to set the wal_level parameter to
replica or higher. Otherwise, you can lose some tracked changes if crash-recovery occurs: some

2408

Additional Supplied Modules

commands do not write WAL at all if wal_level is minimal, and PTRACK map files are flushed to
disk only at checkpoint time.

4. Restart the Postgres Pro Standard instance for the changes to take effect, and then create the
PTRACK extension:

CREATE EXTENSION ptrack;

As a result, several PTRACK functions are created, which are required for accessing PTRACK data.
Once this setup is complete, PTRACK starts tracking all the page changes in the Postgres Pro cluster
and creates a ptrack.map file that stores the latest LSN values for these pages.

Note
The ptrack.map_size parameter can only be set at server start. If you change this parameter, the
previously created PTRACK map file is cleared, and tracking newly changed blocks starts from
scratch. To avoid losing recent changes, it is recommended to retake a full backup after modifying
this setting.

F.48.2. PTRACK Configuration Parameters
ptrack.map_size (integer)

Specifies the size of a PTRACK map file and the amount of shared memory allocated for this file, in
MB. The PTRACK map file stores the latest LSN values for all pages of the Postgres Pro cluster that
have changed since PTRACK was enabled. It is not recommended to set this parameter to a value
higher than 1GB. The -1 value disables PTRACK, while the 0 value both disables PTRACK and cleans
up all the related service files.

The ptrack.map_size parameter can only be set at server start. If you change this parameter, the
previously created PTRACK map file is cleared, and tracking newly changed blocks starts from
scratch. To avoid losing recent changes, it is recommended to retake a full backup after modifying
this setting.

Default: -1

F.48.3. PTRACK Functions
ptrack_init_lsn() returns pg_lsn

Returns the LSN of the last PTRACK map initialization.

ptrack_get_pagemapset(start_lsn pg_lsn) returns setof record
Returns a list of data files changed since the specified start_lsn with the number and bitmap of
changed pages for each file.

For example:

postgres=# SELECT * FROM ptrack_get_pagemapset('0/185C8C0');
 path | pagecount | pagemap
---------------------+-----------+--
 base/16384/1255 | 3 | \x001000000005000000000000
 base/16384/2674 | 3 | \x0000000900010000000000000000
 base/16384/2691 | 1 | \x00004000000000000000000000
 base/16384/2608 | 1 | \x000000000000000400000000000000000000
 base/16384/2690 | 1 | \x000400000000000000000000

ptrack_get_change_stat(start_lsn pg_lsn) returns record
Returns the statistics of changes (number of files, number of changed pages and their total size in
MB) since the specified start_lsn.

2409

Additional Supplied Modules

For example:

postgres=# SELECT * FROM ptrack_get_change_stat('0/285C8C8');
 files | pages | size, MB
-------+-------+------------------------
 20 | 25 | 0.19531250000000000000

ptrack_version() returns text
Returns PTRACK version.

F.49. seg
This module implements a data type seg for representing line segments, or floating point intervals.
seg can represent uncertainty in the interval endpoints, making it especially useful for representing
laboratory measurements.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.49.1. Rationale
The geometry of measurements is usually more complex than that of a point in a numeric continuum.
A measurement is usually a segment of that continuum with somewhat fuzzy limits. The measurements
come out as intervals because of uncertainty and randomness, as well as because the value being
measured may naturally be an interval indicating some condition, such as the temperature range of
stability of a protein.

Using just common sense, it appears more convenient to store such data as intervals, rather than pairs
of numbers. In practice, it even turns out more efficient in most applications.

Further along the line of common sense, the fuzziness of the limits suggests that the use of traditional
numeric data types leads to a certain loss of information. Consider this: your instrument reads 6.50, and
you input this reading into the database. What do you get when you fetch it? Watch:

test=> select 6.50 :: float8 as "pH";
 pH

6.5
(1 row)

In the world of measurements, 6.50 is not the same as 6.5. It may sometimes be critically different. The
experimenters usually write down (and publish) the digits they trust. 6.50 is actually a fuzzy interval
contained within a bigger and even fuzzier interval, 6.5, with their center points being (probably) the
only common feature they share. We definitely do not want such different data items to appear the same.

Conclusion? It is nice to have a special data type that can record the limits of an interval with arbitrarily
variable precision. Variable in the sense that each data element records its own precision.

Check this out:

test=> select '6.25 .. 6.50'::seg as "pH";
 pH

6.25 .. 6.50
(1 row)

F.49.2. Syntax
The external representation of an interval is formed using one or two floating-point numbers joined by the
range operator (.. or ...). Alternatively, it can be specified as a center point plus or minus a deviation.
Optional certainty indicators (<, > or ~) can be stored as well. (Certainty indicators are ignored by all

2410

Additional Supplied Modules

the built-in operators, however.) Table F.90 gives an overview of allowed representations; Table F.91
shows some examples.

In Table F.90, x, y, and delta denote floating-point numbers. x and y, but not delta, can be preceded
by a certainty indicator.

Table F.90. seg External Representations

x Single value (zero-length interval)
x .. y Interval from x to y
x (+-) delta Interval from x - delta to x + delta
x .. Open interval with lower bound x
.. x Open interval with upper bound x

Table F.91. Examples of Valid seg Input

5.0 Creates a zero-length segment (a point, if you will)
~5.0 Creates a zero-length segment and records ~ in the data. ~ is

ignored by seg operations, but is preserved as a comment.
<5.0 Creates a point at 5.0. < is ignored but is preserved as a comment.
>5.0 Creates a point at 5.0. > is ignored but is preserved as a comment.
5(+-)0.3 Creates an interval 4.7 .. 5.3. Note that the (+-) notation isn't

preserved.
50 .. Everything that is greater than or equal to 50
.. 0 Everything that is less than or equal to 0
1.5e-2 .. 2E-2 Creates an interval 0.015 .. 0.02
1 ... 2 The same as 1...2, or 1 .. 2, or 1..2 (spaces around the range

operator are ignored)

Because the ... operator is widely used in data sources, it is allowed as an alternative spelling of the
.. operator. Unfortunately, this creates a parsing ambiguity: it is not clear whether the upper bound
in 0...23 is meant to be 23 or 0.23. This is resolved by requiring at least one digit before the decimal
point in all numbers in seg input.

As a sanity check, seg rejects intervals with the lower bound greater than the upper, for example 5 .. 2.

F.49.3. Precision
seg values are stored internally as pairs of 32-bit floating point numbers. This means that numbers with
more than 7 significant digits will be truncated.

Numbers with 7 or fewer significant digits retain their original precision. That is, if your query returns
0.00, you will be sure that the trailing zeroes are not the artifacts of formatting: they reflect the
precision of the original data. The number of leading zeroes does not affect precision: the value 0.0067
is considered to have just 2 significant digits.

F.49.4. Usage
The seg module includes a GiST index operator class for seg values. The operators supported by the
GiST operator class are shown in Table F.92.

Table F.92. Seg GiST Operators

Operator
Description

seg << seg → boolean

2411

Additional Supplied Modules

Operator
Description
Is the first seg entirely to the left of the second? [a, b] << [c, d] is true if b < c.

seg >> seg → boolean
Is the first seg entirely to the right of the second? [a, b] >> [c, d] is true if a > d.

seg &< seg → boolean
Does the first seg not extend to the right of the second? [a, b] &< [c, d] is true if b <= d.

seg &> seg → boolean
Does the first seg not extend to the left of the second? [a, b] &> [c, d] is true if a >= c.

seg = seg → boolean
Are the two segs equal?

seg && seg → boolean
Do the two segs overlap?

seg @> seg → boolean
Does the first seg contain the second?

seg <@ seg → boolean
Is the first seg contained in the second?

(Before PostgreSQL 8.2, the containment operators @> and <@ were respectively called @ and ~. These
names are still available, but are deprecated and will eventually be retired. Notice that the old names
are reversed from the convention formerly followed by the core geometric data types!)

In addition to the above operators, the usual comparison operators shown in Table 9.1 are available for
type seg. These operators first compare (a) to (c), and if these are equal, compare (b) to (d). That results
in reasonably good sorting in most cases, which is useful if you want to use ORDER BY with this type.

F.49.5. Notes
For examples of usage, see the regression test sql/seg.sql.

The mechanism that converts (+-) to regular ranges isn't completely accurate in determining the
number of significant digits for the boundaries. For example, it adds an extra digit to the lower boundary
if the resulting interval includes a power of ten:

postgres=> select '10(+-)1'::seg as seg;
 seg

9.0 .. 11 -- should be: 9 .. 11

The performance of an R-tree index can largely depend on the initial order of input values. It may be
very helpful to sort the input table on the seg column; see the script sort-segments.pl for an example.

F.49.6. Credits
Original author: Gene Selkov, Jr. <selkovjr@mcs.anl.gov>, Mathematics and Computer Science
Division, Argonne National Laboratory.

My thanks are primarily to Prof. Joe Hellerstein (https://dsf.berkeley.edu/jmh/) for elucidating the gist
of the GiST (http://gist.cs.berkeley.edu/). I am also grateful to all Postgres developers, present and past,
for enabling myself to create my own world and live undisturbed in it. And I would like to acknowledge
my gratitude to Argonne Lab and to the U.S. Department of Energy for the years of faithful support of
my database research.

F.50. sepgsql

2412

https://dsf.berkeley.edu/jmh/
http://gist.cs.berkeley.edu/

Additional Supplied Modules

sepgsql is a loadable module that supports label-based mandatory access control (MAC) based on
SELinux security policy.

Warning
The current implementation has significant limitations, and does not enforce mandatory access
control for all actions. See Section F.50.7.

F.50.1. Overview
This module integrates with SELinux to provide an additional layer of security checking above and
beyond what is normally provided by Postgres Pro. From the perspective of SELinux, this module allows
Postgres Pro to function as a user-space object manager. Each table or function access initiated by a
DML query will be checked against the system security policy. This check is in addition to the usual SQL
permissions checking performed by Postgres Pro.

SELinux access control decisions are made using security labels, which are represented by strings such
as system_u:object_r:sepgsql_table_t:s0. Each access control decision involves two labels: the label
of the subject attempting to perform the action, and the label of the object on which the operation is to
be performed. Since these labels can be applied to any sort of object, access control decisions for objects
stored within the database can be (and, with this module, are) subjected to the same general criteria
used for objects of any other type, such as files. This design is intended to allow a centralized security
policy to protect information assets independent of the particulars of how those assets are stored.

The SECURITY LABEL statement allows assignment of a security label to a database object.

F.50.2. Installation
sepgsql can only be used on Linux 2.6.28 or higher with SELinux enabled. It is not available on any other
platform. You will also need libselinux 2.1.10 or higher and selinux-policy 3.9.13 or higher (although
some distributions may backport the necessary rules into older policy versions).

The sestatus command allows you to check the status of SELinux. A typical display is:
$ sestatus
SELinux status: enabled
SELinuxfs mount: /selinux
Current mode: enforcing
Mode from config file: enforcing
Policy version: 24
Policy from config file: targeted

If SELinux is disabled or not installed, you must set that product up first before installing this module.

To build this module, include the option --with-selinux in your Postgres Pro configure command. Be
sure that the libselinux-devel RPM is installed at build time.

To use this module, you must include sepgsql in the shared_preload_libraries parameter in
postgresql.conf. The module will not function correctly if loaded in any other manner. Once the module
is loaded, you should execute sepgsql.sql in each database. This will install functions needed for
security label management, and assign initial security labels.

Here is an example showing how to initialize a fresh database cluster with sepgsql functions and security
labels installed. Adjust the paths shown as appropriate for your installation:

$ export PGDATA=/path/to/data/directory
$ initdb
$ vi $PGDATA/postgresql.conf
 change
 #shared_preload_libraries = '' # (change requires restart)

2413

Additional Supplied Modules

 to
 shared_preload_libraries = 'sepgsql' # (change requires restart)
$ for DBNAME in template0 template1 postgres; do
 postgres --single -F -c exit_on_error=true $DBNAME \
 </usr/local/pgsql/share/contrib/sepgsql.sql >/dev/null
 done

Please note that you may see some or all of the following notifications depending on the particular
versions you have of libselinux and selinux-policy:
/etc/selinux/targeted/contexts/sepgsql_contexts: line 33 has invalid object type
 db_blobs
/etc/selinux/targeted/contexts/sepgsql_contexts: line 36 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 37 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 38 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 39 has invalid object type
 db_language
/etc/selinux/targeted/contexts/sepgsql_contexts: line 40 has invalid object type
 db_language

These messages are harmless and should be ignored.

If the installation process completes without error, you can now start the server normally.

F.50.3. Regression Tests
Due to the nature of SELinux, running the regression tests for sepgsql requires several extra
configuration steps, some of which must be done as root. The regression tests will not be run by an
ordinary make check or make installcheck command; you must set up the configuration and then
invoke the test script manually. The tests must be run in the contrib/sepgsql directory of a configured
Postgres Pro build tree. Although they require a build tree, the tests are designed to be executed against
an installed server, that is they are comparable to make installcheck not make check.

First, set up sepgsql in a working database according to the instructions in Section F.50.2. Note that the
current operating system user must be able to connect to the database as superuser without password
authentication.

Second, build and install the policy package for the regression test. The sepgsql-regtest policy is a
special purpose policy package which provides a set of rules to be allowed during the regression tests. It
should be built from the policy source file sepgsql-regtest.te, which is done using make with a Makefile
supplied by SELinux. You will need to locate the appropriate Makefile on your system; the path shown
below is only an example. (This Makefile is usually supplied by the selinux-policy-devel or selinux-
policy RPM.) Once built, install this policy package using the semodule command, which loads supplied
policy packages into the kernel. If the package is correctly installed, semodule -l should list sepgsql-
regtest as an available policy package:

$ cd .../contrib/sepgsql
$ make -f /usr/share/selinux/devel/Makefile
$ sudo semodule -u sepgsql-regtest.pp
$ sudo semodule -l | grep sepgsql
sepgsql-regtest 1.07

Third, turn on sepgsql_regression_test_mode. For security reasons, the rules in sepgsql-regtest
are not enabled by default; the sepgsql_regression_test_mode parameter enables the rules needed to
launch the regression tests. It can be turned on using the setsebool command:

$ sudo setsebool sepgsql_regression_test_mode on
$ getsebool sepgsql_regression_test_mode

2414

Additional Supplied Modules

sepgsql_regression_test_mode --> on

Fourth, verify your shell is operating in the unconfined_t domain:

$ id -Z
unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023

See Section F.50.8 for details on adjusting your working domain, if necessary.

Finally, run the regression test script:

$./test_sepgsql

This script will attempt to verify that you have done all the configuration steps correctly, and then it will
run the regression tests for the sepgsql module.

After completing the tests, it's recommended you disable the sepgsql_regression_test_mode
parameter:

$ sudo setsebool sepgsql_regression_test_mode off

You might prefer to remove the sepgsql-regtest policy entirely:

$ sudo semodule -r sepgsql-regtest

F.50.4. GUC Parameters
sepgsql.permissive (boolean)

This parameter enables sepgsql to function in permissive mode, regardless of the system setting. The
default is off. This parameter can only be set in the postgresql.conf file or on the server command
line.

When this parameter is on, sepgsql functions in permissive mode, even if SELinux in general is
working in enforcing mode. This parameter is primarily useful for testing purposes.

sepgsql.debug_audit (boolean)
This parameter enables the printing of audit messages regardless of the system policy settings. The
default is off, which means that messages will be printed according to the system settings.

The security policy of SELinux also has rules to control whether or not particular accesses are logged.
By default, access violations are logged, but allowed accesses are not.

This parameter forces all possible logging to be turned on, regardless of the system policy.

F.50.5. Features
F.50.5.1. Controlled Object Classes

The security model of SELinux describes all the access control rules as relationships between a subject
entity (typically, a client of the database) and an object entity (such as a database object), each of which
is identified by a security label. If access to an unlabeled object is attempted, the object is treated as
if it were assigned the label unlabeled_t.

Currently, sepgsql allows security labels to be assigned to schemas, tables, columns, sequences, views,
and functions. When sepgsql is in use, security labels are automatically assigned to supported database
objects at creation time. This label is called a default security label, and is decided according to the
system security policy, which takes as input the creator's label, the label assigned to the new object's
parent object and optionally name of the constructed object.

A new database object basically inherits the security label of the parent object, except when the security
policy has special rules known as type-transition rules, in which case a different label may be applied.
For schemas, the parent object is the current database; for tables, sequences, views, and functions, it is
the containing schema; for columns, it is the containing table.

2415

Additional Supplied Modules

F.50.5.2. DML Permissions
For tables, db_table:select, db_table:insert, db_table:update or db_table:delete are checked for
all the referenced target tables depending on the kind of statement; in addition, db_table:select is
also checked for all the tables that contain columns referenced in the WHERE or RETURNING clause, as a
data source for UPDATE, and so on.

Column-level permissions will also be checked for each referenced column. db_column:select is
checked on not only the columns being read using SELECT, but those being referenced in other DML
statements; db_column:update or db_column:insert will also be checked for columns being modified
by UPDATE or INSERT.

For example, consider:
UPDATE t1 SET x = 2, y = func1(y) WHERE z = 100;

Here, db_column:update will be checked for t1.x, since it is being updated, db_column:{select
update} will be checked for t1.y, since it is both updated and referenced, and db_column:select will
be checked for t1.z, since it is only referenced. db_table:{select update} will also be checked at
the table level.

For sequences, db_sequence:get_value is checked when we reference a sequence object using SELECT;
however, note that we do not currently check permissions on execution of corresponding functions such
as lastval().

For views, db_view:expand will be checked, then any other required permissions will be checked on the
objects being expanded from the view, individually.

For functions, db_procedure:{execute} will be checked when user tries to execute a function as a part of
query, or using fast-path invocation. If this function is a trusted procedure, it also checks db_procedure:
{entrypoint} permission to check whether it can perform as entry point of trusted procedure.

In order to access any schema object, db_schema:search permission is required on the containing
schema. When an object is referenced without schema qualification, schemas on which this permission
is not present will not be searched (just as if the user did not have USAGE privilege on the schema). If
an explicit schema qualification is present, an error will occur if the user does not have the requisite
permission on the named schema.

The client must be allowed to access all referenced tables and columns, even if they originated from
views which were then expanded, so that we apply consistent access control rules independent of the
manner in which the table contents are referenced.

The default database privilege system allows database superusers to modify system catalogs using DML
commands, and reference or modify toast tables. These operations are prohibited when sepgsql is
enabled.

F.50.5.3. DDL Permissions
SELinux defines several permissions to control common operations for each object type; such as creation,
alter, drop and relabel of security label. In addition, several object types have special permissions to
control their characteristic operations; such as addition or deletion of name entries within a particular
schema.

Creating a new database object requires create permission. SELinux will grant or deny this permission
based on the client's security label and the proposed security label for the new object. In some cases,
additional privileges are required:

• CREATE DATABASE additionally requires getattr permission for the source or template database.
• Creating a schema object additionally requires add_name permission on the parent schema.
• Creating a table additionally requires permission to create each individual table column, just as if

each table column were a separate top-level object.

2416

Additional Supplied Modules

• Creating a function marked as LEAKPROOF additionally requires install permission. (This
permission is also checked when LEAKPROOF is set for an existing function.)

When DROP command is executed, drop will be checked on the object being removed. Permissions will be
also checked for objects dropped indirectly via CASCADE. Deletion of objects contained within a particular
schema (tables, views, sequences and procedures) additionally requires remove_name on the schema.

When ALTER command is executed, setattr will be checked on the object being modified for each object
types, except for subsidiary objects such as the indexes or triggers of a table, where permissions are
instead checked on the parent object. In some cases, additional permissions are required:

• Moving an object to a new schema additionally requires remove_name permission on the old schema
and add_name permission on the new one.

• Setting the LEAKPROOF attribute on a function requires install permission.
• Using SECURITY LABEL on an object additionally requires relabelfrom permission for the object

in conjunction with its old security label and relabelto permission for the object in conjunction
with its new security label. (In cases where multiple label providers are installed and the user tries
to set a security label, but it is not managed by SELinux, only setattr should be checked here. This
is currently not done due to implementation restrictions.)

F.50.5.4. Trusted Procedures
Trusted procedures are similar to security definer functions or setuid commands. SELinux provides a
feature to allow trusted code to run using a security label different from that of the client, generally for
the purpose of providing highly controlled access to sensitive data (e.g., rows might be omitted, or the
precision of stored values might be reduced). Whether or not a function acts as a trusted procedure is
controlled by its security label and the operating system security policy. For example:

postgres=# CREATE TABLE customer (
 cid int primary key,
 cname text,
 credit text
);
CREATE TABLE
postgres=# SECURITY LABEL ON COLUMN customer.credit
 IS 'system_u:object_r:sepgsql_secret_table_t:s0';
SECURITY LABEL
postgres=# CREATE FUNCTION show_credit(int) RETURNS text
 AS 'SELECT regexp_replace(credit, ''-[0-9]+$'', ''-xxxx'', ''g'')
 FROM customer WHERE cid = $1'
 LANGUAGE sql;
CREATE FUNCTION
postgres=# SECURITY LABEL ON FUNCTION show_credit(int)
 IS 'system_u:object_r:sepgsql_trusted_proc_exec_t:s0';
SECURITY LABEL

The above operations should be performed by an administrative user.

postgres=# SELECT * FROM customer;
ERROR: SELinux: security policy violation
postgres=# SELECT cid, cname, show_credit(cid) FROM customer;
 cid | cname | show_credit
-----+--------+---------------------
 1 | taro | 1111-2222-3333-xxxx
 2 | hanako | 5555-6666-7777-xxxx
(2 rows)

In this case, a regular user cannot reference customer.credit directly, but a trusted procedure
show_credit allows the user to print the credit card numbers of customers with some of the digits
masked out.

2417

Additional Supplied Modules

F.50.5.5. Dynamic Domain Transitions
It is possible to use SELinux's dynamic domain transition feature to switch the security label of the client
process, the client domain, to a new context, if that is allowed by the security policy. The client domain
needs the setcurrent permission and also dyntransition from the old to the new domain.

Dynamic domain transitions should be considered carefully, because they allow users to switch their
label, and therefore their privileges, at their option, rather than (as in the case of a trusted procedure)
as mandated by the system. Thus, the dyntransition permission is only considered safe when used to
switch to a domain with a smaller set of privileges than the original one. For example:

regression=# select sepgsql_getcon();
 sepgsql_getcon

 unconfined_u:unconfined_r:unconfined_t:s0-s0:c0.c1023
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-
s0:c1.c4');
 sepgsql_setcon

 t
(1 row)

regression=# SELECT sepgsql_setcon('unconfined_u:unconfined_r:unconfined_t:s0-
s0:c1.c1023');
ERROR: SELinux: security policy violation

In this example above we were allowed to switch from the larger MCS range c1.c1023 to the smaller
range c1.c4, but switching back was denied.

A combination of dynamic domain transition and trusted procedure enables an interesting use case
that fits the typical process life-cycle of connection pooling software. Even if your connection pooling
software is not allowed to run most of SQL commands, you can allow it to switch the security label
of the client using the sepgsql_setcon() function from within a trusted procedure; that should take
some credential to authorize the request to switch the client label. After that, this session will have the
privileges of the target user, rather than the connection pooler. The connection pooler can later revert
the security label change by again using sepgsql_setcon() with NULL argument, again invoked from
within a trusted procedure with appropriate permissions checks. The point here is that only the trusted
procedure actually has permission to change the effective security label, and only does so when given
proper credentials. Of course, for secure operation, the credential store (table, procedure definition, or
whatever) must be protected from unauthorized access.

F.50.5.6. Miscellaneous
We reject the LOAD command across the board, because any module loaded could easily circumvent
security policy enforcement.

F.50.6. Sepgsql Functions
Table F.93 shows the available functions.

Table F.93. Sepgsql Functions

Function
Description

sepgsql_getcon () → text
Returns the client domain, the current security label of the client.

sepgsql_setcon (text) → boolean

2418

Additional Supplied Modules

Function
Description
Switches the client domain of the current session to the new domain, if allowed by the
security policy. It also accepts NULL input as a request to transition to the client's original
domain.

sepgsql_mcstrans_in (text) → text
Translates the given qualified MLS/MCS range into raw format if the mcstrans daemon is
running.

sepgsql_mcstrans_out (text) → text
Translates the given raw MLS/MCS range into qualified format if the mcstrans daemon is
running.

sepgsql_restorecon (text) → boolean
Sets up initial security labels for all objects within the current database. The argument may
be NULL, or the name of a specfile to be used as alternative of the system default.

F.50.7. Limitations
Data Definition Language (DDL) Permissions

Due to implementation restrictions, some DDL operations do not check permissions.

Data Control Language (DCL) Permissions
Due to implementation restrictions, DCL operations do not check permissions.

Row-level access control
Postgres Pro supports row-level access, but sepgsql does not.

Covert channels
sepgsql does not try to hide the existence of a certain object, even if the user is not allowed to
reference it. For example, we can infer the existence of an invisible object as a result of primary key
conflicts, foreign key violations, and so on, even if we cannot obtain the contents of the object. The
existence of a top secret table cannot be hidden; we only hope to conceal its contents.

F.50.8. External Resources
SE-PostgreSQL Introduction

This wiki page provides a brief overview, security design, architecture, administration and upcoming
features.

SELinux User's and Administrator's Guide
This document provides a wide spectrum of knowledge to administer SELinux on your systems. It
focuses primarily on Red Hat operating systems, but is not limited to them.

Fedora SELinux FAQ
This document answers frequently asked questions about SELinux. It focuses primarily on Fedora,
but is not limited to Fedora.

F.50.9. Author
KaiGai Kohei <kaigai@ak.jp.nec.com>

F.51. shared_ispell
The shared_ispell module provides a shared ispell dictionary, i.e. a dictionary that's stored in shared
segment. The traditional ispell implementation means that each session initializes and stores the
dictionary on it's own, which means a lot of CPU/RAM is wasted.

2419

https://wiki.postgresql.org/wiki/SEPostgreSQL
https://access.redhat.com/documentation/en-us/red_hat_enterprise_linux/7/html/selinux_users_and_administrators_guide/index
https://fedoraproject.org/wiki/SELinux_FAQ

Additional Supplied Modules

This extension allocates an area in shared segment (you have to choose the size in advance) and then
loads the dictionary into it when it's used for the first time.

F.51.1. Functions
The functions provided by the shared_ispell module are shown in Table F.94.

Table F.94. shared_ispell Functions

Function Returns Description
shared_ispell_reset() void Resets the dictionaries (e.g. so

that you can reload the updated
files from disk). The sessions that
already use the dictionaries will
be forced to reinitialize them.

shared_ispell_mem_used() int Returns a value of used memory
of the shared segment by loaded
shared dictionaries in bytes.

shared_ispell_mem_
available()

int Returns a value of available
memory of the shared segment.

shared_ispell_dicts() setof(dict_name varchar,
affix_name varchar, words
int, affixes int, bytes
int)

Returns a list of dictionaries
loaded in the shared segment.

shared_ispell_stoplists() setof(stop_name varchar,
words int, bytes int)

Returns a list of stopwords
loaded in the shared segment.

F.51.2. GUC Parameters
shared_ispell.max_size (int)

Defines the maximum size of the shared segment. This is a hard limit, the shared segment is not
extensible and you need to set it so that all the dictionaries fit into it and not much memory is wasted.

F.51.3. Using the dictionary
The module needs to allocate space in the shared memory segment. So add this to the config file (or
update the current values):
libraries to load
shared_preload_libraries = 'shared_ispell'

config of the shared memory
shared_ispell.max_size = 32MB

To find out how much memory you actually need, use a large value (e.g. 200MB) and load all the
dictionaries you want to use. Then use the shared_ispell_mem_used() function to find out how much
memory was actually used (and set the shared_ispell.max_size GUC variable accordingly).

Don't set it exactly to that value, leave there some free space, so that you can reload the dictionaries
without changing the GUC max_size limit (which requires a restart of the DB). Something like 512kB
should be just fine.

The extension defines a shared_ispell template that you may use to define custom dictionaries. E.g.
you may do this:
CREATE TEXT SEARCH DICTIONARY english_shared (
 TEMPLATE = shared_ispell,
 DictFile = en_us,
 AffFile = en_us,

2420

Additional Supplied Modules

 StopWords = english
);

CREATE TEXT SEARCH CONFIGURATION public.english_shared
 (COPY = pg_catalog.simple);

ALTER TEXT SEARCH CONFIGURATION english_shared
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH english_shared, english_stem;

We can test created configuration:
SELECT * FROM ts_debug('english_shared', 'abilities');
 alias | description | token | dictionaries | dictionary
 | lexemes
-----------+-----------------+-----------+-------------------------------
+----------------+-----------
 asciiword | Word, all ASCII | abilities | {english_shared,english_stem} |
 english_shared | {ability}
(1 row)

Or you can update your own text search configuration. For example, you have the public.english
dictionary. You can update it to use the shared_ispell template:
ALTER TEXT SEARCH CONFIGURATION public.english
 ALTER MAPPING FOR asciiword, asciihword, hword_asciipart,
 word, hword, hword_part
 WITH english_shared, english_stem;

F.51.4. Author
Tomas Vondra <tomas.vondra@2ndquadrant.com>, Prague, Czech Republic

F.52. spi
The spi module provides several workable examples of using the Server Programming Interface (SPI)
and triggers. While these functions are of some value in their own right, they are even more useful as
examples to modify for your own purposes. The functions are general enough to be used with any table,
but you have to specify table and field names (as described below) while creating a trigger.

Each of the groups of functions described below is provided as a separately-installable extension.

F.52.1. refint — Functions for Implementing Referential Integrity
check_primary_key() and check_foreign_key() are used to check foreign key constraints. (This
functionality is long since superseded by the built-in foreign key mechanism, of course, but the module
is still useful as an example.)

check_primary_key() checks the referencing table. To use, create a BEFORE INSERT OR UPDATE
trigger using this function on a table referencing another table. Specify as the trigger arguments: the
referencing table's column name(s) which form the foreign key, the referenced table name, and the
column names in the referenced table which form the primary/unique key. To handle multiple foreign
keys, create a trigger for each reference.

check_foreign_key() checks the referenced table. To use, create a BEFORE DELETE OR UPDATE trigger
using this function on a table referenced by other table(s). Specify as the trigger arguments: the number
of referencing tables for which the function has to perform checking, the action if a referencing key is
found (cascade — to delete the referencing row, restrict — to abort transaction if referencing keys
exist, setnull — to set referencing key fields to null), the triggered table's column names which form
the primary/unique key, then the referencing table name and column names (repeated for as many

2421

Additional Supplied Modules

referencing tables as were specified by first argument). Note that the primary/unique key columns should
be marked NOT NULL and should have a unique index.

There are examples in refint.example.

F.52.2. autoinc — Functions for Autoincrementing Fields
autoinc() is a trigger that stores the next value of a sequence into an integer field. This has some
overlap with the built-in “serial column” feature, but it is not the same: autoinc() will override attempts
to substitute a different field value during inserts, and optionally it can be used to increment the field
during updates, too.

To use, create a BEFORE INSERT (or optionally BEFORE INSERT OR UPDATE) trigger using this function.
Specify two trigger arguments: the name of the integer column to be modified, and the name of the
sequence object that will supply values. (Actually, you can specify any number of pairs of such names,
if you'd like to update more than one autoincrementing column.)

There is an example in autoinc.example.

F.52.3. insert_username — Functions for Tracking Who Changed a
Table

insert_username() is a trigger that stores the current user's name into a text field. This can be useful
for tracking who last modified a particular row within a table.

To use, create a BEFORE INSERT and/or UPDATE trigger using this function. Specify a single trigger
argument: the name of the text column to be modified.

There is an example in insert_username.example.

F.52.4. moddatetime — Functions for Tracking Last Modification
Time

moddatetime() is a trigger that stores the current time into a timestamp field. This can be useful for
tracking the last modification time of a particular row within a table.

To use, create a BEFORE UPDATE trigger using this function. Specify a single trigger argument: the name
of the column to be modified. The column must be of type timestamp or timestamp with time zone.

There is an example in moddatetime.example.

F.53. sr_plan

Important
The sr_plan extension is no longer supported in Postgres Pro.

F.53.1. Rationale
sr_plan is an extension which allows to save query execution plans and use these plans for all repetitions
of same query, instead of optimizing identical query again and again.

sr_plan looks like Oracle Outline system. It can be used to lock the execution plan. It is necessary if you
do not trust the planner or able to form a better plan.

Typically, DBA would play with queries interactively, and save their plans and then enable use of saved
plans for the queries, where predictable response time is essential.

Then application which uses these queries would use saved plans.

2422

Additional Supplied Modules

F.53.2. Installation
In your db:

CREATE EXTENSION sr_plan;

and modify your postgresql.conf:

shared_preload_libraries = 'sr_plan'

It is essential that library is preloaded during server startup, because use of saved plans is enabled on
per-database basis and doesn't require any per-connection actions.

F.53.3. Usage
If you want to save the query plan is necessary to set the variable:

set sr_plan.write_mode = true;

Now plans for all subsequent queries will be stored in the table sr_plans, until this variable is set to false.
Don't forget that all queries will be stored including duplicates. Making an example query:

select query_hash from sr_plans where query_hash=10;

Disable saving the query:

set sr_plan.write_mode = false;

Now verify that your query is saved:

select query_hash, enable, valid, query, explain_jsonb_plan(plan) from sr_plans;

 query_hash | enable | valid | query |
 explain_jsonb_plan
------------+--------+-------+--
+--
 1783086253 | f | t | select query_hash from sr_plans where query_hash=10; |
 Bitmap Heap Scan on sr_plans +
 | | | |
 Recheck Cond: (query_hash = 10) +
 | | | |
 -> Bitmap Index Scan on sr_plans_query_hash_idx+
 | | | |
 Index Cond: (query_hash = 10) +
 | | | |

Note use of explain_jsonb_plan function, that allows you to visualize execution plan in the similar way
as EXPLAIN command does.

In the database plans are stored as jsonb. By default, all the newly saved plans are disabled, you need
enable it manually:

To enable use of the saved plan

update sr_plans set enable=true where query_hash=1783086253;

(1783086253 for example only) After that, the plan for the query will be taken from the sr_plans table.

In addition sr plan allows you to save a parameterized query plan. In this case, we have some constants
in the query that, as we know, do not affect plan.

During plan saving mode we can mark these constants as query parameters using a special function _p
(anyelement). For example:

2423

Additional Supplied Modules

=>create table test_table (a numeric, b text);
CREATE TABLE
=>insert into test_table values (1,'1'),(2,'2'),(3,'3');
INSERT 0 3
=> set sr_plan.write_mode = true;
SET
=> select a,b from test_table where a = _p(1);
 a | b
---+---
 1 | 1
(1 row)

=> set sr_plan.write_mode = false;
SET

Now plan for query from our table is saved with parameter. So, if we enable saved plan in this table, this
plan would be used for query with any value for a, as long as this value is wrapped with _p() function.

=>update sr_plans set enable = true where query=
 'select a,b from test_table where a = _p(1)';
UPDATE 1
-- These queries would use saved plan

=>select a,b from test_table where a = _p(2);
 a | b
---+---
 2 | 2
(1 row)

=>select a,b from test_table where a = _p(3);
 a | b
---+---
 3 | 3
(1 row)

-- This query wouldn't use saved plan, because constant is not wrapped
-- with _p()

=>select a,b from test_table where a = 1;
 a | b
---+---
 1 | 1
(1 row)

F.54. sslinfo
The sslinfo module provides information about the SSL certificate that the current client provided
when connecting to Postgres Pro. The module is useless (most functions will return NULL) if the current
connection does not use SSL.

Some of the information available through this module can also be obtained using the built-in system
view pg_stat_ssl.

This extension won't build at all unless the installation was configured with --with-openssl.

F.54.1. Functions Provided
ssl_is_used() returns boolean

Returns true if current connection to server uses SSL, and false otherwise.

2424

Additional Supplied Modules

ssl_version() returns text
Returns the name of the protocol used for the SSL connection (e.g., TLSv1.0, TLSv1.1, or TLSv1.2).

ssl_cipher() returns text
Returns the name of the cipher used for the SSL connection (e.g., DHE-RSA-AES256-SHA).

ssl_client_cert_present() returns boolean
Returns true if current client has presented a valid SSL client certificate to the server, and false
otherwise. (The server might or might not be configured to require a client certificate.)

ssl_client_serial() returns numeric
Returns serial number of current client certificate. The combination of certificate serial number and
certificate issuer is guaranteed to uniquely identify a certificate (but not its owner — the owner ought
to regularly change their keys, and get new certificates from the issuer).

So, if you run your own CA and allow only certificates from this CA to be accepted by the server, the
serial number is the most reliable (albeit not very mnemonic) means to identify a user.

ssl_client_dn() returns text
Returns the full subject of the current client certificate, converting character data into the current
database encoding. It is assumed that if you use non-ASCII characters in the certificate names, your
database is able to represent these characters, too. If your database uses the SQL_ASCII encoding,
non-ASCII characters in the name will be represented as UTF-8 sequences.

The result looks like /CN=Somebody /C=Some country/O=Some organization.

ssl_issuer_dn() returns text
Returns the full issuer name of the current client certificate, converting character data into the
current database encoding. Encoding conversions are handled the same as for ssl_client_dn.

The combination of the return value of this function with the certificate serial number uniquely
identifies the certificate.

This function is really useful only if you have more than one trusted CA certificate in your server's
certificate authority file, or if this CA has issued some intermediate certificate authority certificates.

ssl_client_dn_field(fieldname text) returns text
This function returns the value of the specified field in the certificate subject, or NULL if the field is
not present. Field names are string constants that are converted into ASN1 object identifiers using
the OpenSSL object database. The following values are acceptable:

commonName (alias CN)
surname (alias SN)
name
givenName (alias GN)
countryName (alias C)
localityName (alias L)
stateOrProvinceName (alias ST)
organizationName (alias O)
organizationalUnitName (alias OU)
title
description
initials
postalCode
streetAddress
generationQualifier
description

2425

Additional Supplied Modules

dnQualifier
x500UniqueIdentifier
pseudonym
role
emailAddress

All of these fields are optional, except commonName. It depends entirely on your CA's policy which of
them would be included and which wouldn't. The meaning of these fields, however, is strictly defined
by the X.500 and X.509 standards, so you cannot just assign arbitrary meaning to them.

ssl_issuer_field(fieldname text) returns text

Same as ssl_client_dn_field, but for the certificate issuer rather than the certificate subject.

ssl_extension_info() returns setof record
Provide information about extensions of client certificate: extension name, extension value, and if
it is a critical extension.

F.54.2. Author
Victor Wagner <vitus@cryptocom.ru>, Cryptocom LTD

Dmitry Voronin <carriingfate92@yandex.ru>

E-Mail of Cryptocom OpenSSL development group: <openssl@cryptocom.ru>

F.55. tablefunc
The tablefunc module includes various functions that return tables (that is, multiple rows). These
functions are useful both in their own right and as examples of how to write C functions that return
multiple rows.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.55.1. Functions Provided
Table F.95 summarizes the functions provided by the tablefunc module.

Table F.95. tablefunc Functions

Function
Description

normal_rand (numvals integer, mean float8, stddev float8) → setof float8
Produces a set of normally distributed random values.

crosstab (sql text) → setof record
Produces a “pivot table” containing row names plus N value columns, where N is determined
by the row type specified in the calling query.

crosstabN (sql text) → setof table_crosstab_ N

Produces a “pivot table” containing row names plus N value columns. crosstab2, crosstab3,
 and crosstab4 are predefined, but you can create additional crosstabN functions as
described below.

crosstab (source_sql text, category_sql text) → setof record
Produces a “pivot table” with the value columns specified by a second query.

crosstab (sql text, N integer) → setof record
Obsolete version of crosstab(text) . The parameter N is now ignored, since the number of
value columns is always determined by the calling query.

2426

Additional Supplied Modules

Function
Description

connectby (relname text, keyid_fld text, parent_keyid_fld text [, orderby_fld text],
 start_with text, max_depth integer [, branch_delim text]) → setof record
Produces a representation of a hierarchical tree structure.

F.55.1.1. normal_rand
normal_rand(int numvals, float8 mean, float8 stddev) returns setof float8

normal_rand produces a set of normally distributed random values (Gaussian distribution).

numvals is the number of values to be returned from the function. mean is the mean of the normal
distribution of values and stddev is the standard deviation of the normal distribution of values.

For example, this call requests 1000 values with a mean of 5 and a standard deviation of 3:

test=# SELECT * FROM normal_rand(1000, 5, 3);
 normal_rand

 1.56556322244898
 9.10040991424657
 5.36957140345079
 -0.369151492880995
 0.283600703686639
 .
 .
 .
 4.82992125404908
 9.71308014517282
 2.49639286969028
(1000 rows)

F.55.1.2. crosstab(text)
crosstab(text sql)
crosstab(text sql, int N)

The crosstab function is used to produce “pivot” displays, wherein data is listed across the page rather
than down. For example, we might have data like
row1 val11
row1 val12
row1 val13
...
row2 val21
row2 val22
row2 val23
...

which we wish to display like
row1 val11 val12 val13 ...
row2 val21 val22 val23 ...
...

The crosstab function takes a text parameter that is a SQL query producing raw data formatted in the
first way, and produces a table formatted in the second way.

The sql parameter is a SQL statement that produces the source set of data. This statement must return
one row_name column, one category column, and one value column. N is an obsolete parameter, ignored
if supplied (formerly this had to match the number of output value columns, but now that is determined
by the calling query).

2427

Additional Supplied Modules

For example, the provided query might produce a set something like:

 row_name cat value
----------+-------+-------
 row1 cat1 val1
 row1 cat2 val2
 row1 cat3 val3
 row1 cat4 val4
 row2 cat1 val5
 row2 cat2 val6
 row2 cat3 val7
 row2 cat4 val8

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...') AS ct(row_name text, category_1 text, category_2 text);

This example produces a set something like:

 <== value columns ==>
 row_name category_1 category_2
----------+------------+------------
 row1 val1 val2
 row2 val5 val6

The FROM clause must define the output as one row_name column (of the same data type as the first result
column of the SQL query) followed by N value columns (all of the same data type as the third result
column of the SQL query). You can set up as many output value columns as you wish. The names of the
output columns are up to you.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. It fills the output value columns, left to right, with the value fields from these rows.
If there are fewer rows in a group than there are output value columns, the extra output columns are
filled with nulls; if there are more rows, the extra input rows are skipped.

In practice the SQL query should always specify ORDER BY 1,2 to ensure that the input rows are properly
ordered, that is, values with the same row_name are brought together and correctly ordered within the
row. Notice that crosstab itself does not pay any attention to the second column of the query result; it's
just there to be ordered by, to control the order in which the third-column values appear across the page.

Here is a complete example:

CREATE TABLE ct(id SERIAL, rowid TEXT, attribute TEXT, value TEXT);
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att1','val1');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att2','val2');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att3','val3');
INSERT INTO ct(rowid, attribute, value) VALUES('test1','att4','val4');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att1','val5');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att2','val6');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att3','val7');
INSERT INTO ct(rowid, attribute, value) VALUES('test2','att4','val8');

SELECT *
FROM crosstab(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2')
AS ct(row_name text, category_1 text, category_2 text, category_3 text);

2428

Additional Supplied Modules

 row_name | category_1 | category_2 | category_3
----------+------------+------------+------------
 test1 | val2 | val3 |
 test2 | val6 | val7 |
(2 rows)

You can avoid always having to write out a FROM clause to define the output columns, by setting up a
custom crosstab function that has the desired output row type wired into its definition. This is described
in the next section. Another possibility is to embed the required FROM clause in a view definition.

Note
See also the \crosstabview command in psql, which provides functionality similar to crosstab().

F.55.1.3. crosstabN(text)
crosstabN(text sql)

The crosstabN functions are examples of how to set up custom wrappers for the general crosstab
function, so that you need not write out column names and types in the calling SELECT query. The
tablefunc module includes crosstab2, crosstab3, and crosstab4, whose output row types are defined
as

CREATE TYPE tablefunc_crosstab_N AS (
 row_name TEXT,
 category_1 TEXT,
 category_2 TEXT,
 .
 .
 .
 category_N TEXT
);

Thus, these functions can be used directly when the input query produces row_name and value columns
of type text, and you want 2, 3, or 4 output values columns. In all other ways they behave exactly as
described above for the general crosstab function.

For instance, the example given in the previous section would also work as
SELECT *
FROM crosstab3(
 'select rowid, attribute, value
 from ct
 where attribute = ''att2'' or attribute = ''att3''
 order by 1,2');

These functions are provided mostly for illustration purposes. You can create your own return types and
functions based on the underlying crosstab() function. There are two ways to do it:
• Create a composite type describing the desired output columns, similar to the examples in

contrib/tablefunc/tablefunc--1.0.sql. Then define a unique function name accepting one text
parameter and returning setof your_type_name, but linking to the same underlying crosstab C
function. For example, if your source data produces row names that are text, and values that are
float8, and you want 5 value columns:
CREATE TYPE my_crosstab_float8_5_cols AS (
 my_row_name text,
 my_category_1 float8,
 my_category_2 float8,
 my_category_3 float8,

2429

Additional Supplied Modules

 my_category_4 float8,
 my_category_5 float8
);

CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(text)
 RETURNS setof my_crosstab_float8_5_cols
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

• Use OUT parameters to define the return type implicitly. The same example could also be done this
way:
CREATE OR REPLACE FUNCTION crosstab_float8_5_cols(
 IN text,
 OUT my_row_name text,
 OUT my_category_1 float8,
 OUT my_category_2 float8,
 OUT my_category_3 float8,
 OUT my_category_4 float8,
 OUT my_category_5 float8)
 RETURNS setof record
 AS '$libdir/tablefunc','crosstab' LANGUAGE C STABLE STRICT;

F.55.1.4. crosstab(text, text)
crosstab(text source_sql, text category_sql)

The main limitation of the single-parameter form of crosstab is that it treats all values in a group alike,
inserting each value into the first available column. If you want the value columns to correspond to
specific categories of data, and some groups might not have data for some of the categories, that doesn't
work well. The two-parameter form of crosstab handles this case by providing an explicit list of the
categories corresponding to the output columns.

source_sql is a SQL statement that produces the source set of data. This statement must return one
row_name column, one category column, and one value column. It may also have one or more “extra”
columns. The row_name column must be first. The category and value columns must be the last two
columns, in that order. Any columns between row_name and category are treated as “extra”. The “extra”
columns are expected to be the same for all rows with the same row_name value.

For example, source_sql might produce a set something like:
SELECT row_name, extra_col, cat, value FROM foo ORDER BY 1;

 row_name extra_col cat value
----------+------------+-----+---------
 row1 extra1 cat1 val1
 row1 extra1 cat2 val2
 row1 extra1 cat4 val4
 row2 extra2 cat1 val5
 row2 extra2 cat2 val6
 row2 extra2 cat3 val7
 row2 extra2 cat4 val8

category_sql is a SQL statement that produces the set of categories. This statement must return only
one column. It must produce at least one row, or an error will be generated. Also, it must not produce
duplicate values, or an error will be generated. category_sql might be something like:
SELECT DISTINCT cat FROM foo ORDER BY 1;
 cat

 cat1
 cat2
 cat3

2430

Additional Supplied Modules

 cat4

The crosstab function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM crosstab('...', '...')
 AS ct(row_name text, extra text, cat1 text, cat2 text, cat3 text, cat4 text);

This will produce a result something like:

 <== value columns ==>
row_name extra cat1 cat2 cat3 cat4
---------+-------+------+------+------+------
 row1 extra1 val1 val2 val4
 row2 extra2 val5 val6 val7 val8

The FROM clause must define the proper number of output columns of the proper data types. If there are
N columns in the source_sql query's result, the first N-2 of them must match up with the first N-2 output
columns. The remaining output columns must have the type of the last column of the source_sql query's
result, and there must be exactly as many of them as there are rows in the category_sql query's result.

The crosstab function produces one output row for each consecutive group of input rows with the same
row_name value. The output row_name column, plus any “extra” columns, are copied from the first row
of the group. The output value columns are filled with the value fields from rows having matching
category values. If a row's category does not match any output of the category_sql query, its value
is ignored. Output columns whose matching category is not present in any input row of the group are
filled with nulls.

In practice the source_sql query should always specify ORDER BY 1 to ensure that values with the same
row_name are brought together. However, ordering of the categories within a group is not important.
Also, it is essential to be sure that the order of the category_sql query's output matches the specified
output column order.

Here are two complete examples:

create table sales(year int, month int, qty int);
insert into sales values(2007, 1, 1000);
insert into sales values(2007, 2, 1500);
insert into sales values(2007, 7, 500);
insert into sales values(2007, 11, 1500);
insert into sales values(2007, 12, 2000);
insert into sales values(2008, 1, 1000);

select * from crosstab(
 'select year, month, qty from sales order by 1',
 'select m from generate_series(1,12) m'
) as (
 year int,
 "Jan" int,
 "Feb" int,
 "Mar" int,
 "Apr" int,
 "May" int,
 "Jun" int,
 "Jul" int,
 "Aug" int,
 "Sep" int,
 "Oct" int,
 "Nov" int,
 "Dec" int

2431

Additional Supplied Modules

);
 year | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec
------+------+------+-----+-----+-----+-----+-----+-----+-----+-----+------+------
 2007 | 1000 | 1500 | | | | | 500 | | | | 1500 | 2000
 2008 | 1000 | | | | | | | | | | |
(2 rows)

CREATE TABLE cth(rowid text, rowdt timestamp, attribute text, val text);
INSERT INTO cth VALUES('test1','01 March 2003','temperature','42');
INSERT INTO cth VALUES('test1','01 March 2003','test_result','PASS');
INSERT INTO cth VALUES('test1','01 March 2003','volts','2.6987');
INSERT INTO cth VALUES('test2','02 March 2003','temperature','53');
INSERT INTO cth VALUES('test2','02 March 2003','test_result','FAIL');
INSERT INTO cth VALUES('test2','02 March 2003','test_startdate','01 March 2003');
INSERT INTO cth VALUES('test2','02 March 2003','volts','3.1234');

SELECT * FROM crosstab
(
 'SELECT rowid, rowdt, attribute, val FROM cth ORDER BY 1',
 'SELECT DISTINCT attribute FROM cth ORDER BY 1'
)
AS
(
 rowid text,
 rowdt timestamp,
 temperature int4,
 test_result text,
 test_startdate timestamp,
 volts float8
);
 rowid | rowdt | temperature | test_result | test_startdate
 | volts
-------+--------------------------+-------------+-------------
+--------------------------+--------
 test1 | Sat Mar 01 00:00:00 2003 | 42 | PASS |
 | 2.6987
 test2 | Sun Mar 02 00:00:00 2003 | 53 | FAIL | Sat Mar 01 00:00:00
 2003 | 3.1234
(2 rows)

You can create predefined functions to avoid having to write out the result column names and types in
each query. See the examples in the previous section. The underlying C function for this form of crosstab
is named crosstab_hash.

F.55.1.5. connectby
connectby(text relname, text keyid_fld, text parent_keyid_fld
 [, text orderby_fld], text start_with, int max_depth
 [, text branch_delim])

The connectby function produces a display of hierarchical data that is stored in a table. The table must
have a key field that uniquely identifies rows, and a parent-key field that references the parent (if any)
of each row. connectby can display the sub-tree descending from any row.

Table F.96 explains the parameters.

Table F.96. connectby Parameters

Parameter Description
relname Name of the source relation

2432

Additional Supplied Modules

Parameter Description
keyid_fld Name of the key field
parent_keyid_fld Name of the parent-key field
orderby_fld Name of the field to order siblings by (optional)
start_with Key value of the row to start at
max_depth Maximum depth to descend to, or zero for

unlimited depth
branch_delim String to separate keys with in branch output (

optional)

The key and parent-key fields can be any data type, but they must be the same type. Note that the
start_with value must be entered as a text string, regardless of the type of the key field.

The connectby function is declared to return setof record, so the actual names and types of the output
columns must be defined in the FROM clause of the calling SELECT statement, for example:

SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0,
 '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);

The first two output columns are used for the current row's key and its parent row's key; they must
match the type of the table's key field. The third output column is the depth in the tree and must be
of type integer. If a branch_delim parameter was given, the next output column is the branch display
and must be of type text. Finally, if an orderby_fld parameter was given, the last output column is a
serial number, and must be of type integer.

The “branch” output column shows the path of keys taken to reach the current row. The keys
are separated by the specified branch_delim string. If no branch display is wanted, omit both the
branch_delim parameter and the branch column in the output column list.

If the ordering of siblings of the same parent is important, include the orderby_fld parameter to specify
which field to order siblings by. This field can be of any sortable data type. The output column list must
include a final integer serial-number column, if and only if orderby_fld is specified.

The parameters representing table and field names are copied as-is into the SQL queries that connectby
generates internally. Therefore, include double quotes if the names are mixed-case or contain special
characters. You may also need to schema-qualify the table name.

In large tables, performance will be poor unless there is an index on the parent-key field.

It is important that the branch_delim string not appear in any key values, else connectby may incorrectly
report an infinite-recursion error. Note that if branch_delim is not provided, a default value of ~ is used
for recursion detection purposes.

Here is an example:
CREATE TABLE connectby_tree(keyid text, parent_keyid text, pos int);

INSERT INTO connectby_tree VALUES('row1',NULL, 0);
INSERT INTO connectby_tree VALUES('row2','row1', 0);
INSERT INTO connectby_tree VALUES('row3','row1', 0);
INSERT INTO connectby_tree VALUES('row4','row2', 1);
INSERT INTO connectby_tree VALUES('row5','row2', 0);
INSERT INTO connectby_tree VALUES('row6','row4', 0);
INSERT INTO connectby_tree VALUES('row7','row3', 0);
INSERT INTO connectby_tree VALUES('row8','row6', 0);
INSERT INTO connectby_tree VALUES('row9','row5', 0);

2433

Additional Supplied Modules

-- with branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0, '~')
 AS t(keyid text, parent_keyid text, level int, branch text);
 keyid | parent_keyid | level | branch
-------+--------------+-------+---------------------
 row2 | | 0 | row2
 row4 | row2 | 1 | row2~row4
 row6 | row4 | 2 | row2~row4~row6
 row8 | row6 | 3 | row2~row4~row6~row8
 row5 | row2 | 1 | row2~row5
 row9 | row5 | 2 | row2~row5~row9
(6 rows)

-- without branch, without orderby_fld (order of results is not guaranteed)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int);
 keyid | parent_keyid | level
-------+--------------+-------
 row2 | | 0
 row4 | row2 | 1
 row6 | row4 | 2
 row8 | row6 | 3
 row5 | row2 | 1
 row9 | row5 | 2
(6 rows)

-- with branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0,
 '~')
 AS t(keyid text, parent_keyid text, level int, branch text, pos int);
 keyid | parent_keyid | level | branch | pos
-------+--------------+-------+---------------------+-----
 row2 | | 0 | row2 | 1
 row5 | row2 | 1 | row2~row5 | 2
 row9 | row5 | 2 | row2~row5~row9 | 3
 row4 | row2 | 1 | row2~row4 | 4
 row6 | row4 | 2 | row2~row4~row6 | 5
 row8 | row6 | 3 | row2~row4~row6~row8 | 6
(6 rows)

-- without branch, with orderby_fld (notice that row5 comes before row4)
SELECT * FROM connectby('connectby_tree', 'keyid', 'parent_keyid', 'pos', 'row2', 0)
 AS t(keyid text, parent_keyid text, level int, pos int);
 keyid | parent_keyid | level | pos
-------+--------------+-------+-----
 row2 | | 0 | 1
 row5 | row2 | 1 | 2
 row9 | row5 | 2 | 3
 row4 | row2 | 1 | 4
 row6 | row4 | 2 | 5
 row8 | row6 | 3 | 6
(6 rows)

F.55.2. Author
Joe Conway

F.56. tcn

2434

Additional Supplied Modules

The tcn module provides a trigger function that notifies listeners of changes to any table on which it is
attached. It must be used as an AFTER trigger FOR EACH ROW.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

Only one parameter may be supplied to the function in a CREATE TRIGGER statement, and that is optional.
If supplied it will be used for the channel name for the notifications. If omitted tcn will be used for the
channel name.

The payload of the notifications consists of the table name, a letter to indicate which type of operation
was performed, and column name/value pairs for primary key columns. Each part is separated from the
next by a comma. For ease of parsing using regular expressions, table and column names are always
wrapped in double quotes, and data values are always wrapped in single quotes. Embedded quotes are
doubled.

A brief example of using the extension follows.
test=# create table tcndata
test-# (
test(# a int not null,
test(# b date not null,
test(# c text,
test(# primary key (a, b)
test(#);
CREATE TABLE
test=# create trigger tcndata_tcn_trigger
test-# after insert or update or delete on tcndata
test-# for each row execute function triggered_change_notification();
CREATE TRIGGER
test=# listen tcn;
LISTEN
test=# insert into tcndata values (1, date '2012-12-22', 'one'),
test-# (1, date '2012-12-23', 'another'),
test-# (2, date '2012-12-23', 'two');
INSERT 0 3
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='1',"b"='2012-12-23'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",I,"a"='2',"b"='2012-12-23'"
 received from server process with PID 22770.
test=# update tcndata set c = 'uno' where a = 1;
UPDATE 2
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.
Asynchronous notification "tcn" with payload ""tcndata",U,"a"='1',"b"='2012-12-23'"
 received from server process with PID 22770.
test=# delete from tcndata where a = 1 and b = date '2012-12-22';
DELETE 1
Asynchronous notification "tcn" with payload ""tcndata",D,"a"='1',"b"='2012-12-22'"
 received from server process with PID 22770.

F.57. test_decoding
test_decoding is an example of a logical decoding output plugin. It doesn't do anything especially useful,
but can serve as a starting point for developing your own output plugin.

test_decoding receives WAL through the logical decoding mechanism and decodes it into text
representations of the operations performed.

2435

Additional Supplied Modules

Typical output from this plugin, used over the SQL logical decoding interface, might be:
postgres=# SELECT * FROM pg_logical_slot_get_changes('test_slot', NULL, NULL, 'include-
xids', '0');
 lsn | xid | data
-----------+-----+--
 0/16D30F8 | 691 | BEGIN
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:2 data[text]:'arg'
 0/16D32A0 | 691 | table public.data: INSERT: id[int4]:3 data[text]:'demo'
 0/16D32A0 | 691 | COMMIT
 0/16D32D8 | 692 | BEGIN
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:2
 0/16D3398 | 692 | table public.data: DELETE: id[int4]:3
 0/16D3398 | 692 | COMMIT
(8 rows)

F.58. tsm_system_rows
The tsm_system_rows module provides the table sampling method SYSTEM_ROWS, which can be used in
the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single integer argument that is the maximum number of rows to
read. The resulting sample will always contain exactly that many rows, unless the table does not contain
enough rows, in which case the whole table is selected.

Like the built-in SYSTEM sampling method, SYSTEM_ROWS performs block-level sampling, so that the
sample is not completely random but may be subject to clustering effects, especially if only a small
number of rows are requested.

SYSTEM_ROWS does not support the REPEATABLE clause.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.58.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_ROWS. First install the extension:

CREATE EXTENSION tsm_system_rows;

Then you can use it in a SELECT command, for instance:
SELECT * FROM my_table TABLESAMPLE SYSTEM_ROWS(100);

This command will return a sample of 100 rows from the table my_table (unless the table does not have
100 visible rows, in which case all its rows are returned).

F.59. tsm_system_time
The tsm_system_time module provides the table sampling method SYSTEM_TIME, which can be used in
the TABLESAMPLE clause of a SELECT command.

This table sampling method accepts a single floating-point argument that is the maximum number of
milliseconds to spend reading the table. This gives you direct control over how long the query takes, at
the price that the size of the sample becomes hard to predict. The resulting sample will contain as many
rows as could be read in the specified time, unless the whole table has been read first.

Like the built-in SYSTEM sampling method, SYSTEM_TIME performs block-level sampling, so that the
sample is not completely random but may be subject to clustering effects, especially if only a small
number of rows are selected.

SYSTEM_TIME does not support the REPEATABLE clause.

2436

Additional Supplied Modules

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.59.1. Examples
Here is an example of selecting a sample of a table with SYSTEM_TIME. First install the extension:

CREATE EXTENSION tsm_system_time;

Then you can use it in a SELECT command, for instance:
SELECT * FROM my_table TABLESAMPLE SYSTEM_TIME(1000);

This command will return as large a sample of my_table as it can read in 1 second (1000 milliseconds).
Of course, if the whole table can be read in under 1 second, all its rows will be returned.

F.60. unaccent
unaccent is a text search dictionary that removes accents (diacritic signs) from lexemes. It's a filtering
dictionary, which means its output is always passed to the next dictionary (if any), unlike the normal
behavior of dictionaries. This allows accent-insensitive processing for full text search.

The current implementation of unaccent cannot be used as a normalizing dictionary for the thesaurus
dictionary.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.60.1. Configuration
An unaccent dictionary accepts the following options:

• RULES is the base name of the file containing the list of translation rules. This file must be stored
in $SHAREDIR/tsearch_data/ (where $SHAREDIR means the Postgres Pro installation's shared-data
directory). Its name must end in .rules (which is not to be included in the RULES parameter).

The rules file has the following format:

• Each line represents one translation rule, consisting of a character with accent followed by a
character without accent. The first is translated into the second. For example,
À A
Á A
Â A
Ã A
Ä A
Å A
Æ AE

The two characters must be separated by whitespace, and any leading or trailing whitespace on a
line is ignored.

• Alternatively, if only one character is given on a line, instances of that character are deleted; this is
useful in languages where accents are represented by separate characters.

• Actually, each “character” can be any string not containing whitespace, so unaccent dictionaries
could be used for other sorts of substring substitutions besides diacritic removal.

• As with other Postgres Pro text search configuration files, the rules file must be stored in UTF-8
encoding. The data is automatically translated into the current database's encoding when loaded.
Any lines containing untranslatable characters are silently ignored, so that rules files can contain
rules that are not applicable in the current encoding.

A more complete example, which is directly useful for most European languages, can be found
in unaccent.rules, which is installed in $SHAREDIR/tsearch_data/ when the unaccent module is

2437

Additional Supplied Modules

installed. This rules file translates characters with accents to the same characters without accents, and
it also expands ligatures into the equivalent series of simple characters (for example, Æ to AE).

F.60.2. Usage
Installing the unaccent extension creates a text search template unaccent and a dictionary unaccent
based on it. The unaccent dictionary has the default parameter setting RULES='unaccent', which makes
it immediately usable with the standard unaccent.rules file. If you wish, you can alter the parameter,
for example
mydb=# ALTER TEXT SEARCH DICTIONARY unaccent (RULES='my_rules');

or create new dictionaries based on the template.

To test the dictionary, you can try:
mydb=# select ts_lexize('unaccent','Hôtel');
 ts_lexize

 {Hotel}
(1 row)

Here is an example showing how to insert the unaccent dictionary into a text search configuration:
mydb=# CREATE TEXT SEARCH CONFIGURATION fr (COPY = french);
mydb=# ALTER TEXT SEARCH CONFIGURATION fr
 ALTER MAPPING FOR hword, hword_part, word
 WITH unaccent, french_stem;
mydb=# select to_tsvector('fr','Hôtels de la Mer');
 to_tsvector

 'hotel':1 'mer':4
(1 row)

mydb=# select to_tsvector('fr','Hôtel de la Mer') @@ to_tsquery('fr','Hotels');
 ?column?

 t
(1 row)

mydb=# select ts_headline('fr','Hôtel de la Mer',to_tsquery('fr','Hotels'));
 ts_headline

 Hôtel de la Mer
(1 row)

F.60.3. Functions
The unaccent() function removes accents (diacritic signs) from a given string. Basically, it's a wrapper
around unaccent-type dictionaries, but it can be used outside normal text search contexts.

unaccent([dictionary regdictionary,] string text) returns text

If the dictionary argument is omitted, the text search dictionary named unaccent and appearing in the
same schema as the unaccent() function itself is used.

For example:
SELECT unaccent('unaccent', 'Hôtel');
SELECT unaccent('Hôtel');

F.61. uuid-ossp

2438

Additional Supplied Modules

The uuid-ossp module provides functions to generate universally unique identifiers (UUIDs) using one
of several standard algorithms. There are also functions to produce certain special UUID constants. This
module is only necessary for special requirements beyond what is available in core PostgreSQL. See
Section 9.14 for built-in ways to generate UUIDs.

This module is considered “trusted”, that is, it can be installed by non-superusers who have CREATE
privilege on the current database.

F.61.1. uuid-ossp Functions
Table F.97 shows the functions available to generate UUIDs. The relevant standards ITU-T Rec. X.667,
ISO/IEC 9834-8:2005, and RFC 4122 specify four algorithms for generating UUIDs, identified by the
version numbers 1, 3, 4, and 5. (There is no version 2 algorithm.) Each of these algorithms could be
suitable for a different set of applications.

Table F.97. Functions for UUID Generation

Function
Description

uuid_generate_v1 () → uuid
Generates a version 1 UUID. This involves the MAC address of the computer and a time
stamp. Note that UUIDs of this kind reveal the identity of the computer that created the
identifier and the time at which it did so, which might make it unsuitable for certain security-
sensitive applications.

uuid_generate_v1mc () → uuid
Generates a version 1 UUID, but uses a random multicast MAC address instead of the real
MAC address of the computer.

uuid_generate_v3 (namespace uuid, name text) → uuid
Generates a version 3 UUID in the given namespace using the specified input name. The
namespace should be one of the special constants produced by the uuid_ns_*() functions
shown in Table F.98. (It could be any UUID in theory.) The name is an identifier in the
selected namespace.
For example:

SELECT uuid_generate_v3(uuid_ns_url(), 'http://www.postgresql.org');

The name parameter will be MD5-hashed, so the cleartext cannot be derived from the
generated UUID. The generation of UUIDs by this method has no random or environment-
dependent element and is therefore reproducible.

uuid_generate_v4 () → uuid
Generates a version 4 UUID, which is derived entirely from random numbers.

uuid_generate_v5 (namespace uuid, name text) → uuid
Generates a version 5 UUID, which works like a version 3 UUID except that SHA-1 is used as
a hashing method. Version 5 should be preferred over version 3 because SHA-1 is thought to
be more secure than MD5.

Table F.98. Functions Returning UUID Constants

Function
Description

uuid_nil () → uuid
Returns a “nil” UUID constant, which does not occur as a real UUID.

uuid_ns_dns () → uuid
Returns a constant designating the DNS namespace for UUIDs.

uuid_ns_url () → uuid

2439

Additional Supplied Modules

Function
Description
Returns a constant designating the URL namespace for UUIDs.

uuid_ns_oid () → uuid
Returns a constant designating the ISO object identifier (OID) namespace for UUIDs. (This
pertains to ASN.1 OIDs, which are unrelated to the OIDs used in Postgres Pro.)

uuid_ns_x500 () → uuid
Returns a constant designating the X.500 distinguished name (DN) namespace for UUIDs.

F.61.2. Building uuid-ossp
Historically this module depended on the OSSP UUID library, which accounts for the module's name.
While the OSSP UUID library can still be found at http://www.ossp.org/pkg/lib/uuid/, it is not well
maintained, and is becoming increasingly difficult to port to newer platforms. uuid-ossp can now be
built without the OSSP library on some platforms. On FreeBSD, NetBSD, and some other BSD-derived
platforms, suitable UUID creation functions are included in the core libc library. On Linux, macOS, and
some other platforms, suitable functions are provided in the libuuid library, which originally came from
the e2fsprogs project (though on modern Linux it is considered part of util-linux-ng). When invoking
configure, specify --with-uuid=bsd to use the BSD functions, or --with-uuid=e2fs to use e2fsprogs'
libuuid, or --with-uuid=ossp to use the OSSP UUID library. More than one of these libraries might be
available on a particular machine, so configure does not automatically choose one.

F.61.3. Author
Peter Eisentraut <peter_e@gmx.net>

F.62. xml2
The xml2 module provides XPath querying and XSLT functionality.

F.62.1. Deprecation Notice
From PostgreSQL 8.3 on, there is XML-related functionality based on the SQL/XML standard in the core
server. That functionality covers XML syntax checking and XPath queries, which is what this module
does, and more, but the API is not at all compatible. It is planned that this module will be removed in a
future version of Postgres Pro in favor of the newer standard API, so you are encouraged to try converting
your applications. If you find that some of the functionality of this module is not available in an adequate
form with the newer API, please explain your issue to <pgsql-hackers@lists.postgresql.org> so that
the deficiency can be addressed.

F.62.2. Description of Functions
Table F.99 shows the functions provided by this module. These functions provide straightforward XML
parsing and XPath queries.

Table F.99. xml2 Functions

Function
Description

xml_valid (document text) → boolean
Parses the given document and returns true if the document is well-formed XML. (Note: this
is an alias for the standard Postgres Pro function xml_is_well_formed() . The name xml_
valid() is technically incorrect since validity and well-formedness have different meanings
in XML.)

xpath_string (document text, query text) → text
Evaluates the XPath query on the supplied document, and casts the result to text.

2440

http://www.ossp.org/pkg/lib/uuid/

Additional Supplied Modules

Function
Description

xpath_number (document text, query text) → real
Evaluates the XPath query on the supplied document, and casts the result to real.

xpath_bool (document text, query text) → boolean
Evaluates the XPath query on the supplied document, and casts the result to boolean.

xpath_nodeset (document text, query text, toptag text, itemtag text) → text
Evaluates the query on the document and wraps the result in XML tags. If the result is
multivalued, the output will look like:

<toptag>
<itemtag>Value 1 which could be an XML fragment</itemtag>
<itemtag>Value 2....</itemtag>
</toptag>

If either toptag or itemtag is an empty string, the relevant tag is omitted.

xpath_nodeset (document text, query text, itemtag text) → text
Like xpath_nodeset(document, query, toptag, itemtag) but result omits toptag.

xpath_nodeset (document text, query text) → text
Like xpath_nodeset(document, query, toptag, itemtag) but result omits both tags.

xpath_list (document text, query text, separator text) → text
Evaluates the query on the document and returns multiple values separated by the specified
separator, for example Value 1,Value 2,Value 3 if separator is , .

xpath_list (document text, query text) → text
This is a wrapper for the above function that uses , as the separator.

F.62.3. xpath_table
xpath_table(text key, text document, text relation, text xpaths, text criteria) returns
 setof record

xpath_table is a table function that evaluates a set of XPath queries on each of a set of documents
and returns the results as a table. The primary key field from the original document table is returned
as the first column of the result so that the result set can readily be used in joins. The parameters are
described in Table F.100.

Table F.100. xpath_table Parameters

Parameter Description
key the name of the “key” field — this is just a field to be used as

the first column of the output table, i.e., it identifies the record
from which each output row came (see note below about multiple
values)

document the name of the field containing the XML document
relation the name of the table or view containing the documents
xpaths one or more XPath expressions, separated by |
criteria the contents of the WHERE clause. This cannot be omitted, so use

true or 1=1 if you want to process all the rows in the relation

These parameters (except the XPath strings) are just substituted into a plain SQL SELECT statement,
so you have some flexibility — the statement is

SELECT <key>, <document> FROM <relation> WHERE <criteria>

2441

Additional Supplied Modules

so those parameters can be anything valid in those particular locations. The result from this SELECT
needs to return exactly two columns (which it will unless you try to list multiple fields for key or
document). Beware that this simplistic approach requires that you validate any user-supplied values to
avoid SQL injection attacks.

The function has to be used in a FROM expression, with an AS clause to specify the output columns; for
example
SELECT * FROM
xpath_table('article_id',
 'article_xml',
 'articles',
 '/article/author|/article/pages|/article/title',
 'date_entered > ''2003-01-01'' ')
AS t(article_id integer, author text, page_count integer, title text);

The AS clause defines the names and types of the columns in the output table. The first is the “key” field
and the rest correspond to the XPath queries. If there are more XPath queries than result columns, the
extra queries will be ignored. If there are more result columns than XPath queries, the extra columns
will be NULL.

Notice that this example defines the page_count result column as an integer. The function deals
internally with string representations, so when you say you want an integer in the output, it will take
the string representation of the XPath result and use Postgres Pro input functions to transform it into an
integer (or whatever type the AS clause requests). An error will result if it can't do this — for example
if the result is empty — so you may wish to just stick to text as the column type if you think your data
has any problems.

The calling SELECT statement doesn't necessarily have to be just SELECT * — it can reference the output
columns by name or join them to other tables. The function produces a virtual table with which you can
perform any operation you wish (e.g., aggregation, joining, sorting etc). So we could also have:
SELECT t.title, p.fullname, p.email
FROM xpath_table('article_id', 'article_xml', 'articles',
 '/article/title|/article/author/@id',
 'xpath_string(article_xml,''/article/@date'') > ''2003-03-20'' ')
 AS t(article_id integer, title text, author_id integer),
 tblPeopleInfo AS p
WHERE t.author_id = p.person_id;

as a more complicated example. Of course, you could wrap all of this in a view for convenience.

F.62.3.1. Multivalued Results
The xpath_table function assumes that the results of each XPath query might be multivalued, so the
number of rows returned by the function may not be the same as the number of input documents. The
first row returned contains the first result from each query, the second row the second result from each
query. If one of the queries has fewer values than the others, null values will be returned instead.

In some cases, a user will know that a given XPath query will return only a single result (perhaps a
unique document identifier) — if used alongside an XPath query returning multiple results, the single-
valued result will appear only on the first row of the result. The solution to this is to use the key field as
part of a join against a simpler XPath query. As an example:
CREATE TABLE test (
 id int PRIMARY KEY,
 xml text
);

INSERT INTO test VALUES (1, '<doc num="C1">
<line num="L1"><a>12<c>3</c></line>
<line num="L2"><a>1122<c>33</c></line>

2442

Additional Supplied Modules

</doc>');

INSERT INTO test VALUES (2, '<doc num="C2">
<line num="L1"><a>111222<c>333</c></line>
<line num="L2"><a>111222<c>333</c></line>
</doc>');

SELECT * FROM
 xpath_table('id','xml','test',
 '/doc/@num|/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, doc_num varchar(10), line_num varchar(10), val1 int, val2 int, val3 int)
WHERE id = 1 ORDER BY doc_num, line_num

 id | doc_num | line_num | val1 | val2 | val3
----+---------+----------+------+------+------
 1 | C1 | L1 | 1 | 2 | 3
 1 | | L2 | 11 | 22 | 33

To get doc_num on every line, the solution is to use two invocations of xpath_table and join the results:

SELECT t.*,i.doc_num FROM
 xpath_table('id', 'xml', 'test',
 '/doc/line/@num|/doc/line/a|/doc/line/b|/doc/line/c',
 'true')
 AS t(id int, line_num varchar(10), val1 int, val2 int, val3 int),
 xpath_table('id', 'xml', 'test', '/doc/@num', 'true')
 AS i(id int, doc_num varchar(10))
WHERE i.id=t.id AND i.id=1
ORDER BY doc_num, line_num;

 id | line_num | val1 | val2 | val3 | doc_num
----+----------+------+------+------+---------
 1 | L1 | 1 | 2 | 3 | C1
 1 | L2 | 11 | 22 | 33 | C1
(2 rows)

F.62.4. XSLT Functions
The following functions are available if libxslt is installed:

F.62.4.1. xslt_process
xslt_process(text document, text stylesheet, text paramlist) returns text

This function applies the XSL stylesheet to the document and returns the transformed result. The
paramlist is a list of parameter assignments to be used in the transformation, specified in the form
a=1,b=2. Note that the parameter parsing is very simple-minded: parameter values cannot contain
commas!

There is also a two-parameter version of xslt_process which does not pass any parameters to the
transformation.

F.62.5. Author
John Gray <jgray@azuli.co.uk>

Development of this module was sponsored by Torchbox Ltd. (www.torchbox.com). It has the same BSD
license as Postgres Pro.

2443

Appendix G. Additional Supplied
Programs

This appendix and the previous one contain information regarding additional modules available in the
Postgres Pro Standard distribution. See Appendix F for more information about the server extensions
and plug-ins.

This appendix covers the utility programs. Once installed, they are found in the bin directory of the
Postgres Pro Standard installation and can be used like any other program.

G.1. Client Applications
This section covers Postgres Pro Standard client applications. They can be run from anywhere,
independent of where the database server resides. See also Postgres Pro Client Applications for
information about client applications that are part of the core Postgres Pro Standard distribution.

2444

Additional Supplied Programs

oid2name
oid2name — resolve OIDs and file nodes in a Postgres Pro data directory

Synopsis
oid2name [option...]

Description
oid2name is a utility program that helps administrators to examine the file structure used by Postgres
Pro. To make use of it, you need to be familiar with the database file structure, which is described in
Chapter 65.

Note
The name “oid2name” is historical, and is actually rather misleading, since most of the time when
you use it, you will really be concerned with tables' filenode numbers (which are the file names
visible in the database directories). Be sure you understand the difference between table OIDs
and table filenodes!

oid2name connects to a target database and extracts OID, filenode, and/or table name information. You
can also have it show database OIDs or tablespace OIDs.

Options
oid2name accepts the following command-line arguments:
-f filenode
--filenode=filenode

show info for table with filenode filenode.

-i
--indexes

include indexes and sequences in the listing.

-o oid
--oid=oid

show info for table with OID oid.

-q
--quiet

omit headers (useful for scripting).

-s
--tablespaces

show tablespace OIDs.

-S
--system-objects

include system objects (those in information_schema, pg_toast and pg_catalog schemas).

-t tablename_pattern
--table=tablename_pattern

show info for table(s) matching tablename_pattern.

2445

Additional Supplied Programs

-V
--version

Print the oid2name version and exit.

-x
--extended

display more information about each object shown: tablespace name, schema name, and OID.

-?
--help

Show help about oid2name command line arguments, and exit.

oid2name also accepts the following command-line arguments for connection parameters:

-d database
--dbname=database

database to connect to.

-h host
--host=host

database server's host.

-H host

database server's host. Use of this parameter is deprecated as of Postgres Pro 12.

-p port
--port=port

database server's port.

-U username
--username=username

user name to connect as.

To display specific tables, select which tables to show by using -o, -f and/or -t. -o takes an OID, -f
takes a filenode, and -t takes a table name (actually, it's a LIKE pattern, so you can use things like foo
%). You can use as many of these options as you like, and the listing will include all objects matched by
any of the options. But note that these options can only show objects in the database given by -d.

If you don't give any of -o, -f or -t, but do give -d, it will list all tables in the database named by -d.
In this mode, the -S and -i options control what gets listed.

If you don't give -d either, it will show a listing of database OIDs. Alternatively you can give -s to get
a tablespace listing.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

2446

Additional Supplied Programs

Notes
oid2name requires a running database server with non-corrupt system catalogs. It is therefore of only
limited use for recovering from catastrophic database corruption situations.

Examples
$ # what's in this database server, anyway?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # OK, let's look into database alvherre
$ cd $PGDATA/base/17228

$ # get top 10 db objects in the default tablespace, ordered by size
$ ls -lS * | head -10
-rw------- 1 alvherre alvherre 136536064 sep 14 09:51 155173
-rw------- 1 alvherre alvherre 17965056 sep 14 09:51 1155291
-rw------- 1 alvherre alvherre 1204224 sep 14 09:51 16717
-rw------- 1 alvherre alvherre 581632 sep 6 17:51 1255
-rw------- 1 alvherre alvherre 237568 sep 14 09:50 16674
-rw------- 1 alvherre alvherre 212992 sep 14 09:51 1249
-rw------- 1 alvherre alvherre 204800 sep 14 09:51 16684
-rw------- 1 alvherre alvherre 196608 sep 14 09:50 16700
-rw------- 1 alvherre alvherre 163840 sep 14 09:50 16699
-rw------- 1 alvherre alvherre 122880 sep 6 17:51 16751

$ # I wonder what file 155173 is ...
$ oid2name -d alvherre -f 155173
From database "alvherre":
 Filenode Table Name

 155173 accounts

$ # you can ask for more than one object
$ oid2name -d alvherre -f 155173 -f 1155291
From database "alvherre":
 Filenode Table Name

 155173 accounts
 1155291 accounts_pkey

$ # you can mix the options, and get more details with -x
$ oid2name -d alvherre -t accounts -f 1155291 -x

2447

Additional Supplied Programs

From database "alvherre":
 Filenode Table Name Oid Schema Tablespace
--
 155173 accounts 155173 public pg_default
 1155291 accounts_pkey 1155291 public pg_default

$ # show disk space for every db object
$ du [0-9]* |
> while read SIZE FILENODE
> do
> echo "$SIZE `oid2name -q -d alvherre -i -f $FILENODE`"
> done
16 1155287 branches_pkey
16 1155289 tellers_pkey
17561 1155291 accounts_pkey
...

$ # same, but sort by size
$ du [0-9]* | sort -rn | while read SIZE FN
> do
> echo "$SIZE `oid2name -q -d alvherre -f $FN`"
> done
133466 155173 accounts
17561 1155291 accounts_pkey
1177 16717 pg_proc_proname_args_nsp_index
...

$ # If you want to see what's in tablespaces, use the pg_tblspc directory
$ cd $PGDATA/pg_tblspc
$ oid2name -s
All tablespaces:
 Oid Tablespace Name

 1663 pg_default
 1664 pg_global
 155151 fastdisk
 155152 bigdisk

$ # what databases have objects in tablespace "fastdisk"?
$ ls -d 155151/*
155151/17228/ 155151/PG_VERSION

$ # Oh, what was database 17228 again?
$ oid2name
All databases:
 Oid Database Name Tablespace

 17228 alvherre pg_default
 17255 regression pg_default
 17227 template0 pg_default
 1 template1 pg_default

$ # Let's see what objects does this database have in the tablespace.
$ cd 155151/17228
$ ls -l
total 0
-rw------- 1 postgres postgres 0 sep 13 23:20 155156

2448

Additional Supplied Programs

$ # OK, this is a pretty small table ... but which one is it?
$ oid2name -d alvherre -f 155156
From database "alvherre":
 Filenode Table Name

 155156 foo

Author
B. Palmer <bpalmer@crimelabs.net>

2449

Additional Supplied Programs

pg_probackup
pg_probackup — manage backup and recovery of Postgres Pro database clusters

Synopsis
pg_probackup version

pg_probackup help [command]

pg_probackup init -B backup_dir

pg_probackup add-instance -B backup_dir -D data_dir --instance instance_name

pg_probackup del-instance -B backup_dir --instance instance_name

pg_probackup set-config -B backup_dir --instance instance_name [option...]

pg_probackup set-backup -B backup_dir --instance instance_name -i backup_id [option...]

pg_probackup show-config -B backup_dir --instance instance_name [--format=format]

pg_probackup show -B backup_dir [option...]

pg_probackup backup -B backup_dir --instance instance_name -b backup_mode [option...]

pg_probackup restore -B backup_dir --instance instance_name [option...]

pg_probackup checkdb -B backup_dir --instance instance_name -D data_dir [option...]

pg_probackup validate -B backup_dir [option...]

pg_probackup merge -B backup_dir --instance instance_name -i backup_id [option...]

pg_probackup delete -B backup_dir --instance instance_name { -i backup_id | --delete-wal | --
delete-expired | --merge-expired } [option...]

pg_probackup archive-push -B backup_dir --instance instance_name --wal-file-path
wal_file_path --wal-file-name wal_file_name [option...]

pg_probackup archive-get -B backup_dir --instance instance_name --wal-file-path
wal_file_path --wal-file-name wal_file_name [option...]

pg_probackup catchup -b catchup_mode --source-pgdata=path_to_pgdata_on_remote_server --
destination-pgdata=path_to_local_dir [option...]

Description
pg_probackup is a utility to manage backup and recovery of Postgres Pro database clusters. It is designed
to perform periodic backups of the Postgres Pro instance that enable you to restore the server in case
of a failure. pg_probackup supports PostgreSQL 9.5 or higher.

• Overview
• Installation and Setup
• Command-Line Reference
• Usage

Overview
As compared to other backup solutions, pg_probackup offers the following benefits that can help you
implement different backup strategies and deal with large amounts of data:

2450

Additional Supplied Programs

• Incremental backup: with three different incremental modes, you can plan the backup strategy
in accordance with your data flow. Incremental backups allow you to save disk space and speed
up backup as compared to taking full backups. It is also faster to restore the cluster by applying
incremental backups than by replaying WAL files.

• Incremental restore: speed up restore from backup by reusing valid unchanged pages available in
PGDATA.

• Validation: automatic data consistency checks and on-demand backup validation without actual
data recovery.

• Verification: on-demand verification of Postgres Pro instance with the checkdb command.
• Retention: managing WAL archive and backups in accordance with retention policy. You can

configure retention policy based on recovery time or the number of backups to keep, as well as
specify time to live (TTL) for a particular backup. Expired backups can be merged or deleted.

• Parallelization: running backup, restore, merge, delete, validate, and checkdb processes on
multiple parallel threads.

• Compression: storing backup data in a compressed state to save disk space.
• Deduplication: saving disk space by excluding non-data files (such as _vm or _fsm) from incremental

backups if these files have not changed since they were copied into one of the previous backups in
this incremental chain.

• Remote operations: backing up Postgres Pro instance located on a remote system or restoring a
backup remotely.

• Backup from standby: avoiding extra load on master by taking backups from a standby server.
• External directories: backing up files and directories located outside of the Postgres Pro data

directory (PGDATA), such as scripts, configuration files, logs, or SQL dump files.
• Backup catalog: getting the list of backups and the corresponding meta information in plain text or

JSON formats.
• Archive catalog: getting the list of all WAL timelines and the corresponding meta information in

plain text or JSON formats.
• Partial restore: restoring only the specified databases.
• Catchup: cloning a Postgres Pro instance for a fallen-behind standby server to “catch up” with

master.

To manage backup data, pg_probackup creates a backup catalog. This is a directory that stores all backup
files with additional meta information, as well as WAL archives required for point-in-time recovery. You
can store backups for different instances in separate subdirectories of a single backup catalog.

Using pg_probackup, you can take full or incremental backups:

• FULL backups contain all the data files required to restore the database cluster.
• Incremental backups operate at the page level, only storing the data that has changed since the

previous backup. It allows you to save disk space and speed up the backup process as compared to
taking full backups. It is also faster to restore the cluster by applying incremental backups than by
replaying WAL files. pg_probackup supports the following modes of incremental backups:

• DELTA backup. In this mode, pg_probackup reads all data files in the data directory and copies
only those pages that have changed since the previous backup. This mode can impose read-only
I/O pressure equal to a full backup.

• PAGE backup. In this mode, pg_probackup scans all WAL files in the archive from the moment
the previous full or incremental backup was taken. Newly created backups contain only the
pages that were mentioned in WAL records. This requires all the WAL files since the previous
backup to be present in the WAL archive. If the size of these files is comparable to the total size
of the database cluster files, speedup is smaller, but the backup still takes less space. You have
to configure WAL archiving as explained in Setting up continuous WAL archiving to make PAGE
backups.

• PTRACK backup. In this mode, Postgres Pro tracks page changes on the fly. Continuous
archiving is not necessary for it to operate. Each time a relation page is updated, this page is
marked in a special PTRACK bitmap. Tracking implies some minor overhead on the database
server operation, but speeds up incremental backups significantly.

2451

Additional Supplied Programs

pg_probackup can take only physical online backups, and online backups require WAL for consistent
recovery. So regardless of the chosen backup mode (FULL, PAGE or DELTA), any backup taken with
pg_probackup must use one of the following WAL delivery modes:

• ARCHIVE. Such backups rely on continuous archiving to ensure consistent recovery. This is the
default WAL delivery mode.

• STREAM. Such backups include all the files required to restore the cluster to a consistent state
at the time the backup was taken. Regardless of continuous archiving having been set up or not,
the WAL segments required for consistent recovery are streamed via replication protocol during
backup and included into the backup files. That's why such backups are called autonomous, or
standalone.

Limitations

pg_probackup currently has the following limitations:

• pg_probackup only supports PostgreSQL 9.5 and higher.
• The remote mode is not supported on Windows systems.
• On Unix systems, for Postgres Pro 10 or lower, a backup can be made only by the same OS user

that has started the Postgres Pro server. For example, if Postgres Pro server is started by user
postgres, the backup command must also be run by user postgres. To satisfy this requirement
when taking backups in the remote mode using SSH, you must set --remote-user option to
postgres.

• For Postgres Pro 9.5, functions pg_create_restore_point(text) and pg_switch_xlog() can be
executed only if the backup role is a superuser, so backup of a cluster with low amount of WAL
traffic by a non-superuser role can take longer than the backup of the same cluster by a superuser
role.

• The Postgres Pro server from which the backup was taken and the restored server must be
compatible by the block_size and wal_block_size parameters and have the same major release
number. Depending on cluster configuration, Postgres Pro itself may apply additional restrictions,
such as CPU architecture or libc/libicu versions.

Installation and Setup
Once you have pg_probackup installed, complete the following setup:

• Initialize the backup catalog.
• Add a new backup instance to the backup catalog.
• Configure the database cluster to enable pg_probackup backups.
• Optionally, configure SSH for running pg_probackup operations in the remote mode.

Initializing the Backup Catalog

pg_probackup stores all WAL and backup files in the corresponding subdirectories of the backup catalog.

To initialize the backup catalog, run the following command:

pg_probackup init -B backup_dir

where backup_dir is the path to the backup catalog. If the backup_dir already exists, it must be empty.
Otherwise, pg_probackup returns an error.

The user launching pg_probackup must have full access to the backup_dir directory.

pg_probackup creates the backup_dir backup catalog, with the following subdirectories:

• wal/ — directory for WAL files.
• backups/ — directory for backup files.

Once the backup catalog is initialized, you can add a new backup instance.

2452

Additional Supplied Programs

Adding a New Backup Instance

pg_probackup can store backups for multiple database clusters in a single backup catalog. To set up
the required subdirectories, you must add a backup instance to the backup catalog for each database
cluster you are going to back up.

To add a new backup instance, run the following command:

pg_probackup add-instance -B backup_dir -D data_dir --instance instance_name
 [remote_options]

where:

• data_dir is the data directory of the cluster you are going to back up. To set up and use
pg_probackup, write access to this directory is required.

• instance_name is the name of the subdirectories that will store WAL and backup files for this
cluster.

• remote_options are optional parameters that need to be specified only if data_dir is located on a
remote system.

pg_probackup creates the instance_name subdirectories under the backups/ and wal/ directories of the
backup catalog. The backups/instance_name directory contains the pg_probackup.conf configuration
file that controls pg_probackup settings for this backup instance. If you run this command with the
remote_options, the specified parameters will be added to pg_probackup.conf.

For details on how to fine-tune pg_probackup configuration, see the section called “Configuring
pg_probackup”.

The user launching pg_probackup must have full access to backup_dir directory and at least read-
only access to data_dir directory. If you specify the path to the backup catalog in the BACKUP_PATH
environment variable, you can omit the corresponding option when running pg_probackup commands.

Note
For Postgres Pro 11 or higher, it is recommended to use the group access feature, so that backup
can be done by any OS user in the same group as the cluster owner. In this case, the user should
have read permissions for the cluster directory.

Configuring the Database Cluster

Although pg_probackup can be used by a superuser, it is recommended to create a separate role with
the minimum permissions required for the chosen backup strategy. In these configuration instructions,
the backup role is used as an example.

To perform a backup, the following permissions for role backup are required only in the database used
for connection to the Postgres Pro server:

For Postgres Pro 9.5:

BEGIN;
CREATE ROLE backup WITH LOGIN;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_start_backup(text, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_stop_backup() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_create_restore_point(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_xlog() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;

2453

Additional Supplied Programs

GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
COMMIT;

For Postgres Pro 9.6:

BEGIN;
CREATE ROLE backup WITH LOGIN;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_start_backup(text, boolean, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_stop_backup(boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_create_restore_point(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_xlog() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_last_xlog_replay_location() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_control_checkpoint() TO backup;
COMMIT;

For Postgres Pro 10 or higher:

BEGIN;
CREATE ROLE backup WITH LOGIN;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_start_backup(text, boolean, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_stop_backup(boolean, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_create_restore_point(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_wal() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_last_wal_replay_lsn() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_control_checkpoint() TO backup;
COMMIT;

In the pg_hba.conf file, allow connection to the database cluster on behalf of the backup role.

Since pg_probackup needs to read cluster files directly, pg_probackup must be started by (or connected
to, if used in the remote mode) the OS user that has read access to all files and directories inside the
data directory (PGDATA) you are going to back up.

Depending on whether you plan to take standalone or archive backups, Postgres Pro cluster
configuration will differ, as specified in the sections below. To back up the database cluster from a standby
server, run pg_probackup in the remote mode, or create PTRACK backups, additional setup is required.

For details, see the sections Setting up STREAM Backups, Setting up continuous WAL archiving, Setting
up Backup from Standby, Configuring the Remote Mode, Setting up Partial Restore, and Setting up
PTRACK Backups.

Setting up STREAM Backups

To set up the cluster for STREAM backups, complete the following steps:

• Grant the REPLICATION privilege to the backup role:

2454

Additional Supplied Programs

ALTER ROLE backup WITH REPLICATION;

• In the pg_hba.conf file, allow replication on behalf of the backup role.
• Make sure the parameter max_wal_senders is set high enough to leave at least one session

available for the backup process.
• Set the parameter wal_level to be higher than minimal.
If you are planning to take PAGE backups in the STREAM mode or perform PITR with STREAM backups,
you still have to configure WAL archiving, as explained in the section Setting up continuous WAL
archiving.

Once these steps are complete, you can start taking FULL, PAGE, DELTA, and PTRACK backups in the
STREAM WAL mode.

Note
If you are planning to rely on .pgpass for authentication when running backup in STREAM mode,
then .pgpass must contain credentials for replication database, used to establish connection via
replication protocol. Example: pghost:5432:replication:backup_user:my_strong_password

Setting up Continuous WAL Archiving

Making backups in PAGE backup mode, performing PITR and making backups with ARCHIVE WAL
delivery mode require continuous WAL archiving to be enabled. To set up continuous archiving in the
cluster, complete the following steps:

• Make sure the wal_level parameter is higher than minimal.
• If you are configuring archiving on master, archive_mode must be set to on or always. To perform

archiving on standby, set this parameter to always.
• Set the archive_command parameter, as follows:

archive_command = '"install_dir/pg_probackup" archive-push -B "backup_dir" --
instance instance_name --wal-file-name=%f [remote_options]'

where install_dir is the installation directory of the pg_probackup version you are going to use,
backup_dir and instance_name refer to the already initialized backup catalog instance for this database
cluster, and remote_options only need to be specified to archive WAL on a remote host. For details about
all possible archive-push parameters, see the section archive-push.

Once these steps are complete, you can start making backups in the ARCHIVE WAL mode, backups in
the PAGE backup mode, as well as perform PITR.

You can view the current state of the WAL archive using the show command. For details, see the section
called “Viewing WAL Archive Information”.

If you are planning to make PAGE backups and/or backups with ARCHIVE WAL mode from a standby
server that generates a small amount of WAL traffic, without long waiting for WAL segment to fill up,
consider setting the archive_timeout Postgres Pro parameter on master. The value of this parameter
should be slightly lower than the --archive-timeout setting (5 minutes by default), so that there is
enough time for the rotated segment to be streamed to standby and sent to WAL archive before the
backup is aborted because of --archive-timeout.

Note
Instead of using the archive-push command provided by pg_probackup, you can use any other
tool to set up continuous archiving as long as it delivers WAL segments into backup_dir/wal/

2455

Additional Supplied Programs

instance_name directory. If compression is used, it should be gzip, and .gz suffix in filename is
mandatory.

Note
Instead of configuring continuous archiving by setting the archive_mode and archive_command
parameters, you can opt for using the pg_receivewal utility. In this case, pg_receivewal -
D directory option should point to backup_dir/wal/instance_name directory. pg_probackup
supports WAL compression that can be done by pg_receivewal. “Zero Data Loss” archive strategy
can be achieved only by using pg_receivewal.

Setting up Backup from Standby

For Postgres Pro 9.6 or higher, pg_probackup can take backups from a standby server. This requires the
following additional setup:

• On the standby server, set the hot_standby parameter to on.
• On the master server, set the full_page_writes parameter to on.
• To perform standalone backups on standby, complete all steps in section Setting up STREAM

Backups.
• To perform archive backups on standby, complete all steps in section Setting up continuous WAL

archiving.
Once these steps are complete, you can start taking FULL, PAGE, DELTA, or PTRACK backups with
appropriate WAL delivery mode: ARCHIVE or STREAM, from the standby server.

Backup from the standby server has the following limitations:

• If the standby is promoted to the master during backup, the backup fails.
• All WAL records required for the backup must contain sufficient full-page writes. This requires

you to enable full_page_writes on the master, and not to use tools like pg_compresslog as
archive_command to remove full-page writes from WAL files.

Setting up Cluster Verification

Logical verification of a database cluster requires the following additional setup. Role backup is used
as an example:

• Install the amcheck or amcheck_next extension in every database of the cluster:

CREATE EXTENSION amcheck;

• Grant the following permissions to the backup role in every database of the cluster:

GRANT SELECT ON TABLE pg_catalog.pg_am TO backup;
GRANT SELECT ON TABLE pg_catalog.pg_class TO backup;
GRANT SELECT ON TABLE pg_catalog.pg_database TO backup;
GRANT SELECT ON TABLE pg_catalog.pg_namespace TO backup;
GRANT SELECT ON TABLE pg_catalog.pg_extension TO backup;
GRANT EXECUTE ON FUNCTION bt_index_check(regclass) TO backup;
GRANT EXECUTE ON FUNCTION bt_index_check(regclass, bool) TO backup;
GRANT EXECUTE ON FUNCTION bt_index_check(regclass, bool, bool) TO backup;

Setting up Partial Restore

If you are planning to use partial restore, complete the following additional step:

• Grant the read-only access to pg_catalog.pg_database to the backup role only in the database
used for connection to Postgres Pro server:

2456

https://github.com/petergeoghegan/amcheck

Additional Supplied Programs

GRANT SELECT ON TABLE pg_catalog.pg_database TO backup;

Configuring the Remote Mode

pg_probackup supports the remote mode that allows to perform backup, restore and WAL archiving
operations remotely. In this mode, the backup catalog is stored on a local system, while Postgres Pro
instance to backup and/or to restore is located on a remote system. Currently the only supported remote
protocol is SSH.

Set up SSH

If you are going to use pg_probackup in remote mode via SSH, complete the following steps:

• Install pg_probackup on both systems: backup_host and db_host.

• For communication between the hosts set up the passwordless SSH connection between backup
user on backup_host and postgres user on db_host:

[backup@backup_host] ssh-copy-id postgres@db_host

• If you are going to rely on continuous WAL archiving, set up passwordless SSH connection between
postgres user on db_host and backup user on backup_host:

[postgres@db_host] ssh-copy-id backup@backup_host

where:

• backup_host is the system with backup catalog.
• db_host is the system with Postgres Pro cluster.
• backup is the OS user on backup_host used to run pg_probackup.
• postgres is the OS user on db_host used to start the Postgres Pro cluster. For Postgres Pro 11 or

higher a more secure approach can be used thanks to group access feature.

pg_probackup in the remote mode via SSH works as follows:

• Only the following commands can be launched in the remote mode: add-instance, backup, restore,
catchup, archive-push, and archive-get.

• Operating in remote mode requires pg_probackup binary to be installed on both local and remote
systems. The versions of local and remote binary must be the same.

• When started in the remote mode, the main pg_probackup process on the local system connects to
the remote system via SSH and launches one or more agent processes on the remote system, which
are called remote agents. The number of remote agents is equal to the -j/--threads setting.

• The main pg_probackup process uses remote agents to access remote files and transfer data
between local and remote systems.

• Remote agents try to minimize the network traffic and the number of round-trips between hosts.
• The main process is usually started on backup_host and connects to db_host, but in case of

archive-push and archive-get commands the main process is started on db_host and connects to
backup_host.

• Once data transfer is complete, remote agents are terminated and SSH connections are closed.
• If an error condition is encountered by a remote agent, then all agents are terminated and error

details are reported by the main pg_probackup process, which exits with an error.
• Compression is always done on db_host, while decompression is always done on backup_host.

Note
You can impose additional restrictions on SSH settings to protect the system in the event of account
compromise.

2457

https://man.openbsd.org/OpenBSD-current/man8/sshd.8#AUTHORIZED_KEYS_FILE_FORMAT

Additional Supplied Programs

Setting up PTRACK Backups

Note
PTRACK versions lower than 2.0 are deprecated and not supported. Postgres Pro Standard and
Postgres Pro Enterprise versions starting with 11.9.1 contain PTRACK 2.0. Upgrade your server
to avoid issues in backups that you will take in future and be sure to take fresh backups of your
clusters with the upgraded PTRACK since the backups taken with PTRACK 1.x might be corrupt.

If you are going to use PTRACK backups, complete the following additional steps. The role that will
perform PTRACK backups (the backup role in the examples below) must have access to all the databases
of the cluster.

For Postgres Pro 11 or higher:

1. Create PTRACK extension:

CREATE EXTENSION ptrack;

2. To enable tracking page updates, set ptrack.map_size parameter to a positive integer and restart
the server.

For optimal performance, it is recommended to set ptrack.map_size to N / 1024, where N is the size
of the Postgres Pro cluster, in MB. If you set this parameter to a lower value, PTRACK is more likely to
map several blocks together, which leads to false-positive results when tracking changed blocks and
increases the incremental backup size as unchanged blocks can also be copied into the incremental
backup. Setting ptrack.map_size to a higher value does not affect PTRACK operation, but it is not
recommended to set this parameter to a value higher than 1024.

Note
If you change the ptrack.map_size parameter value, the previously created PTRACK map file is
cleared, and tracking newly changed blocks starts from scratch. Thus, you have to retake a full
backup before taking incremental PTRACK backups after changing ptrack.map_size.

Usage

Creating a Backup

To create a backup, run the following command:

pg_probackup backup -B backup_dir --instance instance_name -b backup_mode

Where backup_mode can take one of the following values:

• FULL — creates a full backup that contains all the data files of the cluster to be restored.
• DELTA — reads all data files in the data directory and creates an incremental backup for pages that

have changed since the previous backup.
• PAGE — creates an incremental backup based on the WAL files that have been generated since the

previous full or incremental backup was taken. Only changed blocks are read from data files.
• PTRACK — creates an incremental backup tracking page changes on the fly.

When restoring a cluster from an incremental backup, pg_probackup relies on the parent full backup
and all the incremental backups between them, which is called “the backup chain”. You must create at
least one full backup before taking incremental ones.

ARCHIVE Mode

ARCHIVE is the default WAL delivery mode.

2458

Additional Supplied Programs

For example, to make a FULL backup in ARCHIVE mode, run:

pg_probackup backup -B backup_dir --instance instance_name -b FULL

ARCHIVE backups rely on continuous archiving to get WAL segments required to restore the cluster to
a consistent state at the time the backup was taken.

When a backup is taken, pg_probackup ensures that WAL files containing WAL records between Start
LSN and Stop LSN actually exist in backup_dir/wal/instance_name directory. pg_probackup also
ensures that WAL records between Start LSN and Stop LSN can be parsed. This precaution eliminates
the risk of silent WAL corruption.

STREAM Mode

STREAM is the optional WAL delivery mode.

For example, to make a FULL backup in the STREAM mode, add the --stream flag to the command
from the previous example:

pg_probackup backup -B backup_dir --instance instance_name -b FULL --stream --temp-slot

The optional --temp-slot flag ensures that the required segments remain available if the WAL is rotated
before the backup is complete.

Unlike backups in ARCHIVE mode, STREAM backups include all the WAL segments required to restore
the cluster to a consistent state at the time the backup was taken.

During backup pg_probackup streams WAL files containing WAL records between Start LSN and Stop
LSN to backup_dir/backups/instance_name/backup_id/database/pg_wal directory. To eliminate the
risk of silent WAL corruption, pg_probackup also checks that WAL records between Start LSN and Stop
LSN can be parsed.

Even if you are using continuous archiving, STREAM backups can still be useful in the following cases:

• STREAM backups can be restored on the server that has no file access to WAL archive.
• STREAM backups enable you to restore the cluster state at the point in time for which WAL files in

archive are no longer available.
• Backup in STREAM mode can be taken from a standby of a server that generates small amount of

WAL traffic, without long waiting for WAL segment to fill up.

Page Validation

If data_checksums are enabled in the database cluster, pg_probackup uses this information to check
correctness of data files during backup. While reading each page, pg_probackup checks whether the
calculated checksum coincides with the checksum stored in the page header. This guarantees that
the Postgres Pro instance and the backup itself have no corrupt pages. Note that pg_probackup reads
database files directly from the filesystem, so under heavy write load during backup it can show false-
positive checksum mismatches because of partial writes. If a page checksum mismatch occurs, the page
is re-read and checksum comparison is repeated.

A page is considered corrupt if checksum comparison has failed more than 100 times. In this case, the
backup is aborted.

Even if data checksums are not enabled, pg_probackup always performs sanity checks for page headers.

External Directories

To back up a directory located outside of the data directory, use the optional --external-dirs parameter
that specifies the path to this directory. If you would like to add more than one external directory, you
can provide several paths separated by colons on Linux systems or semicolons on Windows systems.

For example, to include /etc/dir1 and /etc/dir2 directories into the full backup of your instance_name
instance that will be stored under the backup_dir directory on Linux, run:

2459

Additional Supplied Programs

pg_probackup backup -B backup_dir --instance instance_name -b FULL --external-dirs=/
etc/dir1:/etc/dir2

Similarly, to include C:\dir1 and C:\dir2 directories into the full backup on Windows, run:

pg_probackup backup -B backup_dir --instance instance_name -b FULL --external-dirs=C:
\dir1;C:\dir2

pg_probackup recursively copies the contents of each external directory into a separate subdirectory
in the backup catalog. Since external directories included into different backups do not have to be the
same, when you are restoring the cluster from an incremental backup, only those directories that belong
to this particular backup will be restored. Any external directories stored in the previous backups will
be ignored.

To include the same directories into each backup of your instance, you can specify them in the
pg_probackup.conf configuration file using the set-config command with the --external-dirs option.

Performing Cluster Verification

To verify that Postgres Pro database cluster is not corrupt, run the following command:

pg_probackup checkdb [-B backup_dir [--instance instance_name]] [-D data_dir]
 [connection_options]

This command performs physical verification of all data files located in the specified data directory
by running page header sanity checks, as well as block-level checksum verification if checksums are
enabled. If a corrupt page is detected, checkdb continues cluster verification until all pages in the cluster
are validated.

By default, similar page validation is performed automatically while a backup is taken by pg_probackup.
The checkdb command enables you to perform such page validation on demand, without taking any
backup copies, even if the cluster is not backed up using pg_probackup at all.

To perform cluster verification, pg_probackup needs to connect to the cluster to be verified. In general,
it is enough to specify the backup instance of this cluster for pg_probackup to determine the required
connection options. However, if -B and --instance options are omitted, you have to provide connection
options and data_dir via environment variables or command-line options.

Physical verification cannot detect logical inconsistencies, missing or nullified blocks and entire files, or
similar anomalies. Extensions amcheck and amcheck_next provide a partial solution to these problems.

If you would like, in addition to physical verification, to verify all indexes in all databases using these
extensions, you can specify the --amcheck flag when running the checkdb command:

pg_probackup checkdb -D data_dir --amcheck [connection_options]

You can skip physical verification by specifying the --skip-block-validation flag. In this case, you can
omit backup_dir and data_dir options, only connection options are mandatory:

pg_probackup checkdb --amcheck --skip-block-validation [connection_options]

Logical verification can be done more thoroughly with the --heapallindexed flag by checking that all
heap tuples that should be indexed are actually indexed, but at the higher cost of CPU, memory, and
I/O consumption.

Validating a Backup

pg_probackup calculates checksums for each file in a backup during the backup process. The process
of checking checksums of backup data files is called the backup validation. By default, validation is run
immediately after the backup is taken and right before the restore, to detect possible backup corruption.

If you would like to skip backup validation, you can specify the --no-validate flag when running backup
and restore commands.

2460

https://github.com/petergeoghegan/amcheck

Additional Supplied Programs

To ensure that all the required backup files are present and can be used to restore the database cluster,
you can run the validate command with the exact recovery target options you are going to use for
recovery.

For example, to check that you can restore the database cluster from a backup copy up to transaction
ID 4242, run this command:

pg_probackup validate -B backup_dir --instance instance_name --recovery-target-xid=4242

If validation completes successfully, pg_probackup displays the corresponding message. If validation
fails, you will receive an error message with the exact time, transaction ID, and LSN up to which the
recovery is possible.

If you specify backup_id via -i/--backup-id option, then only the backup copy with specified backup
ID will be validated. If backup_id is specified with recovery target options, the validate command will
check whether it is possible to restore the specified backup to the specified recovery target.

For example, to check that you can restore the database cluster from a backup copy with the PT8XFX
backup ID up to the specified timestamp, run this command:

pg_probackup validate -B backup_dir --instance instance_name -i PT8XFX --recovery-
target-time="2017-05-18 14:18:11+03"

If you specify the backup_id of an incremental backup, all its parents starting from FULL backup will
be validated.

If you omit all the parameters, all backups are validated.

Restoring a Cluster

To restore the database cluster from a backup, run the restore command with at least the following
options:

pg_probackup restore -B backup_dir --instance instance_name -i backup_id

where:

• backup_dir is the backup catalog that stores all backup files and meta information.
• instance_name is the backup instance for the cluster to be restored.
• backup_id specifies the backup to restore the cluster from. If you omit this option, pg_probackup

uses the latest valid backup available for the specified instance. If you specify an incremental
backup to restore, pg_probackup automatically restores the underlying full backup and then
sequentially applies all the necessary increments.

Once the restore command is complete, start the database service.

If you restore ARCHIVE backups, perform PITR, or specify the --restore-as-replica flag with the
restore command to set up a standby server, pg_probackup creates a recovery configuration file once
all data files are copied into the target directory. This file includes the minimal settings required for
recovery, except for the password in the primary_conninfo parameter; you have to add the password
manually or use the --primary-conninfo option, if required. For Postgres Pro 11 or lower, recovery
settings are written into the recovery.conf file. Starting from Postgres Pro 12, pg_probackup writes
these settings into the probackup_recovery.conf file and then includes it into postgresql.auto.conf.

If you are restoring a STREAM backup, the restore is complete at once, with the cluster returned to
a self-consistent state at the point when the backup was taken. For ARCHIVE backups, Postgres Pro
replays all available archived WAL segments, so the cluster is restored to the latest state possible within
the current timeline. You can change this behavior by using the recovery target options with the restore
command, as explained in the section called “Performing Point-in-Time (PITR) Recovery”.

If the cluster to restore contains tablespaces, pg_probackup restores them to their original location
by default. To restore tablespaces to a different location, use the --tablespace-mapping/-T option.

2461

Additional Supplied Programs

Otherwise, restoring the cluster on the same host will fail if tablespaces are in use, because the backup
would have to be written to the same directories.

When using the --tablespace-mapping/-T option, you must provide absolute paths to the old and new
tablespace directories. If a path happens to contain an equals sign (=), escape it with a backslash. This
option can be specified multiple times for multiple tablespaces. For example:

pg_probackup restore -B backup_dir --instance instance_name -D data_dir -j 4 -
i backup_id -T tablespace1_dir=tablespace1_newdir -T tablespace2_dir=tablespace2_newdir

To restore the cluster on a remote host, follow the instructions in the section called “Using pg_probackup
in the Remote Mode”.

Note
By default, the restore command validates the specified backup before restoring the cluster. If you
run regular backup validations and would like to save time when restoring the cluster, you can
specify the --no-validate flag to skip validation and speed up the recovery.

Incremental Restore

The speed of restore from backup can be significantly improved by replacing only invalid and changed
pages in already existing Postgres Pro data directory using incremental restore options with the restore
command.

To restore the database cluster from a backup in incremental mode, run the restore command with the
following options:

pg_probackup restore -B backup_dir --instance instance_name -D data_dir -
I incremental_mode

Where incremental_mode can take one of the following values:

• CHECKSUM — read all data files in the data directory, validate header and checksum in every page
and replace only invalid pages and those with checksum and LSN not matching with corresponding
page in backup. This is the simplest, the most fool-proof incremental mode. Recommended to use
by default.

• LSN — read the pg_control in the data directory to obtain redo LSN and redo TLI, which allows
to determine a point in history(shiftpoint), where data directory state shifted from target backup
chain history. If shiftpoint is not within reach of backup chain history, then restore is aborted. If
shiftpoint is within reach of backup chain history, then read all data files in the data directory,
validate header and checksum in every page and replace only invalid pages and those with LSN
greater than shiftpoint. This mode offers a greater speed up compared to CHECKSUM, but rely
on two conditions to be met. First, data_checksums parameter must be enabled in data directory
(to avoid corruption due to hint bits). This condition will be checked at the start of incremental
restore and the operation will be aborted if checksums are disabled. Second, the pg_control file
must be synched with state of data directory. This condition cannot checked at the start of restore,
so it is a user responsibility to ensure that pg_control contain valid information. Therefore it is not
recommended to use LSN mode in any situation, where pg_control cannot be trusted or has been
tampered with: after pg_resetxlog execution, after restore from backup without recovery been
run, etc.

• NONE — regular restore without any incremental optimizations.

Regardless of chosen incremental mode, pg_probackup will check, that postmaster in given destination
directory is not running and system-identifier is the same as in the backup.

Suppose you want to return an old master as replica after switchover using incremental restore in LSN
mode:

2462

Additional Supplied Programs

===
 Instance Version ID Recovery Time Mode WAL Mode TLI Time
 Data WAL Zratio Start LSN Stop LSN Status
===
 node 12 QBRNBP 2020-06-11 17:40:58+03 DELTA ARCHIVE 16/15 40s
 194MB 16MB 8.26 15/2C000028 15/2D000128 OK
 node 12 QBRIDX 2020-06-11 15:51:42+03 PAGE ARCHIVE 15/15 11s
 18MB 16MB 5.10 14/DC000028 14/DD0000B8 OK
 node 12 QBRIAJ 2020-06-11 15:51:08+03 PAGE ARCHIVE 15/15 20s
 141MB 96MB 6.22 14/D4BABFE0 14/DA9871D0 OK
 node 12 QBRHT8 2020-06-11 15:45:56+03 FULL ARCHIVE 15/0 2m:11s
 1371MB 416MB 10.93 14/9D000028 14/B782E9A0 OK

pg_probackup restore -B /backup --instance node -R -I lsn
INFO: Running incremental restore into nonempty directory: "/var/lib/pgsql/12/data"
INFO: Destination directory redo point 15/2E000028 on tli 16 is within reach of backup
 QBRIDX with Stop LSN 14/DD0000B8 on tli 15
INFO: shift LSN: 14/DD0000B8
INFO: Restoring the database from backup at 2020-06-11 17:40:58+03
INFO: Extracting the content of destination directory for incremental restore
INFO: Destination directory content extracted, time elapsed: 1s
INFO: Removing redundant files in destination directory
INFO: Redundant files are removed, time elapsed: 1s
INFO: Start restoring backup files. PGDATA size: 15GB
INFO: Backup files are restored. Transfered bytes: 1693MB, time elapsed: 43s
INFO: Restore incremental ratio (less is better): 11% (1693MB/15GB)
INFO: Restore of backup QBRNBP completed.

Note
Incremental restore is possible only for backups with program_version equal or greater than
2.4.0.

Partial Restore

If you have enabled partial restore before taking backups, you can restore only some of the databases
using partial restore options with the restore commands.

To restore the specified databases only, run the restore command with the following options:

pg_probackup restore -B backup_dir --instance instance_name --db-include=database_name

The --db-include option can be specified multiple times. For example, to restore only databases db1
and db2, run the following command:

pg_probackup restore -B backup_dir --instance instance_name --db-include=db1 --db-
include=db2

To exclude one or more databases from restore, use the --db-exclude option:

pg_probackup restore -B backup_dir --instance instance_name --db-exclude=database_name

The --db-exclude option can be specified multiple times. For example, to exclude the databases db1
and db2 from restore, run the following command:

pg_probackup restore -B backup_dir --instance instance_name --db-exclude=db1 --db-
exclude=db2

2463

Additional Supplied Programs

Partial restore relies on lax behavior of Postgres Pro recovery process toward truncated files. For
recovery to work properly, files of excluded databases are restored as files of zero size. After the
Postgres Pro cluster is successfully started, you must drop the excluded databases using DROP DATABASE
command.

To decouple a single cluster containing multiple databases into separate clusters with minimal downtime,
you can do partial restore of the cluster as a standby using the --restore-as-replica option for specific
databases.

Note
The template0 and template1 databases are always restored.

Note
Due to recovery specifics of Postgres Pro versions earlier than 12, it is advisable that you set the
hot_standby parameter to off when running partial restore of a Postgres Pro cluster of version
earlier than 12. Otherwise the recovery may fail.

Performing Point-in-Time (PITR) Recovery

If you have enabled continuous WAL archiving before taking backups, you can restore the cluster to
its state at an arbitrary point in time (recovery target) using recovery target options with the restore
command.

You can use both STREAM and ARCHIVE backups for point in time recovery as long as the WAL archive
is available at least starting from the time the backup was taken. If -i/--backup-id option is omitted,
pg_probackup automatically chooses the backup that is the closest to the specified recovery target
and starts the restore process, otherwise pg_probackup will try to restore the specified backup to the
specified recovery target.

• To restore the cluster state at the exact time, specify the --recovery-target-time option, in the
timestamp format. For example:

pg_probackup restore -B backup_dir --instance instance_name --recovery-target-
time="2017-05-18 14:18:11+03"

• To restore the cluster state up to a specific transaction ID, use the --recovery-target-xid option:

pg_probackup restore -B backup_dir --instance instance_name --recovery-target-
xid=687

• To restore the cluster state up to the specific LSN, use --recovery-target-lsn option:

pg_probackup restore -B backup_dir --instance instance_name --recovery-target-
lsn=16/B374D848

• To restore the cluster state up to the specific named restore point, use --recovery-target-name
option:

pg_probackup restore -B backup_dir --instance instance_name --recovery-target-
name="before_app_upgrade"

• To restore the backup to the latest state available in the WAL archive, use --recovery-target
option with latest value:

pg_probackup restore -B backup_dir --instance instance_name --recovery-
target="latest"

2464

Additional Supplied Programs

• To restore the cluster to the earliest point of consistency, use --recovery-target option with the
immediate value:

pg_probackup restore -B backup_dir --instance instance_name --recovery-
target='immediate'

Using pg_probackup in the Remote Mode

pg_probackup supports the remote mode that allows to perform backup and restore operations remotely
via SSH. In this mode, the backup catalog is stored on a local system, while Postgres Pro instance to be
backed up is located on a remote system. You must have pg_probackup installed on both systems.

Note
pg_probackup relies on passwordless SSH connection for communication between the hosts.

The typical workflow is as follows:

• On your backup host, configure pg_probackup as explained in the section Installation and Setup.
For the add-instance and set-config commands, make sure to specify remote options that point to
the database host with the Postgres Pro instance.

• If you would like to take remote backups in PAGE mode, or rely on ARCHIVE WAL delivery mode,
or use PITR, configure continuous WAL archiving from the database host to the backup host as
explained in the section Setting up continuous WAL archiving. For the archive-push and archive-
get commands, you must specify the remote options that point to the backup host with the backup
catalog.

• Run backup or restore commands with remote options on the backup host. pg_probackup
connects to the remote system via SSH and creates a backup locally or restores the previously
taken backup on the remote system, respectively.

For example, to create an archive full backup of a Postgres Pro cluster located on a remote system with
host address 192.168.0.2 on behalf of the postgres user via SSH connection through port 2302, run:

pg_probackup backup -B backup_dir --instance instance_name -b FULL --remote-
user=postgres --remote-host=192.168.0.2 --remote-port=2302

To restore the latest available backup on a remote system with host address 192.168.0.2 on behalf of
the postgres user via SSH connection through port 2302, run:

pg_probackup restore -B backup_dir --instance instance_name --remote-user=postgres --
remote-host=192.168.0.2 --remote-port=2302

Restoring an ARCHIVE backup or performing PITR in the remote mode require additional information:
destination address, port and username for establishing an SSH connection from the host with database
to the host with the backup catalog. This information will be used by the restore_command to copy WAL
segments from the archive to the Postgres Pro pg_wal directory.

To solve this problem, you can use Remote WAL Archive Options.

For example, to restore latest backup on remote system using remote mode through SSH connection to
user postgres on host with address 192.168.0.2 via port 2302 and user backup on backup catalog host
with address 192.168.0.3 via port 2303, run:

pg_probackup restore -B backup_dir --instance instance_name --remote-user=postgres
 --remote-host=192.168.0.2 --remote-port=2302 --archive-host=192.168.0.3 --archive-
port=2303 --archive-user=backup

Provided arguments will be used to construct the restore_command:

2465

Additional Supplied Programs

restore_command = '"install_dir/pg_probackup" archive-get -B "backup_dir" --
instance instance_name --wal-file-path=%p --wal-file-name=%f --remote-host=192.168.0.3
 --remote-port=2303 --remote-user=backup'

Alternatively, you can use the --restore-command option to provide the entire restore_command:

pg_probackup restore -B backup_dir --instance instance_name --remote-user=postgres
 --remote-host=192.168.0.2 --remote-port=2302 --restore-command='"install_dir/
pg_probackup" archive-get -B "backup_dir" --instance instance_name --wal-file-path=%p
 --wal-file-name=%f --remote-host=192.168.0.3 --remote-port=2303 --remote-user=backup'

Note
The remote mode is currently unavailable for Windows systems.

Running pg_probackup on Parallel Threads

backup, restore, merge, delete, catchup, checkdb, and validate processes can be executed on several
parallel threads. This can significantly speed up pg_probackup operation given enough resources (CPU
cores, disk, and network bandwidth).

Parallel execution is controlled by the -j/--threads command-line option. For example, to create a
backup using four parallel threads, run:

pg_probackup backup -B backup_dir --instance instance_name -b FULL -j 4

Note
Parallel restore applies only to copying data from the backup catalog to the data directory of the
cluster. When Postgres Pro server is started, WAL records need to be replayed, and this cannot
be done in parallel.

Configuring pg_probackup

Once the backup catalog is initialized and a new backup instance is added, you can use the
pg_probackup.conf configuration file located in the backup_dir/backups/instance_name directory to
fine-tune pg_probackup configuration.

For example, backup and checkdb commands use a regular Postgres Pro connection. To avoid specifying
connection options each time on the command line, you can set them in the pg_probackup.conf
configuration file using the set-config command.

Note
It is not recommended to edit pg_probackup.conf manually.

Initially, pg_probackup.conf contains the following settings:

• PGDATA — the path to the data directory of the cluster to back up.
• system-identifier — the unique identifier of the Postgres Pro instance.
Additionally, you can define remote, retention, logging, and compression settings using the set-config
command:

pg_probackup set-config -B backup_dir --instance instance_name
[--external-dirs=external_directory_path] [remote_options] [connection_options]
 [retention_options] [logging_options]

2466

Additional Supplied Programs

To view the current settings, run the following command:

pg_probackup show-config -B backup_dir --instance instance_name

You can override the settings defined in pg_probackup.conf when running pg_probackup commands via
the corresponding environment variables and/or command line options.

Specifying Connection Settings
If you define connection settings in the pg_probackup.conf configuration file, you can omit connection
options in all the subsequent pg_probackup commands. However, if the corresponding environment
variables are set, they get higher priority. The options provided on the command line overwrite both
environment variables and configuration file settings.

If nothing is given, the default values are taken. By default pg_probackup tries to use local connection
via Unix domain socket (localhost on Windows) and tries to get the database name and the user name
from the PGUSER environment variable or the current OS user name.

Managing the Backup Catalog
With pg_probackup, you can manage backups from the command line:

• View backup information
• View WAL Archive Information
• Validate backups
• Merge backups
• Delete backups

Viewing Backup Information

To view the list of existing backups for every instance, run the command:

pg_probackup show -B backup_dir

pg_probackup displays the list of all the available backups. For example:

BACKUP INSTANCE 'node'
==
 Instance Version ID Recovery time Mode WAL Mode TLI Time Data
 WAL Zratio Start LSN Stop LSN Status
==
 node 10 PYSUE8 2019-10-03 15:51:48+03 FULL ARCHIVE 1/0 16s 9047kB
 16MB 4.31 0/12000028 0/12000160 OK
 node 10 P7XDQV 2018-04-29 05:32:59+03 DELTA STREAM 1/1 11s 19MB
 16MB 1.00 0/15000060 0/15000198 OK
 node 10 P7XDJA 2018-04-29 05:28:36+03 PTRACK STREAM 1/1 21s 32MB
 32MB 1.00 0/13000028 0/13000198 OK
 node 10 P7XDHU 2018-04-29 05:27:59+03 PAGE STREAM 1/1 15s 33MB
 16MB 1.00 0/11000028 0/110001D0 OK
 node 10 P7XDHB 2018-04-29 05:27:15+03 FULL STREAM 1/0 11s 39MB
 16MB 1.00 0/F000028 0/F000198 OK

For each backup, the following information is provided:

• Instance — the instance name.
• Version — Postgres Pro major version.
• ID — the backup identifier.
• Recovery time — the earliest moment for which you can restore the state of the database cluster.
• Mode — the method used to take this backup. Possible values: FULL, PAGE, DELTA, PTRACK.
• WAL Mode — WAL delivery mode. Possible values: STREAM and ARCHIVE.
• TLI — timeline identifiers of the current backup and its parent.

2467

Additional Supplied Programs

• Time — the time it took to perform the backup.

• Data — the size of the data files in this backup. This value does not include the size of WAL files.
For STREAM backups, the total size of the backup can be calculated as Data + WAL.

• WAL — the uncompressed size of WAL files that need to be applied during recovery for the backup
to reach a consistent state.

• Zratio — compression ratio calculated as “uncompressed-bytes” / “data-bytes”.

• Start LSN — WAL log sequence number corresponding to the start of the backup process. REDO
point for Postgres Pro recovery process to start from.

• Stop LSN — WAL log sequence number corresponding to the end of the backup process.
Consistency point for Postgres Pro recovery process.

• Status — backup status. Possible values:

• OK — the backup is complete and valid.
• DONE — the backup is complete, but was not validated.
• RUNNING — the backup is in progress.
• MERGING — the backup is being merged.
• MERGED — the backup data files were successfully merged, but its metadata is in the process of

being updated. Only full backups can have this status.
• DELETING — the backup files are being deleted.
• CORRUPT — some of the backup files are corrupt.
• ERROR — the backup was aborted because of an unexpected error.
• ORPHAN — the backup is invalid because one of its parent backups is corrupt or missing.

You can restore the cluster from the backup only if the backup status is OK or DONE.

To get more detailed information about the backup, run the show command with the backup ID:

pg_probackup show -B backup_dir --instance instance_name -i backup_id

The sample output is as follows:

#Configuration
backup-mode = FULL
stream = false
compress-alg = zlib
compress-level = 1
from-replica = false

#Compatibility
block-size = 8192
wal-block-size = 8192
checksum-version = 1
program-version = 2.1.3
server-version = 10

#Result backup info
timelineid = 1
start-lsn = 0/04000028
stop-lsn = 0/040000f8
start-time = '2017-05-16 12:57:29'
end-time = '2017-05-16 12:57:31'
recovery-xid = 597
recovery-time = '2017-05-16 12:57:31'
expire-time = '2020-05-16 12:57:31'
data-bytes = 22288792
wal-bytes = 16777216

2468

Additional Supplied Programs

uncompressed-bytes = 39961833
pgdata-bytes = 39859393
status = OK
parent-backup-id = 'PT8XFX'
primary_conninfo = 'user=backup passfile=/var/lib/pgsql/.pgpass port=5432
 sslmode=disable sslcompression=1 target_session_attrs=any'

Detailed output has additional attributes:

• compress-alg — compression algorithm used during backup. Possible values: zlib, pglz, none.
• compress-level — compression level used during backup.
• from-replica — was this backup taken on standby? Possible values: 1, 0.
• block-size — the block_size setting of Postgres Pro cluster at the backup start.
• checksum-version — are data_checksums enabled in the backed up Postgres Pro cluster? Possible

values: 1, 0.
• program-version — full version of pg_probackup binary used to create the backup.
• start-time — the backup start time.
• end-time — the backup end time.
• expire-time — the point in time when a pinned backup can be removed in accordance with

retention policy. This attribute is only available for pinned backups.
• uncompressed-bytes — the size of data files before adding page headers and applying

compression. You can evaluate the effectiveness of compression by comparing uncompressed-bytes
to data-bytes if compression if used.

• pgdata-bytes — the size of Postgres Pro cluster data files at the time of backup. You can evaluate
the effectiveness of an incremental backup by comparing pgdata-bytes to uncompressed-bytes.

• recovery-xid — transaction ID at the backup end time.
• parent-backup-id — ID of the parent backup. Available only for incremental backups.
• primary_conninfo — libpq connection parameters used to connect to the Postgres Pro cluster to

take this backup. The password is not included.
• note — text note attached to backup.
• content-crc — CRC32 checksum of backup_content.control file. It is used to detect corruption

of backup metainformation.

You can also get the detailed information about the backup in the JSON format:

pg_probackup show -B backup_dir --instance instance_name --format=json -i backup_id

The sample output is as follows:

[
 {
 "instance": "node",
 "backups": [
 {
 "id": "PT91HZ",
 "parent-backup-id": "PT8XFX",
 "backup-mode": "DELTA",
 "wal": "ARCHIVE",
 "compress-alg": "zlib",
 "compress-level": 1,
 "from-replica": false,
 "block-size": 8192,
 "xlog-block-size": 8192,
 "checksum-version": 1,
 "program-version": "2.1.3",
 "server-version": "10",
 "current-tli": 16,
 "parent-tli": 2,
 "start-lsn": "0/8000028",

2469

Additional Supplied Programs

 "stop-lsn": "0/8000160",
 "start-time": "2019-06-17 18:25:11+03",
 "end-time": "2019-06-17 18:25:16+03",
 "recovery-xid": 0,
 "recovery-time": "2019-06-17 18:25:15+03",
 "data-bytes": 106733,
 "wal-bytes": 16777216,
 "primary_conninfo": "user=backup passfile=/var/lib/pgsql/.pgpass
 port=5432 sslmode=disable sslcompression=1 target_session_attrs=any",
 "status": "OK"
 }
]
 }
]

Viewing WAL Archive Information

To view the information about WAL archive for every instance, run the command:

pg_probackup show -B backup_dir [--instance instance_name] --archive

pg_probackup displays the list of all the available WAL files grouped by timelines. For example:

ARCHIVE INSTANCE 'node'
===
 TLI Parent TLI Switchpoint Min Segno Max Segno N
 segments Size Zratio N backups Status
===
 5 1 0/B000000 00000005000000000000000B 00000005000000000000000C 2
 685kB 48.00 0 OK
 4 3 0/18000000 000000040000000000000018 00000004000000000000001A 3
 648kB 77.00 0 OK
 3 2 0/15000000 000000030000000000000015 000000030000000000000017 3
 648kB 77.00 0 OK
 2 1 0/B000108 00000002000000000000000B 000000020000000000000015 5
 892kB 94.00 1 DEGRADED
 1 0 0/0 000000010000000000000001 00000001000000000000000A 10
 8774kB 19.00 1 OK

For each timeline, the following information is provided:

• TLI — timeline identifier.
• Parent TLI — identifier of the timeline from which this timeline branched off.
• Switchpoint — LSN of the moment when the timeline branched off from its parent timeline.
• Min Segno — the first WAL segment belonging to the timeline.
• Max Segno — the last WAL segment belonging to the timeline.
• N segments — number of WAL segments belonging to the timeline.
• Size — the size that files take on disk.
• Zratio — compression ratio calculated as N segments * wal_segment_size * wal_block_size /

Size.
• N backups — number of backups belonging to the timeline. To get the details about backups, use

the JSON format.
• Status — status of the WAL archive for this timeline. Possible values:

• OK — all WAL segments between Min Segno and Max Segno are present.
• DEGRADED — some WAL segments between Min Segno and Max Segno are missing. To find out

which files are lost, view this report in the JSON format.
To get more detailed information about the WAL archive in the JSON format, run the command:

pg_probackup show -B backup_dir [--instance instance_name] --archive --format=json

2470

Additional Supplied Programs

The sample output is as follows:

[
 {
 "instance": "replica",
 "timelines": [
 {
 "tli": 5,
 "parent-tli": 1,
 "switchpoint": "0/B000000",
 "min-segno": "00000005000000000000000B",
 "max-segno": "00000005000000000000000C",
 "n-segments": 2,
 "size": 685320,
 "zratio": 48.00,
 "closest-backup-id": "PXS92O",
 "status": "OK",
 "lost-segments": [],
 "backups": []
 },
 {
 "tli": 4,
 "parent-tli": 3,
 "switchpoint": "0/18000000",
 "min-segno": "000000040000000000000018",
 "max-segno": "00000004000000000000001A",
 "n-segments": 3,
 "size": 648625,
 "zratio": 77.00,
 "closest-backup-id": "PXS9CE",
 "status": "OK",
 "lost-segments": [],
 "backups": []
 },
 {
 "tli": 3,
 "parent-tli": 2,
 "switchpoint": "0/15000000",
 "min-segno": "000000030000000000000015",
 "max-segno": "000000030000000000000017",
 "n-segments": 3,
 "size": 648911,
 "zratio": 77.00,
 "closest-backup-id": "PXS9CE",
 "status": "OK",
 "lost-segments": [],
 "backups": []
 },
 {
 "tli": 2,
 "parent-tli": 1,
 "switchpoint": "0/B000108",
 "min-segno": "00000002000000000000000B",
 "max-segno": "000000020000000000000015",
 "n-segments": 5,
 "size": 892173,
 "zratio": 94.00,
 "closest-backup-id": "PXS92O",

2471

Additional Supplied Programs

 "status": "DEGRADED",
 "lost-segments": [
 {
 "begin-segno": "00000002000000000000000D",
 "end-segno": "00000002000000000000000E"
 },
 {
 "begin-segno": "000000020000000000000010",
 "end-segno": "000000020000000000000012"
 }
],
 "backups": [
 {
 "id": "PXS9CE",
 "backup-mode": "FULL",
 "wal": "ARCHIVE",
 "compress-alg": "none",
 "compress-level": 1,
 "from-replica": "false",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "checksum-version": 1,
 "program-version": "2.1.5",
 "server-version": "10",
 "current-tli": 2,
 "parent-tli": 0,
 "start-lsn": "0/C000028",
 "stop-lsn": "0/C000160",
 "start-time": "2019-09-13 21:43:26+03",
 "end-time": "2019-09-13 21:43:30+03",
 "recovery-xid": 0,
 "recovery-time": "2019-09-13 21:43:29+03",
 "data-bytes": 104674852,
 "wal-bytes": 16777216,
 "primary_conninfo": "user=backup passfile=/var/lib/pgsql/.pgpass
 port=5432 sslmode=disable sslcompression=1 target_session_attrs=any",
 "status": "OK"
 }
]
 },
 {
 "tli": 1,
 "parent-tli": 0,
 "switchpoint": "0/0",
 "min-segno": "000000010000000000000001",
 "max-segno": "00000001000000000000000A",
 "n-segments": 10,
 "size": 8774805,
 "zratio": 19.00,
 "closest-backup-id": "",
 "status": "OK",
 "lost-segments": [],
 "backups": [
 {
 "id": "PXS92O",
 "backup-mode": "FULL",
 "wal": "ARCHIVE",
 "compress-alg": "none",

2472

Additional Supplied Programs

 "compress-level": 1,
 "from-replica": "true",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "checksum-version": 1,
 "program-version": "2.1.5",
 "server-version": "10",
 "current-tli": 1,
 "parent-tli": 0,
 "start-lsn": "0/4000028",
 "stop-lsn": "0/6000028",
 "start-time": "2019-09-13 21:37:36+03",
 "end-time": "2019-09-13 21:38:45+03",
 "recovery-xid": 0,
 "recovery-time": "2019-09-13 21:37:30+03",
 "data-bytes": 25987319,
 "wal-bytes": 50331648,
 "primary_conninfo": "user=backup passfile=/var/lib/pgsql/.pgpass
 port=5432 sslmode=disable sslcompression=1 target_session_attrs=any",
 "status": "OK"
 }
]
 }
]
 },
 {
 "instance": "master",
 "timelines": [
 {
 "tli": 1,
 "parent-tli": 0,
 "switchpoint": "0/0",
 "min-segno": "000000010000000000000001",
 "max-segno": "00000001000000000000000B",
 "n-segments": 11,
 "size": 8860892,
 "zratio": 20.00,
 "status": "OK",
 "lost-segments": [],
 "backups": [
 {
 "id": "PXS92H",
 "parent-backup-id": "PXS92C",
 "backup-mode": "PAGE",
 "wal": "ARCHIVE",
 "compress-alg": "none",
 "compress-level": 1,
 "from-replica": "false",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "checksum-version": 1,
 "program-version": "2.1.5",
 "server-version": "10",
 "current-tli": 1,
 "parent-tli": 1,
 "start-lsn": "0/4000028",
 "stop-lsn": "0/50000B8",
 "start-time": "2019-09-13 21:37:29+03",

2473

Additional Supplied Programs

 "end-time": "2019-09-13 21:37:31+03",
 "recovery-xid": 0,
 "recovery-time": "2019-09-13 21:37:30+03",
 "data-bytes": 1328461,
 "wal-bytes": 33554432,
 "primary_conninfo": "user=backup passfile=/var/lib/pgsql/.pgpass
 port=5432 sslmode=disable sslcompression=1 target_session_attrs=any",
 "status": "OK"
 },
 {
 "id": "PXS92C",
 "backup-mode": "FULL",
 "wal": "ARCHIVE",
 "compress-alg": "none",
 "compress-level": 1,
 "from-replica": "false",
 "block-size": 8192,
 "xlog-block-size": 8192,
 "checksum-version": 1,
 "program-version": "2.1.5",
 "server-version": "10",
 "current-tli": 1,
 "parent-tli": 0,
 "start-lsn": "0/2000028",
 "stop-lsn": "0/2000160",
 "start-time": "2019-09-13 21:37:24+03",
 "end-time": "2019-09-13 21:37:29+03",
 "recovery-xid": 0,
 "recovery-time": "2019-09-13 21:37:28+03",
 "data-bytes": 24871902,
 "wal-bytes": 16777216,
 "primary_conninfo": "user=backup passfile=/var/lib/pgsql/.pgpass
 port=5432 sslmode=disable sslcompression=1 target_session_attrs=any",
 "status": "OK"
 }
]
 }
]
 }
]

Most fields are consistent with the plain format, with some exceptions:

• The size is in bytes.
• The closest-backup-id attribute contains the ID of the most recent valid backup that belongs to

one of the previous timelines. You can use this backup to perform point-in-time recovery to this
timeline. If such a backup does not exist, this string is empty.

• The lost-segments array provides with information about intervals of missing segments in
DEGRADED timelines. In OK timelines, the lost-segments array is empty.

• The backups array lists all backups belonging to the timeline. If the timeline has no backups, this
array is empty.

Configuring Retention Policy

With pg_probackup, you can configure retention policy to remove redundant backups, clean up unneeded
WAL files, as well as pin specific backups to ensure they are kept for the specified time, as explained in
the sections below. All these actions can be combined together in any way.

2474

Additional Supplied Programs

Removing Redundant Backups

By default, all backup copies created with pg_probackup are stored in the specified backup catalog. To
save disk space, you can configure retention policy to remove redundant backup copies.

To configure retention policy, set one or more of the following variables in the pg_probackup.conf file
via set-config:

--retention-redundancy=redundancy

Specifies the number of full backup copies to keep in the backup catalog.

--retention-window=window

Defines the earliest point in time for which pg_probackup can complete the recovery. This option is set
in the number of days from the current moment. For example, if retention-window=7, pg_probackup
must keep at least one backup copy that is older than seven days, with all the corresponding WAL files,
and all the backups that follow.

If both --retention-redundancy and --retention-window options are set, both these conditions have
to be taken into account when purging the backup catalog. For example, if you set --retention-
redundancy=2 and --retention-window=7, pg_probackup has to keep two full backup copies, as well as
all the backups required to ensure recoverability for the last seven days:

pg_probackup set-config -B backup_dir --instance instance_name --retention-redundancy=2
 --retention-window=7

To clean up the backup catalog in accordance with retention policy, you have to run the delete command
with retention flags, as shown below, or use the backup command with these flags to process the outdated
backup copies right when the new backup is created.

For example, to remove all backup copies that no longer satisfy the defined retention policy, run the
following command with the --delete-expired flag:

pg_probackup delete -B backup_dir --instance instance_name --delete-expired

If you would like to also remove the WAL files that are no longer required for any of the backups, you
should also specify the --delete-wal flag:

pg_probackup delete -B backup_dir --instance instance_name --delete-expired --delete-
wal

You can also set or override the current retention policy by specifying --retention-redundancy and --
retention-window options directly when running delete or backup commands:

pg_probackup delete -B backup_dir --instance instance_name --delete-expired --
retention-window=7 --retention-redundancy=2

Since incremental backups require that their parent full backup and all the preceding incremental
backups are available, if any of such backups expire, they still cannot be removed while at least one
incremental backup in this chain satisfies the retention policy. To avoid keeping expired backups that
are still required to restore an active incremental one, you can merge them with this backup using the
--merge-expired flag when running backup or delete commands.

Suppose you have backed up the node instance in the backup_dir directory, with the --retention-
window option set to 7, and you have the following backups available on April 10, 2019:

BACKUP INSTANCE 'node'
===
 Instance Version ID Recovery time Mode WAL TLI Time Data
 WAL Zratio Start LSN Stop LSN Status
===

2475

Additional Supplied Programs

 node 10 P7XDHR 2019-04-10 05:27:15+03 FULL STREAM 1/0 11s 200MB
 16MB 1.0 0/18000059 0/18000197 OK
 node 10 P7XDQV 2019-04-08 05:32:59+03 PAGE STREAM 1/0 11s 19MB
 16MB 1.0 0/15000060 0/15000198 OK
 node 10 P7XDJA 2019-04-03 05:28:36+03 DELTA STREAM 1/0 21s 32MB
 16MB 1.0 0/13000028 0/13000198 OK
 ---retention
 window--
 node 10 P7XDHU 2019-04-02 05:27:59+03 PAGE STREAM 1/0 31s 33MB
 16MB 1.0 0/11000028 0/110001D0 OK
 node 10 P7XDHB 2019-04-01 05:27:15+03 FULL STREAM 1/0 11s 200MB
 16MB 1.0 0/F000028 0/F000198 OK
 node 10 P7XDFT 2019-03-29 05:26:25+03 FULL STREAM 1/0 11s 200MB
 16MB 1.0 0/D000028 0/D000198 OK

Even though P7XDHB and P7XDHU backups are outside the retention window, they cannot be removed as
it invalidates the succeeding incremental backups P7XDJA and P7XDQV that are still required, so, if you
run the delete command with the --delete-expired flag, only the P7XDFT full backup will be removed.

With the --merge-expired option, the P7XDJA backup is merged with the underlying P7XDHU and P7XDHB
backups and becomes a full one, so there is no need to keep these expired backups anymore:

pg_probackup delete -B backup_dir --instance node --delete-expired --merge-expired
pg_probackup show -B backup_dir

BACKUP INSTANCE 'node'
==
 Instance Version ID Recovery time Mode WAL TLI Time Data
 WAL Zratio Start LSN Stop LSN Status
==
 node 10 P7XDHR 2019-04-10 05:27:15+03 FULL STREAM 1/0 11s 200MB
 16MB 1.0 0/18000059 0/18000197 OK
 node 10 P7XDQV 2019-04-08 05:32:59+03 PAGE STREAM 1/0 11s 19MB
 16MB 1.0 0/15000060 0/15000198 OK
 node 10 P7XDJA 2019-04-03 05:28:36+03 FULL STREAM 1/0 21s 32MB
 16MB 1.0 0/13000028 0/13000198 OK

The Time field for the merged backup displays the time required for the merge.

Pinning Backups

If you need to keep certain backups longer than the established retention policy allows, you can pin
them for arbitrary time. For example:

pg_probackup set-backup -B backup_dir --instance instance_name -i backup_id --ttl=30d

This command sets the expiration time of the specified backup to 30 days starting from the time indicated
in its recovery-time attribute.

You can also explicitly set the expiration time for a backup using the --expire-time option. For example:

pg_probackup set-backup -B backup_dir --instance instance_name -i backup_id --expire-
time="2020-01-01 00:00:00+03"

Alternatively, you can use the --ttl and --expire-time options with the backup command to pin the
newly created backup:

pg_probackup backup -B backup_dir --instance instance_name -b FULL --ttl=30d
pg_probackup backup -B backup_dir --instance instance_name -b FULL --expire-
time="2020-01-01 00:00:00+03"

To check if the backup is pinned, run the show command:

2476

Additional Supplied Programs

pg_probackup show -B backup_dir --instance instance_name -i backup_id

If the backup is pinned, it has the expire-time attribute that displays its expiration time:

...
recovery-time = '2017-05-16 12:57:31'
expire-time = '2020-01-01 00:00:00+03'
data-bytes = 22288792
...

You can unpin the backup by setting the --ttl option to zero:

pg_probackup set-backup -B backup_dir --instance instance_name -i backup_id --ttl=0

Note
A pinned incremental backup implicitly pins all its parent backups. If you unpin such a backup
later, its implicitly pinned parents will also be automatically unpinned.

Configuring WAL Archive Retention Policy

When continuous WAL archiving is enabled, archived WAL segments can take a lot of disk space. Even
if you delete old backup copies from time to time, the --delete-wal flag can purge only those WAL
segments that do not apply to any of the remaining backups in the backup catalog. However, if point-
in-time recovery is critical only for the most recent backups, you can configure WAL archive retention
policy to keep WAL archive of limited depth and win back some more disk space.

To configure WAL archive retention policy, you have to run the set-config command with the --wal-
depth option that specifies the number of backups that can be used for PITR. This setting applies to all
the timelines, so you should be able to perform PITR for the same number of backups on each timeline,
if available. Pinned backups are not included into this count: if one of the latest backups is pinned,
pg_probackup ensures that PITR is possible for one extra backup.

To remove WAL segments that do not satisfy the defined WAL archive retention policy, you simply have
to run the delete or backup command with the --delete-wal flag. For archive backups, WAL segments
between Start LSN and Stop LSN are always kept intact, so such backups remain valid regardless of
the --wal-depth setting and can still be restored, if required.

You can also use the --wal-depth option with the delete and backup commands to override the previously
defined WAL archive retention policy and purge old WAL segments on the fly.

Suppose you have backed up the node instance in the backup_dir directory and configured continuous
WAL archiving:

pg_probackup show -B backup_dir --instance node

BACKUP INSTANCE 'node'
==
 Instance Version ID Recovery Time Mode WAL Mode TLI Time Data
 WAL Zratio Start LSN Stop LSN Status
==
 node 11 PZ9442 2019-10-12 10:43:21+03 DELTA STREAM 1/0 10s 121kB
 16MB 1.00 0/46000028 0/46000160 OK
 node 11 PZ943L 2019-10-12 10:43:04+03 FULL STREAM 1/0 10s 180MB
 32MB 1.00 0/44000028 0/44000160 OK
 node 11 PZ7YR5 2019-10-11 19:49:56+03 DELTA STREAM 1/1 10s 112kB
 32MB 1.00 0/41000028 0/41000160 OK
 node 11 PZ7YMP 2019-10-11 19:47:16+03 DELTA STREAM 1/1 10s 376kB
 32MB 1.00 0/3E000028 0/3F0000B8 OK

2477

Additional Supplied Programs

 node 11 PZ7YK2 2019-10-11 19:45:45+03 FULL STREAM 1/0 11s 180MB
 16MB 1.00 0/3C000028 0/3C000198 OK
 node 11 PZ7YFO 2019-10-11 19:43:04+03 FULL STREAM 1/0 10s 30MB
 16MB 1.00 0/2000028 0/200ADD8 OK

You can check the state of the WAL archive by running the show command with the --archive flag:

pg_probackup show -B backup_dir --instance node --archive

ARCHIVE INSTANCE 'node'
===
 TLI Parent TLI Switchpoint Min Segno Max Segno N
 segments Size Zratio N backups Status
===
 1 0 0/0 000000010000000000000001 000000010000000000000047 71
 36MB 31.00 6 OK

WAL purge without --wal-depth cannot achieve much, only one segment is removed:

pg_probackup delete -B backup_dir --instance node --delete-wal

ARCHIVE INSTANCE 'node'
===
 TLI Parent TLI Switchpoint Min Segno Max Segno N
 segments Size Zratio N backups Status
===
 1 0 0/0 000000010000000000000002 000000010000000000000047 70
 34MB 32.00 6 OK

If you would like, for example, to keep only those WAL segments that can be applied to the latest valid
backup, set the --wal-depth option to 1:

pg_probackup delete -B backup_dir --instance node --delete-wal --wal-depth=1

ARCHIVE INSTANCE 'node'
==
 TLI Parent TLI Switchpoint Min Segno Max Segno N
 segments Size Zratio N backups Status
==
 1 0 0/0 000000010000000000000046 000000010000000000000047 2
 143kB 228.00 6 OK

Alternatively, you can use the --wal-depth option with the backup command:

pg_probackup backup -B backup_dir --instance node -b DELTA --wal-depth=1 --delete-wal

ARCHIVE INSTANCE 'node'
===
 TLI Parent TLI Switchpoint Min Segno Max Segno N
 segments Size Zratio N backups Status
===
 1 0 0/0 000000010000000000000048 000000010000000000000049 1
 72kB 228.00 7 OK

Merging Backups
As you take more and more incremental backups, the total size of the backup catalog can substantially
grow. To save disk space, you can merge incremental backups to their parent full backup by running
the merge command, specifying the backup ID of the most recent incremental backup you would like
to merge:

pg_probackup merge -B backup_dir --instance instance_name -i backup_id

This command merges backups that belong to a common incremental backup chain. If you specify a
full backup, it will be merged with its first incremental backup. If you specify an incremental backup,

2478

Additional Supplied Programs

it will be merged to its parent full backup, together with all incremental backups between them. Once
the merge is complete, the full backup takes in all the merged data, and the incremental backups are
removed as redundant. Thus, the merge operation is virtually equivalent to retaking a full backup and
removing all the outdated backups, but it allows to save much time, especially for large data volumes,
as well as I/O and network traffic if you are using pg_probackup in the remote mode.

Before the merge, pg_probackup validates all the affected backups to ensure that they are valid. You can
check the current backup status by running the show command with the backup ID:

pg_probackup show -B backup_dir --instance instance_name -i backup_id

If the merge is still in progress, the backup status is displayed as MERGING. For full backups, it can also
be shown as MERGED while the metadata is being updated at the final stage of the merge. The merge is
idempotent, so you can restart the merge if it was interrupted.

Deleting Backups

To delete a backup that is no longer required, run the following command:

pg_probackup delete -B backup_dir --instance instance_name -i backup_id

This command will delete the backup with the specified backup_id, together with all the incremental
backups that descend from backup_id, if any. This way you can delete some recent incremental backups,
retaining the underlying full backup and some of the incremental backups that follow it.

To delete obsolete WAL files that are not necessary to restore any of the remaining backups, use the
--delete-wal flag:

pg_probackup delete -B backup_dir --instance instance_name --delete-wal

To delete backups that are expired according to the current retention policy, use the --delete-expired
flag:

pg_probackup delete -B backup_dir --instance instance_name --delete-expired

Expired backups cannot be removed while at least one incremental backup that satisfies the retention
policy is based on them. If you would like to minimize the number of backups still required to keep
incremental backups valid, specify the --merge-expired flag when running this command:

pg_probackup delete -B backup_dir --instance instance_name --delete-expired --merge-
expired

In this case, pg_probackup searches for the oldest incremental backup that satisfies the retention policy
and merges this backup with the underlying full and incremental backups that have already expired,
thus making it a full backup. Once the merge is complete, the remaining expired backups are deleted.

Before merging or deleting backups, you can run the delete command with the --dry-run flag, which
displays the status of all the available backups according to the current retention policy, without
performing any irreversible actions.

To delete all backups with specific status, use the --status:

pg_probackup delete -B backup_dir --instance instance_name --status=ERROR

Deleting backups by status ignores established retention policies.

Cloning and Synchronizing Postgres Pro Instance

pg_probackup can create a copy of a Postgres Pro instance directly, without using the backup catalog.
To do this, you can run the catchup command. It can be useful in the following cases:

• To add a new standby server.

2479

Additional Supplied Programs

Usually, pg_basebackup is used to create a copy of a Postgres Pro instance. If the data directory of
the destination instance is empty, the catchup command works similarly, but it can be faster if run
in parallel mode.

• To have a fallen-behind standby server “catch up” with master.

Under write-intensive load, replicas may fail to replay WAL fast enough to keep up with master and
hence may lag behind. A usual solution to create a new replica and switch to it requires a lot of
extra space and data transfer. The catchup command allows you to update an existing replica much
faster by bringing differences from master.

catchup is different from other pg_probackup operations:

• The backup catalog is not required.

• STREAM WAL delivery mode is only supported.

• Copying external directories is not supported.

• DDL commands CREATE TABLESPACE/DROP TABLESPACE cannot be run simultaneously with
catchup.

• catchup takes configuration files, such as postgresql.conf, postgresql.auto.conf, or
pg_hba.conf, from the source server and overwrites them on the target server. The --exclude-
path option allows you to keep the configuration files intact.

To prepare for cloning/synchronizing a Postgres Pro instance, set up the source instance server as
follows:

• Configure the database cluster for the instance to copy.

• To copy from a remote server, configure the remote mode.

• To use the PTRACK catchup mode, set up PTRACK backups.

Before cloning/synchronizing a Postgres Pro instance, ensure that the source instance server is running
and accepting connections. To clone/sync a Postgres Pro instance, on the server with the destination
instance, you can run the catchup command as follows:

pg_probackup catchup -b catchup_mode --source-pgdata=path_to_pgdata_on_remote_server --
destination-pgdata=path_to_local_dir --stream [connection_options] [remote_options]

Where catchup_mode can take one of the following values: FULL, DELTA, or PTRACK.

• FULL — creates a full copy of the Postgres Pro instance. The data directory of the destination
instance must be empty for this mode.

• DELTA — reads all data files in the data directory and creates an incremental copy for pages that
have changed since the destination instance was shut down.

• PTRACK — tracking page changes on the fly, only reads and copies pages that have changed since
the point of divergence of the source and destination instances.

Warning
PTRACK catchup mode requires PTRACK not earlier than 2.0 and hence, Postgres Pro not
earlier than 11.

By specifying the --stream option, you can set STREAM WAL delivery mode of copying, which will
include all the necessary WAL files by streaming them from the instance server via replication protocol.

You can use connection_options to specify the connection to the source database cluster. If it is located
on a different server, also specify remote_options.

2480

Additional Supplied Programs

If the source database cluster contains tablespaces that must be located in a different directory,
additionally specify the --tablespace-mapping option:

pg_probackup catchup -b catchup_mode --source-pgdata=path_to_pgdata_on_remote_server --
destination-pgdata=path_to_local_dir --stream --tablespace-mapping=OLDDIR=NEWDIR

To run the catchup command on parallel threads, specify the number of threads with the --threads
option:

pg_probackup catchup -b catchup_mode --source-pgdata=path_to_pgdata_on_remote_server --
destination-pgdata=path_to_local_dir --stream --threads=num_threads

Before cloning/synchronising a Postgres Pro instance, you can run the catchup command with the --
dry-run flag to estimate the size of data files to be transferred, but make no changes on disk:

pg_probackup catchup -b catchup_mode --source-pgdata=path_to_pgdata_on_remote_server --
destination-pgdata=path_to_local_dir --stream --dry-run

For example, assume that a remote standby server with the Postgres Pro instance having /replica-
pgdata data directory has fallen behind. To sync this instance with the one in /master-pgdata data
directory, you can run the catchup command in the PTRACK mode on four parallel threads as follows:

pg_probackup catchup --source-pgdata=/master-pgdata --destination-pgdata=/replica-
pgdata -p 5432 -d postgres -U remote-postgres-user --stream --backup-mode=PTRACK
 --remote-host=remote-hostname --remote-user=remote-unix-username -j 4 --exclude-
path=postgresql.conf --exclude-path=postgresql.auto.conf --exclude-path=pg_hba.conf --
exclude-path=pg_ident.conf

Note that in this example, the configuration files will not be overwritten during synchronization.

Another example shows how you can add a new remote standby server with the Postgres Pro data
directory /replica-pgdata by running the catchup command in the FULL mode on four parallel threads:

pg_probackup catchup --source-pgdata=/master-pgdata --destination-pgdata=/replica-
pgdata -p 5432 -d postgres -U remote-postgres-user --stream --backup-mode=FULL --
remote-host=remote-hostname --remote-user=remote-unix-username -j 4

Command-Line Reference

Commands

This section describes pg_probackup commands. Optional parameters are enclosed in square brackets.
For detailed parameter descriptions, see the section Options.

version

pg_probackup version

Prints pg_probackup version.

help

pg_probackup help [command]

Displays the synopsis of pg_probackup commands. If one of the pg_probackup commands is specified,
shows detailed information about the options that can be used with this command.

init

pg_probackup init -B backup_dir [--help]

Initializes the backup catalog in backup_dir that will store backup copies, WAL archive, and meta
information for the backed up database clusters. If the specified backup_dir already exists, it must be
empty. Otherwise, pg_probackup displays a corresponding error message.

For details, see the section Initializing the Backup Catalog.

2481

Additional Supplied Programs

add-instance

pg_probackup add-instance -B backup_dir -D data_dir --instance instance_name [--help]

Initializes a new backup instance inside the backup catalog backup_dir and generates the
pg_probackup.conf configuration file that controls pg_probackup settings for the cluster with the
specified data_dir data directory.

For details, see the section Adding a New Backup Instance.

del-instance

pg_probackup del-instance -B backup_dir --instance instance_name [--help]

Deletes all backups and WAL files associated with the specified instance.

set-config

pg_probackup set-config -B backup_dir --instance instance_name
[--help] [--pgdata=pgdata-path]
[--retention-redundancy=redundancy][--retention-window=window][--wal-depth=wal_depth]
[--compress-algorithm=compression_algorithm] [--compress-level=compression_level]
[-d dbname] [-h host] [-p port] [-U username]
[--archive-timeout=timeout] [--external-dirs=external_directory_path]
[--restore-command=cmdline]
[remote_options] [remote_wal_archive_options] [logging_options]

Adds the specified connection, compression, retention, logging, and external directory settings into the
pg_probackup.conf configuration file, or modifies the previously defined values.

For all available settings, see the Options section.

It is not recommended to edit pg_probackup.conf manually.

set-backup

pg_probackup set-backup -B backup_dir --instance instance_name -i backup_id
{--ttl=ttl | --expire-time=time}
[--note=backup_note] [--help]

Sets the provided backup-specific settings into the backup.control configuration file, or modifies the
previously defined values.

--note=backup_note

Sets the text note for backup copy. If backup_note contain newline characters, then only substring
before first newline character will be saved. Max size of text note is 1 KB. The 'none' value removes
current note.

For all available pinning settings, see the section Pinning Options.

show-config

pg_probackup show-config -B backup_dir --instance instance_name [--format=plain|json]

Displays the contents of the pg_probackup.conf configuration file located in the backup_dir/backups/
instance_name directory. You can specify the --format=json option to get the result in the JSON format.
By default, configuration settings are shown as plain text.

To edit pg_probackup.conf, use the set-config command.

show

pg_probackup show -B backup_dir
[--help] [--instance instance_name [-i backup_id | --archive]] [--format=plain|json]
 [--no-color]

2482

Additional Supplied Programs

Shows the contents of the backup catalog. If instance_name and backup_id are specified, shows detailed
information about this backup. If the --archive option is specified, shows the contents of WAL archive
of the backup catalog.

By default, the contents of the backup catalog is shown as plain text. You can specify the --format=json
option to get the result in the JSON format. If --no-color flag is used, then the output is not colored.

For details on usage, see the sections Managing the Backup Catalog and Viewing WAL Archive
Information.

backup

pg_probackup backup -B backup_dir -b backup_mode --instance instance_name
[--help] [-j num_threads] [--progress]
[-C] [--stream [-S slot_name] [--temp-slot]] [--backup-pg-log]
[--no-validate] [--skip-block-validation]
[-w --no-password] [-W --password]
[--archive-timeout=timeout] [--external-dirs=external_directory_path]
[--no-sync] [--note=backup_note]
[connection_options] [compression_options] [remote_options]
[retention_options] [pinning_options] [logging_options]

Creates a backup copy of the Postgres Pro instance.

-b mode
--backup-mode=mode

Specifies the backup mode to use. Possible values are:
• FULL — creates a full backup that contains all the data files of the cluster to be restored.
• DELTA — reads all data files in the data directory and creates an incremental backup for pages

that have changed since the previous backup.
• PAGE — creates an incremental PAGE backup based on the WAL files that have changed since

the previous full or incremental backup was taken.
• PTRACK — creates an incremental PTRACK backup tracking page changes on the fly.

-C
--smooth-checkpoint

Spreads out the checkpoint over a period of time. By default, pg_probackup tries to complete the
checkpoint as soon as possible.

--stream

Makes a STREAM backup, which includes all the necessary WAL files by streaming them from the
database server via replication protocol.

--temp-slot

Creates a temporary physical replication slot for streaming WAL from the backed up Postgres Pro
instance. It ensures that all the required WAL segments remain available if WAL is rotated while the
backup is in progress. This flag can only be used together with the --stream flag. The default slot
name is pg_probackup_slot, which can be changed using the --slot/-S option.

-S slot_name
--slot=slot_name

Specifies the replication slot for WAL streaming. This option can only be used together with the --
stream flag.

--backup-pg-log

Includes the log directory into the backup. This directory usually contains log messages. By default,
log directory is excluded.

2483

Additional Supplied Programs

-E external_directory_path
--external-dirs=external_directory_path

Includes the specified directory into the backup by recursively copying its contents into a separate
subdirectory in the backup catalog. This option is useful to back up scripts, SQL dump files, and
configuration files located outside of the data directory. If you would like to back up several external
directories, separate their paths by a colon on Unix and a semicolon on Windows.

--archive-timeout=wait_time

Sets the timeout for WAL segment archiving and streaming, in seconds. By default, pg_probackup
waits 300 seconds.

--skip-block-validation

Disables block-level checksum verification to speed up the backup process.

--no-validate

Skips automatic validation after the backup is taken. You can use this flag if you validate backups
regularly and would like to save time when running backup operations.

--no-sync

Do not sync backed up files to disk. You can use this flag to speed up the backup process. Using
this flag can result in data corruption in case of operating system or hardware crash. If you use
this option, it is recommended to run the validate command once the backup is complete to detect
possible issues.

--note=backup_note

Sets the text note for backup copy. If backup_note contain newline characters, then only substring
before first newline character will be saved. Max size of text note is 1 KB. The 'none' value removes
current note.

Additionally, connection options, retention options, pinning options, remote mode options, compression
options, logging options, and common options can be used.

For details on usage, see the section Creating a Backup.

restore

pg_probackup restore -B backup_dir --instance instance_name
[--help] [-D data_dir] [-i backup_id]
[-j num_threads] [--progress]
[-T OLDDIR=NEWDIR] [--external-mapping=OLDDIR=NEWDIR] [--skip-external-dirs]
[-R | --restore-as-replica] [--no-validate] [--skip-block-validation]
[--force] [--no-sync]
[--restore-command=cmdline]
[--primary-conninfo=primary_conninfo]
[-S | --primary-slot-name=slot_name]
[recovery_target_options] [logging_options] [remote_options]
[partial_restore_options] [remote_wal_archive_options]

Restores the Postgres Pro instance from a backup copy located in the backup_dir backup catalog. If you
specify a recovery target option, pg_probackup finds the closest backup and restores it to the specified
recovery target. If neither the backup ID nor recovery target options are provided, pg_probackup uses
the most recent backup to perform the recovery.

-R
--restore-as-replica

Creates a minimal recovery configuration file to facilitate setting up a standby server. If the
replication connection requires a password, you must specify the password manually in the
primary_conninfo parameter as it is not included. For Postgres Pro 11 or lower, recovery settings

2484

Additional Supplied Programs

are written into the recovery.conf file. Starting from Postgres Pro 12, pg_probackup writes these
settings into the probackup_recovery.conf file in the data directory, and then includes them into
the postgresql.auto.conf when the cluster is is started.

--primary-conninfo=primary_conninfo

Sets the primary_conninfo parameter to the specified value. This option will be ignored unless the
-R flag is specified.

Example: --primary-conninfo="host=192.168.1.50 port=5432 user=foo password=foopass"

-S
--primary-slot-name=slot_name

Sets the primary_slot_name parameter to the specified value. This option will be ignored unless the
-R flag is specified.

-T OLDDIR=NEWDIR
--tablespace-mapping=OLDDIR=NEWDIR

Relocates the tablespace from the OLDDIR to the NEWDIR directory at the time of recovery. Both OLDDIR
and NEWDIR must be absolute paths. If the path contains the equals sign (=), escape it with a backslash.
This option can be specified multiple times for multiple tablespaces.

--external-mapping=OLDDIR=NEWDIR

Relocates an external directory included into the backup from the OLDDIR to the NEWDIR directory
at the time of recovery. Both OLDDIR and NEWDIR must be absolute paths. If the path contains the
equals sign (=), escape it with a backslash. This option can be specified multiple times for multiple
directories.

--skip-external-dirs

Skip external directories included into the backup with the --external-dirs option. The contents
of these directories will not be restored.

--skip-block-validation

Disables block-level checksum verification to speed up validation. During automatic validation before
the restore only file-level checksums will be verified.

--no-validate

Skips backup validation. You can use this flag if you validate backups regularly and would like to
save time when running restore operations.

--restore-command=cmdline

Sets the restore_command parameter to the specified command. For example: --restore-
command='cp /mnt/server/archivedir/%f "%p"'

--force

Allows to ignore an invalid status of the backup. You can use this flag if you need to restore the
Postgres Pro cluster from a corrupt or an invalid backup. Use with caution. If PGDATA contains a
non-empty directory with system ID different from that of the backup being restored, incremental
restore with this flag overwrites the directory contents (while an error occurs without the flag). If
tablespaces are remapped through the --tablespace-mapping option into non-empty directories,
the contents of such directories will be deleted.

--no-sync

Do not sync restored files to disk. You can use this flag to speed up restore process. Using this flag
can result in data corruption in case of operating system or hardware crash. If it happens, you have
to run the restore command again.

2485

Additional Supplied Programs

Additionally, recovery target options, remote mode options, remote WAL archive options, logging
options, partial restore options, and common options can be used.

For details on usage, see the section Restoring a Cluster.

checkdb

pg_probackup checkdb
[-B backup_dir] [--instance instance_name] [-D data_dir]
[--help] [-j num_threads] [--progress]
[--amcheck [--skip-block-validation] [--checkunique] [--heapallindexed]]
[connection_options] [logging_options]

Verifies the Postgres Pro database cluster correctness by detecting physical and logical corruption.

--amcheck

Performs logical verification of indexes for the specified Postgres Pro instance if no corruption was
found while checking data files. You must have the amcheck extension or the amcheck_next extension
installed in the database to check its indexes. For databases without amcheck, index verification will
be skipped. Additional options --checkunique and --heapallindexed are effective depending on
the version of amcheck installed.

--checkunique

Verifies unique constraints during logical verification of indexes. You can use this flag only together
with the --amcheck flag when the amcheck extension is installed in the database.

The verification of unique constraints is only possible if in the version of the amcheck extension you
are using, the bt_index_check function takes the checkunique parameter.

--heapallindexed

Checks that all heap tuples that should be indexed are actually indexed. You can use this flag only
together with the --amcheck flag.

This check is only possible if in the version of the amcheck/amcheck_next extension you are using,
the bt_index_check function takes the heapallindexed parameter.

--skip-block-validation

Skip validation of data files. You can use this flag only together with the --amcheck flag, so that only
logical verification of indexes is performed.

Additionally, connection options and logging options can be used.

For details on usage, see the section Verifying a Cluster.

validate

pg_probackup validate -B backup_dir
[--help] [--instance instance_name] [-i backup_id]
[-j num_threads] [--progress]
[--skip-block-validation]
[recovery_target_options] [logging_options]

Verifies that all the files required to restore the cluster are present and are not corrupt. If instance_name
is not specified, pg_probackup validates all backups available in the backup catalog. If you specify the
instance_name without any additional options, pg_probackup validates all the backups available for this
backup instance. If you specify the instance_name with a recovery target option and/or a backup_id,
pg_probackup checks whether it is possible to restore the cluster using these options.

For details, see the section Validating a Backup.

2486

Additional Supplied Programs

merge

pg_probackup merge -B backup_dir --instance instance_name -i backup_id
[--help] [-j num_threads] [--progress] [--no-validate] [--no-sync]
[logging_options]

Merges backups that belong to a common incremental backup chain. If you specify a full backup, it will
be merged with its first incremental backup. If you specify an incremental backup, it will be merged to its
parent full backup, together with all incremental backups between them. Once the merge is complete,
the full backup takes in all the merged data, and the incremental backups are removed as redundant.

--no-validate

Skips automatic validation before and after merge.

--no-sync

Do not sync merged files to disk. You can use this flag to speed up the merge process. Using this flag
can result in data corruption in case of operating system or hardware crash.

For details, see the section Merging Backups.

delete

pg_probackup delete -B backup_dir --instance instance_name
[--help] [-j num_threads] [--progress]
[--retention-redundancy=redundancy][--retention-window=window][--wal-depth=wal_depth]
 [--delete-wal]
{-i backup_id | --delete-expired [--merge-expired] | --merge-expired | --
status=backup_status}
[--dry-run] [--no-validate] [--no-sync] [logging_options]

Deletes backup with specified backup_id or launches the retention purge of backups and archived WAL
that do not satisfy the current retention policies.

--no-validate

Skips automatic validation before and after retention merge.

--no-sync

Do not sync merged files to disk. You can use this flag to speed up the retention merge process. Using
this flag can result in data corruption in case of operating system or hardware crash.

For details, see the sections Deleting Backups, Retention Options, and Configuring Retention Policy.

archive-push

pg_probackup archive-push -B backup_dir --instance instance_name
--wal-file-name=wal_file_name [--wal-file-path=wal_file_path]
[--help] [--no-sync] [--compress] [--no-ready-rename] [--overwrite]
[-j num_threads] [--batch-size=batch_size]
[--archive-timeout=timeout]
[--compress-algorithm=compression_algorithm]
[--compress-level=compression_level]
[remote_options] [logging_options]

Copies WAL files into the corresponding subdirectory of the backup catalog and validates the backup
instance by instance_name and system-identifier. If parameters of the backup instance and the
cluster do not match, this command fails with the following error message: Refuse to push WAL segment
segment_name into archive. Instance parameters mismatch.

If the files to be copied already exists in the backup catalog, pg_probackup computes and compares their
checksums. If the checksums match, archive-push skips the corresponding file and returns a successful

2487

Additional Supplied Programs

execution code. Otherwise, archive-push fails with an error. If you would like to replace WAL files in
the case of checksum mismatch, run the archive-push command with the --overwrite flag.

Each file is copied to a temporary file with the .part suffix. If the temporary file already exists,
pg_probackup will wait archive_timeout seconds before discarding it. After the copy is done, atomic
rename is performed. This algorithm ensures that a failed archive-push will not stall continuous
archiving and that concurrent archiving from multiple sources into a single WAL archive has no risk of
archive corruption.

To speed up archiving, you can specify the --batch-size option to copy WAL segments in batches of
the specified size. If --batch-size option is used, then you can also specify the -j option to copy the
batch of WAL segments on multiple threads.

WAL segments copied to the archive are synced to disk unless the --no-sync flag is used.

You can use archive-push in the archive_command Postgres Pro parameter to set up continuous WAL
archiving.

For details, see sections Archiving Options and Compression Options.

archive-get

pg_probackup archive-get -B backup_dir --instance instance_name --wal-file-
path=wal_file_path --wal-file-name=wal_file_name
[-j num_threads] [--batch-size=batch_size]
[--prefetch-dir=prefetch_dir_path] [--no-validate-wal]
[--help] [remote_options] [logging_options]

Copies WAL files from the corresponding subdirectory of the backup catalog to the cluster's write-ahead
log location. This command is automatically set by pg_probackup as part of the restore_command when
restoring backups using a WAL archive. You do not need to set it manually.

To speed up recovery, you can specify the --batch-size option to copy WAL segments in batches of the
specified size. If --batch-size option is used, then you can also specify the -j option to copy the batch
of WAL segments on multiple threads.

For details, see section Archiving Options.

catchup

pg_probackup catchup -b catchup_mode
--source-pgdata=path_to_pgdata_on_remote_server
--destination-pgdata=path_to_local_dir
[--help] [-j | --threads=num_threads] [--stream] [--dry-run]
[--temp-slot] [-P | --perm-slot] [-S | --slot=slot_name]
[--exclude-path=PATHNAME]
[-T OLDDIR=NEWDIR]
[connection_options] [remote_options]

Creates a copy of a Postgres Pro instance without using the backup catalog.

-b catchup_mode
--backup-mode=catchup_mode

Specifies the catchup mode to use. Possible values are:

• FULL — creates a full copy of the Postgres Pro instance.
• DELTA — reads all data files in the data directory and creates an incremental copy for pages that

have changed since the destination instance was shut down.
• PTRACK — tracking page changes on the fly, only reads and copies pages that have changed

since the point of divergence of the source and destination instances.

2488

Additional Supplied Programs

Warning
PTRACK catchup mode requires PTRACK not earlier than 2.0 and hence, Postgres Pro not
earlier than 11.

--source-pgdata=path_to_pgdata_on_remote_server

Specifies the path to the data directory of the instance to be copied. The path can be local or remote.

--destination-pgdata=path_to_local_dir

Specifies the path to the local data directory to copy to.

-j num_threads
--threads=num_threads

Sets the number of parallel threads for catchup process.

--stream

Copies the instance in STREAM WAL delivery mode, including all the necessary WAL files by
streaming them from the instance server via replication protocol.

--dry-run

Displays the total size of the files to be transferred by catchup. This flag initiates a trial run of
catchup, which does not actually create, delete or move files on disk. WAL streaming is skipped
with --dry-run. This flag also allows you to check that all the options are correct and cloning/
synchronising is ready to run.

-x=path_prefix
--exclude-path=path_prefix

Specifies a prefix for files to exclude from the synchronization of Postgres Pro instances during
copying. The prefix must contain a path relative to the data directory of an instance. If the prefix
specifies a directory, all files in this directory will not be synchronized.

Warning
This option is dangerous since excluding files from synchronization can result in incomplete
synchronization; use with care.

--temp-slot

Creates a temporary physical replication slot for streaming WAL from the Postgres Pro instance
being copied. It ensures that all the required WAL segments remain available if WAL is rotated while
the backup is in progress. This flag can only be used together with the --stream flag and cannot be
used together with the --perm-slot flag. The default slot name is pg_probackup_slot, which can
be changed using the --slot/-S option.

-P
--perm-slot

Creates a permanent physical replication slot for streaming WAL from the Postgres Pro instance
being copied. This flag can only be used together with the --stream flag and cannot be used together
with the --temp-slot flag. The default slot name is pg_probackup_perm_slot, which can be changed
using the --slot/-S option.

2489

Additional Supplied Programs

-S slot_name
--slot=slot_name

Specifies the replication slot for WAL streaming. This option can only be used together with the --
stream flag.

-T OLDDIR=NEWDIR
--tablespace-mapping=OLDDIR=NEWDIR

Relocates the tablespace from the OLDDIR to the NEWDIR directory at the time of recovery. Both OLDDIR
and NEWDIR must be absolute paths. If the path contains the equals sign (=), escape it with a backslash.
This option can be specified multiple times for multiple tablespaces.

Additionally, connection options, remote mode options can be used.

For details on usage, see the section Cloning and Synchronizing Postgres Pro Instance.

Options

This section describes command-line options for pg_probackup commands. If the option value can be
derived from an environment variable, this variable is specified below the command-line option, in the
uppercase. Some values can be taken from the pg_probackup.conf configuration file located in the
backup catalog.

For details, see the section called “Configuring pg_probackup”.

If an option is specified using more than one method, command-line input has the highest priority, while
the pg_probackup.conf settings have the lowest priority.

Common Options

The list of general options.

-B directory
--backup-path=directory
BACKUP_PATH

Specifies the absolute path to the backup catalog. Backup catalog is a directory where all backup
files and meta information are stored. Since this option is required for most of the pg_probackup
commands, you are recommended to specify it once in the BACKUP_PATH environment variable. In
this case, you do not need to use this option each time on the command line.

-D directory
--pgdata=directory
PGDATA

Specifies the absolute path to the data directory of the database cluster. This option is mandatory
only for the add-instance command. Other commands can take its value from the PGDATA environment
variable, or from the pg_probackup.conf configuration file.

-i backup_id
--backup-id=backup_id

Specifies the unique identifier of the backup.

-j num_threads
--threads=num_threads

Sets the number of parallel threads for backup, restore, merge, validate, checkdb, and archive-
push processes.

--progress

Shows the progress of operations.

2490

Additional Supplied Programs

--help

Shows detailed information about the options that can be used with this command.

Recovery Target Options

If continuous WAL archiving is configured, you can use one of these options together with restore or
validate commands to specify the moment up to which the database cluster must be restored or validated.

--recovery-target=immediate|latest

Defines when to stop the recovery:
• The immediate value stops the recovery after reaching the consistent state of the specified

backup, or the latest available backup if the -i/--backup-id option is omitted. This is the
default behavior for STREAM backups.

• The latest value continues the recovery until all WAL segments available in the archive are
applied. This is the default behavior for ARCHIVE backups.

--recovery-target-timeline=timeline

Specifies a particular timeline to be used for recovery. By default, the timeline of the specified backup
is used.

--recovery-target-lsn=lsn

Specifies the LSN of the write-ahead log location up to which recovery will proceed. Can be used
only when restoring a database cluster of major version 10 or higher.

--recovery-target-name=recovery_target_name

Specifies a named savepoint up to which to restore the cluster.

--recovery-target-time=time

Specifies the timestamp up to which recovery will proceed. If the time zone offset is not specified,
the local time zone is used.

Example: --recovery-target-time="2020-01-01 00:00:00+03"

--recovery-target-xid=xid

Specifies the transaction ID up to which recovery will proceed.

--recovery-target-inclusive=boolean

Specifies whether to stop just after the specified recovery target (true), or just before the recovery
target (false). This option can only be used together with --recovery-target-name, --recovery-
target-time, --recovery-target-lsn or --recovery-target-xid options. The default depends on
the recovery_target_inclusive parameter.

--recovery-target-action=pause|promote|shutdown

Specifies recovery_target_action the server should take when the recovery target is reached.

Default: pause

Retention Options

You can use these options together with backup and delete commands.

For details on configuring retention policy, see the section Configuring Retention Policy.

--retention-redundancy=redundancy

Specifies the number of full backup copies to keep in the data directory. Must be a non-negative
integer. The zero value disables this setting.

2491

Additional Supplied Programs

Default: 0

--retention-window=window

Number of days of recoverability. Must be a non-negative integer. The zero value disables this setting.

Default: 0

--wal-depth=wal_depth

Number of latest valid backups on every timeline that must retain the ability to perform PITR. Must
be a non-negative integer. The zero value disables this setting.

Default: 0

--delete-wal

Deletes WAL files that are no longer required to restore the cluster from any of the existing backups.

--delete-expired

Deletes backups that do not conform to the retention policy defined in the pg_probackup.conf
configuration file.

--merge-expired

Merges the oldest incremental backup that satisfies the requirements of retention policy with its
parent backups that have already expired.

--dry-run

Displays the current status of all the available backups, without deleting or merging expired backups,
if any.

Pinning Options

You can use these options together with backup and set-backup commands.

For details on backup pinning, see the section Backup Pinning.

--ttl=ttl

Specifies the amount of time the backup should be pinned. Must be a non-negative integer. The zero
value unpins the already pinned backup. Supported units: ms, s, min, h, d (s by default).

Example: --ttl=30d

--expire-time=time

Specifies the timestamp up to which the backup will stay pinned. Must be an ISO-8601 complaint
timestamp. If the time zone offset is not specified, the local time zone is used.

Example: --expire-time="2020-01-01 00:00:00+03"

Logging Options

You can use these options with any command.

--no-color

Disable coloring for console log messages of warning and error levels.

--log-level-console=log_level

Controls which message levels are sent to the console log. Valid values are verbose, log, info,
warning, error and off. Each level includes all the levels that follow it. The later the level, the fewer
messages are sent. The off level disables console logging.

2492

Additional Supplied Programs

Default: info

Note
All console log messages are going to stderr, so the output of show and show-config commands
does not mingle with log messages.

--log-level-file=log_level

Controls which message levels are sent to a log file. Valid values are verbose, log, info, warning,
error, and off. Each level includes all the levels that follow it. The later the level, the fewer messages
are sent. The off level disables file logging.

Default: off

--log-filename=log_filename

Defines the filenames of the created log files. The filenames are treated as a strftime pattern, so
you can use %-escapes to specify time-varying filenames.

Default: pg_probackup.log

For example, if you specify the pg_probackup-%u.log pattern, pg_probackup generates a separate
log file for each day of the week, with %u replaced by the corresponding decimal number:
pg_probackup-1.log for Monday, pg_probackup-2.log for Tuesday, and so on.

This option takes effect if file logging is enabled by the --log-level-file option.

--error-log-filename=error_log_filename

Defines the filenames of log files for error messages only. The filenames are treated as a strftime
pattern, so you can use %-escapes to specify time-varying filenames.

Default: none

For example, if you specify the error-pg_probackup-%u.log pattern, pg_probackup generates a
separate log file for each day of the week, with %u replaced by the corresponding decimal number:
error-pg_probackup-1.log for Monday, error-pg_probackup-2.log for Tuesday, and so on.

This option is useful for troubleshooting and monitoring.

--log-directory=log_directory

Defines the directory in which log files will be created. You must specify the absolute path. This
directory is created lazily, when the first log message is written.

Default: $BACKUP_PATH/log/

--log-rotation-size=log_rotation_size

Maximum size of an individual log file. If this value is reached, the log file is rotated once a
pg_probackup command is launched, except help and version commands. The zero value disables
size-based rotation. Supported units: kB, MB, GB, TB (kB by default).

Default: 0

--log-rotation-age=log_rotation_age

Maximum lifetime of an individual log file. If this value is reached, the log file is rotated once a
pg_probackup command is launched, except help and version commands. The time of the last log file
creation is stored in $BACKUP_PATH/log/log_rotation. The zero value disables time-based rotation.
Supported units: ms, s, min, h, d (min by default).

2493

Additional Supplied Programs

Default: 0

Connection Options

You can use these options together with backup, catchup, and checkdb commands.

All libpq environment variables are supported.

-d dbname
--pgdatabase=dbname
PGDATABASE

Specifies the name of the database to connect to. The connection is used only for managing backup
process, so you can connect to any existing database. If this option is not provided on the command
line, PGDATABASE environment variable, or the pg_probackup.conf configuration file, pg_probackup
tries to take this value from the PGUSER environment variable, or from the current user name if PGUSER
variable is not set.

-h host
--pghost=host
PGHOST

Specifies the host name of the system on which the server is running. If the value begins with a slash,
it is used as a directory for the Unix domain socket.

Default: localhost

-p port
--pgport=port
PGPORT

Specifies the TCP port or the local Unix domain socket file extension on which the server is listening
for connections.

Default: 5432

-U username
--pguser=username
PGUSER

User name to connect as.

-w
--no-password

Disables a password prompt. If the server requires password authentication and a password is not
available by other means such as a .pgpass file or PGPASSWORD environment variable, the connection
attempt will fail. This flag can be useful in batch jobs and scripts where no user is present to enter
a password.

-W
--password

Forces a password prompt. (Deprecated)

Compression Options

You can use these options together with backup and archive-push commands.

--compress-algorithm=compression_algorithm

Defines the algorithm to use for compressing data files. Possible values are zlib, pglz, and none. If
set to zlib or pglz, this option enables compression. By default, compression is disabled. For the
archive-push command, the pglz compression algorithm is not supported.

2494

Additional Supplied Programs

Default: none

--compress-level=compression_level

Defines compression level (0 through 9, 0 being no compression and 9 being best compression). This
option can be used together with the --compress-algorithm option.

Default: 1

--compress

Alias for --compress-algorithm=zlib and --compress-level=1.

Archiving Options

These options can be used with the archive-push command in the archive_command setting and the
archive-get command in the restore_command setting.

Additionally, remote mode options and logging options can be used.

--wal-file-path=wal_file_path

Provides the path to the WAL file in archive_command and restore_command. Use the %p variable as
the value for this option or explicitly specify the path to a file outside of the data directory. If you
skip this option, the path specified in pg_probackup.conf will be used.

--wal-file-name=wal_file_name

Provides the name of the WAL file in archive_command and restore_command. Use the %f variable
as the value for this option for correct processing. If the value of --wal-file-path is a path outside
of the data directory, explicitly specify the filename.

--overwrite

Overwrites archived WAL file. Use this flag together with the archive-push command if the specified
subdirectory of the backup catalog already contains this WAL file and it needs to be replaced with
its newer copy. Otherwise, archive-push reports that a WAL segment already exists, and aborts the
operation. If the file to replace has not changed, archive-push skips this file regardless of the --
overwrite flag.

--batch-size=batch_size

Sets the maximum number of files that can be copied into the archive by a single archive-push
process, or from the archive by a single archive-get process.

--archive-timeout=wait_time

Sets the timeout for considering existing .part files to be stale. By default, pg_probackup waits 300
seconds. This option can be used only with archive-push command.

--no-ready-rename

Do not rename status files in the archive_status directory. This option should be used only if
archive_command contains multiple commands. This option can be used only with archive-push
command.

--no-sync

Do not sync copied WAL files to disk. You can use this flag to speed up archiving process. Using this
flag can result in WAL archive corruption in case of operating system or hardware crash. This option
can be used only with archive-push command.

--prefetch-dir=path

Directory used to store prefetched WAL segments if --batch-size option is used. Directory must
be located on the same filesystem and on the same mountpoint the PGDATA/pg_wal is located. By

2495

Additional Supplied Programs

default files are stored in PGDATA/pg_wal/pbk_prefetch directory. This option can be used only with
archive-get command.

--no-validate-wal

Do not validate prefetched WAL file before using it. Use this option if you want to increase the speed
of recovery. This option can be used only with archive-get command.

Remote Mode Options

This section describes the options related to running pg_probackup operations remotely via SSH. These
options can be used with add-instance, set-config, backup, catchup, restore, archive-push, and archive-
get commands.

For details on configuring and using the remote mode, see the section called “Configuring the Remote
Mode” and the section called “Using pg_probackup in the Remote Mode”.

--remote-proto=proto

Specifies the protocol to use for remote operations. Currently only the SSH protocol is supported.
Possible values are:

• ssh enables the remote mode via SSH. This is the default value.
• none explicitly disables the remote mode.
You can omit this option if the --remote-host option is specified.

--remote-host=destination

Specifies the remote host IP address or hostname to connect to.

--remote-port=port

Specifies the remote host port to connect to.

Default: 22

--remote-user=username

Specifies remote host user for SSH connection. If you omit this option, the current user initiating
the SSH connection is used.

--remote-path=path

Specifies pg_probackup installation directory on the remote system.

--ssh-options=ssh_options

Provides a string of SSH command-line options. For example, the following options can be
used to set keep-alive for SSH connections opened by pg_probackup: --ssh-options="-o
ServerAliveCountMax=5 -o ServerAliveInterval=60". For the full list of possible options, see
ssh_config manual page.

Remote WAL Archive Options

This section describes the options used to provide the arguments for remote mode options in archive-
get used in the restore_command command when restoring ARCHIVE backups or performing PITR.

--archive-host=destination

Provides the argument for the --remote-host option in the archive-get command.

--archive-port=port

Provides the argument for the --remote-port option in the archive-get command.

Default: 22

2496

https://man.openbsd.org/ssh_config.5

Additional Supplied Programs

--archive-user=username

Provides the argument for the --remote-user option in the archive-get command. If you omit this
option, the user that has started the Postgres Pro cluster is used.

Default: Postgres Pro user

Incremental Restore Options

This section describes the options for incremental cluster restore. These options can be used with the
restore command.

-I incremental_mode
--incremental-mode=incremental_mode

Specifies the incremental mode to be used. Possible values are:
• CHECKSUM — replace only pages with mismatched checksum and LSN.
• LSN — replace only pages with LSN greater than point of divergence.
• NONE — regular restore.

Partial Restore Options

This section describes the options for partial cluster restore. These options can be used with the restore
command.

--db-exclude=dbname

Specifies the name of the database to exclude from restore. All other databases in the cluster will be
restored as usual, including template0 and template1. This option can be specified multiple times
for multiple databases.

--db-include=dbname

Specifies the name of the database to restore from a backup. All other databases in the cluster will not
be restored, with the exception of template0 and template1. This option can be specified multiple
times for multiple databases.

Replica Options

This section describes the options related to taking a backup from standby.

Note
Starting from pg_probackup 2.0.24, backups can be taken from standby without connecting to
the master server, so these options are no longer required. In lower versions, pg_probackup had
to connect to the master to determine recovery time — the earliest moment for which you can
restore a consistent state of the database cluster.

--master-db=dbname

Deprecated. Specifies the name of the database on the master server to connect to. The connection
is used only for managing the backup process, so you can connect to any existing database. Can be
set in the pg_probackup.conf using the set-config command.

Default: postgres, the default Postgres Pro database

--master-host=host

Deprecated. Specifies the host name of the system on which the master server is running.

--master-port=port

Deprecated. Specifies the TCP port or the local Unix domain socket file extension on which the master
server is listening for connections.

2497

Additional Supplied Programs

Default: 5432, the Postgres Pro default port

--master-user=username

Deprecated. User name to connect as.

Default: postgres, the Postgres Pro default user name

--replica-timeout=timeout

Deprecated. Wait time for WAL segment streaming via replication, in seconds. By default,
pg_probackup waits 300 seconds. You can also define this parameter in the pg_probackup.conf
configuration file using the set-config command.

Default: 300 sec

How-To
All examples below assume the remote mode of operations via SSH. If you are planning to run backup
and restore operation locally, skip the “Setup passwordless SSH connection” step and omit all --remote-
* options.

Examples are based on Ubuntu 18.04, Postgres Pro 11, and pg_probackup 2.2.0.

• backup — Postgres Pro role used for connection to Postgres Pro cluster.
• backupdb — database used for connection to Postgres Pro cluster.
• backup_host — host with backup catalog.
• backupman — user on backup_host running all pg_probackup operations.
• /mnt/backups — directory on backup_host where backup catalog is stored.
• postgres_host — host with Postgres Pro cluster.
• postgres — user on postgres_host that has started the Postgres Pro cluster.
• /var/lib/postgresql/11/main — Postgres Pro data directory on postgres_host.

Minimal Setup

This scenario illustrates setting up standalone FULL and DELTA backups.

1. Set up passwordless SSH connection from backup_host to postgres_host:

[backupman@backup_host] ssh-copy-id postgres@postgres_host

2. Configure your Postgres Pro cluster.

For security purposes, it is recommended to use a separate database for backup operations.

postgres=#
CREATE DATABASE backupdb;

Connect to the backupdb database, create the probackup role, and grant the following permissions
to this role:

backupdb=#
BEGIN;
CREATE ROLE backup WITH LOGIN REPLICATION;
GRANT USAGE ON SCHEMA pg_catalog TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.current_setting(text) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.set_config(text, text, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_is_in_recovery() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_start_backup(text, boolean, boolean) TO
 backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_stop_backup(boolean, boolean) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_create_restore_point(text) TO backup;

2498

Additional Supplied Programs

GRANT EXECUTE ON FUNCTION pg_catalog.pg_switch_wal() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_last_wal_replay_lsn() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_current_snapshot() TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.txid_snapshot_xmax(txid_snapshot) TO backup;
GRANT EXECUTE ON FUNCTION pg_catalog.pg_control_checkpoint() TO backup;
COMMIT;

3. Initialize the backup catalog:

[backupman@backup_host]$ pg_probackup-11 init -B /mnt/backups
INFO: Backup catalog '/mnt/backups' successfully inited

4. Add instance pg-11 to the backup catalog:

[backupman@backup_host]$ pg_probackup-11 add-instance -B /mnt/backups --
instance pg-11 --remote-host=postgres_host --remote-user=postgres -D /var/lib/
postgresql/11/main
INFO: Instance 'node' successfully inited

5. Take a FULL backup:

[backupman@backup_host] pg_probackup-11 backup -B /mnt/backups --instance pg-11
 -b FULL --stream --remote-host=postgres_host --remote-user=postgres -U backup -d
 backupdb
INFO: Backup start, pg_probackup version: 2.2.0, instance: node, backup ID: PZ7YK2,
 backup mode: FULL, wal mode: STREAM, remote: true, compress-algorithm: none,
 compress-level: 1
INFO: Start transferring data files
INFO: Data files are transferred
INFO: wait for pg_stop_backup()
INFO: pg_stop backup() successfully executed
INFO: Validating backup PZ7YK2
INFO: Backup PZ7YK2 data files are valid
INFO: Backup PZ7YK2 resident size: 196MB
INFO: Backup PZ7YK2 completed

6. Let's take a look at the backup catalog:

[backupman@backup_host] pg_probackup-11 show -B /mnt/backups --instance pg-11

BACKUP INSTANCE 'pg-11'
==
 Instance Version ID Recovery Time Mode WAL Mode TLI Time
 Data WAL Zratio Start LSN Stop LSN Status
==
 node 11 PZ7YK2 2019-10-11 19:45:45+03 FULL STREAM 1/0 11s
 180MB 16MB 1.00 0/3C000028 0/3C000198 OK

7. Take an incremental backup in the DELTA mode:

[backupman@backup_host] pg_probackup-11 backup -B /mnt/backups --instance pg-11 -
b delta --stream --remote-host=postgres_host --remote-user=postgres -U backup -d
 backupdb
INFO: Backup start, pg_probackup version: 2.2.0, instance: node, backup ID: PZ7YMP,
 backup mode: DELTA, wal mode: STREAM, remote: true, compress-algorithm: none,
 compress-level: 1
INFO: Parent backup: PZ7YK2
INFO: Start transferring data files
INFO: Data files are transferred
INFO: wait for pg_stop_backup()
INFO: pg_stop backup() successfully executed
INFO: Validating backup PZ7YMP

2499

Additional Supplied Programs

INFO: Backup PZ7YMP data files are valid
INFO: Backup PZ7YMP resident size: 32MB
INFO: Backup PZ7YMP completed

8. Let's add some parameters to pg_probackup configuration file, so that you can omit them
from the command line:

[backupman@backup_host] pg_probackup-11 set-config -B /mnt/backups --instance pg-11
 --remote-host=postgres_host --remote-user=postgres -U backup -d backupdb

9. Take another incremental backup in the DELTA mode, omitting some of the previous
parameters:

[backupman@backup_host] pg_probackup-11 backup -B /mnt/backups --instance pg-11 -b
 delta --stream
INFO: Backup start, pg_probackup version: 2.2.0, instance: node, backup ID: PZ7YR5,
 backup mode: DELTA, wal mode: STREAM, remote: true, compress-algorithm: none,
 compress-level: 1
INFO: Parent backup: PZ7YMP
INFO: Start transferring data files
INFO: Data files are transferred
INFO: wait for pg_stop_backup()
INFO: pg_stop backup() successfully executed
INFO: Validating backup PZ7YR5
INFO: Backup PZ7YR5 data files are valid
INFO: Backup PZ7YR5 resident size: 32MB
INFO: Backup PZ7YR5 completed

10. Let's take a look at the instance configuration:

[backupman@backup_host] pg_probackup-11 show-config -B /mnt/backups --instance
 pg-11

Backup instance information
pgdata = /var/lib/postgresql/11/main
system-identifier = 6746586934060931492
xlog-seg-size = 16777216
Connection parameters
pgdatabase = backupdb
pghost = postgres_host
pguser = backup
Replica parameters
replica-timeout = 5min
Archive parameters
archive-timeout = 5min
Logging parameters
log-level-console = INFO
log-level-file = OFF
log-filename = pg_probackup.log
log-rotation-size = 0
log-rotation-age = 0
Retention parameters
retention-redundancy = 0
retention-window = 0
wal-depth = 0
Compression parameters
compress-algorithm = none
compress-level = 1
Remote access parameters
remote-proto = ssh
remote-host = postgres_host

2500

Additional Supplied Programs

Note that we are getting the default values for other options that were not overwritten by the set-
config command.

11. Let's take a look at the backup catalog:

[backupman@backup_host] pg_probackup-11 show -B /mnt/backups --instance pg-11

==
 Instance Version ID Recovery Time Mode WAL Mode TLI Time
 Data WAL Zratio Start LSN Stop LSN Status
==
 node 11 PZ7YR5 2019-10-11 19:49:56+03 DELTA STREAM 1/1 10s
 112kB 32MB 1.00 0/41000028 0/41000160 OK
 node 11 PZ7YMP 2019-10-11 19:47:16+03 DELTA STREAM 1/1 10s
 376kB 32MB 1.00 0/3E000028 0/3F0000B8 OK
 node 11 PZ7YK2 2019-10-11 19:45:45+03 FULL STREAM 1/0 11s
 180MB 16MB 1.00 0/3C000028 0/3C000198 OK

Versioning
pg_probackup follows semantic versioning.

Authors
Postgres Professional, Moscow, Russia.

Credits

pg_probackup utility is based on pg_arman, which was originally written by NTT and then developed
and maintained by Michael Paquier.

2501

https://semver.org/

Additional Supplied Programs

pg_repack
pg_repack — utility and Postgres Pro Standard extension to reorganize tables

Synopsis
pg_repack [option...] [dbname]

Description
pg_repack is a Postgres Pro Standard extension which lets you remove bloat from tables and indexes,
and optionally restore the physical order of clustered indexes. Unlike CLUSTER and VACUUM FULL it
works online, without holding an exclusive lock on the processed tables during processing. pg_repack
is efficient to boot, with performance comparable to using CLUSTER directly.

pg_repack is a fork of the previous https://github.com/reorg/pg_reorg project.

You can choose one of the following methods to reorganize data:
• Online CLUSTER (ordered by cluster index)
• Ordering by specified columns
• Online VACUUM FULL (packing rows only)
• Rebuild or relocate only the indexes of a table

Note
Only superusers can use the utility.

Note
Target table must have a PRIMARY KEY, or at least a UNIQUE total index on a NOT NULL column.

Installation
On Linux systems, pg_repack is provided together with Postgres Pro as a separate pre-built package and
requires the postgrespro-std-13-server package to be installed with all the dependencies. For the
list of available packages and detailed installation instructions, see Chapter 16. On Windows systems,
pg_repack is automatically installed as part of Postgres Pro.

Once you have pg_repack installed, load the pg_repack extension in the database you want to process,
as follows:
$ psql -c "CREATE EXTENSION pg_repack" -d your_database

You can later remove pg_repack from a Postgres Pro installation using DROP EXTENSION pg_repack.

If you are upgrading from a previous version of pg_repack, just drop the old version from the database
as explained above and install the new version.

Options

Reorganization Options
-a
--all

Attempt to repack all the databases of the cluster. Databases where the pg_repack extension is not
installed will be skipped.

2502

https://reorg.github.io/pg_repack
https://github.com/reorg/pg_reorg

Additional Supplied Programs

-t table
--table=table

Reorganize the specified table(s) only. Multiple tables may be reorganized by writing multiple -t
switches. By default, all eligible tables in the target databases are reorganized.

-c schema
--schema=schema

Repack the tables in the specified schema(s) only. Multiple schemas may be repacked by writing
multiple -c switches. Can be used in conjunction with --tablespace to move tables to a different
tablespace.

-o column[, ...]
--order-by=column[, ...]

Perform an online CLUSTER ordered by the specified columns.

-n
--no-order

Perform an online VACUUM FULL. Since version 1.2 this is the default for non-clustered tables.

-N
--dry-run

Show what would be repacked and exit.

-j num_jobs
--jobs=num_jobs

Create the specified number of extra connections to Postgres Pro Standard, and use these extra
connections to parallelize the rebuild of indexes on each table. Parallel index builds are only
supported for full-table repacks, not with --index or --only-indexes options. If your server has
extra cores and disk I/O available, this can be a useful way to speed up pg_repack.

-s tablespace
--tablespace=tablespace

Move the repacked tables to the specified tablespace: essentially an online version of ALTER
TABLE ... SET TABLESPACE. The tables' indexes are left in the original tablespace unless --moveidx
is specified too.

-S
--moveidx

Also move the indexes of the repacked tables to the tablespace specified by the --tablespace option.

-i index
--index=index

Repack the specified index(es) only. Multiple indexes may be repacked by writing multiple -i
switches. May be used in conjunction with --tablespace to move the index(es) to a different
tablespace.

-x
--only-indexes

Repack only the indexes of the specified table(s), which must be specified with the --table option.

-T secs
--wait-timeout=secs

pg_repack needs to take an exclusive lock at the end of the reorganization. This setting controls how
many seconds pg_repack will wait to acquire this lock. If the lock cannot be taken after this duration,

2503

Additional Supplied Programs

pg_repack will forcibly cancel the conflicting queries. If you are using Postgres Pro or PostgreSQL
version 8.4 or newer, pg_repack will fall back to using pg_terminate_backend() to disconnect any
remaining backends after this timeout has passed twice. The default is 60 seconds.

-Z
--no-analyze

Disable ANALYZE after a full-table reorganization. If not specified, ANALYZE is executed after the
reorganization.

Connection Options

[-d] dbname
[--dbname=]dbname

Specifies the name of the database to be reorganized. If this is not specified and -a (or --all) is not
used, the database name is read from the environment variable PGDATABASE. If that is not set, the
user name specified for the connection is used.

-h host
--host=host

Specifies the host name of the machine on which the server is running. If the value begins with a
slash, it is used as the directory for the Unix domain socket.

-p port
--port=port

Specifies the TCP port or local Unix domain socket file extension on which the server is listening
for connections.

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force pg_repack to prompt for a password before connecting to a database.

This option is never essential, since pg_repack will automatically prompt for a password if the server
demands password authentication. However, pg_repack will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Generic Options

-e
--echo

Echo the commands that pg_repack generates and sends to the server.

-E level
--elevel=level

Choose the output message level from DEBUG, INFO, NOTICE, WARNING, ERROR, LOG, FATAL, and PANIC.
The default is INFO.

2504

Additional Supplied Programs

--help

Show help about pg_repack command line arguments, and exit.

-V
--version

Print the pg_repack version and exit.

Environment
PGDATABASE
PGHOST
PGPORT
PGUSER

Default connection parameters

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

Examples
Perform an online CLUSTER of all the clustered tables in the database test, and perform an online VACUUM
FULL of all the non-clustered tables:

$ pg_repack test

Perform an online VACUUM FULL on the tables foo and bar in the database test (an eventual cluster
index is ignored):

$ pg_repack --no-order --table foo --table bar test

Move all indexes of table foo to tablespace tbs:

$ pg_repack -d test --table foo --only-indexes --tablespace tbs

Move the specified index to tablespace tbs:

$ pg_repack -d test --index idx --tablespace tbs

Diagnostics
Error messages are reported when pg_repack fails. The following list shows the cause of errors.

You need to cleanup by hand after fatal errors. To cleanup, just remove pg_repack from the database
and install it again.

For Postgres Pro or PostgreSQL 9.1 and newer execute:

DROP EXTENSION pg_repack CASCADE

in the database where the error occurred, followed by

CREATE EXTENSION pg_repack

For previous versions load the script $SHAREDIR/contrib/uninstall_pg_repack.sql into the database
where the error occurred and then load $SHAREDIR/contrib/pg_repack.sql again.

INFO: database "db" skipped:
pg_repack VER is not installed in the database:
pg_repack is not installed in the database when the --all option is specified.

Create the pg_repack extension in the database.

2505

Additional Supplied Programs

ERROR: pg_repack VER is not installed in the database:
pg_repack is not installed in the database specified by --dbname

Create the pg_repack extension in the database.

ERROR: program 'pg_repack V1' does not match database library 'pg_repack V2':
There is a mismatch between the pg_repack binary and the database library
(.so or .dll).

The mismatch could be due to the wrong binary in the PATH or the wrong database being addressed.
Check the program directory and the database; if they are what expected you may need to repeat
pg_repack installation.

ERROR: extension 'pg_repack V1' required, found 'pg_repack V2':
The SQL extension found in the database does not match the version required by the
 pg_repack program.

You should drop the extension from the database and reload it as described in the section called
“Installation”.

ERROR: relation "table" must have a primary key or not-null unique keys:
The target table doesn't have a PRIMARY KEY or any UNIQUE constraints defined.

Define a PRIMARY KEY or a UNIQUE constraint on the table.

ERROR: query failed: ERROR: column "col" does not exist:
The target table doesn't have columns specified by --order-by option.

Specify existing columns.

WARNING: the table "tbl" already has a trigger called z_repack_trigger:
The trigger was probably installed during a previous attempt
to run pg_repack on the table which was interrupted
and for some reason failed to clean up the temporary objects.

You can remove all the temporary objects by dropping and re-creating the extension: see the section
called “Installation” for the details.

WARNING: trigger "trg" conflicting on table "tbl":
The target table has a trigger whose name follows z_repack_trigger
in alphabetical order.

The z_repack_trigger should be the last BEFORE trigger to fire. Please rename your trigger so that it
sorts alphabetically before pg_repack one; you can use:

ALTER TRIGGER zzz_my_trigger
 ON sometable RENAME TO yyy_my_trigger;

2506

Additional Supplied Programs

ERROR: Another pg_repack command may be running on the table. Please try again later.

There is a chance of deadlock when two concurrent pg_repack commands are run on the same table.
So, try to run the command after some time.

WARNING: Cannot create index "schema"."index_xxxxx", already exists
DETAIL: An invalid index may have been left behind by a previous
pg_repack on the table which was interrupted. Please use DROP INDEX
"schema"."index_xxxxx" to remove this index and try again.

A temporary index apparently created by pg_repack has been left behind, and we do not want to risk
dropping this index ourselves. If the index was in fact created by an old pg_repack job which didn't get
cleaned up, you should just use DROP INDEX and try the repack command again.

Restrictions
pg_repack comes with the following restrictions.

Temporary tables
pg_repack cannot reorganize temporary tables.

GiST indexes

pg_repack cannot cluster tables by GiST indexes.

DDL commands

You will not be able to perform DDL commands of the target table(s) except VACUUM or ANALYZE while
pg_repack is working. pg_repack will hold an ACCESS SHARE lock on the target table during a full-
table repack, to enforce this restriction.

If you are using version 1.1.8 or earlier, you must not attempt to perform any DDL commands on the
target table(s) while pg_repack is running. In many cases pg_repack would fail and rollback correctly,
but there were some cases in these earlier versions which could result in data corruption.

See also
clusterdb, vacuumdb

2507

Additional Supplied Programs

vacuumlo
vacuumlo — remove orphaned large objects from a Postgres Pro database

Synopsis
vacuumlo [option...] dbname...

Description
vacuumlo is a simple utility program that will remove any “orphaned” large objects from a Postgres Pro
database. An orphaned large object (LO) is considered to be any LO whose OID does not appear in any
oid or lo data column of the database.

If you use this, you may also be interested in the lo_manage trigger in the lo module. lo_manage is useful
to try to avoid creating orphaned LOs in the first place.

All databases named on the command line are processed.

Options
vacuumlo accepts the following command-line arguments:

-l limit
--limit=limit

Remove no more than limit large objects per transaction (default 1000). Since the server
acquires a lock per LO removed, removing too many LOs in one transaction risks exceeding
max_locks_per_transaction. Set the limit to zero if you want all removals done in a single transaction.

-n
--dry-run

Don't remove anything, just show what would be done.

-v
--verbose

Write a lot of progress messages.

-V
--version

Print the vacuumlo version and exit.

-?
--help

Show help about vacuumlo command line arguments, and exit.

vacuumlo also accepts the following command-line arguments for connection parameters:

-h host
--host=host

Database server's host.

-p port
--port=port

Database server's port.

2508

Additional Supplied Programs

-U username
--username=username

User name to connect as.

-w
--no-password

Never issue a password prompt. If the server requires password authentication and a password is
not available by other means such as a .pgpass file, the connection attempt will fail. This option can
be useful in batch jobs and scripts where no user is present to enter a password.

-W
--password

Force vacuumlo to prompt for a password before connecting to a database.

This option is never essential, since vacuumlo will automatically prompt for a password if the server
demands password authentication. However, vacuumlo will waste a connection attempt finding out
that the server wants a password. In some cases it is worth typing -W to avoid the extra connection
attempt.

Environment
PGHOST
PGPORT
PGUSER

Default connection parameters.

This utility, like most other Postgres Pro utilities, also uses the environment variables supported by libpq
(see Section 31.14).

The environment variable PG_COLOR specifies whether to use color in diagnostic messages. Possible
values are always, auto and never.

Notes
vacuumlo works by the following method: First, vacuumlo builds a temporary table which contains all of
the OIDs of the large objects in the selected database. It then scans through all columns in the database
that are of type oid or lo, and removes matching entries from the temporary table. (Note: Only types
with these names are considered; in particular, domains over them are not considered.) The remaining
entries in the temporary table identify orphaned LOs. These are removed.

Author
Peter Mount <peter@retep.org.uk>

G.2. Server Applications
This section covers Postgres Pro Standard server-related applications. They are typically run on the
host where the database server resides. See also Postgres Pro Server Applications for information about
server applications that are part of the core Postgres Pro Standard distribution.

2509

Additional Supplied Programs

mamonsu
mamonsu — a monitoring agent for collecting Postgres Pro and system metrics.

Synopsis
mamonsu agent [agent_action]

mamonsu bootstrap -M mamonsu_user [-c | --config] [-x | --create-extensions]
[connection_options]

mamonsu export {template | config} filename [export_options]

mamonsu report [report_options] [connection_options]

mamonsu tune [tuning_options] [connection_options]

mamonsu upload [upload_options]

mamonsu zabbix dashboard upload template_name

mamonsu zabbix {template | host | hostgroup} server_action

mamonsu zabbix item {error | lastvalue | lastclock} host_id

mamonsu zabbix version

mamonsu --version

mamonsu --help

Description
mamonsu is a monitoring agent for collecting Postgres Pro and system metrics that can be visualized on
the Zabbix server. Unlike the native Zabbix Agent configured to collect Postgres Pro metrics, mamonsu
uses a single database connection, which allows to minimize performance impact on the monitored
system.

The mamonsu agent includes the following components:

• A supervisor process that monitors database and system activity.
• Plugins that specify which Postgres Pro and system metrics to collect.
• Customizable configuration and template files that define which plugins to use and how to visualize

the collected data.
mamonsu is an active agent, which means that it sends the data to the Zabbix server once it is collected.
Pre-configured to monitor multiple Postgres Pro and system metrics out of the box, mamonsu can be
extended with your own custom plugins to track other metrics critical for your system.

mamonsu also provides the command-line interface for updating some Zabbix server settings, as well
as getting an overview of the monitored system configuration and tuning Postgres Pro and system
settings on the fly. You can find the list of all mamonsu commands in the section called “Command-Line
Reference”.

Installation and Setup

Important
Before you start installation, attentively read Compatibility Considerations.

2510

Additional Supplied Programs

To use mamonsu, you must create a Zabbix account and set up a Zabbix server as explained in Zabbix
documentation. Naturally, you must also have a Postgres Pro instance up and running if you are going
to monitor Postgres Pro metrics. If you are configuring your Postgres Pro cluster from scratch, see
Chapter 16 and Section 17.2 for Postgres Pro installation and setup instructions, respectively.

Note
While mamonsu can collect Postgres Pro metrics from a remote cluster, system metrics are only
collected locally. If you choose to collect Postgres Pro metrics remotely, make sure to disable
collection of system metrics to avoid confusion, as they will be displayed under the same host in
Zabbix.

A pre-built mamonsu package is provided together with Postgres Pro Standard, but has a separate
installer. Once you have installed mamonsu, complete the following steps to set up metrics collection:

1. Optionally, bootstrap mamonsu
If you omit this step, metrics can only be collected on behalf of a superuser, which is not
recommended.

In this step, the bootstrap command sets the mamonsu user, creates mamonsu schema in the
specified or implied database, as well as extensions and objects needed for monitoring.

bootstrap has no mandatory options. When run without options, it takes the values needed from the
configuration file (/etc/mamonsu/agent.conf by default). Below is a simple example of bootstrap:

1. In the [postgres] section of agent.conf, specify connection parameters for the Postgres Pro
cluster you are going to monitor. For more details, see Connection Parameters.

2. Run the following command to bootstrap mamonsu:
mamonsu bootstrap

This command will create the user mamonsu with the password mamonsu, create monitoring
functions in the database specified in agent.conf and grant the right to execute them to the
mamonsu user.

In the following example, bootstrap options are passed explicitly.

1. Create a non-privileged database user for mamonsu. For example:
CREATE USER mamonsu_user WITH PASSWORD 'mamonsu_password';

2. Create a database that will be used for connection to Postgres Pro. For example:
CREATE DATABASE mamonsu_database OWNER mamonsu_user;

3. Run the following command to bootstrap mamonsu:
mamonsu bootstrap -M mamonsu_user -x -c /etc/mamonsu/mamonsu.conf -d
 mamonsu_database -U postgres --host myhost --port 5432

For details of the options -M, -x and -c, see bootstrap. For details of other options, see Connection
Options. This command will create monitoring functions in the mamonsu_database and grant the
right to execute them to mamonsu_user. The pg_buffercache extension will also be created to
ensure collection of metrics on the shared buffer cache, and the path to the configuration file
will be changed.

As a result, a superuser connection is no longer required. Note that mamonsu also creates several
tables in the mamonsu schema in the specified database. Do not delete these tables as they are
required for mamonsu to work.

2. Configure mamonsu
Edit the agent.conf configuration file, which is located in the /etc/mamonsu/ directory by default.

2511

https://www.zabbix.com/documentation/current/
https://www.zabbix.com/documentation/current/

Additional Supplied Programs

• Configure Zabbix-related settings. The address field must point to the running Zabbix server,
while the client field must provide the name of the Zabbix host. You can find the list of hosts
available for your account in the Zabbix web interface under Configuration > Hosts.

[zabbix]
; enabled by default
enabled = True
client = zabbix_host_name
address = zabbix_server

• By default, mamonsu will collect both Postgres Pro and system metrics. If required, you can
disable metrics collection of either type by setting the enabled parameter to False in the
[postgres] or [system] section of the agent.conf file, respectively.

[system]
; enabled by default
enabled = True

Note
While mamonsu can collect Postgres Pro metrics from a remote cluster, system metrics
are only collected locally. If you choose to collect Postgres Pro metrics remotely, make
sure to disable collection of system metrics to avoid confusion, as they will be displayed
under the same host in Zabbix.

• If you are going to collect Postgres Pro metrics, specify connection parameters for the Postgres
Pro cluster you are going to monitor. In the user, password, and database fields, you must
specify the mamonsu_user, mamonsu_password, and the mamonsu_database used for bootstrap,
respectively. If you skipped the bootstrap, specify superuser credentials and the database to
connect to.

[postgres]
; enabled by default
enabled = True
user = mamonsu_user
database = mamonsu_database
password = mamonsu_password
port = 5432

These are the main mamonsu settings to get started. You can also fine-tune other mamonsu settings
as explained in the section called “Configuration Parameters”.

3. Configure how to display metrics on the Zabbix server

1. Generate a template that defines how to visualize the collected metrics on the Zabbix server:

mamonsu export template template.xml

mamonsu generates the template.xml file in your current directory. By default, the name of the
template that will be displayed in the Zabbix account is PostgresPro-OS, where OS is the name
of your operating system. To get a template with a different display name, you can run the above
command with the --template-name option.

2. Optionally, specify your Zabbix account settings in the following environment variables on your
monitoring system:

• Set the ZABBIX_USER and ZABBIX_PASSWD variables to the login and password of your
Zabbix account, respectively.

• Set the ZABBIX_URL to http://zabbix/

2512

Additional Supplied Programs

If you skip this step, you will have to add the following options to all mamonsu zabbix commands
that you run:

--url=http://zabbix/ --user=zabbix_login --password=zabbix_password

3. Upload template.xml to the Zabbix server.

mamonsu zabbix template export template.xml

Alternatively, you can upload the template through the Zabbix web interface: log in to your
Zabbix account and select Templates > Import.

4. Link the generated template to the host to be monitored.

In the Zabbix web interface, select your host, go to Templates > Add, select your template,
and click Update.

Tip
If you would like to link a template with a new Zabbix host, you can do it from the command
line using mamonsu zabbix commands. See the section called “Managing Zabbix Server
Settings from the Command Line” for details.

When the setup is complete, start mamonsu. For example, on Linux systems, you can start mamonsu as
a service with the following command:

service mamonsu start

mamonsu picks up all the parameters from the mamonsu configuration file and starts monitoring your
system.

Command-Line Reference

agent

Syntax:

mamonsu agent { metric-list | metric-get metric_name | version }

Provides information on the collected metrics from the command line. You can specify one of the
following parameters:

metric-list

Show the list of metrics that mamonsu is collecting. The output of this command provides the item
key of each metric, its latest value, and the time when this value was received.

metric-get metric_name

Check the latest value for the specified metric. You can get the list of available metrics using the
metric-list option.

version

Display mamonsu version.

bootstrap

Syntax:

mamonsu bootstrap -M mamonsu_user
 [-c[config_file] | --config[=config_file]]
 [-x | --create-extensions] [connection_options]

2513

Additional Supplied Programs

Bootstrap mamonsu. This command can take the following options:

-M

Specify a non-privileged user that will own all mamonsu processes.

-c config_file
--config=config_file

Specify the agent.conf file where the [postgres] section contains the database name to be used if
--dbname is not specified through connection_options.

Default: /etc/mamonsu/agent.conf

-x
--create-extensions

Create auxiliary extensions. Only pg_buffercache will be currently created, which is no longer created
by default.

connection_options

Provide optional command-line connection parameters.

export

Syntax:

mamonsu export config filename.conf [--add-plugins=plugin_directory]
mamonsu export template filename.xml [--add-plugins=plugin_directory]
 [--template-name=template_name]
 [--application=application_name]
 [--old-zabbix]

Generate a template or configuration file for metrics collection. The optional parameters to customize
metrics collection are as follows:

--add-plugins=plugin_directory

Collect metrics that are defined in custom plugins located in the specified plugin_directory. If you
are going to use custom plugins, you must provide this option when generating both the configuration
file and the template.

--template-name=template_name

Specify the name of the template that will be displayed on the Zabbix server.

Default: PostgresPro-OS, where OS is the name of your operating system

--application=application_name

Specify an identifier under which the collected metrics will be displayed on the Zabbix server.

Default: App-PostgresPro-OS, where OS is the name of your operating system

--old-zabbix

Export a template for Zabbix server version 4.2 or lower. By default, the template is generated in a
format compatible with Zabbix 4.4 or higher.

export zabbix-parameters

Syntax:

mamonsu export zabbix-parameters filename.conf [--add-plugins=plugin_directory]

2514

Additional Supplied Programs

 [--plugin-type={pg | sys | all}]
 [--pg-version=version]
 [--config=config_file]

Export metrics configuration for use with the native Zabbix agent. The optional parameters to customize
metrics collection are as follows:

--add-plugins=plugin_directory

Collect metrics that are defined in custom plugins located in the specified plugin_directory. If you
are going to use custom plugins, you must provide this option when generating both the configuration
file and the template.

--plugin-type={pg | sys | all}

Specify the type of metrics to collect:
• pg for Postgres Pro metrics.
• sys for system metrics.
• all for both Postgres Pro and system metrics.

Default: all

--pg-version=version

Specify the major version of the server for which to configure metrics collection. mamonsu can collect
metrics for all supported Postgres Pro versions, as well as PostgreSQL versions starting from 9.5.

Default: 10

--config=config_file

Specify the agent.conf file to be used as the source for metrics definitions.

Default: /etc/mamonsu/agent.conf

export zabbix-template

Syntax:

mamonsu export zabbix-template filename.conf [--add-plugins=plugin_directory]
 [--plugin-type={pg | sys | all}]
 [--template-name=template_name]
 [--application=application_name]
 [--config=config_file]
 [--old-zabbix]

Export a template for use with the native Zabbix agent. The optional parameters to customize metrics
collection are as follows:

--add-plugins=plugin_directory

Collect metrics that are defined in custom plugins located in the specified plugin_directory. If you
are going to use custom plugins, you must provide this option when generating both the configuration
file and the template.

--plugin-type={pg | sys | all}

Specify the type of metrics to collect:
• pg configures Postgres Pro metrics.
• sys configures system metrics.
• all configures both Postgres Pro and system metrics.

2515

https://www.zabbix.com/documentation/current/manual/concepts/agent

Additional Supplied Programs

Default: all

--template-name=template_name

Specify the name of the template that will be displayed on the Zabbix server.

Default: PostgresPro-OS, where OS is the name of your operating system

--application=application_name

Specify an identifier under which the collected metrics will be displayed on the Zabbix server.

Default: App-PostgresPro-OS, where OS is the name of your operating system

--config=config_file

Specify the agent.conf file to be used as the source for metrics definitions.

Default: /etc/mamonsu/agent.conf

--old-zabbix

Export a template for Zabbix server version 4.2 or lower. By default, the template is generated in a
format compatible with Zabbix 4.4 or higher.

report

Syntax:

mamonsu report [--run-system=Boolean] [--run-postgres=Boolean]
 [--print-report=Boolean] [--report-path=report_file]
 [--disable-sudo] [connection_options]

Generate a detailed report on the hardware, operating system, memory usage and other parameters of
the monitored system, as well as Postgres Pro configuration.

The following optional parameters customize the report:

--run-system=Boolean

Include system information into the generated report.

Default: True

--run-postgres=Boolean

Include information on Postgres Pro into the generated report.

Default: True

--print-report=Boolean

Print the report to stdout.

Default: True

--report-path=report_file

Save the report into the specified file.

Default: /tmp/report.txt

--disable-sudo

Do not report data that can only be received with superuser rights. This option is only available for
Linux systems.

2516

Additional Supplied Programs

connection_options

Provide optional command-line connection parameters.

tune

Syntax:

mamonsu tune [--dry-run] [--disable-sudo] [--log-level {INFO|DEBUG|WARN}]
 [--dont-tune-pgbadger] [--dont-reload-postgresql]
 [connection_options]

Optimize Postgres Pro and system configuration based on the collected statistics. You can use the
following options:

--dry-run

Display the settings to be tuned without changing the actual system and Postgres Pro configuration.

--disable-sudo

Do not tune the settings that can only be changed by a superuser. This option is only available for
Linux systems.

--dont-tune-pgbadger

Do not tune pgbadger parameters.

--log-level { INFO | DEBUG | WARN}

Change the logging level.

Default: INFO

--dont-reload-postgresql

Forbid mamonsu to run the pg_reload_conf() function. If you specify this option, the modified
settings that require reloading Postgres Pro configuration do not take effect immediately.

connection_options

Provide optional command-line connection parameters.

upload

Syntax:

mamonsu upload [--zabbix-file=metrics_file]
 [--zabbix-address=zabbix_address] [--zabbix-port=port_number]
 [--zabbix-client=zabbix_host_name] [--zabbix-log-level={INFO|DEBUG|
WARN}]

Upload metrics data previously saved into a file onto a Zabbix server for visualization. For details on
how to save metrics into a file, see the section called “Logging Parameters”.

This command can take the following options:

--zabbix-address=zabbix_address

The address of the Zabbix server.

Default: localhost

--zabbix-port=port_number

The port of the Zabbix server.

2517

Additional Supplied Programs

Default: 10051

--zabbix-file=metrics_file

A text file that stores the collected metrics data to be visualized, such as localhost.log.

--zabbix-client=zabbix_host_name

The name of the Zabbix host.

Default: localhost

--zabbix-log-level={INFO|DEBUG|WARN}

Change the logging level.

Default: INFO

zabbix dashboard upload

Syntax:

mamonsu dashboard upload template_name

Upload a Zabbix dashboard with the mamonsu metrics to a template on the Zabbix server version 6.0
or higher.

zabbix item

Syntax:

mamonsu zabbix item {error | lastvalue | lastclock } host_name

View the specified property of the latest metrics data received by Zabbix for the specified host.

zabbix version

Syntax:

mamonsu zabbix version

Get the version of the Zabbix server that mamonsu is connected to.

zabbix host

Syntax:

mamonsu zabbix host list
mamonsu zabbix host show host_name
mamonsu zabbix host id host_name
mamonsu zabbix host delete host_id
mamonsu zabbix host create host_name hostgroup_id template_id mamonsu_address
mamonsu zabbix host info {templates | hostgroups | graphs | items} host_id

Manage Zabbix hosts using one of the actions described in the section called “Zabbix Server Actions”.

zabbix hostgroup

Syntax:

mamonsu zabbix hostgroup list
mamonsu zabbix hostgroup show hostgroup_name
mamonsu zabbix hostgroup id hostgroup_name
mamonsu zabbix hostgroup delete hostgroup_id
mamonsu zabbix hostgroup create hostgroup_name

Manage Zabbix host groups using one of the actions described in the section called “Zabbix Server
Actions”.

2518

Additional Supplied Programs

zabbix template

Syntax:

mamonsu zabbix template list
mamonsu zabbix template show template_name
mamonsu zabbix template id template_name
mamonsu zabbix template delete template_id
mamonsu zabbix template export file

Manage Zabbix templates using one of the actions described in the section called “Zabbix Server
Actions”.

--version

Syntax:

mamonsu --version

Display mamonsu version.

--help

Syntax:

mamonsu --help

Display mamonsu command-line help.

Connection Options

connection_options provide command-line connection parameters for the target Postgres Pro cluster.
connection_options can be --host, --port, --dbname (-d), --username (-U), and --password (-W). The
--dbname option should specify the mamonsu_database created for monitoring purposes. Note that the
--username (-U) option must specify a superuser that can access the cluster.

If you omit connection_options, mamonsu checks the configuration file for the needed settings.

Zabbix Server Actions

Using mamonsu, you can control some of the Zabbix server functionality from the command line.
Specifically, you can create or delete Zabbix hosts and host groups, as well as generate, import, and
delete Zabbix templates using one of the following commands. The object_name to use must correspond
to the type of the Zabbix object specified in the command: template, host, or hostgroup.

list

Display the list of available templates, hosts, or host groups.

show object_name

Display the details about the specified template, host, or host group.

id object_name

Show the ID of the specified object, which is assigned automatically by the Zabbix server.

delete object_id

Delete the object with the specified ID.

create hostgroup_name
create host_name hostgroup_id template_id mamonsu_address

Create a new host or a host group.

2519

Additional Supplied Programs

export template_name

Generate a Zabbix template.

info {templates | hostgroups | graphs | items} host_id

Display detailed information about the templates, host groups, graphs, and metrics available on the
host with the specified ID.

Configuration Parameters
The agent.conf configuration file is located in the /etc/mamonsu directory by default. It provides several
groups of parameters that control which metrics to collect and how to log the collected data:

• connection parameters

• logging parameters

• plugin parameters

All parameters must be specified in the parameter = value format.

Connection Parameters

[postgres]

The [postgres] section controls Postgres Pro metrics collection and can contain the following
parameters:

enabled

Enables/disables Postgres Pro metrics collection if set to True or False, respectively.

Default: True

user

The user on behalf of which the cluster will be monitored. It must be the mamonsu user set in
bootstrap, or a superuser if bootstrap was not run.

Default: postgres

password

The password for the specified user.

database

The database to connect to for metrics collection.

Default: postgres

host

The server address to connect to.

Default: localhost

port

The port to connect to.

Default: 5432

application_name

Application name that identifies mamonsu connected to the Postgres Pro cluster.

2520

Additional Supplied Programs

Default: mamonsu

query_timeout

statement_timeout for the mamonsu session, in seconds. If a Postgres Pro metric query does not
complete within this time interval, it gets terminated.

Default: 10

[system]

The [system] section controls system metrics collection and can contain the following parameters:

enabled

Enables/disables system metrics collection if set to True or False, respectively.

Default: True

[zabbix]

The [zabbix] section provides connection settings for the Zabbix server and can contain the following
parameters:

enabled

Enables/disables sending the collected metrics data to the Zabbix server if set to True or False,
respectively.

Default: True

client

The name of the Zabbix host.

address

The address of the Zabbix server.

Default: 127.0.0.1

port

The port of the Zabbix server.

Default: 10051

timeout

Maximum time to wait while connecting to the Zabbix server, in seconds.

Default: 15

[agent]

The [agent] section specifies the location of mamonsu and whether it is allowed to access metrics from
the command line:

enabled

Enables/disables metrics collection from the command line using the agent command.

Default: True

host

The address of the system on which mamonsu is running.

2521

Additional Supplied Programs

Default: 127.0.0.1

port

The port on which mamonsu is running.

Default: 10052

[sender]

The [sender] section controls the queue size of the data to be sent to the Zabbix server:

queue

The maximum number of collected metric values that can be accumulated locally before mamonsu
sends them to the Zabbix server. Once the accumulated data is sent, the queue is cleared.

Default: 2048

Logging Parameters

[metric_log]

The [metric_log] section enables storing the collected metrics data in text files locally. This section
can contain the following parameters:

enabled

Enables/disables storing the collected metrics data in a text file. If this option is set to True, mamonsu
creates the localhost.log file for storing metric values.

Default: False

directory

Specifies the directory where log files with metrics data will be stored.

Default: /var/log/mamonsu

max_size_mb

The maximum size of a log file, in MB. When the specified size is reached, it is renamed to
localhost.log.archive, and an empty localhost.log file is created.

Default: 1024

[log]

The [log] section specifies logging settings for mamonsu and can contain the following parameters:

file

Specifies the log filename, which can be preceded by the full path.

level

Specifies the debug level. This option can take DEBUG, ERROR, or INFO values.

Default: INFO

format

The format of the logged data.

Default: [%(levelname)s] %(asctime)s - %(name)s - %(message)s

where levelname is the debug level, asctime returns the current time, name specifies the plugin that
emitted this log entry or root otherwise, and message provides the actual log message.

2522

Additional Supplied Programs

Plugin Parameters

[plugins]

The [plugins] section specifies custom plugins to be added for metrics collection and can contain the
following parameters:
enabled

Enables/disables using custom plugins for metrics collection if set to True or False, respectively.

Default: False

directory

Specifies the directory that contains custom plugins for metrics collection. Setting this parameter
to None forbids using custom plugins.

Default: /etc/mamonsu/plugins

If you need to configure any of the plugins you add to mamonsu after installation, you have to add this
plugin section to the agent.conf file.

The syntax of this section should follow the syntax used with the examples shown below in the section
called “Individual Plugin Sections”.

Individual Plugin Sections

All built-in plugins are installed along with mamonsu. To configure a built-in plugin you should find a
corresponding section below the Individual Plugin Sections heading and edit its parameter values.

To disable any plugin you should set the enabled parameter to False and to enable it — set it to True.
These values are case sensitive.

The example below shows individual plugin sections corresponding to the preparedtransaction and
the pgprobackup built-in plugins:

[preparedtransaction]
max_prepared_transaction_time = 60
interval = 60

[pgprobackup]
enabled = false
interval = 300
backup_dirs = /backup_dir1,/backup_dir2
pg_probackup_path = /usr/bin/pg_probackup-11

[preparedtransaction]

This plugin gets age in seconds of the oldest prepared transaction and number of all transactions
prepared for a two-phase commit. For additional information refer to PREPARE TRANSACTION and
Section 49.77.

The max_prepared_transaction_time parameter specifies the threshold in seconds for the age of the
prepared transaction.

The interval parameter allows you to change the metrics collection interval.

The plugin collects two metrics: pgsql.prepared.count (number of prepared transactions) and
pgsql.prepared.oldest (oldest prepared transaction age in seconds).

If pgsql.prepared.oldest value exceeds the threshold specified by the
max_prepared_transaction_time parameter, a trigger with the following message is fired: "PostgreSQL
prepared transaction is too old on {host}".

2523

Additional Supplied Programs

[pgprobackup]

This plugin uses pg_probackup to track its backups' state and gets size of backup directories which store
all backup files.

Please note that this plugin counts the total size of all files in the target directory. Make sure that
extraneous files are not stored in this directory.

The backup_dirs parameter specifies a comma-separated list of paths to directories for which metrics
should be collected.

The pg_probackup_path parameter specifies the path to pg_probackup.

The interval parameter allows you to change the metrics collection interval.

By default this plugin is disabled. To enable it set the enabled parameter to True.

This plugin collects two metrics: pg_probackup.dir.size[#backup_directory] (the size of the target
directory) and pg_probackup.dir.error[#backup_directory] (backup errors) for each specified
backup_directory.

If any generated backup has bad status, like ERROR, CORRUPT, ORPHAN, а trigger is fired.

Usage

Collecting and Viewing Metrics Data

Once started, mamonsu begins collecting system and Postgres Pro metrics. The agent command enables
you to get an overview of the collected metrics from the command line in real time.

To view the list of available metrics, use the agent metric-list command:

mamonsu agent metric-list

The output of this command provides the item key of each metric, its latest value, and the time when
this value was received. For example:

system.memory[active] 7921004544 1564570818
system.memory[swap_cache] 868352 1564570818
pgsql.connections[idle] 6.0 1564570818
pgsql.archive_command[failed_trying_to_archive] 0 1564570818

To view the current value for a specific metric, you can use the agent metric-get command:

mamonsu agent metric-get metric_name

where metric_name is the item key of the metric to monitor, as returned by the metric-list command.
For example, pgsql.connections[idle].

You can view graphs for the collected metrics in the Zabbix web interface under the Graphs menu. For
details on working with Zabbix, see its official documentation at https://www.zabbix.com/documentation/
current/.

If you have chosen to save all the collected metrics data into a file, as explained in the section called
“Logging Parameters”, you can later upload these metrics onto a Zabbix server for visualization using
the upload command.

Adding Custom Plugins

You can extend mamonsu with your own custom plugins, as follows:

1. Save all custom plugins in a single directory, such as /etc/mamonsu/plugins.

2. Make sure this directory is specified in your configuration file under the [plugins] section:

2524

https://www.zabbix.com/documentation/current/
https://www.zabbix.com/documentation/current/

Additional Supplied Programs

[plugins]
directory = /etc/mamonsu/plugins

3. Generate a new Zabbix template to include custom plugins:

mamonsu export template template.xml --add-plugins=/etc/mamonsu/plugins

4. Upload the generated template.xml to the Zabbix server as explained in the section called
“Installation and Setup”.

Tuning Postgres Pro and System Configuration

Based on the collected metrics data, mamonsu can tune your Postgres Pro and system configuration for
optimal performance.

You can get detailed information about the hardware, operating system, memory usage and other
parameters of the monitored system, as well as Postgres Pro configuration, as follows:

mamonsu report

To view the suggested optimizations without applying them, run the tune command with the --dry-
run option:

mamonsu tune --dry-run

To apply all the suggested changes, run the tune command without any parameters:

mamonsu tune

You can exclude some settings from the report or disable some of the optimizations by passing optional
parameters. See the section called “Command-Line Reference” for the full list of parameters available
for report and tune commands.

Managing Zabbix Server Settings from the Command Line

mamonsu enables you to work with the Zabbix server from the command line. You can upload template
files to Zabbix, create and delete Zabbix hosts and host groups, link templates with hosts and check the
latest metric values.

To set up your Zabbix host from scratch, you can follow these steps:

1. Optionally, specify your Zabbix account settings in the following environment variables on your
monitoring system:

• Set the ZABBIX_USER and ZABBIX_PASSWD variables to the login and password of your Zabbix
account, respectively.

• Set the ZABBIX_URL to http://zabbix/

If you skip this step, you will have to add the following options to all mamonsu zabbix commands
that you run:

--url=http://zabbix/ --user=zabbix_login --password=zabbix_password

2. Generate a new template file and upload it to the Zabbix server:

mamonsu export template template.xml
mamonsu zabbix template export template.xml

3. Create a new host group:

mamonsu zabbix hostgroup create hostgroup_name

4. Check the IDs for this host group and the uploaded template, which are assigned automatically by
the Zabbix server:

mamonsu zabbix hostgroup id hostgroup_name

2525

Additional Supplied Programs

mamonsu zabbix template id template_name

5. Create a host associated with this group and link it with the uploaded template using a single
command:

mamonsu zabbix host create host_name hostgroup_id template_id mamonsu_address

where host_name is the name of the host, hostgroup_id and template_id are the unique IDs returned
in the previous step, and mamonsu_address is the IP address of the system on which mamonsu runs.

Once your Zabbix host is configured, complete the setup of your monitoring system as explained in the
section called “Installation and Setup”.

Exporting Metrics for Native Zabbix Agent

Using mamonsu, you can convert system and Postgres Pro metrics definitions to the format supported
by the native Zabbix agent.

This feature currently has the following limitations:
• You cannot export metrics if you run mamonsu on Windows systems.
• Metrics definitions for pg_wait_sampling and CFS features available in Postgres Pro Enterprise

are not converted.

To collect metrics provided by mamonsu using the native Zabbix agent, do the following:

1. Generate a configuration file that is compatible with the native Zabbix agent and place it under /
etc/zabbix/zabbix_agent.d/. You can prepend the filename with the required path:

mamonsu export zabbix-parameters /etc/zabbix/zabbix_agent.d/zabbix_agent.conf

For all possible options of the export zabbix-parameters command, see the section called
“Command-Line Reference”.

2. Generate a template for the native Zabbix agent:

mamonsu export zabbix-template template.xml

For all possible options of the export zabbix-template command, see the section called “Command-
Line Reference”.

3. Upload the generated template to the Zabbix server, as explained in the section called “Installation
and Setup”.

4. If you are going to collect Postgres Pro metrics, change the following macros in the template after
the upload:
• For {$PG_CONNINFO}, provide connection parameters for the Postgres Pro server to be

monitored.
• For {$PG_PATH}, specify psql installation directory.

Compatibility Considerations
If you want to upgrade mamonsu to a version that is not compatible with the previous one, what you must
do to continue using the application depends on whether you need to retain the metrics data collected.

• If you need to retain the collected data, do the following:
1. Install the new version of mamonsu.
2. Generate a new template for the Zabbix server.
3. If you performed a bootstrap using the previous version of mamonsu, run the bootstrap

command again.
4. Upload the new template to the Zabbix server.

2526

https://www.zabbix.com/documentation/current/manual/concepts/agent

Additional Supplied Programs

5. Rename the host for which you want to retain the collected data and leave the old template
linked to that host.

6. Create a new host for the same system and link the new template to it.
7. Restart mamonsu. It will collect data for the new host. The old host will no longer be used, but

the data collected will be available.
• If you do not need to retain the collected data, do the following:

1. Install the new version of mamonsu.
2. Generate a new template for the Zabbix server.
3. If you performed a bootstrap using the previous version of mamonsu, run the bootstrap

command again.
4. Upload the new template to the Zabbix server.
5. In the settings of the Zabbix host, link the new template to the host instead of the old one.
6. Restart mamonsu. It will start collecting data. All the data collected earlier will be lost.

2527

Additional Supplied Programs

pgbouncer
pgbouncer — a Postgres Pro connection pooler

Synopsis
On Linux systems:

pgbouncer [-d] [-R] [-v] [-u user] pgbouncer.ini

pgbouncer -V | -h

On Windows:

pgbouncer [-v] [-u user] pgbouncer.ini

pgbouncer -V | -h

To use pgbouncer as a Windows service:

pgbouncer.exe --regservice pgbouncer.ini

pgbouncer.exe --unregservice pgbouncer.ini

Description
pgbouncer is a Postgres Pro connection pooler. Any target application can be connected to pgbouncer
as if it were a Postgres Pro server, and pgbouncer will create a connection to the actual server, or it will
reuse one of its existing connections.

The aim of pgbouncer is to lower the performance impact of opening new connections to Postgres Pro.

In order not to compromise transaction semantics for connection pooling, pgbouncer supports several
types of pooling when rotating connections:

Session pooling
Most polite method. When a client connects, a server connection will be assigned to it for the whole
duration the client stays connected. When the client disconnects, the server connection will be put
back into the pool. This is the default method.

Transaction pooling
A server connection is assigned to a client only during a transaction. When pgbouncer notices that
transaction is over, the server connection will be put back into the pool.

Statement pooling
Most aggressive method. The server connection will be put back into the pool immediately after a
query completes. Multi-statement transactions are disallowed in this mode as they would break.

The administration interface of pgbouncer consists of some new SHOW commands available when
connected to a special “virtual” database pgbouncer.

Quick Start
Basic setup and usage is as follows.

1. Create a pgbouncer.ini file. Details in the pgbouncer(5) man page. Simple example:

[databases]
template1 = host=localhost dbname=template1 auth_user=someuser

2528

Additional Supplied Programs

[pgbouncer]
listen_port = 6432
listen_addr = localhost
auth_type = md5
auth_file = userlist.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser

2. Create a userlist.txt file that contains the users allowed in:

"someuser" "same_password_as_in_server"

3. Launch pgbouncer:

$ pgbouncer -d pgbouncer.ini

Note
The above command does not work on Windows systems. Instead, pgbouncer must be launched
as a service that first needs to be registered, as follows:
pgbouncer --regservice

4. Have your application (or the psql client) connect to pgbouncer instead of directly to the Postgres
Pro server:

$ psql -p 6432 -U someuser template1

5. Manage pgbouncer by connecting to the special administration database pgbouncer and issuing SHOW
HELP; to begin:

$ psql -p 6432 -U someuser pgbouncer
pgbouncer=# SHOW HELP;
NOTICE: Console usage
DETAIL:
 SHOW [HELP|CONFIG|DATABASES|FDS|POOLS|CLIENTS|SERVERS|SOCKETS|LISTS|VERSION|...]
 SET key = arg
 RELOAD
 PAUSE
 SUSPEND
 RESUME
 SHUTDOWN
 [...]

6. If you made changes to the pgbouncer.ini file, you can reload it with:

pgbouncer=# RELOAD;

Options
-d, --daemon

Run in the background. Without it, the process will run in the foreground. In daemon mode, setting
pidfile as well as logfile or syslog is required. No log messages will be written to stderr after
going into the background.

Note
Does not work on Windows, pgbouncer needs to run as service there.

2529

Additional Supplied Programs

-R, --reboot

Do an online restart. That means connecting to the running process, loading the open sockets from
it, and then using them. If there is no active process, boot normally.

Note
Works only if OS supports Unix sockets and the unix_socket_dir is not disabled in
configuration. Does not work on Windows. Does not work with TLS connections, they are
dropped.

-u user, --user user

Switch to the given user on startup.

-v, --verbose

Increase verbosity. Can be used multiple times.

-q, --quiet

Be quiet: do not log to stderr. This does not affect logging verbosity, only that stderr is not to be
used. For use in init.d scripts.

-V, --version

Show version.

-h, --help

Show short help.

--regservice

Win32: Register to run as Windows service. The service_name configuration parameter value is used
as the name to register under.

--unregservice

Win32: Unregister Windows service.

Admin Console
The console is available by connecting as normal to the database pgbouncer:

$ psql -p 6432 pgbouncer

Only users listed in the configuration parameters admin_users or stats_users are allowed to log in to
the console. (Except when auth_mode=any, then any user is allowed in as a stats_user.)

Additionally, the user name pgbouncer is allowed to log in without password, if the login comes via the
Unix socket and the client has same Unix user uid as the running process.

Show Commands

The SHOW commands output information. Each command is described below.

SHOW STATS

Shows statistics. In this and related commands, the total figures are since process start, the averages
are updated every stats_period.

database

Statistics are presented per database.

2530

Additional Supplied Programs

total_xact_count

Total number of SQL transactions pooled by pgbouncer.

total_query_count

Total number of SQL queries pooled by pgbouncer.

total_received

Total volume in bytes of network traffic received by pgbouncer.

total_sent

Total volume in bytes of network traffic sent by pgbouncer.

total_xact_time

Total number of microseconds spent by pgbouncer when connected to Postgres Pro in a transaction,
either idle in transaction or executing queries.

total_query_time

Total number of microseconds spent by pgbouncer when actively connected to Postgres Pro,
executing queries.

total_wait_time

Time spent by clients waiting for a server, in microseconds.

avg_xact_count

Average transactions per second in last stat period.

avg_query_count

Average queries per second in last stat period.

avg_recv

Average received (from clients) bytes per second.

avg_sent

Average sent (to clients) bytes per second.

avg_xact_time

Average transaction duration, in microseconds.

avg_query_time

Average query duration, in microseconds.

avg_wait_time

Time spent by clients waiting for a server, in microseconds (average per second).

SHOW STATS_TOTALS

Subset of SHOW STATS showing the total values (total_).

SHOW STATS_AVERAGES

Subset of SHOW STATS showing the average values (avg_).

SHOW TOTALS

Like SHOW STATS but aggregated across all databases.

2531

Additional Supplied Programs

SHOW SERVERS

type

S, for server.

user

User name pgbouncer uses to connect to server.

database

Database name.

state

State of the pgbouncer server connection, one of active, idle, used, tested, or new.

addr

IP address of Postgres Pro server.

port

Port of Postgres Pro server.

local_addr

Connection start address on local machine.

local_port

Connection start port on local machine.

connect_time

When the connection was made.

request_time

When last request was issued.

wait

Current waiting time in seconds.

wait_us

Microsecond part of the current waiting time.

close_needed

1 if the connection will be closed as soon as possible, because a configuration file reload or DNS
update changed the connection information or RECONNECT was issued.

ptr

Address of internal object for this connection. Used as unique ID.

link

Address of client connection the server is paired with.

remote_pid

PID of backend server process. In case connection is made over Unix socket and OS supports getting
process ID info, its OS PID. Otherwise it's extracted from cancel packet the server sent, which should

2532

Additional Supplied Programs

be the PID in case the server is Postgres Pro, but it's a random number in case the server is another
pgbouncer.

tls

A string with TLS connection information, or empty if not using TLS.

SHOW CLIENTS

type

C, for client.

user

Client connected user.

database

Database name.

state

State of the client connection, one of active or waiting.

addr

IP address of the client.

port

Source port of the client.

local_addr

Connection end address on local machine.

local_port

Connection end port on local machine.

connect_time

Timestamp of connect time.

request_time

Timestamp of latest client request.

wait

Current waiting time in seconds.

wait_us

Microsecond part of the current waiting time.

close_needed

Not used for clients.

ptr

Address of internal object for this connection. Used as unique ID.

link

Address of server connection the client is paired with.

2533

Additional Supplied Programs

remote_pid

Process ID, in case client connects over Unix socket and OS supports getting it.

tls

A string with TLS connection information, or empty if not using TLS.

SHOW POOLS

A new pool entry is made for each couple of (database, user).

database

Database name.

user

User name.

cl_active

Client connections that are linked to server connection and can process queries.

cl_waiting

Client connections that have sent queries but have not yet got a server connection.

cl_cancel_req

Client connections that have not forwarded query cancellations to the server yet.

sv_active

Server connections that are linked to a client.

sv_idle

Server connections that are unused and immediately usable for client queries.

sv_used

Server connections that have been idle for more than server_check_delay, so they need
server_check_query to run on them before they can be used again.

sv_tested

Server connections that are currently running either server_reset_query or server_check_query.

sv_login

Server connections currently in the process of logging in.

maxwait

How long the first (oldest) client in the queue has waited, in seconds. If this starts increasing, then
the current pool of servers does not handle requests quickly enough. The reason may be either an
overloaded server or just too small of a pool_size setting.

maxwait_us

Microsecond part of the maximum waiting time.

pool_mode

The pooling mode in use.

SHOW LISTS

Show following internal information, in columns (not rows):

2534

Additional Supplied Programs

databases

Count of databases.

users

Count of users.

pools

Count of pools.

free_clients

Count of free clients.

used_clients

Count of used clients.

login_clients

Count of clients in login state.

free_servers

Count of free servers.

used_servers

Count of used servers.

dns_names

Count of DNS names in the cache.

dns_zones

Count of DNS zones in the cache.

dns_queries

Count of in-flight DNS queries.

dns_pending

Not used.

SHOW USERS

name

The user name.

pool_mode

The user's override pool_mode, or NULL if the default will be used instead.

SHOW DATABASES

name

Name of configured database entry.

host

Host pgbouncer connects to.

port

Port pgbouncer connects to.

2535

Additional Supplied Programs

database

Actual database name pgbouncer connects to.

force_user

When the user is part of the connection string, the connection between pgbouncer and Postgres Pro
is forced to the given user, whatever the client user.

pool_size

Maximum number of server connections.

min_pool_size

Minimum number of server connections.

reserve_pool

Maximum number of additional connections for this database.

pool_mode

The database's override pool_mode, or NULL if the default will be used instead.

max_connections

Maximum number of allowed connections for this database, as set by max_db_connections, either
globally or per database.

current_connections

Current number of connections for this database.

paused

1 if this database is currently paused, else 0.

disabled

1 if this database is currently disabled, else 0.

SHOW FDS

Internal command — shows list of file descriptors (FDs) in use with internal state attached to them.

When the connected user has the user name pgbouncer, connects through the Unix socket and has the
same UID as the running process, the actual FDs are passed over the connection. This mechanism is
used to do an online restart.

Note
This does not work on Windows.

This command also blocks the internal event loop, so it should not be used while pgbouncer is in use.

fd

File descriptor numeric value.

task

One of pooler, client or server.

user

User of the connection using the FD.

2536

Additional Supplied Programs

database

Database of the connection using the FD.

addr

IP address of the connection using the FD, unix if a Unix socket is used.

port

Port used by the connection using the FD.

cancel

Cancel key for this connection.

link

File descriptor for corresponding server/client. NULL if idle.

SHOW SOCKETS, SHOW ACTIVE_SOCKETS

Shows low-level information about sockets or only active sockets. This includes the information shown
under SHOW CLIENTS and SHOW SERVERS as well as other more low-level information.

SHOW CONFIG

Show the current configuration settings, one per row, with the following columns:

key

Configuration variable name.

value

Configuration value.

default

Configuration default value.

changeable

Either yes or no, shows if the variable can be changed while running. If no, the variable can be
changed only at boot-time. Use SET to change a variable at run time.

SHOW MEM

Shows low-level information about the current sizes of various internal memory allocations. The
information presented is subject to change.

SHOW DNS_HOSTS

Show host names in DNS cache.

hostname

Host name.

ttl

How many seconds until next lookup.

addrs

Comma separated list of addresses.

SHOW DNS_ZONES

Show DNS zones in cache.

2537

Additional Supplied Programs

zonename

Zone name.

serial

Current serial.

count

Host names belonging to this zone.

SHOW VERSION

Show the pgbouncer version string.

Process Controlling Commands

PAUSE [db]

pgbouncer tries to disconnect from all servers, first waiting for all queries to complete. The command
will not return before all queries are finished. To be used at the time of database restart.

If database name is given, only that database will be paused.

New client connections to a paused database will wait until RESUME is called.

DISABLE db

Reject all new client connections on the given database.

ENABLE db

Allow new client connections after a previous DISABLE command.

RECONNECT db

Close each open server connection for the given database, or all databases, after it is released (according
to the pooling mode), even if its lifetime is not up yet. New server connections can be made immediately
and will connect as necessary according to the pool size settings.

This command is useful when the server connection setup has changed, for example to perform a gradual
switchover to a new server. It is not necessary to run this command when the connection string in
pgbouncer.ini has been changed and reloaded (see RELOAD) or when DNS resolution has changed,
because then the equivalent of this command will be run automatically. This command is only necessary
if something downstream of pgbouncer routes the connections.

After this command is run, there could be an extended period where some server connections go to
an old destination and some server connections go to a new destination. This is likely only sensible
when switching read-only traffic between read-only replicas, or when switching between nodes of
a multimaster replication setup. If all connections need to be switched at the same time, PAUSE is
recommended instead. To close server connections without waiting (for example, in emergency failover
rather than gradual switchover scenarios), also consider KILL.

KILL db

Immediately drop all client and server connections on given database.

New client connections to a killed database will wait until RESUME is called.

SUSPEND

All socket buffers are flushed and pgbouncer stops listening for data on them. The command will not
return before all buffers are empty. To be used at the time of pgbouncer online reboot.

New client connections to a suspended database will wait until RESUME is called.

2538

Additional Supplied Programs

RESUME [db]

Resume work from previous KILL, PAUSE, or SUSPEND command.

SHUTDOWN

The pgbouncer process will exit.

RELOAD

The pgbouncer process will reload its configuration file and update changeable settings.

PgBouncer notices when a configuration file reload changes the connection parameters of a database
definition. An existing server connection to the old destination will be closed when the server connection
is next released (according to the pooling mode), and new server connections will immediately use the
updated connection parameters.

WAIT_CLOSE [db]

Wait until all server connections, either of the specified database or of all databases, have cleared the
close_needed state (see the section called “SHOW SERVERS”). This can be called after a RECONNECT
or RELOAD to wait until the respective configuration change has been fully activated, for example in
switchover scripts.

Other Commands

SET key = arg

Changes a configuration setting (see also the section called “SHOW CONFIG”). For example:

SET log_connections = 1;
SET server_check_query = 'select 2';

(Note that this command is run on the pgbouncer admin console and sets pgbouncer settings. A SET
command run on another database will be passed to the Postgres Pro backend like any other SQL
command.)

Signals

SIGHUP

Reload config. Same as issuing the command RELOAD on the console.

SIGINT

Safe shutdown. Same as issuing PAUSE and SHUTDOWN on the console.

SIGTERM

Immediate shutdown. Same as issuing SHUTDOWN on the console.

SIGUSR1

Same as issuing PAUSE on the console.

SIGUSR2

Same as issuing RESUME on the console.

Libevent Settings

From the libevent documentation:

It is possible to disable support for epoll, kqueue, devpoll, poll, or select by setting the
environment variable EVENT_NOEPOLL, EVENT_NOKQUEUE, EVENT_NODEVPOLL, EVENT_NOPOLL
or EVENT_NOSELECT, respectively.

2539

Additional Supplied Programs

By setting the environment variable EVENT_SHOW_METHOD, libevent displays the kernel
notification method that it uses.

pgbouncer.ini Configuration File

The configuration file is in the .ini format. Section names are between [and]. Lines starting with ;
or # are taken as comments and ignored. The characters ; and # are not recognized as special when
they appear later in the line.

Generic Settings

logfile

Specifies the log file. For daemonization (-d), either this or syslog has to be set. The log file is kept
open, so after rotation kill -HUP or on console RELOAD; should be done. On Windows, the service
must be stopped and started.

Note that setting logfile does not by itself turn off logging to stderr. Use the command-line option
-q or -d for that.

Default: not set

pidfile

Specifies the PID file. Without pidfile set, daemonization (-d) is not allowed.

Default: not set

listen_addr

Specifies a list of addresses where to listen for TCP connections. You may also use * meaning "listen
on all addresses". When not set, only Unix socket connections are accepted.

Addresses can be specified numerically (IPv4/IPv6) or by name.

Default: not set

listen_port

Which port to listen on. Applies to both TCP and Unix sockets.

Default: 6432

unix_socket_dir

Specifies location for Unix sockets. Applies to both listening socket and server connections. If set to
an empty string, Unix sockets are disabled. A value that starts with @ specifies that a Unix socket in
the abstract namespace should be created (currently supported on Linux and Windows).

For online reboot (-R) to work, a Unix socket needs to be configured, and it needs to be in the file-
system namespace.

Default: /tmp (empty on Windows)

unix_socket_mode

File system mode for Unix socket. Ignored for sockets in the abstract namespace. Not supported
on Windows.

Default: 0777

unix_socket_group

Group name to use for Unix socket. Ignored for sockets in the abstract namespace. Not supported
on Windows.

2540

Additional Supplied Programs

Default: not set

user

If set, specifies the Unix user to change to after startup. Works only if pgbouncer is started as root
or if it's already running as given user.

Not supported on Windows.

Default: not set

auth_file

The name of the file to load user names and passwords from. See the section called “Authentication
File Format” for details.

Default: not set

auth_hba_file

HBA configuration file to use when auth_type is hba.

Default: not set

auth_type

How to authenticate users.

pam

Pluggable Authentication Modules (PAM) method is used to authenticate users, auth_file is
ignored. This method is not compatible with databases using the auth_user option. The service
name reported to PAM is pgbouncer. PAM is not supported in the HBA configuration file.

hba

The actual authentication type is loaded from auth_hba_file. This allows different authentication
methods for different access paths, for example: connection over Unix socket uses peer
authentication method, connections over TCP must use TLS.

cert

The client must connect over TLS connection with a valid client certificate. The user name is then
taken from the CommonName field from the certificate.

md5

Use MD5-based password check. This is the default authentication method. auth_file may
contain both MD5-encrypted and plain-text passwords. If md5 is configured and a user has a
SCRAM secret, then SCRAM authentication is used automatically instead.

scram-sha-256

Use password check with SCRAM-SHA-256. auth_file has to contain SCRAM secrets or plain-
text passwords. Note that SCRAM secrets can only be used for verifying the password of a client
but not for logging into a server. To be able to use SCRAM on server connections, use plain-text
passwords.

plain

The clear-text password is sent over the wire. Deprecated.

trust

No authentication is done. The user name must still exist in auth_file.

2541

Additional Supplied Programs

any

Like the trust method, but the user name given is ignored. Requires that all databases are
configured to log in as a specific user. Additionally, the console database allows any user to log
in as admin.

auth_query

Query to load user's password from database.

Direct access to pg_shadow requires admin rights. It's preferable to use a non-superuser that calls
a SECURITY DEFINER function instead.

Note that the query is run inside the target database. So if a function is used, it needs to be installed
into each database.

Default: SELECT usename, passwd FROM pg_shadow WHERE usename=$1

auth_user

If auth_user is set, then any user not specified in auth_file will be queried through the auth_query
query from pg_shadow in the database, using auth_user. The password of auth_user will be taken
from auth_file. (If auth_user does not require a password, then it does not need to be defined in
auth_file.)

Direct access to pg_shadow requires admin rights. It's preferable to use a non-superuser that calls
a SECURITY DEFINER function instead.

Default: not set

pool_mode

Specifies when a server connection can be reused by other clients.

session

Server is released back to pool after client disconnects. Default.

transaction

Server is released back to pool after transaction finishes.

statement

Server is released back to pool after query finishes. Transactions spanning multiple statements
are disallowed in this mode.

max_client_conn

Maximum number of client connections allowed. When increased, the file descriptor limits
should also be increased. Note that the actual number of file descriptors used is more than
max_client_conn. If each user connects under its own username to the server, the theoretical
maximum used is:

max_client_conn + (max pool_size * total databases * total users)

If a database user is specified in the connection string (all users connect under the same user name),
the theoretical maximum is:

max_client_conn + (max pool_size * total databases)

The theoretical maximum should be never reached, unless somebody deliberately crafts a special
load for it. Still, it means you should set the number of file descriptors to a safely high number.

Search for ulimit in your favorite shell man page. Note: ulimit does not apply in a Windows
environment.

2542

Additional Supplied Programs

Default: 100

default_pool_size

How many server connections to allow per user/database pair. Can be overridden in the per-database
configuration.

Default: 20

min_pool_size

Add more server connections to pool if below this number. Improves behavior when usual load
suddenly comes back after a period of total inactivity. The value is effectively capped at the pool size.

Default: 0 (disabled)

reserve_pool_size

How many additional connections to allow to a pool (see reserve_pool_timeout). The 0 value
disables this parameter.

Default: 0 (disabled)

reserve_pool_timeout

If a client has not been serviced in this many seconds, pgbouncer enables use of additional
connections from the reserve pool. The 0 value disables this parameter.

Default: 5.0

max_db_connections

Do not allow more than this many server connections per database (regardless of user). This
considers the pgbouncer database that the client has connected to, not the Postgres Pro database of
the outgoing connection. This can also be set per database in the [databases] section.

Note that when you hit the limit, closing a client connection to one pool will not immediately allow
a server connection to be established for another pool, because the server connection for the first
pool is still open. Once the server connection closes (due to idle timeout), a new server connection
will immediately be opened for the waiting pool.

Default: 0 (unlimited)

max_user_connections

Do not allow more than this many server connections per user (regardless of database). This
considers the pgbouncer user that is associated with a pool, which is either the user specified for
the server connection or in absence of that the user the client has connected as. This can also be
set per user in the [users] section.

Note that when you hit the limit, closing a client connection to one pool will not immediately allow
a server connection to be established for another pool, because the server connection for the first
pool is still open. Once the server connection closes (due to idle timeout), a new server connection
will immediately be opened for the waiting pool.

Default: 0 (unlimited)

server_round_robin

By default, pgbouncer reuses server connections in LIFO (last-in, first-out) manner, so that few
connections get the most load. This gives best performance if you have a single server serving a
database. But if there is TCP round-robin behind a database IP address, then it is better if pgbouncer
also uses connections in that manner, thus achieving uniform load.

2543

Additional Supplied Programs

Default: 0

ignore_startup_parameters

By default, pgbouncer allows only parameters it can keep track of in startup packets:
client_encoding, datestyle, timezone and standard_conforming_strings.

All other parameters will raise an error. To allow other parameters, they can be specified here, so
that pgbouncer knows that they are handled by the admin and it can ignore them.

Default: empty

disable_pqexec

Disable Simple Query protocol (PQexec). Unlike Extended Query protocol, Simple Query allows
multiple queries in one packet, which allows some classes of SQL-injection attacks. Disabling it can
improve security. Obviously this means only clients that exclusively use the Extended Query protocol
will stay working.

Default: 0

application_name_add_host

Add the client host address and port to the application name setting set on connection start. This
helps in identifying the source of bad queries, etc. This logic applies only on start of connection. If
application_name is later changed with SET, pgbouncer does not change it again.

Default: 0

conffile

Show location of current configuration file. Changing it will make pgbouncer use another
configuration file for next RELOAD / SIGHUP.

Default: file from command line

service_name

Used on win32 service registration.

Default: pgbouncer

job_name

Alias for service_name.

stats_period

Sets how often the averages shown in various SHOW commands are updated and how often aggregated
statistics are written to the log (but see log_stats). [seconds]

Default: 60

Log Settings

syslog

Toggles syslog on/off. On Windows, the event log is used instead.

Default: 0

syslog_ident

Under what name to send logs to syslog.

Default: pgbouncer (program name)

2544

Additional Supplied Programs

syslog_facility

Under what facility to send logs to syslog. Possibilities: auth, authpriv, daemon, user, local0-7.

Default: daemon

log_connections

Log successful logins.

Default: 1

log_disconnections

Log disconnections with reasons.

Default: 1

log_pooler_errors

Log error messages the pooler sends to clients.

Default: 1

log_stats

Write aggregated statistics into the log, every stats_period. This can be disabled if external
monitoring tools are used to grab the same data from SHOW commands.

Default: 1

verbose

Increase verbosity. Mirrors the -v switch on the command line. Using -v -v on the command line
is the same as verbose=2.

Default: 0

Console Access Control

admin_users

Comma-separated list of database users that are allowed to connect and run all commands on the
console. Ignored when auth_type is any, in which case any user name is allowed in as admin.

Default: empty

stats_users

Comma-separated list of database users that are allowed to connect and run read-only queries on
the console. That means all SHOW commands except SHOW FDS.

Default: empty

Connection Sanity Checks, Timeouts

server_reset_query

Query sent to server on connection release, before making it available to other clients. At that
moment no transaction is in progress so it should not include ABORT or ROLLBACK.

The query is supposed to clean any changes made to the database session so that the next client gets
the connection in a well-defined state. The default is DISCARD ALL which cleans everything, but that
leaves the next client no pre-cached state. It can be made lighter, e.g. DEALLOCATE ALL to just drop
prepared statements, if the application does not break when some state is kept around.

2545

Additional Supplied Programs

When transaction pooling is used, the server_reset_query is not used, as clients must not use any
session-based features as each transaction ends up in a different connection and thus gets a different
session state.

Default: DISCARD ALL

server_reset_query_always

Whether server_reset_query should be run in all pooling modes. When this setting is off (default),
the server_reset_query will be run only in pools that are in sessions-pooling mode. Connections in
transaction-pooling mode should not have any need for a reset query.

This setting is for working around broken setups that run applications that use session features over
a transaction-pooled pgbouncer. It changes non-deterministic breakage to deterministic breakage:
clients always lose their state after each transaction.

Default: 0

server_check_delay

How long to keep released connections available for immediate re-use, without running sanity-check
queries on it. If 0 then the query is always run.

Default: 30.0

server_check_query

Simple do-nothing query to check if the server connection is alive.

If an empty string, then sanity checking is disabled.

Default: SELECT 1;

server_fast_close

Disconnect a server in session pooling mode immediately or after the end of the current transaction
if it is in close_needed mode (set by RECONNECT, RELOAD that changes connection settings, or DNS
change), rather than waiting for the session end. In statement or transaction pooling mode, this has
no effect since that is the default behavior there.

If because of this setting a server connection is closed before the end of the client session, the client
connection is also closed. This ensures that the client notices that the session has been interrupted.

This setting makes connection configuration changes take effect sooner if session pooling and long-
running sessions are used. The downside is that client sessions are liable to be interrupted by a
configuration change, so client applications will need logic to reconnect and reestablish session state.
But note that no transactions will be lost, because running transactions are not interrupted, only
idle sessions.

Default: 0

server_lifetime

The pooler will close an unused server connection that has been connected longer than this. Setting
it to 0 means the connection is to be used only once, then closed. [seconds]

Default: 3600.0

server_idle_timeout

If a server connection has been idle more than this many seconds it will be dropped. If 0 then timeout
is disabled. [seconds]

Default: 600.0

2546

Additional Supplied Programs

server_connect_timeout

If connection and login won't finish in this amount of time, the connection will be closed. [seconds]

Default: 15.0

server_login_retry

If login failed, because of failure from connect() or authentication that pooler waits this much before
retrying to connect. [seconds]

Default: 15.0

client_login_timeout

If a client connects but does not manage to log in in this amount of time, it will be disconnected.
Mainly needed to avoid dead connections stalling SUSPEND and thus online restart. [seconds]

Default: 60.0

autodb_idle_timeout

If the automatically created (via "*") database pools have been unused this many seconds, they are
freed. The negative aspect of that is that their statistics are also forgotten. [seconds]

Default: 3600.0

dns_max_ttl

How long the DNS lookups can be cached. If a DNS lookup returns several answers, pgbouncer will
robin-between them in the meantime. The actual DNS TTL is ignored. [seconds]

Default: 15.0

dns_nxdomain_ttl

How long error and NXDOMAIN DNS lookups can be cached. [seconds]

Default: 15.0

dns_zone_check_period

Period to check if a zone serial has changed.

pgbouncer can collect DNS zones from host names (everything after first dot) and then periodically
check if the zone serial changes. If it notices changes, all host names under that zone are looked up
again. If any host IP changes, it's connections are invalidated.

Default: 0.0 (disabled)

resolv_conf

The location of a custom resolv.conf file. This is to allow specifying custom DNS servers and
perhaps other name resolution options, independent of the global operating system configuration.

The parsing of the file is done by the DNS backend library, not pgbouncer, so see the library's
documentation for details on allowed syntax and directives.

Default: empty (use operating system defaults)

TLS Settings

client_tls_sslmode

TLS mode to use for connections from clients. TLS connections are disabled by default. When
enabled, client_tls_key_file and client_tls_cert_file must be also configured to set up the
key and certificate pgbouncer uses to accept client connections.

2547

Additional Supplied Programs

disable

Plain TCP. If client requests TLS, it's ignored. Default.

allow

If client requests TLS, it is used. If not, plain TCP is used. If the client presents a client certificate,
it is not validated.

prefer

Same as allow.

require

The client must use TLS. If not, the client connection is rejected. If the client presents a client
certificate, it is not validated.

verify-ca

Client must use TLS with valid client certificate.

verify-full

Same as verify-ca.

client_tls_key_file

Private key for pgbouncer to accept client connections.

Default: not set

client_tls_cert_file

Certificate for private key. Clients can validate it.

Default: not set

client_tls_ca_file

Root certificate file to validate client certificates.

Default: not set

client_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3.
Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all).

Default: secure

client_tls_ciphers

Allowed TLS ciphers, in OpenSSL syntax. Shortcuts: default/secure, compat/legacy, insecure/all,
normal, fast.

Only connections using TLS version 1.2 and lower are affected. There is currently no setting that
controls the cipher choices used by TLS version 1.3 connections.

Default: fast

client_tls_ecdhcurve

Elliptic Curve name to use for ECDH key exchanges.

Allowed values: none (DH is disabled), auto (256-bit ECDH), curve name.

2548

Additional Supplied Programs

Default: auto

client_tls_dheparams

DHE key exchange type.

Allowed values: none (DH is disabled), auto (2048-bit DH), legacy (1024-bit DH).

Default: auto

server_tls_sslmode

TLS mode to use for connections to Postgres Pro servers. TLS connections are disabled by default.

disable

Plain TCP. TLS is not even requested from the server. Default.

prefer

TLS connection is always requested first from Postgres Pro, when refused connection will be
established over plain TCP. Server certificate is not validated.

require

Connection must go over TLS. If server rejects it, plain TCP is not attempted. Server certificate
is not validated.

verify-ca

Connection must go over TLS and server certificate must be valid according to
server_tls_ca_file. Server host name is not checked against certificate.

verify-full

Connection must go over TLS and server certificate must be valid according to
server_tls_ca_file. Server host name must match certificate information.

server_tls_ca_file

Root certificate file to validate Postgres Pro server certificates.

Default: not set

server_tls_key_file

Private key for pgbouncer to authenticate against Postgres Pro server.

Default: not set

server_tls_cert_file

Certificate for private key. Postgres Pro server can validate it.

Default: not set

server_tls_protocols

Which TLS protocol versions are allowed. Allowed values: tlsv1.0, tlsv1.1, tlsv1.2, tlsv1.3.
Shortcuts: all (tlsv1.0,tlsv1.1,tlsv1.2,tlsv1.3), secure (tlsv1.2,tlsv1.3), legacy (all).

Default: secure

server_tls_ciphers

Allowed TLS ciphers, in OpenSSL syntax. Shortcuts: default/secure, compat/legacy, insecure/all,
normal, fast.

2549

Additional Supplied Programs

Only connections using TLS version 1.2 and lower are affected. There is currently no setting that
controls the cipher choices used by TLS version 1.3 connections.

Default: fast

Dangerous Timeouts

Setting the following timeouts can cause unexpected errors.

query_timeout

Queries running longer than that are canceled. This should be used only with slightly smaller server-
side statement_timeout, to apply only for network problems. [seconds]

Default: 0.0 (disabled)

query_wait_timeout

Maximum time queries are allowed to spend waiting for execution. If the query is not assigned to
a server during that time, the client is disconnected. This is used to prevent unresponsive servers
from grabbing up connections. [seconds]

It also helps when the server is down or database rejects connections for any reason. If this is
disabled, clients will be queued indefinitely.

Default: 120

client_idle_timeout

Client connections idling longer than this many seconds are closed. This should be larger than the
client-side connection lifetime settings, and only used for network problems. [seconds]

Default: 0.0 (disabled)

idle_transaction_timeout

If a client has been in the “idle in transaction” state longer, it will be disconnected. [seconds]

Default: 0.0 (disabled)

suspend_timeout

How many seconds to wait for buffer flush during SUSPEND or reboot (-R). A connection is dropped
if the flush does not succeed.

Default: 10

Low-Level Network Settings

pkt_buf

Internal buffer size for packets. Affects size of TCP packets sent and general memory usage. Actual
libpq packets can be larger than this, so no need to set it large.

Default: 4096

max_packet_size

Maximum size for Postgres Pro packets that pgbouncer allows through. One packet is either one
query or one result set row. Full result set can be larger.

Default: 2147483647

listen_backlog

The value of the backlog argument for listen(). Determines how many new unanswered connection
attempts are kept in queue. When the queue is full, further new connections are dropped.

2550

Additional Supplied Programs

Default: 128

sbuf_loopcnt

How many times to process data on one connection, before proceeding. Without this limit, one
connection with a big result set can stall pgbouncer for a long time. One loop processes one pkt_buf
amount of data. 0 means no limit.

Default: 5

so_reuseport

Specifies whether to set the socket option SO_REUSEPORT on TCP listening sockets. On some operating
systems, this allows running multiple pgbouncer instances on the same host listening on the same
port and having the kernel distribute the connections automatically. This option is a way to get
pgbouncer to use more CPU cores. (pgbouncer is single-threaded and uses one CPU core per
instance.)

This setting has the desired effect on Linux. On systems that don't support the socket option at all,
turning this setting on will result in an error.

Each pgbouncer instance on the same host needs different settings for at least unix_socket_dir
and pidfile, as well as logfile if that is used. Also note that if you make use of this option, you
can no longer connect to a specific pgbouncer instance via TCP/IP, which might have implications
for monitoring and metrics collection.

Default: 0

tcp_defer_accept

For details on this and other TCP options, please see man 7 tcp.

Default: 45 on Linux, otherwise 0

tcp_socket_buffer

Default: not set

tcp_keepalive

Turns on basic keepalive with OS defaults.

On Linux, the system defaults are tcp_keepidle=7200, tcp_keepintvl=75, tcp_keepcnt=9. They
are probably similar on other operating systems.

Default: 1

tcp_keepcnt

Default: not set

tcp_keepidle

Default: not set

tcp_keepintvl

Default: not set

tcp_user_timeout

Sets the TCP_USER_TIMEOUT socket option. This specifies the maximum amount of time in milliseconds
that transmitted data may remain unacknowledged before the TCP connection is forcibly closed. If
set to 0, then operating system's default is used.

2551

Additional Supplied Programs

This is currently only supported on Linux.

Default: 0

Section [databases]

This contains key=value pairs where key will be taken as a database name and value as a libpq connect-
string style list of key=value pairs. As actual libpq is not used, not all features from libpq can be used
(service=, .pgpass).

The database name can contain characters _0-9A-Za-z without quoting. Names that contain other chars
need to be quoted with standard SQL ident quoting: double quotes where "" is taken as single quote.

The database name pgbouncer is reserved for the admin console and cannot be used as a key here.

* acts as fallback database: if the exact name does not exist, its value is taken as connection string for
the requested database. For example, if there is the following entry (and no other overriding entries):

* = host=foo

In this case, a connection to pgbouncer specifying a database bar will effectively behave as if the
following entry exists (taking advantage of the default for dbname being the client-side database name):

bar = host=foo dbname=bar

Such automatically created database entries are cleaned up if they stay idle longer than the time
specified by the autodb_idle_timeout parameter.

dbname

Destination database name.

Default: same as client-side database name

host

Host name or IP address to connect to. Host names are resolved at connection time, the result
is cached per dns_max_ttl parameter. When a host name's resolution changes, existing server
connections are automatically closed when they are released (according to the pooling mode), and
new server connections immediately use the new resolution. If DNS returns several results, they are
used in round-robin manner.

If the value begins with /, then a Unix socket in the file-system namespace is used. If the value begins
with @, then a Unix socket in the abstract namespace is used.

Default: not set, meaning to use a Unix socket

port

Default: 5432

user

If user= is set, all connections to the destination database will be done with the specified user,
meaning that there will be only one pool for this database.

Otherwise pgbouncer logs into the destination database with the client user name, meaning that
there will be one pool per user.

password

If no password is specified here, the password from the auth_file or auth_query will be used.

auth_user

Override of the global auth_user setting, if specified.

2552

Additional Supplied Programs

pool_size

Set the maximum size of pools for this database. If not set, the default_pool_size is used.

min_pool_size

Set the minimum pool size for this database. If not set, the global min_pool_size is used.

reserve_pool

Set additional connections for this database. If not set, reserve_pool_size is used.

connect_query

Query to be executed after a connection is established, but before allowing the connection to be used
by any clients. If the query raises errors, they are logged but ignored otherwise.

pool_mode

Set the pool mode specific to this database. If not set, the default pool_mode is used.

max_db_connections

Configure a database-wide maximum (i.e. all pools within the database will not have more than this
many server connections).

client_encoding

Ask specific client_encoding from server.

datestyle

Ask specific datestyle from server.

timezone

Ask specific timezone from server.

Section [users]

This contains key=value pairs where the key will be taken as a user name and the value as a libpq
connect-string style list of key=value pairs of configuration settings specific for this user. Only a few
settings are available here.

pool_mode

Set the pool mode to be used for all connections from this user. If not set, the database or default
pool_mode is used.

max_user_connections

Configure a maximum for the user (i.e. all pools with the user will not have more than this many
server connections).

Include Directive

The pgbouncer configuration file can contain include directives, which specify another configuration
file to read and process. This allows splitting the configuration file into physically separate parts. The
include directives look like this:

%include filename

If the file name is not absolute path it is taken as relative to current working directory.

Authentication File Format

This section describes the format of the file specified by the auth_file setting. It is a text file in the
following format:

2553

Additional Supplied Programs

"username1" "password" ...
"username2" "md5abcdef012342345" ...
"username2" "SCRAM-SHA-256$iterations:salt$storedkey:serverkey"

There should be at least two fields, surrounded by double quotes. The first field is the user name and
the second is either a plain-text, a MD5-hashed password, or a SCRAM secret. pgbouncer ignores the
rest of the line. Double quotes in a field value can be escaped by writing two double quotes.

Postgres Pro MD5-hashed password format:

"md5" + md5(password + username)

So user admin with password 1234 will have MD5-hashed password
md545f2603610af569b6155c45067268c6b.

Postgres Pro SCRAM secret format:

SCRAM-SHA-256$iterations:salt$storedkey:serverkey

The passwords or secrets stored in the authentication file serve two purposes. First, they are used
to verify the passwords of incoming client connections, if a password-based authentication method is
configured. Second, they are used as the passwords for outgoing connections to the backend server, if
the backend server requires password-based authentication (unless the password is specified directly in
the database's connection string). The latter works if the password is stored in plain text or MD5-hashed.
SCRAM secrets can only be used for logging into a server if the client authentication also uses SCRAM,
the pgbouncer database definition does not specify a user name, and the SCRAM secrets are identical in
pgbouncer and the Postgres Pro server (same salt and iterations, not merely the same password). This
is due to an inherent security property of SCRAM: the stored SCRAM secret cannot by itself be used
for deriving login credentials.

The authentication file can be written by hand, but it's also useful to generate it from some other list
of users and passwords. See ./etc/mkauth.py for a sample script to generate the authentication file
from the pg_shadow system table.

Alternatively, use auth_query instead of auth_file to avoid having to maintain a separate authentication
file.

HBA File Format

The location of the HBA file is specified by the setting auth_hba_file. It is only used if auth_type is
set to hba.

The file follows the format of the Postgres Pro pg_hba.conf file described in Section 19.1.

• Supported record types: local, host, hostssl, hostnossl.
• Database field: Supports all, sameuser, @file, multiple names. Not supported: replication,

samerole, samegroup.
• User name field: Supports all, @file, multiple names. Not supported: +groupname.
• Address field: Supports IPv4, IPv6. Not supported: DNS names, domain prefixes.
• Auth-method field: Only methods supported by pgbouncer's auth_type are supported, except any

and pam, which only work globally. User name map (map=) parameter is not supported.

Example

Minimal config:

[databases]
template1 = host=localhost dbname=template1 auth_user=someuser

[pgbouncer]
pool_mode = session
listen_port = 6432

2554

Additional Supplied Programs

listen_addr = localhost
auth_type = md5
auth_file = users.txt
logfile = pgbouncer.log
pidfile = pgbouncer.pid
admin_users = someuser
stats_users = stat_collector

Database defaults:

[databases]

; foodb over Unix socket
foodb =

; redirect bardb to bazdb on localhost
bardb = host=localhost dbname=bazdb

; access to destination database will go with single user
forcedb = host=localhost port=300 user=baz password=foo client_encoding=UNICODE
 datestyle=ISO

Example of a secure function for auth_query:

CREATE OR REPLACE FUNCTION pgbouncer.user_lookup(in i_username text, out uname text,
 out phash text)
RETURNS record AS $$
BEGIN
 SELECT usename, passwd FROM pg_catalog.pg_shadow
 WHERE usename = i_username INTO uname, phash;
 RETURN;
END;
$$ LANGUAGE plpgsql SECURITY DEFINER;
REVOKE ALL ON FUNCTION pgbouncer.user_lookup(text) FROM public, pgbouncer;
GRANT EXECUTE ON FUNCTION pgbouncer.user_lookup(text) TO pgbouncer;

2555

Additional Supplied Programs

pg_filedump
pg_filedump — display formatted contents of a Postgres Pro heap, index, or control file

Synopsis
pg_filedump [option...] [file]

Description
pg_filedump is a utility to format Postgres Pro heap/index/control files into a human-readable form. You
can format/dump the files several ways, as listed in the Options section, as well as dump a straight binary.
The type of file (heap/index) can usually be determined automatically by the content of the blocks within
the file. However, to format a pg_control file you must use the -c option. The default is to format the
entire file using the block size listed in block 0 and display block relative addresses. These defaults can
be modified using run-time options. Some options may seem strange but they are there for a reason.
For example, block size. It is there because if the header of block 0 is corrupt, you need a method of
forcing a block size.

Installation
pg_filedump is provided with Postgres Pro as a separate pre-built package pg-filedump-std-13 (for the
detailed installation instructions, see Chapter 16).

Options
Defaults are: relative addressing, range of the entire file, block size as listed on block 0 in the file.

The following options are valid for heap and index files:
-a

Display absolute addresses when formatting. Block header information is always block-relative.

-b

Display binary block images within a range. The option will turn off all formatting options.

-d

Display formatted block content dump. The option will turn off all other formatting options.

-D attrlist

Decode tuples using given comma-separated list of types. The list of supported types:
bigint
bigserial
bool
char
charN — char(n)
date
float
float4
float8
int
json
macaddr
name
numeric
oid
real

2556

Additional Supplied Programs

serial
smallint
smallserial
text
time
timestamp
timetz
uuid
varchar
varcharN — varchar(n)
xid
xml
~ — ignore all attributes left in a tuple

-f

Display formatted block content dump along with interpretation.

-h

Display help.

-i

Display interpreted item details.

-k

Verify block checksums.

-o

Do not dump old values.

-R startblock [endblock]

Display specific block ranges within the file. Blocks are indexed from 0. startblock: block to start
at. endblock: block to end at. A startblock without an endblock will format a single block.

-s segsize

Force segment size to segsize.

-t

Dump TOAST files.

-v

Output additional information about TOAST relations.

-n segnumber

Force segment number to segnumber.

-S blocksize

Force block size to blocksize.

-x

Force interpreted formatting of block items as index items.

-y

Force interpreted formatting of block items as heap items.

2557

Additional Supplied Programs

The following options are valid for control files:

-c

Interpret the file listed as a control file.

-f

Display formatted content dump along with interpretation.

-S blocksize

Force block size to blocksize.

Additional parameters:

-m

Interpret file as pg_filenode.map file and print contents. All other options will be ignored.

In most cases, it is recommended to use the -i and -f options to get the most useful dump output.

Author
Patrick Macdonald <patrickm@redhat.com>

2558

Additional Supplied Programs

pgpro_controldata
pgpro_controldata — display control information of a PostgreSQL/Postgres Pro database cluster and
compatibility information for a cluster and/or server

Synopsis
pgpro_controldata [option...]

Description
pgpro_controldata prints control information, such as the catalog version, initialized by initdb
command of any PostgreSQL/Postgres Pro server. It also shows information about write-ahead logging
and checkpoint processing. This information is cluster-wide and not specific to any database.

pgpro_controldata also helps to check compatibility between PostgreSQL/Postgres Pro database
servers and clusters. It can print server or cluster parameters that can affect the compatibility and check
whether a cluster and server are compatible by comparing those parameters.

Options
pgpro_controldata accepts the following command-line arguments. If no arguments are specified,
pgpro_controldata just prints the control information like pg_controldata does. Note that compatibility-
related command-line arguments -P and -S specified together work the same way as -C.

General-Purpose

-B
--bindir

Specifies the PostgreSQL/Postgres Pro executable directory, needed to get server compatibility
parameters.

-D datadir
--pgdata=datadir

Specifies the file system location of the database configuration files. If this option is omitted, the
environment variable PGDATA is used.

-V
--version

Print the pgpro_controldata version, then exit.

-?
--help

Show help about pgpro_controldata command-line arguments, then exit.

Compatibility-Related

-C
--compatibility-check

Display all parameters that can affect compatibility between the specified server and cluster and
check whether they are compatible.

Use the -D option or the environment variable PGDATA to provide the path to the data directory, where
read access is required.

If the -B option is omitted, the current server is assumed.

2559

Additional Supplied Programs

The cluster data and the server must have the same byte order and architecture type for this option
to work correctly.

-P
--cluster-compatibility-params

Display all parameters of the specified cluster that can affect the compatibility.

Use the -D option or the environment variable PGDATA to provide the path to the data directory, where
read access is required.

The cluster data and the server must have the same byte order and architecture type for this option
to work correctly.

-S
--server-compatibility-params

Display all parameters of the specified or current server that can affect the compatibility.

If the -B option is omitted, the current server is assumed.

Environment
PGDATA

Default data directory location

PG_COLOR

Specifies whether to use color in diagnostic messages. Possible values are always, auto and never.

See Also
pg_controldata

2560

Additional Supplied Programs

pg_standby
pg_standby — supports the creation of a Postgres Pro warm standby server

Synopsis
pg_standby [option...] archivelocation nextwalfile walfilepath [restartwalfile]

Description
pg_standby supports creation of a “warm standby” database server. It is designed to be a production-
ready program, as well as a customizable template should you require specific modifications.

pg_standby is designed to be a waiting restore_command, which is needed to turn a standard archive
recovery into a warm standby operation. Other configuration is required as well, all of which is described
in the main server manual (see Section 25.2).

To configure a standby server to use pg_standby, put this into its postgresql.conf configuration file:
restore_command = 'pg_standby archiveDir %f %p %r'

where archiveDir is the directory from which WAL segment files should be restored.

If restartwalfile is specified, normally by using the %r macro, then all WAL files logically preceding this
file will be removed from archivelocation. This minimizes the number of files that need to be retained,
while preserving crash-restart capability. Use of this parameter is appropriate if the archivelocation is
a transient staging area for this particular standby server, but not when the archivelocation is intended
as a long-term WAL archive area.

pg_standby assumes that archivelocation is a directory readable by the server-owning user. If
restartwalfile (or -k) is specified, the archivelocation directory must be writable too.

There are two ways to fail over to a “warm standby” database server when the master server fails:
Smart Failover

In smart failover, the server is brought up after applying all WAL files available in the archive. This
results in zero data loss, even if the standby server has fallen behind, but if there is a lot of unapplied
WAL it can be a long time before the standby server becomes ready. To trigger a smart failover, create
a trigger file containing the word smart, or just create it and leave it empty.

Fast Failover
In fast failover, the server is brought up immediately. Any WAL files in the archive that have not yet
been applied will be ignored, and all transactions in those files are lost. To trigger a fast failover,
create a trigger file and write the word fast into it. pg_standby can also be configured to execute a
fast failover automatically if no new WAL file appears within a defined interval.

Options
pg_standby accepts the following command-line arguments:
-c

Use cp or copy command to restore WAL files from archive. This is the only supported behavior so
this option is useless.

-d

Print lots of debug logging output on stderr.

-k

Remove files from archivelocation so that no more than this many WAL files before the current one
are kept in the archive. Zero (the default) means not to remove any files from archivelocation. This

2561

Additional Supplied Programs

parameter will be silently ignored if restartwalfile is specified, since that specification method is
more accurate in determining the correct archive cut-off point. Use of this parameter is deprecated
as of PostgreSQL 8.3; it is safer and more efficient to specify a restartwalfile parameter. A too
small setting could result in removal of files that are still needed for a restart of the standby server,
while a too large setting wastes archive space.

-r maxretries
Set the maximum number of times to retry the copy command if it fails (default 3). After each failure,
we wait for sleeptime * num_retries so that the wait time increases progressively. So by default,
we will wait 5 secs, 10 secs, then 15 secs before reporting the failure back to the standby server.
This will be interpreted as end of recovery and the standby will come up fully as a result.

-s sleeptime
Set the number of seconds (up to 60, default 5) to sleep between tests to see if the WAL file to be
restored is available in the archive yet. The default setting is not necessarily recommended; consult
Section 25.2 for discussion.

-t triggerfile
Specify a trigger file whose presence should cause failover. It is recommended that you use a
structured file name to avoid confusion as to which server is being triggered when multiple servers
exist on the same system; for example /tmp/pgsql.trigger.5432.

-V
--version

Print the pg_standby version and exit.

-w maxwaittime
Set the maximum number of seconds to wait for the next WAL file, after which a fast failover will be
performed. A setting of zero (the default) means wait forever. The default setting is not necessarily
recommended; consult Section 25.2 for discussion.

-?
--help

Show help about pg_standby command line arguments, and exit.

Notes
pg_standby is designed to work with PostgreSQL 8.2 and later.

PostgreSQL 8.3 provides the %r macro, which is designed to let pg_standby know the last file it needs
to keep. With PostgreSQL 8.2, the -k option must be used if archive cleanup is required. This option
remains available in 8.3, but its use is deprecated.

PostgreSQL 8.4 provides the recovery_end_command option. Without this option a leftover trigger file
can be hazardous.

pg_standby is written in C and has an easy-to-modify source code, with specifically designated sections
to modify for your own needs

Examples
On Linux or Unix systems, you might use:

archive_command = 'cp %p .../archive/%f'

restore_command = 'pg_standby -d -s 2 -t /tmp/pgsql.trigger.5442 .../archive %f %p %r
 2>>standby.log'

2562

Additional Supplied Programs

recovery_end_command = 'rm -f /tmp/pgsql.trigger.5442'

where the archive directory is physically located on the standby server, so that the archive_command is
accessing it across NFS, but the files are local to the standby (enabling use of ln). This will:
• produce debugging output in standby.log
• sleep for 2 seconds between checks for next WAL file availability
• stop waiting only when a trigger file called /tmp/pgsql.trigger.5442 appears, and perform

failover according to its content
• remove the trigger file when recovery ends
• remove no-longer-needed files from the archive directory

On Windows, you might use:

archive_command = 'copy %p ...\\archive\\%f'

restore_command = 'pg_standby -d -s 5 -t C:\pgsql.trigger.5442 ...\archive %f %p %r
 2>>standby.log'

recovery_end_command = 'del C:\pgsql.trigger.5442'

Note that backslashes need to be doubled in the archive_command, but not in the restore_command or
recovery_end_command. This will:
• use the copy command to restore WAL files from archive
• produce debugging output in standby.log
• sleep for 5 seconds between checks for next WAL file availability
• stop waiting only when a trigger file called C:\pgsql.trigger.5442 appears, and perform failover

according to its content
• remove the trigger file when recovery ends
• remove no-longer-needed files from the archive directory

The copy command on Windows sets the final file size before the file is completely copied, which would
ordinarily confuse pg_standby. Therefore pg_standby waits sleeptime seconds once it sees the proper
file size. GNUWin32's cp sets the file size only after the file copy is complete.

Since the Windows example uses copy at both ends, either or both servers might be accessing the archive
directory across the network.

Author
Simon Riggs <simon@2ndquadrant.com>

See Also
pg_archivecleanup

2563

Appendix H. External Projects
Postgres Pro is a complex software project, and managing the project is difficult. We have found that
many enhancements to Postgres Pro can be more efficiently developed separately from the core project.

H.1. Client Interfaces
There are only two client interfaces included in the base Postgres Pro Standard distribution:
• libpq is included because it is the primary C language interface, and because many other client

interfaces are built on top of it.
• ECPG is included because it depends on the server-side SQL grammar, and is therefore sensitive to

changes in Postgres Pro itself.
All other language interfaces are external projects and are distributed separately. Table H.1 includes a
list of some of these projects. Note that some of these packages might not be released under the same
license as Postgres Pro. For more information on each language interface, including licensing terms,
refer to its website and documentation.

Table H.1. Externally Maintained Client Interfaces

Name Language Comments Website
DBD::Pg Perl Perl DBI driver https://metacpan.org/

release/DBD-Pg
JDBC Java Type 4 JDBC driver https://

jdbc.postgresql.org/
libpqxx C++ C++ interface https://pqxx.org/
node-postgres JavaScript Node.js driver https://node-

postgres.com/
Npgsql .NET .NET data provider https://www.npgsql.org/
pgtcl Tcl https://github.com/

flightaware/Pgtcl
pgtclng Tcl https://sourceforge.net/

projects/pgtclng/
pq Go Pure Go driver for Go's

database/sql
https://github.com/lib/pq

psqlODBC ODBC ODBC driver https://
odbc.postgresql.org/

psycopg Python DB API 2.0-compliant https://
www.psycopg.org/

H.2. Administration Tools
There are several administration tools available for Postgres Pro. The most popular is pgAdmin, and
there are several commercially available ones as well.

H.3. Procedural Languages
Postgres Pro includes several procedural languages with the base distribution: PL/pgSQL, PL/Tcl, PL/
Perl, and PL/Python.

In addition, there are a number of procedural languages that are developed and maintained outside the
core Postgres Pro distribution. Table H.2 lists some of these packages. Note that some of these projects
might not be released under the same license as Postgres Pro. For more information on each procedural
language, including licensing information, refer to its website and documentation.

2564

https://metacpan.org/release/DBD-Pg
https://metacpan.org/release/DBD-Pg
https://jdbc.postgresql.org/
https://jdbc.postgresql.org/
https://pqxx.org/
https://node-postgres.com/
https://node-postgres.com/
https://www.npgsql.org/
https://github.com/flightaware/Pgtcl
https://github.com/flightaware/Pgtcl
https://sourceforge.net/projects/pgtclng/
https://sourceforge.net/projects/pgtclng/
https://github.com/lib/pq
https://odbc.postgresql.org/
https://odbc.postgresql.org/
https://www.psycopg.org/
https://www.psycopg.org/
https://www.pgadmin.org/

External Projects

Table H.2. Externally Maintained Procedural Languages

Name Language Website
PL/Java Java https://tada.github.io/pljava/
PL/Lua Lua https://github.com/pllua/pllua-ng
PL/R R https://github.com/postgres-plr/

plr
PL/sh Unix shell https://github.com/petere/plsh
PL/v8 JavaScript https://github.com/plv8/plv8

H.4. Extensions
Postgres Pro is designed to be easily extensible. For this reason, extensions loaded into the database can
function just like features that are built in. The contrib/ directory shipped with the source code contains
several extensions, which are described in Appendix F. Other extensions are developed independently,
like PostGIS. Even Postgres Pro replication solutions can be developed externally. For example, Slony-I
is a popular master/standby replication solution that is developed independently from the core project.

2565

https://tada.github.io/pljava/
https://github.com/pllua/pllua-ng
https://github.com/postgres-plr/plr
https://github.com/postgres-plr/plr
https://github.com/petere/plsh
https://github.com/plv8/plv8
https://postgis.net/
https://www.slony.info

Appendix I. Configuring Postgres Pro
for 1C Solutions

You can install and use Postgres Pro with 1C solutions in a client/server model. For optimal performance
and stability, modify the following settings in the postgresql.conf configuration file of Postgres Pro
server:

1. Increase the maximum number of allowed concurrent connections to the database server, up to 1000
connections. 1C solutions can open a large number of connections, even if not all of them are used,
so it is recommended to allow not less than 500 connections.

max_connections = 1000

2. To ensure that temporary tables are handled correctly, modify the following parameters:

• Increase the buffer size for temporary tables:

temp_buffers = 32MB

• Increase the number of allowed locks of tables or indexes per transaction to 256:

max_locks_per_transaction = 256

Typically, 1C solutions use a lot of temporary tables. Every backend process usually contains
multiple temporary tables. When closing a connection, Postgres Pro tries to drop all temporary
tables in a single transaction, so this transaction may use a lot of locks. If the number of locks
exceeds the max_locks_per_transaction value, the transaction will fail, leaving multiple
orphaned temporary tables.

3. Enable backslash escapes in all strings, and switch off the warning about using the backslash escape
symbol:

standard_conforming_strings = off
escape_string_warning = off

4. Set the effective_cache_size parameter to at least half of RAM available on the system. Postgres
Pro query optimizer performance depends on the amount of allocated RAM.

5. Optimize query planning using online_analyze and plantuner extensions, as follows:

• Add online_analyze and plantuner to the shared_preload_libraries variable.

shared_preload_libraries = 'online_analyze, plantuner'

• Enable automatic analysis of temporary tables when they are modified:

online_analyze.table_type = 'temporary'

• Tune Postgres Pro optimizer to improve planning for recently created empty tables:

plantuner.fix_empty_table = 'on'

• Suppress detailed messages from the online_analyze extension:

online_analyze.verbose = 'off'

2566

Appendix J. Postgres Pro Limits
Table J.1 describes various hard limits of Postgres Pro. However, practical limits, such as performance
limitations or available disk space may apply before absolute hard limits are reached.

Table J.1. Postgres Pro Limitations

Item Upper Limit Comment
database size unlimited
number of databases 4,294,950,911
relations per database 1,431,650,303
relation size 32 TB with the default BLCKSZ of 8192

bytes
rows per table limited by the number of tuples

that can fit onto 4,294,967,295
pages

columns per table 1600 further limited by tuple size
fitting on a single page; see note
below

field size 1 GB
identifier length 63 bytes can be increased by recompiling

Postgres Pro
indexes per table unlimited constrained by maximum

relations per database
columns per index 32 can be increased by recompiling

Postgres Pro
partition keys 32 can be increased by recompiling

Postgres Pro

The maximum number of columns for a table is further reduced as the tuple being stored must fit in
a single 8192-byte heap page. For example, excluding the tuple header, a tuple made up of 1600 int
columns would consume 6400 bytes and could be stored in a heap page, but a tuple of 1600 bigint
columns would consume 12800 bytes and would therefore not fit inside a heap page. Variable-length
fields of types such as text, varchar, and char can have their values stored out of line in the table's
TOAST table when the values are large enough to require it. Only an 18-byte pointer must remain inside
the tuple in the table's heap. For shorter length variable-length fields, either a 4-byte or 1-byte field
header is used and the value is stored inside the heap tuple.

Columns that have been dropped from the table also contribute to the maximum column limit. Moreover,
although the dropped column values for newly created tuples are internally marked as null in the tuple's
null bitmap, the null bitmap also occupies space.

2567

Appendix K. Demo Database
“Airlines”

This is an overview of a demo database for Postgres Pro. This appendix describes the database schema,
which consists of eight tables and several views. The subject field of this database is airline flights in
Russia. You can download the database from our website. See Section K.1 for details.

Figure K.1. Airlines in Russia

You can use this database for various purposes, such as:

• learning SQL language on your own

• preparing books, manuals, and courses on SQL

• showing Postgres Pro features in stories and articles

When developing this demo database, we pursued several goals:

• Database schema must be simple enough to be understood without extra explanations.

• At the same time, database schema must be complex enough to allow writing meaningful queries.

• The database must contain true-to-life data that will be interesting to work with.

This demo database is distributed under the PostgreSQL license.

You can send us your feedback to edu@postgrespro.ru.

K.1. Installation
The demo database is available at edu.postgrespro.com in three flavors, which differ only in the data size:

• demo-small-en.zip (21 MB) — flight data for one month (DB size is about 300 MB)

• demo-medium-en.zip (62 MB) — flight data for three months (DB size is about 700 MB)

• demo-big-en.zip (232 MB) — flight data for one year (DB size is about 2.5 GB)

2568

https://postgrespro.com
https://www.postgresql.org/about/licence/
mailto:edu@postgrespro.ru
https://edu.postgrespro.com
https://edu.postgrespro.com/demo-small-en.zip
https://edu.postgrespro.com/demo-medium-en.zip
https://edu.postgrespro.com/demo-big-en.zip

Demo Database “Airlines”

The small database is good for writing queries, and it will not take up much disk space. The large
database can help you understand the query behavior on large data volumes and consider query
optimization.

The files include an SQL script that creates the demo database and fills it with data (virtually, it is a
backup copy created with the pg_dump utility). The owner of the demo database will be the DBMS user
who runs the script. For example, to create the small database, run the script as the user postgres by
means of psql:

psql -f demo_small_YYYYMMDD.sql -U postgres

Note that if the demo database already exists, it will be deleted and recreated!

K.2. Schema Diagram
Figure K.2. Bookings Schema Diagram

Bookings

book_ref
* book_date
* total_amount

Tickets

ticket_no
* book_ref
* passenger_id
* passenger_name
° contact_data

Aircrafts

aircraft_code
* model
* range

Seats

aircraft_code
seat_no
* fare_conditions

Ticket_flights

ticket_no
flight_id
* fare_conditions
* amount

Boarding_passes

ticket_no
flight_id
* boarding_no
* seat_no

Flights

flight_id
* flight_no
* scheduled_departure
* scheduled_arrival
* departure_airport
* arrival_airport
* status
* aircraft_code
° actual_departure
° actual_arrival

Airports

airport_code
* airport_name
* city
* coordinates
* timezone

K.3. Schema Description
The main entity is a booking (bookings).

One booking can include several passengers, with a separate ticket (tickets) issued to each passenger.
A ticket has a unique number and includes information about the passenger. As such, the passenger is
not a separate entity. Both the passenger's name and identity document number can change over time,
so it is impossible to uniquely identify all the tickets of a particular person; for simplicity, we can assume
that all passengers are unique.

The ticket includes one or more flight segments (ticket_flights). Several flight segments can be
included into a single ticket if there are no non-stop flights between the points of departure and
destination (connecting flights), or if it is a round-trip ticket. Although there is no constraint in the
schema, it is assumed that all tickets in the booking have the same flight segments.

Each flight (flights) goes from one airport (airports) to another. Flights with the same flight number
have the same points of departure and destination, but differ in departure date.

2569

Demo Database “Airlines”

At flight check-in, the passenger is issued a boarding pass (boarding_passes), where the seat number
is specified. The passenger can check in for the flight only if this flight is included into the ticket. The
flight-seat combination must be unique to avoid issuing two boarding passes for the same seat.

The number of seats (seats) in the aircraft and their distribution between different travel classes
depends on the model of the aircraft (aircrafts) performing the flight. It is assumed that every aircraft
model has only one cabin configuration. Database schema does not check that seat numbers in boarding
passes have the corresponding seats in the aircraft (such verification can be done using table triggers,
or at the application level).

K.4. Schema Objects
K.4.1. List of Relations

 Name | Type | Small | Medium | Big | Description
-----------------+---------------+--------+--------+--------+-------------------------
 aircrafts | view | | | | Aircraft
 aircrafts_data | table | 16 kB | 16 kB | 16 kB | Aircraft (translations)
 airports | view | | | | Airports
 airports_data | table | 56 kB | 56 kB | 56 kB | Airports (translations)
 boarding_passes | table | 31 MB | 102 MB | 427 MB | Boarding passes
 bookings | table | 13 MB | 30 MB | 105 MB | Bookings
 flights | table | 3 MB | 6 MB | 19 MB | Flights
 flights_v | view | | | | Flights
 routes | view | | | | Routes
 seats | table | 88 kB | 88 kB | 88 kB | Seats
 ticket_flights | table | 64 MB | 145 MB | 516 MB | Flight segments
 tickets | table | 47 MB | 107 MB | 381 MB | Tickets

K.4.2. View bookings.aircrafts
Each aircraft model is identified by its three-digit code (aircraft_code). The view also includes the
name of the aircraft model (model) and the maximal flying distance, in kilometers (range).

The value of the model field is selected according to the chosen language. See Section K.4.15 for details.

 Column | Type | Modifiers | Description
---------------+---------+--------------+-----------------------------------
 aircraft_code | char(3) | not null | Aircraft code, IATA
 model | text | not null | Aircraft model
 range | integer | not null | Maximal flying distance, km
View definition:
 SELECT ml.aircraft_code,
 ml.model ->> lang() AS model,
 ml.range
 FROM aircrafts_data ml;

K.4.3. Table bookings.aircrafts_data
This is the base table for the aircrafts view. The model field of this table contains translations of aircraft
models to different languages, in the JSONB format. In most cases, this table is not supposed to be used
directly.

 Column | Type | Modifiers | Description
---------------+---------+--------------+-----------------------------------
 aircraft_code | char(3) | not null | Aircraft code, IATA

2570

Demo Database “Airlines”

 model | jsonb | not null | Aircraft model
 range | integer | not null | Maximal flying distance, km
Indexes:
 PRIMARY KEY, btree (aircraft_code)
Check constraints:
 CHECK (range > 0)
Referenced by:
 TABLE "flights" FOREIGN KEY (aircraft_code)
 REFERENCES aircrafts_data(aircraft_code)
 TABLE "seats" FOREIGN KEY (aircraft_code)
 REFERENCES aircrafts_data(aircraft_code) ON DELETE CASCADE

K.4.4. View bookings.airports
An airport is identified by a three-letter code (airport_code) and has a name (airport_name).

There is no separate entity for the city, but there is a city name (city) to identify the airports of the same
city. The view also includes coordinates (coordinates) and the time zone (timezone).

The values of the airport_name and city fields are selected according to the chosen language. See
Section K.4.15 for details.

 Column | Type | Modifiers | Description
--------------+---------+--------------+--
 airport_code | char(3) | not null | Airport code
 airport_name | text | not null | Airport name
 city | text | not null | City
 coordinates | point | not null | Airport coordinates (longitude and latitude)
 timezone | text | not null | Airport time zone
View definition:
 SELECT ml.airport_code,
 ml.airport_name ->> lang() AS airport_name,
 ml.city ->> lang() AS city,
 ml.coordinates,
 ml.timezone
 FROM airports_data ml;

K.4.5. Table bookings.airports_data
This is the base table for the airports view. This table contains translations of airport_name and city
values to different languages, in the JSONB format. In most cases, this table is not supposed to be used
directly.

 Column | Type | Modifiers | Description
--------------+---------+--------------+--
 airport_code | char(3) | not null | Airport code
 airport_name | jsonb | not null | Airport name
 city | jsonb | not null | City
 coordinates | point | not null | Airport coordinates (longitude and latitude)
 timezone | text | not null | Airport time zone
Indexes:
 PRIMARY KEY, btree (airport_code)
Referenced by:
 TABLE "flights" FOREIGN KEY (arrival_airport)
 REFERENCES airports_data(airport_code)
 TABLE "flights" FOREIGN KEY (departure_airport)
 REFERENCES airports_data(airport_code)

2571

Demo Database “Airlines”

K.4.6. Table bookings.boarding_passes
At the time of check-in, which opens twenty-four hours before the scheduled departure, the passenger
is issued a boarding pass. Like the flight segment, the boarding pass is identified by the ticket number
and the flight number.

Boarding passes are assigned sequential numbers (boarding_no), in the order of check-ins for the flight
(this number is unique only within the context of a particular flight). The boarding pass specifies the
seat number (seat_no).

 Column | Type | Modifiers | Description
-------------+------------+--------------+--------------------------
 ticket_no | char(13) | not null | Ticket number
 flight_id | integer | not null | Flight ID
 boarding_no | integer | not null | Boarding pass number
 seat_no | varchar(4) | not null | Seat number
Indexes:
 PRIMARY KEY, btree (ticket_no, flight_id)
 UNIQUE CONSTRAINT, btree (flight_id, boarding_no)
 UNIQUE CONSTRAINT, btree (flight_id, seat_no)
Foreign-key constraints:
 FOREIGN KEY (ticket_no, flight_id)
 REFERENCES ticket_flights(ticket_no, flight_id)

K.4.7. Table bookings.bookings
Passengers book tickets for themselves, and, possibly, for several other passengers, in advance
(book_date, not earlier than one month before the flight). The booking is identified by its number
(book_ref, a six-position combination of letters and digits).

The total_amount field stores the total cost of all tickets included into the booking, for all passengers.

 Column | Type | Modifiers | Description
--------------+---------------+--------------+---------------------------
 book_ref | char(6) | not null | Booking number
 book_date | timestamptz | not null | Booking date
 total_amount | numeric(10,2) | not null | Total booking cost
Indexes:
 PRIMARY KEY, btree (book_ref)
Referenced by:
 TABLE "tickets" FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)

K.4.8. Table bookings.flights
The natural key of the bookings.flights table consists of two fields — flight_no and
scheduled_departure. To make foreign keys for this table more compact, a surrogate key is used as
the primary key (flight_id).

A flight always connects two points — the airport of departure (departure_airport) and arrival
(arrival_airport). There is no such entity as a “connecting flight”: if there are no non-stop flights from
one airport to another, the ticket simply includes several required flight segments.

Each flight has a scheduled date and time of departure (scheduled_departure) and
arrival (scheduled_arrival). The actual departure time (actual_departure) and arrival time
(actual_arrival) can differ: the difference is usually not very big, but sometimes can be up to several
hours if the flight is delayed.

2572

Demo Database “Airlines”

Flight status (status) can take one of the following values:

Scheduled

The flight is available for booking. It happens one month before the planned departure date; before
that time, there is no entry for this flight in the database.

On Time

The flight is open for check-in (in twenty-four hours before the scheduled departure) and is not
delayed.

Delayed

The flight is open for check-in (in twenty-four hours before the scheduled departure) but is delayed.

Departed

The aircraft has already departed and is airborne.

Arrived

The aircraft has reached the point of destination.

Cancelled

The flight is canceled.

 Column | Type | Modifiers | Description
---------------------+-------------+--------------+-----------------------------
 flight_id | serial | not null | Flight ID
 flight_no | char(6) | not null | Flight number
 scheduled_departure | timestamptz | not null | Scheduled departure time
 scheduled_arrival | timestamptz | not null | Scheduled arrival time
 departure_airport | char(3) | not null | Airport of departure
 arrival_airport | char(3) | not null | Airport of arrival
 status | varchar(20) | not null | Flight status
 aircraft_code | char(3) | not null | Aircraft code, IATA
 actual_departure | timestamptz | | Actual departure time
 actual_arrival | timestamptz | | Actual arrival time
Indexes:
 PRIMARY KEY, btree (flight_id)
 UNIQUE CONSTRAINT, btree (flight_no, scheduled_departure)
Check constraints:
 CHECK (scheduled_arrival > scheduled_departure)
 CHECK ((actual_arrival IS NULL)
 OR ((actual_departure IS NOT NULL AND actual_arrival IS NOT NULL)
 AND (actual_arrival > actual_departure)))
 CHECK (status IN ('On Time', 'Delayed', 'Departed',
 'Arrived', 'Scheduled', 'Cancelled'))
Foreign-key constraints:
 FOREIGN KEY (aircraft_code)
 REFERENCES aircrafts(aircraft_code)
 FOREIGN KEY (arrival_airport)
 REFERENCES airports(airport_code)
 FOREIGN KEY (departure_airport)
 REFERENCES airports(airport_code)
Referenced by:
 TABLE "ticket_flights" FOREIGN KEY (flight_id)
 REFERENCES flights(flight_id)

2573

Demo Database “Airlines”

K.4.9. Table bookings.seats
Seats define the cabin configuration of each aircraft model. Each seat is defined by its number (seat_no)
and has an assigned travel class (fare_conditions): Economy, Comfort or Business.

 Column | Type | Modifiers | Description
-----------------+-------------+--------------+--------------------
 aircraft_code | char(3) | not null | Aircraft code, IATA
 seat_no | varchar(4) | not null | Seat number
 fare_conditions | varchar(10) | not null | Travel class
Indexes:
 PRIMARY KEY, btree (aircraft_code, seat_no)
Check constraints:
 CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))
Foreign-key constraints:
 FOREIGN KEY (aircraft_code)
 REFERENCES aircrafts(aircraft_code) ON DELETE CASCADE

K.4.10. Table bookings.ticket_flights
A flight segment connects a ticket with a flight and is identified by their numbers.

Each flight has its cost (amount) and travel class (fare_conditions).

 Column | Type | Modifiers | Description
-----------------+---------------+--------------+---------------------
 ticket_no | char(13) | not null | Ticket number
 flight_id | integer | not null | Flight ID
 fare_conditions | varchar(10) | not null | Travel class
 amount | numeric(10,2) | not null | Travel cost
Indexes:
 PRIMARY KEY, btree (ticket_no, flight_id)
Check constraints:
 CHECK (amount >= 0)
 CHECK (fare_conditions IN ('Economy', 'Comfort', 'Business'))
Foreign-key constraints:
 FOREIGN KEY (flight_id) REFERENCES flights(flight_id)
 FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)
Referenced by:
 TABLE "boarding_passes" FOREIGN KEY (ticket_no, flight_id)
 REFERENCES ticket_flights(ticket_no, flight_id)

K.4.11. Table bookings.tickets
A ticket has a unique number (ticket_no) that consists of 13 digits.

The ticket includes a passenger ID (passenger_id) — the identity document number, — their first and
last names (passenger_name), and contact information (contact_data).

Neither the passenger ID, nor the name is permanent (for example, one can change the last name or
passport), so it is impossible to uniquely identify all tickets of a particular passenger.

 Column | Type | Modifiers | Description
----------------+-------------+--------------+-----------------------------
 ticket_no | char(13) | not null | Ticket number
 book_ref | char(6) | not null | Booking number
 passenger_id | varchar(20) | not null | Passenger ID
 passenger_name | text | not null | Passenger name

2574

Demo Database “Airlines”

 contact_data | jsonb | | Passenger contact information
Indexes:
 PRIMARY KEY, btree (ticket_no)
Foreign-key constraints:
 FOREIGN KEY (book_ref) REFERENCES bookings(book_ref)
Referenced by:
 TABLE "ticket_flights" FOREIGN KEY (ticket_no) REFERENCES tickets(ticket_no)

K.4.12. View bookings.flights_v
There is a flights_v view over the flights table that provides additional information:
• Details about the airport of departure — departure_airport, departure_airport_name,

departure_city

• Details about the airport of arrival — arrival_airport, arrival_airport_name, arrival_city
• Local departure time — scheduled_departure_local, actual_departure_local
• Local arrival time — scheduled_arrival_local, actual_arrival_local
• Flight duration — scheduled_duration, actual_duration.

 Column | Type | Description
---------------------------+-------------+--------------------------------------
 flight_id | integer | Flight ID
 flight_no | char(6) | Flight number
 scheduled_departure | timestamptz | Scheduled departure time
 scheduled_departure_local | timestamp | Scheduled departure time,
 | | local time at the point of departure
 scheduled_arrival | timestamptz | Scheduled arrival time
 scheduled_arrival_local | timestamp | Scheduled arrival time,
 | | local time at the point of destination
 scheduled_duration | interval | Scheduled flight duration
 departure_airport | char(3) | Departure airport code
 departure_airport_name | text | Departure airport name
 departure_city | text | City of departure
 arrival_airport | char(3) | Arrival airport code
 arrival_airport_name | text | Arrival airport name
 arrival_city | text | City of arrival
 status | varchar(20) | Flight status
 aircraft_code | char(3) | Aircraft code, IATA
 actual_departure | timestamptz | Actual departure time
 actual_departure_local | timestamp | Actual departure time,
 | | local time at the point of departure
 actual_arrival | timestamptz | Actual arrival time
 actual_arrival_local | timestamp | Actual arrival time,
 | | local time at the point of destination
 actual_duration | interval | Actual flight duration

K.4.13. View bookings.routes
The bookings.flights table contains some redundancies, which you can use to single out route
information (flight number, airports of departure and destination) that does not depend on the exact
flight dates.

Such information is shown in the routes view.

 Column | Type | Description

2575

Demo Database “Airlines”

------------------------+-----------+-------------------------------------
 flight_no | char(6) | Flight number
 departure_airport | char(3) | Departure airport code
 departure_airport_name | text | Departure airport name
 departure_city | text | City of departure
 arrival_airport | char(3) | Arrival airport code
 arrival_airport_name | text | Arrival airport name
 arrival_city | text | City of arrival
 aircraft_code | char(3) | Aircraft code, IATA
 duration | interval | Flight duration
 days_of_week | integer[] | Days of the week on which flights are performed

K.4.14. Function bookings.now
The demo database contains “snapshots” of data — similar to a backup copy of a real system captured
at some point in time. For example, if a flight has the Departed status, it means that the aircraft had
already departed and was airborne at the time of the backup copy.

The “snapshot” time is saved in the bookings.now() function. You can use this function in demo queries
for cases where you would use the now() function in a real database.

In addition, the return value of this function determines the version of the demo database. The latest
version available is of August 15, 2017.

K.4.15. Function bookings.lang
Some fields in the demo database are available in English and Russian. Translations to other languages
are not provided, but are easy to add. The bookings.lang returns the value of the bookings.lang
parameter, that is, the language in which these fields will be displayed.

This function is used in the aircrafts and airports views and is not intended to be used directly in
queries.

K.5. Usage
K.5.1. Schema bookings

The bookings schema contains all objects of the demo database. When you connect to the database,
search_path configuration parameter is automatically set to bookings, public, so you do not need to
specify the schema name explicitly.

However, for the bookings.now function, you always have to specify the schema to distinguish this
function from the standard now function.

K.5.2. Translations
By default, values of several translatable fields are shown in Russian. These are airport_name and city
of the airports view, as well as model of the aircrafts view.

You can choose to display these fields in another language (although only the English translation is
provided in the demo database). To switch to English, set the bookings.lang parameter to en. It may
be convenient to choose the language at the database level:

ALTER DATABASE demo SET bookings.lang = en;

You have to reconnect to the database for this command to take effect. For other methods of settings
configuration parameters, see Section 18.1.

In the examples below, the English language is selected for translatable fields.

2576

Demo Database “Airlines”

K.5.3. Sample Queries
To better understand the contents of the demo database, let's take a look at the results of several simple
queries.

The results displayed below were received on a small database version (demo-small) of August 15, 2017.
If the same queries return different data on your system, check your demo database version (using the
bookings.now function). Some minor deviations may be caused by the difference between your local
time and Moscow time, or your locale settings.

All flights are operated by several types of aircraft:
SELECT * FROM aircrafts;

 aircraft_code | model | range
---------------+---------------------+-------
 773 | Boeing 777-300 | 11100
 763 | Boeing 767-300 | 7900
 SU9 | Sukhoi SuperJet-100 | 3000
 320 | Airbus A320-200 | 5700
 321 | Airbus A321-200 | 5600
 319 | Airbus A319-100 | 6700
 733 | Boeing 737-300 | 4200
 CN1 | Cessna 208 Caravan | 1200
 CR2 | Bombardier CRJ-200 | 2700
(9 rows)

For each aircraft type, a separate list of seats is supported. For example, in a small Cessna 208 Caravan,
one can select the following seats:
SELECT a.aircraft_code,
 a.model,
 s.seat_no,
 s.fare_conditions
FROM aircrafts a
 JOIN seats s ON a.aircraft_code = s.aircraft_code
WHERE a.model = 'Cessna 208 Caravan'
ORDER BY s.seat_no;

 aircraft_code | model | seat_no | fare_conditions
---------------+--------------------+---------+-----------------
 CN1 | Cessna 208 Caravan | 1A | Economy
 CN1 | Cessna 208 Caravan | 1B | Economy
 CN1 | Cessna 208 Caravan | 2A | Economy
 CN1 | Cessna 208 Caravan | 2B | Economy
 CN1 | Cessna 208 Caravan | 3A | Economy
 CN1 | Cessna 208 Caravan | 3B | Economy
 CN1 | Cessna 208 Caravan | 4A | Economy
 CN1 | Cessna 208 Caravan | 4B | Economy
 CN1 | Cessna 208 Caravan | 5A | Economy
 CN1 | Cessna 208 Caravan | 5B | Economy
 CN1 | Cessna 208 Caravan | 6A | Economy
 CN1 | Cessna 208 Caravan | 6B | Economy
(12 rows)

Bigger aircraft have more seats of various travel classes:
SELECT s2.aircraft_code,

2577

Demo Database “Airlines”

 string_agg (s2.fare_conditions || '(' || s2.num::text || ')',
 ', ') as fare_conditions
FROM (
 SELECT s.aircraft_code, s.fare_conditions, count(*) as num
 FROM seats s
 GROUP BY s.aircraft_code, s.fare_conditions
 ORDER BY s.aircraft_code, s.fare_conditions
) s2
GROUP BY s2.aircraft_code
ORDER BY s2.aircraft_code;

 aircraft_code | fare_conditions
---------------+---
 319 | Business(20), Economy(96)
 320 | Business(20), Economy(120)
 321 | Business(28), Economy(142)
 733 | Business(12), Economy(118)
 763 | Business(30), Economy(192)
 773 | Business(30), Comfort(48), Economy(324)
 CN1 | Economy(12)
 CR2 | Economy(50)
 SU9 | Business(12), Economy(85)
(9 rows)

The demo database contains the list of airports of almost all major Russian cities. Most cities have only
one airport. The exceptions are:

SELECT a.airport_code as code,
 a.airport_name,
 a.city,
 a.coordinates
FROM airports a
WHERE a.city IN (
 SELECT aa.city
 FROM airports aa
 GROUP BY aa.city
 HAVING COUNT(*) > 1
)
ORDER BY a.city, a.airport_code;

 code | airport_name | city | coordinates
------+------------------------------------+-----------+-------------------------
 DME | Domodedovo | Moscow | (37.9062995910645,55.4087982177734)
 | International Airport | |
 SVO | Sheremetyevo | Moscow | (37.4146,55.972599)
 | International Airport | |
 VKO | Vnukovo | Moscow | (37.2615013123,55.5914993286)
 | International Airport | |
 ULV | Ulyanovsk | Ulyanovsk | (48.2266998291,54.2682991028)
 | Baratayevka Airport | |
 ULY | Ulyanovsk East Airport | Ulyanovsk | (48.8027000427246,54.4010009765625)
(5 rows)

To learn about your flying options from one point to another, it is convenient to use the routes
materialized view that aggregates information on all flights. For example, here are the destinations
where you can get from Volgograd on specific days of the week, with flight duration:

2578

Demo Database “Airlines”

SELECT r.arrival_city as city,
 r.arrival_airport as code,
 r.arrival_airport_name as airport_name,
 r.days_of_week,
 r.duration
FROM routes r
WHERE r.departure_city = 'Volgograd';

 city | code | airport_name | days_of_week | duration
-------------+------+------------------------------------+-----------------+----------
 Moscow | SVO | Sheremetyevo International Airport | {1,2,3,4,5,6,7} | 01:15:00
 Chelyabinsk | CEK | Chelyabinsk Balandino Airport | {1,2,3,4,5,6,7} | 01:50:00
 Rostov | ROV | Rostov-on-Don Airport | {1,2,3,4,5,6,7} | 00:30:00
 Moscow | VKO | Vnukovo International Airport | {1,2,3,4,5,6,7} | 01:10:00
 Cheboksary | CSY | Cheboksary Airport | {1,2,3,4,5,6,7} | 02:45:00
 Tomsk | TOF | Bogashevo Airport | {1} | 03:50:00
(6 rows)

The database was formed at the moment returned by the bookings.now() function:

SELECT bookings.now() as now;

 now

 2017-08-15 18:00:00+03

In relation to this moment, all flights are classified as past and future flights:

SELECT status,
 count(*) as count,
 min(scheduled_departure) as min_scheduled_departure,
 max(scheduled_departure) as max_scheduled_departure
FROM flights
GROUP BY status
ORDER BY min_scheduled_departure;

 status | count | min_scheduled_departure | max_scheduled_departure
-----------+-------+-------------------------+-------------------------
 Arrived | 16707 | 2017-07-16 01:50:00+03 | 2017-08-15 17:25:00+03
 Cancelled | 414 | 2017-07-19 11:35:00+03 | 2017-09-14 20:55:00+03
 Departed | 58 | 2017-08-15 09:55:00+03 | 2017-08-15 17:50:00+03
 Delayed | 41 | 2017-08-15 15:15:00+03 | 2017-08-16 17:25:00+03
 On Time | 518 | 2017-08-15 17:55:00+03 | 2017-08-16 18:00:00+03
 Scheduled | 15383 | 2017-08-16 18:05:00+03 | 2017-09-14 20:40:00+03
(6 rows)

Let's find the next flight from Yekaterinburg to Moscow. The flight table is not very convenient for
such queries, as it does not include information on the cities of departure and arrival. That is why we
will use the flights_v view:

\x
SELECT f.*
FROM flights_v f
WHERE f.departure_city = 'Yekaterinburg'
AND f.arrival_city = 'Moscow'

2579

Demo Database “Airlines”

AND f.scheduled_departure > bookings.now()
ORDER BY f.scheduled_departure
LIMIT 1;

-[RECORD 1]-------------+-----------------------------------
flight_id | 10927
flight_no | PG0226
scheduled_departure | 2017-08-16 08:10:00+03
scheduled_departure_local | 2017-08-16 10:10:00
scheduled_arrival | 2017-08-16 09:55:00+03
scheduled_arrival_local | 2017-08-16 09:55:00
scheduled_duration | 01:45:00
departure_airport | SVX
departure_airport_name | Koltsovo Airport
departure_city | Yekaterinburg
arrival_airport | SVO
arrival_airport_name | Sheremetyevo International Airport
arrival_city | Moscow
status | On Time
aircraft_code | 773
actual_departure |
actual_departure_local |
actual_arrival |
actual_arrival_local |
actual_duration |

Note that the flights_v view shows both Moscow time and local time at the airports of departure and
arrival.

K.5.4. Bookings
Each booking can include several tickets, one for each passenger. The ticket, in its turn, can include
several flight segments. The complete information about the booking is stored in three tables: bookings,
tickets, and ticket_flights.

Let's find several most expensive bookings:
SELECT *
FROM bookings
ORDER BY total_amount desc
LIMIT 10;

 book_ref | book_date | total_amount
----------+------------------------+--------------
 3B54BB | 2017-07-05 17:08:00+03 | 1204500.00
 3AC131 | 2017-07-31 01:06:00+03 | 1087100.00
 65A6EA | 2017-07-03 06:28:00+03 | 1065600.00
 D7E9AA | 2017-08-08 05:29:00+03 | 1062800.00
 EF479E | 2017-08-02 15:58:00+03 | 1035100.00
 521C53 | 2017-07-08 09:25:00+03 | 985500.00
 514CA6 | 2017-07-27 05:07:00+03 | 955000.00
 D70BD9 | 2017-07-05 12:47:00+03 | 947500.00
 EC7EDA | 2017-07-02 16:13:00+03 | 946800.00
 8E4370 | 2017-07-28 02:04:00+03 | 945700.00
(10 rows)

Let's take a look at the tickets included into the booking with code 521C53:

2580

Demo Database “Airlines”

SELECT ticket_no,
 passenger_id,
 passenger_name
FROM tickets
WHERE book_ref = '521C53';

 ticket_no | passenger_id | passenger_name
---------------+--------------+--------------------
 0005432661914 | 8234 547529 | IVAN IVANOV
 0005432661915 | 2034 201228 | ANTONINA KUZNECOVA
(2 rows)

If we would like to know, which flight segments are included into Antonina Kuznecova's ticket, we can
use the following query:

SELECT to_char(f.scheduled_departure, 'DD.MM.YYYY') AS when,
 f.departure_city || ' (' || f.departure_airport || ')' AS departure,
 f.arrival_city || ' (' || f.arrival_airport || ')' AS arrival,
 tf.fare_conditions AS class,
 tf.amount
FROM ticket_flights tf
 JOIN flights_v f ON tf.flight_id = f.flight_id
WHERE tf.ticket_no = '0005432661915'
ORDER BY f.scheduled_departure;

 when | departure | arrival | class | amount
------------+----------------------+----------------------+----------+-----------
 29.07.2017 | Moscow (SVO) | Anadyr (DYR) | Business | 185300.00
 02.08.2017 | Anadyr (DYR) | Khabarovsk (KHV) | Business | 92200.00
 03.08.2017 | Khabarovsk (KHV) | Blagoveshchensk (BQS)| Business | 18000.00
 08.08.2017 | Blagoveshchensk (BQS)| Khabarovsk (KHV) | Business | 18000.00
 12.08.2017 | Khabarovsk (KHV) | Anadyr (DYR) | Economy | 30700.00
 17.08.2017 | Anadyr (DYR) | Moscow (SVO) | Business | 185300.00
(6 rows)

As we can see, high booking cost is explained by multiple long-haul flights in business class.

Some of the flight segments in this ticket have earlier dates than the bookings.now() return value: it
means that these flights had already happened. The last flight had not happened yet at the time of the
database creation. After the check-in, a boarding pass with the allocated seat number is issued. We can
check the exact seats occupied by Antonina (note the outer left join with table boarding_passes):

SELECT to_char(f.scheduled_departure, 'DD.MM.YYYY') AS when,
 f.departure_city || ' (' || f.departure_airport || ')' AS departure,
 f.arrival_city || ' (' || f.arrival_airport || ')' AS arrival,
 f.status,
 bp.seat_no
FROM ticket_flights tf
 JOIN flights_v f ON tf.flight_id = f.flight_id
 LEFT JOIN boarding_passes bp ON tf.flight_id = bp.flight_id
 AND tf.ticket_no = bp.ticket_no
WHERE tf.ticket_no = '0005432661915'
ORDER BY f.scheduled_departure;

 when | departure | arrival | status | seat_no
------------+----------------------+----------------------+-----------+---------

2581

Demo Database “Airlines”

 29.07.2017 | Moscow (SVO) | Anadyr (DYR) | Arrived | 5C
 02.08.2017 | Anadyr (DYR) | Khabarovsk (KHV) | Arrived | 1D
 03.08.2017 | Khabarovsk (KHV) | Blagoveshchensk (BQS)| Arrived | 2C
 08.08.2017 | Blagoveshchensk (BQS)| Khabarovsk (KHV) | Arrived | 2D
 12.08.2017 | Khabarovsk (KHV) | Anadyr (DYR) | Arrived | 20B
 17.08.2017 | Anadyr (DYR) | Moscow (SVO) | Scheduled |
(6 rows)

K.5.5. New Booking
Let's try to send Aleksandr Radishchev from Saint Petersburg to Moscow — the route that made him
famous. Naturally, he will travel for free and in business class. We have already found a flight for
tomorrow, and a return flight a week later.

BEGIN;

INSERT INTO bookings (book_ref, book_date, total_amount)
VALUES ('_QWE12', bookings.now(), 0);

INSERT INTO tickets (ticket_no, book_ref, passenger_id, passenger_name)
VALUES ('_000000000001', '_QWE12', '1749 051790', 'ALEKSANDR RADISHCHEV');

INSERT INTO ticket_flights (ticket_no, flight_id, fare_conditions, amount)
VALUES ('_000000000001', 8525, 'Business', 0),
 ('_000000000001', 4967, 'Business', 0);

COMMIT;

To avoid conflicts with the range of values present in the database, identifiers are started with an
underscore.

We will check in Aleksandr for tomorrow's flight right away:

INSERT INTO boarding_passes (ticket_no, flight_id, boarding_no, seat_no)
VALUES ('_000000000001', 8525, 1, '1A');

Now let's check the booking information:

SELECT b.book_ref,
 t.ticket_no,
 t.passenger_id,
 t.passenger_name,
 tf.fare_conditions,
 tf.amount,
 f.scheduled_departure_local,
 f.scheduled_arrival_local,
 f.departure_city || ' (' || f.departure_airport || ')' AS departure,
 f.arrival_city || ' (' || f.arrival_airport || ')' AS arrival,
 f.status,
 bp.seat_no
FROM bookings b
 JOIN tickets t ON b.book_ref = t.book_ref
 JOIN ticket_flights tf ON tf.ticket_no = t.ticket_no
 JOIN flights_v f ON tf.flight_id = f.flight_id
 LEFT JOIN boarding_passes bp ON tf.flight_id = bp.flight_id
 AND tf.ticket_no = bp.ticket_no
WHERE b.book_ref = '_QWE12'

2582

Demo Database “Airlines”

ORDER BY t.ticket_no, f.scheduled_departure;

-[RECORD 1]-------------+---------------------
book_ref | _QWE12
ticket_no | _000000000001
passenger_id | 1749 051790
passenger_name | ALEKSANDR RADISHCHEV
fare_conditions | Business
amount | 0.00
scheduled_departure_local | 2017-08-16 09:45:00
scheduled_arrival_local | 2017-08-16 10:35:00
departure | St. Petersburg (LED)
arrival | Moscow (SVO)
status | On Time
seat_no | 1A
-[RECORD 2]-------------+---------------------
book_ref | _QWE12
ticket_no | _000000000001
passenger_id | 1749 051790
passenger_name | ALEKSANDR RADISHCHEV
fare_conditions | Business
amount | 0.00
scheduled_departure_local | 2017-08-23 10:20:00
scheduled_arrival_local | 2017-08-23 11:10:00
departure | Moscow (SVO)
arrival | St. Petersburg (LED)
status | Scheduled
seat_no |

We hope that these simple examples helped you get an idea of this demo database.

2583

Appendix L. Acronyms
This is a list of acronyms commonly used in the Postgres Pro documentation and in discussions about
Postgres Pro.
ANSI

American National Standards Institute

API
Application Programming Interface

ASCII
American Standard Code for Information Interchange

BKI
Backend Interface

CA
Certificate Authority

CIDR
Classless Inter-Domain Routing

CPAN
Comprehensive Perl Archive Network

CRL
Certificate Revocation List

CSV
Comma Separated Values

CTE
Common Table Expression

CVE
Common Vulnerabilities and Exposures

DBA
Database Administrator

DBI
Database Interface (Perl)

DBMS
Database Management System

DDL

Data Definition Language, SQL commands such as CREATE TABLE, ALTER USER

DML

Data Manipulation Language, SQL commands such as INSERT, UPDATE, DELETE

2584

https://en.wikipedia.org/wiki/American_National_Standards_Institute
https://en.wikipedia.org/wiki/API
https://en.wikipedia.org/wiki/Ascii
https://en.wikipedia.org/wiki/Certificate_authority
https://en.wikipedia.org/wiki/Classless_Inter-Domain_Routing
https://www.cpan.org/
https://en.wikipedia.org/wiki/Certificate_revocation_list
https://en.wikipedia.org/wiki/Comma-separated_values
https://cve.mitre.org/
https://en.wikipedia.org/wiki/Database_administrator
https://dbi.perl.org/
https://en.wikipedia.org/wiki/Dbms
https://en.wikipedia.org/wiki/Data_Definition_Language
https://en.wikipedia.org/wiki/Data_Manipulation_Language

Acronyms

DST
Daylight Saving Time

ECPG
Embedded C for Postgres Pro

ESQL
Embedded SQL

FAQ
Frequently Asked Questions

FSM
Free Space Map

GEQO
Genetic Query Optimizer

GIN
Generalized Inverted Index

GiST
Generalized Search Tree

Git
Git

GMT
Greenwich Mean Time

GSSAPI
Generic Security Services Application Programming Interface

GUC
Grand Unified Configuration, the Postgres Pro subsystem that handles server configuration

HBA
Host-Based Authentication

HOT
Heap-Only Tuples

IEC
International Electrotechnical Commission

IEEE
Institute of Electrical and Electronics Engineers

IPC
Inter-Process Communication

ISO
International Organization for Standardization

2585

https://en.wikipedia.org/wiki/Daylight_saving_time
https://en.wikipedia.org/wiki/Embedded_SQL
https://en.wikipedia.org/wiki/FAQ
https://en.wikipedia.org/wiki/Git_(software)
https://en.wikipedia.org/wiki/GMT
https://en.wikipedia.org/wiki/Generic_Security_Services_Application_Program_Interface
https://git.postgresql.org/gitweb/?p=postgresql.git;a=blob;f=src/backend/access/heap/README.HOT;hb=HEAD
https://en.wikipedia.org/wiki/International_Electrotechnical_Commission
https://standards.ieee.org/
https://en.wikipedia.org/wiki/Inter-process_communication
https://www.iso.org/home.html

Acronyms

ISSN
International Standard Serial Number

JDBC
Java Database Connectivity

JIT
Just-in-Time compilation

JSON
JavaScript Object Notation

LDAP
Lightweight Directory Access Protocol

LSN
Log Sequence Number, see pg_lsn and WAL Internals.

MSVC
Microsoft Visual C

MVCC
Multi-Version Concurrency Control

NLS
National Language Support

ODBC
Open Database Connectivity

OID
Object Identifier

OLAP
Online Analytical Processing

OLTP
Online Transaction Processing

ORDBMS
Object-Relational Database Management System

PAM
Pluggable Authentication Modules

PGSQL
Postgres Pro

PGXS
Postgres Pro Extension System

PID
Process Identifier

2586

https://en.wikipedia.org/wiki/Issn
https://en.wikipedia.org/wiki/Java_Database_Connectivity
https://en.wikipedia.org/wiki/Just-in-time_compilation
https://www.json.org
https://en.wikipedia.org/wiki/Lightweight_Directory_Access_Protocol
https://en.wikipedia.org/wiki/Visual_C++
https://en.wikipedia.org/wiki/Internationalization_and_localization
https://en.wikipedia.org/wiki/Open_Database_Connectivity
https://en.wikipedia.org/wiki/Olap
https://en.wikipedia.org/wiki/OLTP
https://en.wikipedia.org/wiki/ORDBMS
https://en.wikipedia.org/wiki/Pluggable_Authentication_Modules
https://en.wikipedia.org/wiki/Process_identifier

Acronyms

PITR
Point-In-Time Recovery (Continuous Archiving)

PL
Procedural Languages (server-side)

POSIX
Portable Operating System Interface

RDBMS
Relational Database Management System

RFC
Request For Comments

SGML
Standard Generalized Markup Language

SPI
Server Programming Interface

SP-GiST
Space-Partitioned Generalized Search Tree

SQL
Structured Query Language

SRF
Set-Returning Function

SSH
Secure Shell

SSL
Secure Sockets Layer

SSPI
Security Support Provider Interface

SYSV
Unix System V

TCP/IP
Transmission Control Protocol (TCP) / Internet Protocol (IP)

TID
Tuple Identifier

TLS
Transport Layer Security

TOAST
The Oversized-Attribute Storage Technique

2587

https://en.wikipedia.org/wiki/POSIX
https://en.wikipedia.org/wiki/Relational_database_management_system
https://en.wikipedia.org/wiki/Request_for_Comments
https://en.wikipedia.org/wiki/SGML
https://en.wikipedia.org/wiki/SQL
https://en.wikipedia.org/wiki/Secure_Shell
https://en.wikipedia.org/wiki/Secure_Sockets_Layer
https://msdn.microsoft.com/en-us/library/aa380493%28VS.85%29.aspx
https://en.wikipedia.org/wiki/System_V
https://en.wikipedia.org/wiki/Transmission_Control_Protocol
https://en.wikipedia.org/wiki/Transport_Layer_Security

Acronyms

TPC
Transaction Processing Performance Council

URL
Uniform Resource Locator

UTC
Coordinated Universal Time

UTF
Unicode Transformation Format

UTF8
Eight-Bit Unicode Transformation Format

UUID
Universally Unique Identifier

WAL
Write-Ahead Log

XID
Transaction Identifier

XML
Extensible Markup Language

2588

http://www.tpc.org/
https://en.wikipedia.org/wiki/URL
https://en.wikipedia.org/wiki/Coordinated_Universal_Time
https://www.unicode.org/
https://en.wikipedia.org/wiki/Utf8
https://en.wikipedia.org/wiki/XML

Appendix M. Glossary
This is a list of terms and their meaning in the context of PostgreSQL and relational database systems
in general.

ACID Atomicity, Consistency, Isolation, and Durability. This set of properties
of database transactions is intended to guarantee validity in concurrent
operation and even in event of errors, power failures, etc.

Aggregate function
(routine)

A function that combines (aggregates) multiple input values, for example
by counting, averaging or adding, yielding a single output value.

For more information, see Section 9.21.

See Also Window function (routine).

Analytic function See Window function (routine).

Analyze (operation) The process of collecting statistics from data in tables and other relations
to help the query planner to make decisions about how to execute queries.

(Don't confuse this term with the ANALYZE option to the EXPLAIN command.)

For more information, see ANALYZE.

Atomic In reference to a datum: the fact that its value cannot be broken down into
smaller components.

In reference to a database transaction: see atomicity.

Atomicity The property of a transaction that either all its operations complete as a
single unit or none do. In addition, if a system failure occurs during the
execution of a transaction, no partial results are visible after recovery. This
is one of the ACID properties.

Attribute An element with a certain name and data type found within a tuple.

Autovacuum (process) A set of background processes that routinely perform vacuum and analyze
operations.

For more information, see Section 23.1.6.

Backend (process) Process of an instance which acts on behalf of a client session and handles
its requests.

(Don't confuse this term with the similar terms Background Worker or
Background Writer).

Background worker
(process)

Process within an instance, which runs system- or user-supplied code.
Serves as infrastructure for several features in PostgreSQL, such as logical
replication and parallel queries. In addition, Extensions can add custom
background worker processes.

For more information, see Chapter 45.

Background writer
(process)

A process that writes dirty data pages from shared memory to the file
system. It wakes up periodically, but works only for a short period in order
to distribute its expensive I/O activity over time to avoid generating larger
I/O peaks which could block other processes.

For more information, see Section 18.4.5.

2589

Glossary

Bloat Space in data pages which does not contain current row versions, such as
unused (free) space or outdated row versions.

Cast A conversion of a datum from its current data type to another data type.

For more information, see CREATE CAST.

Catalog The SQL standard uses this term to indicate what is called a database in
PostgreSQL's terminology.

(Don't confuse this term with system catalog).

For more information, see Section 21.1.

Check constraint A type of constraint defined on a relation which restricts the values allowed
in one or more attributes. The check constraint can make reference to any
attribute of the same row in the relation, but cannot reference other rows
of the same relation or other relations.

For more information, see Section 5.4.

Checkpoint A point in the WAL sequence at which it is guaranteed that the heap and
index data files have been updated with all information from shared memory
modified before that checkpoint; a checkpoint record is written and flushed
to WAL to mark that point.

A checkpoint is also the act of carrying out all the actions that are necessary
to reach a checkpoint as defined above. This process is initiated when
predefined conditions are met, such as a specified amount of time has
passed, or a certain volume of records has been written; or it can be invoked
by the user with the command CHECKPOINT.

For more information, see Section 28.4.

Checkpointer (process) A specialized process responsible for executing checkpoints.

Class (archaic) See Relation.

Client (process) Any process, possibly remote, that establishes a session by connecting to
an instance to interact with a database.

Column An attribute found in a table or view.

Commit The act of finalizing a transaction within the database, which makes it visible
to other transactions and assures its durability.

For more information, see COMMIT.

Concurrency The concept that multiple independent operations happen within the
database at the same time. In PostgreSQL, concurrency is controlled by the
multiversion concurrency control mechanism.

Connection An established line of communication between a client process and a
backend process, usually over a network, supporting a session. This term is
sometimes used as a synonym for session.

For more information, see Section 18.3.

Consistency The property that the data in the database is always in compliance with
integrity constraints. Transactions may be allowed to violate some of the
constraints transiently before it commits, but if such violations are not

2590

Glossary

resolved by the time it commits, such a transaction is automatically rolled
back. This is one of the ACID properties.

Constraint A restriction on the values of data allowed within a table, or in attributes
of a domain.

For more information, see Section 5.4.

Data area See Data directory.

Database A named collection of local SQL objects.

For more information, see Section 21.1.

Database cluster A collection of databases and global SQL objects, and their common static
and dynamic metadata. Sometimes referred to as a cluster.

In PostgreSQL, the term cluster is also sometimes used to refer to an
instance. (Don't confuse this term with the SQL command CLUSTER.)

Database server See Instance.

Data directory The base directory on the file system of a server that contains all data files
and subdirectories associated with a database cluster (with the exception
of tablespaces, and optionally WAL). The environment variable PGDATA is
commonly used to refer to the data directory.

A cluster's storage space comprises the data directory plus any additional
tablespaces.

For more information, see Section 65.1.

Data page The basic structure used to store relation data. All pages are of the same
size. Data pages are typically stored on disk, each in a specific file, and
can be read to shared buffers where they can be modified, becoming dirty.
They become clean when written to disk. New pages, which initially exist
in memory only, are also dirty until written.

Datum The internal representation of one value of an SQL data type.

Delete An SQL command which removes rows from a given table or relation.

For more information, see DELETE.

Durability The assurance that once a transaction has been committed, the changes
remain even after a system failure or crash. This is one of the ACID
properties.

Epoch See Transaction ID.

Extension A software add-on package that can be installed on an instance to get extra
features.

For more information, see Section 35.17.

File segment A physical file which stores data for a given relation. File segments are
limited in size by a configuration value (typically 1 gigabyte), so if a relation
exceeds that size, it is split into multiple segments.

For more information, see Section 65.1.

(Don't confuse this term with the similar term WAL segment).

2591

Glossary

Foreign data wrapper A means of representing data that is not contained in the local database so
that it appears as if were in local table(s). With a foreign data wrapper it is
possible to define a foreign server and foreign tables.

For more information, see CREATE FOREIGN DATA WRAPPER.

Foreign key A type of constraint defined on one or more columns in a table which
requires the value(s) in those columns to identify zero or one row in another
(or, infrequently, the same) table.

Foreign server A named collection of foreign tables which all use the same foreign data
wrapper and have other configuration values in common.

For more information, see CREATE SERVER.

Foreign table (relation) A relation which appears to have rows and columns similar to a regular
table, but will forward requests for data through its foreign data wrapper,
which will return result sets structured according to the definition of the
foreign table.

For more information, see CREATE FOREIGN TABLE.

Fork Each of the separate segmented file sets in which a relation is stored. The
main fork is where the actual data resides. There also exist two secondary
forks for metadata: the free space map and the visibility map. Unlogged
relations also have an init fork.

Free space map (fork) A storage structure that keeps metadata about each data page of a table's
main fork. The free space map entry for each page stores the amount of free
space that's available for future tuples, and is structured to be efficiently
searched for available space for a new tuple of a given size.

For more information, see Section 65.3.

Function (routine) A type of routine that receives zero or more arguments, returns zero or more
output values, and is constrained to run within one transaction. Functions
are invoked as part of a query, for example via SELECT. Certain functions
can return sets; those are called set-returning functions.

Functions can also be used for triggers to invoke.

For more information, see CREATE FUNCTION.

Grant An SQL command that is used to allow a user or role to access specific
objects within the database.

For more information, see GRANT.

Heap Contains the values of row attributes (i.e., the data) for a relation. The heap
is realized within one or more file segments in the relation's main fork.

Host A computer that communicates with other computers over a network. This
is sometimes used as a synonym for server. It is also used to refer to a
computer where client processes run.

Index (relation) A relation that contains data derived from a table or materialized view. Its
internal structure supports fast retrieval of and access to the original data.

For more information, see CREATE INDEX.

Insert An SQL command used to add new data into a table.

2592

Glossary

For more information, see INSERT.

Instance A group of backend and auxiliary processes that communicate using
a common shared memory area. One postmaster process manages the
instance; one instance manages exactly one database cluster with all its
databases. Many instances can run on the same server as long as their TCP
ports do not conflict.

The instance handles all key features of a DBMS: read and write access to
files and shared memory, assurance of the ACID properties, connections to
client processes, privilege verification, crash recovery, replication, etc.

Isolation The property that the effects of a transaction are not visible to concurrent
transactions before it commits. This is one of the ACID properties.

For more information, see Section 13.2.

Join An operation and SQL keyword used in queries for combining data from
multiple relations.

Key A means of identifying a row within a table or other relation by values
contained within one or more attributes in that relation.

Lock A mechanism that allows a process to limit or prevent simultaneous access
to a resource.

Log file Log files contain human-readable text lines about events. Examples include
login failures, long-running queries, etc.

For more information, see Section 23.3.

Logged A table is considered logged if changes to it are sent to the WAL. By default,
all regular tables are logged. A table can be specified as unlogged either at
creation time or via the ALTER TABLE command.

Logger (process) If activated, the process writes information about database events into the
current log file. When reaching certain time- or volume-dependent criteria,
a new log file is created. Also called syslogger.

For more information, see Section 18.8.

Log record Archaic term for a WAL record.

Master (server) See Primary (server).

Materialized The property that some information has been pre-computed and stored for
later use, rather than computing it on-the-fly.

This term is used in materialized view, to mean that the data derived from
the view's query is stored on disk separately from the sources of that data.

This term is also used to refer to some multi-step queries to mean that the
data resulting from executing a given step is stored in memory (with the
possibility of spilling to disk), so that it can be read multiple times by another
step.

Materialized view
(relation)

A relation that is defined by a SELECT statement (just like a view), but stores
data in the same way that a table does. It cannot be modified via INSERT,
UPDATE, or DELETE operations.

2593

Glossary

For more information, see CREATE MATERIALIZED VIEW.

Multi-version
concurrency control
(MVCC)

A mechanism designed to allow several transactions to be reading and
writing the same rows without one process causing other processes to
stall. In PostgreSQL, MVCC is implemented by creating copies (versions) of
tuples as they are modified; after transactions that can see the old versions
terminate, those old versions need to be removed.

Null A concept of non-existence that is a central tenet of relational database
theory. It represents the absence of a definite value.

Optimizer See Query planner.

Parallel query The ability to handle parts of executing a query to take advantage of parallel
processes on servers with multiple CPUs.

Partition One of several disjoint (not overlapping) subsets of a larger set.

In reference to a partitioned table: One of the tables that each contain part
of the data of the partitioned table, which is said to be the parent. The
partition is itself a table, so it can also be queried directly; at the same time,
a partition can sometimes be a partitioned table, allowing hierarchies to be
created.

In reference to a window function in a query, a partition is a user-defined
criterion that identifies which neighboring rows of the query's result set can
be considered by the function.

Partitioned table
(relation)

A relation that is in semantic terms the same as a table, but whose storage
is distributed across several partitions.

Postmaster (process) The very first process of an instance. It starts and manages the other
auxiliary processes and creates backend processes on demand.

For more information, see Section 17.3.

Primary key A special case of a unique constraint defined on a table or other relation
that also guarantees that all of the attributes within the primary key do not
have null values. As the name implies, there can be only one primary key
per table, though it is possible to have multiple unique constraints that also
have no null-capable attributes.

Primary (server) When two or more databases are linked via replication, the server that is
considered the authoritative source of information is called the primary,
also known as a master.

Procedure (routine) A type of routine. Their distinctive qualities are that they do not return
values, and that they are allowed to make transactional statements such as
COMMIT and ROLLBACK. They are invoked via the CALL command.

For more information, see CREATE PROCEDURE.

Query A request sent by a client to a backend, usually to return results or to modify
data on the database.

Query planner The part of PostgreSQL that is devoted to determining (planning) the most
efficient way to execute queries. Also known as query optimizer, optimizer,
or simply planner.

Record See Tuple.

2594

Glossary

Recycling See WAL file.

Referential integrity A means of restricting data in one relation by a foreign key so that it must
have matching data in another relation.

Relation The generic term for all objects in a database that have a name and a list
of attributes defined in a specific order. Tables, sequences, views, foreign
tables, materialized views, composite types, and indexes are all relations.

More generically, a relation is a set of tuples; for example, the result of a
query is also a relation.

In PostgreSQL, Class is an archaic synonym for relation.

Replica (server) A database that is paired with a primary database and is maintaining a copy
of some or all of the primary database's data. The foremost reasons for doing
this are to allow for greater access to that data, and to maintain availability
of the data in the event that the primary becomes unavailable.

Replication The act of reproducing data on one server onto another server called a
replica. This can take the form of physical replication, where all file changes
from one server are copied verbatim, or logical replication where a defined
subset of data changes are conveyed using a higher-level representation.

Result set A relation transmitted from a backend process to a client upon the
completion of an SQL command, usually a SELECT but it can be an INSERT,
UPDATE, or DELETE command if the RETURNING clause is specified.

The fact that a result set is a relation means that a query can be used in the
definition of another query, becoming a subquery.

Revoke A command to prevent access to a named set of database objects for a
named list of roles.

For more information, see REVOKE.

Role A collection of access privileges to the instance. Roles are themselves
a privilege that can be granted to other roles. This is often done for
convenience or to ensure completeness when multiple users need the same
privileges.

For more information, see CREATE ROLE.

Rollback A command to undo all of the operations performed since the beginning of
a transaction.

For more information, see ROLLBACK.

Routine A defined set of instructions stored in the database system that can be
invoked for execution. A routine can be written in a variety of programming
languages. Routines can be functions (including set-returning functions and
trigger functions), aggregate functions, and procedures.

Many routines are already defined within PostgreSQL itself, but user-
defined ones can also be added.

Row See Tuple.

Savepoint A special mark in the sequence of steps in a transaction. Data modifications
after this point in time may be reverted to the time of the savepoint.

2595

Glossary

For more information, see SAVEPOINT.

Schema A schema is a namespace for SQL objects, which all reside in the same
database. Each SQL object must reside in exactly one schema.

All system-defined SQL objects reside in schema pg_catalog.

More generically, the term schema is used to mean all data descriptions
(table definitions, constraints, comments, etc) for a given database or subset
thereof.

For more information, see Section 5.9.

Segment See File segment.

Select The SQL command used to request data from a database. Normally, SELECT
commands are not expected to modify the database in any way, but it is
possible that functions invoked within the query could have side effects that
do modify data.

For more information, see SELECT.

Sequence (relation) A type of relation that is used to generate values. Typically the generated
values are sequential non-repeating numbers. They are commonly used to
generate surrogate primary key values.

Server A computer on which PostgreSQL instances run. The term server denotes
real hardware, a container, or a virtual machine.

This term is sometimes used to refer to an instance or to a host.

Session A state that allows a client and a backend to interact, communicating over
a connection.

Shared memory RAM which is used by the processes common to an instance. It mirrors
parts of database files, provides a transient area for WAL records, and stores
additional common information. Note that shared memory belongs to the
complete instance, not to a single database.

The largest part of shared memory is known as shared buffers and is used
to mirror part of data files, organized into pages. When a page is modified,
it is called a dirty page until it is written back to the file system.

For more information, see Section 18.4.1.

SQL object Any object that can be created with a CREATE command. Most objects are
specific to one database, and are commonly known as local objects.

Most local objects belong to a specific schema in their containing database,
such as relations (all types), routines (all types), data types, etc. The names
of such objects of the same type in the same schema are enforced to be
unique.

There also exist local objects that do not belong to schemas; some examples
are extensions, data type casts, and foreign data wrappers. The names of
such objects of the same type are enforced to be unique within the database.

Other object types, such as roles, tablespaces, replication origins,
subscriptions for logical replication, and databases themselves are not local
SQL objects since they exist entirely outside of any specific database; they

2596

Glossary

are called global objects. The names of such objects are enforced to be
unique within the whole database cluster.

For more information, see Section 21.1.

SQL standard A series of documents that define the SQL language.

Standby (server) See Replica (server).

Stats collector (process) This process collects statistical information about the instance's activities.

For more information, see Section 26.2.

System catalog A collection of tables which describe the structure of all SQL objects
of the instance. The system catalog resides in the schema pg_catalog.
These tables contain data in internal representation and are not typically
considered useful for user examination; a number of user-friendlier views,
also in schema pg_catalog, offer more convenient access to some of
that information, while additional tables and views exist in schema
information_schema (see Chapter 34) that expose some of the same and
additional information as mandated by the SQL standard.

For more information, see Section 5.9.

Table A collection of tuples having a common data structure (the same number of
attributes, in the same order, having the same name and type per position).
A table is the most common form of relation in PostgreSQL.

For more information, see CREATE TABLE.

Tablespace A named location on the server file system. All SQL objects which require
storage beyond their definition in the system catalog must belong to a single
tablespace. Initially, a database cluster contains a single usable tablespace
which is used as the default for all SQL objects, called pg_default.

For more information, see Section 21.6.

Temporary table Tables that exist either for the lifetime of a session or a transaction, as
specified at the time of creation. The data in them is not visible to other
sessions, and is not logged. Temporary tables are often used to store
intermediate data for a multi-step operation.

For more information, see CREATE TABLE.

TOAST A mechanism by which large attributes of table rows are split and stored in a
secondary table, called the TOAST table. Each relation with large attributes
has its own TOAST table.

For more information, see Section 65.2.

Transaction A combination of commands that must act as a single atomic command:
they all succeed or all fail as a single unit, and their effects are not visible
to other sessions until the transaction is complete, and possibly even later,
depending on the isolation level.

For more information, see Section 13.2.

Transaction ID The numerical, unique, sequentially-assigned identifier that each
transaction receives when it first causes a database modification.
Frequently abbreviated as xid. When stored on disk, xids are only 32-
bits wide, so only approximately four billion write transaction IDs can be
generated; to permit the system to run for longer than that, epochs are

2597

Glossary

used, also 32 bits wide. When the counter reaches the maximum xid value,
it starts over at 3 (values under that are reserved) and the epoch value
is incremented by one. In some contexts, the epoch and xid values are
considered together as a single 64-bit value.

For more information, see Section 8.19.

Transactions per second
(TPS)

Average number of transactions that are executed per second, totaled
across all sessions active for a measured run. This is used as a measure of
the performance characteristics of an instance.

Trigger A function which can be defined to execute whenever a certain operation
(INSERT, UPDATE, DELETE, TRUNCATE) is applied to a relation. A trigger
executes within the same transaction as the statement which invoked it, and
if the function fails, then the invoking statement also fails.

For more information, see CREATE TRIGGER.

Tuple A collection of attributes in a fixed order. That order may be defined by the
table (or other relation) where the tuple is contained, in which case the tuple
is often called a row. It may also be defined by the structure of a result set,
in which case it is sometimes called a record.

Unique constraint A type of constraint defined on a relation which restricts the values allowed
in one or a combination of columns so that each value or combination of
values can only appear once in the relation — that is, no other row in the
relation contains values that are equal to those.

Because null values are not considered equal to each other, multiple rows
with null values are allowed to exist without violating the unique constraint.

Unlogged The property of certain relations that the changes to them are not reflected
in the WAL. This disables replication and crash recovery for these relations.

The primary use of unlogged tables is for storing transient work data that
must be shared across processes.

Temporary tables are always unlogged.

Update An SQL command used to modify rows that may already exist in a specified
table. It cannot create or remove rows.

For more information, see UPDATE.

User A role that has the LOGIN privilege.

User mapping The translation of login credentials in the local database to credentials in a
remote data system defined by a foreign data wrapper.

For more information, see CREATE USER MAPPING.

Vacuum The process of removing outdated tuple versions from tables or materialized
views, and other closely related processing required by PostgreSQL's
implementation of MVCC. This can be initiated through the use of the
VACUUM command, but can also be handled automatically via autovacuum
processes.

For more information, see Section 23.1 .

View A relation that is defined by a SELECT statement, but has no storage of
its own. Any time a query references a view, the definition of the view is

2598

Glossary

substituted into the query as if the user had typed it as a subquery instead
of the name of the view.

For more information, see CREATE VIEW.

Visibility map (fork) A storage structure that keeps metadata about each data page of a table's
main fork. The visibility map entry for each page stores two bits: the first
one (all-visible) indicates that all tuples in the page are visible to all
transactions. The second one (all-frozen) indicates that all tuples in the
page are marked frozen.

WAL See Write-ahead log.

WAL archiver (process) A process that saves copies of WAL files for the purpose of creating backups
or keeping replicas current.

For more information, see Section 24.3.

WAL file Also known as WAL segment or WAL segment file. Each of the sequentially-
numbered files that provide storage space for WAL. The files are all of
the same predefined size and are written in sequential order, interspersing
changes as they occur in multiple simultaneous sessions. If the system
crashes, the files are read in order, and each of the changes is replayed to
restore the system to the state it was in before the crash.

Each WAL file can be released after a checkpoint writes all the changes in
it to the corresponding data files. Releasing the file can be done either by
deleting it, or by changing its name so that it will be used in the future,
which is called recycling.

For more information, see Section 28.5.

WAL record A low-level description of an individual data change. It contains sufficient
information for the data change to be re-executed (replayed) in case a
system failure causes the change to be lost. WAL records use a non-printable
binary format.

For more information, see Section 28.5.

WAL segment See WAL file.

WAL writer (process) A process that writes WAL records from shared memory to WAL files.

For more information, see Section 18.5.

Window function
(routine)

A type of function used in a query that applies to a partition of the query's
result set; the function's result is based on values found in rows of the same
partition or frame.

All aggregate functions can be used as window functions, but window
functions can also be used to, for example, give ranks to each of the rows
in the partition. Also known as analytic functions.

For more information, see Section 3.5.

Write-ahead log The journal that keeps track of the changes in the database cluster as user-
and system-invoked operations take place. It comprises many individual
WAL records written sequentially to WAL files.

2599

Appendix N. Color Support
Most programs in the PostgreSQL package can produce colorized console output. This appendix
describes how that is configured.

N.1. When Color is Used
To use colorized output, set the environment variable PG_COLORas follows:
1. If the value is always, then color is used.
2. If the value is auto and the standard error stream is associated with a terminal device, then color

is used.
3. Otherwise, color is not used.

N.2. Configuring the Colors
The actual colors to be used are configured using the environment variable PG_COLORS(note plural). The
value is a colon-separated list of key=value pairs. The keys specify what the color is to be used for. The
values are SGR (Select Graphic Rendition) specifications, which are interpreted by the terminal.

The following keys are currently in use:

error

used to highlight the text “error” in error messages

warning

used to highlight the text “warning” in warning messages

locus

used to highlight location information (e.g., program name and file name) in messages

The default value is error=01;31:warning=01;35:locus=01 (01;31 = bold red, 01;35 = bold magenta,
01 = bold default color).

Tip
This color specification format is also used by other software packages such as GCC, GNU
coreutils, and GNU grep.

2600

Appendix O. Obsolete or Renamed
Features

Functionality is sometimes removed from PostgreSQL, feature, setting and file names sometimes change,
or documentation moves to different places. This section directs users coming from old versions of the
documentation or from external links to the appropriate new location for the information they need.

O.1. recovery.conf file merged into postgresql.conf
Postgres Pro 11 and below used a configuration file named recovery.conf to manage replicas and
standbys. Support for this file was removed in Postgres Pro 12. See the release notes for PostgreSQL
12 for details on this change.

On Postgres Pro 12 and above, archive recovery, streaming replication, and PITR are configured using
normal server configuration parameters. These are set in postgresql.conf or via ALTER SYSTEM like
any other parameter.

The server will not start if a recovery.conf exists.

The trigger_file setting has been renamed to promote_trigger_file.

The standby_mode setting has been removed. A standby.signal file in the data directory is used instead.
See Standby Server Operation for details.

O.2. pg_xlogdump renamed to pg_waldump
Postgres Pro 9.6 and below provided a command named pg_xlogdump to read write-ahead-log (WAL)
files. This command was renamed to pg_waldump, see pg_waldump for documentation of pg_waldump
and see the release notes for PostgreSQL 10 for details on this change.

O.3. pg_resetxlog renamed to pg_resetwal
Postgres Pro 9.6 and below provided a command named pg_resetxlog to reset the write-ahead-
log (WAL) files. This command was renamed to pg_resetwal, see pg_resetwal for documentation of
pg_resetwal and see the release notes for PostgreSQL 10 for details on this change.

O.4. pg_receivexlog renamed to pg_receivewal
Postgres Pro 9.6 and below provided a command named pg_receivexlog to fetch write-ahead-log
(WAL) files. This command was renamed to pg_receivewal, see pg_receivewal for documentation of
pg_receivewal and see the release notes for PostgreSQL 10 for details on this change.

2601

Bibliography
Selected references and readings for SQL and PostgreSQL.

Some white papers and technical reports from the original POSTGRES development team are available
at the University of California, Berkeley, Computer Science Department web site.

SQL Reference Books
[bowman01] The Practical SQL Handbook. Using SQL Variants. Fourth Edition. Judith Bowman, Sandra

Emerson, and Marcy Darnovsky. ISBN 0-201-70309-2. Addison-Wesley Professional. 2001.

[date97] A Guide to the SQL Standard. A user's guide to the standard database language SQL. Fourth
Edition. C. J. Date and Hugh Darwen. ISBN 0-201-96426-0. Addison-Wesley. 1997.

[date04] An Introduction to Database Systems. Eighth Edition. C. J. Date. ISBN 0-321-19784-4. Addison-
Wesley. 2003.

[elma04] Fundamentals of Database Systems. Fourth Edition. Ramez Elmasri and Shamkant Navathe.
ISBN 0-321-12226-7. Addison-Wesley. 2003.

[melt93] Understanding the New SQL. A complete guide. Jim Melton and Alan R. Simon. ISBN
1-55860-245-3. Morgan Kaufmann. 1993.

[ull88] Principles of Database and Knowledge-Base Systems. Classical Database Systems. Jeffrey D.
Ullman. Volume 1. Computer Science Press. 1988.

[sqltr-19075-6] SQL Technical Report. Part 6: SQL support for JavaScript Object Notation (JSON). First
Edition. 2017.

PostgreSQL-specific Documentation
[sim98] Enhancement of the ANSI SQL Implementation of PostgreSQL. Stefan Simkovics. Department of

Information Systems, Vienna University of Technology. Vienna, Austria. November 29, 1998.

[yu95] The Postgres95. User Manual. A. Yu and J. Chen. University of California. Berkeley, California.
Sept. 5, 1995.

[fong] The design and implementation of the POSTGRES query optimizer. Zelaine Fong. University of
California, Berkeley, Computer Science Department.

Proceedings and Articles
[ports12] “Serializable Snapshot Isolation in PostgreSQL”. D. Ports and K. Grittner. VLDB Conference,

August 2012.

[berenson95] “A Critique of ANSI SQL Isolation Levels”. H. Berenson, P. Bernstein, J. Gray, J. Melton, E.
O'Neil, and P. O'Neil. ACM-SIGMOD Conference on Management of Data, June 1995.

[olson93] Partial indexing in POSTGRES: research project. Nels Olson. UCB Engin T7.49.1993 O676.
University of California. Berkeley, California. 1993.

[ong90] “A Unified Framework for Version Modeling Using Production Rules in a Database System”. L.
Ong and J. Goh. ERL Technical Memorandum M90/33. University of California. Berkeley, California.
April, 1990.

[rowe87] “The POSTGRES data model”. L. Rowe and M. Stonebraker. VLDB Conference, Sept. 1987.

2602

https://dsf.berkeley.edu/papers/
https://dsf.berkeley.edu/papers/UCB-MS-zfong.pdf
https://arxiv.org/pdf/1208.4179
https://www.microsoft.com/en-us/research/wp-content/uploads/2016/02/tr-95-51.pdf
https://dsf.berkeley.edu/papers/ERL-M87-13.pdf

Bibliography

[seshadri95] “Generalized Partial Indexes”. P. Seshadri and A. Swami. Eleventh International Conference
on Data Engineering, 6–10 March 1995. Cat. No.95CH35724. IEEE Computer Society Press. Los
Alamitos, California. 1995. 420–7.

[ston86] “The design of POSTGRES”. M. Stonebraker and L. Rowe. ACM-SIGMOD Conference on
Management of Data, May 1986.

[ston87a] “The design of the POSTGRES. rules system”. M. Stonebraker, E. Hanson, and C. H. Hong.
IEEE Conference on Data Engineering, Feb. 1987.

[ston87b] “The design of the POSTGRES storage system”. M. Stonebraker. VLDB Conference, Sept. 1987.

[ston89] “A commentary on the POSTGRES rules system”. M. Stonebraker, M. Hearst, and S. Potamianos.
SIGMOD Record 18(3). Sept. 1989.

[ston89b] “The case for partial indexes”. M. Stonebraker. SIGMOD Record 18(4). Dec. 1989. 4–11.

[ston90a] “The implementation of POSTGRES”. M. Stonebraker, L. A. Rowe, and M. Hirohama.
Transactions on Knowledge and Data Engineering 2(1). IEEE. March 1990.

[ston90b] “On Rules, Procedures, Caching and Views in Database Systems”. M. Stonebraker, A. Jhingran,
J. Goh, and S. Potamianos. ACM-SIGMOD Conference on Management of Data, June 1990.

2603

https://citeseer.ist.psu.edu/viewdoc/summary?doi=10.1.1.40.5740
https://dsf.berkeley.edu/papers/ERL-M85-95.pdf
https://dsf.berkeley.edu/papers/ERL-M87-06.pdf
https://dsf.berkeley.edu/papers/ERL-M89-82.pdf
https://dsf.berkeley.edu/papers/ERL-M89-17.pdf
https://dsf.berkeley.edu/papers/ERL-M90-34.pdf
https://dsf.berkeley.edu/papers/ERL-M90-36.pdf

Index
Symbols
$, 29
$libdir, 941
$libdir/plugins, 534, 1558
*, 103
.pgpass, 752
.pg_service.conf, 753
::, 35
_PG_fini, 941
_PG_init, 941
_PG_output_plugin_init, 1206

A
abbrev, 245
ABORT, 1214
abs, 182
ACL, 56
aclcontains, 310
acldefault, 310
aclexplode, 310
aclitem, 59
aclitemeq, 310
acos, 185
acosd, 185
acosh, 187
administration tools

externally maintained, 2564
adminpack, 2182
advisory lock, 410
age, 225
aggregate function, 10

built-in, 290
invocation, 31
moving aggregate, 961
ordered set, 964
partial aggregation, 965
polymorphic, 962
support functions for, 966
user-defined, 960
variadic, 962

AIX
IPC configuration, 459

akeys, 2241
alias

for table name in query, 10
in the FROM clause, 94
in the select list, 104

ALL, 298, 300
allow_system_table_mods configuration parameter,
541
ALTER AGGREGATE, 1215
ALTER COLLATION, 1217
ALTER CONVERSION, 1219
ALTER DATABASE, 1220

ALTER DEFAULT PRIVILEGES, 1222
ALTER DOMAIN, 1225
ALTER EVENT TRIGGER, 1228
ALTER EXTENSION, 1229
ALTER FOREIGN DATA WRAPPER, 1232
ALTER FOREIGN TABLE, 1234
ALTER FUNCTION, 1239
ALTER GROUP, 1242
ALTER INDEX, 1243
ALTER LANGUAGE, 1246
ALTER LARGE OBJECT, 1247
ALTER MATERIALIZED VIEW, 1248
ALTER OPERATOR, 1250
ALTER OPERATOR CLASS, 1252
ALTER OPERATOR FAMILY, 1253
ALTER POLICY, 1257
ALTER PROCEDURE, 1258
ALTER PUBLICATION, 1261
ALTER ROLE, 566, 1263
ALTER ROUTINE, 1266
ALTER RULE, 1267
ALTER SCHEMA, 1268
ALTER SEQUENCE, 1269
ALTER SERVER, 1272
ALTER STATISTICS, 1273
ALTER SUBSCRIPTION, 1274
ALTER SYSTEM, 1276
ALTER TABLE, 1278
ALTER TABLESPACE, 1293
ALTER TEXT SEARCH CONFIGURATION, 1294
ALTER TEXT SEARCH DICTIONARY, 1296
ALTER TEXT SEARCH PARSER, 1298
ALTER TEXT SEARCH TEMPLATE, 1299
ALTER TRIGGER, 1300
ALTER TYPE, 1301
ALTER USER, 1305
ALTER USER MAPPING, 1306
ALTER VIEW, 1307
amcheck, 2183
ANALYZE, 595, 1309
AND (operator), 176
anonymous code blocks, 1483
any, 173
ANY, 292, 298, 300
anyarray, 173
anyarray_elemtype, 2231
anyarray_to_text, 2230
anycompatible, 173
anycompatiblearray, 173
anycompatiblenonarray, 173
anycompatiblerange, 173
anyelement, 173
anyenum, 173
anynonarray, 173
anyrange, 173
applicable role, 875
application_name configuration parameter, 519
arbitrary precision numbers, 116

2604

Index

archive_cleanup_command configuration
parameter, 499
archive_command configuration parameter, 498
archive_mode configuration parameter, 498
archive_timeout configuration parameter, 498
area, 241
armor, 2281
array, 153

accessing, 155
constant, 153
constructor, 37
declaration, 153
I/O, 160
modifying, 157
of user-defined type, 968
searching, 159

ARRAY, 37
determination of result type, 348

array_agg, 290, 2247
array_append, 286
array_cat, 286
array_dims, 286
array_fill, 286
array_length, 286
array_lower, 287
array_ndims, 287
array_nulls configuration parameter, 537
array_position, 287
array_positions, 287
array_prepend, 287
array_remove, 287
array_replace, 287
array_to_json, 268
array_to_string, 287
array_to_tsvector, 248
array_upper, 287
ascii, 189
asin, 185
asind, 185
asinh, 187
ASSERT

in PL/pgSQL, 1077
assertions

in PL/pgSQL, 1077
asynchronous commit, 682
AT TIME ZONE, 233
atan, 186
atan2, 186
atan2d, 186
atand, 186
atanh, 187
authentication_timeout configuration parameter,
482
auth_delay, 2186
auth_delay.milliseconds configuration parameter,
2187
auto-increment (see serial)
autocommit

bulk-loading data, 430
psql, 1756

autosummarize storage parameter, 1377
autovacuum

configuration parameters, 525
general information, 599

autovacuum configuration parameter, 525
autovacuum_analyze_scale_factor

configuration parameter, 526
storage parameter, 1434

autovacuum_analyze_threshold
configuration parameter, 526
storage parameter, 1434

autovacuum_enabled storage parameter, 1433
autovacuum_freeze_max_age

configuration parameter, 527
storage parameter, 1434

autovacuum_freeze_min_age storage parameter,
1434
autovacuum_freeze_table_age storage parameter,
1435
autovacuum_max_workers configuration
parameter, 526
autovacuum_multixact_freeze_max_age

configuration parameter, 527
storage parameter, 1435

autovacuum_multixact_freeze_min_age storage
parameter, 1435
autovacuum_multixact_freeze_table_age storage
parameter, 1435
autovacuum_naptime configuration parameter, 526
autovacuum_vacuum_cost_delay

configuration parameter, 527
storage parameter, 1434

autovacuum_vacuum_cost_limit
configuration parameter, 527
storage parameter, 1434

autovacuum_vacuum_insert_scale_factor
configuration parameter, 526
storage parameter, 1434

autovacuum_vacuum_insert_threshold
configuration parameter, 526
storage parameter, 1434

autovacuum_vacuum_scale_factor
configuration parameter, 526
storage parameter, 1434

autovacuum_vacuum_threshold
configuration parameter, 526
storage parameter, 1434

autovacuum_work_mem configuration parameter,
487
auto_explain, 2187
auto_explain.log_analyze configuration parameter,
2187
auto_explain.log_buffers configuration parameter,
2188
auto_explain.log_format configuration parameter,
2188

2605

Index

auto_explain.log_level configuration parameter,
2188
auto_explain.log_min_duration configuration
parameter, 2187
auto_explain.log_nested_statements configuration
parameter, 2188
auto_explain.log_settings configuration parameter,
2188
auto_explain.log_timing configuration parameter,
2188
auto_explain.log_triggers configuration parameter,
2188
auto_explain.log_verbose configuration parameter,
2188
auto_explain.log_wal configuration parameter,
2188
auto_explain.sample_rate configuration parameter,
2188
avals, 2242
average, 291
avg, 291

B
B-tree (see index)
backend_flush_after configuration parameter, 492
Background workers, 1199
backslash escapes, 23
backslash_quote configuration parameter, 537
backtrace_functions configuration parameter, 541
backup, 322, 603
Backup Manifest, 2055
base type, 920
base64 format, 198
BASE_BACKUP, 1921
BEGIN, 1312
BETWEEN, 179
BETWEEN SYMMETRIC, 179
BGWORKER_BACKEND_
DATABASE_CONNECTION, 1200
BGWORKER_SHMEM_ACCESS, 1199
bgwriter_delay configuration parameter, 489
bgwriter_flush_after configuration parameter, 490
bgwriter_lru_maxpages configuration parameter,
490
bgwriter_lru_multiplier configuration parameter,
490
bigint, 26, 116
bigserial, 119
binary data, 122

functions, 195
binary string

concatenation, 195
converting to character string, 197
length, 196

bit string
constant, 25
data type, 140
length, 199

bit strings
functions, 198

bitmap scan, 355, 508
bit_and, 291
bit_length, 188, 195, 199
bit_or, 291
BLOB (see large object)
block_size configuration parameter, 539
bloom, 2189
bonjour configuration parameter, 480
bonjour_name configuration parameter, 481
Boolean

data type, 133
operators (see operators, logical)

bool_and, 291
bool_or, 291
booting

starting the server during, 455
bound_box, 242
box, 242
box (data type), 136
BRIN (see index)
brin_desummarize_range, 332
brin_metapage_info, 2273
brin_page_items, 2273
brin_page_type, 2272
brin_revmap_data, 2273
brin_summarize_new_values, 331
brin_summarize_range, 332
broadcast, 245
BSD Authentication, 563
btree_gin, 2192
btree_gist, 2193
btrim, 189, 196
bt_index_check, 2183
bt_index_parent_check, 2184
bt_metap, 2270
bt_page_items, 2271, 2272
bt_page_stats, 2270
buffering storage parameter, 1377
bytea, 122
bytea_output configuration parameter, 531

C
C, 697, 781
C++, 958
CALL, 1314
canceling

SQL command, 733
cardinality, 287
CASCADE

with DROP, 85
foreign key action, 52

Cascading Replication, 618
CASE, 283

determination of result type, 348
case sensitivity

of SQL commands, 21

2606

Index

cast
I/O conversion, 1342

cbrt, 182
ceil, 182
ceiling, 182
center, 241
Certificate, 562
chained transactions, 1323, 1584

in PL/pgSQL, 1075
char, 120
character, 120
character set, 533, 540, 584
character string

concatenation, 188
constant, 23
converting to binary string, 197
data types, 120
length, 188

character varying, 120
character_length, 188
char_length, 188
check constraint, 46
CHECK OPTION, 1471
checkpoint, 683
CHECKPOINT, 1315
checkpoint_completion_target configuration
parameter, 497
checkpoint_flush_after configuration parameter,
497
checkpoint_timeout configuration parameter, 497
checkpoint_warning configuration parameter, 497
check_function_bodies configuration parameter,
529
chr, 190
cid, 172
cidr, 138
circle, 137, 242
citext, 2194
client authentication, 546

timeout during, 482
client_encoding configuration parameter, 533
client_min_messages configuration parameter, 527
clock_timestamp, 225
CLOSE, 1316
cluster

of databases (see database cluster)
CLUSTER, 1317
clusterdb, 1643
clustering, 618
cluster_name configuration parameter, 524
cmax, 53
cmin, 53
COALESCE, 284
COLLATE, 36
collation, 578

in PL/pgSQL, 1048
in SQL functions, 937

COLLATION FOR, 314

color, 2600
column, 6, 43

adding, 54
removing, 55
renaming, 56
system column, 53

column data type
changing, 56

column reference, 29
col_description, 317
comment

about database objects, 317
in SQL, 27

COMMENT, 1319
COMMIT, 1323
COMMIT PREPARED, 1324
commit_delay configuration parameter, 496
commit_siblings configuration parameter, 497
common table expression (see WITH)
comparison

composite type, 300
operators, 176
row constructor, 300
subquery result row, 298

compiling
libpq applications, 758

composite type, 161, 920
comparison, 300
constant, 162
constructor, 38

computed field, 165
concat, 190
concat_ws, 190
concurrency, 400
conditional expression, 283
configuration

of recovery
of a standby server, 498

of the server, 475
of the server

functions, 321
config_file configuration parameter, 478
conjunction, 176
connectby, 2427, 2432
connection service file, 753
conninfo, 703
constant, 22
constraint, 46

adding, 55
check, 46
exclusion, 53
foreign key, 50
name, 46
NOT NULL, 48
primary key, 50
removing, 55
unique, 49

constraint exclusion, 83, 512

2607

Index

constraint_exclusion configuration parameter, 512
container type, 920
CONTINUE

in PL/pgSQL, 1062
continuous archiving, 603

in standby, 629
control file, 987
convert, 197
convert_from, 198
convert_to, 198
COPY, 7, 1325

with libpq, 736
corr, 293
correlation, 293

in the query planner, 426
cos, 186
cosd, 186
cosh, 187
cot, 186
cotd, 186
count, 291
covariance

population, 293
sample, 293

covar_pop, 293
covar_samp, 293
covering index, 359
cpu_index_tuple_cost configuration parameter, 510
cpu_operator_cost configuration parameter, 510
cpu_tuple_cost configuration parameter, 510
CREATE ACCESS METHOD, 1334
CREATE AGGREGATE, 1335
CREATE CAST, 1342
CREATE COLLATION, 1346
CREATE CONVERSION, 1348
CREATE DATABASE, 571, 1350
CREATE DOMAIN, 1353
CREATE EVENT TRIGGER, 1356
CREATE EXTENSION, 1358
CREATE FOREIGN DATA WRAPPER, 1360
CREATE FOREIGN TABLE, 1362
CREATE FUNCTION, 1366
CREATE GROUP, 1373
CREATE INDEX, 1374
CREATE LANGUAGE, 1382
CREATE MATERIALIZED VIEW, 1384
CREATE OPERATOR, 1386
CREATE OPERATOR CLASS, 1389
CREATE OPERATOR FAMILY, 1392
CREATE POLICY, 1393
CREATE PROCEDURE, 1398
CREATE PUBLICATION, 1401
CREATE ROLE, 565, 1403
CREATE RULE, 1407
CREATE SCHEMA, 1410
CREATE SEQUENCE, 1412
CREATE SERVER, 1415
CREATE STATISTICS, 1417

CREATE SUBSCRIPTION, 1419
CREATE TABLE, 6, 1422
CREATE TABLE AS, 1442
CREATE TABLESPACE, 574, 1445
CREATE TEXT SEARCH CONFIGURATION, 1447
CREATE TEXT SEARCH DICTIONARY, 1448
CREATE TEXT SEARCH PARSER, 1450
CREATE TEXT SEARCH TEMPLATE, 1452
CREATE TRANSFORM, 1453
CREATE TRIGGER, 1455
CREATE TYPE, 1461
CREATE USER, 1469
CREATE USER MAPPING, 1470
CREATE VIEW, 1471
createdb, 2, 572, 1646
createuser, 565, 1649
create_baseline, 2313
CREATE_REPLICATION_SLOT, 1918
create_server, 2310
cross join, 91
crosstab, 2427, 2429, 2430
crypt, 2278
cstring, 173
CSV (Comma-Separated Values) format

in psql, 1750
ctid, 53
CTID, 1021
CUBE, 101
cube (extension), 2196
cume_dist, 297

hypothetical, 295
current_catalog, 306
current_database, 306
current_date, 225
current_logfiles

and the log_destination configuration parameter,
514
and the pg_current_logfile function, 307

current_query, 306
current_role, 306
current_schema, 306
current_schemas, 306
current_setting, 322
current_time, 225
current_timestamp, 226
current_user, 306
currval, 281
cursor

CLOSE, 1316
DECLARE, 1476
FETCH, 1538
in PL/pgSQL, 1069
MOVE, 1562
showing the query plan, 1533

cursor_tuple_fraction configuration parameter, 513
custom scan provider

handler for, 1970

2608

Index

D
data area (see database cluster)
data partitioning, 618
data type, 114

base, 920
category, 341
composite, 920
constant, 26
container, 920
conversion, 340
domain, 171
enumerated (enum), 134
internal organization, 942
numeric, 115
polymorphic, 921
type cast, 35
user-defined, 966

database, 571
creating, 2
privilege to create, 566

database activity
monitoring, 639

database cluster, 6, 452
data_checksums configuration parameter, 539
data_directory configuration parameter, 478
data_directory_mode configuration parameter, 539
data_sync_retry configuration parameter, 539
date, 124, 125

constants, 128
current, 234
output format, 128

(see also formatting)
DateStyle configuration parameter, 532
date_part, 226, 229
date_trunc, 226, 233
dblink, 2200, 2205
dblink_build_sql_delete, 2226
dblink_build_sql_insert, 2224
dblink_build_sql_update, 2227
dblink_cancel_query, 2222
dblink_close, 2214
dblink_connect, 2201
dblink_connect_u, 2203
dblink_disconnect, 2204
dblink_error_message, 2216
dblink_exec, 2208
dblink_fetch, 2212
dblink_get_connections, 2215
dblink_get_notify, 2219
dblink_get_pkey, 2223
dblink_get_result, 2220
dblink_is_busy, 2218
dblink_open, 2210
dblink_send_query, 2217
db_user_namespace configuration parameter, 482
deadlock, 409

timeout during, 536

deadlock_timeout configuration parameter, 536
DEALLOCATE, 1475
dearmor, 2281
debug_assertions configuration parameter, 539
debug_deadlocks configuration parameter, 543
debug_pretty_print configuration parameter, 519
debug_print_parse configuration parameter, 519
debug_print_plan configuration parameter, 519
debug_print_rewritten configuration parameter,
519
decimal (see numeric)
DECLARE, 1476
decode, 198
decode_bytea

in PL/Perl, 1119
decrypt, 2284
decrypt_iv, 2284
deduplicate_items storage parameter, 1377
default value, 44

changing, 55
default_statistics_target configuration parameter,
512
default_tablespace configuration parameter, 528
default_table_access_method configuration
parameter, 528
default_text_search_config configuration
parameter, 534
default_transaction_deferrable configuration
parameter, 529
default_transaction_isolation configuration
parameter, 529
default_transaction_read_only configuration
parameter, 529
deferrable transaction, 530

setting, 1621
setting default, 529

defined, 2243
degrees, 182
delay, 236
DELETE, 12, 88, 1479

RETURNING, 89
delete, 2243
deleting, 88
dense_rank, 296

hypothetical, 295
diagonal, 241
diameter, 241
dict_int, 2228
dict_xsyn, 2228
difference, 2237
digest, 2277
dirty read, 400
disable_server, 2310
DISCARD, 1482
disjunction, 176
disk drive, 686
disk space, 594
disk usage, 678

2609

Index

DISTINCT, 8, 104
div, 182
dmetaphone, 2239
dmetaphone_alt, 2239
DO, 1483
document

text search, 366
dollar quoting, 24
domain, 171
double precision, 117
DROP ACCESS METHOD, 1484
DROP AGGREGATE, 1485
DROP CAST, 1487
DROP COLLATION, 1488
DROP CONVERSION, 1489
DROP DATABASE, 573, 1490
DROP DOMAIN, 1491
DROP EVENT TRIGGER, 1492
DROP EXTENSION, 1493
DROP FOREIGN DATA WRAPPER, 1494
DROP FOREIGN TABLE, 1495
DROP FUNCTION, 1496
DROP GROUP, 1498
DROP INDEX, 1499
DROP LANGUAGE, 1500
DROP MATERIALIZED VIEW, 1501
DROP OPERATOR, 1502
DROP OPERATOR CLASS, 1504
DROP OPERATOR FAMILY, 1505
DROP OWNED, 1506
DROP POLICY, 1507
DROP PROCEDURE, 1508
DROP PUBLICATION, 1510
DROP ROLE, 565, 1511
DROP ROUTINE, 1512
DROP RULE, 1513
DROP SCHEMA, 1514
DROP SEQUENCE, 1515
DROP SERVER, 1516
DROP STATISTICS, 1517
DROP SUBSCRIPTION, 1518
DROP TABLE, 7, 1519
DROP TABLESPACE, 1520
DROP TEXT SEARCH CONFIGURATION, 1521
DROP TEXT SEARCH DICTIONARY, 1522
DROP TEXT SEARCH PARSER, 1523
DROP TEXT SEARCH TEMPLATE, 1524
DROP TRANSFORM, 1525
DROP TRIGGER, 1526
DROP TYPE, 1527
DROP USER, 1528
DROP USER MAPPING, 1529
DROP VIEW, 1530
dropdb, 574, 1653
dropuser, 565, 1656
drop_baseline, 2314
DROP_REPLICATION_SLOT, 1921
drop_server, 2310

DTD, 144
dump_stat, 2230
dump_statistic, 2230
duplicate, 8
duplicates, 104
dynamic loading, 535, 941
dynamic_library_path, 941
dynamic_library_path configuration parameter, 535
dynamic_shared_memory_type configuration
parameter, 488

E
each, 2243
earth, 2232
earthdistance, 2232
earth_box, 2233
earth_distance, 2233
ECPG, 781
ecpg, 1658
effective_cache_size configuration parameter, 511
effective_io_concurrency configuration parameter,
490
elog

in PL/Perl, 1119
in PL/Python, 1138
in PL/Tcl, 1105

embedded SQL
in C, 781

enabled role, 892
enable_bitmapscan configuration parameter, 508
enable_compound_index_stats configuration
parameter, 509
enable_gathermerge configuration parameter, 508
enable_hashagg configuration parameter, 508
enable_hashjoin configuration parameter, 508
enable_incremental_sort configuration parameter,
508
enable_indexonlyscan configuration parameter, 508
enable_indexscan configuration parameter, 508
enable_material configuration parameter, 508
enable_mergejoin configuration parameter, 508
enable_nestloop configuration parameter, 508
enable_parallel_append configuration parameter,
508
enable_parallel_hash configuration parameter, 508
enable_partitionwise_aggregate configuration
parameter, 509
enable_partitionwise_join configuration parameter,
508
enable_partition_pruning configuration parameter,
508
enable_self_join_removal configuration parameter,
509
enable_seqscan configuration parameter, 509
enable_server, 2310
enable_sort configuration parameter, 509
enable_tidscan configuration parameter, 509
encode, 198

2610

Index

encode_array_constructor
in PL/Perl, 1119

encode_array_literal
in PL/Perl, 1119

encode_bytea
in PL/Perl, 1119

encode_typed_literal
in PL/Perl, 1119

encrypt, 2284
encryption, 468

for specific columns, 2277
encrypt_iv, 2284
END, 1531
enumerated types, 134
enum_first, 236
enum_last, 237
enum_range, 237
environment variable, 751
ephemeral named relation

registering with SPI, 1171, 1173
unregistering from SPI, 1172

error codes
libpq, 721
list of, 2058

error message, 714
escape format, 198
escape string syntax, 23
escape_string_warning configuration parameter,
537
escaping strings

in libpq, 727
event log

event log, 473
event trigger, 1007

in C, 1011
in PL/Tcl, 1107

event_source configuration parameter, 517
event_trigger, 173
every, 291
EXCEPT, 105
exceptions

in PL/pgSQL, 1066
in PL/Tcl, 1108

exclusion constraint, 53
EXECUTE, 1532
exist, 2243
EXISTS, 298
EXIT

in PL/pgSQL, 1062
exit_on_error configuration parameter, 539
exp, 182
EXPLAIN, 414, 1533
export_data, 2315
expression

order of evaluation, 39
syntax, 28

extending SQL, 920
extension, 986

externally maintained, 2565
external_pid_file configuration parameter, 479
extract, 226, 229
extra_float_digits configuration parameter, 533

F
factorial, 183
failover, 618
false, 133
family, 245
fast path, 734
fastupdate storage parameter, 1377
fdw_handler, 173
FETCH, 1538
field

computed, 165
field selection, 30
file system mount points, 453
file_fdw, 2234
fillfactor storage parameter, 1376, 1433
FILTER, 31
first_value, 297
float4 (see real)
float8 (see double precision)
floating point, 117
floating-point

display, 533
floor, 183
force_parallel_mode configuration parameter, 513
foreign data, 85
foreign data wrapper

handler for, 1950
foreign key, 13, 50

self-referential, 51
foreign table, 85
format, 190, 193

use in PL/pgSQL, 1053
formatting, 216
format_type, 312
Free Space Map, 2042
FreeBSD

IPC configuration, 459
shared library, 948
start script, 455

from_collapse_limit configuration parameter, 513
FSM (see Free Space Map)
fsm_page_contents, 2269
fsync configuration parameter, 493
full text search, 365

data types, 141
functions and operators, 141

full_page_writes configuration parameter, 495
function, 176

default values for arguments, 931
in the FROM clause, 95
internal, 940
invocation, 31
mixed notation, 42

2611

Index

named argument, 925
named notation, 41
output parameter, 929
polymorphic, 921
positional notation, 41
RETURNS TABLE, 935
statistics, 339
type resolution in an invocation, 344
user-defined, 923

in C, 941
in SQL, 924

variadic, 930
with SETOF, 932

functional dependency, 100
fuzzystrmatch, 2237

G
gcd, 183
gc_to_sec, 2232
generated column, 45, 1364, 1429

in triggers, 999
generate_series, 303
generate_subscripts, 304
genetic query optimization, 511
gen_random_bytes, 2284
gen_random_uuid, 252, 2284
gen_salt, 2278
GEQO (see genetic query optimization)
geqo configuration parameter, 511
geqo_effort configuration parameter, 512
geqo_generations configuration parameter, 512
geqo_pool_size configuration parameter, 512
geqo_seed configuration parameter, 512
geqo_selection_bias configuration parameter, 512
geqo_threshold configuration parameter, 511
get_bit, 196, 200
get_byte, 196
get_current_ts_config, 248
get_diffreport, 2316
get_namespace, 2232
get_raw_page, 2268
get_report, 2315
GIN (see index)
gin_clean_pending_list, 332
gin_fuzzy_search_limit configuration parameter,
536
gin_leafpage_items, 2274
gin_metapage_info, 2273
gin_page_opaque_info, 2273
gin_pending_list_limit

configuration parameter, 532
storage parameter, 1377

GiST (see index)
global data

in PL/Python, 1132
in PL/Tcl, 1103

GRANT, 56, 1542
GREATEST, 285

determination of result type, 348
Gregorian calendar, 2072
GROUP BY, 11, 99
grouping, 99
GROUPING, 295
GROUPING SETS, 101
gssapi, 472
GSSAPI, 556

with libpq, 708
GUID, 143

H
hash (see index)
hash_bitmap_info, 2275
hash_mem_multiplier configuration parameter, 486
hash_metapage_info, 2275
hash_page_items, 2274
hash_page_stats, 2274
hash_page_type, 2274
has_any_column_privilege, 309
has_column_privilege, 309
has_database_privilege, 309
has_foreign_data_wrapper_privilege, 309
has_function_privilege, 309
has_language_privilege, 309
has_schema_privilege, 309
has_sequence_privilege, 309
has_server_privilege, 309
has_tablespace_privilege, 309
has_table_privilege, 309
has_type_privilege, 309
HAVING, 11, 100
hba_file configuration parameter, 479
heap_page_items, 2269
heap_page_item_attrs, 2270
heap_tuple_infomask_flags, 2270
height, 241
hex format, 198
hierarchical database, 6
high availability, 618
history

of PostgreSQL, xxiv
hmac, 2277
host, 245
host name, 705
hostmask, 245
Hot Standby, 618
hot_standby configuration parameter, 505
hot_standby_feedback configuration parameter,
506
HP-UX

IPC configuration, 460
shared library, 948

hstore, 2239, 2241
hstore_to_array, 2242
hstore_to_json, 2242
hstore_to_jsonb, 2242
hstore_to_jsonb_loose, 2242

2612

Index

hstore_to_json_loose, 2242
hstore_to_matrix, 2242
huge_pages configuration parameter, 485
Hunspell Dictionaries, 2246
hypothetical-set aggregate

built-in, 295

I
icount, 2248
ICU, 579, 1346
ident, 558
identifier

length, 21
syntax of, 21

IDENTIFY_SYSTEM, 1917
ident_file configuration parameter, 479
idle_in_transaction_session_timeout configuration
parameter, 531
idx, 2249
IFNULL, 284
ignore_checksum_failure configuration parameter,
543
ignore_invalid_pages configuration parameter, 544
ignore_system_indexes configuration parameter,
541
IMMUTABLE, 939
IMPORT FOREIGN SCHEMA, 1547
import_data, 2315
IN, 298, 300
INCLUDE

in index definitions, 360
include

in configuration file, 477
include_dir

in configuration file, 477
include_if_exists

in configuration file, 477
index, 351, 2263

and ORDER BY, 354
B-tree, 352
B-Tree, 1995
BRIN, 353, 2030
building concurrently, 1378
combining multiple indexes, 355
covering, 359
examining usage, 363
on expressions, 356
for user-defined data type, 974
GIN, 353, 2024

text search, 396
GiST, 352, 2001

text search, 396
hash, 352
Hash, 2035
index-only scans, 359
locks, 412
multicolumn, 354
partial, 357

rebuilding concurrently, 1576
SP-GiST, 353, 2014
unique, 356

Index Access Method, 1979
index scan, 508
index-only scan, 359
indexam

Index Access Method, 1979
index_am_handler, 173
inet (data type), 138
inet_client_addr, 306
inet_client_port, 306
inet_merge, 245
inet_same_family, 245
inet_server_addr, 306
inet_server_port, 306
information schema, 874
inheritance, 18, 69
initcap, 190
initdb, 452, 1778
Initialization Fork, 2042
input function, 966
INSERT, 7, 87, 1549

RETURNING, 89
inserting, 87
instr function, 1098
int2 (see smallint)
int4 (see integer)
int8 (see bigint)
intagg, 2247
intarray, 2248
integer, 26, 116
integer_datetimes configuration parameter, 540
interfaces

externally maintained, 2564
internal, 173
INTERSECT, 105
interval, 124, 130

output format, 132
(see also formatting)

IntervalStyle configuration parameter, 532
intset, 2249
int_array_aggregate, 2247
int_array_enum, 2247
inverse distribution, 294
in_range support functions, 1996
IS DISTINCT FROM, 179, 300
IS DOCUMENT, 256
IS FALSE, 180
IS NOT DISTINCT FROM, 179, 300
IS NOT DOCUMENT, 256
IS NOT FALSE, 180
IS NOT NULL, 179
IS NOT TRUE, 180
IS NOT UNKNOWN, 180
IS NULL, 179, 538
IS TRUE, 180
IS UNKNOWN, 180

2613

Index

isclosed, 241
isempty, 290
isfinite, 226
isn, 2251
ISNULL, 179
isn_weak, 2252
isopen, 241
is_array_ref

in PL/Perl, 1120
is_valid, 2252

J
JIT, 693
jit configuration parameter, 513
jit_above_cost configuration parameter, 511
jit_debugging_support configuration parameter,
544
jit_dump_bitcode configuration parameter, 544
jit_expressions configuration parameter, 544
jit_inline_above_cost configuration parameter, 511
jit_optimize_above_cost configuration parameter,
511
jit_profiling_support configuration parameter, 544
jit_provider configuration parameter, 535
jit_tuple_deforming configuration parameter, 544
join, 9, 91

controlling the order, 429
cross, 91
left, 92
natural, 92
outer, 10, 91
right, 92
self, 10

join_collapse_limit configuration parameter, 513
JSON, 145

functions and operators, 265
JSONB, 145
jsonb

containment, 147
existence, 148
indexes on, 149

jsonb_agg, 291
jsonb_array_elements, 269
jsonb_array_elements_text, 269
jsonb_array_length, 269
jsonb_build_array, 268
jsonb_build_object, 268
jsonb_each, 269
jsonb_each_text, 269
jsonb_extract_path, 270
jsonb_extract_path_text, 270
jsonb_insert, 272
jsonb_object, 268
jsonb_object_agg, 291
jsonb_object_keys, 270
jsonb_path_exists, 272
jsonb_path_exists_tz, 273
jsonb_path_match, 273

jsonb_path_match_tz, 273
jsonb_path_query, 273
jsonb_path_query_array, 273
jsonb_path_query_array_tz, 273
jsonb_path_query_first, 273
jsonb_path_query_first_tz, 273
jsonb_path_query_tz, 273
jsonb_populate_record, 270
jsonb_populate_recordset, 271
jsonb_pretty, 274
jsonb_set, 272
jsonb_set_lax, 272
jsonb_strip_nulls, 272
jsonb_to_record, 271
jsonb_to_recordset, 271
jsonb_to_tsvector, 249
jsonb_typeof, 274
jsonpath, 151
json_agg, 291
json_array_elements, 269
json_array_elements_text, 269
json_array_length, 269
json_build_array, 268
json_build_object, 268
json_each, 269
json_each_text, 269
json_extract_path, 270
json_extract_path_text, 270
json_object, 268
json_object_agg, 291
json_object_keys, 270
json_populate_record, 270
json_populate_recordset, 271
json_strip_nulls, 272
json_to_record, 271
json_to_recordset, 271
json_to_tsvector, 249
json_typeof, 274
Julian date, 2073
Just-In-Time compilation (see JIT)
justify_days, 226
justify_hours, 226
justify_interval, 227

K
keep_baseline, 2314
key word

list of, 2075
syntax of, 21

krb_caseins_users configuration parameter, 482
krb_server_keyfile configuration parameter, 482

L
label (see alias)
lag, 297
language_handler, 173
large object, 770
lastval, 281

2614

Index

last_value, 297
LATERAL

in the FROM clause, 97
latitude, 2233
lca, 2263
lcm, 183
lc_collate configuration parameter, 540
lc_collate_canonical configuration parameter, 540
lc_ctype configuration parameter, 540
lc_messages configuration parameter, 533
lc_monetary configuration parameter, 533
lc_numeric configuration parameter, 533
lc_time configuration parameter, 533
LDAP, 559
LDAP connection parameter lookup, 753
lead, 297
LEAST, 285

determination of result type, 348
left, 190
left join, 92
length, 190, 196, 199, 241, 248

of a binary string (see binary strings, length)
of a character string (see character string,
length)

length(tsvector), 377
levenshtein, 2238
levenshtein_less_equal, 2238
libpq, 697

single-row mode, 733
libpq-fe.h, 697, 711
libpq-int.h, 711
library finalization function, 941
library initialization function, 941
LIKE, 201

and locales, 577
LIKE_REGEX, 215

in SQL/JSON, 280
LIMIT, 106
line, 136, 242
line segment, 136
linear regression, 293
Linux

IPC configuration, 460
shared library, 949
start script, 455

LISTEN, 1556
listen_addresses configuration parameter, 479
ll_to_earth, 2232
ln, 183
lo, 2259
LOAD, 1558
load balancing, 618
locale, 453, 576
localtime, 227
localtimestamp, 227
local_preload_libraries configuration parameter,
534
lock, 405

advisory, 410
monitoring, 670

LOCK, 406, 1559
lock_timeout configuration parameter, 530
log, 183
log shipping, 618
log10, 183
Logging

current_logfiles file and the pg_current_logfile
function, 307
pg_current_logfile function, 307

logging_collector configuration parameter, 515
Logical Decoding, 1202, 1204
logical_decoding_work_mem configuration
parameter, 487
login privilege, 566
log_autovacuum_min_duration

configuration parameter, 526
storage parameter, 1435

log_btree_build_stats configuration parameter, 543
log_checkpoints configuration parameter, 519
log_connections configuration parameter, 519
log_destination configuration parameter, 514
log_directory configuration parameter, 515
log_disconnections configuration parameter, 520
log_duration configuration parameter, 520
log_error_verbosity configuration parameter, 520
log_executor_stats configuration parameter, 525
log_filename configuration parameter, 515
log_file_mode configuration parameter, 515
log_hostname configuration parameter, 520
log_line_prefix configuration parameter, 520
log_lock_waits configuration parameter, 522
log_min_duration_sample configuration parameter,
518
log_min_duration_statement configuration
parameter, 517
log_min_error_statement configuration parameter,
517
log_min_messages configuration parameter, 517
log_parameter_max_length configuration
parameter, 522
log_parameter_max_length_on_error configuration
parameter, 522
log_parser_stats configuration parameter, 525
log_planner_stats configuration parameter, 525
log_replication_commands configuration
parameter, 522
log_rotation_age configuration parameter, 516
log_rotation_size configuration parameter, 516
log_statement configuration parameter, 522
log_statement_sample_rate configuration
parameter, 518
log_statement_stats configuration parameter, 525
log_temp_files configuration parameter, 523
log_timezone configuration parameter, 523
log_transaction_sample_rate configuration
parameter, 518

2615

Index

log_truncate_on_rotation configuration parameter,
516
longitude, 2233
looks_like_number

in PL/Perl, 1120
loop

in PL/pgSQL, 1061
lower, 188, 290

and locales, 577
lower_inc, 290
lower_inf, 290
lo_close, 773
lo_compat_privileges configuration parameter, 537
lo_creat, 771, 774
lo_create, 771
lo_export, 771, 774
lo_from_bytea, 774
lo_get, 774
lo_import, 771, 774
lo_import_with_oid, 771
lo_lseek, 772
lo_lseek64, 772
lo_open, 771
lo_put, 774
lo_read, 772
lo_tell, 773
lo_tell64, 773
lo_truncate, 773
lo_truncate64, 773
lo_unlink, 773, 774
lo_write, 772
lpad, 190
lseg, 136, 242
LSN, 686
ltree, 2260
ltree2text, 2263
ltrim, 190

M
MAC address (see macaddr)
MAC address (EUI-64 format) (see macaddr)
macaddr (data type), 139
macaddr8 (data type), 139
macaddr8_set7bit, 246
macOS

IPC configuration, 460
shared library, 949

magic block, 941
maintenance, 593
maintenance_io_concurrency configuration
parameter, 491
maintenance_work_mem configuration parameter,
487
makeaclitem, 311
make_date, 227
make_interval, 227
make_time, 227
make_timestamp, 227

make_timestamptz, 227
make_valid, 2252
mamonsu, 2510
masklen, 246
materialized view

implementation through rules, 1023
materialized views, 1886
max, 291
max_connections configuration parameter, 479
max_files_per_process configuration parameter,
488
max_function_args configuration parameter, 540
max_identifier_length configuration parameter, 540
max_index_keys configuration parameter, 540
max_locks_per_transaction configuration
parameter, 536
max_logical_replication_workers configuration
parameter, 507
max_parallel_maintenance_workers configuration
parameter, 491
max_parallel_workers configuration parameter, 491
max_parallel_workers_per_gather configuration
parameter, 491
max_pred_locks_per_page configuration parameter,
537
max_pred_locks_per_relation configuration
parameter, 537
max_pred_locks_per_transaction configuration
parameter, 536
max_prepared_transactions configuration
parameter, 486
max_replication_slots configuration parameter, 502
max_slot_wal_keep_size configuration parameter,
502
max_stack_depth configuration parameter, 487
max_standby_archive_delay configuration
parameter, 505
max_standby_streaming_delay configuration
parameter, 505
max_sync_workers_per_subscription configuration
parameter, 507
max_wal_senders configuration parameter, 501
max_wal_size configuration parameter, 497
max_worker_processes configuration parameter,
491
md5, 190, 196
MD5, 555
median, 32

(see also percentile)
memory context

in SPI, 1182
memory overcommit, 462
metaphone, 2238
min, 292
min_parallel_index_scan_size configuration
parameter, 511
min_parallel_table_scan_size configuration
parameter, 510

2616

Index

min_scale, 183
min_wal_size configuration parameter, 497
mod, 183
mode

statistical, 294
monitoring

database activity, 639
MOVE, 1562
moving-aggregate mode, 961
Multiversion Concurrency Control, 400
MultiXactId, 598
MVCC, 400

N
name

qualified, 66
syntax of, 21
unqualified, 67

NaN (see not a number)
natural join, 92
negation, 176
NetBSD

IPC configuration, 459
shared library, 949
start script, 456

netmask, 246
network, 246

data types, 137
nextval, 281
NFS, 454
nlevel, 2263
non-durable, 433
nonblocking connection, 699, 729
nonrepeatable read, 400
normalize, 188
normalized, 188
normal_rand, 2427
NOT (operator), 176
not a number

double precision, 118
numeric (data type), 117

NOT IN, 298, 300
not-null constraint, 48
notation

functions, 40
notice processing

in libpq, 744
notice processor, 745
notice receiver, 745
NOTIFY, 1564

in libpq, 735
NOTNULL, 179
now, 227
npoints, 241
nth_value, 297
ntile, 297
null value

with check constraints, 47

comparing, 179
default value, 44
in DISTINCT, 104
in libpq, 725
in PL/Perl, 1112
in PL/Python, 1128
with unique constraints, 49

NULLIF, 285
nul_byte_replacement_on_import configuration
parameter, 538
number

constant, 25
numeric, 26
numeric (data type), 116
numnode, 248, 378
num_nonnulls, 180
num_nulls, 180
NVL, 284

O
object identifier

data type, 172
object-oriented database, 6
obj_description, 317
octet_length, 188, 188, 195, 199
OFFSET, 106
oid, 172
OID

in libpq, 727
oid2name, 2445
old_snapshot_threshold configuration parameter,
492
ON CONFLICT, 1549
ONLY, 91
OOM, 462
OpenBSD

IPC configuration, 460
shared library, 949
start script, 455

operator, 176
invocation, 30
logical, 176
precedence, 27
syntax, 26
type resolution in an invocation, 341
user-defined, 970

operator class, 362, 975
operator family, 362, 981
operator_precedence_warning configuration
parameter, 538
optimization information

for functions, 959
for operators, 971

OR (operator), 176
Oracle

porting from PL/SQL to PL/pgSQL, 1092
ORDER BY, 8, 105

and locales, 577

2617

Index

ordered-set aggregate, 31
built-in, 294

ordering operator, 984
ordinality, 305
outer join, 91
output function, 966
OVER clause, 33
overcommit, 462
OVERLAPS, 228
overlay, 188, 195, 199
overloading

functions, 938
operators, 970

owner, 56

P
pageinspect, 2268
pages_per_range storage parameter, 1377
page_checksum, 2269
page_header, 2268
palloc, 948
PAM, 562
parallel query, 434
parallel_leader_participation configuration
parameter , 513
parallel_setup_cost configuration parameter, 510
parallel_tuple_cost configuration parameter, 510
parallel_workers storage parameter, 1433
parameter

syntax, 29
parenthesis, 29
parse_ident, 190
partition pruning, 82
partitioned table, 73
partitioning, 73
password, 566

authentication, 555
of the superuser, 453

password file, 752
passwordcheck, 2275
password_encryption configuration parameter, 482
path, 243

for schemas, 527
path (data type), 137
pattern matching, 200
patterns

in psql and pg_dump, 1755
pclose, 241
peer, 558
percentile

continuous, 294
discrete, 295

percent_rank, 296
hypothetical, 295

performance, 414
Perl, 1111
permission (see privilege)
pfree, 948

pg-setup, 1800
pg-wrapper, 1725
PGAPPNAME, 752
pgbench, 1668
pgbouncer, 2528
PGcancel, 734
PGCHANNELBINDING, 751
PGCLIENTENCODING, 752
PGconn, 697
PGCONNECT_TIMEOUT, 752
pgcrypto, 2277
PGDATA, 452
PGDATABASE, 751
PGDATESTYLE, 752
PGEventProc, 747
PGGEQO, 752
PGGSSENCMODE, 752
PGGSSLIB, 752
PGHOST, 751
PGHOSTADDR, 751
PGKRBSRVNAME, 752
PGLOCALEDIR, 752
PGOPTIONS, 752
PGPASSFILE, 751
PGPASSWORD, 751
PGPORT, 751
pgpro_build, 308
pgpro_controldata, 2559
pgpro_edition, 308
pgpro_pwr, 2306
pgpro_pwr.max configuration parameter, 2309
pgpro_pwr.max_query_length configuration
parameter, 2309
pgpro_pwr.max_sample_age configuration
parameter, 2309
pgpro_pwr.track_sample_timings configuration
parameter, 2309
pgpro_stats, 2354
pgpro_stats_metrics

function, 2367
pgpro_stats_statements

function, 2367
pgpro_stats_statements_reset, 2367
pgpro_stats_totals

function, 2367
pgpro_stats_totals_reset, 2367
pgpro_stats_vacuum_indexes

function, 2367
pgpro_stats_vacuum_tables

function, 2367
pgpro_stats_wal_sender_crc_errors

function, 2367
pgpro_version, 308
pgp_armor_headers, 2281
pgp_key_id, 2281
pgp_pub_decrypt, 2280
pgp_pub_decrypt_bytea, 2280
pgp_pub_encrypt, 2280

2618

Index

pgp_pub_encrypt_bytea, 2280
pgp_sym_decrypt, 2280
pgp_sym_decrypt_bytea, 2280
pgp_sym_encrypt, 2280
pgp_sym_encrypt_bytea, 2280
PGREQUIREPEER, 752
PGREQUIRESSL, 752
PGresult, 719
pgrowlocks, 2375, 2376
PGSERVICE, 751
PGSERVICEFILE, 751
PGSSLCERT, 752
PGSSLCOMPRESSION, 752
PGSSLCRL, 752
PGSSLKEY, 752
PGSSLMAXPROTOCOLVERSION, 752
PGSSLMINPROTOCOLVERSION, 752
PGSSLMODE, 752
PGSSLROOTCERT, 752
pgstatginindex, 2384
pgstathashindex, 2385
pgstatindex, 2384
pgstattuple, 2382, 2383
pgstattuple_approx, 2385
PGSYSCONFDIR, 752
PGTARGETSESSIONATTRS, 752
PGTZ, 752
PGUSER, 751
pgxs, 994
pg_advisory_lock, 334
pg_advisory_lock_shared, 334
pg_advisory_unlock, 334
pg_advisory_unlock_all, 334
pg_advisory_unlock_shared, 334
pg_advisory_xact_lock, 334
pg_advisory_xact_lock_shared, 334
pg_aggregate, 1831
pg_am, 1833
pg_amop, 1833
pg_amproc, 1834
pg_archivecleanup, 1782
pg_attrdef, 1835
pg_attribute, 1835
pg_authid, 1837
pg_auth_members, 1838
pg_available_extensions, 1879
pg_available_extension_versions, 1880
pg_backend_pid, 306
pg_backup_start_time, 324
pg_basebackup, 1660
pg_blocking_pids, 306
pg_buffercache, 2276
pg_buffercache_pages, 2276
pg_cancel_backend, 322
pg_cast, 1839
pg_checksums, 1784
pg_class, 1839
pg_client_encoding, 191

pg_collation, 1842
pg_collation_actual_version, 331
pg_collation_is_visible, 311
PG_COLOR, 2600
PG_COLORS, 2600
pg_column_size, 329
pg_config, 1686, 1880

with ecpg, 832
with libpq, 759
with user-defined C functions, 948

pg_conf_load_time, 307
pg_constraint, 1842
pg_controldata, 1786
pg_control_checkpoint, 320
pg_control_init, 320
pg_control_recovery, 320
pg_control_system, 320
pg_conversion, 1844
pg_conversion_is_visible, 311
pg_copy_logical_replication_slot, 327
pg_copy_physical_replication_slot, 327
pg_create_logical_replication_slot, 327
pg_create_physical_replication_slot, 327
pg_create_restore_point, 323
pg_ctl, 453, 455, 1787
pg_current_logfile, 307
pg_current_snapshot, 318
pg_current_wal_flush_lsn, 323
pg_current_wal_insert_lsn, 323
pg_current_wal_lsn, 323
pg_current_xact_id, 318
pg_current_xact_id_if_assigned, 318
pg_cursors, 1881
pg_database, 573, 1845
pg_database_size, 329
pg_db_role_setting, 1846
pg_ddl_command, 173
pg_default_acl, 1846
pg_depend, 1847
pg_describe_object, 317
pg_description, 1849
pg_drop_replication_slot, 327
pg_dump, 1689
pg_dumpall, 1701

use during upgrade, 466
pg_enum, 1849
pg_event_trigger, 1849
pg_event_trigger_ddl_commands, 336
pg_event_trigger_dropped_objects, 337
pg_event_trigger_table_rewrite_oid, 338
pg_event_trigger_table_rewrite_reason, 339
pg_export_snapshot, 326
pg_extension, 1850
pg_extension_config_dump, 990
pg_filedump, 2556
pg_filenode_relation, 330
pg_file_rename, 2183
pg_file_settings, 1881

2619

Index

pg_file_sync, 2183
pg_file_unlink, 2183
pg_file_write, 2183
pg_foreign_data_wrapper, 1851
pg_foreign_server, 1851
pg_foreign_table, 1852
pg_freespace, 2287
pg_freespacemap, 2286
pg_function_is_visible, 311
pg_get_constraintdef, 312
pg_get_expr, 312
pg_get_functiondef, 312
pg_get_function_arguments, 312
pg_get_function_identity_arguments, 312
pg_get_function_result, 312
pg_get_indexdef, 312
pg_get_keywords, 312
pg_get_object_address, 317
pg_get_ruledef, 313
pg_get_serial_sequence, 313
pg_get_statisticsobjdef, 313
pg_get_triggerdef, 313
pg_get_userbyid, 313
pg_get_viewdef, 313
pg_group, 1882
pg_has_role, 310
pg_hba.conf, 546
pg_hba_file_rules, 1882
pg_ident.conf, 553
pg_identify_object, 317
pg_identify_object_as_address, 317
pg_import_system_collations, 331
pg_index, 1852
pg_indexam_has_property, 314
pg_indexes, 1883
pg_indexes_size, 329
pg_index_column_has_property, 313
pg_index_has_property, 314
pg_inherits, 1853
pg_init_privs, 1854
pg_isready, 1707
pg_is_in_backup, 324
pg_is_in_recovery, 325
pg_is_other_temp_schema, 307
pg_is_wal_replay_paused, 325
pg_jit_available, 307
pg_language, 1854
pg_largeobject, 1855
pg_largeobject_metadata, 1855
pg_last_committed_xact, 320
pg_last_wal_receive_lsn, 325
pg_last_wal_replay_lsn, 325
pg_last_xact_replay_timestamp, 325
pg_listening_channels, 307
pg_locks, 1884
pg_logdir_ls, 2183
pg_logical_emit_message, 329
pg_logical_slot_get_binary_changes, 328

pg_logical_slot_get_changes, 327
pg_logical_slot_peek_binary_changes, 328
pg_logical_slot_peek_changes, 328
pg_lsn, 173
pg_ls_archive_statusdir, 333
pg_ls_dir, 332
pg_ls_logdir, 332
pg_ls_tmpdir, 333
pg_ls_waldir, 333
pg_matviews, 1886
pg_mcv_list_items, 339
pg_my_temp_schema, 307
pg_namespace, 1856
pg_notification_queue_usage, 307
pg_notify, 1565
pg_opclass, 1856
pg_opclass_is_visible, 311
pg_operator, 1857
pg_operator_is_visible, 311
pg_opfamily, 1858
pg_opfamily_is_visible, 311
pg_options_to_table, 314
pg_partitioned_table, 1858
pg_partition_ancestors, 331
pg_partition_root, 331
pg_partition_tree, 331
pg_policies, 1886
pg_policy, 1859
pg_postmaster_start_time, 307
pg_prepared_statements, 1887
pg_prepared_xacts, 1887
pg_prewarm, 2353
pg_prewarm.autoprewarm configuration
parameter, 2353
pg_prewarm.autoprewarm_interval configuration
parameter, 2353
pg_probackup, 2450
pg_proc, 1859
pg_promote, 325
pg_publication, 1862
pg_publication_rel, 1862
pg_publication_tables, 1888
pg_range, 1862
pg_read_binary_file, 333
pg_read_file, 333
pg_receivewal, 1709
pg_receivexlog, 2601 (see pg_receivewal)
pg_recvlogical, 1713
pg_relation_filenode, 330
pg_relation_filepath, 330
pg_relation_size, 329
pg_reload_conf, 322
pg_relpages, 2385
pg_repack, 2502
pg_replication_origin, 1863
pg_replication_origin_advance, 329
pg_replication_origin_create, 328
pg_replication_origin_drop, 328

2620

Index

pg_replication_origin_oid, 328
pg_replication_origin_progress, 329
pg_replication_origin_session_is_setup, 328
pg_replication_origin_session_progress, 328
pg_replication_origin_session_reset, 328
pg_replication_origin_session_setup, 328
pg_replication_origin_status, 1888
pg_replication_origin_xact_reset, 328
pg_replication_origin_xact_setup, 328
pg_replication_slots, 1889
pg_replication_slot_advance, 328
pg_resetwal, 1792
pg_resetxlog, 2601 (see pg_resetwal)
pg_restore, 1717
pg_rewind, 1796
pg_rewrite, 1863
pg_roles, 1890
pg_rotate_logfile, 322
pg_rules, 1891
pg_safe_snapshot_blocking_pids, 307
pg_seclabel, 1864
pg_seclabels, 1891
pg_sequence, 1864
pg_sequences, 1892
pg_service.conf, 753
pg_settings, 1892
pg_shadow, 1894
pg_shdepend, 1865
pg_shdescription, 1866
pg_shmem_allocations, 1895
pg_shseclabel, 1866
pg_size_bytes, 329
pg_size_pretty, 330
pg_sleep, 236
pg_sleep_for, 236
pg_sleep_until, 236
pg_snapshot_any, 335
pg_snapshot_xip, 318
pg_snapshot_xmax, 318
pg_snapshot_xmin, 318
pg_standby, 2561
pg_start_backup, 323
pg_statio_all_indexes, 643, 666
pg_statio_all_sequences, 643, 666
pg_statio_all_tables, 643, 665
pg_statio_sys_indexes, 643
pg_statio_sys_sequences, 643
pg_statio_sys_tables, 643
pg_statio_user_indexes, 643
pg_statio_user_sequences, 643
pg_statio_user_tables, 643
pg_statistic, 425, 1867
pg_statistics_obj_is_visible, 311
pg_statistic_ext, 426, 1868
pg_statistic_ext_data, 426, 1868
pg_stats, 425, 1895
pg_stats_ext, 1897
pg_stat_activity, 641, 644

pg_stat_all_indexes, 643, 664
pg_stat_all_tables, 642, 663
pg_stat_archiver, 642, 660
pg_stat_bgwriter, 642, 660
pg_stat_clear_snapshot, 668
pg_stat_database, 642, 661
pg_stat_database_conflicts, 642, 662
pg_stat_file, 333
pg_stat_get_activity, 668
pg_stat_get_backend_activity, 669
pg_stat_get_backend_activity_start, 669
pg_stat_get_backend_client_addr, 669
pg_stat_get_backend_client_port, 669
pg_stat_get_backend_dbid, 669
pg_stat_get_backend_idset, 669
pg_stat_get_backend_pid, 669
pg_stat_get_backend_start, 669
pg_stat_get_backend_userid, 669
pg_stat_get_backend_wait_event, 669
pg_stat_get_backend_wait_event_type, 669
pg_stat_get_backend_xact_start, 669
pg_stat_get_snapshot_timestamp, 668
pg_stat_gssapi, 642, 660
pg_stat_progress_analyze, 642
pg_stat_progress_basebackup, 642
pg_stat_progress_cluster, 642
pg_stat_progress_create_index, 642
pg_stat_progress_vacuum, 642
pg_stat_replication, 641, 655
pg_stat_reset, 668
pg_stat_reset_shared, 668
pg_stat_reset_single_function_counters, 668
pg_stat_reset_single_table_counters, 668
pg_stat_reset_slru, 668
pg_stat_slru, 643, 667
pg_stat_ssl, 642, 659
pg_stat_statements, 2376

function, 2380
pg_stat_statements_reset, 2379
pg_stat_subscription, 641, 658
pg_stat_sys_indexes, 643
pg_stat_sys_tables, 642
pg_stat_user_functions, 643, 667
pg_stat_user_indexes, 643
pg_stat_user_tables, 642
pg_stat_wal_receiver, 641, 657
pg_stat_xact_all_tables, 642
pg_stat_xact_sys_tables, 643
pg_stat_xact_user_functions, 643
pg_stat_xact_user_tables, 643
pg_stop_backup, 323
pg_subscription, 1869
pg_subscription_rel, 1870
pg_switch_wal, 324
pg_tables, 1898
pg_tablespace, 1870
pg_tablespace_databases, 314
pg_tablespace_location, 314

2621

Index

pg_tablespace_size, 330
pg_table_is_visible, 311
pg_table_size, 330
pg_temp, 528

securing functions, 1372
pg_terminate_backend, 322
pg_test_fsync, 1802
pg_test_timing, 1803
pg_timezone_abbrevs, 1898
pg_timezone_names, 1899
pg_total_relation_size, 330
pg_transform, 1871
pg_trgm, 2386
pg_trgm.similarity_threshold configuration
parameter, 2389
pg_trgm.strict_word_similarity_threshold
configuration parameter , 2389
pg_trgm.word_similarity_threshold configuration
parameter , 2389
pg_trigger, 1871
pg_trigger_depth, 308
pg_try_advisory_lock, 334
pg_try_advisory_lock_shared, 335
pg_try_advisory_xact_lock, 335
pg_try_advisory_xact_lock_shared, 335
pg_ts_config, 1873
pg_ts_config_is_visible, 311
pg_ts_config_map, 1873
pg_ts_dict, 1873
pg_ts_dict_is_visible, 311
pg_ts_parser, 1874
pg_ts_parser_is_visible, 311
pg_ts_template, 1874
pg_ts_template_is_visible, 311
pg_type, 1875
pg_typeof, 314
pg_type_is_visible, 312
pg_upgrade, 1806
pg_user, 1899
pg_user_mapping, 1878
pg_user_mappings, 1900
pg_verifybackup, 1727
pg_views, 1900
pg_visibility, 2400
pg_visible_in_snapshot, 318
pg_waldump, 1814
pg_walfile_name, 324
pg_walfile_name_offset, 324
pg_wal_lsn_diff, 324
pg_wal_replay_pause, 326
pg_wal_replay_resume, 326
pg_xact_commit_timestamp, 320
pg_xact_status, 318
pg_xlogdump, 2601 (see pg_waldump)
phantom read, 400
phraseto_tsquery, 248, 372
pi, 183
PIC, 948

PID
determining PID of server process

in libpq, 714
PITR, 603
PITR standby, 618
pkg-config

with ecpg, 832
with libpq, 759

PL/Perl, 1111
PL/PerlU, 1121
PL/pgSQL, 1041
PL/Python, 1125
PL/SQL (Oracle)

porting to PL/pgSQL, 1092
PL/Tcl, 1101
plainto_tsquery, 248, 372
plan_cache_mode configuration parameter, 514
plperl.on_init configuration parameter, 1123
plperl.on_plperlu_init configuration parameter,
1124
plperl.on_plperl_init configuration parameter, 1124
plperl.use_strict configuration parameter, 1124
plpgsql.check_asserts configuration parameter,
1077
plpgsql.variable_conflict configuration parameter,
1086
pltcl.start_proc configuration parameter, 1110
pltclu.start_proc configuration parameter, 1110
point, 136, 243
point-in-time recovery, 603
policy, 60
polygon, 137, 243
polymorphic function, 921
polymorphic type, 921
popen, 241
populate_record, 2243
port, 706
port configuration parameter, 479
position, 189, 196, 200
POSTGRES, xxiv
postgres, 2, 454, 572, 1816
postgres user, 452
Postgres95, xxiv
postgresql.auto.conf, 476
postgresql.conf, 475
postgres_fdw, 2402
postmaster, 1823
post_auth_delay configuration parameter, 541
power, 184
PQbackendPID, 714
PQbinaryTuples, 725

with COPY, 737
PQcancel, 734
PQclear, 723
PQclientEncoding, 740
PQcmdStatus, 726
PQcmdTuples, 726
PQconndefaults, 701

2622

Index

PQconnectdb, 698
PQconnectdbParams, 697
PQconnectionNeedsPassword, 714
PQconnectionUsedPassword, 714
PQconnectPoll, 699
PQconnectStart, 699
PQconnectStartParams, 699
PQconninfo, 701
PQconninfoFree, 742
PQconninfoParse, 701
PQconsumeInput, 731
PQcopyResult, 743
PQdb, 711
PQdescribePortal, 719
PQdescribePrepared, 719
PQencryptPassword, 742
PQencryptPasswordConn, 742
PQendcopy, 740
PQerrorMessage, 714
PQescapeBytea, 729
PQescapeByteaConn, 728
PQescapeIdentifier, 727
PQescapeLiteral, 727
PQescapeString, 728
PQescapeStringConn, 728
PQexec, 716
PQexecParams, 716
PQexecPrepared, 718
PQfformat, 724

with COPY, 737
PQfinish, 702
PQfireResultCreateEvents, 743
PQflush, 733
PQfmod, 724
PQfn, 734
PQfname, 723
PQfnumber, 723
PQfreeCancel, 734
PQfreemem, 742
PQfsize, 724
PQftable, 724
PQftablecol, 724
PQftype, 724
PQgetCancel, 734
PQgetCopyData, 738
PQgetisnull, 725
PQgetlength, 725
PQgetline, 738
PQgetlineAsync, 739
PQgetResult, 731
PQgetssl, 716
PQgetSSLKeyPassHook_OpenSSL, 703
PQgetvalue, 725
PQhost, 711
PQhostaddr, 712
PQinitOpenSSL, 757
PQinitSSL, 758
PQinstanceData, 748

PQisBusy, 732
PQisnonblocking, 732
PQisthreadsafe, 758
PQlibVersion, 744

(see also PQserverVersion)
PQmakeEmptyPGresult, 742
PQnfields, 723

with COPY, 737
PQnotifies, 735
PQnparams, 725
PQntuples, 723
PQoidStatus, 727
PQoidValue, 727
PQoptions, 712
PQparameterStatus, 713
PQparamtype, 726
PQpass, 711
PQping, 703
PQpingParams, 702
PQport, 712
PQprepare, 718
PQprint, 726
PQprotocolVersion, 713
PQputCopyData, 737
PQputCopyEnd, 737
PQputline, 739
PQputnbytes, 739
PQregisterEventProc, 748
PQrequestCancel, 734
PQreset, 702
PQresetPoll, 702
PQresetStart, 702
PQresStatus, 720
PQresultAlloc, 744
PQresultErrorField, 721
PQresultErrorMessage, 720
PQresultInstanceData, 748
PQresultMemorySize, 744
PQresultSetInstanceData, 748
PQresultStatus, 719
PQresultVerboseErrorMessage, 720
PQsendDescribePortal, 731
PQsendDescribePrepared, 731
PQsendPrepare, 730
PQsendQuery, 730
PQsendQueryParams, 730
PQsendQueryPrepared, 730
PQserverVersion, 713
PQsetClientEncoding, 740
PQsetdb, 698
PQsetdbLogin, 698
PQsetErrorContextVisibility, 741
PQsetErrorVerbosity, 740
PQsetInstanceData, 748
PQsetnonblocking, 732
PQsetNoticeProcessor, 745
PQsetNoticeReceiver, 745
PQsetResultAttrs, 743

2623

Index

PQsetSingleRowMode, 733
PQsetSSLKeyPassHook_OpenSSL, 703
PQsetvalue, 743
PQsocket, 714
PQsslAttribute, 715
PQsslAttributeNames, 715
PQsslInUse, 714
PQsslStruct, 715
PQstatus, 712
PQtrace, 741
PQtransactionStatus, 713
PQtty, 712
PQunescapeBytea, 729
PQuntrace, 741
PQuser, 711
predicate locking, 403
PREPARE, 1566
PREPARE TRANSACTION, 1569
prepared statements

creating, 1566
executing, 1532
removing, 1475
showing the query plan, 1533

preparing a query
in PL/pgSQL, 1087
in PL/Python, 1134
in PL/Tcl, 1104

pre_auth_delay configuration parameter, 541
primary key, 49
primary_conninfo configuration parameter, 504
primary_slot_name configuration parameter, 504
privilege, 56

querying, 308
with rules, 1034
for schemas, 68
with views, 1034

procedural language, 1039
externally maintained, 2564
handler for, 1947

procedure
user-defined, 923

promote_trigger_file configuration parameter, 505
protocol

frontend-backend, 1902
ps

to monitor activity, 639
psql, 4, 1730
ptrack.map_size configuration parameter, 2409
ptrack_get_change_stat, 2409
ptrack_get_pagemapset, 2409
ptrack_version, 2410
Python, 1125

Q
qualified name, 66
query, 7, 90
query plan, 414
query tree, 1015

querytree, 249, 378
quotation marks

and identifiers, 22
escaping, 23

quote_all_identifiers configuration parameter, 538
quote_ident, 191

in PL/Perl, 1119
use in PL/pgSQL, 1053

quote_literal, 191
in PL/Perl, 1119
use in PL/pgSQL, 1053

quote_nullable, 191
in PL/Perl, 1119
use in PL/pgSQL, 1053

R
radians, 184
radius, 241
RADIUS, 561
RAISE

in PL/pgSQL, 1075
random, 185
random_page_cost configuration parameter, 510
range table, 1015
range type, 166

exclude, 170
indexes on, 170

range_merge, 290
rank, 296

hypothetical, 295
read committed, 401
read-only transaction, 530

setting, 1621
setting default, 529

real, 117
REASSIGN OWNED, 1571
record, 173
recovery.conf, 2601, 2601
recovery.signal, 499
recovery_end_command configuration parameter,
499
recovery_min_apply_delay configuration
parameter, 506
recovery_target configuration parameter, 500
recovery_target_action configuration parameter,
501
recovery_target_inclusive configuration parameter,
500
recovery_target_lsn configuration parameter, 500
recovery_target_name configuration parameter,
500
recovery_target_time configuration parameter, 500
recovery_target_timeline configuration parameter,
501
recovery_target_xid configuration parameter, 500
rectangle, 136
RECURSIVE

in common table expressions, 108

2624

Index

in views, 1471
referential integrity, 13, 50
REFRESH MATERIALIZED VIEW, 1572
regclass, 172
regcollation, 172
regconfig, 172
regdictionary, 172
regexp_match, 191, 203
regexp_matches, 191, 203
regexp_replace, 191, 203
regexp_split_to_array, 191, 203
regexp_split_to_table, 192, 203
regnamespace, 172
regoper, 172
regoperator, 172
regproc, 172
regprocedure, 172
regression intercept, 293
regression slope, 293
regrole, 172
regr_avgx, 293
regr_avgy, 293
regr_count, 293
regr_intercept, 293
regr_r2, 293
regr_slope, 293
regr_sxx, 293
regr_sxy, 293
regr_syy, 293
regtype, 172
regular expression, 202, 203

(see also pattern matching)
regular expressions

and locales, 577
reindex, 600
REINDEX, 1574
reindexdb, 1769
relation, 6
relational database, 6
RELEASE SAVEPOINT, 1578
rename_server, 2310
repeat, 192
repeatable read, 402
replace, 192
replication, 618
Replication Origins, 1211
Replication Progress Tracking, 1211
replication slot

logical replication, 1204
streaming replication, 624

reporting errors
in PL/pgSQL, 1075

RESET, 1579
restartpoint, 685
restart_after_crash configuration parameter, 539
restore_command configuration parameter, 499
RESTRICT

with DROP, 85

foreign key action, 52
RETURN NEXT

in PL/pgSQL, 1057
RETURN QUERY

in PL/pgSQL, 1057
RETURNING, 89
RETURNING INTO

in PL/pgSQL, 1050
reverse, 192
REVOKE, 56, 1580
right, 192
right join, 92
role, 565, 569

applicable, 875
enabled, 892
membership in, 567
privilege to create, 566
privilege to initiate replication, 566

ROLLBACK, 1584
rollback

psql, 1759
ROLLBACK PREPARED, 1585
ROLLBACK TO SAVEPOINT, 1586
ROLLUP, 101
round, 184
routine, 924
routine maintenance, 593
row, 6, 43
ROW, 38
row estimation

multivariate, 2050
planner, 2046

row type, 161
constructor, 38

row-level security, 60
row-wise comparison, 300
row_number, 296
row_security configuration parameter, 528
row_security_active, 310
row_to_json, 268
rpad, 192
rtrim, 192
rule, 1015

and materialized views, 1023
and views, 1016
for DELETE, 1025
for INSERT, 1025
for SELECT, 1017
compared with triggers, 1036
for UPDATE, 1025

S
SAVEPOINT, 1588
savepoints

defining, 1588
releasing, 1578
rolling back, 1586

scalar (see expression)

2625

Index

scale, 184
schema, 65, 571

creating, 66
current, 67, 306
public, 67
removing, 66

SCRAM, 555
search path, 67

current, 306
object visibility, 311

search_path configuration parameter, 67, 527
use in securing functions, 1371

SECURITY LABEL, 1590
sec_to_gc, 2232
seg, 2410
segment_size configuration parameter, 540
SELECT, 7, 90, 1592

determination of result type, 350
select list, 103

SELECT INTO, 1611
in PL/pgSQL, 1050

semaphores, 457
sepgsql, 2412
sepgsql.debug_audit configuration parameter, 2415
sepgsql.permissive configuration parameter, 2415
sequence, 281

and serial type, 119
sequential scan, 509
seq_page_cost configuration parameter, 509
serial, 119
serial2, 119
serial4, 119
serial8, 119
serializable, 403
Serializable Snapshot Isolation, 400
serialization anomaly, 400, 403
server log, 514

log file maintenance, 601
server spoofing, 467
server_encoding configuration parameter, 540
server_version configuration parameter, 540
server_version_num configuration parameter, 540
session_preload_libraries configuration parameter,
534
session_replication_role configuration parameter,
530
session_user, 308
SET, 321, 1613
SET CONSTRAINTS, 1616
set difference, 105
set intersection, 105
set operation, 105
set returning functions

functions, 303
SET ROLE, 1617
SET SESSION AUTHORIZATION, 1619
SET TRANSACTION, 1621
set union, 105

SET XML OPTION, 532
setseed, 185
setval, 281
setweight, 249, 377

setweight for specific lexeme(s), 249
set_bit, 197, 200
set_byte, 197
set_config, 322
set_limit, 2387
set_masklen, 246
set_server_connstr, 2310
set_server_db_exclude, 2310
set_server_description, 2310
set_server_max_sample_age, 2310
set_server_size_sampling, 2313
sha224, 197
sha256, 197
sha384, 197
sha512, 197
shared library, 948
shared memory, 457
shared_buffers configuration parameter, 485
shared_ispell, 2419
shared_ispell.max_size configuration parameter,
2420
shared_ispell_dicts, 2420
shared_ispell_mem_available, 2420
shared_ispell_mem_used, 2420
shared_ispell_reset, 2420
shared_ispell_stoplists, 2420
shared_memory_type configuration parameter, 487
shared_preload_libraries, 958
shared_preload_libraries configuration parameter,
535
shobj_description, 318
SHOW, 321, 1624, 1917
show_baselines, 2314
show_limit, 2387
show_samples, 2311
show_servers, 2310
show_trgm, 2387
shutdown, 464
SIGHUP, 476, 550, 553
SIGINT, 464
sign, 184
signal

backend processes, 322
significant digits, 533
SIGQUIT, 464
SIGTERM, 464
SIMILAR TO, 202
similarity, 2387
sin, 186
sind, 186
single-user mode, 1819
sinh, 187
skeys, 2241
sleep, 236

2626

Index

slice, 2242
sliced bread (see TOAST)
slope, 242
SLRU, 667
smallint, 116
smallserial, 119
Solaris

shared library, 949
start script, 456

SOME, 292, 298, 300
sort, 2248
sorting, 105
sort_asc, 2248
sort_desc, 2248
soundex, 2237
SP-GiST (see index)
SPI, 1140

examples, 2421
spi_commit

in PL/Perl, 1118
SPI_commit, 1193
SPI_commit_and_chain, 1193
SPI_connect, 1141
SPI_connect_ext, 1141
SPI_copytuple, 1186
spi_cursor_close

in PL/Perl, 1116
SPI_cursor_close, 1168
SPI_cursor_fetch, 1164
SPI_cursor_find, 1163
SPI_cursor_move, 1165
SPI_cursor_open, 1159
SPI_cursor_open_with_args, 1160
SPI_cursor_open_with_paramlist, 1162
SPI_exec, 1146
SPI_execp, 1158
SPI_execute, 1143
SPI_execute_plan, 1156
SPI_execute_plan_with_paramlist, 1157
SPI_execute_with_args, 1147
spi_exec_prepared

in PL/Perl, 1117
spi_exec_query

in PL/Perl, 1115
spi_fetchrow

in PL/Perl, 1116
SPI_finish, 1142
SPI_fname, 1174
SPI_fnumber, 1175
spi_freeplan

in PL/Perl, 1117
SPI_freeplan, 1192
SPI_freetuple, 1190
SPI_freetuptable, 1191
SPI_getargcount, 1153
SPI_getargtypeid, 1154
SPI_getbinval, 1177
SPI_getnspname, 1181

SPI_getrelname, 1180
SPI_gettype, 1178
SPI_gettypeid, 1179
SPI_getvalue, 1176
SPI_is_cursor_plan, 1155
SPI_keepplan, 1169
SPI_modifytuple, 1188
SPI_palloc, 1183
SPI_pfree, 1185
spi_prepare

in PL/Perl, 1117
SPI_prepare, 1149
SPI_prepare_cursor, 1151
SPI_prepare_params, 1152
spi_query

in PL/Perl, 1116
spi_query_prepared

in PL/Perl, 1117
SPI_register_relation, 1171
SPI_register_trigger_data, 1173
SPI_repalloc, 1184
SPI_result_code_string, 1182
SPI_returntuple, 1187
spi_rollback

in PL/Perl, 1118
SPI_rollback, 1194
SPI_rollback_and_chain, 1194
SPI_saveplan, 1170
SPI_scroll_cursor_fetch, 1166
SPI_scroll_cursor_move, 1167
SPI_start_transaction, 1195
SPI_unregister_relation, 1172
split_part, 192
SQL/CLI, 2099
SQL/Foundation, 2099
SQL/Framework, 2099
SQL/JRT, 2099
SQL/JSON path language, 274
SQL/MDA, 2099
SQL/MED, 2099
SQL/OLB, 2099
SQL/PSM, 2099
SQL/Schemata, 2099
SQL/XML, 2099

limits and conformance, 2118
sqrt, 184
sr_plan, 2422
ssh, 472
SSI, 400
SSL, 469, 754

in libpq, 716
with libpq, 709

ssl configuration parameter, 483
sslinfo, 2424
ssl_ca_file configuration parameter, 483
ssl_cert_file configuration parameter, 483
ssl_cipher, 2425
ssl_ciphers configuration parameter, 483

2627

Index

ssl_client_cert_present, 2425
ssl_client_dn, 2425
ssl_client_dn_field, 2425
ssl_client_serial, 2425
ssl_crl_file configuration parameter, 483
ssl_dh_params_file configuration parameter, 484
ssl_ecdh_curve configuration parameter, 484
ssl_extension_info, 2426
ssl_issuer_dn, 2425
ssl_issuer_field, 2426
ssl_is_used, 2424
ssl_key_file configuration parameter, 483
ssl_library configuration parameter, 540
ssl_max_protocol_version configuration parameter,
484
ssl_min_protocol_version configuration parameter,
484
ssl_passphrase_command configuration parameter,
484
ssl_passphrase_command_supports_reload
configuration parameter, 485
ssl_prefer_server_ciphers configuration parameter,
484
ssl_version, 2425
SSPI, 557
STABLE, 939
standard deviation, 294

population, 294
sample, 294

standard_conforming_strings configuration
parameter, 538
standby server, 618
standby.signal, 498, 622, 622

for hot standby, 635
pg_basebackup --write-recovery-conf, 1661

standby_mode (see standby.signal)
START TRANSACTION, 1626
starts_with, 192
START_REPLICATION, 1919
statement_timeout configuration parameter, 530
statement_timestamp, 227
statistics, 293, 640

of the planner, 424, 426, 595
stats_temp_directory configuration parameter, 525
stddev, 294
stddev_pop, 294
stddev_samp, 294
STONITH, 618
storage parameters, 1433
Streaming Replication, 618
strict_word_similarity, 2387
string (see character string)
strings

backslash quotes, 537
escape warning, 537
standard conforming, 538

string_agg, 292
string_to_array, 287

strip, 249, 377
strpos, 192
subarray, 2249
subltree, 2262
subpath, 2263
subquery, 11, 36, 95, 298
subscript, 30
substr, 192, 197
substring, 189, 196, 200, 202, 203
subtransactions

in PL/Tcl, 1108
sum, 292
superuser, 4, 566
superuser_reserved_connections configuration
parameter, 480
support functions

in_range, 1996
suppress_redundant_updates_trigger, 336
svals, 2242
synchronize_seqscans configuration parameter,
538
synchronous commit, 682
Synchronous Replication, 618
synchronous_commit configuration parameter, 493
synchronous_standby_names configuration
parameter, 503
syntax

SQL, 21
syslog_facility configuration parameter, 516
syslog_ident configuration parameter, 516
syslog_sequence_numbers configuration
parameter, 516
syslog_split_messages configuration parameter,
517
system catalog

schema, 68
systemd, 455

RemoveIPC, 461

T
table, 6, 43

creating, 43
inheritance, 69
modifying, 54
partitioning, 73
removing, 44
renaming, 56

Table Access Method, 1978
TABLE command, 1592
table expression, 90
table function, 95

XMLTABLE, 259
table sampling method, 1967
tableam

Table Access Method, 1978
tablefunc, 2426
tableoid, 53
TABLESAMPLE method, 1967

2628

Index

tablespace, 574
default, 528
temporary, 529

table_am_handler, 173
take_sample, 2311
take_sample_subset, 2311
tan, 186
tand, 186
tanh, 187
target list, 1016
Tcl, 1101
tcn, 2434
tcp_keepalives_count configuration parameter, 481
tcp_keepalives_idle configuration parameter, 481
tcp_keepalives_interval configuration parameter,
481
tcp_user_timeout configuration parameter, 481
template0, 572
template1, 572, 572
temp_buffers configuration parameter, 486
temp_file_limit configuration parameter, 488
temp_tablespaces configuration parameter, 529
test_decoding, 2435
text, 120, 246
text search, 365

data types, 141
functions and operators, 141
indexes, 396

text2ltree, 2263
threads

with libpq, 758
tid, 172
time, 124, 126

constants, 128
current, 234
output format, 128

(see also formatting)
time span, 124
time with time zone, 124, 126
time without time zone, 124, 126
time zone, 129, 532

conversion, 233
input abbreviations, 2069
POSIX-style specification, 2071

time zone names, 532
timelines, 603
TIMELINE_HISTORY, 1918
timeofday, 228
timeout

client authentication, 482
deadlock, 536

timestamp, 124, 127
timestamp with time zone, 124, 127
timestamp without time zone, 124, 127
timestamptz, 124
TimeZone configuration parameter, 532
timezone_abbreviations configuration parameter,
532

TOAST, 2039
and user-defined types, 969
per-column storage settings, 1281
per-type storage settings, 1302
versus large objects, 770

toast_tuple_target storage parameter, 1433
token, 21
to_ascii, 193
to_attname, 2231
to_attnum, 2231
to_atttype, 2231
to_char, 216

and locales, 577
to_date, 216
to_hex, 193
to_json, 268
to_jsonb, 268
to_namespace, 2231
to_number, 216
to_regclass, 315
to_regcollation, 315
to_regnamespace, 315
to_regoper, 315
to_regoperator, 315
to_regproc, 315
to_regprocedure, 315
to_regrole, 315
to_regtype, 315
to_schema_qualified_operator, 2231
to_schema_qualified_relation, 2231
to_schema_qualified_type, 2231
to_timestamp, 216, 228
to_tsquery, 249, 371
to_tsvector, 249, 370
trace_locks configuration parameter, 542
trace_lock_oidmin configuration parameter, 543
trace_lock_table configuration parameter, 543
trace_lwlocks configuration parameter, 542
trace_notify configuration parameter, 542
trace_recovery_messages configuration parameter,
542
trace_sort configuration parameter, 542
trace_userlocks configuration parameter, 542
track_activities configuration parameter, 524
track_activity_query_size configuration parameter,
524
track_commit_timestamp configuration parameter,
502
track_counts configuration parameter, 525
track_functions configuration parameter, 525
track_io_timing configuration parameter, 525
transaction, 14
transaction ID

wraparound, 596
transaction isolation, 400
transaction isolation level, 401, 530

read committed, 401
repeatable read, 402

2629

Index

serializable, 403
setting, 1621
setting default, 529

transaction log (see WAL)
transaction_deferrable configuration parameter,
530
transaction_isolation configuration parameter, 530
transaction_read_only configuration parameter,
530
transaction_timestamp, 228
transform_null_equals configuration parameter,
538
transition tables, 1455

(see also ephemeral named relation)
implementation in PLs, 1173
referencing from C trigger, 1001

translate, 193
transparent huge pages, 486
trigger, 173, 998

arguments for trigger functions, 1000
for updating a derived tsvector column, 379
in C, 1001
in PL/pgSQL, 1077
in PL/Python, 1132
in PL/Tcl, 1105
compared with rules, 1036

triggered_change_notification, 2434
trigger_file (see promote_trigger_file)
trim, 189, 196
trim_scale, 184
true, 133
trunc, 184, 246
TRUNCATE, 1627
trusted

PL/Perl, 1121
tsm_handler, 173
tsm_system_rows, 2436
tsm_system_time, 2436
tsquery (data type), 142
tsquery_phrase, 251, 378
tsvector (data type), 141
tsvector concatenation, 377
tsvector_to_array, 251
tsvector_update_trigger, 336
tsvector_update_trigger_column, 336
ts_debug, 251, 392
ts_delete, 250
ts_filter, 250
ts_headline, 250, 375
ts_lexize, 251, 395
ts_parse, 252, 394
ts_rank, 250, 374
ts_rank_cd, 250, 374
ts_rewrite, 250, 378
ts_stat, 252, 381
ts_token_type, 252, 394
tuple_data_split, 2269
txid_current, 319

txid_current_if_assigned, 319
txid_current_snapshot, 319
txid_snapshot_xip, 319
txid_snapshot_xmax, 319
txid_snapshot_xmin, 319
txid_status, 319
txid_visible_in_snapshot, 319
type (see data type)
type cast, 26, 35

U
UESCAPE, 22, 24
unaccent, 2437, 2438
Unicode escape

in identifiers, 22
in string constants, 24

Unicode normalization, 188, 188
UNION, 105

determination of result type, 348
uniq, 2249
unique constraint, 49
Unix domain socket, 705
unix_socket_directories configuration parameter,
480
unix_socket_group configuration parameter, 480
unix_socket_permissions configuration parameter,
480
unknown, 173
UNLISTEN, 1629
unnest, 288

for tsvector, 251
unqualified name, 67
updatable views, 1473
UPDATE, 12, 88, 1630

RETURNING, 89
update_process_title configuration parameter, 524
updating, 88
upgrading, 465
upper, 189, 290

and locales, 577
upper_inc, 290
upper_inf, 290
UPSERT, 1549
URI, 703
user, 308, 565

current, 306
user mapping, 85
User name maps, 552
user_catalog_table storage parameter, 1435
UUID, 143

generating, 143
uuid-ossp, 2438
uuid_generate_v1, 2439
uuid_generate_v1mc, 2439
uuid_generate_v3, 2439

V
vacuum, 593

2630

Index

VACUUM, 1634
vacuumdb, 1772
vacuumlo, 2508
vacuum_cost_delay configuration parameter, 488
vacuum_cost_limit configuration parameter, 489
vacuum_cost_page_dirty configuration parameter,
489
vacuum_cost_page_hit configuration parameter,
489
vacuum_cost_page_miss configuration parameter,
489
vacuum_defer_cleanup_age configuration
parameter, 504
vacuum_freeze_min_age configuration parameter,
531
vacuum_freeze_table_age configuration parameter,
531
vacuum_index_cleanup storage parameter, 1434
vacuum_multixact_freeze_min_age configuration
parameter, 531
vacuum_multixact_freeze_table_age configuration
parameter, 531
vacuum_truncate storage parameter, 1434
value expression, 28
VALUES, 107, 1638

determination of result type, 348
varchar, 120
variadic function, 930
variance, 294

population, 294
sample, 294

var_pop, 294
var_samp, 294
version, 4, 308

compatibility, 465
view, 13

implementation through rules, 1016
materialized, 1023
updating, 1029

Visibility Map, 2042
VM (see Visibility Map)
void, 173
VOLATILE, 939
volatility

functions, 939
VPATH, 997

W
WAITLSN, 1640
WAL, 680
wal_block_size configuration parameter, 540
wal_buffers configuration parameter, 496
wal_compression configuration parameter, 495
wal_consistency_checking configuration parameter,
543
wal_debug configuration parameter, 543
wal_init_zero configuration parameter, 495
wal_keep_size configuration parameter, 502

wal_level configuration parameter, 492
wal_log_hints configuration parameter, 495
wal_receiver_create_temp_slot configuration
parameter, 505
wal_receiver_status_interval configuration
parameter, 505
wal_receiver_timeout configuration parameter, 506
wal_recycle configuration parameter, 496
wal_retrieve_retry_interval configuration
parameter, 506
wal_segment_size configuration parameter, 541
wal_sender_timeout configuration parameter, 502
wal_skip_threshold configuration parameter, 496
wal_sync_method configuration parameter, 494
wal_writer_delay configuration parameter, 496
wal_writer_flush_after configuration parameter,
496
warm standby, 618
websearch_to_tsquery, 248
WHERE, 98
where to log, 514
WHILE

in PL/pgSQL, 1063
width, 242
width_bucket, 184
window function, 15

built-in, 296
invocation, 33
order of execution, 103

WITH
in SELECT, 107, 1592

WITH CHECK OPTION, 1471
WITHIN GROUP, 31
witness server, 618
word_similarity, 2387
work_mem configuration parameter, 486
wraparound

of multixact IDs, 598
of transaction IDs, 596

X
xid, 172
xid8, 172
xmax, 53
xmin, 53
XML, 143
XML export, 262
XML Functions, 252
XML option, 144, 532
xml2, 2440
xmlagg, 256, 292
xmlbinary configuration parameter, 532
xmlcomment, 253
xmlconcat, 253
xmlelement, 253
XMLEXISTS, 256
xmlforest, 255
xmloption configuration parameter, 532

2631

Index

xmlparse, 144
xmlpi, 255
xmlroot, 255
xmlserialize, 144
xmltable, 259
xml_is_well_formed, 257
xml_is_well_formed_content, 257
xml_is_well_formed_document, 257
XPath, 258
xpath_exists, 258
xpath_table, 2441
XQuery regular expressions, 215
xslt_process, 2443

Z
zero_damaged_pages configuration parameter, 544

2632

	Postgres Pro Standard 13.7.2 Documentation
	Table of Contents
	Preface
	1. What Is Postgres Pro Standard?
	2. Difference between Postgres Pro Standard and PostgreSQL
	3. A Brief History of PostgreSQL
	3.1. The Berkeley POSTGRES Project
	3.2. Postgres95
	3.3. PostgreSQL

	4. Conventions
	5. Bug Reporting Guidelines
	5.1. Identifying Bugs
	5.2. What to Report
	5.3. Where to Report Bugs

	Part I. Tutorial
	Chapter 1. Getting Started
	1.1. Installation
	1.2. Architectural Fundamentals
	1.3. Creating a Database
	1.4. Accessing a Database

	Chapter 2. The SQL Language
	2.1. Introduction
	2.2. Concepts
	2.3. Creating a New Table
	2.4. Populating a Table With Rows
	2.5. Querying a Table
	2.6. Joins Between Tables
	2.7. Aggregate Functions
	2.8. Updates
	2.9. Deletions

	Chapter 3. Advanced Features
	3.1. Introduction
	3.2. Views
	3.3. Foreign Keys
	3.4. Transactions
	3.5. Window Functions
	3.6. Inheritance
	3.7. Conclusion

	Part II. The SQL Language
	Chapter 4. SQL Syntax
	4.1. Lexical Structure
	4.1.1. Identifiers and Key Words
	4.1.2. Constants
	4.1.2.1. String Constants
	4.1.2.2. String Constants with C-Style Escapes
	4.1.2.3. String Constants with Unicode Escapes
	4.1.2.4. Dollar-Quoted String Constants
	4.1.2.5. Bit-String Constants
	4.1.2.6. Numeric Constants
	4.1.2.7. Constants of Other Types

	4.1.3. Operators
	4.1.4. Special Characters
	4.1.5. Comments
	4.1.6. Operator Precedence

	4.2. Value Expressions
	4.2.1. Column References
	4.2.2. Positional Parameters
	4.2.3. Subscripts
	4.2.4. Field Selection
	4.2.5. Operator Invocations
	4.2.6. Function Calls
	4.2.7. Aggregate Expressions
	4.2.8. Window Function Calls
	4.2.9. Type Casts
	4.2.10. Collation Expressions
	4.2.11. Scalar Subqueries
	4.2.12. Array Constructors
	4.2.13. Row Constructors
	4.2.14. Expression Evaluation Rules

	4.3. Calling Functions
	4.3.1. Using Positional Notation
	4.3.2. Using Named Notation
	4.3.3. Using Mixed Notation

	Chapter 5. Data Definition
	5.1. Table Basics
	5.2. Default Values
	5.3. Generated Columns
	5.4. Constraints
	5.4.1. Check Constraints
	5.4.2. Not-Null Constraints
	5.4.3. Unique Constraints
	5.4.4. Primary Keys
	5.4.5. Foreign Keys
	5.4.6. Exclusion Constraints

	5.5. System Columns
	5.6. Modifying Tables
	5.6.1. Adding a Column
	5.6.2. Removing a Column
	5.6.3. Adding a Constraint
	5.6.4. Removing a Constraint
	5.6.5. Changing a Column's Default Value
	5.6.6. Changing a Column's Data Type
	5.6.7. Renaming a Column
	5.6.8. Renaming a Table

	5.7. Privileges
	5.8. Row Security Policies
	5.9. Schemas
	5.9.1. Creating a Schema
	5.9.2. The Public Schema
	5.9.3. The Schema Search Path
	5.9.4. Schemas and Privileges
	5.9.5. The System Catalog Schema
	5.9.6. Usage Patterns
	5.9.7. Portability

	5.10. Inheritance
	5.10.1. Caveats

	5.11. Table Partitioning
	5.11.1. Overview
	5.11.2. Declarative Partitioning
	5.11.2.1. Example
	5.11.2.2. Partition Maintenance
	5.11.2.3. Limitations

	5.11.3. Partitioning Using Inheritance
	5.11.3.1. Example
	5.11.3.2. Maintenance for Inheritance Partitioning
	5.11.3.3. Caveats

	5.11.4. Partition Pruning
	5.11.5. Partitioning and Constraint Exclusion
	5.11.6. Best Practices for Declarative Partitioning

	5.12. Foreign Data
	5.13. Other Database Objects
	5.14. Dependency Tracking

	Chapter 6. Data Manipulation
	6.1. Inserting Data
	6.2. Updating Data
	6.3. Deleting Data
	6.4. Returning Data from Modified Rows

	Chapter 7. Queries
	7.1. Overview
	7.2. Table Expressions
	7.2.1. The FROM Clause
	7.2.1.1. Joined Tables
	7.2.1.2. Table and Column Aliases
	7.2.1.3. Subqueries
	7.2.1.4. Table Functions
	7.2.1.5. LATERAL Subqueries

	7.2.2. The WHERE Clause
	7.2.3. The GROUP BY and HAVING Clauses
	7.2.4. GROUPING SETS, CUBE, and ROLLUP
	7.2.5. Window Function Processing

	7.3. Select Lists
	7.3.1. Select-List Items
	7.3.2. Column Labels
	7.3.3. DISTINCT

	7.4. Combining Queries
	7.5. Sorting Rows
	7.6. LIMIT and OFFSET
	7.7. VALUES Lists
	7.8. WITH Queries (Common Table Expressions)
	7.8.1. SELECT in WITH
	7.8.2. Data-Modifying Statements in WITH

	Chapter 8. Data Types
	8.1. Numeric Types
	8.1.1. Integer Types
	8.1.2. Arbitrary Precision Numbers
	8.1.3. Floating-Point Types
	8.1.4. Serial Types

	8.2. Monetary Types
	8.3. Character Types
	8.4. Binary Data Types
	8.4.1. bytea Hex Format
	8.4.2. bytea Escape Format

	8.5. Date/Time Types
	8.5.1. Date/Time Input
	8.5.1.1. Dates
	8.5.1.2. Times
	8.5.1.3. Time Stamps
	8.5.1.4. Special Values

	8.5.2. Date/Time Output
	8.5.3. Time Zones
	8.5.4. Interval Input
	8.5.5. Interval Output

	8.6. Boolean Type
	8.7. Enumerated Types
	8.7.1. Declaration of Enumerated Types
	8.7.2. Ordering
	8.7.3. Type Safety
	8.7.4. Implementation Details

	8.8. Geometric Types
	8.8.1. Points
	8.8.2. Lines
	8.8.3. Line Segments
	8.8.4. Boxes
	8.8.5. Paths
	8.8.6. Polygons
	8.8.7. Circles

	8.9. Network Address Types
	8.9.1. inet
	8.9.2. cidr
	8.9.3. inet vs. cidr
	8.9.4. macaddr
	8.9.5. macaddr8

	8.10. Bit String Types
	8.11. Text Search Types
	8.11.1. tsvector
	8.11.2. tsquery

	8.12. UUID Type
	8.13. XML Type
	8.13.1. Creating XML Values
	8.13.2. Encoding Handling
	8.13.3. Accessing XML Values

	8.14. JSON Types
	8.14.1. JSON Input and Output Syntax
	8.14.2. Designing JSON Documents
	8.14.3. jsonb Containment and Existence
	8.14.4. jsonb Indexing
	8.14.5. Transforms
	8.14.6. jsonpath Type

	8.15. Arrays
	8.15.1. Declaration of Array Types
	8.15.2. Array Value Input
	8.15.3. Accessing Arrays
	8.15.4. Modifying Arrays
	8.15.5. Searching in Arrays
	8.15.6. Array Input and Output Syntax

	8.16. Composite Types
	8.16.1. Declaration of Composite Types
	8.16.2. Constructing Composite Values
	8.16.3. Accessing Composite Types
	8.16.4. Modifying Composite Types
	8.16.5. Using Composite Types in Queries
	8.16.6. Composite Type Input and Output Syntax

	8.17. Range Types
	8.17.1. Built-in Range Types
	8.17.2. Examples
	8.17.3. Inclusive and Exclusive Bounds
	8.17.4. Infinite (Unbounded) Ranges
	8.17.5. Range Input/Output
	8.17.6. Constructing Ranges
	8.17.7. Discrete Range Types
	8.17.8. Defining New Range Types
	8.17.9. Indexing
	8.17.10. Constraints on Ranges

	8.18. Domain Types
	8.19. Object Identifier Types
	8.20. pg_lsn Type
	8.21. Pseudo-Types

	Chapter 9. Functions and Operators
	9.1. Logical Operators
	9.2. Comparison Functions and Operators
	9.3. Mathematical Functions and Operators
	9.4. String Functions and Operators
	9.4.1. format

	9.5. Binary String Functions and Operators
	9.6. Bit String Functions and Operators
	9.7. Pattern Matching
	9.7.1. LIKE
	9.7.2. SIMILAR TO Regular Expressions
	9.7.3. POSIX Regular Expressions
	9.7.3.1. Regular Expression Details
	9.7.3.2. Bracket Expressions
	9.7.3.3. Regular Expression Escapes
	9.7.3.4. Regular Expression Metasyntax
	9.7.3.5. Regular Expression Matching Rules
	9.7.3.6. Limits and Compatibility
	9.7.3.7. Basic Regular Expressions
	9.7.3.8. Differences from XQuery (LIKE_REGEX)

	9.8. Data Type Formatting Functions
	9.9. Date/Time Functions and Operators
	9.9.1. EXTRACT, date_part
	9.9.2. date_trunc
	9.9.3. AT TIME ZONE
	9.9.4. Current Date/Time
	9.9.5. Delaying Execution

	9.10. Enum Support Functions
	9.11. Geometric Functions and Operators
	9.12. Network Address Functions and Operators
	9.13. Text Search Functions and Operators
	9.14. UUID Functions
	9.15. XML Functions
	9.15.1. Producing XML Content
	9.15.1.1. xmlcomment
	9.15.1.2. xmlconcat
	9.15.1.3. xmlelement
	9.15.1.4. xmlforest
	9.15.1.5. xmlpi
	9.15.1.6. xmlroot
	9.15.1.7. xmlagg

	9.15.2. XML Predicates
	9.15.2.1. IS DOCUMENT
	9.15.2.2. IS NOT DOCUMENT
	9.15.2.3. XMLEXISTS
	9.15.2.4. xml_is_well_formed

	9.15.3. Processing XML
	9.15.3.1. xpath
	9.15.3.2. xpath_exists
	9.15.3.3. xmltable

	9.15.4. Mapping Tables to XML

	9.16. JSON Functions and Operators
	9.16.1. Processing and Creating JSON Data
	9.16.2. The SQL/JSON Path Language
	9.16.2.1. Strict and Lax Modes
	9.16.2.2. SQL/JSON Path Operators and Methods
	9.16.2.3. SQL/JSON Regular Expressions

	9.17. Sequence Manipulation Functions
	9.18. Conditional Expressions
	9.18.1. CASE
	9.18.2. COALESCE
	9.18.3. NULLIF
	9.18.4. GREATEST and LEAST

	9.19. Array Functions and Operators
	9.20. Range Functions and Operators
	9.21. Aggregate Functions
	9.22. Window Functions
	9.23. Subquery Expressions
	9.23.1. EXISTS
	9.23.2. IN
	9.23.3. NOT IN
	9.23.4. ANY/SOME
	9.23.5. ALL
	9.23.6. Single-Row Comparison

	9.24. Row and Array Comparisons
	9.24.1. IN
	9.24.2. NOT IN
	9.24.3. ANY/SOME (array)
	9.24.4. ALL (array)
	9.24.5. Row Constructor Comparison
	9.24.6. Composite Type Comparison

	9.25. Set Returning Functions
	9.26. System Information Functions and Operators
	9.27. System Administration Functions
	9.27.1. Configuration Settings Functions
	9.27.2. Server Signaling Functions
	9.27.3. Backup Control Functions
	9.27.4. Recovery Control Functions
	9.27.5. Snapshot Synchronization Functions
	9.27.6. Replication Management Functions
	9.27.7. Database Object Management Functions
	9.27.8. Index Maintenance Functions
	9.27.9. Generic File Access Functions
	9.27.10. Advisory Lock Functions
	9.27.11. Debugging Functions

	9.28. Trigger Functions
	9.29. Event Trigger Functions
	9.29.1. Capturing Changes at Command End
	9.29.2. Processing Objects Dropped by a DDL Command
	9.29.3. Handling a Table Rewrite Event

	9.30. Statistics Information Functions
	9.30.1. Inspecting MCV Lists

	Chapter 10. Type Conversion
	10.1. Overview
	10.2. Operators
	10.3. Functions
	10.4. Value Storage
	10.5. UNION, CASE, and Related Constructs
	10.6. SELECT Output Columns

	Chapter 11. Indexes
	11.1. Introduction
	11.2. Index Types
	11.3. Multicolumn Indexes
	11.4. Indexes and ORDER BY
	11.5. Combining Multiple Indexes
	11.6. Unique Indexes
	11.7. Indexes on Expressions
	11.8. Partial Indexes
	11.9. Index-Only Scans and Covering Indexes
	11.10. Operator Classes and Operator Families
	11.11. Indexes and Collations
	11.12. Examining Index Usage

	Chapter 12. Full Text Search
	12.1. Introduction
	12.1.1. What Is a Document?
	12.1.2. Basic Text Matching
	12.1.3. Configurations

	12.2. Tables and Indexes
	12.2.1. Searching a Table
	12.2.2. Creating Indexes

	12.3. Controlling Text Search
	12.3.1. Parsing Documents
	12.3.2. Parsing Queries
	12.3.3. Ranking Search Results
	12.3.4. Highlighting Results

	12.4. Additional Features
	12.4.1. Manipulating Documents
	12.4.2. Manipulating Queries
	12.4.2.1. Query Rewriting

	12.4.3. Triggers for Automatic Updates
	12.4.4. Gathering Document Statistics

	12.5. Parsers
	12.6. Dictionaries
	12.6.1. Stop Words
	12.6.2. Simple Dictionary
	12.6.3. Synonym Dictionary
	12.6.4. Thesaurus Dictionary
	12.6.4.1. Thesaurus Configuration
	12.6.4.2. Thesaurus Example

	12.6.5. Ispell Dictionary
	12.6.6. Snowball Dictionary

	12.7. Configuration Example
	12.8. Testing and Debugging Text Search
	12.8.1. Configuration Testing
	12.8.2. Parser Testing
	12.8.3. Dictionary Testing

	12.9. Preferred Index Types for Text Search
	12.10. psql Support
	12.11. Limitations

	Chapter 13. Concurrency Control
	13.1. Introduction
	13.2. Transaction Isolation
	13.2.1. Read Committed Isolation Level
	13.2.2. Repeatable Read Isolation Level
	13.2.3. Serializable Isolation Level

	13.3. Explicit Locking
	13.3.1. Table-Level Locks
	13.3.2. Row-Level Locks
	13.3.3. Page-Level Locks
	13.3.4. Deadlocks
	13.3.5. Advisory Locks

	13.4. Data Consistency Checks at the Application Level
	13.4.1. Enforcing Consistency with Serializable Transactions
	13.4.2. Enforcing Consistency with Explicit Blocking Locks

	13.5. Caveats
	13.6. Locking and Indexes

	Chapter 14. Performance Tips
	14.1. Using EXPLAIN
	14.1.1. EXPLAIN Basics
	14.1.2. EXPLAIN ANALYZE
	14.1.3. Caveats

	14.2. Statistics Used by the Planner
	14.2.1. Single-Column Statistics
	14.2.2. Extended Statistics
	14.2.2.1. Functional Dependencies
	14.2.2.1.1. Limitations of Functional Dependencies

	14.2.2.2. Multivariate N-Distinct Counts
	14.2.2.3. Multivariate MCV Lists

	14.3. Controlling the Planner with Explicit JOIN Clauses
	14.4. Populating a Database
	14.4.1. Disable Autocommit
	14.4.2. Use COPY
	14.4.3. Remove Indexes
	14.4.4. Remove Foreign Key Constraints
	14.4.5. Increase maintenance_work_mem
	14.4.6. Increase max_wal_size
	14.4.7. Disable WAL Archival and Streaming Replication
	14.4.8. Run ANALYZE Afterwards
	14.4.9. Some Notes about pg_dump

	14.5. Non-Durable Settings

	Chapter 15. Parallel Query
	15.1. How Parallel Query Works
	15.2. When Can Parallel Query Be Used?
	15.3. Parallel Plans
	15.3.1. Parallel Scans
	15.3.2. Parallel Joins
	15.3.3. Parallel Aggregation
	15.3.4. Parallel Append
	15.3.5. Parallel Plan Tips

	15.4. Parallel Safety
	15.4.1. Parallel Labeling for Functions and Aggregates

	Part III. Server Administration
	Chapter 16. Binary Installation
	16.1. Installing Postgres Pro Standard on Linux
	16.1.1. Supported Linux Distributions
	16.1.2. Quick Installation and Setup
	16.1.3. Custom Installation
	16.1.3.1. Choosing the Packages to Install
	16.1.3.2. Enabling Automatic Server Startup

	16.1.4. Setting up Development Workstations
	16.1.4.1. Using Third-Party Programs with Postgres Pro

	16.1.5. Configuring Multiple Postgres Pro Instances
	16.1.6. Antivirus Considerations

	16.2. Installing Postgres Pro Standard on Windows
	16.2.1. Supported Windows Versions
	16.2.2. GUI Installation
	16.2.3. Command-Line Installation
	16.2.3.1. Command-Line Options
	16.2.3.2. INI File Format

	16.2.4. Loading Procedural Languages
	16.2.4.1. Setting up the Environment for PL/Python
	16.2.4.2. Setting up the Environment for PL/Perl

	16.2.5. Configuring Multiple Postgres Pro Instances
	16.2.6. Uninstalling Postgres Pro Standard
	16.2.7. Antivirus Considerations

	16.3. Installing Additional Supplied Modules
	16.4. Migrating to Postgres Pro

	Chapter 17. Server Setup and Operation
	17.1. The Postgres Pro User Account
	17.2. Creating a Database Cluster
	17.2.1. Use of Secondary File Systems
	17.2.2. File Systems
	17.2.2.1. NFS

	17.3. Starting the Database Server
	17.3.1. Server Start-up Failures
	17.3.2. Client Connection Problems

	17.4. Managing Kernel Resources
	17.4.1. Shared Memory and Semaphores
	17.4.2. systemd RemoveIPC
	17.4.3. Resource Limits
	17.4.4. Linux Memory Overcommit
	17.4.5. Linux Huge Pages

	17.5. Shutting Down the Server
	17.6. Upgrading a Postgres Pro Cluster
	17.6.1. Upgrading Data via pg_dumpall
	17.6.2. Upgrading Data via pg_upgrade
	17.6.3. Upgrading Data via Replication

	17.7. Preventing Server Spoofing
	17.8. Encryption Options
	17.9. Secure TCP/IP Connections with SSL
	17.9.1. Basic Setup
	17.9.2. OpenSSL Configuration
	17.9.3. Using Client Certificates
	17.9.4. SSL Server File Usage
	17.9.5. Creating Certificates

	17.10. Secure TCP/IP Connections with GSSAPI Encryption
	17.10.1. Basic Setup

	17.11. Secure TCP/IP Connections with SSH Tunnels
	17.12. Registering Event Log on Windows

	Chapter 18. Server Configuration
	18.1. Setting Parameters
	18.1.1. Parameter Names and Values
	18.1.2. Parameter Interaction via the Configuration File
	18.1.3. Parameter Interaction via SQL
	18.1.4. Parameter Interaction via the Shell
	18.1.5. Managing Configuration File Contents

	18.2. File Locations
	18.3. Connections and Authentication
	18.3.1. Connection Settings
	18.3.2. Authentication
	18.3.3. SSL

	18.4. Resource Consumption
	18.4.1. Memory
	18.4.2. Disk
	18.4.3. Kernel Resource Usage
	18.4.4. Cost-based Vacuum Delay
	18.4.5. Background Writer
	18.4.6. Asynchronous Behavior

	18.5. Write Ahead Log
	18.5.1. Settings
	18.5.2. Checkpoints
	18.5.3. Archiving
	18.5.4. Archive Recovery
	18.5.5. Recovery Target

	18.6. Replication
	18.6.1. Sending Servers
	18.6.2. Master Server
	18.6.3. Standby Servers
	18.6.4. Subscribers

	18.7. Query Planning
	18.7.1. Planner Method Configuration
	18.7.2. Planner Cost Constants
	18.7.3. Genetic Query Optimizer
	18.7.4. Other Planner Options

	18.8. Error Reporting and Logging
	18.8.1. Where to Log
	18.8.2. When to Log
	18.8.3. What to Log
	18.8.4. Using CSV-Format Log Output
	18.8.5. Process Title

	18.9. Run-time Statistics
	18.9.1. Query and Index Statistics Collector
	18.9.2. Statistics Monitoring

	18.10. Automatic Vacuuming
	18.11. Client Connection Defaults
	18.11.1. Statement Behavior
	18.11.2. Locale and Formatting
	18.11.3. Shared Library Preloading
	18.11.4. Other Defaults

	18.12. Lock Management
	18.13. Version and Platform Compatibility
	18.13.1. Previous Postgres Pro Versions
	18.13.2. Platform and Client Compatibility

	18.14. Error Handling
	18.15. Preset Options
	18.16. Customized Options
	18.17. Developer Options
	18.18. Short Options

	Chapter 19. Client Authentication
	19.1. The pg_hba.conf File
	19.2. User Name Maps
	19.3. Authentication Methods
	19.4. Trust Authentication
	19.5. Password Authentication
	19.6. GSSAPI Authentication
	19.7. SSPI Authentication
	19.8. Ident Authentication
	19.9. Peer Authentication
	19.10. LDAP Authentication
	19.11. RADIUS Authentication
	19.12. Certificate Authentication
	19.13. PAM Authentication
	19.14. BSD Authentication
	19.15. Authentication Problems

	Chapter 20. Database Roles
	20.1. Database Roles
	20.2. Role Attributes
	20.3. Role Membership
	20.4. Dropping Roles
	20.5. Default Roles
	20.6. Function Security

	Chapter 21. Managing Databases
	21.1. Overview
	21.2. Creating a Database
	21.3. Template Databases
	21.4. Database Configuration
	21.5. Destroying a Database
	21.6. Tablespaces

	Chapter 22. Localization
	22.1. Locale Support
	22.1.1. Overview
	22.1.2. Behavior
	22.1.3. Problems

	22.2. Collation Support
	22.2.1. Concepts
	22.2.2. Managing Collations
	22.2.2.1. Standard Collations
	22.2.2.2. Predefined Collations
	22.2.2.2.1. libc Collations
	22.2.2.2.2. ICU Collations

	22.2.2.3. Creating New Collation Objects
	22.2.2.3.1. libc Collations
	22.2.2.3.2. ICU Collations
	22.2.2.3.3. Copying Collations

	22.2.2.4. Nondeterministic Collations

	22.3. Character Set Support
	22.3.1. Supported Character Sets
	22.3.2. Setting the Character Set
	22.3.3. Automatic Character Set Conversion Between Server and Client
	22.3.4. Available Character Set Conversions
	22.3.5. Further Reading

	Chapter 23. Routine Database Maintenance Tasks
	23.1. Routine Vacuuming
	23.1.1. Vacuuming Basics
	23.1.2. Recovering Disk Space
	23.1.3. Updating Planner Statistics
	23.1.4. Updating the Visibility Map
	23.1.5. Preventing Transaction ID Wraparound Failures
	23.1.5.1. Multixacts and Wraparound

	23.1.6. The Autovacuum Daemon

	23.2. Routine Reindexing
	23.3. Log File Maintenance

	Chapter 24. Backup and Restore
	24.1. SQL Dump
	24.1.1. Restoring the Dump
	24.1.2. Using pg_dumpall
	24.1.3. Handling Large Databases

	24.2. File System Level Backup
	24.3. Continuous Archiving and Point-in-Time Recovery (PITR)
	24.3.1. Setting Up WAL Archiving
	24.3.2. Making a Base Backup
	24.3.3. Making a Base Backup Using the Low Level API
	24.3.3.1. Making a Non-Exclusive Low-Level Backup
	24.3.3.2. Making an Exclusive Low-Level Backup
	24.3.3.3. Backing Up the Data Directory

	24.3.4. Recovering Using a Continuous Archive Backup
	24.3.5. Timelines
	24.3.6. Tips and Examples
	24.3.6.1. Standalone Hot Backups
	24.3.6.2. Compressed Archive Logs
	24.3.6.3. archive_command Scripts

	24.3.7. Caveats

	Chapter 25. High Availability, Load Balancing, and Replication
	25.1. Comparison of Different Solutions
	25.2. Log-Shipping Standby Servers
	25.2.1. Planning
	25.2.2. Standby Server Operation
	25.2.3. Preparing the Master for Standby Servers
	25.2.4. Setting Up a Standby Server
	25.2.5. Streaming Replication
	25.2.5.1. Authentication
	25.2.5.2. Monitoring

	25.2.6. Replication Slots
	25.2.6.1. Querying and Manipulating Replication Slots
	25.2.6.2. Configuration Example

	25.2.7. Cascading Replication
	25.2.8. Synchronous Replication
	25.2.8.1. Basic Configuration
	25.2.8.2. Multiple Synchronous Standbys
	25.2.8.3. Planning for Performance
	25.2.8.4. Planning for High Availability

	25.2.9. Continuous Archiving in Standby

	25.3. Failover
	25.4. Alternative Method for Log Shipping
	25.4.1. Implementation
	25.4.2. Record-Based Log Shipping

	25.5. Hot Standby
	25.5.1. User's Overview
	25.5.2. Handling Query Conflicts
	25.5.3. Administrator's Overview
	25.5.4. Hot Standby Parameter Reference
	25.5.5. Caveats

	Chapter 26. Monitoring Database Activity
	26.1. Standard Unix Tools
	26.2. The Statistics Collector
	26.2.1. Statistics Collection Configuration
	26.2.2. Viewing Statistics
	26.2.3. pg_stat_activity
	26.2.4. pg_stat_replication
	26.2.5. pg_stat_wal_receiver
	26.2.6. pg_stat_subscription
	26.2.7. pg_stat_ssl
	26.2.8. pg_stat_gssapi
	26.2.9. pg_stat_archiver
	26.2.10. pg_stat_bgwriter
	26.2.11. pg_stat_database
	26.2.12. pg_stat_database_conflicts
	26.2.13. pg_stat_all_tables
	26.2.14. pg_stat_all_indexes
	26.2.15. pg_statio_all_tables
	26.2.16. pg_statio_all_indexes
	26.2.17. pg_statio_all_sequences
	26.2.18. pg_stat_user_functions
	26.2.19. pg_stat_slru
	26.2.20. Statistics Functions

	26.3. Viewing Locks
	26.4. Progress Reporting
	26.4.1. ANALYZE Progress Reporting
	26.4.2. CREATE INDEX Progress Reporting
	26.4.3. VACUUM Progress Reporting
	26.4.4. CLUSTER Progress Reporting
	26.4.5. Base Backup Progress Reporting

	Chapter 27. Monitoring Disk Usage
	27.1. Determining Disk Usage
	27.2. Disk Full Failure

	Chapter 28. Reliability and the Write-Ahead Log
	28.1. Reliability
	28.2. Write-Ahead Logging (WAL)
	28.3. Asynchronous Commit
	28.4. WAL Configuration
	28.5. WAL Internals

	Chapter 29. Logical Replication
	29.1. Publication
	29.2. Subscription
	29.2.1. Replication Slot Management

	29.3. Conflicts
	29.4. Restrictions
	29.5. Architecture
	29.5.1. Initial Snapshot

	29.6. Monitoring
	29.7. Security
	29.8. Configuration Settings
	29.9. Quick Setup

	Chapter 30. Just-in-Time Compilation (JIT)
	30.1. What Is JIT compilation?
	30.1.1. JIT Accelerated Operations
	30.1.2. Inlining
	30.1.3. Optimization

	30.2. When to JIT?
	30.3. Configuration
	30.4. Extensibility
	30.4.1. Inlining Support for Extensions
	30.4.2. Pluggable JIT Providers
	30.4.2.1. JIT Provider Interface

	Part IV. Client Interfaces
	Chapter 31. libpq — C Library
	31.1. Database Connection Control Functions
	31.1.1. Connection Strings
	31.1.1.1. Keyword/Value Connection Strings
	31.1.1.2. Connection URIs
	31.1.1.3. Specifying Multiple Hosts

	31.1.2. Parameter Key Words

	31.2. Connection Status Functions
	31.3. Command Execution Functions
	31.3.1. Main Functions
	31.3.2. Retrieving Query Result Information
	31.3.3. Retrieving Other Result Information
	31.3.4. Escaping Strings for Inclusion in SQL Commands

	31.4. Asynchronous Command Processing
	31.5. Retrieving Query Results Row-by-Row
	31.6. Canceling Queries in Progress
	31.7. The Fast-Path Interface
	31.8. Asynchronous Notification
	31.9. Functions Associated with the COPY Command
	31.9.1. Functions for Sending COPY Data
	31.9.2. Functions for Receiving COPY Data
	31.9.3. Obsolete Functions for COPY

	31.10. Control Functions
	31.11. Miscellaneous Functions
	31.12. Notice Processing
	31.13. Event System
	31.13.1. Event Types
	31.13.2. Event Callback Procedure
	31.13.3. Event Support Functions
	31.13.4. Event Example

	31.14. Environment Variables
	31.15. The Password File
	31.16. The Connection Service File
	31.17. LDAP Lookup of Connection Parameters
	31.18. SSL Support
	31.18.1. Client Verification of Server Certificates
	31.18.2. Client Certificates
	31.18.3. Protection Provided in Different Modes
	31.18.4. SSL Client File Usage
	31.18.5. SSL Library Initialization

	31.19. Behavior in Threaded Programs
	31.20. Building libpq Programs
	31.21. Example Programs

	Chapter 32. Large Objects
	32.1. Introduction
	32.2. Implementation Features
	32.3. Client Interfaces
	32.3.1. Creating a Large Object
	32.3.2. Importing a Large Object
	32.3.3. Exporting a Large Object
	32.3.4. Opening an Existing Large Object
	32.3.5. Writing Data to a Large Object
	32.3.6. Reading Data from a Large Object
	32.3.7. Seeking in a Large Object
	32.3.8. Obtaining the Seek Position of a Large Object
	32.3.9. Truncating a Large Object
	32.3.10. Closing a Large Object Descriptor
	32.3.11. Removing a Large Object

	32.4. Server-Side Functions
	32.5. Example Program

	Chapter 33. ECPG — Embedded SQL in C
	33.1. The Concept
	33.2. Managing Database Connections
	33.2.1. Connecting to the Database Server
	33.2.2. Choosing a Connection
	33.2.3. Closing a Connection

	33.3. Running SQL Commands
	33.3.1. Executing SQL Statements
	33.3.2. Using Cursors
	33.3.3. Managing Transactions
	33.3.4. Prepared Statements

	33.4. Using Host Variables
	33.4.1. Overview
	33.4.2. Declare Sections
	33.4.3. Retrieving Query Results
	33.4.4. Type Mapping
	33.4.4.1. Handling Character Strings
	33.4.4.2. Accessing Special Data Types
	33.4.4.2.1. timestamp, date
	33.4.4.2.2. interval
	33.4.4.2.3. numeric, decimal
	33.4.4.2.4. bytea

	33.4.4.3. Host Variables with Nonprimitive Types
	33.4.4.3.1. Arrays
	33.4.4.3.2. Structures
	33.4.4.3.3. Typedefs
	33.4.4.3.4. Pointers

	33.4.5. Handling Nonprimitive SQL Data Types
	33.4.5.1. Arrays
	33.4.5.2. Composite Types
	33.4.5.3. User-Defined Base Types

	33.4.6. Indicators

	33.5. Dynamic SQL
	33.5.1. Executing Statements without a Result Set
	33.5.2. Executing a Statement with Input Parameters
	33.5.3. Executing a Statement with a Result Set

	33.6. pgtypes Library
	33.6.1. Character Strings
	33.6.2. The numeric Type
	33.6.3. The date Type
	33.6.4. The timestamp Type
	33.6.5. The interval Type
	33.6.6. The decimal Type
	33.6.7. errno Values of pgtypeslib
	33.6.8. Special Constants of pgtypeslib

	33.7. Using Descriptor Areas
	33.7.1. Named SQL Descriptor Areas
	33.7.2. SQLDA Descriptor Areas
	33.7.2.1. SQLDA Data Structure
	33.7.2.1.1. sqlda_t Structure
	33.7.2.1.2. sqlvar_t Structure
	33.7.2.1.3. struct sqlname Structure

	33.7.2.2. Retrieving a Result Set Using an SQLDA
	33.7.2.3. Passing Query Parameters Using an SQLDA
	33.7.2.4. A Sample Application Using SQLDA

	33.8. Error Handling
	33.8.1. Setting Callbacks
	33.8.2. sqlca
	33.8.3. SQLSTATE vs. SQLCODE

	33.9. Preprocessor Directives
	33.9.1. Including Files
	33.9.2. The define and undef Directives
	33.9.3. ifdef, ifndef, elif, else, and endif Directives

	33.10. Processing Embedded SQL Programs
	33.11. Library Functions
	33.12. Large Objects
	33.13. C++ Applications
	33.13.1. Scope for Host Variables
	33.13.2. C++ Application Development with External C Module

	33.14. Embedded SQL Commands
	ALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DEALLOCATE DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DESCRIBE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DISCONNECT
	Description
	Parameters
	Examples
	Compatibility
	See Also

	EXECUTE IMMEDIATE
	Description
	Parameters
	Examples
	Compatibility

	GET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	OPEN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET AUTOCOMMIT
	Description
	Compatibility

	SET CONNECTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SET DESCRIPTOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	TYPE
	Description
	Parameters
	Examples
	Compatibility

	VAR
	Description
	Parameters
	Examples
	Compatibility

	WHENEVER
	Description
	Parameters
	Examples
	Compatibility

	33.15. Informix Compatibility Mode
	33.15.1. Additional Types
	33.15.2. Additional/Missing Embedded SQL Statements
	33.15.3. Informix-compatible SQLDA Descriptor Areas
	33.15.4. Additional Functions
	33.15.5. Additional Constants

	33.16. Internals

	Chapter 34. The Information Schema
	34.1. The Schema
	34.2. Data Types
	34.3. information_schema_catalog_name
	34.4. administrable_role_​authorizations
	34.5. applicable_roles
	34.6. attributes
	34.7. character_sets
	34.8. check_constraint_routine_usage
	34.9. check_constraints
	34.10. collations
	34.11. collation_character_set_​applicability
	34.12. column_column_usage
	34.13. column_domain_usage
	34.14. column_options
	34.15. column_privileges
	34.16. column_udt_usage
	34.17. columns
	34.18. constraint_column_usage
	34.19. constraint_table_usage
	34.20. data_type_privileges
	34.21. domain_constraints
	34.22. domain_udt_usage
	34.23. domains
	34.24. element_types
	34.25. enabled_roles
	34.26. foreign_data_wrapper_options
	34.27. foreign_data_wrappers
	34.28. foreign_server_options
	34.29. foreign_servers
	34.30. foreign_table_options
	34.31. foreign_tables
	34.32. key_column_usage
	34.33. parameters
	34.34. referential_constraints
	34.35. role_column_grants
	34.36. role_routine_grants
	34.37. role_table_grants
	34.38. role_udt_grants
	34.39. role_usage_grants
	34.40. routine_privileges
	34.41. routines
	34.42. schemata
	34.43. sequences
	34.44. sql_features
	34.45. sql_implementation_info
	34.46. sql_parts
	34.47. sql_sizing
	34.48. table_constraints
	34.49. table_privileges
	34.50. tables
	34.51. transforms
	34.52. triggered_update_columns
	34.53. triggers
	34.54. udt_privileges
	34.55. usage_privileges
	34.56. user_defined_types
	34.57. user_mapping_options
	34.58. user_mappings
	34.59. view_column_usage
	34.60. view_routine_usage
	34.61. view_table_usage
	34.62. views

	Part V. Server Programming
	Chapter 35. Extending SQL
	35.1. How Extensibility Works
	35.2. The Postgres Pro Type System
	35.2.1. Base Types
	35.2.2. Container Types
	35.2.3. Domains
	35.2.4. Pseudo-Types
	35.2.5. Polymorphic Types

	35.3. User-Defined Functions
	35.4. User-Defined Procedures
	35.5. Query Language (SQL) Functions
	35.5.1. Arguments for SQL Functions
	35.5.2. SQL Functions on Base Types
	35.5.3. SQL Functions on Composite Types
	35.5.4. SQL Functions with Output Parameters
	35.5.5. SQL Functions with Variable Numbers of Arguments
	35.5.6. SQL Functions with Default Values for Arguments
	35.5.7. SQL Functions as Table Sources
	35.5.8. SQL Functions Returning Sets
	35.5.9. SQL Functions Returning TABLE
	35.5.10. Polymorphic SQL Functions
	35.5.11. SQL Functions with Collations

	35.6. Function Overloading
	35.7. Function Volatility Categories
	35.8. Procedural Language Functions
	35.9. Internal Functions
	35.10. C-Language Functions
	35.10.1. Dynamic Loading
	35.10.2. Base Types in C-Language Functions
	35.10.3. Version 1 Calling Conventions
	35.10.4. Writing Code
	35.10.5. Compiling and Linking Dynamically-Loaded Functions
	35.10.6. Composite-Type Arguments
	35.10.7. Returning Rows (Composite Types)
	35.10.8. Returning Sets
	35.10.9. Polymorphic Arguments and Return Types
	35.10.10. Shared Memory and LWLocks
	35.10.11. Using C++ for Extensibility

	35.11. Function Optimization Information
	35.12. User-Defined Aggregates
	35.12.1. Moving-Aggregate Mode
	35.12.2. Polymorphic and Variadic Aggregates
	35.12.3. Ordered-Set Aggregates
	35.12.4. Partial Aggregation
	35.12.5. Support Functions for Aggregates

	35.13. User-Defined Types
	35.13.1. TOAST Considerations

	35.14. User-Defined Operators
	35.15. Operator Optimization Information
	35.15.1. COMMUTATOR
	35.15.2. NEGATOR
	35.15.3. RESTRICT
	35.15.4. JOIN
	35.15.5. HASHES
	35.15.6. MERGES

	35.16. Interfacing Extensions to Indexes
	35.16.1. Index Methods and Operator Classes
	35.16.2. Index Method Strategies
	35.16.3. Index Method Support Routines
	35.16.4. An Example
	35.16.5. Operator Classes and Operator Families
	35.16.6. System Dependencies on Operator Classes
	35.16.7. Ordering Operators
	35.16.8. Special Features of Operator Classes

	35.17. Packaging Related Objects into an Extension
	35.17.1. Extension Files
	35.17.2. Extension Relocatability
	35.17.3. Extension Configuration Tables
	35.17.4. Extension Updates
	35.17.5. Installing Extensions Using Update Scripts
	35.17.6. Security Considerations for Extensions
	35.17.6.1. Security Considerations for Extension Functions
	35.17.6.2. Security Considerations for Extension Scripts

	35.17.7. Extension Example

	35.18. Extension Building Infrastructure

	Chapter 36. Triggers
	36.1. Overview of Trigger Behavior
	36.2. Visibility of Data Changes
	36.3. Writing Trigger Functions in C
	36.4. A Complete Trigger Example

	Chapter 37. Event Triggers
	37.1. Overview of Event Trigger Behavior
	37.2. Event Trigger Firing Matrix
	37.3. Writing Event Trigger Functions in C
	37.4. A Complete Event Trigger Example
	37.5. A Table Rewrite Event Trigger Example

	Chapter 38. The Rule System
	38.1. The Query Tree
	38.2. Views and the Rule System
	38.2.1. How SELECT Rules Work
	38.2.2. View Rules in Non-SELECT Statements
	38.2.3. The Power of Views in Postgres Pro
	38.2.4. Updating a View

	38.3. Materialized Views
	38.4. Rules on INSERT, UPDATE, and DELETE
	38.4.1. How Update Rules Work
	38.4.1.1. A First Rule Step by Step

	38.4.2. Cooperation with Views

	38.5. Rules and Privileges
	38.6. Rules and Command Status
	38.7. Rules Versus Triggers

	Chapter 39. Procedural Languages
	39.1. Installing Procedural Languages

	Chapter 40. PL/pgSQL — SQL Procedural Language
	40.1. Overview
	40.1.1. Advantages of Using PL/pgSQL
	40.1.2. Supported Argument and Result Data Types

	40.2. Structure of PL/pgSQL
	40.3. Declarations
	40.3.1. Declaring Function Parameters
	40.3.2. ALIAS
	40.3.3. Copying Types
	40.3.4. Row Types
	40.3.5. Record Types
	40.3.6. Collation of PL/pgSQL Variables

	40.4. Expressions
	40.5. Basic Statements
	40.5.1. Assignment
	40.5.2. Executing a Command with No Result
	40.5.3. Executing a Query with a Single-Row Result
	40.5.4. Executing Dynamic Commands
	40.5.5. Obtaining the Result Status
	40.5.6. Doing Nothing At All

	40.6. Control Structures
	40.6.1. Returning from a Function
	40.6.1.1. RETURN
	40.6.1.2. RETURN NEXT and RETURN QUERY

	40.6.2. Returning from a Procedure
	40.6.3. Calling a Procedure
	40.6.4. Conditionals
	40.6.4.1. IF-THEN
	40.6.4.2. IF-THEN-ELSE
	40.6.4.3. IF-THEN-ELSIF
	40.6.4.4. Simple CASE
	40.6.4.5. Searched CASE

	40.6.5. Simple Loops
	40.6.5.1. LOOP
	40.6.5.2. EXIT
	40.6.5.3. CONTINUE
	40.6.5.4. WHILE
	40.6.5.5. FOR (Integer Variant)

	40.6.6. Looping through Query Results
	40.6.7. Looping through Arrays
	40.6.8. Trapping Errors
	40.6.8.1. Obtaining Information about an Error

	40.6.9. Obtaining Execution Location Information

	40.7. Cursors
	40.7.1. Declaring Cursor Variables
	40.7.2. Opening Cursors
	40.7.2.1. OPEN FOR query
	40.7.2.2. OPEN FOR EXECUTE
	40.7.2.3. Opening a Bound Cursor

	40.7.3. Using Cursors
	40.7.3.1. FETCH
	40.7.3.2. MOVE
	40.7.3.3. UPDATE/DELETE WHERE CURRENT OF
	40.7.3.4. CLOSE
	40.7.3.5. Returning Cursors

	40.7.4. Looping through a Cursor's Result

	40.8. Transaction Management
	40.9. Errors and Messages
	40.9.1. Reporting Errors and Messages
	40.9.2. Checking Assertions

	40.10. Trigger Functions
	40.10.1. Triggers on Data Changes
	40.10.2. Triggers on Events

	40.11. PL/pgSQL under the Hood
	40.11.1. Variable Substitution
	40.11.2. Plan Caching

	40.12. Tips for Developing in PL/pgSQL
	40.12.1. Handling of Quotation Marks
	40.12.2. Additional Compile-Time and Run-Time Checks

	40.13. Porting from Oracle PL/SQL
	40.13.1. Porting Examples
	40.13.2. Other Things to Watch For
	40.13.2.1. Implicit Rollback after Exceptions
	40.13.2.2. EXECUTE
	40.13.2.3. Optimizing PL/pgSQL Functions

	40.13.3. Appendix

	Chapter 41. PL/Tcl — Tcl Procedural Language
	41.1. Overview
	41.2. PL/Tcl Functions and Arguments
	41.3. Data Values in PL/Tcl
	41.4. Global Data in PL/Tcl
	41.5. Database Access from PL/Tcl
	41.6. Trigger Functions in PL/Tcl
	41.7. Event Trigger Functions in PL/Tcl
	41.8. Error Handling in PL/Tcl
	41.9. Explicit Subtransactions in PL/Tcl
	41.10. Transaction Management
	41.11. PL/Tcl Configuration
	41.12. Tcl Procedure Names

	Chapter 42. PL/Perl — Perl Procedural Language
	42.1. PL/Perl Functions and Arguments
	42.2. Data Values in PL/Perl
	42.3. Built-in Functions
	42.3.1. Database Access from PL/Perl
	42.3.2. Utility Functions in PL/Perl

	42.4. Global Values in PL/Perl
	42.5. Trusted and Untrusted PL/Perl
	42.6. PL/Perl Triggers
	42.7. PL/Perl Event Triggers
	42.8. PL/Perl Under the Hood
	42.8.1. Configuration
	42.8.2. Limitations and Missing Features

	Chapter 43. PL/Python — Python Procedural Language
	43.1. Python 2 vs. Python 3
	43.2. PL/Python Functions
	43.3. Data Values
	43.3.1. Data Type Mapping
	43.3.2. Null, None
	43.3.3. Arrays, Lists
	43.3.4. Composite Types
	43.3.5. Set-Returning Functions

	43.4. Sharing Data
	43.5. Anonymous Code Blocks
	43.6. Trigger Functions
	43.7. Database Access
	43.7.1. Database Access Functions
	43.7.2. Trapping Errors

	43.8. Explicit Subtransactions
	43.8.1. Subtransaction Context Managers
	43.8.2. Older Python Versions

	43.9. Transaction Management
	43.10. Utility Functions
	43.11. Environment Variables

	Chapter 44. Server Programming Interface
	44.1. Interface Functions
	SPI_connect
	Description
	Return Value

	SPI_finish
	Description
	Return Value

	SPI_execute
	Description
	Arguments
	Return Value
	Notes

	SPI_exec
	Description
	Arguments
	Return Value

	SPI_execute_with_args
	Description
	Arguments
	Return Value

	SPI_prepare
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_cursor
	Description
	Arguments
	Return Value
	Notes

	SPI_prepare_params
	Description
	Arguments
	Return Value

	SPI_getargcount
	Description
	Arguments
	Return Value

	SPI_getargtypeid
	Description
	Arguments
	Return Value

	SPI_is_cursor_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan
	Description
	Arguments
	Return Value

	SPI_execute_plan_with_paramlist
	Description
	Arguments
	Return Value

	SPI_execp
	Description
	Arguments
	Return Value

	SPI_cursor_open
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_args
	Description
	Arguments
	Return Value

	SPI_cursor_open_with_paramlist
	Description
	Arguments
	Return Value

	SPI_cursor_find
	Description
	Arguments
	Return Value

	SPI_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_move
	Description
	Arguments
	Notes

	SPI_scroll_cursor_fetch
	Description
	Arguments
	Return Value
	Notes

	SPI_scroll_cursor_move
	Description
	Arguments
	Return Value
	Notes

	SPI_cursor_close
	Description
	Arguments

	SPI_keepplan
	Description
	Arguments
	Return Value
	Notes

	SPI_saveplan
	Description
	Arguments
	Return Value
	Notes

	SPI_register_relation
	Description
	Arguments
	Return Value

	SPI_unregister_relation
	Description
	Arguments
	Return Value

	SPI_register_trigger_data
	Description
	Arguments
	Return Value

	44.2. Interface Support Functions
	SPI_fname
	Description
	Arguments
	Return Value

	SPI_fnumber
	Description
	Arguments
	Return Value

	SPI_getvalue
	Description
	Arguments
	Return Value

	SPI_getbinval
	Description
	Arguments
	Return Value

	SPI_gettype
	Description
	Arguments
	Return Value

	SPI_gettypeid
	Description
	Arguments
	Return Value

	SPI_getrelname
	Description
	Arguments
	Return Value

	SPI_getnspname
	Description
	Arguments
	Return Value

	SPI_result_code_string
	Description
	Arguments
	Return Value

	44.3. Memory Management
	SPI_palloc
	Description
	Arguments
	Return Value

	SPI_repalloc
	Description
	Arguments
	Return Value

	SPI_pfree
	Description
	Arguments

	SPI_copytuple
	Description
	Arguments
	Return Value

	SPI_returntuple
	Description
	Arguments
	Return Value

	SPI_modifytuple
	Description
	Arguments
	Return Value

	SPI_freetuple
	Description
	Arguments

	SPI_freetuptable
	Description
	Arguments

	SPI_freeplan
	Description
	Arguments
	Return Value

	44.4. Transaction Management
	SPI_commit
	Description

	SPI_rollback
	Description

	SPI_start_transaction
	Description

	44.5. Visibility of Data Changes
	44.6. Examples

	Chapter 45. Background Worker Processes
	Chapter 46. Logical Decoding
	46.1. Logical Decoding Examples
	46.2. Logical Decoding Concepts
	46.2.1. Logical Decoding
	46.2.2. Replication Slots
	46.2.3. Output Plugins
	46.2.4. Exported Snapshots

	46.3. Streaming Replication Protocol Interface
	46.4. Logical Decoding SQL Interface
	46.5. System Catalogs Related to Logical Decoding
	46.6. Logical Decoding Output Plugins
	46.6.1. Initialization Function
	46.6.2. Capabilities
	46.6.3. Output Modes
	46.6.4. Output Plugin Callbacks
	46.6.4.1. Startup Callback
	46.6.4.2. Shutdown Callback
	46.6.4.3. Transaction Begin Callback
	46.6.4.4. Transaction End Callback
	46.6.4.5. Change Callback
	46.6.4.6. Truncate Callback
	46.6.4.7. Origin Filter Callback
	46.6.4.8. Generic Message Callback

	46.6.5. Functions for Producing Output

	46.7. Logical Decoding Output Writers
	46.8. Synchronous Replication Support for Logical Decoding
	46.8.1. Overview
	46.8.2. Caveats

	Chapter 47. Replication Progress Tracking

	Part VI. Reference
	SQL Commands
	ABORT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER DEFAULT PRIVILEGES
	Description
	Parameters

	Notes
	Examples
	Compatibility
	See Also

	ALTER DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER EVENT TRIGGER
	Description
	Parameters
	Compatibility
	See Also

	ALTER EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER GROUP
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER INDEX
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER LANGUAGE
	Description
	Parameters
	Compatibility
	See Also

	ALTER LARGE OBJECT
	Description
	Parameters
	Compatibility
	See Also

	ALTER MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER OPERATOR CLASS
	Description
	Parameters
	Compatibility
	See Also

	ALTER OPERATOR FAMILY
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER POLICY
	Description
	Parameters
	Compatibility
	See Also

	ALTER PROCEDURE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER ROUTINE
	Description
	Examples
	Compatibility
	See Also

	ALTER RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SCHEMA
	Description
	Parameters
	Compatibility
	See Also

	ALTER SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER STATISTICS
	Description
	Parameters
	Compatibility
	See Also

	ALTER SUBSCRIPTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER SYSTEM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TABLESPACE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	ALTER TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	ALTER TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER TYPE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ALTER USER
	Description
	Compatibility
	See Also

	ALTER USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	ALTER VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ANALYZE
	Description
	Parameters
	Outputs
	Notes
	Compatibility
	See Also

	BEGIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CALL
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CHECKPOINT
	Description
	Compatibility

	CLOSE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CLUSTER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMENT
	Description
	Parameters
	Notes
	Examples
	Compatibility

	COMMIT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COMMIT PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	COPY
	Description
	Parameters
	Outputs
	Notes
	File Formats
	Text Format
	CSV Format
	Binary Format
	File Header
	Tuples
	File Trailer

	Examples
	Compatibility

	CREATE ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CAST
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE COLLATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE CONVERSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DATABASE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE DOMAIN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EVENT TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE EXTENSION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN DATA WRAPPER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FOREIGN TABLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE FUNCTION
	Description
	Parameters
	Overloading
	Notes
	Examples
	Writing SECURITY DEFINER Functions Safely
	Compatibility
	See Also

	CREATE GROUP
	Description
	Compatibility
	See Also

	CREATE INDEX
	Description
	Parameters
	Index Storage Parameters
	Building Indexes Concurrently

	Notes
	Examples
	Compatibility
	See Also

	CREATE LANGUAGE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE MATERIALIZED VIEW
	Description
	Parameters
	Compatibility
	See Also

	CREATE OPERATOR
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE OPERATOR FAMILY
	Description
	Parameters
	Compatibility
	See Also

	CREATE POLICY
	Description
	Parameters
	Per-Command Policies
	Application of Multiple Policies

	Notes
	Compatibility
	See Also

	CREATE PROCEDURE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE PUBLICATION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE RULE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SEQUENCE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SERVER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE STATISTICS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLE
	Description
	Parameters
	Storage Parameters

	Notes
	Examples
	Compatibility
	Temporary Tables
	Non-Deferred Uniqueness Constraints
	Column Check Constraints
	EXCLUDE Constraint
	NULL “Constraint”
	Constraint Naming
	Inheritance
	Zero-Column Tables
	Multiple Identity Columns
	Generated Columns
	LIKE Clause
	WITH Clause
	Tablespaces
	Typed Tables
	PARTITION BY Clause
	PARTITION OF Clause

	See Also

	CREATE TABLE AS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Notes
	Compatibility
	See Also

	CREATE TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE TEXT SEARCH PARSER
	Description
	Parameters
	Compatibility
	See Also

	CREATE TEXT SEARCH TEMPLATE
	Description
	Parameters
	Compatibility
	See Also

	CREATE TRANSFORM
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TRIGGER
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE TYPE
	Description
	Composite Types
	Enumerated Types
	Range Types
	Base Types
	Array Types

	Parameters
	Notes
	Examples
	Compatibility
	See Also

	CREATE USER
	Description
	Compatibility
	See Also

	CREATE USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	CREATE VIEW
	Description
	Parameters
	Notes
	Updatable Views

	Examples
	Compatibility
	See Also

	DEALLOCATE
	Description
	Parameters
	Compatibility
	See Also

	DECLARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DELETE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	DISCARD
	Description
	Parameters
	Notes
	Compatibility

	DO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ACCESS METHOD
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP AGGREGATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP CAST
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP COLLATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP CONVERSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP DATABASE
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP DOMAIN
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EVENT TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP EXTENSION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN DATA WRAPPER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FOREIGN TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP FUNCTION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP GROUP
	Description
	Compatibility
	See Also

	DROP INDEX
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP LANGUAGE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP MATERIALIZED VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OPERATOR CLASS
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP OPERATOR FAMILY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	DROP POLICY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP PROCEDURE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP PUBLICATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP ROLE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP ROUTINE
	Description
	Examples
	Compatibility
	See Also

	DROP RULE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SCHEMA
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP SEQUENCE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SERVER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP STATISTICS
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP SUBSCRIPTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TABLE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TABLESPACE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH CONFIGURATION
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH DICTIONARY
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH PARSER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TEXT SEARCH TEMPLATE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRANSFORM
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TRIGGER
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP TYPE
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP USER
	Description
	Compatibility
	See Also

	DROP USER MAPPING
	Description
	Parameters
	Examples
	Compatibility
	See Also

	DROP VIEW
	Description
	Parameters
	Examples
	Compatibility
	See Also

	END
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	EXECUTE
	Description
	Parameters
	Outputs
	Examples
	Compatibility
	See Also

	EXPLAIN
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	FETCH
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	GRANT
	Description
	GRANT on Database Objects
	GRANT on Roles

	Notes
	Examples
	Compatibility
	See Also

	IMPORT FOREIGN SCHEMA
	Description
	Parameters
	Examples
	Compatibility
	See Also

	INSERT
	Description
	Parameters
	Inserting
	ON CONFLICT Clause

	Outputs
	Notes
	Examples
	Compatibility

	LISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	LOAD
	Description
	Compatibility
	See Also

	LOCK
	Description
	Parameters
	Notes
	Examples
	Compatibility

	MOVE
	Description
	Outputs
	Examples
	Compatibility
	See Also

	NOTIFY
	Description
	Parameters
	Notes
	pg_notify

	Examples
	Compatibility
	See Also

	PREPARE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	PREPARE TRANSACTION
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REASSIGN OWNED
	Description
	Parameters
	Notes
	Compatibility
	See Also

	REFRESH MATERIALIZED VIEW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	REINDEX
	Description
	Parameters
	Notes
	Rebuilding Indexes Concurrently

	Examples
	Compatibility
	See Also

	RELEASE SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	RESET
	Description
	Parameters
	Examples
	Compatibility
	See Also

	REVOKE
	Description
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK PREPARED
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	ROLLBACK TO SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SAVEPOINT
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SECURITY LABEL
	Description
	Parameters
	Examples
	Compatibility
	See Also

	SELECT
	Description
	Parameters
	WITH Clause
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	WINDOW Clause
	SELECT List
	DISTINCT Clause
	UNION Clause
	INTERSECT Clause
	EXCEPT Clause
	ORDER BY Clause
	LIMIT Clause
	The Locking Clause
	TABLE Command

	Examples
	Compatibility
	Omitted FROM Clauses
	Empty SELECT Lists
	Omitting the AS Key Word
	ONLY and Inheritance
	TABLESAMPLE Clause Restrictions
	Function Calls in FROM
	Namespace Available to GROUP BY and ORDER BY
	Functional Dependencies
	LIMIT and OFFSET
	FOR NO KEY UPDATE, FOR UPDATE, FOR SHARE, FOR KEY SHARE
	Data-Modifying Statements in WITH
	Nonstandard Clauses

	SELECT INTO
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	SET CONSTRAINTS
	Description
	Notes
	Compatibility

	SET ROLE
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET SESSION AUTHORIZATION
	Description
	Notes
	Examples
	Compatibility
	See Also

	SET TRANSACTION
	Description
	Notes
	Examples
	Compatibility

	SHOW
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	START TRANSACTION
	Description
	Parameters
	Compatibility
	See Also

	TRUNCATE
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UNLISTEN
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	UPDATE
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility

	VACUUM
	Description
	Parameters
	Outputs
	Notes
	Examples
	Compatibility
	See Also

	VALUES
	Description
	Parameters
	Notes
	Examples
	Compatibility
	See Also

	WAITLSN
	Description
	Parameters
	Examples
	Compatibility

	Postgres Pro Client Applications
	clusterdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	createuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropdb
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	dropuser
	Description
	Options
	Environment
	Diagnostics
	Examples
	See Also

	ecpg
	Description
	Options
	Notes
	Examples

	pg_basebackup
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pgbench
	Description
	Options
	Initialization Options
	Benchmarking Options
	Common Options

	Exit Status
	Environment
	Notes
	What Is the “Transaction” Actually Performed in pgbench?
	Custom Scripts
	Built-in Operators
	Built-In Functions
	Per-Transaction Logging
	Aggregated Logging
	Per-Statement Latencies
	Good Practices
	Security

	pg_config
	Description
	Options
	Notes
	Example

	pg_dump
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pg_dumpall
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_isready
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples

	pg_receivewal
	Description
	Options
	Exit Status
	Environment
	Notes
	Examples
	See Also

	pg_recvlogical
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_restore
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	pg-wrapper
	Description
	Options
	Notes

	pg_verifybackup
	Description
	Options
	Examples
	See Also

	psql
	Description
	Options
	Exit Status
	Usage
	Connecting to a Database
	Entering SQL Commands
	Meta-Commands
	Patterns

	Advanced Features
	Variables
	SQL Interpolation
	Prompting
	Command-Line Editing

	Environment
	Files
	Notes
	Notes for Windows Users
	Examples

	reindexdb
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	vacuumdb
	Description
	Options
	Environment
	Diagnostics
	Notes
	Examples
	See Also

	Postgres Pro Server Applications
	initdb
	Description
	Options
	Environment
	Notes
	See Also

	pg_archivecleanup
	Description
	Options
	Environment
	Notes
	Examples
	See Also

	pg_checksums
	Description
	Options
	Environment
	Notes

	pg_controldata
	Description
	Environment
	See Also

	pg_ctl
	Description
	Options
	Options for Windows

	Environment
	Files
	Examples
	Starting the Server
	Stopping the Server
	Restarting the Server
	Showing the Server Status

	See Also

	pg_resetwal
	Description
	Options
	Environment
	Notes
	See Also

	pg_rewind
	Description
	Options
	Environment
	Notes
	How It Works

	pg-setup
	Description
	Options
	Notes

	pg_test_fsync
	Description
	Options
	Environment
	See Also

	pg_test_timing
	Description
	Options
	Usage
	Interpreting Results
	Measuring Executor Timing Overhead
	Changing Time Sources
	Clock Hardware and Timing Accuracy

	See Also

	pg_upgrade
	Description
	Options
	Usage
	Notes
	See Also

	pg_waldump
	Description
	Options
	Environment
	Notes
	See Also

	postgres
	Description
	Options
	General Purpose
	Semi-Internal Options
	Options for Single-User Mode

	Environment
	Diagnostics
	Notes
	Bugs
	Single-User Mode
	Examples
	See Also

	postmaster
	Description
	See Also

	Part VII. Internals
	Chapter 48. Overview of Postgres Pro Internals
	48.1. The Path of a Query
	48.2. How Connections Are Established
	48.3. The Parser Stage
	48.3.1. Parser
	48.3.2. Transformation Process

	48.4. The Postgres Pro Rule System
	48.5. Planner/Optimizer
	48.5.1. Generating Possible Plans

	48.6. Executor

	Chapter 49. System Catalogs
	49.1. Overview
	49.2. pg_aggregate
	49.3. pg_am
	49.4. pg_amop
	49.5. pg_amproc
	49.6. pg_attrdef
	49.7. pg_attribute
	49.8. pg_authid
	49.9. pg_auth_members
	49.10. pg_cast
	49.11. pg_class
	49.12. pg_collation
	49.13. pg_constraint
	49.14. pg_conversion
	49.15. pg_database
	49.16. pg_db_role_setting
	49.17. pg_default_acl
	49.18. pg_depend
	49.19. pg_description
	49.20. pg_enum
	49.21. pg_event_trigger
	49.22. pg_extension
	49.23. pg_foreign_data_wrapper
	49.24. pg_foreign_server
	49.25. pg_foreign_table
	49.26. pg_index
	49.27. pg_inherits
	49.28. pg_init_privs
	49.29. pg_language
	49.30. pg_largeobject
	49.31. pg_largeobject_metadata
	49.32. pg_namespace
	49.33. pg_opclass
	49.34. pg_operator
	49.35. pg_opfamily
	49.36. pg_partitioned_table
	49.37. pg_policy
	49.38. pg_proc
	49.39. pg_publication
	49.40. pg_publication_rel
	49.41. pg_range
	49.42. pg_replication_origin
	49.43. pg_rewrite
	49.44. pg_seclabel
	49.45. pg_sequence
	49.46. pg_shdepend
	49.47. pg_shdescription
	49.48. pg_shseclabel
	49.49. pg_statistic
	49.50. pg_statistic_ext
	49.51. pg_statistic_ext_data
	49.52. pg_subscription
	49.53. pg_subscription_rel
	49.54. pg_tablespace
	49.55. pg_transform
	49.56. pg_trigger
	49.57. pg_ts_config
	49.58. pg_ts_config_map
	49.59. pg_ts_dict
	49.60. pg_ts_parser
	49.61. pg_ts_template
	49.62. pg_type
	49.63. pg_user_mapping
	49.64. System Views
	49.65. pg_available_extensions
	49.66. pg_available_extension_versions
	49.67. pg_config
	49.68. pg_cursors
	49.69. pg_file_settings
	49.70. pg_group
	49.71. pg_hba_file_rules
	49.72. pg_indexes
	49.73. pg_locks
	49.74. pg_matviews
	49.75. pg_policies
	49.76. pg_prepared_statements
	49.77. pg_prepared_xacts
	49.78. pg_publication_tables
	49.79. pg_replication_origin_status
	49.80. pg_replication_slots
	49.81. pg_roles
	49.82. pg_rules
	49.83. pg_seclabels
	49.84. pg_sequences
	49.85. pg_settings
	49.86. pg_shadow
	49.87. pg_shmem_allocations
	49.88. pg_stats
	49.89. pg_stats_ext
	49.90. pg_tables
	49.91. pg_timezone_abbrevs
	49.92. pg_timezone_names
	49.93. pg_user
	49.94. pg_user_mappings
	49.95. pg_views

	Chapter 50. Frontend/Backend Protocol
	50.1. Overview
	50.1.1. Messaging Overview
	50.1.2. Extended Query Overview
	50.1.3. Formats and Format Codes

	50.2. Message Flow
	50.2.1. Start-up
	50.2.2. Simple Query
	50.2.2.1. Multiple Statements in a Simple Query

	50.2.3. Extended Query
	50.2.4. Function Call
	50.2.5. COPY Operations
	50.2.6. Asynchronous Operations
	50.2.7. Canceling Requests in Progress
	50.2.8. Termination
	50.2.9. SSL Session Encryption
	50.2.10. GSSAPI Session Encryption

	50.3. SASL Authentication
	50.3.1. SCRAM-SHA-256 Authentication

	50.4. Streaming Replication Protocol
	50.5. Logical Streaming Replication Protocol
	50.5.1. Logical Streaming Replication Parameters
	50.5.2. Logical Replication Protocol Messages
	50.5.3. Logical Replication Protocol Message Flow

	50.6. Message Data Types
	50.7. Message Formats
	50.8. Error and Notice Message Fields
	50.9. Logical Replication Message Formats
	50.10. Summary of Changes since Protocol 2.0

	Chapter 51. Writing a Procedural Language Handler
	Chapter 52. Writing a Foreign Data Wrapper
	52.1. Foreign Data Wrapper Functions
	52.2. Foreign Data Wrapper Callback Routines
	52.2.1. FDW Routines for Scanning Foreign Tables
	52.2.2. FDW Routines for Scanning Foreign Joins
	52.2.3. FDW Routines for Planning Post-Scan/Join Processing
	52.2.4. FDW Routines for Updating Foreign Tables
	52.2.5. FDW Routines for Row Locking
	52.2.6. FDW Routines for EXPLAIN
	52.2.7. FDW Routines for ANALYZE
	52.2.8. FDW Routines for IMPORT FOREIGN SCHEMA
	52.2.9. FDW Routines for Parallel Execution
	52.2.10. FDW Routines for Reparameterization of Paths

	52.3. Foreign Data Wrapper Helper Functions
	52.4. Foreign Data Wrapper Query Planning
	52.5. Row Locking in Foreign Data Wrappers

	Chapter 53. Writing a Table Sampling Method
	53.1. Sampling Method Support Functions

	Chapter 54. Writing a Custom Scan Provider
	54.1. Creating Custom Scan Paths
	54.1.1. Custom Scan Path Callbacks

	54.2. Creating Custom Scan Plans
	54.2.1. Custom Scan Plan Callbacks

	54.3. Executing Custom Scans
	54.3.1. Custom Scan Execution Callbacks

	Chapter 55. Genetic Query Optimizer
	55.1. Query Handling as a Complex Optimization Problem
	55.2. Genetic Algorithms
	55.3. Genetic Query Optimization (GEQO) in Postgres Pro
	55.3.1. Generating Possible Plans with GEQO
	55.3.2. Future Implementation Tasks for PostgreSQL GEQO

	55.4. Further Reading

	Chapter 56. Table Access Method Interface Definition
	Chapter 57. Index Access Method Interface Definition
	57.1. Basic API Structure for Indexes
	57.2. Index Access Method Functions
	57.3. Index Scanning
	57.4. Index Locking Considerations
	57.5. Index Uniqueness Checks
	57.6. Index Cost Estimation Functions

	Chapter 58. Generic WAL Records
	Chapter 59. B-Tree Indexes
	59.1. Introduction
	59.2. Behavior of B-Tree Operator Classes
	59.3. B-Tree Support Functions
	59.4. Implementation
	59.4.1. B-Tree Structure
	59.4.2. Deduplication

	Chapter 60. GiST Indexes
	60.1. Introduction
	60.2. Built-in Operator Classes
	60.3. Extensibility
	60.4. Implementation
	60.4.1. GiST Buffering Build

	60.5. Examples

	Chapter 61. SP-GiST Indexes
	61.1. Introduction
	61.2. Built-in Operator Classes
	61.3. Extensibility
	61.4. Implementation
	61.4.1. SP-GiST Limits
	61.4.2. SP-GiST Without Node Labels
	61.4.3. “All-the-Same” Inner Tuples

	Chapter 62. GIN Indexes
	62.1. Introduction
	62.2. Built-in Operator Classes
	62.3. Extensibility
	62.4. Implementation
	62.4.1. GIN Fast Update Technique
	62.4.2. Partial Match Algorithm

	62.5. GIN Tips and Tricks
	62.6. Limitations
	62.7. Examples

	Chapter 63. BRIN Indexes
	63.1. Introduction
	63.1.1. Index Maintenance

	63.2. Built-in Operator Classes
	63.3. Extensibility

	Chapter 64. Hash Indexes
	64.1. Overview
	64.2. Implementation

	Chapter 65. Database Physical Storage
	65.1. Database File Layout
	65.2. TOAST
	65.2.1. Out-of-Line, On-Disk TOAST Storage
	65.2.2. Out-of-Line, In-Memory TOAST Storage

	65.3. Free Space Map
	65.4. Visibility Map
	65.5. The Initialization Fork
	65.6. Database Page Layout
	65.6.1. Table Row Layout

	Chapter 66. How the Planner Uses Statistics
	66.1. Row Estimation Examples
	66.2. Multivariate Statistics Examples
	66.2.1. Functional Dependencies
	66.2.2. Multivariate N-Distinct Counts
	66.2.3. MCV Lists

	66.3. Planner Statistics and Security

	Chapter 67. Backup Manifest Format
	67.1. Backup Manifest Top-level Object
	67.2. Backup Manifest File Object
	67.3. Backup Manifest WAL Range Object

	Part VIII. Appendixes
	Appendix A. Postgres Pro Error Codes
	Appendix B. Date/Time Support
	B.1. Date/Time Input Interpretation
	B.2. Handling of Invalid or Ambiguous Timestamps
	B.3. Date/Time Key Words
	B.4. Date/Time Configuration Files
	B.5. POSIX Time Zone Specifications
	B.6. History of Units
	B.7. Julian Dates

	Appendix C. SQL Key Words
	Appendix D. SQL Conformance
	D.1. Supported Features
	D.2. Unsupported Features
	D.3. XML Limits and Conformance to SQL/XML
	D.3.1. Queries Are Restricted to XPath 1.0
	D.3.1.1. Restriction of XQuery to XPath
	D.3.1.2. Restriction of XPath to 1.0
	D.3.1.3. Mappings between SQL and XML Data Types and Values

	D.3.2. Incidental Limits of the Implementation
	D.3.2.1. Only BY VALUE Passing Mechanism Is Supported
	D.3.2.2. Cannot Pass Named Parameters to Queries
	D.3.2.3. No XML(SEQUENCE) Type

	Appendix E. Release Notes
	E.1. Postgres Pro Standard 13.7.2
	E.1.1. Overview
	E.1.2. Migration to Version 13.7.2

	E.2. Postgres Pro Standard 13.7.1
	E.2.1. Overview
	E.2.2. Migration to Version 13.7.1

	E.3. Postgres Pro Standard 13.6.1
	E.3.1. Overview
	E.3.2. Migration to Version 13.6.1

	E.4. Postgres Pro Standard 13.5.1
	E.4.1. Overview
	E.4.2. Migration to Version 13.5.1

	E.5. Postgres Pro Standard 13.4.1
	E.5.1. Overview
	E.5.2. Migration to Version 13.4.1

	E.6. Postgres Pro Standard 13.3.1
	E.6.1. Overview
	E.6.2. Migration to Version 13.3.1

	E.7. Postgres Pro Standard 13.2.2
	E.7.1. Overview
	E.7.2. Migration to Version 13.2.2

	E.8. Postgres Pro Standard 13.2.1
	E.8.1. Overview
	E.8.2. Migration to Version 13.2.1

	E.9. Postgres Pro Standard 13.1.1
	E.9.1. Overview
	E.9.2. Migration to Version 13

	E.10. Release 13.7
	E.10.1. Migration to Version 13.7
	E.10.2. Changes

	E.11. Release 13.6
	E.11.1. Migration to Version 13.6
	E.11.2. Changes

	E.12. Release 13.5
	E.12.1. Migration to Version 13.5
	E.12.2. Changes

	E.13. Release 13.4
	E.13.1. Migration to Version 13.4
	E.13.2. Changes

	E.14. Release 13.3
	E.14.1. Migration to Version 13.3
	E.14.2. Changes

	E.15. Release 13.2
	E.15.1. Migration to Version 13.2
	E.15.2. Changes

	E.16. Release 13.1
	E.16.1. Migration to Version 13.1
	E.16.2. Changes

	E.17. Release 13
	E.17.1. Overview
	E.17.2. Migration to Version 13
	E.17.3. Changes
	E.17.3.1. Server
	E.17.3.1.1. Partitioning
	E.17.3.1.2. Indexes
	E.17.3.1.3. Optimizer
	E.17.3.1.4. General Performance
	E.17.3.1.5. Monitoring
	E.17.3.1.6. System Views
	E.17.3.1.7. Wait Events
	E.17.3.1.8. Authentication
	E.17.3.1.9. Server Configuration

	E.17.3.2. Streaming Replication and Recovery
	E.17.3.3. Utility Commands
	E.17.3.4. Data Types
	E.17.3.5. Functions
	E.17.3.6. PL/pgSQL
	E.17.3.7. Client Interfaces
	E.17.3.8. Client Applications
	
	E.17.3.8.2. pgbench

	E.17.3.9. Server Applications
	E.17.3.10. Documentation
	E.17.3.11. Source Code
	E.17.3.12. Additional Modules

	E.17.4. Acknowledgments

	E.18. Prior Releases

	Appendix F. Additional Supplied Modules
	F.1. adminpack
	F.2. amcheck
	F.2.1. Functions
	F.2.2. Optional heapallindexed Verification
	F.2.3. Using amcheck Effectively
	F.2.4. Repairing Corruption

	F.3. auth_delay
	F.3.1. Configuration Parameters
	F.3.2. Author

	F.4. auto_explain
	F.4.1. Configuration Parameters
	F.4.2. Example
	F.4.3. Authors

	F.5. bloom
	F.5.1. Parameters
	F.5.2. Examples
	F.5.3. Operator Class Interface
	F.5.4. Limitations
	F.5.5. Authors

	F.6. btree_gin
	F.6.1. Example Usage
	F.6.2. Authors

	F.7. btree_gist
	F.7.1. Example Usage
	F.7.2. Authors

	F.8. citext
	F.8.1. Rationale
	F.8.2. How to Use It
	F.8.3. String Comparison Behavior
	F.8.4. Limitations
	F.8.5. Author

	F.9. cube
	F.9.1. Syntax
	F.9.2. Precision
	F.9.3. Usage
	F.9.4. Defaults
	F.9.5. Notes
	F.9.6. Credits

	F.10. dblink
	dblink_connect
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_connect_u
	Description

	dblink_disconnect
	Description
	Arguments
	Return Value
	Examples

	dblink
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_exec
	Description
	Arguments
	Return Value
	Examples

	dblink_open
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_fetch
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_close
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_get_connections
	Description
	Return Value
	Examples

	dblink_error_message
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_send_query
	Description
	Arguments
	Return Value
	Examples

	dblink_is_busy
	Description
	Arguments
	Return Value
	Examples

	dblink_get_notify
	Description
	Arguments
	Return Value
	Examples

	dblink_get_result
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_cancel_query
	Description
	Arguments
	Return Value
	Examples

	dblink_get_pkey
	Description
	Arguments
	Return Value
	Examples

	dblink_build_sql_insert
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_delete
	Description
	Arguments
	Return Value
	Notes
	Examples

	dblink_build_sql_update
	Description
	Arguments
	Return Value
	Notes
	Examples

	F.11. dict_int
	F.11.1. Configuration
	F.11.2. Usage

	F.12. dict_xsyn
	F.12.1. Configuration
	F.12.2. Usage

	F.13. dump_stat
	F.13.1. Installation
	F.13.2. Functions

	F.14. earthdistance
	F.14.1. Cube-Based Earth Distances
	F.14.2. Point-Based Earth Distances

	F.15. fasttrun
	F.15.1. Function
	F.15.2. Test example
	F.15.3. Authors

	F.16. file_fdw
	F.17. fulleq
	F.17.1. Overview
	F.17.2. Operator fulleq
	F.17.3. Authors

	F.18. fuzzystrmatch
	F.18.1. Soundex
	F.18.2. Levenshtein
	F.18.3. Metaphone
	F.18.4. Double Metaphone

	F.19. hstore
	F.19.1. hstore External Representation
	F.19.2. hstore Operators and Functions
	F.19.3. Indexes
	F.19.4. Examples
	F.19.5. Statistics
	F.19.6. Compatibility
	F.19.7. Transforms
	F.19.8. Authors

	F.20. Hunspell Dictionaries Modules
	F.20.1. Examples

	F.21. intagg
	F.21.1. Functions
	F.21.2. Sample Uses

	F.22. intarray
	F.22.1. intarray Functions and Operators
	F.22.2. Index Support
	F.22.3. Example
	F.22.4. Authors

	F.23. isn
	F.23.1. Data Types
	F.23.2. Casts
	F.23.3. Functions and Operators
	F.23.4. Examples
	F.23.5. Bibliography
	F.23.6. Author

	F.24. jsquery
	F.24.1. Installation
	F.24.2. JSON query language
	F.24.3. GIN indexes
	F.24.3.1. jsonb_path_value_ops
	F.24.3.2. jsonb_value_path_ops
	F.24.3.3. Query optimization

	F.24.4. Authors
	F.24.5. Credits

	F.25. lo
	F.25.1. Rationale
	F.25.2. How to Use It
	F.25.3. Limitations
	F.25.4. Author

	F.26. ltree
	F.26.1. Definitions
	F.26.2. Operators and Functions
	F.26.3. Indexes
	F.26.4. Example
	F.26.5. Transforms
	F.26.6. Authors

	F.27. mchar
	F.27.1. Overview
	F.27.2. Additional types
	F.27.3. MCHAR and MVARCHAR features
	F.27.4. Authors

	F.28. online_analyze
	F.28.1. Module Loading
	F.28.2. Module Configuration
	F.28.3. Authors

	F.29. pageinspect
	F.29.1. General Functions
	F.29.2. Heap Functions
	F.29.3. B-Tree Functions
	F.29.4. BRIN Functions
	F.29.5. GIN Functions
	F.29.6. Hash Functions

	F.30. passwordcheck
	F.31. pg_buffercache
	F.31.1. The pg_buffercache View
	F.31.2. Sample Output
	F.31.3. Authors

	F.32. pgcrypto
	F.32.1. General Hashing Functions
	F.32.1.1. digest()
	F.32.1.2. hmac()

	F.32.2. Password Hashing Functions
	F.32.2.1. crypt()
	F.32.2.2. gen_salt()

	F.32.3. PGP Encryption Functions
	F.32.3.1. pgp_sym_encrypt()
	F.32.3.2. pgp_sym_decrypt()
	F.32.3.3. pgp_pub_encrypt()
	F.32.3.4. pgp_pub_decrypt()
	F.32.3.5. pgp_key_id()
	F.32.3.6. armor(), dearmor()
	F.32.3.7. pgp_armor_headers
	F.32.3.8. Options for PGP Functions
	F.32.3.8.1. cipher-algo
	F.32.3.8.2. compress-algo
	F.32.3.8.3. compress-level
	F.32.3.8.4. convert-crlf
	F.32.3.8.5. disable-mdc
	F.32.3.8.6. sess-key
	F.32.3.8.7. s2k-mode
	F.32.3.8.8. s2k-count
	F.32.3.8.9. s2k-digest-algo
	F.32.3.8.10. s2k-cipher-algo
	F.32.3.8.11. unicode-mode

	F.32.3.9. Generating PGP Keys with GnuPG
	F.32.3.10. Limitations of PGP Code

	F.32.4. Raw Encryption Functions
	F.32.5. Random-Data Functions
	F.32.6. Notes
	F.32.6.1. Configuration
	F.32.6.2. NULL Handling
	F.32.6.3. Security Limitations
	F.32.6.4. Useful Reading
	F.32.6.5. Technical References

	F.32.7. Author

	F.33. pg_freespacemap
	F.33.1. Functions
	F.33.2. Sample Output
	F.33.3. Author

	F.34. pg_pathman
	F.34.1. Installation and Setup
	F.34.1.1. Updating pg_pathman

	F.34.2. Usage
	F.34.2.1. Choosing Partitioning Strategies
	F.34.2.1.1. Setting up Hash Partitioning
	F.34.2.1.2. Setting up Range Partitioning

	F.34.2.2. Running Non-Blocking Data Migration
	F.34.2.3. Partitioning by a Single Expression
	F.34.2.3.1. Examples

	F.34.2.4. Partitioning by Composite Key
	F.34.2.4.1. Examples

	F.34.2.5. Running Multilevel Partitioning
	F.34.2.5.1. Examples

	F.34.2.6. Managing Partitions

	F.34.3. Examples
	F.34.3.1. Common Tips
	F.34.3.2. Hash Partitioning
	F.34.3.3. Range Partitioning

	F.34.4. Internals
	F.34.4.1. Custom Plan Nodes

	F.34.5. Reference
	F.34.5.1. GUC Variables
	F.34.5.2. Views and Tables
	F.34.5.2.1. pathman_config
	F.34.5.2.2. pathman_config_params
	F.34.5.2.3. pathman_concurrent_part_tasks
	F.34.5.2.4. pathman_partition_list

	F.34.5.3. Functions
	F.34.5.3.1. Partitioning Functions
	F.34.5.3.2. Data Migration Functions
	F.34.5.3.3. Triggers
	F.34.5.3.4. Partition Management Functions
	F.34.5.3.5. Additional Functions

	F.34.6. Authors

	F.35. pgpro_pwr
	F.35.1. pgpro_pwr Architecture
	F.35.2. Prerequisites
	F.35.2.1. For the pgpro_pwr Database
	F.35.2.2. For the Target Server

	F.35.3. Installation and Setup
	F.35.3.1. Simple Setup
	F.35.3.2. Complex Setup
	F.35.3.2.1. In the Target Server Database
	F.35.3.2.2. In the pgpro_pwr Database

	F.35.3.3. Setting Extension Parameters

	F.35.4. Managing Servers
	F.35.4.1. Server Management Functions

	F.35.5. Managing Samples
	F.35.5.1. Sampling Functions
	F.35.5.2. Taking Samples
	F.35.5.3. Sample Retention Policy

	F.35.6. Managing the Collection of Relation Sizes
	F.35.7. Managing Baselines
	F.35.7.1. Baseline Management Functions

	F.35.8. Data Export and Import
	F.35.8.1. Data Export
	F.35.8.2. Data Import
	F.35.8.3. Export and Import Functions

	F.35.9. Report Generation Functions
	F.35.9.1. Regular Reports
	F.35.9.2. Differential Reports
	F.35.9.3. Report Generation Example

	F.35.10. pgpro_pwr Report Sections
	F.35.10.1. Server statistics
	F.35.10.2. Load distribution
	F.35.10.3. SQL query statistics
	F.35.10.3.1. rusage statistics

	F.35.10.4. SQL query wait statistics
	F.35.10.5. Complete list of SQL texts
	F.35.10.6. Schema object statistics
	F.35.10.7. User function statistics
	F.35.10.8. Vacuum-related statistics
	F.35.10.9. Cluster settings during the report interval

	F.35.11. pgpro_pwr Diagnostic Tools
	F.35.11.1. Collecting Detailed Timing Statistics for Sampling Procedures

	F.35.12. Important Notes

	F.36. pg_prewarm
	F.36.1. Functions
	F.36.2. Configuration Parameters
	F.36.3. Author

	F.37. pgpro_stats
	F.37.1. Limitations
	F.37.2. Installation and Setup
	F.37.3. Usage
	F.37.3.1. Collecting Statistics on Query Statements and Plans
	F.37.3.2. Monitoring Custom Metrics

	F.37.4. Views
	F.37.4.1. The pgpro_stats_statements View
	F.37.4.2. The pgpro_stats_totals View
	F.37.4.3. The pgpro_stats_inval_status View
	F.37.4.4. The pgpro_stats_metrics View
	F.37.4.5. The pgpro_stats_vacuum_tables View
	F.37.4.6. The pgpro_stats_vacuum_indexes View

	F.37.5. Data Types
	F.37.5.1. The pgpro_stats_rusage Type
	F.37.5.2. The pgpro_stats_inval_msgs Type

	F.37.6. Functions
	F.37.7. Configuration Parameters
	F.37.7.1. General Settings
	F.37.7.2. Metrics Settings

	F.37.8. Authors

	F.38. pg_query_state
	F.38.1. Overview
	F.38.2. Use cases
	F.38.3. Installation
	F.38.4. Function pg_query_state
	F.38.5. Configuration settings
	F.38.6. Examples

	F.39. pgrowlocks
	F.39.1. Overview
	F.39.2. Sample Output
	F.39.3. Author

	F.40. pg_stat_statements
	F.40.1. The pg_stat_statements View
	F.40.2. Functions
	F.40.3. Configuration Parameters
	F.40.4. Sample Output
	F.40.5. Authors

	F.41. pgstattuple
	F.41.1. Functions
	F.41.2. Authors

	F.42. pg_trgm
	F.42.1. Trigram (or Trigraph) Concepts
	F.42.2. Functions and Operators
	F.42.3. GUC Parameters
	F.42.4. Index Support
	F.42.5. Text Search Integration
	F.42.6. References
	F.42.7. Authors

	F.43. pg_tsparser
	F.43.1. Installation and Setup
	F.43.2. Examples
	F.43.3. Authors

	F.44. pg_variables
	F.44.1. Installation
	F.44.2. Usage
	F.44.2.1. Using Transactional Variables

	F.44.3. Functions
	F.44.3.1. Scalar Variables
	F.44.3.2. Records
	F.44.3.3. Arrays
	F.44.3.4. Miscellaneous Functions
	F.44.3.5. Deprecated Functions
	F.44.3.5.1. Integer Variables
	F.44.3.5.2. Text Variables
	F.44.3.5.3. Numeric Variables
	F.44.3.5.4. Timestamp Variables
	F.44.3.5.5. Timestamp with timezone Variables
	F.44.3.5.6. Date Variables
	F.44.3.5.7. Jsonb Variables

	F.44.4. Examples
	F.44.5. Authors

	F.45. pg_visibility
	F.45.1. Functions
	F.45.2. Author

	F.46. plantuner
	F.46.1. Motivation
	F.46.2. GUC Variables
	F.46.3. Example
	F.46.4. Authors

	F.47. postgres_fdw
	F.47.1. FDW Options of postgres_fdw
	F.47.1.1. Connection Options
	F.47.1.2. Object Name Options
	F.47.1.3. Cost Estimation Options
	F.47.1.4. Remote Execution Options
	F.47.1.5. Updatability Options
	F.47.1.6. Importing Options

	F.47.2. Connection Management
	F.47.3. Transaction Management
	F.47.4. Remote Query Optimization
	F.47.5. Remote Query Execution Environment
	F.47.6. Cross-Version Compatibility
	F.47.7. Examples
	F.47.8. Author

	F.48. ptrack
	F.48.1. Setting up PTRACK
	F.48.2. PTRACK Configuration Parameters
	F.48.3. PTRACK Functions

	F.49. seg
	F.49.1. Rationale
	F.49.2. Syntax
	F.49.3. Precision
	F.49.4. Usage
	F.49.5. Notes
	F.49.6. Credits

	F.50. sepgsql
	F.50.1. Overview
	F.50.2. Installation
	F.50.3. Regression Tests
	F.50.4. GUC Parameters
	F.50.5. Features
	F.50.5.1. Controlled Object Classes
	F.50.5.2. DML Permissions
	F.50.5.3. DDL Permissions
	F.50.5.4. Trusted Procedures
	F.50.5.5. Dynamic Domain Transitions
	F.50.5.6. Miscellaneous

	F.50.6. Sepgsql Functions
	F.50.7. Limitations
	F.50.8. External Resources
	F.50.9. Author

	F.51. shared_ispell
	F.51.1. Functions
	F.51.2. GUC Parameters
	F.51.3. Using the dictionary
	F.51.4. Author

	F.52. spi
	F.52.1. refint — Functions for Implementing Referential Integrity
	F.52.2. autoinc — Functions for Autoincrementing Fields
	F.52.3. insert_username — Functions for Tracking Who Changed a Table
	F.52.4. moddatetime — Functions for Tracking Last Modification Time

	F.53. sr_plan
	F.53.1. Rationale
	F.53.2. Installation
	F.53.3. Usage

	F.54. sslinfo
	F.54.1. Functions Provided
	F.54.2. Author

	F.55. tablefunc
	F.55.1. Functions Provided
	F.55.1.1. normal_rand
	F.55.1.2. crosstab(text)
	F.55.1.3. crosstabN(text)
	F.55.1.4. crosstab(text, text)
	F.55.1.5. connectby

	F.55.2. Author

	F.56. tcn
	F.57. test_decoding
	F.58. tsm_system_rows
	F.58.1. Examples

	F.59. tsm_system_time
	F.59.1. Examples

	F.60. unaccent
	F.60.1. Configuration
	F.60.2. Usage
	F.60.3. Functions

	F.61. uuid-ossp
	F.61.1. uuid-ossp Functions
	F.61.2. Building uuid-ossp
	F.61.3. Author

	F.62. xml2
	F.62.1. Deprecation Notice
	F.62.2. Description of Functions
	F.62.3. xpath_table
	F.62.3.1. Multivalued Results

	F.62.4. XSLT Functions
	F.62.4.1. xslt_process

	F.62.5. Author

	Appendix G. Additional Supplied Programs
	G.1. Client Applications
	oid2name
	Description
	Options
	Environment
	Notes
	Examples
	Author

	pg_probackup
	Description
	Overview
	Limitations

	Installation and Setup
	Initializing the Backup Catalog
	Adding a New Backup Instance
	Configuring the Database Cluster
	Setting up STREAM Backups
	Setting up Continuous WAL Archiving
	Setting up Backup from Standby
	Setting up Cluster Verification
	Setting up Partial Restore
	Configuring the Remote Mode
	Set up SSH

	Setting up PTRACK Backups

	Usage
	Creating a Backup
	ARCHIVE Mode
	STREAM Mode
	Page Validation
	External Directories

	Performing Cluster Verification
	Validating a Backup
	Restoring a Cluster
	Incremental Restore
	Partial Restore

	Performing Point-in-Time (PITR) Recovery
	Using pg_probackup in the Remote Mode
	Running pg_probackup on Parallel Threads
	Configuring pg_probackup
	Specifying Connection Settings
	Managing the Backup Catalog
	Viewing Backup Information
	Viewing WAL Archive Information

	Configuring Retention Policy
	Removing Redundant Backups
	Pinning Backups
	Configuring WAL Archive Retention Policy

	Merging Backups
	Deleting Backups
	Cloning and Synchronizing Postgres Pro Instance

	Command-Line Reference
	Commands
	version
	help
	init
	add-instance
	del-instance
	set-config
	set-backup
	show-config
	show
	backup
	restore
	checkdb
	validate
	merge
	delete
	archive-push
	archive-get
	catchup

	Options
	Common Options
	Recovery Target Options
	Retention Options
	Pinning Options
	Logging Options
	Connection Options
	Compression Options
	Archiving Options
	Remote Mode Options
	Remote WAL Archive Options
	Incremental Restore Options
	Partial Restore Options
	Replica Options

	How-To
	Minimal Setup

	Versioning
	Authors
	Credits

	pg_repack
	Description
	Installation
	Options
	Reorganization Options
	Connection Options
	Generic Options

	Environment
	Examples
	Diagnostics
	Restrictions
	See also

	vacuumlo
	Description
	Options
	Environment
	Notes
	Author

	G.2. Server Applications
	mamonsu
	Description
	Installation and Setup
	Command-Line Reference
	agent
	bootstrap
	export
	export zabbix-parameters
	export zabbix-template
	report
	tune
	upload
	zabbix dashboard upload
	zabbix item
	zabbix version
	zabbix host
	zabbix hostgroup
	zabbix template
	--version
	--help
	Connection Options
	Zabbix Server Actions

	Configuration Parameters
	Connection Parameters
	[postgres]
	[system]
	[zabbix]
	[agent]
	[sender]

	Logging Parameters
	[metric_log]
	[log]

	Plugin Parameters
	[plugins]

	Individual Plugin Sections
	[preparedtransaction]
	[pgprobackup]

	Usage
	Collecting and Viewing Metrics Data
	Adding Custom Plugins
	Tuning Postgres Pro and System Configuration
	Managing Zabbix Server Settings from the Command Line
	Exporting Metrics for Native Zabbix Agent

	Compatibility Considerations

	pgbouncer
	Description
	Quick Start

	Options
	Admin Console
	Show Commands
	SHOW STATS
	SHOW STATS_TOTALS
	SHOW STATS_AVERAGES
	SHOW TOTALS
	SHOW SERVERS
	SHOW CLIENTS
	SHOW POOLS
	SHOW LISTS
	SHOW USERS
	SHOW DATABASES
	SHOW FDS
	SHOW SOCKETS, SHOW ACTIVE_SOCKETS
	SHOW CONFIG
	SHOW MEM
	SHOW DNS_HOSTS
	SHOW DNS_ZONES
	SHOW VERSION

	Process Controlling Commands
	PAUSE [db]
	DISABLE db
	ENABLE db
	RECONNECT db
	KILL db
	SUSPEND
	RESUME [db]
	SHUTDOWN
	RELOAD
	WAIT_CLOSE [db]

	Other Commands
	SET key = arg

	Signals
	Libevent Settings
	pgbouncer.ini Configuration File
	Generic Settings
	Log Settings
	Console Access Control
	Connection Sanity Checks, Timeouts
	TLS Settings
	Dangerous Timeouts
	Low-Level Network Settings
	Section [databases]
	Section [users]
	Include Directive
	Authentication File Format
	HBA File Format
	Example

	pg_filedump
	Description
	Installation
	Options
	Author

	pgpro_controldata
	Description
	Options
	General-Purpose
	Compatibility-Related

	Environment
	See Also

	pg_standby
	Description
	Options
	Notes
	Examples
	Author
	See Also

	Appendix H. External Projects
	H.1. Client Interfaces
	H.2. Administration Tools
	H.3. Procedural Languages
	H.4. Extensions

	Appendix I. Configuring Postgres Pro for 1C Solutions
	Appendix J. Postgres Pro Limits
	Appendix K. Demo Database “Airlines”
	K.1. Installation
	K.2. Schema Diagram
	K.3. Schema Description
	K.4. Schema Objects
	K.4.1. List of Relations
	K.4.2. View bookings.aircrafts
	K.4.3. Table bookings.aircrafts_data
	K.4.4. View bookings.airports
	K.4.5. Table bookings.airports_data
	K.4.6. Table bookings.boarding_passes
	K.4.7. Table bookings.bookings
	K.4.8. Table bookings.flights
	K.4.9. Table bookings.seats
	K.4.10. Table bookings.ticket_flights
	K.4.11. Table bookings.tickets
	K.4.12. View bookings.flights_v
	K.4.13. View bookings.routes
	K.4.14. Function bookings.now
	K.4.15. Function bookings.lang

	K.5. Usage
	K.5.1. Schema bookings
	K.5.2. Translations
	K.5.3. Sample Queries
	K.5.4. Bookings
	K.5.5. New Booking

	Appendix L. Acronyms
	Appendix M. Glossary
	Appendix N. Color Support
	N.1. When Color is Used
	N.2. Configuring the Colors

	Appendix O. Obsolete or Renamed Features
	O.1. recovery.conf file merged into postgresql.conf
	O.2. pg_xlogdump renamed to pg_waldump
	O.3. pg_resetxlog renamed to pg_resetwal
	O.4. pg_receivexlog renamed to pg_receivewal

	Bibliography
	Index

