
Backup and Recovery

PostgreSQL backup and recovery methods

ABOUT ME
2

Pavel Konotopov

• More than 20+ years in IT;
• Last 5 years working with PostgreSQL;
• Database engineer specialized in PostgreSQL high availability;
• Experience administering 300+ PostgreSQL clusters in a productive environment;
• Last year working in Postgres Professional.

LinkedIn: https://www.linkedin.com/in/pavel-konotopov-262028119
Email: p.konotopov@postgrespro.ru

TODAY'S AGENDA
3

• Why we need backups?
• What do we mean by “database backup”?
• What is good for PostgreSQL?
• Overview of PostgreSQL-specific backup tools.
• Advanced backup techniques.
• Backup techniques in PostgreSQL HA clusters.

WHY DO WE NEED BACKUPS?
4

Ø Database restore after disaster (obvious case):

Ø Unexpected power outage;
Ø Sudden advent of Out of Memory killer;

Ø Data corruption;
Ø Random cloud instance death;

Ø Malicious misrepresentation or deletion of data;

Ø And … whatever you cannot imagine J

Ø Fast new replicas creating in Highly Available PostgreSQL
installations;

Ø Creating Sandbox/Dev/Stage/QA/Preprod/UAT environments;

Ø Point in time database recovery;
Ø Data archive for future analysis;

Ø Security standards requirements – HIPAA, PCIDSS, etc;
Ø Potential response to future challanges.

WHAT ARE BACKUP TOOLS?
5

Ø Non-Database backup tools:

Ø Storage or Instance snapshots;
Ø Writing your own custom backup scripts;

Ø Database-related tools:
Ø Replicas;

Ø Database logical dump

Ø pg_dump and pg_restore utils
Ø Database related physical backup tools:

Ø Enterprise-level backup systems (NetApp, EMC, Microfocus, etc)
Ø OpenSource backup tools:

Ø pg_basebackup;

Ø pgBackRest;
Ø WAL-G/WAL-E;

Ø pg_probackup;
Ø …

But this is not a backup
in database case.

NON-DATABASE BACKUP TOOLS
6

Storage or Instance snapshots

snap01snap02snap03

DB Node

DB Node

Control
Node

Cloud/Hypervisor API

• open connection to PG
• run SELECT pg_start_backup()
• hold connection

• Create snapshot API call

• Create snapshot

• run SELECT pg_stop_backup()
• close connection

snap01

• Create snapshot

• Before recovery, do not
forget to remove
postgreslq.pid file from
the snapshot!

NON-DATABASE BACKUP TOOLS
7

Custom backup scripts

DB Node • Open connection
• Open connection to PG
• Run SELECT pg_start_backup()
• Hold connection

Backup Node

Control Node

• Copy PGDATA somewhere
as a new backup

• In parallel copy WAL files

• Copy PGDATA
• Run SELECT pg_stop_backup()
• Close PG connection

• Copy newly created backup
to the backup node

• Trigger remote copy task

• Close connection

• The directories need to be
copied and traversed in a
certain order;

• You must create a
backup_label file.

NON-DATABASE BACKUP TOOLS
8

What’s wrong here?

Ø Too complicated, many potential points of failure;

Ø In both cases we should maintain snapshots or backups ourselves;
Ø Taking backup could be too long, we want it to be faster!

Ø No well-known implementation of these approaches, in both cases we
should make our own scripts;

Ø Big database changes – large snapshots, large size backups;

Ø No incremental and differential backups are possible;
Ø No Point In Time Recover (PITR);

Ø We need advanced backup tools!

DATABASE-RELATED BACKUP TOOLS
9

Database Logical Dump

Ø pg_dump and pg_restore are main utilities for this;

Ø Makes a dump as SQL code;
Ø The dump will be for one particular point in time (PostgreSQL doing

snapshot when dump has began).

BUUUT …

Ø Recovery takes very long time if the Database is large:

Ø Data loading;
Ø Indexes creation;

Ø No statistics!

Ø No streaming backups, no point in time recovery possible!

DATABASE-RELATED BACKUP TOOLS
10

Database Logical Dump Optimizations

Ø DUMP
ü First it dumps only schema, then data;
ü pg_dump/pg_restore can parallelize for speedy data dump/restore;

ü Use COPY command to save/load data into/from separate files/tables;

Ø RESTORE
ü Load schema and data separately;

ü Parallel data uploading

ü Background indexes creation (CONCURRENTLY)
ü But still no statistics!

ü Need to run VACUUM ANALYSE.

DATABASE-RELATED BACKUP TOOLS
11

Database Logical Dump/Restore procedure

Database dump

• Schema dump: pg_dump –s

• Data dump: pg_dump –a –j <jobs number>

Database restore

• Schema restore: pg_restore –s

• Data restore:
pg_restore –a –j <jobs number>

• Schema

• Data files

• Schema

• Data files

• Crete indexes
CREATE INDEX …

• Create statistics
VACUUM ANALYZE

DATABASE-RELATED BACKUP TOOLS
12

When Logical Dump approach is useful?

Ø When you are migrating to the major PG version;

Ø For some reason pg_upgrade is not possible;
Ø You don't want to drag "garbage" in binary files to the new version;

Ø You can afford to stop the service for a while;
Ø The size of the database is relatively small (< 1Tb).

Ø Useful to validate a newly restored database or test backups (let’s
remember this)!

DATABASE-RELATED BACKUP TOOLS
13

Backup tools for physical backups

Ø pg_basebackup – is ”out of the box” tool;

Ø Every PostgreSQL installation has it;
Ø Can take backup locally and remotely by postgres protocol;

BUUUT…
Ø What if the database is large (>1Tb)?

Ø What if we have very small maintenance window for database restore?
Ø What if we have a limited backup storage size?

Ø What if we are not sure if the backups are valid?
Ø What if we want to restore DB state to the point in time?

Ø More ”what if”!!!

Ø We need more advanced backup tool!

Ø It's cool to have backups, but not cool not to be able to recover in a
reasonable amount of time!

DATABASE-RELATED BACKUP TOOLS
14

Good tools for physical backups

Ø Usable
Ø Well documented
Ø Automation possibilities

Ø Scalable
Ø Parallel execution is possible

Ø Implemented compression methods

Ø Incremental and differential backups
Ø Reliable

Ø WAL archiving
Ø Streaming backups

Ø Rotation and expiration policies

Ø Encryption

DATABASE-RELATED BACKUP TOOLS
15

Good tools for physical backups

Ø WAL-G

Ø WAL-E
Ø pgBackRest

Ø pg_probackup
Ø Barman

Ø …

DATABASE-RELATED BACKUP TOOLS
16

Good tools for physical backups
Ø WAL-G (Yandex, community)

Ø https://github.com/wal-g/wal-g

Ø Docs - https://wal-g.readthedocs.io

Ø Apache License, Version 2.0, lzo lib is licensed under GPL 3.0+.
Ø WAL-E (community)

Ø https://github.com/wal-e/wal-e

Ø Docs – https://github.com/wal-e/wal-e

Ø BSD 3-Clause license
Ø pgBackRest (Crunchy Data, community)

Ø https://github.com/pgbackrest/pgbackrest

Ø Docs - https://pgbackrest.org/user-guide.html

Ø MIT license

Ø pg_probackup (PostgresPro, community)

Ø https://github.com/postgrespro/pg_probackup
Ø Docs – https://postgrespro.com/docs/postgrespro/13/app-pgprobackup

Ø PostgreSQL license

Ø Barman (EDB, community, requires pg_basebackup)

Ø https://github.com/EnterpriseDB/barman

Ø Docs – https://pgbarman.org/documentation/

Ø GNU General Public License 3.0

https://github.com/wal-g/wal-g
https://wal-g.readthedocs.io/
https://github.com/wal-e/wal-e
https://github.com/pgbackrest/pgbackrest
https://pgbackrest.org/user-guide.html
https://github.com/postgrespro/pg_probackup
https://postgrespro.com/docs/postgrespro/13/app-pgprobackup
https://github.com/EnterpriseDB/barman

DATABASE-RELATED BACKUP TOOLS
17

Common features: backup repository

Ø WAL-G/WAL-E
Ø Your responsibility (DIY)

Ø pgBackRest
Ø --stanza option

Ø Common repository for many instances
Ø pg_probackup

Ø --instance option

Ø Common repository for many instances

Ø Barman
Ø <server_name> option

Ø Common repository for many instances

DATABASE-RELATED BACKUP TOOLS
18

Common features: logging

Ø WAL-G/WAL-E
Ø WAL-E: WALE_LOG_DESTINATION – syslog, stderr; WALE_SYSLOG_FACILITY – local0-7,user

Ø WAL-G: STDOUT/STDERR 2>&1 > logfile

Ø pgBackRest
Ø log-level-console, log-level-file, log-level-stderr, log-path
Ø OFF, ERROR, WARN, INFO, DETAIL, DEBUG, TRACE

Ø pg_probackup

Ø log-level-file, log-filename, log-rotation-size, log-rotation-age

Ø VERBOSE, LOG, INFO, NOTICE, WARNING, ERROR, OFF

Ø Barman
Ø Global logfile

Ø DEBUG, INFO, WARNING, ERROR, CRITICAL

DATABASE-RELATED BACKUP TOOLS
19

Common features: WAL archiving/restoring

Ø WAL-G/WAL-E
Ø archive_command = “wal-g/wal-e wal-push …”

Ø restore_command = “wal-g/wal-e wal-fetch …”

Ø pgBackRest
Ø archive_command = “pgbackrest archive-push…”
Ø restore_command = “pgbackrest archive-get..”

Ø Can work in asynchronous mode!

Ø pg_probackup
Ø archive_command = “pg_probackup archive-push…”

Ø restore_command = “pg_probackup archive-get…”

Ø Barman
Ø archive_command = “rsync …”

Ø restore_command = ”barman get-wal…”

What is WAL?
Write Ahead Log - the files where
all the changes occurring in the
DBMS are recorded before their will
be applied into DB, to ensure the
possibility of restoring. Having
WAL, we can replay it from the
beginning (usually since the last
backup) to a certain point, thereby
restoring the state of the DBMS for
a certain period of time.

Why do we need WAL archiving?
Ensure that the DBMS can be restored
to a point in time – Point In Time
Recovery (PITR)

DATABASE-RELATED BACKUP TOOLS
20

Retention policies

Ø WAL-G/WAL-E
Ø delete

Ø retain N – number of backups in place

Ø Before <wal-segment>

Ø pgBackRest
Ø Full & Differential Backup Retention - number of backups to retain

Ø Archive Retention

Ø Defined in configuration file

Ø pg_probackup
Ø --retention-redundancy

Ø --retention-window

Ø delete --expired --wal

Ø Barman
Ø retention_policy =

{REDUNDANCY value RECOVERY WINDOW OF value {DAYS | WEEKS | MONTHS}}

DATABASE-RELATED BACKUP TOOLS
21

Remote backups, Object storages support

Ø WAL-G/WAL-E
Ø stream

Ø pgBackRest
Ø ssh,

Ø stream, but with ssh :)
Ø pg_probackup

Ø ssh

Ø stream

Ø Barman
Ø ssh

Ø stream

Ø WAL-G/WAL-E
Ø AWS, S3 compat, GS, Azure,

Swift

Ø pgBackRest
Ø AWS, S3 compat, GS, Azure

Ø pg_probackup
Ø Not Yet Implemented

Ø Barman
Ø AWS S3, Azure

Ø barman-cloud-backup script

Ø barman-wal-archive script

DATABASE-RELATED BACKUP TOOLS
22

Parallel backup/restore

Ø WAL-G/E
Ø WALG_UPLOAD_CONCURRENCY, WALG_DOWNLOAD_CONCURRENCY
Ø WALE_UPLOAD_CONCURRENCY, WALE_DOWNLOAD_CONCURRENCY

Ø pgBackRest
Ø --process-max

Ø pg_probackup
Ø -j num_threads

Ø Barman
Ø parallel_jobs = n (rsync-mode only)

DATABASE-RELATED BACKUP TOOLS
23

Validation

Ø WAL-G
Ø WALG_VERIFY_PAGE_CHECKSUMS
Ø wal-verify option

Ø pgBackRest
Ø file-level checksums
Ø page checksums on backup

Ø pg_probackup
Ø file-level checksums
Ø page-level checksums
Ø validate command (checkdb –amcheck – check indexes)
Ø check backup integrity after backup and before restore

Ø Barman
Ø сustom hooks

Ø pg_verifybackup since PostgreSQL 13!

DATABASE-RELATED BACKUP TOOLS
24

Backup storage

Test
Sandbox

Database

Sequential backup Restore selected backup

Validation: how to ensure that backup is valid?

Calculate stats

Save it inside (or
external) DB

Backup versioning

Other metadata…

Calculate and compare stats

Run SQL test (business logic)

Save results to external DB

pg_dump –d dbname > /dev/null

DATABASE-RELATED BACKUP TOOLS
25

Compression

Ø WAL-G/WAL-E
Ø LZO
Ø WALG_COMPRESSION_METHOD (lz4, lzma, brotli)

Ø pgBackRest
Ø --compress (gzip)
Ø --compress-level
Ø --compress-level-network

Ø pg_probackup
Ø --compress-algorithm (zlib, pglz)
Ø --compress-level

Ø Barman
Ø compression = gzip (basebackup-mode only)
Ø network_compression (rsync-mode only)

DATABASE-RELATED BACKUP TOOLS
26

Encryption

Ø WAL-G/WAL-E
Ø WALE_GPG_KEY_ID, gpg
Ø WALG_GPG_[KEY,PATH,PASSPHRASE]
Ø Yandex Cloud KMS support
Ø WALG_LIBSODIUM_[KEY,PATH]

Ø pgBackRest
Ø --repo-cipher-type = aes-256-cbc
Ø --repo-cipher-pass

Ø pg_probackup
Ø Not Yet Implemented
Ø There is the problem with Russian laws, we need to

obtain a special license to include term
“encryption” into.

Ø Barman
Ø Not Yet Implemented

DATABASE-RELATED BACKUP TOOLS
27

Incremental/Differential

Ø WAL-G (8Kb granularity)
Ø page-level incremental DELTA backup

Ø pgBackRest
Ø file-level incremental (compare file timestamps)
Ø file-level differential

Ø pg_probackup (8Kb granularity)
Ø page-level incremental
Ø PTRACK

requires PostgreSQL patch:
- https://github.com/postgrespro/ptrack

Ø PAGE (requires WAL archive)
Ø DELTA (compare page LSNs)
Ø Backup management – MERGE, we can merge the chain of the

incremental backups into FULL backup
Ø Barman

Ø file-level incremental (rsync-mode only)

ADVANCED BACKUP: INC/DIFF
28

The idea of differential and incremental backups
D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

Calculate
checksum

New checksum
is compared with
old checksum
(from previous full backup)

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

Backup only
this file

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

Calculate page
checksums

New pages checksums should be
compared with the
old ones. Here is
hard calculation
process coming, if changes are huge.

D
a
t
a
b
a
s
e

F
i
l
e

1

Backup only
these pages

Backup changed files: Barman, pgBackRest Backup changed pages: WAL-G/E, pg_probackup

ADVANCED BACKUP: PTRACK
29

Bitmap and Page LSN: pg_probackup + PTRACK extension
D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

Calculate pages
checksums

Track page
changes

D
a
t
a
b
a
s
e

F
i
l
e

1

6

Backup only
these pages

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

D
a
t
a
b
a
s
e

F
i
l
e

0 1 2 3

4 5 6 7

Calculate page
checksums

Track page changes,
place pages LSNs to
the special table.

D
a
t
a
b
a
s
e

F
i
l
e

1

Backup only
these pages

0 0 0 0 0 01 1

0 2 3 4 5 71 6

Pages bitmap

Give me only changed pages!

Page LSN

1

6

Give me a list
of pages that
have changed
since a given
LSN (last
backup)

Version 1 Version 2

DATABASE RELATED BACKUP TOOLS
30

Catchup

Ø WAL-G
Ø Creates a copy of a PostgreSQL instance using the backup catalog.
Ø wal-g catchup-push /path/to/master/postgres --from-lsn replica_lsn
Ø wal-g catchup-fetch /path/to/replica/postgres backup_name

Ø pg_probackup
Ø Creates a copy of a PostgreSQL instance without using the backup catalog.

Ø pg_probackup catchup -b catchup_mode --source-
pgdata=path_to_pgdata_on_remote_server --destination-
pgdata=path_to_local_dir

Ø Also we are able to catchup primary by using backup catalog and incremental
copies.

ADVANCED BACKUP: CATCHUP
31

Node2
Standby

storage

Node1
Primary

Node2
Standby

Node1
Primary

pg_probackup WAL-G

pg_probackup –b PTRACK
--sourcepgdata=remote_pgdata
--destination-pgdata=local_pgdata

Pages/WAL

Get LSN

wal-g catchup-fetch
/pgdata backup_name

wal-g catchup-push
/pgdata --from-lsn LSN

BACKUP IN HA DEPLOYMENTS
32

Node2
Sync standby Patroni configuration file:

postgresql:
create_replica_methods:

- probackup
probackup:
command:
- ‘pg_probackup restore --instance cluster -B /backup-dir’
keep_data: True
no_params: True

Common storage

Node1
Primary

Node3
New standby

Heavy Load

WAL archiving
Backup

Setup new standby
from backup

replication replication

Backup

Read queries Read queriesRead-Write queries

replication

BACKUP IN K8S
33

Pod-1

PVC-PG-1
kind:
PersistentVolumeClaim

spec:
accessModes:
- ReadWriteMany

Pod-2
primary standby

Backup pod triggered by scheduler

K8s scheduler

S3
S3://backup

kind:
CronJob

spec:
jobTemplate:

spec:
containers:
- name: backup
image: backup:v0.1
volumeMounts:

- name: pvc-pg-1
mountPath: /pgdata
readOnly: true

schedule: ‘0 1 * * *’

Run this job every day at 01:00am

WAL archiving

Backup

pg_start_backup
pg_stop_backup

COMPARISON TABLE
34

Tool Common
repo Logging Diff/Inc Archive Remote S3/Cloud Encryption Validation Parallel

backup/restore Compression Streaming Catchup

WAL-G No No Yes/page Yes Yes Yes Yes No Yes Yes Yes Yes

WAL-E No Yes No Yes No Yes Yes Yes Yes Yes No No

pgBackRest Yes Yes Yes/file Yes Yes Yes Yes Yes Yes Yes No No

pg_probackup Yes Yes
Yes/file/

page/PTRACK
Yes Yes No No Yes Yes Yes Yes Yes

Barman Yes Yes Yes/file Yes Yes
Yes

plugin
No No

No/
rsync

No/
rsync

Yes No

