
Configuration settings and
diagnostics methods for
better PostgreSQL
performance

postgrespro.com
Peter Petrov,
Senior DBA,
May 11, 2021

2

Agenda

Data checksums and approaches of their activation.

Tuning PostgreSQL parameters for better performance.

List of useful extensions for better diagnostics and

troubleshooting.

Some examples of Zabbix metrics and fragments of a workload

report.

Kernel parameters tuning.

Debug symbols installation.

3

data_checksums activation methods and
validation

initdb –k

pg_checksums and streaming replication.

https://paquier.xyz/postgresql-2/postgres-12-pg-checksums/

https://github.com/credativ/pg_checksums.git for PostgreSQL version

<= 11

https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/10827

Data validation must be done by backup utility because it checks all

blocks in the database cluster. If there is a mismatch, then the utility can

display a warning or finish its job with an error. If there is no mistake,

then backup procedure successfully completed.

https://paquier.xyz/postgresql-2/postgres-12-pg-checksums/
https://github.com/credativ/pg_checksums.git
https://gitlab.com/gitlab-com/gl-infra/infrastructure/-/issues/10827

4

pg_probackup as a tool for a database cluster
backup and recovery

pg_probackup is a utility to manage backup and recovery of
PostgreSQL database clusters. It offers the following benefits:

• Incremental backup

• Validation and verification

• Multiple threads usage to speed up backup and restore

• Backup from standby

5

shared_buffers, work_mem and temp_buffers
tuning

shared_buffers is used to determine how much memory will be

allocated for PostgreSQL database for its data caching. A reasonable

starting value is ¼ of the memory on the server.

work_mem is the advice for the planner about available amount of

memory for internal algorithms like sorting and hashing. A reasonable

starting value is 10MB.

temp_buffers is the maximum amount of memory for storing temporary

tables data. If an application doesn’t use it, then this parameter value

should be 0.

6

max_connections tuning

max_connections is the maximum number of allowed client

connections.

If max_connections > 1000, consider using connection pooling

techniques:

• pgbouncer (https://github.com/pgbouncer/pgbouncer)

• odyssey (https://github.com/yandex/odyssey)

• application server connection pooling (Wildfly)

https://github.com/pgbouncer/pgbouncer
https://github.com/yandex/odyssey

7

How much memory should be allocated?

shared_buffers + (work_mem + temp_buffers) * max_connections

should not exceed the maximum amount of memory on the server

to avoid forced PostgreSQL main process termination by OOM

killer.

8

Logging parameters in PostgreSQL (1)

logging_collector = on

log_temp_files. Allows to detect queries with heavy temporary files

generation. It can be essential to detect recursive queries which are

in infinite cycle.

9

Logging parameters in PostgreSQL (2)

Tune log_line_prefix for getting more detailed information in a way like

this:

• %m – timestamp when a log entry was written

• %p – PostgreSQL backend identifier

• %l - a log entry number inside a PostgreSQL session

• %u – database username.

• %h – IP-address of PostgreSQL client.

• %e – SQLSTATE error code

• %x - transaction identifier

10

Parameters for PostgreSQL planner

join_collapse_limit = 30. If the value of this parameter is low,

then planner can choose non optimal JOINs order.

11

mamonsu as an active Zabbix agent

Mamonsu is a monitoring agent for collecting PostgreSQL and

system metrics and sending them to Zabbix server:

• Works with various operating systems / OSs

• 1 agent = 1 database instance

• Works with PostgreSQL version >= 9.5

• Provides various metrics related to PostgreSQL activity

12

PostgreSQL statistics connection

13

Database cluster size statistics

14

PostgreSQL checkpoint statistics

15

PostgreSQL locks sampling

16

List of useful extensions (1)

pg_stat_statements for analyzing which queries have the longest

execution time.

pg_stat_kcache for finding queries consuming the most CPU

system and user time.

auto_explain for finding query plans and parameters for further

tuning.

pg_wait_sampling for collecting history of wait events and waits

profiles.

17

List of useful extensions (2)

pg_profile for creating historic workload repository

containing various metrics such as:

• SQL Query statistics

• DML statistics

• Schema object statistics

• Vacuum-related statistics

18

List of useful extensions (3)

plprofiler for creating performance profiles of PL/pgSQL

functions and stored procedures.

pgpro_stats as a combination of pg_stat_statements,

pg_stat_kcache and pg_wait_sampling (only for Postgres Pro

customers)

pgpro_pwr for gathering information from pgpro_stats (only

for Postgres Pro customers)

19

Top SQL by execution time collected by
pg_profile module

20

Top SQL by shared blocks fetched by pg_profile

21

huge_pages activation (1)

If PostgreSQL shared_buffers >= 20GB, it is highly

recommended to use huge pages to reduce overhead while

working with large and continuous regions of memory. For

activating it you should take the following steps.

22

huge_pages activation (2)

1. Determine postmaster pid by watching contents of
$PGDATA/postmaster.pid.

2. Determine VmPeak by watching contents of
/proc/postmaster_pid/status.

3. Determine HugePageSize from /proc/meminfo

4. Divide VmPeak by HugePageSize and save the calculated
value in /etc/sysctl.conf file as vm.nr_hugepages = value

23

transparent_huge_pages deactivation

Disable transparent huge pages by executing following

commands as root user:

• echo never > /sys/kernel/mm/transparent_hugepage/enabled

• echo never > /sys/kernel/mm/transparent_hugepage/defrag

However, some changes must be made to grub config to preserve

settings even after the server’s reboot.

24

Making changes to grub configuration file

1. Install grub2-common package.

2. Add hugepage=value at the end of

GRUB_CMDLINE_LINUX_DEFAULT in /etc/default/grub

file.

3. Add transparent_hugepage=never at the end of

GRUB_CMDLINE_LINUX_DEFAULT in /etc/default/grub

file.

4. Run update-grub to apply the config to grub and reboot the

system.

25

Checking values of the performance-related
parameters

After rebooting run command grep Huge /proc/meminfo.

If HugePages_Total > 0 and AnonHugePages = 0kB then settings
have applied correctly.

AnonHugePages: 0 kB

ShmemHugePages: 0 kB

FileHugePages: 0 kB

HugePages_Total: 20

HugePages_Free: 20

HugePages_Rsvd: 0

HugePages_Surp: 0

Hugepagesize: 2048 kB

Hugetlb: 40960 kB

26

Memory leak investigation

One of our customers noticed that some PostgreSQL
process was consuming large amount of memory, 1.1GB
and asked us to help them in resolving the problem.

We need to know function call hierarchy to understand the
problem’s origin. Let’s see what it looks like by default
without installing any additional packages.

27

Stack trace without installing any additional
packages

We can see incomplete function call hierarchy which doesn’t help to

detect the problem’s origin. To solve this issue, additional packages

with debug symbols must be installed.

#0 0x0000000000835440 in GetCachedPlan ()

#1 0x000000000063578d in SPI_plan_get_cached_plan

()

#2 0x00007f1c6b7528d2 in ?? () from /opt/pgsql/ver-

10/lib/plpgsql.so

#3 0x00007f1c6b753b4a in ?? () from /opt/pgsql/ver-

10/lib/plpgsql.so

28

Debug symbols installation for PostgreSQL (1)

Debug symbols allow us to get the names of variables, functions

and functions calling hierarchy.

The debug symbols package’s version must match the server

version with minor precision. For example, for PostgreSQL 13.2 the

following packages should be installed:

• postgresql-client-13-dbsym

• postgresql-13-dbgsym

• postgresql-plperl-13-dbgsym (in case of using plperl)

• postgresql-plpython3-13-dbgsym (in case of using

plpython3)

29

Debug symbols installation for PostgreSQL (2)

Some extensions and their debug symbols should be installed

separately.

Let’s consider pg_stat_kcache extension:

• postgresql-13-pg-stat-kcache

• postgresql-13-pg-stat-kcache-dbgsym

30

Debug symbols installation for OS (1)

echo "deb http://ddebs.ubuntu.com $(lsb_release -cs) main

restricted universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-updates main

restricted universe multiverse

deb http://ddebs.ubuntu.com $(lsb_release -cs)-proposed

main restricted universe multiverse" | \

sudo tee -a /etc/apt/sources.list.d/ddebs.list

wget --quiet -O - http://ddebs.ubuntu.com/dbgsym-release-key.asc

| sudo apt-key add –

sudo apt-get update && sudo apt-get install gdb

Also debug packages for OS should be installed which can be done the

following way:

31

Debug symbols installation for OS (2)

Connect to an idle PostgreSQL backend by using

sudo gdb –p pid

Then gdb will display a list of debug symbols packages that
need to be installed.

In the case of clean installation of Ubuntu 20.04 the command
will looks something like that.

32

Debug symbols installation for OS (3)

apt-get install libxml2-dbgsym libssl1.1-dbgsym

libcrypto++6-dbg libicu66-dbgsym libc6-dbg

libaudit1-dbgsym libkrb5-dbg libldap-2.4-2-dbgsym

libsasl2-modules-dbgsym libstdc++6-10-dbg liblz4-1-

dbgsym libcrypt1-dbgsym libcap-ng0-dbgsym

libkeyutils1-dbgsym libheimntlm0-heimdal-dbgsym

libasn1-8-heimdal-dbgsym libhcrypto4-heimdal-dbgsym

libidn2-0-dbgsym libunistring2-dbgsym libtasn1-6-

dbgsym libnettle7-dbgsym libhogweed5-dbgsym

libgmp10-dbgsym libgpg-error0-dbgsym libwind0-

heimdal-dbgsym libheimbase1-heimdal-dbgsym libhx509-

5-heimdal-dbgsym libffi7-dbgsym liblzma5-dbgsym

33

Stack
trace after installing packages with debug

symbols (1)

After installing packages with debug symbols, we get a more

accurate function call tree.

#0 GetCachedPlan (plansource=0x2c4d668,

boundParams=boundParams@entry=0x0, useResOwner=1

'\001', queryEnv=0x0) at plancache.c:1308

#1 0x000000000063578d in SPI_plan_get_cached_plan

(plan=<optimized out>) at spi.c:1669

#2 0x00007f1c6b7528d2 in exec_simple_check_plan

(estate=0x7ffd7f136a00, expr=0x2d42ad0) at

pl_exec.c:6954

#3 exec_prepare_plan (estate=0x7ffd7f136a00,

expr=0x2d42ad0, cursorOptions=<optimized out>) at

pl_exec.c:3743

34

Setting options for gathering core dump (1)

segmentation fault is a failure condition associated with memory
access violation. The process stops working and generates a core
dump file.

core dump file is a state of a working memory of a computer
program at a specific time of crashing.

core_pattern is a template for core dump file’s name.

sudo sysctl kernel.core_pattern

• kernel.core_pattern = |/usr/share/apport/apport %p %s %c %d
%P %E

• kernel.core_pattern = |/lib/systemd/systemd-coredump %P %u
%g %s %t 9223372036854775808 %h

35

Setting options for gathering core dump (2)

You can change kernel.core_pattern setting as follows:

sudo sysctl ‘kernel.core_pattern=/tmp/core-%e-%s-%u-%g-

%p-%t’

%e – executable filename

%s – signal number, which caused core dump generation

%u – user identifier of process owner

%g – group identifier of process owner

%p – terminated process identifier

%t – UNIX-time of a dump

36

Limit settings for PostgreSQL and its client
applications (1)

For client applications like pg_dump, psql and pg_restore limits for

maximum file and core dump size should be written in

/etc/security/limits.conf as shown below:

postgres hard core unlimited

postgres soft core unlimited

postgres hard fsize unlimited

postgres soft fsize unlimited

37

Limit settings for PostgreSQL and its client
applications (2)

In case of running PostgreSQL as a service by systemd limits

can be defined, for example, in a system unit file. For more

information, please, consult the following manual page

man 5 systemd.exec

38

Useful links (1)

Debug Symbol Packages.
https://wiki.ubuntu.com/Debug%20Symbol%20Packages

Linux kernel documentation.
https://www.kernel.org/doc/html/latest/admin-
guide/sysctl/kernel.html

Apport. https://wiki.ubuntu.com/Apport

systemd-coredump. https://man7.org/linux/man-
pages/man8/systemd-coredump.8.html

Logging in PostgreSQL.
https://www.postgresql.org/docs/current/runtime-config-
logging.html

Planner options in PostgreSQL.
https://www.postgresql.org/docs/13/runtime-config-query.html

https://wiki.ubuntu.com/Debug Symbol Packages
https://www.kernel.org/doc/html/latest/admin-guide/sysctl/kernel.html
https://wiki.ubuntu.com/Apport
https://man7.org/linux/man-pages/man8/systemd-coredump.8.html
https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.postgresql.org/docs/13/runtime-config-query.html

39

Useful links (2)

pg_checksums for PostgreSQL 12 and higher.
https://www.postgresql.org/docs/13/app-pgchecksums.html

pg_checksums for PostgreSQL version lower than 12.
https://github.com/credativ/pg_checksums

pg_stat_statements module.
https://www.postgresql.org/docs/13/pgstatstatements.html

pg_stat_kcache module. https://github.com/powa-
team/pg_stat_kcache

pg_wait_sampling module.
https://github.com/postgrespro/pg_wait_sampling

https://www.postgresql.org/docs/13/app-pgchecksums.html
https://github.com/credativ/pg_checksums
https://www.postgresql.org/docs/13/pgstatstatements.html
https://github.com/powa-team/pg_stat_kcache
https://github.com/postgrespro/pg_wait_sampling

40

Useful links (3)

auto_explain module.
https://www.postgresql.org/docs/13/auto-explain.html

pgpro_stats module.
https://postgrespro.com/docs/enterprise/12/pgpro-stats

pg_profile module. https://github.com/zubkov-
andrei/pg_profile

pgpro_pwr module.
https://postgrespro.com/docs/enterprise/12/pgpro-pwr

mamonsu. https://github.com/postgrespro/mamonsu

pg_probackup. https://github.com/postgrespro/pg_probackup

https://www.postgresql.org/docs/13/auto-explain.html
https://postgrespro.com/docs/enterprise/12/pgpro-stats
https://github.com/zubkov-andrei/pg_profile
https://postgrespro.com/docs/enterprise/12/pgpro-pwr
https://github.com/postgrespro/mamonsu
https://github.com/postgrespro/pg_probackup

postgrespro.com

Postgres Professional

http://postgrespro.com/

info@postgrespro.com

http://postgrespro.com/

